]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/pci/pci-driver.c
ACPI / Fan: Use bus id as the name for non PNP0C0B (Fan) devices
[mirror_ubuntu-focal-kernel.git] / drivers / pci / pci-driver.c
1 /*
2 * drivers/pci/pci-driver.c
3 *
4 * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com>
5 * (C) Copyright 2007 Novell Inc.
6 *
7 * Released under the GPL v2 only.
8 *
9 */
10
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/device.h>
15 #include <linux/mempolicy.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/cpu.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/suspend.h>
22 #include <linux/kexec.h>
23 #include "pci.h"
24
25 struct pci_dynid {
26 struct list_head node;
27 struct pci_device_id id;
28 };
29
30 /**
31 * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices
32 * @drv: target pci driver
33 * @vendor: PCI vendor ID
34 * @device: PCI device ID
35 * @subvendor: PCI subvendor ID
36 * @subdevice: PCI subdevice ID
37 * @class: PCI class
38 * @class_mask: PCI class mask
39 * @driver_data: private driver data
40 *
41 * Adds a new dynamic pci device ID to this driver and causes the
42 * driver to probe for all devices again. @drv must have been
43 * registered prior to calling this function.
44 *
45 * CONTEXT:
46 * Does GFP_KERNEL allocation.
47 *
48 * RETURNS:
49 * 0 on success, -errno on failure.
50 */
51 int pci_add_dynid(struct pci_driver *drv,
52 unsigned int vendor, unsigned int device,
53 unsigned int subvendor, unsigned int subdevice,
54 unsigned int class, unsigned int class_mask,
55 unsigned long driver_data)
56 {
57 struct pci_dynid *dynid;
58
59 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
60 if (!dynid)
61 return -ENOMEM;
62
63 dynid->id.vendor = vendor;
64 dynid->id.device = device;
65 dynid->id.subvendor = subvendor;
66 dynid->id.subdevice = subdevice;
67 dynid->id.class = class;
68 dynid->id.class_mask = class_mask;
69 dynid->id.driver_data = driver_data;
70
71 spin_lock(&drv->dynids.lock);
72 list_add_tail(&dynid->node, &drv->dynids.list);
73 spin_unlock(&drv->dynids.lock);
74
75 return driver_attach(&drv->driver);
76 }
77 EXPORT_SYMBOL_GPL(pci_add_dynid);
78
79 static void pci_free_dynids(struct pci_driver *drv)
80 {
81 struct pci_dynid *dynid, *n;
82
83 spin_lock(&drv->dynids.lock);
84 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
85 list_del(&dynid->node);
86 kfree(dynid);
87 }
88 spin_unlock(&drv->dynids.lock);
89 }
90
91 /**
92 * store_new_id - sysfs frontend to pci_add_dynid()
93 * @driver: target device driver
94 * @buf: buffer for scanning device ID data
95 * @count: input size
96 *
97 * Allow PCI IDs to be added to an existing driver via sysfs.
98 */
99 static ssize_t store_new_id(struct device_driver *driver, const char *buf,
100 size_t count)
101 {
102 struct pci_driver *pdrv = to_pci_driver(driver);
103 const struct pci_device_id *ids = pdrv->id_table;
104 __u32 vendor, device, subvendor = PCI_ANY_ID,
105 subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
106 unsigned long driver_data = 0;
107 int fields = 0;
108 int retval = 0;
109
110 fields = sscanf(buf, "%x %x %x %x %x %x %lx",
111 &vendor, &device, &subvendor, &subdevice,
112 &class, &class_mask, &driver_data);
113 if (fields < 2)
114 return -EINVAL;
115
116 if (fields != 7) {
117 struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
118 if (!pdev)
119 return -ENOMEM;
120
121 pdev->vendor = vendor;
122 pdev->device = device;
123 pdev->subsystem_vendor = subvendor;
124 pdev->subsystem_device = subdevice;
125 pdev->class = class;
126
127 if (pci_match_id(pdrv->id_table, pdev))
128 retval = -EEXIST;
129
130 kfree(pdev);
131
132 if (retval)
133 return retval;
134 }
135
136 /* Only accept driver_data values that match an existing id_table
137 entry */
138 if (ids) {
139 retval = -EINVAL;
140 while (ids->vendor || ids->subvendor || ids->class_mask) {
141 if (driver_data == ids->driver_data) {
142 retval = 0;
143 break;
144 }
145 ids++;
146 }
147 if (retval) /* No match */
148 return retval;
149 }
150
151 retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice,
152 class, class_mask, driver_data);
153 if (retval)
154 return retval;
155 return count;
156 }
157 static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
158
159 /**
160 * store_remove_id - remove a PCI device ID from this driver
161 * @driver: target device driver
162 * @buf: buffer for scanning device ID data
163 * @count: input size
164 *
165 * Removes a dynamic pci device ID to this driver.
166 */
167 static ssize_t store_remove_id(struct device_driver *driver, const char *buf,
168 size_t count)
169 {
170 struct pci_dynid *dynid, *n;
171 struct pci_driver *pdrv = to_pci_driver(driver);
172 __u32 vendor, device, subvendor = PCI_ANY_ID,
173 subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
174 int fields = 0;
175 int retval = -ENODEV;
176
177 fields = sscanf(buf, "%x %x %x %x %x %x",
178 &vendor, &device, &subvendor, &subdevice,
179 &class, &class_mask);
180 if (fields < 2)
181 return -EINVAL;
182
183 spin_lock(&pdrv->dynids.lock);
184 list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) {
185 struct pci_device_id *id = &dynid->id;
186 if ((id->vendor == vendor) &&
187 (id->device == device) &&
188 (subvendor == PCI_ANY_ID || id->subvendor == subvendor) &&
189 (subdevice == PCI_ANY_ID || id->subdevice == subdevice) &&
190 !((id->class ^ class) & class_mask)) {
191 list_del(&dynid->node);
192 kfree(dynid);
193 retval = 0;
194 break;
195 }
196 }
197 spin_unlock(&pdrv->dynids.lock);
198
199 if (retval)
200 return retval;
201 return count;
202 }
203 static DRIVER_ATTR(remove_id, S_IWUSR, NULL, store_remove_id);
204
205 static struct attribute *pci_drv_attrs[] = {
206 &driver_attr_new_id.attr,
207 &driver_attr_remove_id.attr,
208 NULL,
209 };
210 ATTRIBUTE_GROUPS(pci_drv);
211
212 /**
213 * pci_match_id - See if a pci device matches a given pci_id table
214 * @ids: array of PCI device id structures to search in
215 * @dev: the PCI device structure to match against.
216 *
217 * Used by a driver to check whether a PCI device present in the
218 * system is in its list of supported devices. Returns the matching
219 * pci_device_id structure or %NULL if there is no match.
220 *
221 * Deprecated, don't use this as it will not catch any dynamic ids
222 * that a driver might want to check for.
223 */
224 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids,
225 struct pci_dev *dev)
226 {
227 if (ids) {
228 while (ids->vendor || ids->subvendor || ids->class_mask) {
229 if (pci_match_one_device(ids, dev))
230 return ids;
231 ids++;
232 }
233 }
234 return NULL;
235 }
236 EXPORT_SYMBOL(pci_match_id);
237
238 static const struct pci_device_id pci_device_id_any = {
239 .vendor = PCI_ANY_ID,
240 .device = PCI_ANY_ID,
241 .subvendor = PCI_ANY_ID,
242 .subdevice = PCI_ANY_ID,
243 };
244
245 /**
246 * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure
247 * @drv: the PCI driver to match against
248 * @dev: the PCI device structure to match against
249 *
250 * Used by a driver to check whether a PCI device present in the
251 * system is in its list of supported devices. Returns the matching
252 * pci_device_id structure or %NULL if there is no match.
253 */
254 static const struct pci_device_id *pci_match_device(struct pci_driver *drv,
255 struct pci_dev *dev)
256 {
257 struct pci_dynid *dynid;
258 const struct pci_device_id *found_id = NULL;
259
260 /* When driver_override is set, only bind to the matching driver */
261 if (dev->driver_override && strcmp(dev->driver_override, drv->name))
262 return NULL;
263
264 /* Look at the dynamic ids first, before the static ones */
265 spin_lock(&drv->dynids.lock);
266 list_for_each_entry(dynid, &drv->dynids.list, node) {
267 if (pci_match_one_device(&dynid->id, dev)) {
268 found_id = &dynid->id;
269 break;
270 }
271 }
272 spin_unlock(&drv->dynids.lock);
273
274 if (!found_id)
275 found_id = pci_match_id(drv->id_table, dev);
276
277 /* driver_override will always match, send a dummy id */
278 if (!found_id && dev->driver_override)
279 found_id = &pci_device_id_any;
280
281 return found_id;
282 }
283
284 struct drv_dev_and_id {
285 struct pci_driver *drv;
286 struct pci_dev *dev;
287 const struct pci_device_id *id;
288 };
289
290 static long local_pci_probe(void *_ddi)
291 {
292 struct drv_dev_and_id *ddi = _ddi;
293 struct pci_dev *pci_dev = ddi->dev;
294 struct pci_driver *pci_drv = ddi->drv;
295 struct device *dev = &pci_dev->dev;
296 int rc;
297
298 /*
299 * Unbound PCI devices are always put in D0, regardless of
300 * runtime PM status. During probe, the device is set to
301 * active and the usage count is incremented. If the driver
302 * supports runtime PM, it should call pm_runtime_put_noidle()
303 * in its probe routine and pm_runtime_get_noresume() in its
304 * remove routine.
305 */
306 pm_runtime_get_sync(dev);
307 pci_dev->driver = pci_drv;
308 rc = pci_drv->probe(pci_dev, ddi->id);
309 if (!rc)
310 return rc;
311 if (rc < 0) {
312 pci_dev->driver = NULL;
313 pm_runtime_put_sync(dev);
314 return rc;
315 }
316 /*
317 * Probe function should return < 0 for failure, 0 for success
318 * Treat values > 0 as success, but warn.
319 */
320 dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc);
321 return 0;
322 }
323
324 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev,
325 const struct pci_device_id *id)
326 {
327 int error, node;
328 struct drv_dev_and_id ddi = { drv, dev, id };
329
330 /*
331 * Execute driver initialization on node where the device is
332 * attached. This way the driver likely allocates its local memory
333 * on the right node.
334 */
335 node = dev_to_node(&dev->dev);
336
337 /*
338 * On NUMA systems, we are likely to call a PF probe function using
339 * work_on_cpu(). If that probe calls pci_enable_sriov() (which
340 * adds the VF devices via pci_bus_add_device()), we may re-enter
341 * this function to call the VF probe function. Calling
342 * work_on_cpu() again will cause a lockdep warning. Since VFs are
343 * always on the same node as the PF, we can work around this by
344 * avoiding work_on_cpu() when we're already on the correct node.
345 *
346 * Preemption is enabled, so it's theoretically unsafe to use
347 * numa_node_id(), but even if we run the probe function on the
348 * wrong node, it should be functionally correct.
349 */
350 if (node >= 0 && node != numa_node_id()) {
351 int cpu;
352
353 get_online_cpus();
354 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
355 if (cpu < nr_cpu_ids)
356 error = work_on_cpu(cpu, local_pci_probe, &ddi);
357 else
358 error = local_pci_probe(&ddi);
359 put_online_cpus();
360 } else
361 error = local_pci_probe(&ddi);
362
363 return error;
364 }
365
366 /**
367 * __pci_device_probe - check if a driver wants to claim a specific PCI device
368 * @drv: driver to call to check if it wants the PCI device
369 * @pci_dev: PCI device being probed
370 *
371 * returns 0 on success, else error.
372 * side-effect: pci_dev->driver is set to drv when drv claims pci_dev.
373 */
374 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev)
375 {
376 const struct pci_device_id *id;
377 int error = 0;
378
379 if (!pci_dev->driver && drv->probe) {
380 error = -ENODEV;
381
382 id = pci_match_device(drv, pci_dev);
383 if (id)
384 error = pci_call_probe(drv, pci_dev, id);
385 if (error >= 0)
386 error = 0;
387 }
388 return error;
389 }
390
391 static int pci_device_probe(struct device *dev)
392 {
393 int error = 0;
394 struct pci_driver *drv;
395 struct pci_dev *pci_dev;
396
397 drv = to_pci_driver(dev->driver);
398 pci_dev = to_pci_dev(dev);
399 pci_dev_get(pci_dev);
400 error = __pci_device_probe(drv, pci_dev);
401 if (error)
402 pci_dev_put(pci_dev);
403
404 return error;
405 }
406
407 static int pci_device_remove(struct device *dev)
408 {
409 struct pci_dev *pci_dev = to_pci_dev(dev);
410 struct pci_driver *drv = pci_dev->driver;
411
412 if (drv) {
413 if (drv->remove) {
414 pm_runtime_get_sync(dev);
415 drv->remove(pci_dev);
416 pm_runtime_put_noidle(dev);
417 }
418 pci_dev->driver = NULL;
419 }
420
421 /* Undo the runtime PM settings in local_pci_probe() */
422 pm_runtime_put_sync(dev);
423
424 /*
425 * If the device is still on, set the power state as "unknown",
426 * since it might change by the next time we load the driver.
427 */
428 if (pci_dev->current_state == PCI_D0)
429 pci_dev->current_state = PCI_UNKNOWN;
430
431 /*
432 * We would love to complain here if pci_dev->is_enabled is set, that
433 * the driver should have called pci_disable_device(), but the
434 * unfortunate fact is there are too many odd BIOS and bridge setups
435 * that don't like drivers doing that all of the time.
436 * Oh well, we can dream of sane hardware when we sleep, no matter how
437 * horrible the crap we have to deal with is when we are awake...
438 */
439
440 pci_dev_put(pci_dev);
441 return 0;
442 }
443
444 static void pci_device_shutdown(struct device *dev)
445 {
446 struct pci_dev *pci_dev = to_pci_dev(dev);
447 struct pci_driver *drv = pci_dev->driver;
448
449 pm_runtime_resume(dev);
450
451 if (drv && drv->shutdown)
452 drv->shutdown(pci_dev);
453 pci_msi_shutdown(pci_dev);
454 pci_msix_shutdown(pci_dev);
455
456 #ifdef CONFIG_KEXEC
457 /*
458 * If this is a kexec reboot, turn off Bus Master bit on the
459 * device to tell it to not continue to do DMA. Don't touch
460 * devices in D3cold or unknown states.
461 * If it is not a kexec reboot, firmware will hit the PCI
462 * devices with big hammer and stop their DMA any way.
463 */
464 if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot))
465 pci_clear_master(pci_dev);
466 #endif
467 }
468
469 #ifdef CONFIG_PM
470
471 /* Auxiliary functions used for system resume and run-time resume. */
472
473 /**
474 * pci_restore_standard_config - restore standard config registers of PCI device
475 * @pci_dev: PCI device to handle
476 */
477 static int pci_restore_standard_config(struct pci_dev *pci_dev)
478 {
479 pci_update_current_state(pci_dev, PCI_UNKNOWN);
480
481 if (pci_dev->current_state != PCI_D0) {
482 int error = pci_set_power_state(pci_dev, PCI_D0);
483 if (error)
484 return error;
485 }
486
487 pci_restore_state(pci_dev);
488 return 0;
489 }
490
491 #endif
492
493 #ifdef CONFIG_PM_SLEEP
494
495 static void pci_pm_default_resume_early(struct pci_dev *pci_dev)
496 {
497 pci_power_up(pci_dev);
498 pci_restore_state(pci_dev);
499 pci_fixup_device(pci_fixup_resume_early, pci_dev);
500 }
501
502 /*
503 * Default "suspend" method for devices that have no driver provided suspend,
504 * or not even a driver at all (second part).
505 */
506 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev)
507 {
508 /*
509 * mark its power state as "unknown", since we don't know if
510 * e.g. the BIOS will change its device state when we suspend.
511 */
512 if (pci_dev->current_state == PCI_D0)
513 pci_dev->current_state = PCI_UNKNOWN;
514 }
515
516 /*
517 * Default "resume" method for devices that have no driver provided resume,
518 * or not even a driver at all (second part).
519 */
520 static int pci_pm_reenable_device(struct pci_dev *pci_dev)
521 {
522 int retval;
523
524 /* if the device was enabled before suspend, reenable */
525 retval = pci_reenable_device(pci_dev);
526 /*
527 * if the device was busmaster before the suspend, make it busmaster
528 * again
529 */
530 if (pci_dev->is_busmaster)
531 pci_set_master(pci_dev);
532
533 return retval;
534 }
535
536 static int pci_legacy_suspend(struct device *dev, pm_message_t state)
537 {
538 struct pci_dev *pci_dev = to_pci_dev(dev);
539 struct pci_driver *drv = pci_dev->driver;
540
541 if (drv && drv->suspend) {
542 pci_power_t prev = pci_dev->current_state;
543 int error;
544
545 error = drv->suspend(pci_dev, state);
546 suspend_report_result(drv->suspend, error);
547 if (error)
548 return error;
549
550 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
551 && pci_dev->current_state != PCI_UNKNOWN) {
552 WARN_ONCE(pci_dev->current_state != prev,
553 "PCI PM: Device state not saved by %pF\n",
554 drv->suspend);
555 }
556 }
557
558 pci_fixup_device(pci_fixup_suspend, pci_dev);
559
560 return 0;
561 }
562
563 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state)
564 {
565 struct pci_dev *pci_dev = to_pci_dev(dev);
566 struct pci_driver *drv = pci_dev->driver;
567
568 if (drv && drv->suspend_late) {
569 pci_power_t prev = pci_dev->current_state;
570 int error;
571
572 error = drv->suspend_late(pci_dev, state);
573 suspend_report_result(drv->suspend_late, error);
574 if (error)
575 return error;
576
577 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
578 && pci_dev->current_state != PCI_UNKNOWN) {
579 WARN_ONCE(pci_dev->current_state != prev,
580 "PCI PM: Device state not saved by %pF\n",
581 drv->suspend_late);
582 goto Fixup;
583 }
584 }
585
586 if (!pci_dev->state_saved)
587 pci_save_state(pci_dev);
588
589 pci_pm_set_unknown_state(pci_dev);
590
591 Fixup:
592 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
593
594 return 0;
595 }
596
597 static int pci_legacy_resume_early(struct device *dev)
598 {
599 struct pci_dev *pci_dev = to_pci_dev(dev);
600 struct pci_driver *drv = pci_dev->driver;
601
602 return drv && drv->resume_early ?
603 drv->resume_early(pci_dev) : 0;
604 }
605
606 static int pci_legacy_resume(struct device *dev)
607 {
608 struct pci_dev *pci_dev = to_pci_dev(dev);
609 struct pci_driver *drv = pci_dev->driver;
610
611 pci_fixup_device(pci_fixup_resume, pci_dev);
612
613 return drv && drv->resume ?
614 drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev);
615 }
616
617 /* Auxiliary functions used by the new power management framework */
618
619 static void pci_pm_default_resume(struct pci_dev *pci_dev)
620 {
621 pci_fixup_device(pci_fixup_resume, pci_dev);
622
623 if (!pci_has_subordinate(pci_dev))
624 pci_enable_wake(pci_dev, PCI_D0, false);
625 }
626
627 static void pci_pm_default_suspend(struct pci_dev *pci_dev)
628 {
629 /* Disable non-bridge devices without PM support */
630 if (!pci_has_subordinate(pci_dev))
631 pci_disable_enabled_device(pci_dev);
632 }
633
634 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev)
635 {
636 struct pci_driver *drv = pci_dev->driver;
637 bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume
638 || drv->resume_early);
639
640 /*
641 * Legacy PM support is used by default, so warn if the new framework is
642 * supported as well. Drivers are supposed to support either the
643 * former, or the latter, but not both at the same time.
644 */
645 WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n",
646 drv->name, pci_dev->vendor, pci_dev->device);
647
648 return ret;
649 }
650
651 /* New power management framework */
652
653 static int pci_pm_prepare(struct device *dev)
654 {
655 struct device_driver *drv = dev->driver;
656 int error = 0;
657
658 /*
659 * Devices having power.ignore_children set may still be necessary for
660 * suspending their children in the next phase of device suspend.
661 */
662 if (dev->power.ignore_children)
663 pm_runtime_resume(dev);
664
665 if (drv && drv->pm && drv->pm->prepare)
666 error = drv->pm->prepare(dev);
667
668 return error;
669 }
670
671
672 #else /* !CONFIG_PM_SLEEP */
673
674 #define pci_pm_prepare NULL
675
676 #endif /* !CONFIG_PM_SLEEP */
677
678 #ifdef CONFIG_SUSPEND
679
680 static int pci_pm_suspend(struct device *dev)
681 {
682 struct pci_dev *pci_dev = to_pci_dev(dev);
683 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
684
685 if (pci_has_legacy_pm_support(pci_dev))
686 return pci_legacy_suspend(dev, PMSG_SUSPEND);
687
688 if (!pm) {
689 pci_pm_default_suspend(pci_dev);
690 goto Fixup;
691 }
692
693 /*
694 * PCI devices suspended at run time need to be resumed at this point,
695 * because in general it is necessary to reconfigure them for system
696 * suspend. Namely, if the device is supposed to wake up the system
697 * from the sleep state, we may need to reconfigure it for this purpose.
698 * In turn, if the device is not supposed to wake up the system from the
699 * sleep state, we'll have to prevent it from signaling wake-up.
700 */
701 pm_runtime_resume(dev);
702
703 pci_dev->state_saved = false;
704 if (pm->suspend) {
705 pci_power_t prev = pci_dev->current_state;
706 int error;
707
708 error = pm->suspend(dev);
709 suspend_report_result(pm->suspend, error);
710 if (error)
711 return error;
712
713 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
714 && pci_dev->current_state != PCI_UNKNOWN) {
715 WARN_ONCE(pci_dev->current_state != prev,
716 "PCI PM: State of device not saved by %pF\n",
717 pm->suspend);
718 }
719 }
720
721 Fixup:
722 pci_fixup_device(pci_fixup_suspend, pci_dev);
723
724 return 0;
725 }
726
727 static int pci_pm_suspend_noirq(struct device *dev)
728 {
729 struct pci_dev *pci_dev = to_pci_dev(dev);
730 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
731
732 if (pci_has_legacy_pm_support(pci_dev))
733 return pci_legacy_suspend_late(dev, PMSG_SUSPEND);
734
735 if (!pm) {
736 pci_save_state(pci_dev);
737 goto Fixup;
738 }
739
740 if (pm->suspend_noirq) {
741 pci_power_t prev = pci_dev->current_state;
742 int error;
743
744 error = pm->suspend_noirq(dev);
745 suspend_report_result(pm->suspend_noirq, error);
746 if (error)
747 return error;
748
749 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
750 && pci_dev->current_state != PCI_UNKNOWN) {
751 WARN_ONCE(pci_dev->current_state != prev,
752 "PCI PM: State of device not saved by %pF\n",
753 pm->suspend_noirq);
754 goto Fixup;
755 }
756 }
757
758 if (!pci_dev->state_saved) {
759 pci_save_state(pci_dev);
760 if (!pci_has_subordinate(pci_dev))
761 pci_prepare_to_sleep(pci_dev);
762 }
763
764 pci_pm_set_unknown_state(pci_dev);
765
766 /*
767 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's
768 * PCI COMMAND register isn't 0, the BIOS assumes that the controller
769 * hasn't been quiesced and tries to turn it off. If the controller
770 * is already in D3, this can hang or cause memory corruption.
771 *
772 * Since the value of the COMMAND register doesn't matter once the
773 * device has been suspended, we can safely set it to 0 here.
774 */
775 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
776 pci_write_config_word(pci_dev, PCI_COMMAND, 0);
777
778 Fixup:
779 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
780
781 return 0;
782 }
783
784 static int pci_pm_resume_noirq(struct device *dev)
785 {
786 struct pci_dev *pci_dev = to_pci_dev(dev);
787 struct device_driver *drv = dev->driver;
788 int error = 0;
789
790 pci_pm_default_resume_early(pci_dev);
791
792 if (pci_has_legacy_pm_support(pci_dev))
793 return pci_legacy_resume_early(dev);
794
795 if (drv && drv->pm && drv->pm->resume_noirq)
796 error = drv->pm->resume_noirq(dev);
797
798 return error;
799 }
800
801 static int pci_pm_resume(struct device *dev)
802 {
803 struct pci_dev *pci_dev = to_pci_dev(dev);
804 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
805 int error = 0;
806
807 /*
808 * This is necessary for the suspend error path in which resume is
809 * called without restoring the standard config registers of the device.
810 */
811 if (pci_dev->state_saved)
812 pci_restore_standard_config(pci_dev);
813
814 if (pci_has_legacy_pm_support(pci_dev))
815 return pci_legacy_resume(dev);
816
817 pci_pm_default_resume(pci_dev);
818
819 if (pm) {
820 if (pm->resume)
821 error = pm->resume(dev);
822 } else {
823 pci_pm_reenable_device(pci_dev);
824 }
825
826 return error;
827 }
828
829 #else /* !CONFIG_SUSPEND */
830
831 #define pci_pm_suspend NULL
832 #define pci_pm_suspend_noirq NULL
833 #define pci_pm_resume NULL
834 #define pci_pm_resume_noirq NULL
835
836 #endif /* !CONFIG_SUSPEND */
837
838 #ifdef CONFIG_HIBERNATE_CALLBACKS
839
840
841 /*
842 * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing
843 * a hibernate transition
844 */
845 struct dev_pm_ops __weak pcibios_pm_ops;
846
847 static int pci_pm_freeze(struct device *dev)
848 {
849 struct pci_dev *pci_dev = to_pci_dev(dev);
850 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
851
852 if (pci_has_legacy_pm_support(pci_dev))
853 return pci_legacy_suspend(dev, PMSG_FREEZE);
854
855 if (!pm) {
856 pci_pm_default_suspend(pci_dev);
857 return 0;
858 }
859
860 /*
861 * This used to be done in pci_pm_prepare() for all devices and some
862 * drivers may depend on it, so do it here. Ideally, runtime-suspended
863 * devices should not be touched during freeze/thaw transitions,
864 * however.
865 */
866 pm_runtime_resume(dev);
867
868 pci_dev->state_saved = false;
869 if (pm->freeze) {
870 int error;
871
872 error = pm->freeze(dev);
873 suspend_report_result(pm->freeze, error);
874 if (error)
875 return error;
876 }
877
878 if (pcibios_pm_ops.freeze)
879 return pcibios_pm_ops.freeze(dev);
880
881 return 0;
882 }
883
884 static int pci_pm_freeze_noirq(struct device *dev)
885 {
886 struct pci_dev *pci_dev = to_pci_dev(dev);
887 struct device_driver *drv = dev->driver;
888
889 if (pci_has_legacy_pm_support(pci_dev))
890 return pci_legacy_suspend_late(dev, PMSG_FREEZE);
891
892 if (drv && drv->pm && drv->pm->freeze_noirq) {
893 int error;
894
895 error = drv->pm->freeze_noirq(dev);
896 suspend_report_result(drv->pm->freeze_noirq, error);
897 if (error)
898 return error;
899 }
900
901 if (!pci_dev->state_saved)
902 pci_save_state(pci_dev);
903
904 pci_pm_set_unknown_state(pci_dev);
905
906 if (pcibios_pm_ops.freeze_noirq)
907 return pcibios_pm_ops.freeze_noirq(dev);
908
909 return 0;
910 }
911
912 static int pci_pm_thaw_noirq(struct device *dev)
913 {
914 struct pci_dev *pci_dev = to_pci_dev(dev);
915 struct device_driver *drv = dev->driver;
916 int error = 0;
917
918 if (pcibios_pm_ops.thaw_noirq) {
919 error = pcibios_pm_ops.thaw_noirq(dev);
920 if (error)
921 return error;
922 }
923
924 if (pci_has_legacy_pm_support(pci_dev))
925 return pci_legacy_resume_early(dev);
926
927 pci_update_current_state(pci_dev, PCI_D0);
928
929 if (drv && drv->pm && drv->pm->thaw_noirq)
930 error = drv->pm->thaw_noirq(dev);
931
932 return error;
933 }
934
935 static int pci_pm_thaw(struct device *dev)
936 {
937 struct pci_dev *pci_dev = to_pci_dev(dev);
938 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
939 int error = 0;
940
941 if (pcibios_pm_ops.thaw) {
942 error = pcibios_pm_ops.thaw(dev);
943 if (error)
944 return error;
945 }
946
947 if (pci_has_legacy_pm_support(pci_dev))
948 return pci_legacy_resume(dev);
949
950 if (pm) {
951 if (pm->thaw)
952 error = pm->thaw(dev);
953 } else {
954 pci_pm_reenable_device(pci_dev);
955 }
956
957 pci_dev->state_saved = false;
958
959 return error;
960 }
961
962 static int pci_pm_poweroff(struct device *dev)
963 {
964 struct pci_dev *pci_dev = to_pci_dev(dev);
965 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
966
967 if (pci_has_legacy_pm_support(pci_dev))
968 return pci_legacy_suspend(dev, PMSG_HIBERNATE);
969
970 if (!pm) {
971 pci_pm_default_suspend(pci_dev);
972 goto Fixup;
973 }
974
975 /* The reason to do that is the same as in pci_pm_suspend(). */
976 pm_runtime_resume(dev);
977
978 pci_dev->state_saved = false;
979 if (pm->poweroff) {
980 int error;
981
982 error = pm->poweroff(dev);
983 suspend_report_result(pm->poweroff, error);
984 if (error)
985 return error;
986 }
987
988 Fixup:
989 pci_fixup_device(pci_fixup_suspend, pci_dev);
990
991 if (pcibios_pm_ops.poweroff)
992 return pcibios_pm_ops.poweroff(dev);
993
994 return 0;
995 }
996
997 static int pci_pm_poweroff_noirq(struct device *dev)
998 {
999 struct pci_dev *pci_dev = to_pci_dev(dev);
1000 struct device_driver *drv = dev->driver;
1001
1002 if (pci_has_legacy_pm_support(to_pci_dev(dev)))
1003 return pci_legacy_suspend_late(dev, PMSG_HIBERNATE);
1004
1005 if (!drv || !drv->pm) {
1006 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1007 return 0;
1008 }
1009
1010 if (drv->pm->poweroff_noirq) {
1011 int error;
1012
1013 error = drv->pm->poweroff_noirq(dev);
1014 suspend_report_result(drv->pm->poweroff_noirq, error);
1015 if (error)
1016 return error;
1017 }
1018
1019 if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev))
1020 pci_prepare_to_sleep(pci_dev);
1021
1022 /*
1023 * The reason for doing this here is the same as for the analogous code
1024 * in pci_pm_suspend_noirq().
1025 */
1026 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1027 pci_write_config_word(pci_dev, PCI_COMMAND, 0);
1028
1029 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1030
1031 if (pcibios_pm_ops.poweroff_noirq)
1032 return pcibios_pm_ops.poweroff_noirq(dev);
1033
1034 return 0;
1035 }
1036
1037 static int pci_pm_restore_noirq(struct device *dev)
1038 {
1039 struct pci_dev *pci_dev = to_pci_dev(dev);
1040 struct device_driver *drv = dev->driver;
1041 int error = 0;
1042
1043 if (pcibios_pm_ops.restore_noirq) {
1044 error = pcibios_pm_ops.restore_noirq(dev);
1045 if (error)
1046 return error;
1047 }
1048
1049 pci_pm_default_resume_early(pci_dev);
1050
1051 if (pci_has_legacy_pm_support(pci_dev))
1052 return pci_legacy_resume_early(dev);
1053
1054 if (drv && drv->pm && drv->pm->restore_noirq)
1055 error = drv->pm->restore_noirq(dev);
1056
1057 return error;
1058 }
1059
1060 static int pci_pm_restore(struct device *dev)
1061 {
1062 struct pci_dev *pci_dev = to_pci_dev(dev);
1063 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1064 int error = 0;
1065
1066 if (pcibios_pm_ops.restore) {
1067 error = pcibios_pm_ops.restore(dev);
1068 if (error)
1069 return error;
1070 }
1071
1072 /*
1073 * This is necessary for the hibernation error path in which restore is
1074 * called without restoring the standard config registers of the device.
1075 */
1076 if (pci_dev->state_saved)
1077 pci_restore_standard_config(pci_dev);
1078
1079 if (pci_has_legacy_pm_support(pci_dev))
1080 return pci_legacy_resume(dev);
1081
1082 pci_pm_default_resume(pci_dev);
1083
1084 if (pm) {
1085 if (pm->restore)
1086 error = pm->restore(dev);
1087 } else {
1088 pci_pm_reenable_device(pci_dev);
1089 }
1090
1091 return error;
1092 }
1093
1094 #else /* !CONFIG_HIBERNATE_CALLBACKS */
1095
1096 #define pci_pm_freeze NULL
1097 #define pci_pm_freeze_noirq NULL
1098 #define pci_pm_thaw NULL
1099 #define pci_pm_thaw_noirq NULL
1100 #define pci_pm_poweroff NULL
1101 #define pci_pm_poweroff_noirq NULL
1102 #define pci_pm_restore NULL
1103 #define pci_pm_restore_noirq NULL
1104
1105 #endif /* !CONFIG_HIBERNATE_CALLBACKS */
1106
1107 #ifdef CONFIG_PM_RUNTIME
1108
1109 static int pci_pm_runtime_suspend(struct device *dev)
1110 {
1111 struct pci_dev *pci_dev = to_pci_dev(dev);
1112 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1113 pci_power_t prev = pci_dev->current_state;
1114 int error;
1115
1116 /*
1117 * If pci_dev->driver is not set (unbound), the device should
1118 * always remain in D0 regardless of the runtime PM status
1119 */
1120 if (!pci_dev->driver)
1121 return 0;
1122
1123 if (!pm || !pm->runtime_suspend)
1124 return -ENOSYS;
1125
1126 pci_dev->state_saved = false;
1127 pci_dev->no_d3cold = false;
1128 error = pm->runtime_suspend(dev);
1129 suspend_report_result(pm->runtime_suspend, error);
1130 if (error)
1131 return error;
1132 if (!pci_dev->d3cold_allowed)
1133 pci_dev->no_d3cold = true;
1134
1135 pci_fixup_device(pci_fixup_suspend, pci_dev);
1136
1137 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
1138 && pci_dev->current_state != PCI_UNKNOWN) {
1139 WARN_ONCE(pci_dev->current_state != prev,
1140 "PCI PM: State of device not saved by %pF\n",
1141 pm->runtime_suspend);
1142 return 0;
1143 }
1144
1145 if (!pci_dev->state_saved) {
1146 pci_save_state(pci_dev);
1147 pci_finish_runtime_suspend(pci_dev);
1148 }
1149
1150 return 0;
1151 }
1152
1153 static int pci_pm_runtime_resume(struct device *dev)
1154 {
1155 int rc;
1156 struct pci_dev *pci_dev = to_pci_dev(dev);
1157 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1158
1159 /*
1160 * If pci_dev->driver is not set (unbound), the device should
1161 * always remain in D0 regardless of the runtime PM status
1162 */
1163 if (!pci_dev->driver)
1164 return 0;
1165
1166 if (!pm || !pm->runtime_resume)
1167 return -ENOSYS;
1168
1169 pci_restore_standard_config(pci_dev);
1170 pci_fixup_device(pci_fixup_resume_early, pci_dev);
1171 __pci_enable_wake(pci_dev, PCI_D0, true, false);
1172 pci_fixup_device(pci_fixup_resume, pci_dev);
1173
1174 rc = pm->runtime_resume(dev);
1175
1176 pci_dev->runtime_d3cold = false;
1177
1178 return rc;
1179 }
1180
1181 static int pci_pm_runtime_idle(struct device *dev)
1182 {
1183 struct pci_dev *pci_dev = to_pci_dev(dev);
1184 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1185 int ret = 0;
1186
1187 /*
1188 * If pci_dev->driver is not set (unbound), the device should
1189 * always remain in D0 regardless of the runtime PM status
1190 */
1191 if (!pci_dev->driver)
1192 return 0;
1193
1194 if (!pm)
1195 return -ENOSYS;
1196
1197 if (pm->runtime_idle)
1198 ret = pm->runtime_idle(dev);
1199
1200 return ret;
1201 }
1202
1203 #else /* !CONFIG_PM_RUNTIME */
1204
1205 #define pci_pm_runtime_suspend NULL
1206 #define pci_pm_runtime_resume NULL
1207 #define pci_pm_runtime_idle NULL
1208
1209 #endif /* !CONFIG_PM_RUNTIME */
1210
1211 #ifdef CONFIG_PM
1212
1213 static const struct dev_pm_ops pci_dev_pm_ops = {
1214 .prepare = pci_pm_prepare,
1215 .suspend = pci_pm_suspend,
1216 .resume = pci_pm_resume,
1217 .freeze = pci_pm_freeze,
1218 .thaw = pci_pm_thaw,
1219 .poweroff = pci_pm_poweroff,
1220 .restore = pci_pm_restore,
1221 .suspend_noirq = pci_pm_suspend_noirq,
1222 .resume_noirq = pci_pm_resume_noirq,
1223 .freeze_noirq = pci_pm_freeze_noirq,
1224 .thaw_noirq = pci_pm_thaw_noirq,
1225 .poweroff_noirq = pci_pm_poweroff_noirq,
1226 .restore_noirq = pci_pm_restore_noirq,
1227 .runtime_suspend = pci_pm_runtime_suspend,
1228 .runtime_resume = pci_pm_runtime_resume,
1229 .runtime_idle = pci_pm_runtime_idle,
1230 };
1231
1232 #define PCI_PM_OPS_PTR (&pci_dev_pm_ops)
1233
1234 #else /* !COMFIG_PM_OPS */
1235
1236 #define PCI_PM_OPS_PTR NULL
1237
1238 #endif /* !COMFIG_PM_OPS */
1239
1240 /**
1241 * __pci_register_driver - register a new pci driver
1242 * @drv: the driver structure to register
1243 * @owner: owner module of drv
1244 * @mod_name: module name string
1245 *
1246 * Adds the driver structure to the list of registered drivers.
1247 * Returns a negative value on error, otherwise 0.
1248 * If no error occurred, the driver remains registered even if
1249 * no device was claimed during registration.
1250 */
1251 int __pci_register_driver(struct pci_driver *drv, struct module *owner,
1252 const char *mod_name)
1253 {
1254 /* initialize common driver fields */
1255 drv->driver.name = drv->name;
1256 drv->driver.bus = &pci_bus_type;
1257 drv->driver.owner = owner;
1258 drv->driver.mod_name = mod_name;
1259
1260 spin_lock_init(&drv->dynids.lock);
1261 INIT_LIST_HEAD(&drv->dynids.list);
1262
1263 /* register with core */
1264 return driver_register(&drv->driver);
1265 }
1266 EXPORT_SYMBOL(__pci_register_driver);
1267
1268 /**
1269 * pci_unregister_driver - unregister a pci driver
1270 * @drv: the driver structure to unregister
1271 *
1272 * Deletes the driver structure from the list of registered PCI drivers,
1273 * gives it a chance to clean up by calling its remove() function for
1274 * each device it was responsible for, and marks those devices as
1275 * driverless.
1276 */
1277
1278 void pci_unregister_driver(struct pci_driver *drv)
1279 {
1280 driver_unregister(&drv->driver);
1281 pci_free_dynids(drv);
1282 }
1283 EXPORT_SYMBOL(pci_unregister_driver);
1284
1285 static struct pci_driver pci_compat_driver = {
1286 .name = "compat"
1287 };
1288
1289 /**
1290 * pci_dev_driver - get the pci_driver of a device
1291 * @dev: the device to query
1292 *
1293 * Returns the appropriate pci_driver structure or %NULL if there is no
1294 * registered driver for the device.
1295 */
1296 struct pci_driver *pci_dev_driver(const struct pci_dev *dev)
1297 {
1298 if (dev->driver)
1299 return dev->driver;
1300 else {
1301 int i;
1302 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1303 if (dev->resource[i].flags & IORESOURCE_BUSY)
1304 return &pci_compat_driver;
1305 }
1306 return NULL;
1307 }
1308 EXPORT_SYMBOL(pci_dev_driver);
1309
1310 /**
1311 * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure
1312 * @dev: the PCI device structure to match against
1313 * @drv: the device driver to search for matching PCI device id structures
1314 *
1315 * Used by a driver to check whether a PCI device present in the
1316 * system is in its list of supported devices. Returns the matching
1317 * pci_device_id structure or %NULL if there is no match.
1318 */
1319 static int pci_bus_match(struct device *dev, struct device_driver *drv)
1320 {
1321 struct pci_dev *pci_dev = to_pci_dev(dev);
1322 struct pci_driver *pci_drv;
1323 const struct pci_device_id *found_id;
1324
1325 if (!pci_dev->match_driver)
1326 return 0;
1327
1328 pci_drv = to_pci_driver(drv);
1329 found_id = pci_match_device(pci_drv, pci_dev);
1330 if (found_id)
1331 return 1;
1332
1333 return 0;
1334 }
1335
1336 /**
1337 * pci_dev_get - increments the reference count of the pci device structure
1338 * @dev: the device being referenced
1339 *
1340 * Each live reference to a device should be refcounted.
1341 *
1342 * Drivers for PCI devices should normally record such references in
1343 * their probe() methods, when they bind to a device, and release
1344 * them by calling pci_dev_put(), in their disconnect() methods.
1345 *
1346 * A pointer to the device with the incremented reference counter is returned.
1347 */
1348 struct pci_dev *pci_dev_get(struct pci_dev *dev)
1349 {
1350 if (dev)
1351 get_device(&dev->dev);
1352 return dev;
1353 }
1354 EXPORT_SYMBOL(pci_dev_get);
1355
1356 /**
1357 * pci_dev_put - release a use of the pci device structure
1358 * @dev: device that's been disconnected
1359 *
1360 * Must be called when a user of a device is finished with it. When the last
1361 * user of the device calls this function, the memory of the device is freed.
1362 */
1363 void pci_dev_put(struct pci_dev *dev)
1364 {
1365 if (dev)
1366 put_device(&dev->dev);
1367 }
1368 EXPORT_SYMBOL(pci_dev_put);
1369
1370 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env)
1371 {
1372 struct pci_dev *pdev;
1373
1374 if (!dev)
1375 return -ENODEV;
1376
1377 pdev = to_pci_dev(dev);
1378
1379 if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class))
1380 return -ENOMEM;
1381
1382 if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device))
1383 return -ENOMEM;
1384
1385 if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor,
1386 pdev->subsystem_device))
1387 return -ENOMEM;
1388
1389 if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev)))
1390 return -ENOMEM;
1391
1392 if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02x",
1393 pdev->vendor, pdev->device,
1394 pdev->subsystem_vendor, pdev->subsystem_device,
1395 (u8)(pdev->class >> 16), (u8)(pdev->class >> 8),
1396 (u8)(pdev->class)))
1397 return -ENOMEM;
1398
1399 return 0;
1400 }
1401
1402 struct bus_type pci_bus_type = {
1403 .name = "pci",
1404 .match = pci_bus_match,
1405 .uevent = pci_uevent,
1406 .probe = pci_device_probe,
1407 .remove = pci_device_remove,
1408 .shutdown = pci_device_shutdown,
1409 .dev_groups = pci_dev_groups,
1410 .bus_groups = pci_bus_groups,
1411 .drv_groups = pci_drv_groups,
1412 .pm = PCI_PM_OPS_PTR,
1413 };
1414 EXPORT_SYMBOL(pci_bus_type);
1415
1416 static int __init pci_driver_init(void)
1417 {
1418 return bus_register(&pci_bus_type);
1419 }
1420 postcore_initcall(pci_driver_init);