]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/pci/pci-driver.c
Merge branch 'drm-rockchip-2015-07-13' of https://github.com/markyzq/kernel-drm-rockc...
[mirror_ubuntu-bionic-kernel.git] / drivers / pci / pci-driver.c
1 /*
2 * drivers/pci/pci-driver.c
3 *
4 * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com>
5 * (C) Copyright 2007 Novell Inc.
6 *
7 * Released under the GPL v2 only.
8 *
9 */
10
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/device.h>
15 #include <linux/mempolicy.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/cpu.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/suspend.h>
22 #include <linux/kexec.h>
23 #include "pci.h"
24
25 struct pci_dynid {
26 struct list_head node;
27 struct pci_device_id id;
28 };
29
30 /**
31 * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices
32 * @drv: target pci driver
33 * @vendor: PCI vendor ID
34 * @device: PCI device ID
35 * @subvendor: PCI subvendor ID
36 * @subdevice: PCI subdevice ID
37 * @class: PCI class
38 * @class_mask: PCI class mask
39 * @driver_data: private driver data
40 *
41 * Adds a new dynamic pci device ID to this driver and causes the
42 * driver to probe for all devices again. @drv must have been
43 * registered prior to calling this function.
44 *
45 * CONTEXT:
46 * Does GFP_KERNEL allocation.
47 *
48 * RETURNS:
49 * 0 on success, -errno on failure.
50 */
51 int pci_add_dynid(struct pci_driver *drv,
52 unsigned int vendor, unsigned int device,
53 unsigned int subvendor, unsigned int subdevice,
54 unsigned int class, unsigned int class_mask,
55 unsigned long driver_data)
56 {
57 struct pci_dynid *dynid;
58
59 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
60 if (!dynid)
61 return -ENOMEM;
62
63 dynid->id.vendor = vendor;
64 dynid->id.device = device;
65 dynid->id.subvendor = subvendor;
66 dynid->id.subdevice = subdevice;
67 dynid->id.class = class;
68 dynid->id.class_mask = class_mask;
69 dynid->id.driver_data = driver_data;
70
71 spin_lock(&drv->dynids.lock);
72 list_add_tail(&dynid->node, &drv->dynids.list);
73 spin_unlock(&drv->dynids.lock);
74
75 return driver_attach(&drv->driver);
76 }
77 EXPORT_SYMBOL_GPL(pci_add_dynid);
78
79 static void pci_free_dynids(struct pci_driver *drv)
80 {
81 struct pci_dynid *dynid, *n;
82
83 spin_lock(&drv->dynids.lock);
84 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
85 list_del(&dynid->node);
86 kfree(dynid);
87 }
88 spin_unlock(&drv->dynids.lock);
89 }
90
91 /**
92 * store_new_id - sysfs frontend to pci_add_dynid()
93 * @driver: target device driver
94 * @buf: buffer for scanning device ID data
95 * @count: input size
96 *
97 * Allow PCI IDs to be added to an existing driver via sysfs.
98 */
99 static ssize_t store_new_id(struct device_driver *driver, const char *buf,
100 size_t count)
101 {
102 struct pci_driver *pdrv = to_pci_driver(driver);
103 const struct pci_device_id *ids = pdrv->id_table;
104 __u32 vendor, device, subvendor = PCI_ANY_ID,
105 subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
106 unsigned long driver_data = 0;
107 int fields = 0;
108 int retval = 0;
109
110 fields = sscanf(buf, "%x %x %x %x %x %x %lx",
111 &vendor, &device, &subvendor, &subdevice,
112 &class, &class_mask, &driver_data);
113 if (fields < 2)
114 return -EINVAL;
115
116 if (fields != 7) {
117 struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
118 if (!pdev)
119 return -ENOMEM;
120
121 pdev->vendor = vendor;
122 pdev->device = device;
123 pdev->subsystem_vendor = subvendor;
124 pdev->subsystem_device = subdevice;
125 pdev->class = class;
126
127 if (pci_match_id(pdrv->id_table, pdev))
128 retval = -EEXIST;
129
130 kfree(pdev);
131
132 if (retval)
133 return retval;
134 }
135
136 /* Only accept driver_data values that match an existing id_table
137 entry */
138 if (ids) {
139 retval = -EINVAL;
140 while (ids->vendor || ids->subvendor || ids->class_mask) {
141 if (driver_data == ids->driver_data) {
142 retval = 0;
143 break;
144 }
145 ids++;
146 }
147 if (retval) /* No match */
148 return retval;
149 }
150
151 retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice,
152 class, class_mask, driver_data);
153 if (retval)
154 return retval;
155 return count;
156 }
157 static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
158
159 /**
160 * store_remove_id - remove a PCI device ID from this driver
161 * @driver: target device driver
162 * @buf: buffer for scanning device ID data
163 * @count: input size
164 *
165 * Removes a dynamic pci device ID to this driver.
166 */
167 static ssize_t store_remove_id(struct device_driver *driver, const char *buf,
168 size_t count)
169 {
170 struct pci_dynid *dynid, *n;
171 struct pci_driver *pdrv = to_pci_driver(driver);
172 __u32 vendor, device, subvendor = PCI_ANY_ID,
173 subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
174 int fields = 0;
175 int retval = -ENODEV;
176
177 fields = sscanf(buf, "%x %x %x %x %x %x",
178 &vendor, &device, &subvendor, &subdevice,
179 &class, &class_mask);
180 if (fields < 2)
181 return -EINVAL;
182
183 spin_lock(&pdrv->dynids.lock);
184 list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) {
185 struct pci_device_id *id = &dynid->id;
186 if ((id->vendor == vendor) &&
187 (id->device == device) &&
188 (subvendor == PCI_ANY_ID || id->subvendor == subvendor) &&
189 (subdevice == PCI_ANY_ID || id->subdevice == subdevice) &&
190 !((id->class ^ class) & class_mask)) {
191 list_del(&dynid->node);
192 kfree(dynid);
193 retval = 0;
194 break;
195 }
196 }
197 spin_unlock(&pdrv->dynids.lock);
198
199 if (retval)
200 return retval;
201 return count;
202 }
203 static DRIVER_ATTR(remove_id, S_IWUSR, NULL, store_remove_id);
204
205 static struct attribute *pci_drv_attrs[] = {
206 &driver_attr_new_id.attr,
207 &driver_attr_remove_id.attr,
208 NULL,
209 };
210 ATTRIBUTE_GROUPS(pci_drv);
211
212 /**
213 * pci_match_id - See if a pci device matches a given pci_id table
214 * @ids: array of PCI device id structures to search in
215 * @dev: the PCI device structure to match against.
216 *
217 * Used by a driver to check whether a PCI device present in the
218 * system is in its list of supported devices. Returns the matching
219 * pci_device_id structure or %NULL if there is no match.
220 *
221 * Deprecated, don't use this as it will not catch any dynamic ids
222 * that a driver might want to check for.
223 */
224 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids,
225 struct pci_dev *dev)
226 {
227 if (ids) {
228 while (ids->vendor || ids->subvendor || ids->class_mask) {
229 if (pci_match_one_device(ids, dev))
230 return ids;
231 ids++;
232 }
233 }
234 return NULL;
235 }
236 EXPORT_SYMBOL(pci_match_id);
237
238 static const struct pci_device_id pci_device_id_any = {
239 .vendor = PCI_ANY_ID,
240 .device = PCI_ANY_ID,
241 .subvendor = PCI_ANY_ID,
242 .subdevice = PCI_ANY_ID,
243 };
244
245 /**
246 * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure
247 * @drv: the PCI driver to match against
248 * @dev: the PCI device structure to match against
249 *
250 * Used by a driver to check whether a PCI device present in the
251 * system is in its list of supported devices. Returns the matching
252 * pci_device_id structure or %NULL if there is no match.
253 */
254 static const struct pci_device_id *pci_match_device(struct pci_driver *drv,
255 struct pci_dev *dev)
256 {
257 struct pci_dynid *dynid;
258 const struct pci_device_id *found_id = NULL;
259
260 /* When driver_override is set, only bind to the matching driver */
261 if (dev->driver_override && strcmp(dev->driver_override, drv->name))
262 return NULL;
263
264 /* Look at the dynamic ids first, before the static ones */
265 spin_lock(&drv->dynids.lock);
266 list_for_each_entry(dynid, &drv->dynids.list, node) {
267 if (pci_match_one_device(&dynid->id, dev)) {
268 found_id = &dynid->id;
269 break;
270 }
271 }
272 spin_unlock(&drv->dynids.lock);
273
274 if (!found_id)
275 found_id = pci_match_id(drv->id_table, dev);
276
277 /* driver_override will always match, send a dummy id */
278 if (!found_id && dev->driver_override)
279 found_id = &pci_device_id_any;
280
281 return found_id;
282 }
283
284 struct drv_dev_and_id {
285 struct pci_driver *drv;
286 struct pci_dev *dev;
287 const struct pci_device_id *id;
288 };
289
290 static long local_pci_probe(void *_ddi)
291 {
292 struct drv_dev_and_id *ddi = _ddi;
293 struct pci_dev *pci_dev = ddi->dev;
294 struct pci_driver *pci_drv = ddi->drv;
295 struct device *dev = &pci_dev->dev;
296 int rc;
297
298 /*
299 * Unbound PCI devices are always put in D0, regardless of
300 * runtime PM status. During probe, the device is set to
301 * active and the usage count is incremented. If the driver
302 * supports runtime PM, it should call pm_runtime_put_noidle()
303 * in its probe routine and pm_runtime_get_noresume() in its
304 * remove routine.
305 */
306 pm_runtime_get_sync(dev);
307 pci_dev->driver = pci_drv;
308 rc = pci_drv->probe(pci_dev, ddi->id);
309 if (!rc)
310 return rc;
311 if (rc < 0) {
312 pci_dev->driver = NULL;
313 pm_runtime_put_sync(dev);
314 return rc;
315 }
316 /*
317 * Probe function should return < 0 for failure, 0 for success
318 * Treat values > 0 as success, but warn.
319 */
320 dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc);
321 return 0;
322 }
323
324 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev,
325 const struct pci_device_id *id)
326 {
327 int error, node;
328 struct drv_dev_and_id ddi = { drv, dev, id };
329
330 /*
331 * Execute driver initialization on node where the device is
332 * attached. This way the driver likely allocates its local memory
333 * on the right node.
334 */
335 node = dev_to_node(&dev->dev);
336
337 /*
338 * On NUMA systems, we are likely to call a PF probe function using
339 * work_on_cpu(). If that probe calls pci_enable_sriov() (which
340 * adds the VF devices via pci_bus_add_device()), we may re-enter
341 * this function to call the VF probe function. Calling
342 * work_on_cpu() again will cause a lockdep warning. Since VFs are
343 * always on the same node as the PF, we can work around this by
344 * avoiding work_on_cpu() when we're already on the correct node.
345 *
346 * Preemption is enabled, so it's theoretically unsafe to use
347 * numa_node_id(), but even if we run the probe function on the
348 * wrong node, it should be functionally correct.
349 */
350 if (node >= 0 && node != numa_node_id()) {
351 int cpu;
352
353 get_online_cpus();
354 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
355 if (cpu < nr_cpu_ids)
356 error = work_on_cpu(cpu, local_pci_probe, &ddi);
357 else
358 error = local_pci_probe(&ddi);
359 put_online_cpus();
360 } else
361 error = local_pci_probe(&ddi);
362
363 return error;
364 }
365
366 /**
367 * __pci_device_probe - check if a driver wants to claim a specific PCI device
368 * @drv: driver to call to check if it wants the PCI device
369 * @pci_dev: PCI device being probed
370 *
371 * returns 0 on success, else error.
372 * side-effect: pci_dev->driver is set to drv when drv claims pci_dev.
373 */
374 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev)
375 {
376 const struct pci_device_id *id;
377 int error = 0;
378
379 if (!pci_dev->driver && drv->probe) {
380 error = -ENODEV;
381
382 id = pci_match_device(drv, pci_dev);
383 if (id)
384 error = pci_call_probe(drv, pci_dev, id);
385 if (error >= 0)
386 error = 0;
387 }
388 return error;
389 }
390
391 static int pci_device_probe(struct device *dev)
392 {
393 int error = 0;
394 struct pci_driver *drv;
395 struct pci_dev *pci_dev;
396
397 drv = to_pci_driver(dev->driver);
398 pci_dev = to_pci_dev(dev);
399 pci_dev_get(pci_dev);
400 error = __pci_device_probe(drv, pci_dev);
401 if (error)
402 pci_dev_put(pci_dev);
403
404 return error;
405 }
406
407 static int pci_device_remove(struct device *dev)
408 {
409 struct pci_dev *pci_dev = to_pci_dev(dev);
410 struct pci_driver *drv = pci_dev->driver;
411
412 if (drv) {
413 if (drv->remove) {
414 pm_runtime_get_sync(dev);
415 drv->remove(pci_dev);
416 pm_runtime_put_noidle(dev);
417 }
418 pci_dev->driver = NULL;
419 }
420
421 /* Undo the runtime PM settings in local_pci_probe() */
422 pm_runtime_put_sync(dev);
423
424 /*
425 * If the device is still on, set the power state as "unknown",
426 * since it might change by the next time we load the driver.
427 */
428 if (pci_dev->current_state == PCI_D0)
429 pci_dev->current_state = PCI_UNKNOWN;
430
431 /*
432 * We would love to complain here if pci_dev->is_enabled is set, that
433 * the driver should have called pci_disable_device(), but the
434 * unfortunate fact is there are too many odd BIOS and bridge setups
435 * that don't like drivers doing that all of the time.
436 * Oh well, we can dream of sane hardware when we sleep, no matter how
437 * horrible the crap we have to deal with is when we are awake...
438 */
439
440 pci_dev_put(pci_dev);
441 return 0;
442 }
443
444 static void pci_device_shutdown(struct device *dev)
445 {
446 struct pci_dev *pci_dev = to_pci_dev(dev);
447 struct pci_driver *drv = pci_dev->driver;
448
449 pm_runtime_resume(dev);
450
451 if (drv && drv->shutdown)
452 drv->shutdown(pci_dev);
453 pci_msi_shutdown(pci_dev);
454 pci_msix_shutdown(pci_dev);
455
456 #ifdef CONFIG_KEXEC
457 /*
458 * If this is a kexec reboot, turn off Bus Master bit on the
459 * device to tell it to not continue to do DMA. Don't touch
460 * devices in D3cold or unknown states.
461 * If it is not a kexec reboot, firmware will hit the PCI
462 * devices with big hammer and stop their DMA any way.
463 */
464 if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot))
465 pci_clear_master(pci_dev);
466 #endif
467 }
468
469 #ifdef CONFIG_PM
470
471 /* Auxiliary functions used for system resume and run-time resume. */
472
473 /**
474 * pci_restore_standard_config - restore standard config registers of PCI device
475 * @pci_dev: PCI device to handle
476 */
477 static int pci_restore_standard_config(struct pci_dev *pci_dev)
478 {
479 pci_update_current_state(pci_dev, PCI_UNKNOWN);
480
481 if (pci_dev->current_state != PCI_D0) {
482 int error = pci_set_power_state(pci_dev, PCI_D0);
483 if (error)
484 return error;
485 }
486
487 pci_restore_state(pci_dev);
488 return 0;
489 }
490
491 #endif
492
493 #ifdef CONFIG_PM_SLEEP
494
495 static void pci_pm_default_resume_early(struct pci_dev *pci_dev)
496 {
497 pci_power_up(pci_dev);
498 pci_restore_state(pci_dev);
499 pci_fixup_device(pci_fixup_resume_early, pci_dev);
500 }
501
502 /*
503 * Default "suspend" method for devices that have no driver provided suspend,
504 * or not even a driver at all (second part).
505 */
506 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev)
507 {
508 /*
509 * mark its power state as "unknown", since we don't know if
510 * e.g. the BIOS will change its device state when we suspend.
511 */
512 if (pci_dev->current_state == PCI_D0)
513 pci_dev->current_state = PCI_UNKNOWN;
514 }
515
516 /*
517 * Default "resume" method for devices that have no driver provided resume,
518 * or not even a driver at all (second part).
519 */
520 static int pci_pm_reenable_device(struct pci_dev *pci_dev)
521 {
522 int retval;
523
524 /* if the device was enabled before suspend, reenable */
525 retval = pci_reenable_device(pci_dev);
526 /*
527 * if the device was busmaster before the suspend, make it busmaster
528 * again
529 */
530 if (pci_dev->is_busmaster)
531 pci_set_master(pci_dev);
532
533 return retval;
534 }
535
536 static int pci_legacy_suspend(struct device *dev, pm_message_t state)
537 {
538 struct pci_dev *pci_dev = to_pci_dev(dev);
539 struct pci_driver *drv = pci_dev->driver;
540
541 if (drv && drv->suspend) {
542 pci_power_t prev = pci_dev->current_state;
543 int error;
544
545 error = drv->suspend(pci_dev, state);
546 suspend_report_result(drv->suspend, error);
547 if (error)
548 return error;
549
550 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
551 && pci_dev->current_state != PCI_UNKNOWN) {
552 WARN_ONCE(pci_dev->current_state != prev,
553 "PCI PM: Device state not saved by %pF\n",
554 drv->suspend);
555 }
556 }
557
558 pci_fixup_device(pci_fixup_suspend, pci_dev);
559
560 return 0;
561 }
562
563 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state)
564 {
565 struct pci_dev *pci_dev = to_pci_dev(dev);
566 struct pci_driver *drv = pci_dev->driver;
567
568 if (drv && drv->suspend_late) {
569 pci_power_t prev = pci_dev->current_state;
570 int error;
571
572 error = drv->suspend_late(pci_dev, state);
573 suspend_report_result(drv->suspend_late, error);
574 if (error)
575 return error;
576
577 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
578 && pci_dev->current_state != PCI_UNKNOWN) {
579 WARN_ONCE(pci_dev->current_state != prev,
580 "PCI PM: Device state not saved by %pF\n",
581 drv->suspend_late);
582 goto Fixup;
583 }
584 }
585
586 if (!pci_dev->state_saved)
587 pci_save_state(pci_dev);
588
589 pci_pm_set_unknown_state(pci_dev);
590
591 Fixup:
592 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
593
594 return 0;
595 }
596
597 static int pci_legacy_resume_early(struct device *dev)
598 {
599 struct pci_dev *pci_dev = to_pci_dev(dev);
600 struct pci_driver *drv = pci_dev->driver;
601
602 return drv && drv->resume_early ?
603 drv->resume_early(pci_dev) : 0;
604 }
605
606 static int pci_legacy_resume(struct device *dev)
607 {
608 struct pci_dev *pci_dev = to_pci_dev(dev);
609 struct pci_driver *drv = pci_dev->driver;
610
611 pci_fixup_device(pci_fixup_resume, pci_dev);
612
613 return drv && drv->resume ?
614 drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev);
615 }
616
617 /* Auxiliary functions used by the new power management framework */
618
619 static void pci_pm_default_resume(struct pci_dev *pci_dev)
620 {
621 pci_fixup_device(pci_fixup_resume, pci_dev);
622
623 if (!pci_has_subordinate(pci_dev))
624 pci_enable_wake(pci_dev, PCI_D0, false);
625 }
626
627 static void pci_pm_default_suspend(struct pci_dev *pci_dev)
628 {
629 /* Disable non-bridge devices without PM support */
630 if (!pci_has_subordinate(pci_dev))
631 pci_disable_enabled_device(pci_dev);
632 }
633
634 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev)
635 {
636 struct pci_driver *drv = pci_dev->driver;
637 bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume
638 || drv->resume_early);
639
640 /*
641 * Legacy PM support is used by default, so warn if the new framework is
642 * supported as well. Drivers are supposed to support either the
643 * former, or the latter, but not both at the same time.
644 */
645 WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n",
646 drv->name, pci_dev->vendor, pci_dev->device);
647
648 return ret;
649 }
650
651 /* New power management framework */
652
653 static int pci_pm_prepare(struct device *dev)
654 {
655 struct device_driver *drv = dev->driver;
656
657 /*
658 * Devices having power.ignore_children set may still be necessary for
659 * suspending their children in the next phase of device suspend.
660 */
661 if (dev->power.ignore_children)
662 pm_runtime_resume(dev);
663
664 if (drv && drv->pm && drv->pm->prepare) {
665 int error = drv->pm->prepare(dev);
666 if (error)
667 return error;
668 }
669 return pci_dev_keep_suspended(to_pci_dev(dev));
670 }
671
672
673 #else /* !CONFIG_PM_SLEEP */
674
675 #define pci_pm_prepare NULL
676
677 #endif /* !CONFIG_PM_SLEEP */
678
679 #ifdef CONFIG_SUSPEND
680
681 static int pci_pm_suspend(struct device *dev)
682 {
683 struct pci_dev *pci_dev = to_pci_dev(dev);
684 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
685
686 if (pci_has_legacy_pm_support(pci_dev))
687 return pci_legacy_suspend(dev, PMSG_SUSPEND);
688
689 if (!pm) {
690 pci_pm_default_suspend(pci_dev);
691 goto Fixup;
692 }
693
694 /*
695 * PCI devices suspended at run time need to be resumed at this point,
696 * because in general it is necessary to reconfigure them for system
697 * suspend. Namely, if the device is supposed to wake up the system
698 * from the sleep state, we may need to reconfigure it for this purpose.
699 * In turn, if the device is not supposed to wake up the system from the
700 * sleep state, we'll have to prevent it from signaling wake-up.
701 */
702 pm_runtime_resume(dev);
703
704 pci_dev->state_saved = false;
705 if (pm->suspend) {
706 pci_power_t prev = pci_dev->current_state;
707 int error;
708
709 error = pm->suspend(dev);
710 suspend_report_result(pm->suspend, error);
711 if (error)
712 return error;
713
714 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
715 && pci_dev->current_state != PCI_UNKNOWN) {
716 WARN_ONCE(pci_dev->current_state != prev,
717 "PCI PM: State of device not saved by %pF\n",
718 pm->suspend);
719 }
720 }
721
722 Fixup:
723 pci_fixup_device(pci_fixup_suspend, pci_dev);
724
725 return 0;
726 }
727
728 static int pci_pm_suspend_noirq(struct device *dev)
729 {
730 struct pci_dev *pci_dev = to_pci_dev(dev);
731 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
732
733 if (pci_has_legacy_pm_support(pci_dev))
734 return pci_legacy_suspend_late(dev, PMSG_SUSPEND);
735
736 if (!pm) {
737 pci_save_state(pci_dev);
738 goto Fixup;
739 }
740
741 if (pm->suspend_noirq) {
742 pci_power_t prev = pci_dev->current_state;
743 int error;
744
745 error = pm->suspend_noirq(dev);
746 suspend_report_result(pm->suspend_noirq, error);
747 if (error)
748 return error;
749
750 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
751 && pci_dev->current_state != PCI_UNKNOWN) {
752 WARN_ONCE(pci_dev->current_state != prev,
753 "PCI PM: State of device not saved by %pF\n",
754 pm->suspend_noirq);
755 goto Fixup;
756 }
757 }
758
759 if (!pci_dev->state_saved) {
760 pci_save_state(pci_dev);
761 if (!pci_has_subordinate(pci_dev))
762 pci_prepare_to_sleep(pci_dev);
763 }
764
765 pci_pm_set_unknown_state(pci_dev);
766
767 /*
768 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's
769 * PCI COMMAND register isn't 0, the BIOS assumes that the controller
770 * hasn't been quiesced and tries to turn it off. If the controller
771 * is already in D3, this can hang or cause memory corruption.
772 *
773 * Since the value of the COMMAND register doesn't matter once the
774 * device has been suspended, we can safely set it to 0 here.
775 */
776 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
777 pci_write_config_word(pci_dev, PCI_COMMAND, 0);
778
779 Fixup:
780 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
781
782 return 0;
783 }
784
785 static int pci_pm_resume_noirq(struct device *dev)
786 {
787 struct pci_dev *pci_dev = to_pci_dev(dev);
788 struct device_driver *drv = dev->driver;
789 int error = 0;
790
791 pci_pm_default_resume_early(pci_dev);
792
793 if (pci_has_legacy_pm_support(pci_dev))
794 return pci_legacy_resume_early(dev);
795
796 if (drv && drv->pm && drv->pm->resume_noirq)
797 error = drv->pm->resume_noirq(dev);
798
799 return error;
800 }
801
802 static int pci_pm_resume(struct device *dev)
803 {
804 struct pci_dev *pci_dev = to_pci_dev(dev);
805 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
806 int error = 0;
807
808 /*
809 * This is necessary for the suspend error path in which resume is
810 * called without restoring the standard config registers of the device.
811 */
812 if (pci_dev->state_saved)
813 pci_restore_standard_config(pci_dev);
814
815 if (pci_has_legacy_pm_support(pci_dev))
816 return pci_legacy_resume(dev);
817
818 pci_pm_default_resume(pci_dev);
819
820 if (pm) {
821 if (pm->resume)
822 error = pm->resume(dev);
823 } else {
824 pci_pm_reenable_device(pci_dev);
825 }
826
827 return error;
828 }
829
830 #else /* !CONFIG_SUSPEND */
831
832 #define pci_pm_suspend NULL
833 #define pci_pm_suspend_noirq NULL
834 #define pci_pm_resume NULL
835 #define pci_pm_resume_noirq NULL
836
837 #endif /* !CONFIG_SUSPEND */
838
839 #ifdef CONFIG_HIBERNATE_CALLBACKS
840
841
842 /*
843 * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing
844 * a hibernate transition
845 */
846 struct dev_pm_ops __weak pcibios_pm_ops;
847
848 static int pci_pm_freeze(struct device *dev)
849 {
850 struct pci_dev *pci_dev = to_pci_dev(dev);
851 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
852
853 if (pci_has_legacy_pm_support(pci_dev))
854 return pci_legacy_suspend(dev, PMSG_FREEZE);
855
856 if (!pm) {
857 pci_pm_default_suspend(pci_dev);
858 return 0;
859 }
860
861 /*
862 * This used to be done in pci_pm_prepare() for all devices and some
863 * drivers may depend on it, so do it here. Ideally, runtime-suspended
864 * devices should not be touched during freeze/thaw transitions,
865 * however.
866 */
867 pm_runtime_resume(dev);
868
869 pci_dev->state_saved = false;
870 if (pm->freeze) {
871 int error;
872
873 error = pm->freeze(dev);
874 suspend_report_result(pm->freeze, error);
875 if (error)
876 return error;
877 }
878
879 if (pcibios_pm_ops.freeze)
880 return pcibios_pm_ops.freeze(dev);
881
882 return 0;
883 }
884
885 static int pci_pm_freeze_noirq(struct device *dev)
886 {
887 struct pci_dev *pci_dev = to_pci_dev(dev);
888 struct device_driver *drv = dev->driver;
889
890 if (pci_has_legacy_pm_support(pci_dev))
891 return pci_legacy_suspend_late(dev, PMSG_FREEZE);
892
893 if (drv && drv->pm && drv->pm->freeze_noirq) {
894 int error;
895
896 error = drv->pm->freeze_noirq(dev);
897 suspend_report_result(drv->pm->freeze_noirq, error);
898 if (error)
899 return error;
900 }
901
902 if (!pci_dev->state_saved)
903 pci_save_state(pci_dev);
904
905 pci_pm_set_unknown_state(pci_dev);
906
907 if (pcibios_pm_ops.freeze_noirq)
908 return pcibios_pm_ops.freeze_noirq(dev);
909
910 return 0;
911 }
912
913 static int pci_pm_thaw_noirq(struct device *dev)
914 {
915 struct pci_dev *pci_dev = to_pci_dev(dev);
916 struct device_driver *drv = dev->driver;
917 int error = 0;
918
919 if (pcibios_pm_ops.thaw_noirq) {
920 error = pcibios_pm_ops.thaw_noirq(dev);
921 if (error)
922 return error;
923 }
924
925 if (pci_has_legacy_pm_support(pci_dev))
926 return pci_legacy_resume_early(dev);
927
928 pci_update_current_state(pci_dev, PCI_D0);
929
930 if (drv && drv->pm && drv->pm->thaw_noirq)
931 error = drv->pm->thaw_noirq(dev);
932
933 return error;
934 }
935
936 static int pci_pm_thaw(struct device *dev)
937 {
938 struct pci_dev *pci_dev = to_pci_dev(dev);
939 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
940 int error = 0;
941
942 if (pcibios_pm_ops.thaw) {
943 error = pcibios_pm_ops.thaw(dev);
944 if (error)
945 return error;
946 }
947
948 if (pci_has_legacy_pm_support(pci_dev))
949 return pci_legacy_resume(dev);
950
951 if (pm) {
952 if (pm->thaw)
953 error = pm->thaw(dev);
954 } else {
955 pci_pm_reenable_device(pci_dev);
956 }
957
958 pci_dev->state_saved = false;
959
960 return error;
961 }
962
963 static int pci_pm_poweroff(struct device *dev)
964 {
965 struct pci_dev *pci_dev = to_pci_dev(dev);
966 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
967
968 if (pci_has_legacy_pm_support(pci_dev))
969 return pci_legacy_suspend(dev, PMSG_HIBERNATE);
970
971 if (!pm) {
972 pci_pm_default_suspend(pci_dev);
973 goto Fixup;
974 }
975
976 /* The reason to do that is the same as in pci_pm_suspend(). */
977 pm_runtime_resume(dev);
978
979 pci_dev->state_saved = false;
980 if (pm->poweroff) {
981 int error;
982
983 error = pm->poweroff(dev);
984 suspend_report_result(pm->poweroff, error);
985 if (error)
986 return error;
987 }
988
989 Fixup:
990 pci_fixup_device(pci_fixup_suspend, pci_dev);
991
992 if (pcibios_pm_ops.poweroff)
993 return pcibios_pm_ops.poweroff(dev);
994
995 return 0;
996 }
997
998 static int pci_pm_poweroff_noirq(struct device *dev)
999 {
1000 struct pci_dev *pci_dev = to_pci_dev(dev);
1001 struct device_driver *drv = dev->driver;
1002
1003 if (pci_has_legacy_pm_support(to_pci_dev(dev)))
1004 return pci_legacy_suspend_late(dev, PMSG_HIBERNATE);
1005
1006 if (!drv || !drv->pm) {
1007 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1008 return 0;
1009 }
1010
1011 if (drv->pm->poweroff_noirq) {
1012 int error;
1013
1014 error = drv->pm->poweroff_noirq(dev);
1015 suspend_report_result(drv->pm->poweroff_noirq, error);
1016 if (error)
1017 return error;
1018 }
1019
1020 if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev))
1021 pci_prepare_to_sleep(pci_dev);
1022
1023 /*
1024 * The reason for doing this here is the same as for the analogous code
1025 * in pci_pm_suspend_noirq().
1026 */
1027 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1028 pci_write_config_word(pci_dev, PCI_COMMAND, 0);
1029
1030 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1031
1032 if (pcibios_pm_ops.poweroff_noirq)
1033 return pcibios_pm_ops.poweroff_noirq(dev);
1034
1035 return 0;
1036 }
1037
1038 static int pci_pm_restore_noirq(struct device *dev)
1039 {
1040 struct pci_dev *pci_dev = to_pci_dev(dev);
1041 struct device_driver *drv = dev->driver;
1042 int error = 0;
1043
1044 if (pcibios_pm_ops.restore_noirq) {
1045 error = pcibios_pm_ops.restore_noirq(dev);
1046 if (error)
1047 return error;
1048 }
1049
1050 pci_pm_default_resume_early(pci_dev);
1051
1052 if (pci_has_legacy_pm_support(pci_dev))
1053 return pci_legacy_resume_early(dev);
1054
1055 if (drv && drv->pm && drv->pm->restore_noirq)
1056 error = drv->pm->restore_noirq(dev);
1057
1058 return error;
1059 }
1060
1061 static int pci_pm_restore(struct device *dev)
1062 {
1063 struct pci_dev *pci_dev = to_pci_dev(dev);
1064 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1065 int error = 0;
1066
1067 if (pcibios_pm_ops.restore) {
1068 error = pcibios_pm_ops.restore(dev);
1069 if (error)
1070 return error;
1071 }
1072
1073 /*
1074 * This is necessary for the hibernation error path in which restore is
1075 * called without restoring the standard config registers of the device.
1076 */
1077 if (pci_dev->state_saved)
1078 pci_restore_standard_config(pci_dev);
1079
1080 if (pci_has_legacy_pm_support(pci_dev))
1081 return pci_legacy_resume(dev);
1082
1083 pci_pm_default_resume(pci_dev);
1084
1085 if (pm) {
1086 if (pm->restore)
1087 error = pm->restore(dev);
1088 } else {
1089 pci_pm_reenable_device(pci_dev);
1090 }
1091
1092 return error;
1093 }
1094
1095 #else /* !CONFIG_HIBERNATE_CALLBACKS */
1096
1097 #define pci_pm_freeze NULL
1098 #define pci_pm_freeze_noirq NULL
1099 #define pci_pm_thaw NULL
1100 #define pci_pm_thaw_noirq NULL
1101 #define pci_pm_poweroff NULL
1102 #define pci_pm_poweroff_noirq NULL
1103 #define pci_pm_restore NULL
1104 #define pci_pm_restore_noirq NULL
1105
1106 #endif /* !CONFIG_HIBERNATE_CALLBACKS */
1107
1108 #ifdef CONFIG_PM
1109
1110 static int pci_pm_runtime_suspend(struct device *dev)
1111 {
1112 struct pci_dev *pci_dev = to_pci_dev(dev);
1113 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1114 pci_power_t prev = pci_dev->current_state;
1115 int error;
1116
1117 /*
1118 * If pci_dev->driver is not set (unbound), the device should
1119 * always remain in D0 regardless of the runtime PM status
1120 */
1121 if (!pci_dev->driver)
1122 return 0;
1123
1124 if (!pm || !pm->runtime_suspend)
1125 return -ENOSYS;
1126
1127 pci_dev->state_saved = false;
1128 pci_dev->no_d3cold = false;
1129 error = pm->runtime_suspend(dev);
1130 suspend_report_result(pm->runtime_suspend, error);
1131 if (error)
1132 return error;
1133 if (!pci_dev->d3cold_allowed)
1134 pci_dev->no_d3cold = true;
1135
1136 pci_fixup_device(pci_fixup_suspend, pci_dev);
1137
1138 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
1139 && pci_dev->current_state != PCI_UNKNOWN) {
1140 WARN_ONCE(pci_dev->current_state != prev,
1141 "PCI PM: State of device not saved by %pF\n",
1142 pm->runtime_suspend);
1143 return 0;
1144 }
1145
1146 if (!pci_dev->state_saved) {
1147 pci_save_state(pci_dev);
1148 pci_finish_runtime_suspend(pci_dev);
1149 }
1150
1151 return 0;
1152 }
1153
1154 static int pci_pm_runtime_resume(struct device *dev)
1155 {
1156 int rc;
1157 struct pci_dev *pci_dev = to_pci_dev(dev);
1158 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1159
1160 /*
1161 * If pci_dev->driver is not set (unbound), the device should
1162 * always remain in D0 regardless of the runtime PM status
1163 */
1164 if (!pci_dev->driver)
1165 return 0;
1166
1167 if (!pm || !pm->runtime_resume)
1168 return -ENOSYS;
1169
1170 pci_restore_standard_config(pci_dev);
1171 pci_fixup_device(pci_fixup_resume_early, pci_dev);
1172 __pci_enable_wake(pci_dev, PCI_D0, true, false);
1173 pci_fixup_device(pci_fixup_resume, pci_dev);
1174
1175 rc = pm->runtime_resume(dev);
1176
1177 pci_dev->runtime_d3cold = false;
1178
1179 return rc;
1180 }
1181
1182 static int pci_pm_runtime_idle(struct device *dev)
1183 {
1184 struct pci_dev *pci_dev = to_pci_dev(dev);
1185 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1186 int ret = 0;
1187
1188 /*
1189 * If pci_dev->driver is not set (unbound), the device should
1190 * always remain in D0 regardless of the runtime PM status
1191 */
1192 if (!pci_dev->driver)
1193 return 0;
1194
1195 if (!pm)
1196 return -ENOSYS;
1197
1198 if (pm->runtime_idle)
1199 ret = pm->runtime_idle(dev);
1200
1201 return ret;
1202 }
1203
1204 static const struct dev_pm_ops pci_dev_pm_ops = {
1205 .prepare = pci_pm_prepare,
1206 .suspend = pci_pm_suspend,
1207 .resume = pci_pm_resume,
1208 .freeze = pci_pm_freeze,
1209 .thaw = pci_pm_thaw,
1210 .poweroff = pci_pm_poweroff,
1211 .restore = pci_pm_restore,
1212 .suspend_noirq = pci_pm_suspend_noirq,
1213 .resume_noirq = pci_pm_resume_noirq,
1214 .freeze_noirq = pci_pm_freeze_noirq,
1215 .thaw_noirq = pci_pm_thaw_noirq,
1216 .poweroff_noirq = pci_pm_poweroff_noirq,
1217 .restore_noirq = pci_pm_restore_noirq,
1218 .runtime_suspend = pci_pm_runtime_suspend,
1219 .runtime_resume = pci_pm_runtime_resume,
1220 .runtime_idle = pci_pm_runtime_idle,
1221 };
1222
1223 #define PCI_PM_OPS_PTR (&pci_dev_pm_ops)
1224
1225 #else /* !CONFIG_PM */
1226
1227 #define pci_pm_runtime_suspend NULL
1228 #define pci_pm_runtime_resume NULL
1229 #define pci_pm_runtime_idle NULL
1230
1231 #define PCI_PM_OPS_PTR NULL
1232
1233 #endif /* !CONFIG_PM */
1234
1235 /**
1236 * __pci_register_driver - register a new pci driver
1237 * @drv: the driver structure to register
1238 * @owner: owner module of drv
1239 * @mod_name: module name string
1240 *
1241 * Adds the driver structure to the list of registered drivers.
1242 * Returns a negative value on error, otherwise 0.
1243 * If no error occurred, the driver remains registered even if
1244 * no device was claimed during registration.
1245 */
1246 int __pci_register_driver(struct pci_driver *drv, struct module *owner,
1247 const char *mod_name)
1248 {
1249 /* initialize common driver fields */
1250 drv->driver.name = drv->name;
1251 drv->driver.bus = &pci_bus_type;
1252 drv->driver.owner = owner;
1253 drv->driver.mod_name = mod_name;
1254
1255 spin_lock_init(&drv->dynids.lock);
1256 INIT_LIST_HEAD(&drv->dynids.list);
1257
1258 /* register with core */
1259 return driver_register(&drv->driver);
1260 }
1261 EXPORT_SYMBOL(__pci_register_driver);
1262
1263 /**
1264 * pci_unregister_driver - unregister a pci driver
1265 * @drv: the driver structure to unregister
1266 *
1267 * Deletes the driver structure from the list of registered PCI drivers,
1268 * gives it a chance to clean up by calling its remove() function for
1269 * each device it was responsible for, and marks those devices as
1270 * driverless.
1271 */
1272
1273 void pci_unregister_driver(struct pci_driver *drv)
1274 {
1275 driver_unregister(&drv->driver);
1276 pci_free_dynids(drv);
1277 }
1278 EXPORT_SYMBOL(pci_unregister_driver);
1279
1280 static struct pci_driver pci_compat_driver = {
1281 .name = "compat"
1282 };
1283
1284 /**
1285 * pci_dev_driver - get the pci_driver of a device
1286 * @dev: the device to query
1287 *
1288 * Returns the appropriate pci_driver structure or %NULL if there is no
1289 * registered driver for the device.
1290 */
1291 struct pci_driver *pci_dev_driver(const struct pci_dev *dev)
1292 {
1293 if (dev->driver)
1294 return dev->driver;
1295 else {
1296 int i;
1297 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1298 if (dev->resource[i].flags & IORESOURCE_BUSY)
1299 return &pci_compat_driver;
1300 }
1301 return NULL;
1302 }
1303 EXPORT_SYMBOL(pci_dev_driver);
1304
1305 /**
1306 * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure
1307 * @dev: the PCI device structure to match against
1308 * @drv: the device driver to search for matching PCI device id structures
1309 *
1310 * Used by a driver to check whether a PCI device present in the
1311 * system is in its list of supported devices. Returns the matching
1312 * pci_device_id structure or %NULL if there is no match.
1313 */
1314 static int pci_bus_match(struct device *dev, struct device_driver *drv)
1315 {
1316 struct pci_dev *pci_dev = to_pci_dev(dev);
1317 struct pci_driver *pci_drv;
1318 const struct pci_device_id *found_id;
1319
1320 if (!pci_dev->match_driver)
1321 return 0;
1322
1323 pci_drv = to_pci_driver(drv);
1324 found_id = pci_match_device(pci_drv, pci_dev);
1325 if (found_id)
1326 return 1;
1327
1328 return 0;
1329 }
1330
1331 /**
1332 * pci_dev_get - increments the reference count of the pci device structure
1333 * @dev: the device being referenced
1334 *
1335 * Each live reference to a device should be refcounted.
1336 *
1337 * Drivers for PCI devices should normally record such references in
1338 * their probe() methods, when they bind to a device, and release
1339 * them by calling pci_dev_put(), in their disconnect() methods.
1340 *
1341 * A pointer to the device with the incremented reference counter is returned.
1342 */
1343 struct pci_dev *pci_dev_get(struct pci_dev *dev)
1344 {
1345 if (dev)
1346 get_device(&dev->dev);
1347 return dev;
1348 }
1349 EXPORT_SYMBOL(pci_dev_get);
1350
1351 /**
1352 * pci_dev_put - release a use of the pci device structure
1353 * @dev: device that's been disconnected
1354 *
1355 * Must be called when a user of a device is finished with it. When the last
1356 * user of the device calls this function, the memory of the device is freed.
1357 */
1358 void pci_dev_put(struct pci_dev *dev)
1359 {
1360 if (dev)
1361 put_device(&dev->dev);
1362 }
1363 EXPORT_SYMBOL(pci_dev_put);
1364
1365 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env)
1366 {
1367 struct pci_dev *pdev;
1368
1369 if (!dev)
1370 return -ENODEV;
1371
1372 pdev = to_pci_dev(dev);
1373
1374 if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class))
1375 return -ENOMEM;
1376
1377 if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device))
1378 return -ENOMEM;
1379
1380 if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor,
1381 pdev->subsystem_device))
1382 return -ENOMEM;
1383
1384 if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev)))
1385 return -ENOMEM;
1386
1387 if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X",
1388 pdev->vendor, pdev->device,
1389 pdev->subsystem_vendor, pdev->subsystem_device,
1390 (u8)(pdev->class >> 16), (u8)(pdev->class >> 8),
1391 (u8)(pdev->class)))
1392 return -ENOMEM;
1393
1394 return 0;
1395 }
1396
1397 struct bus_type pci_bus_type = {
1398 .name = "pci",
1399 .match = pci_bus_match,
1400 .uevent = pci_uevent,
1401 .probe = pci_device_probe,
1402 .remove = pci_device_remove,
1403 .shutdown = pci_device_shutdown,
1404 .dev_groups = pci_dev_groups,
1405 .bus_groups = pci_bus_groups,
1406 .drv_groups = pci_drv_groups,
1407 .pm = PCI_PM_OPS_PTR,
1408 };
1409 EXPORT_SYMBOL(pci_bus_type);
1410
1411 static int __init pci_driver_init(void)
1412 {
1413 return bus_register(&pci_bus_type);
1414 }
1415 postcore_initcall(pci_driver_init);