]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/pci/pci-driver.c
x86/cpu: Sanitize FAM6_ATOM naming
[mirror_ubuntu-bionic-kernel.git] / drivers / pci / pci-driver.c
1 /*
2 * drivers/pci/pci-driver.c
3 *
4 * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com>
5 * (C) Copyright 2007 Novell Inc.
6 *
7 * Released under the GPL v2 only.
8 *
9 */
10
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/device.h>
15 #include <linux/mempolicy.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/cpu.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/suspend.h>
22 #include <linux/kexec.h>
23 #include "pci.h"
24
25 struct pci_dynid {
26 struct list_head node;
27 struct pci_device_id id;
28 };
29
30 /**
31 * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices
32 * @drv: target pci driver
33 * @vendor: PCI vendor ID
34 * @device: PCI device ID
35 * @subvendor: PCI subvendor ID
36 * @subdevice: PCI subdevice ID
37 * @class: PCI class
38 * @class_mask: PCI class mask
39 * @driver_data: private driver data
40 *
41 * Adds a new dynamic pci device ID to this driver and causes the
42 * driver to probe for all devices again. @drv must have been
43 * registered prior to calling this function.
44 *
45 * CONTEXT:
46 * Does GFP_KERNEL allocation.
47 *
48 * RETURNS:
49 * 0 on success, -errno on failure.
50 */
51 int pci_add_dynid(struct pci_driver *drv,
52 unsigned int vendor, unsigned int device,
53 unsigned int subvendor, unsigned int subdevice,
54 unsigned int class, unsigned int class_mask,
55 unsigned long driver_data)
56 {
57 struct pci_dynid *dynid;
58
59 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
60 if (!dynid)
61 return -ENOMEM;
62
63 dynid->id.vendor = vendor;
64 dynid->id.device = device;
65 dynid->id.subvendor = subvendor;
66 dynid->id.subdevice = subdevice;
67 dynid->id.class = class;
68 dynid->id.class_mask = class_mask;
69 dynid->id.driver_data = driver_data;
70
71 spin_lock(&drv->dynids.lock);
72 list_add_tail(&dynid->node, &drv->dynids.list);
73 spin_unlock(&drv->dynids.lock);
74
75 return driver_attach(&drv->driver);
76 }
77 EXPORT_SYMBOL_GPL(pci_add_dynid);
78
79 static void pci_free_dynids(struct pci_driver *drv)
80 {
81 struct pci_dynid *dynid, *n;
82
83 spin_lock(&drv->dynids.lock);
84 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
85 list_del(&dynid->node);
86 kfree(dynid);
87 }
88 spin_unlock(&drv->dynids.lock);
89 }
90
91 /**
92 * store_new_id - sysfs frontend to pci_add_dynid()
93 * @driver: target device driver
94 * @buf: buffer for scanning device ID data
95 * @count: input size
96 *
97 * Allow PCI IDs to be added to an existing driver via sysfs.
98 */
99 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
100 size_t count)
101 {
102 struct pci_driver *pdrv = to_pci_driver(driver);
103 const struct pci_device_id *ids = pdrv->id_table;
104 __u32 vendor, device, subvendor = PCI_ANY_ID,
105 subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
106 unsigned long driver_data = 0;
107 int fields = 0;
108 int retval = 0;
109
110 fields = sscanf(buf, "%x %x %x %x %x %x %lx",
111 &vendor, &device, &subvendor, &subdevice,
112 &class, &class_mask, &driver_data);
113 if (fields < 2)
114 return -EINVAL;
115
116 if (fields != 7) {
117 struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
118 if (!pdev)
119 return -ENOMEM;
120
121 pdev->vendor = vendor;
122 pdev->device = device;
123 pdev->subsystem_vendor = subvendor;
124 pdev->subsystem_device = subdevice;
125 pdev->class = class;
126
127 if (pci_match_id(pdrv->id_table, pdev))
128 retval = -EEXIST;
129
130 kfree(pdev);
131
132 if (retval)
133 return retval;
134 }
135
136 /* Only accept driver_data values that match an existing id_table
137 entry */
138 if (ids) {
139 retval = -EINVAL;
140 while (ids->vendor || ids->subvendor || ids->class_mask) {
141 if (driver_data == ids->driver_data) {
142 retval = 0;
143 break;
144 }
145 ids++;
146 }
147 if (retval) /* No match */
148 return retval;
149 }
150
151 retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice,
152 class, class_mask, driver_data);
153 if (retval)
154 return retval;
155 return count;
156 }
157 static DRIVER_ATTR_WO(new_id);
158
159 /**
160 * store_remove_id - remove a PCI device ID from this driver
161 * @driver: target device driver
162 * @buf: buffer for scanning device ID data
163 * @count: input size
164 *
165 * Removes a dynamic pci device ID to this driver.
166 */
167 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
168 size_t count)
169 {
170 struct pci_dynid *dynid, *n;
171 struct pci_driver *pdrv = to_pci_driver(driver);
172 __u32 vendor, device, subvendor = PCI_ANY_ID,
173 subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
174 int fields = 0;
175 size_t retval = -ENODEV;
176
177 fields = sscanf(buf, "%x %x %x %x %x %x",
178 &vendor, &device, &subvendor, &subdevice,
179 &class, &class_mask);
180 if (fields < 2)
181 return -EINVAL;
182
183 spin_lock(&pdrv->dynids.lock);
184 list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) {
185 struct pci_device_id *id = &dynid->id;
186 if ((id->vendor == vendor) &&
187 (id->device == device) &&
188 (subvendor == PCI_ANY_ID || id->subvendor == subvendor) &&
189 (subdevice == PCI_ANY_ID || id->subdevice == subdevice) &&
190 !((id->class ^ class) & class_mask)) {
191 list_del(&dynid->node);
192 kfree(dynid);
193 retval = count;
194 break;
195 }
196 }
197 spin_unlock(&pdrv->dynids.lock);
198
199 return retval;
200 }
201 static DRIVER_ATTR_WO(remove_id);
202
203 static struct attribute *pci_drv_attrs[] = {
204 &driver_attr_new_id.attr,
205 &driver_attr_remove_id.attr,
206 NULL,
207 };
208 ATTRIBUTE_GROUPS(pci_drv);
209
210 /**
211 * pci_match_id - See if a pci device matches a given pci_id table
212 * @ids: array of PCI device id structures to search in
213 * @dev: the PCI device structure to match against.
214 *
215 * Used by a driver to check whether a PCI device present in the
216 * system is in its list of supported devices. Returns the matching
217 * pci_device_id structure or %NULL if there is no match.
218 *
219 * Deprecated, don't use this as it will not catch any dynamic ids
220 * that a driver might want to check for.
221 */
222 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids,
223 struct pci_dev *dev)
224 {
225 if (ids) {
226 while (ids->vendor || ids->subvendor || ids->class_mask) {
227 if (pci_match_one_device(ids, dev))
228 return ids;
229 ids++;
230 }
231 }
232 return NULL;
233 }
234 EXPORT_SYMBOL(pci_match_id);
235
236 static const struct pci_device_id pci_device_id_any = {
237 .vendor = PCI_ANY_ID,
238 .device = PCI_ANY_ID,
239 .subvendor = PCI_ANY_ID,
240 .subdevice = PCI_ANY_ID,
241 };
242
243 /**
244 * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure
245 * @drv: the PCI driver to match against
246 * @dev: the PCI device structure to match against
247 *
248 * Used by a driver to check whether a PCI device present in the
249 * system is in its list of supported devices. Returns the matching
250 * pci_device_id structure or %NULL if there is no match.
251 */
252 static const struct pci_device_id *pci_match_device(struct pci_driver *drv,
253 struct pci_dev *dev)
254 {
255 struct pci_dynid *dynid;
256 const struct pci_device_id *found_id = NULL;
257
258 /* When driver_override is set, only bind to the matching driver */
259 if (dev->driver_override && strcmp(dev->driver_override, drv->name))
260 return NULL;
261
262 /* Look at the dynamic ids first, before the static ones */
263 spin_lock(&drv->dynids.lock);
264 list_for_each_entry(dynid, &drv->dynids.list, node) {
265 if (pci_match_one_device(&dynid->id, dev)) {
266 found_id = &dynid->id;
267 break;
268 }
269 }
270 spin_unlock(&drv->dynids.lock);
271
272 if (!found_id)
273 found_id = pci_match_id(drv->id_table, dev);
274
275 /* driver_override will always match, send a dummy id */
276 if (!found_id && dev->driver_override)
277 found_id = &pci_device_id_any;
278
279 return found_id;
280 }
281
282 struct drv_dev_and_id {
283 struct pci_driver *drv;
284 struct pci_dev *dev;
285 const struct pci_device_id *id;
286 };
287
288 static long local_pci_probe(void *_ddi)
289 {
290 struct drv_dev_and_id *ddi = _ddi;
291 struct pci_dev *pci_dev = ddi->dev;
292 struct pci_driver *pci_drv = ddi->drv;
293 struct device *dev = &pci_dev->dev;
294 int rc;
295
296 /*
297 * Unbound PCI devices are always put in D0, regardless of
298 * runtime PM status. During probe, the device is set to
299 * active and the usage count is incremented. If the driver
300 * supports runtime PM, it should call pm_runtime_put_noidle(),
301 * or any other runtime PM helper function decrementing the usage
302 * count, in its probe routine and pm_runtime_get_noresume() in
303 * its remove routine.
304 */
305 pm_runtime_get_sync(dev);
306 pci_dev->driver = pci_drv;
307 rc = pci_drv->probe(pci_dev, ddi->id);
308 if (!rc)
309 return rc;
310 if (rc < 0) {
311 pci_dev->driver = NULL;
312 pm_runtime_put_sync(dev);
313 return rc;
314 }
315 /*
316 * Probe function should return < 0 for failure, 0 for success
317 * Treat values > 0 as success, but warn.
318 */
319 dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc);
320 return 0;
321 }
322
323 static bool pci_physfn_is_probed(struct pci_dev *dev)
324 {
325 #ifdef CONFIG_PCI_IOV
326 return dev->is_virtfn && dev->physfn->is_probed;
327 #else
328 return false;
329 #endif
330 }
331
332 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev,
333 const struct pci_device_id *id)
334 {
335 int error, node, cpu;
336 struct drv_dev_and_id ddi = { drv, dev, id };
337
338 /*
339 * Execute driver initialization on node where the device is
340 * attached. This way the driver likely allocates its local memory
341 * on the right node.
342 */
343 node = dev_to_node(&dev->dev);
344 dev->is_probed = 1;
345
346 cpu_hotplug_disable();
347
348 /*
349 * Prevent nesting work_on_cpu() for the case where a Virtual Function
350 * device is probed from work_on_cpu() of the Physical device.
351 */
352 if (node < 0 || node >= MAX_NUMNODES || !node_online(node) ||
353 pci_physfn_is_probed(dev))
354 cpu = nr_cpu_ids;
355 else
356 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
357
358 if (cpu < nr_cpu_ids)
359 error = work_on_cpu(cpu, local_pci_probe, &ddi);
360 else
361 error = local_pci_probe(&ddi);
362
363 dev->is_probed = 0;
364 cpu_hotplug_enable();
365 return error;
366 }
367
368 /**
369 * __pci_device_probe - check if a driver wants to claim a specific PCI device
370 * @drv: driver to call to check if it wants the PCI device
371 * @pci_dev: PCI device being probed
372 *
373 * returns 0 on success, else error.
374 * side-effect: pci_dev->driver is set to drv when drv claims pci_dev.
375 */
376 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev)
377 {
378 const struct pci_device_id *id;
379 int error = 0;
380
381 if (!pci_dev->driver && drv->probe) {
382 error = -ENODEV;
383
384 id = pci_match_device(drv, pci_dev);
385 if (id)
386 error = pci_call_probe(drv, pci_dev, id);
387 }
388 return error;
389 }
390
391 int __weak pcibios_alloc_irq(struct pci_dev *dev)
392 {
393 return 0;
394 }
395
396 void __weak pcibios_free_irq(struct pci_dev *dev)
397 {
398 }
399
400 #ifdef CONFIG_PCI_IOV
401 static inline bool pci_device_can_probe(struct pci_dev *pdev)
402 {
403 return (!pdev->is_virtfn || pdev->physfn->sriov->drivers_autoprobe);
404 }
405 #else
406 static inline bool pci_device_can_probe(struct pci_dev *pdev)
407 {
408 return true;
409 }
410 #endif
411
412 static int pci_device_probe(struct device *dev)
413 {
414 int error;
415 struct pci_dev *pci_dev = to_pci_dev(dev);
416 struct pci_driver *drv = to_pci_driver(dev->driver);
417
418 pci_assign_irq(pci_dev);
419
420 error = pcibios_alloc_irq(pci_dev);
421 if (error < 0)
422 return error;
423
424 pci_dev_get(pci_dev);
425 if (pci_device_can_probe(pci_dev)) {
426 error = __pci_device_probe(drv, pci_dev);
427 if (error) {
428 pcibios_free_irq(pci_dev);
429 pci_dev_put(pci_dev);
430 }
431 }
432
433 return error;
434 }
435
436 static int pci_device_remove(struct device *dev)
437 {
438 struct pci_dev *pci_dev = to_pci_dev(dev);
439 struct pci_driver *drv = pci_dev->driver;
440
441 if (drv) {
442 if (drv->remove) {
443 pm_runtime_get_sync(dev);
444 drv->remove(pci_dev);
445 pm_runtime_put_noidle(dev);
446 }
447 pcibios_free_irq(pci_dev);
448 pci_dev->driver = NULL;
449 }
450
451 /* Undo the runtime PM settings in local_pci_probe() */
452 pm_runtime_put_sync(dev);
453
454 /*
455 * If the device is still on, set the power state as "unknown",
456 * since it might change by the next time we load the driver.
457 */
458 if (pci_dev->current_state == PCI_D0)
459 pci_dev->current_state = PCI_UNKNOWN;
460
461 /*
462 * We would love to complain here if pci_dev->is_enabled is set, that
463 * the driver should have called pci_disable_device(), but the
464 * unfortunate fact is there are too many odd BIOS and bridge setups
465 * that don't like drivers doing that all of the time.
466 * Oh well, we can dream of sane hardware when we sleep, no matter how
467 * horrible the crap we have to deal with is when we are awake...
468 */
469
470 pci_dev_put(pci_dev);
471 return 0;
472 }
473
474 static void pci_device_shutdown(struct device *dev)
475 {
476 struct pci_dev *pci_dev = to_pci_dev(dev);
477 struct pci_driver *drv = pci_dev->driver;
478
479 pm_runtime_resume(dev);
480
481 if (drv && drv->shutdown)
482 drv->shutdown(pci_dev);
483
484 /*
485 * If this is a kexec reboot, turn off Bus Master bit on the
486 * device to tell it to not continue to do DMA. Don't touch
487 * devices in D3cold or unknown states.
488 * If it is not a kexec reboot, firmware will hit the PCI
489 * devices with big hammer and stop their DMA any way.
490 */
491 if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot))
492 pci_clear_master(pci_dev);
493 }
494
495 #ifdef CONFIG_PM
496
497 /* Auxiliary functions used for system resume and run-time resume. */
498
499 /**
500 * pci_restore_standard_config - restore standard config registers of PCI device
501 * @pci_dev: PCI device to handle
502 */
503 static int pci_restore_standard_config(struct pci_dev *pci_dev)
504 {
505 pci_update_current_state(pci_dev, PCI_UNKNOWN);
506
507 if (pci_dev->current_state != PCI_D0) {
508 int error = pci_set_power_state(pci_dev, PCI_D0);
509 if (error)
510 return error;
511 }
512
513 pci_restore_state(pci_dev);
514 pci_pme_restore(pci_dev);
515 return 0;
516 }
517
518 #endif
519
520 #ifdef CONFIG_PM_SLEEP
521
522 static void pci_pm_default_resume_early(struct pci_dev *pci_dev)
523 {
524 pci_power_up(pci_dev);
525 pci_restore_state(pci_dev);
526 pci_pme_restore(pci_dev);
527 pci_fixup_device(pci_fixup_resume_early, pci_dev);
528 }
529
530 /*
531 * Default "suspend" method for devices that have no driver provided suspend,
532 * or not even a driver at all (second part).
533 */
534 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev)
535 {
536 /*
537 * mark its power state as "unknown", since we don't know if
538 * e.g. the BIOS will change its device state when we suspend.
539 */
540 if (pci_dev->current_state == PCI_D0)
541 pci_dev->current_state = PCI_UNKNOWN;
542 }
543
544 /*
545 * Default "resume" method for devices that have no driver provided resume,
546 * or not even a driver at all (second part).
547 */
548 static int pci_pm_reenable_device(struct pci_dev *pci_dev)
549 {
550 int retval;
551
552 /* if the device was enabled before suspend, reenable */
553 retval = pci_reenable_device(pci_dev);
554 /*
555 * if the device was busmaster before the suspend, make it busmaster
556 * again
557 */
558 if (pci_dev->is_busmaster)
559 pci_set_master(pci_dev);
560
561 return retval;
562 }
563
564 static int pci_legacy_suspend(struct device *dev, pm_message_t state)
565 {
566 struct pci_dev *pci_dev = to_pci_dev(dev);
567 struct pci_driver *drv = pci_dev->driver;
568
569 if (drv && drv->suspend) {
570 pci_power_t prev = pci_dev->current_state;
571 int error;
572
573 error = drv->suspend(pci_dev, state);
574 suspend_report_result(drv->suspend, error);
575 if (error)
576 return error;
577
578 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
579 && pci_dev->current_state != PCI_UNKNOWN) {
580 WARN_ONCE(pci_dev->current_state != prev,
581 "PCI PM: Device state not saved by %pF\n",
582 drv->suspend);
583 }
584 }
585
586 pci_fixup_device(pci_fixup_suspend, pci_dev);
587
588 return 0;
589 }
590
591 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state)
592 {
593 struct pci_dev *pci_dev = to_pci_dev(dev);
594 struct pci_driver *drv = pci_dev->driver;
595
596 if (drv && drv->suspend_late) {
597 pci_power_t prev = pci_dev->current_state;
598 int error;
599
600 error = drv->suspend_late(pci_dev, state);
601 suspend_report_result(drv->suspend_late, error);
602 if (error)
603 return error;
604
605 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
606 && pci_dev->current_state != PCI_UNKNOWN) {
607 WARN_ONCE(pci_dev->current_state != prev,
608 "PCI PM: Device state not saved by %pF\n",
609 drv->suspend_late);
610 goto Fixup;
611 }
612 }
613
614 if (!pci_dev->state_saved)
615 pci_save_state(pci_dev);
616
617 pci_pm_set_unknown_state(pci_dev);
618
619 Fixup:
620 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
621
622 return 0;
623 }
624
625 static int pci_legacy_resume_early(struct device *dev)
626 {
627 struct pci_dev *pci_dev = to_pci_dev(dev);
628 struct pci_driver *drv = pci_dev->driver;
629
630 return drv && drv->resume_early ?
631 drv->resume_early(pci_dev) : 0;
632 }
633
634 static int pci_legacy_resume(struct device *dev)
635 {
636 struct pci_dev *pci_dev = to_pci_dev(dev);
637 struct pci_driver *drv = pci_dev->driver;
638
639 pci_fixup_device(pci_fixup_resume, pci_dev);
640
641 return drv && drv->resume ?
642 drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev);
643 }
644
645 /* Auxiliary functions used by the new power management framework */
646
647 static void pci_pm_default_resume(struct pci_dev *pci_dev)
648 {
649 pci_fixup_device(pci_fixup_resume, pci_dev);
650 pci_enable_wake(pci_dev, PCI_D0, false);
651 }
652
653 static void pci_pm_default_suspend(struct pci_dev *pci_dev)
654 {
655 /* Disable non-bridge devices without PM support */
656 if (!pci_has_subordinate(pci_dev))
657 pci_disable_enabled_device(pci_dev);
658 }
659
660 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev)
661 {
662 struct pci_driver *drv = pci_dev->driver;
663 bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume
664 || drv->resume_early);
665
666 /*
667 * Legacy PM support is used by default, so warn if the new framework is
668 * supported as well. Drivers are supposed to support either the
669 * former, or the latter, but not both at the same time.
670 */
671 WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n",
672 drv->name, pci_dev->vendor, pci_dev->device);
673
674 return ret;
675 }
676
677 /* New power management framework */
678
679 static int pci_pm_prepare(struct device *dev)
680 {
681 struct device_driver *drv = dev->driver;
682
683 if (drv && drv->pm && drv->pm->prepare) {
684 int error = drv->pm->prepare(dev);
685 if (error < 0)
686 return error;
687
688 if (!error && dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_PREPARE))
689 return 0;
690 }
691 return pci_dev_keep_suspended(to_pci_dev(dev));
692 }
693
694 static void pci_pm_complete(struct device *dev)
695 {
696 struct pci_dev *pci_dev = to_pci_dev(dev);
697
698 pci_dev_complete_resume(pci_dev);
699 pm_generic_complete(dev);
700
701 /* Resume device if platform firmware has put it in reset-power-on */
702 if (pm_runtime_suspended(dev) && pm_resume_via_firmware()) {
703 pci_power_t pre_sleep_state = pci_dev->current_state;
704
705 pci_update_current_state(pci_dev, pci_dev->current_state);
706 if (pci_dev->current_state < pre_sleep_state)
707 pm_request_resume(dev);
708 }
709 }
710
711 #else /* !CONFIG_PM_SLEEP */
712
713 #define pci_pm_prepare NULL
714 #define pci_pm_complete NULL
715
716 #endif /* !CONFIG_PM_SLEEP */
717
718 #ifdef CONFIG_SUSPEND
719
720 static int pci_pm_suspend(struct device *dev)
721 {
722 struct pci_dev *pci_dev = to_pci_dev(dev);
723 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
724
725 if (pci_has_legacy_pm_support(pci_dev))
726 return pci_legacy_suspend(dev, PMSG_SUSPEND);
727
728 if (!pm) {
729 pci_pm_default_suspend(pci_dev);
730 return 0;
731 }
732
733 /*
734 * PCI devices suspended at run time may need to be resumed at this
735 * point, because in general it may be necessary to reconfigure them for
736 * system suspend. Namely, if the device is expected to wake up the
737 * system from the sleep state, it may have to be reconfigured for this
738 * purpose, or if the device is not expected to wake up the system from
739 * the sleep state, it should be prevented from signaling wakeup events
740 * going forward.
741 *
742 * Also if the driver of the device does not indicate that its system
743 * suspend callbacks can cope with runtime-suspended devices, it is
744 * better to resume the device from runtime suspend here.
745 */
746 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
747 !pci_dev_keep_suspended(pci_dev)) {
748 pm_runtime_resume(dev);
749 pci_dev->state_saved = false;
750 }
751
752 if (pm->suspend) {
753 pci_power_t prev = pci_dev->current_state;
754 int error;
755
756 error = pm->suspend(dev);
757 suspend_report_result(pm->suspend, error);
758 if (error)
759 return error;
760
761 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
762 && pci_dev->current_state != PCI_UNKNOWN) {
763 WARN_ONCE(pci_dev->current_state != prev,
764 "PCI PM: State of device not saved by %pF\n",
765 pm->suspend);
766 }
767 }
768
769 return 0;
770 }
771
772 static int pci_pm_suspend_late(struct device *dev)
773 {
774 if (dev_pm_smart_suspend_and_suspended(dev))
775 return 0;
776
777 pci_fixup_device(pci_fixup_suspend, to_pci_dev(dev));
778
779 return pm_generic_suspend_late(dev);
780 }
781
782 static int pci_pm_suspend_noirq(struct device *dev)
783 {
784 struct pci_dev *pci_dev = to_pci_dev(dev);
785 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
786
787 if (dev_pm_smart_suspend_and_suspended(dev)) {
788 dev->power.may_skip_resume = true;
789 return 0;
790 }
791
792 if (pci_has_legacy_pm_support(pci_dev))
793 return pci_legacy_suspend_late(dev, PMSG_SUSPEND);
794
795 if (!pm) {
796 pci_save_state(pci_dev);
797 goto Fixup;
798 }
799
800 if (pm->suspend_noirq) {
801 pci_power_t prev = pci_dev->current_state;
802 int error;
803
804 error = pm->suspend_noirq(dev);
805 suspend_report_result(pm->suspend_noirq, error);
806 if (error)
807 return error;
808
809 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
810 && pci_dev->current_state != PCI_UNKNOWN) {
811 WARN_ONCE(pci_dev->current_state != prev,
812 "PCI PM: State of device not saved by %pF\n",
813 pm->suspend_noirq);
814 goto Fixup;
815 }
816 }
817
818 if (!pci_dev->state_saved) {
819 pci_save_state(pci_dev);
820 if (pci_power_manageable(pci_dev))
821 pci_prepare_to_sleep(pci_dev);
822 }
823
824 dev_dbg(dev, "PCI PM: Suspend power state: %s\n",
825 pci_power_name(pci_dev->current_state));
826
827 pci_pm_set_unknown_state(pci_dev);
828
829 /*
830 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's
831 * PCI COMMAND register isn't 0, the BIOS assumes that the controller
832 * hasn't been quiesced and tries to turn it off. If the controller
833 * is already in D3, this can hang or cause memory corruption.
834 *
835 * Since the value of the COMMAND register doesn't matter once the
836 * device has been suspended, we can safely set it to 0 here.
837 */
838 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
839 pci_write_config_word(pci_dev, PCI_COMMAND, 0);
840
841 Fixup:
842 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
843
844 /*
845 * If the target system sleep state is suspend-to-idle, it is sufficient
846 * to check whether or not the device's wakeup settings are good for
847 * runtime PM. Otherwise, the pm_resume_via_firmware() check will cause
848 * pci_pm_complete() to take care of fixing up the device's state
849 * anyway, if need be.
850 */
851 dev->power.may_skip_resume = device_may_wakeup(dev) ||
852 !device_can_wakeup(dev);
853
854 return 0;
855 }
856
857 static int pci_pm_resume_noirq(struct device *dev)
858 {
859 struct pci_dev *pci_dev = to_pci_dev(dev);
860 struct device_driver *drv = dev->driver;
861 int error = 0;
862
863 if (dev_pm_may_skip_resume(dev))
864 return 0;
865
866 /*
867 * Devices with DPM_FLAG_SMART_SUSPEND may be left in runtime suspend
868 * during system suspend, so update their runtime PM status to "active"
869 * as they are going to be put into D0 shortly.
870 */
871 if (dev_pm_smart_suspend_and_suspended(dev))
872 pm_runtime_set_active(dev);
873
874 pci_pm_default_resume_early(pci_dev);
875
876 if (pci_has_legacy_pm_support(pci_dev))
877 return pci_legacy_resume_early(dev);
878
879 if (drv && drv->pm && drv->pm->resume_noirq)
880 error = drv->pm->resume_noirq(dev);
881
882 return error;
883 }
884
885 static int pci_pm_resume(struct device *dev)
886 {
887 struct pci_dev *pci_dev = to_pci_dev(dev);
888 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
889 int error = 0;
890
891 /*
892 * This is necessary for the suspend error path in which resume is
893 * called without restoring the standard config registers of the device.
894 */
895 if (pci_dev->state_saved)
896 pci_restore_standard_config(pci_dev);
897
898 if (pci_has_legacy_pm_support(pci_dev))
899 return pci_legacy_resume(dev);
900
901 pci_pm_default_resume(pci_dev);
902
903 if (pm) {
904 if (pm->resume)
905 error = pm->resume(dev);
906 } else {
907 pci_pm_reenable_device(pci_dev);
908 }
909
910 return error;
911 }
912
913 #else /* !CONFIG_SUSPEND */
914
915 #define pci_pm_suspend NULL
916 #define pci_pm_suspend_late NULL
917 #define pci_pm_suspend_noirq NULL
918 #define pci_pm_resume NULL
919 #define pci_pm_resume_noirq NULL
920
921 #endif /* !CONFIG_SUSPEND */
922
923 #ifdef CONFIG_HIBERNATE_CALLBACKS
924
925
926 /*
927 * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing
928 * a hibernate transition
929 */
930 struct dev_pm_ops __weak pcibios_pm_ops;
931
932 static int pci_pm_freeze(struct device *dev)
933 {
934 struct pci_dev *pci_dev = to_pci_dev(dev);
935 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
936
937 if (pci_has_legacy_pm_support(pci_dev))
938 return pci_legacy_suspend(dev, PMSG_FREEZE);
939
940 if (!pm) {
941 pci_pm_default_suspend(pci_dev);
942 return 0;
943 }
944
945 /*
946 * This used to be done in pci_pm_prepare() for all devices and some
947 * drivers may depend on it, so do it here. Ideally, runtime-suspended
948 * devices should not be touched during freeze/thaw transitions,
949 * however.
950 */
951 if (!dev_pm_smart_suspend_and_suspended(dev)) {
952 pm_runtime_resume(dev);
953 pci_dev->state_saved = false;
954 }
955
956 if (pm->freeze) {
957 int error;
958
959 error = pm->freeze(dev);
960 suspend_report_result(pm->freeze, error);
961 if (error)
962 return error;
963 }
964
965 return 0;
966 }
967
968 static int pci_pm_freeze_late(struct device *dev)
969 {
970 if (dev_pm_smart_suspend_and_suspended(dev))
971 return 0;
972
973 return pm_generic_freeze_late(dev);;
974 }
975
976 static int pci_pm_freeze_noirq(struct device *dev)
977 {
978 struct pci_dev *pci_dev = to_pci_dev(dev);
979 struct device_driver *drv = dev->driver;
980
981 if (dev_pm_smart_suspend_and_suspended(dev))
982 return 0;
983
984 if (pci_has_legacy_pm_support(pci_dev))
985 return pci_legacy_suspend_late(dev, PMSG_FREEZE);
986
987 if (drv && drv->pm && drv->pm->freeze_noirq) {
988 int error;
989
990 error = drv->pm->freeze_noirq(dev);
991 suspend_report_result(drv->pm->freeze_noirq, error);
992 if (error)
993 return error;
994 }
995
996 if (!pci_dev->state_saved)
997 pci_save_state(pci_dev);
998
999 pci_pm_set_unknown_state(pci_dev);
1000
1001 if (pcibios_pm_ops.freeze_noirq)
1002 return pcibios_pm_ops.freeze_noirq(dev);
1003
1004 return 0;
1005 }
1006
1007 static int pci_pm_thaw_noirq(struct device *dev)
1008 {
1009 struct pci_dev *pci_dev = to_pci_dev(dev);
1010 struct device_driver *drv = dev->driver;
1011 int error = 0;
1012
1013 /*
1014 * If the device is in runtime suspend, the code below may not work
1015 * correctly with it, so skip that code and make the PM core skip all of
1016 * the subsequent "thaw" callbacks for the device.
1017 */
1018 if (dev_pm_smart_suspend_and_suspended(dev)) {
1019 dev_pm_skip_next_resume_phases(dev);
1020 return 0;
1021 }
1022
1023 if (pcibios_pm_ops.thaw_noirq) {
1024 error = pcibios_pm_ops.thaw_noirq(dev);
1025 if (error)
1026 return error;
1027 }
1028
1029 if (pci_has_legacy_pm_support(pci_dev))
1030 return pci_legacy_resume_early(dev);
1031
1032 /*
1033 * pci_restore_state() requires the device to be in D0 (because of MSI
1034 * restoration among other things), so force it into D0 in case the
1035 * driver's "freeze" callbacks put it into a low-power state directly.
1036 */
1037 pci_set_power_state(pci_dev, PCI_D0);
1038 pci_restore_state(pci_dev);
1039
1040 if (drv && drv->pm && drv->pm->thaw_noirq)
1041 error = drv->pm->thaw_noirq(dev);
1042
1043 return error;
1044 }
1045
1046 static int pci_pm_thaw(struct device *dev)
1047 {
1048 struct pci_dev *pci_dev = to_pci_dev(dev);
1049 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1050 int error = 0;
1051
1052 if (pci_has_legacy_pm_support(pci_dev))
1053 return pci_legacy_resume(dev);
1054
1055 if (pm) {
1056 if (pm->thaw)
1057 error = pm->thaw(dev);
1058 } else {
1059 pci_pm_reenable_device(pci_dev);
1060 }
1061
1062 pci_dev->state_saved = false;
1063
1064 return error;
1065 }
1066
1067 static int pci_pm_poweroff(struct device *dev)
1068 {
1069 struct pci_dev *pci_dev = to_pci_dev(dev);
1070 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1071
1072 if (pci_has_legacy_pm_support(pci_dev))
1073 return pci_legacy_suspend(dev, PMSG_HIBERNATE);
1074
1075 if (!pm) {
1076 pci_pm_default_suspend(pci_dev);
1077 return 0;
1078 }
1079
1080 /* The reason to do that is the same as in pci_pm_suspend(). */
1081 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
1082 !pci_dev_keep_suspended(pci_dev))
1083 pm_runtime_resume(dev);
1084
1085 pci_dev->state_saved = false;
1086 if (pm->poweroff) {
1087 int error;
1088
1089 error = pm->poweroff(dev);
1090 suspend_report_result(pm->poweroff, error);
1091 if (error)
1092 return error;
1093 }
1094
1095 return 0;
1096 }
1097
1098 static int pci_pm_poweroff_late(struct device *dev)
1099 {
1100 if (dev_pm_smart_suspend_and_suspended(dev))
1101 return 0;
1102
1103 pci_fixup_device(pci_fixup_suspend, to_pci_dev(dev));
1104
1105 return pm_generic_poweroff_late(dev);
1106 }
1107
1108 static int pci_pm_poweroff_noirq(struct device *dev)
1109 {
1110 struct pci_dev *pci_dev = to_pci_dev(dev);
1111 struct device_driver *drv = dev->driver;
1112
1113 if (dev_pm_smart_suspend_and_suspended(dev))
1114 return 0;
1115
1116 if (pci_has_legacy_pm_support(to_pci_dev(dev)))
1117 return pci_legacy_suspend_late(dev, PMSG_HIBERNATE);
1118
1119 if (!drv || !drv->pm) {
1120 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1121 return 0;
1122 }
1123
1124 if (drv->pm->poweroff_noirq) {
1125 int error;
1126
1127 error = drv->pm->poweroff_noirq(dev);
1128 suspend_report_result(drv->pm->poweroff_noirq, error);
1129 if (error)
1130 return error;
1131 }
1132
1133 if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev))
1134 pci_prepare_to_sleep(pci_dev);
1135
1136 /*
1137 * The reason for doing this here is the same as for the analogous code
1138 * in pci_pm_suspend_noirq().
1139 */
1140 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1141 pci_write_config_word(pci_dev, PCI_COMMAND, 0);
1142
1143 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1144
1145 if (pcibios_pm_ops.poweroff_noirq)
1146 return pcibios_pm_ops.poweroff_noirq(dev);
1147
1148 return 0;
1149 }
1150
1151 static int pci_pm_restore_noirq(struct device *dev)
1152 {
1153 struct pci_dev *pci_dev = to_pci_dev(dev);
1154 struct device_driver *drv = dev->driver;
1155 int error = 0;
1156
1157 /* This is analogous to the pci_pm_resume_noirq() case. */
1158 if (dev_pm_smart_suspend_and_suspended(dev))
1159 pm_runtime_set_active(dev);
1160
1161 if (pcibios_pm_ops.restore_noirq) {
1162 error = pcibios_pm_ops.restore_noirq(dev);
1163 if (error)
1164 return error;
1165 }
1166
1167 pci_pm_default_resume_early(pci_dev);
1168
1169 if (pci_has_legacy_pm_support(pci_dev))
1170 return pci_legacy_resume_early(dev);
1171
1172 if (drv && drv->pm && drv->pm->restore_noirq)
1173 error = drv->pm->restore_noirq(dev);
1174
1175 return error;
1176 }
1177
1178 static int pci_pm_restore(struct device *dev)
1179 {
1180 struct pci_dev *pci_dev = to_pci_dev(dev);
1181 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1182 int error = 0;
1183
1184 /*
1185 * This is necessary for the hibernation error path in which restore is
1186 * called without restoring the standard config registers of the device.
1187 */
1188 if (pci_dev->state_saved)
1189 pci_restore_standard_config(pci_dev);
1190
1191 if (pci_has_legacy_pm_support(pci_dev))
1192 return pci_legacy_resume(dev);
1193
1194 pci_pm_default_resume(pci_dev);
1195
1196 if (pm) {
1197 if (pm->restore)
1198 error = pm->restore(dev);
1199 } else {
1200 pci_pm_reenable_device(pci_dev);
1201 }
1202
1203 return error;
1204 }
1205
1206 #else /* !CONFIG_HIBERNATE_CALLBACKS */
1207
1208 #define pci_pm_freeze NULL
1209 #define pci_pm_freeze_late NULL
1210 #define pci_pm_freeze_noirq NULL
1211 #define pci_pm_thaw NULL
1212 #define pci_pm_thaw_noirq NULL
1213 #define pci_pm_poweroff NULL
1214 #define pci_pm_poweroff_late NULL
1215 #define pci_pm_poweroff_noirq NULL
1216 #define pci_pm_restore NULL
1217 #define pci_pm_restore_noirq NULL
1218
1219 #endif /* !CONFIG_HIBERNATE_CALLBACKS */
1220
1221 #ifdef CONFIG_PM
1222
1223 static int pci_pm_runtime_suspend(struct device *dev)
1224 {
1225 struct pci_dev *pci_dev = to_pci_dev(dev);
1226 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1227 pci_power_t prev = pci_dev->current_state;
1228 int error;
1229
1230 /*
1231 * If pci_dev->driver is not set (unbound), we leave the device in D0,
1232 * but it may go to D3cold when the bridge above it runtime suspends.
1233 * Save its config space in case that happens.
1234 */
1235 if (!pci_dev->driver) {
1236 pci_save_state(pci_dev);
1237 return 0;
1238 }
1239
1240 if (!pm || !pm->runtime_suspend)
1241 return -ENOSYS;
1242
1243 pci_dev->state_saved = false;
1244 error = pm->runtime_suspend(dev);
1245 if (error) {
1246 /*
1247 * -EBUSY and -EAGAIN is used to request the runtime PM core
1248 * to schedule a new suspend, so log the event only with debug
1249 * log level.
1250 */
1251 if (error == -EBUSY || error == -EAGAIN)
1252 dev_dbg(dev, "can't suspend now (%pf returned %d)\n",
1253 pm->runtime_suspend, error);
1254 else
1255 dev_err(dev, "can't suspend (%pf returned %d)\n",
1256 pm->runtime_suspend, error);
1257
1258 return error;
1259 }
1260
1261 pci_fixup_device(pci_fixup_suspend, pci_dev);
1262
1263 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
1264 && pci_dev->current_state != PCI_UNKNOWN) {
1265 WARN_ONCE(pci_dev->current_state != prev,
1266 "PCI PM: State of device not saved by %pF\n",
1267 pm->runtime_suspend);
1268 return 0;
1269 }
1270
1271 if (!pci_dev->state_saved) {
1272 pci_save_state(pci_dev);
1273 pci_finish_runtime_suspend(pci_dev);
1274 }
1275
1276 return 0;
1277 }
1278
1279 static int pci_pm_runtime_resume(struct device *dev)
1280 {
1281 int rc;
1282 struct pci_dev *pci_dev = to_pci_dev(dev);
1283 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1284
1285 /*
1286 * Restoring config space is necessary even if the device is not bound
1287 * to a driver because although we left it in D0, it may have gone to
1288 * D3cold when the bridge above it runtime suspended.
1289 */
1290 pci_restore_standard_config(pci_dev);
1291
1292 if (!pci_dev->driver)
1293 return 0;
1294
1295 if (!pm || !pm->runtime_resume)
1296 return -ENOSYS;
1297
1298 pci_fixup_device(pci_fixup_resume_early, pci_dev);
1299 pci_enable_wake(pci_dev, PCI_D0, false);
1300 pci_fixup_device(pci_fixup_resume, pci_dev);
1301
1302 rc = pm->runtime_resume(dev);
1303
1304 pci_dev->runtime_d3cold = false;
1305
1306 return rc;
1307 }
1308
1309 static int pci_pm_runtime_idle(struct device *dev)
1310 {
1311 struct pci_dev *pci_dev = to_pci_dev(dev);
1312 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1313 int ret = 0;
1314
1315 /*
1316 * If pci_dev->driver is not set (unbound), the device should
1317 * always remain in D0 regardless of the runtime PM status
1318 */
1319 if (!pci_dev->driver)
1320 return 0;
1321
1322 if (!pm)
1323 return -ENOSYS;
1324
1325 if (pm->runtime_idle)
1326 ret = pm->runtime_idle(dev);
1327
1328 return ret;
1329 }
1330
1331 static const struct dev_pm_ops pci_dev_pm_ops = {
1332 .prepare = pci_pm_prepare,
1333 .complete = pci_pm_complete,
1334 .suspend = pci_pm_suspend,
1335 .suspend_late = pci_pm_suspend_late,
1336 .resume = pci_pm_resume,
1337 .freeze = pci_pm_freeze,
1338 .freeze_late = pci_pm_freeze_late,
1339 .thaw = pci_pm_thaw,
1340 .poweroff = pci_pm_poweroff,
1341 .poweroff_late = pci_pm_poweroff_late,
1342 .restore = pci_pm_restore,
1343 .suspend_noirq = pci_pm_suspend_noirq,
1344 .resume_noirq = pci_pm_resume_noirq,
1345 .freeze_noirq = pci_pm_freeze_noirq,
1346 .thaw_noirq = pci_pm_thaw_noirq,
1347 .poweroff_noirq = pci_pm_poweroff_noirq,
1348 .restore_noirq = pci_pm_restore_noirq,
1349 .runtime_suspend = pci_pm_runtime_suspend,
1350 .runtime_resume = pci_pm_runtime_resume,
1351 .runtime_idle = pci_pm_runtime_idle,
1352 };
1353
1354 #define PCI_PM_OPS_PTR (&pci_dev_pm_ops)
1355
1356 #else /* !CONFIG_PM */
1357
1358 #define pci_pm_runtime_suspend NULL
1359 #define pci_pm_runtime_resume NULL
1360 #define pci_pm_runtime_idle NULL
1361
1362 #define PCI_PM_OPS_PTR NULL
1363
1364 #endif /* !CONFIG_PM */
1365
1366 /**
1367 * __pci_register_driver - register a new pci driver
1368 * @drv: the driver structure to register
1369 * @owner: owner module of drv
1370 * @mod_name: module name string
1371 *
1372 * Adds the driver structure to the list of registered drivers.
1373 * Returns a negative value on error, otherwise 0.
1374 * If no error occurred, the driver remains registered even if
1375 * no device was claimed during registration.
1376 */
1377 int __pci_register_driver(struct pci_driver *drv, struct module *owner,
1378 const char *mod_name)
1379 {
1380 /* initialize common driver fields */
1381 drv->driver.name = drv->name;
1382 drv->driver.bus = &pci_bus_type;
1383 drv->driver.owner = owner;
1384 drv->driver.mod_name = mod_name;
1385 drv->driver.groups = drv->groups;
1386
1387 spin_lock_init(&drv->dynids.lock);
1388 INIT_LIST_HEAD(&drv->dynids.list);
1389
1390 /* register with core */
1391 return driver_register(&drv->driver);
1392 }
1393 EXPORT_SYMBOL(__pci_register_driver);
1394
1395 /**
1396 * pci_unregister_driver - unregister a pci driver
1397 * @drv: the driver structure to unregister
1398 *
1399 * Deletes the driver structure from the list of registered PCI drivers,
1400 * gives it a chance to clean up by calling its remove() function for
1401 * each device it was responsible for, and marks those devices as
1402 * driverless.
1403 */
1404
1405 void pci_unregister_driver(struct pci_driver *drv)
1406 {
1407 driver_unregister(&drv->driver);
1408 pci_free_dynids(drv);
1409 }
1410 EXPORT_SYMBOL(pci_unregister_driver);
1411
1412 static struct pci_driver pci_compat_driver = {
1413 .name = "compat"
1414 };
1415
1416 /**
1417 * pci_dev_driver - get the pci_driver of a device
1418 * @dev: the device to query
1419 *
1420 * Returns the appropriate pci_driver structure or %NULL if there is no
1421 * registered driver for the device.
1422 */
1423 struct pci_driver *pci_dev_driver(const struct pci_dev *dev)
1424 {
1425 if (dev->driver)
1426 return dev->driver;
1427 else {
1428 int i;
1429 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1430 if (dev->resource[i].flags & IORESOURCE_BUSY)
1431 return &pci_compat_driver;
1432 }
1433 return NULL;
1434 }
1435 EXPORT_SYMBOL(pci_dev_driver);
1436
1437 /**
1438 * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure
1439 * @dev: the PCI device structure to match against
1440 * @drv: the device driver to search for matching PCI device id structures
1441 *
1442 * Used by a driver to check whether a PCI device present in the
1443 * system is in its list of supported devices. Returns the matching
1444 * pci_device_id structure or %NULL if there is no match.
1445 */
1446 static int pci_bus_match(struct device *dev, struct device_driver *drv)
1447 {
1448 struct pci_dev *pci_dev = to_pci_dev(dev);
1449 struct pci_driver *pci_drv;
1450 const struct pci_device_id *found_id;
1451
1452 if (!pci_dev->match_driver)
1453 return 0;
1454
1455 pci_drv = to_pci_driver(drv);
1456 found_id = pci_match_device(pci_drv, pci_dev);
1457 if (found_id)
1458 return 1;
1459
1460 return 0;
1461 }
1462
1463 /**
1464 * pci_dev_get - increments the reference count of the pci device structure
1465 * @dev: the device being referenced
1466 *
1467 * Each live reference to a device should be refcounted.
1468 *
1469 * Drivers for PCI devices should normally record such references in
1470 * their probe() methods, when they bind to a device, and release
1471 * them by calling pci_dev_put(), in their disconnect() methods.
1472 *
1473 * A pointer to the device with the incremented reference counter is returned.
1474 */
1475 struct pci_dev *pci_dev_get(struct pci_dev *dev)
1476 {
1477 if (dev)
1478 get_device(&dev->dev);
1479 return dev;
1480 }
1481 EXPORT_SYMBOL(pci_dev_get);
1482
1483 /**
1484 * pci_dev_put - release a use of the pci device structure
1485 * @dev: device that's been disconnected
1486 *
1487 * Must be called when a user of a device is finished with it. When the last
1488 * user of the device calls this function, the memory of the device is freed.
1489 */
1490 void pci_dev_put(struct pci_dev *dev)
1491 {
1492 if (dev)
1493 put_device(&dev->dev);
1494 }
1495 EXPORT_SYMBOL(pci_dev_put);
1496
1497 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env)
1498 {
1499 struct pci_dev *pdev;
1500
1501 if (!dev)
1502 return -ENODEV;
1503
1504 pdev = to_pci_dev(dev);
1505
1506 if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class))
1507 return -ENOMEM;
1508
1509 if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device))
1510 return -ENOMEM;
1511
1512 if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor,
1513 pdev->subsystem_device))
1514 return -ENOMEM;
1515
1516 if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev)))
1517 return -ENOMEM;
1518
1519 if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X",
1520 pdev->vendor, pdev->device,
1521 pdev->subsystem_vendor, pdev->subsystem_device,
1522 (u8)(pdev->class >> 16), (u8)(pdev->class >> 8),
1523 (u8)(pdev->class)))
1524 return -ENOMEM;
1525
1526 return 0;
1527 }
1528
1529 static int pci_bus_num_vf(struct device *dev)
1530 {
1531 return pci_num_vf(to_pci_dev(dev));
1532 }
1533
1534 struct bus_type pci_bus_type = {
1535 .name = "pci",
1536 .match = pci_bus_match,
1537 .uevent = pci_uevent,
1538 .probe = pci_device_probe,
1539 .remove = pci_device_remove,
1540 .shutdown = pci_device_shutdown,
1541 .dev_groups = pci_dev_groups,
1542 .bus_groups = pci_bus_groups,
1543 .drv_groups = pci_drv_groups,
1544 .pm = PCI_PM_OPS_PTR,
1545 .num_vf = pci_bus_num_vf,
1546 .force_dma = true,
1547 };
1548 EXPORT_SYMBOL(pci_bus_type);
1549
1550 static int __init pci_driver_init(void)
1551 {
1552 return bus_register(&pci_bus_type);
1553 }
1554 postcore_initcall(pci_driver_init);