]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/pci/pci-driver.c
regulator: arizona: Add regulator specific device tree binding document
[mirror_ubuntu-zesty-kernel.git] / drivers / pci / pci-driver.c
1 /*
2 * drivers/pci/pci-driver.c
3 *
4 * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com>
5 * (C) Copyright 2007 Novell Inc.
6 *
7 * Released under the GPL v2 only.
8 *
9 */
10
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/device.h>
15 #include <linux/mempolicy.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/cpu.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/suspend.h>
22 #include <linux/kexec.h>
23 #include "pci.h"
24
25 struct pci_dynid {
26 struct list_head node;
27 struct pci_device_id id;
28 };
29
30 /**
31 * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices
32 * @drv: target pci driver
33 * @vendor: PCI vendor ID
34 * @device: PCI device ID
35 * @subvendor: PCI subvendor ID
36 * @subdevice: PCI subdevice ID
37 * @class: PCI class
38 * @class_mask: PCI class mask
39 * @driver_data: private driver data
40 *
41 * Adds a new dynamic pci device ID to this driver and causes the
42 * driver to probe for all devices again. @drv must have been
43 * registered prior to calling this function.
44 *
45 * CONTEXT:
46 * Does GFP_KERNEL allocation.
47 *
48 * RETURNS:
49 * 0 on success, -errno on failure.
50 */
51 int pci_add_dynid(struct pci_driver *drv,
52 unsigned int vendor, unsigned int device,
53 unsigned int subvendor, unsigned int subdevice,
54 unsigned int class, unsigned int class_mask,
55 unsigned long driver_data)
56 {
57 struct pci_dynid *dynid;
58
59 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
60 if (!dynid)
61 return -ENOMEM;
62
63 dynid->id.vendor = vendor;
64 dynid->id.device = device;
65 dynid->id.subvendor = subvendor;
66 dynid->id.subdevice = subdevice;
67 dynid->id.class = class;
68 dynid->id.class_mask = class_mask;
69 dynid->id.driver_data = driver_data;
70
71 spin_lock(&drv->dynids.lock);
72 list_add_tail(&dynid->node, &drv->dynids.list);
73 spin_unlock(&drv->dynids.lock);
74
75 return driver_attach(&drv->driver);
76 }
77 EXPORT_SYMBOL_GPL(pci_add_dynid);
78
79 static void pci_free_dynids(struct pci_driver *drv)
80 {
81 struct pci_dynid *dynid, *n;
82
83 spin_lock(&drv->dynids.lock);
84 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
85 list_del(&dynid->node);
86 kfree(dynid);
87 }
88 spin_unlock(&drv->dynids.lock);
89 }
90
91 /**
92 * store_new_id - sysfs frontend to pci_add_dynid()
93 * @driver: target device driver
94 * @buf: buffer for scanning device ID data
95 * @count: input size
96 *
97 * Allow PCI IDs to be added to an existing driver via sysfs.
98 */
99 static ssize_t store_new_id(struct device_driver *driver, const char *buf,
100 size_t count)
101 {
102 struct pci_driver *pdrv = to_pci_driver(driver);
103 const struct pci_device_id *ids = pdrv->id_table;
104 __u32 vendor, device, subvendor = PCI_ANY_ID,
105 subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
106 unsigned long driver_data = 0;
107 int fields = 0;
108 int retval = 0;
109
110 fields = sscanf(buf, "%x %x %x %x %x %x %lx",
111 &vendor, &device, &subvendor, &subdevice,
112 &class, &class_mask, &driver_data);
113 if (fields < 2)
114 return -EINVAL;
115
116 if (fields != 7) {
117 struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
118 if (!pdev)
119 return -ENOMEM;
120
121 pdev->vendor = vendor;
122 pdev->device = device;
123 pdev->subsystem_vendor = subvendor;
124 pdev->subsystem_device = subdevice;
125 pdev->class = class;
126
127 if (pci_match_id(pdrv->id_table, pdev))
128 retval = -EEXIST;
129
130 kfree(pdev);
131
132 if (retval)
133 return retval;
134 }
135
136 /* Only accept driver_data values that match an existing id_table
137 entry */
138 if (ids) {
139 retval = -EINVAL;
140 while (ids->vendor || ids->subvendor || ids->class_mask) {
141 if (driver_data == ids->driver_data) {
142 retval = 0;
143 break;
144 }
145 ids++;
146 }
147 if (retval) /* No match */
148 return retval;
149 }
150
151 retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice,
152 class, class_mask, driver_data);
153 if (retval)
154 return retval;
155 return count;
156 }
157 static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
158
159 /**
160 * store_remove_id - remove a PCI device ID from this driver
161 * @driver: target device driver
162 * @buf: buffer for scanning device ID data
163 * @count: input size
164 *
165 * Removes a dynamic pci device ID to this driver.
166 */
167 static ssize_t store_remove_id(struct device_driver *driver, const char *buf,
168 size_t count)
169 {
170 struct pci_dynid *dynid, *n;
171 struct pci_driver *pdrv = to_pci_driver(driver);
172 __u32 vendor, device, subvendor = PCI_ANY_ID,
173 subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
174 int fields = 0;
175 int retval = -ENODEV;
176
177 fields = sscanf(buf, "%x %x %x %x %x %x",
178 &vendor, &device, &subvendor, &subdevice,
179 &class, &class_mask);
180 if (fields < 2)
181 return -EINVAL;
182
183 spin_lock(&pdrv->dynids.lock);
184 list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) {
185 struct pci_device_id *id = &dynid->id;
186 if ((id->vendor == vendor) &&
187 (id->device == device) &&
188 (subvendor == PCI_ANY_ID || id->subvendor == subvendor) &&
189 (subdevice == PCI_ANY_ID || id->subdevice == subdevice) &&
190 !((id->class ^ class) & class_mask)) {
191 list_del(&dynid->node);
192 kfree(dynid);
193 retval = 0;
194 break;
195 }
196 }
197 spin_unlock(&pdrv->dynids.lock);
198
199 if (retval)
200 return retval;
201 return count;
202 }
203 static DRIVER_ATTR(remove_id, S_IWUSR, NULL, store_remove_id);
204
205 static struct attribute *pci_drv_attrs[] = {
206 &driver_attr_new_id.attr,
207 &driver_attr_remove_id.attr,
208 NULL,
209 };
210 ATTRIBUTE_GROUPS(pci_drv);
211
212 /**
213 * pci_match_id - See if a pci device matches a given pci_id table
214 * @ids: array of PCI device id structures to search in
215 * @dev: the PCI device structure to match against.
216 *
217 * Used by a driver to check whether a PCI device present in the
218 * system is in its list of supported devices. Returns the matching
219 * pci_device_id structure or %NULL if there is no match.
220 *
221 * Deprecated, don't use this as it will not catch any dynamic ids
222 * that a driver might want to check for.
223 */
224 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids,
225 struct pci_dev *dev)
226 {
227 if (ids) {
228 while (ids->vendor || ids->subvendor || ids->class_mask) {
229 if (pci_match_one_device(ids, dev))
230 return ids;
231 ids++;
232 }
233 }
234 return NULL;
235 }
236 EXPORT_SYMBOL(pci_match_id);
237
238 static const struct pci_device_id pci_device_id_any = {
239 .vendor = PCI_ANY_ID,
240 .device = PCI_ANY_ID,
241 .subvendor = PCI_ANY_ID,
242 .subdevice = PCI_ANY_ID,
243 };
244
245 /**
246 * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure
247 * @drv: the PCI driver to match against
248 * @dev: the PCI device structure to match against
249 *
250 * Used by a driver to check whether a PCI device present in the
251 * system is in its list of supported devices. Returns the matching
252 * pci_device_id structure or %NULL if there is no match.
253 */
254 static const struct pci_device_id *pci_match_device(struct pci_driver *drv,
255 struct pci_dev *dev)
256 {
257 struct pci_dynid *dynid;
258 const struct pci_device_id *found_id = NULL;
259
260 /* When driver_override is set, only bind to the matching driver */
261 if (dev->driver_override && strcmp(dev->driver_override, drv->name))
262 return NULL;
263
264 /* Look at the dynamic ids first, before the static ones */
265 spin_lock(&drv->dynids.lock);
266 list_for_each_entry(dynid, &drv->dynids.list, node) {
267 if (pci_match_one_device(&dynid->id, dev)) {
268 found_id = &dynid->id;
269 break;
270 }
271 }
272 spin_unlock(&drv->dynids.lock);
273
274 if (!found_id)
275 found_id = pci_match_id(drv->id_table, dev);
276
277 /* driver_override will always match, send a dummy id */
278 if (!found_id && dev->driver_override)
279 found_id = &pci_device_id_any;
280
281 return found_id;
282 }
283
284 struct drv_dev_and_id {
285 struct pci_driver *drv;
286 struct pci_dev *dev;
287 const struct pci_device_id *id;
288 };
289
290 static long local_pci_probe(void *_ddi)
291 {
292 struct drv_dev_and_id *ddi = _ddi;
293 struct pci_dev *pci_dev = ddi->dev;
294 struct pci_driver *pci_drv = ddi->drv;
295 struct device *dev = &pci_dev->dev;
296 int rc;
297
298 /*
299 * Unbound PCI devices are always put in D0, regardless of
300 * runtime PM status. During probe, the device is set to
301 * active and the usage count is incremented. If the driver
302 * supports runtime PM, it should call pm_runtime_put_noidle()
303 * in its probe routine and pm_runtime_get_noresume() in its
304 * remove routine.
305 */
306 pm_runtime_get_sync(dev);
307 pci_dev->driver = pci_drv;
308 rc = pci_drv->probe(pci_dev, ddi->id);
309 if (!rc)
310 return rc;
311 if (rc < 0) {
312 pci_dev->driver = NULL;
313 pm_runtime_put_sync(dev);
314 return rc;
315 }
316 /*
317 * Probe function should return < 0 for failure, 0 for success
318 * Treat values > 0 as success, but warn.
319 */
320 dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc);
321 return 0;
322 }
323
324 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev,
325 const struct pci_device_id *id)
326 {
327 int error, node;
328 struct drv_dev_and_id ddi = { drv, dev, id };
329
330 /*
331 * Execute driver initialization on node where the device is
332 * attached. This way the driver likely allocates its local memory
333 * on the right node.
334 */
335 node = dev_to_node(&dev->dev);
336
337 /*
338 * On NUMA systems, we are likely to call a PF probe function using
339 * work_on_cpu(). If that probe calls pci_enable_sriov() (which
340 * adds the VF devices via pci_bus_add_device()), we may re-enter
341 * this function to call the VF probe function. Calling
342 * work_on_cpu() again will cause a lockdep warning. Since VFs are
343 * always on the same node as the PF, we can work around this by
344 * avoiding work_on_cpu() when we're already on the correct node.
345 *
346 * Preemption is enabled, so it's theoretically unsafe to use
347 * numa_node_id(), but even if we run the probe function on the
348 * wrong node, it should be functionally correct.
349 */
350 if (node >= 0 && node != numa_node_id()) {
351 int cpu;
352
353 get_online_cpus();
354 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
355 if (cpu < nr_cpu_ids)
356 error = work_on_cpu(cpu, local_pci_probe, &ddi);
357 else
358 error = local_pci_probe(&ddi);
359 put_online_cpus();
360 } else
361 error = local_pci_probe(&ddi);
362
363 return error;
364 }
365
366 /**
367 * __pci_device_probe - check if a driver wants to claim a specific PCI device
368 * @drv: driver to call to check if it wants the PCI device
369 * @pci_dev: PCI device being probed
370 *
371 * returns 0 on success, else error.
372 * side-effect: pci_dev->driver is set to drv when drv claims pci_dev.
373 */
374 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev)
375 {
376 const struct pci_device_id *id;
377 int error = 0;
378
379 if (!pci_dev->driver && drv->probe) {
380 error = -ENODEV;
381
382 id = pci_match_device(drv, pci_dev);
383 if (id)
384 error = pci_call_probe(drv, pci_dev, id);
385 if (error >= 0)
386 error = 0;
387 }
388 return error;
389 }
390
391 int __weak pcibios_alloc_irq(struct pci_dev *dev)
392 {
393 return 0;
394 }
395
396 void __weak pcibios_free_irq(struct pci_dev *dev)
397 {
398 }
399
400 static int pci_device_probe(struct device *dev)
401 {
402 int error;
403 struct pci_dev *pci_dev = to_pci_dev(dev);
404 struct pci_driver *drv = to_pci_driver(dev->driver);
405
406 error = pcibios_alloc_irq(pci_dev);
407 if (error < 0)
408 return error;
409
410 pci_dev_get(pci_dev);
411 error = __pci_device_probe(drv, pci_dev);
412 if (error) {
413 pcibios_free_irq(pci_dev);
414 pci_dev_put(pci_dev);
415 }
416
417 return error;
418 }
419
420 static int pci_device_remove(struct device *dev)
421 {
422 struct pci_dev *pci_dev = to_pci_dev(dev);
423 struct pci_driver *drv = pci_dev->driver;
424
425 if (drv) {
426 if (drv->remove) {
427 pm_runtime_get_sync(dev);
428 drv->remove(pci_dev);
429 pm_runtime_put_noidle(dev);
430 }
431 pcibios_free_irq(pci_dev);
432 pci_dev->driver = NULL;
433 }
434
435 /* Undo the runtime PM settings in local_pci_probe() */
436 pm_runtime_put_sync(dev);
437
438 /*
439 * If the device is still on, set the power state as "unknown",
440 * since it might change by the next time we load the driver.
441 */
442 if (pci_dev->current_state == PCI_D0)
443 pci_dev->current_state = PCI_UNKNOWN;
444
445 /*
446 * We would love to complain here if pci_dev->is_enabled is set, that
447 * the driver should have called pci_disable_device(), but the
448 * unfortunate fact is there are too many odd BIOS and bridge setups
449 * that don't like drivers doing that all of the time.
450 * Oh well, we can dream of sane hardware when we sleep, no matter how
451 * horrible the crap we have to deal with is when we are awake...
452 */
453
454 pci_dev_put(pci_dev);
455 return 0;
456 }
457
458 static void pci_device_shutdown(struct device *dev)
459 {
460 struct pci_dev *pci_dev = to_pci_dev(dev);
461 struct pci_driver *drv = pci_dev->driver;
462
463 pm_runtime_resume(dev);
464
465 if (drv && drv->shutdown)
466 drv->shutdown(pci_dev);
467 pci_msi_shutdown(pci_dev);
468 pci_msix_shutdown(pci_dev);
469
470 #ifdef CONFIG_KEXEC_CORE
471 /*
472 * If this is a kexec reboot, turn off Bus Master bit on the
473 * device to tell it to not continue to do DMA. Don't touch
474 * devices in D3cold or unknown states.
475 * If it is not a kexec reboot, firmware will hit the PCI
476 * devices with big hammer and stop their DMA any way.
477 */
478 if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot))
479 pci_clear_master(pci_dev);
480 #endif
481 }
482
483 #ifdef CONFIG_PM
484
485 /* Auxiliary functions used for system resume and run-time resume. */
486
487 /**
488 * pci_restore_standard_config - restore standard config registers of PCI device
489 * @pci_dev: PCI device to handle
490 */
491 static int pci_restore_standard_config(struct pci_dev *pci_dev)
492 {
493 pci_update_current_state(pci_dev, PCI_UNKNOWN);
494
495 if (pci_dev->current_state != PCI_D0) {
496 int error = pci_set_power_state(pci_dev, PCI_D0);
497 if (error)
498 return error;
499 }
500
501 pci_restore_state(pci_dev);
502 return 0;
503 }
504
505 #endif
506
507 #ifdef CONFIG_PM_SLEEP
508
509 static void pci_pm_default_resume_early(struct pci_dev *pci_dev)
510 {
511 pci_power_up(pci_dev);
512 pci_restore_state(pci_dev);
513 pci_fixup_device(pci_fixup_resume_early, pci_dev);
514 }
515
516 /*
517 * Default "suspend" method for devices that have no driver provided suspend,
518 * or not even a driver at all (second part).
519 */
520 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev)
521 {
522 /*
523 * mark its power state as "unknown", since we don't know if
524 * e.g. the BIOS will change its device state when we suspend.
525 */
526 if (pci_dev->current_state == PCI_D0)
527 pci_dev->current_state = PCI_UNKNOWN;
528 }
529
530 /*
531 * Default "resume" method for devices that have no driver provided resume,
532 * or not even a driver at all (second part).
533 */
534 static int pci_pm_reenable_device(struct pci_dev *pci_dev)
535 {
536 int retval;
537
538 /* if the device was enabled before suspend, reenable */
539 retval = pci_reenable_device(pci_dev);
540 /*
541 * if the device was busmaster before the suspend, make it busmaster
542 * again
543 */
544 if (pci_dev->is_busmaster)
545 pci_set_master(pci_dev);
546
547 return retval;
548 }
549
550 static int pci_legacy_suspend(struct device *dev, pm_message_t state)
551 {
552 struct pci_dev *pci_dev = to_pci_dev(dev);
553 struct pci_driver *drv = pci_dev->driver;
554
555 if (drv && drv->suspend) {
556 pci_power_t prev = pci_dev->current_state;
557 int error;
558
559 error = drv->suspend(pci_dev, state);
560 suspend_report_result(drv->suspend, error);
561 if (error)
562 return error;
563
564 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
565 && pci_dev->current_state != PCI_UNKNOWN) {
566 WARN_ONCE(pci_dev->current_state != prev,
567 "PCI PM: Device state not saved by %pF\n",
568 drv->suspend);
569 }
570 }
571
572 pci_fixup_device(pci_fixup_suspend, pci_dev);
573
574 return 0;
575 }
576
577 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state)
578 {
579 struct pci_dev *pci_dev = to_pci_dev(dev);
580 struct pci_driver *drv = pci_dev->driver;
581
582 if (drv && drv->suspend_late) {
583 pci_power_t prev = pci_dev->current_state;
584 int error;
585
586 error = drv->suspend_late(pci_dev, state);
587 suspend_report_result(drv->suspend_late, error);
588 if (error)
589 return error;
590
591 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
592 && pci_dev->current_state != PCI_UNKNOWN) {
593 WARN_ONCE(pci_dev->current_state != prev,
594 "PCI PM: Device state not saved by %pF\n",
595 drv->suspend_late);
596 goto Fixup;
597 }
598 }
599
600 if (!pci_dev->state_saved)
601 pci_save_state(pci_dev);
602
603 pci_pm_set_unknown_state(pci_dev);
604
605 Fixup:
606 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
607
608 return 0;
609 }
610
611 static int pci_legacy_resume_early(struct device *dev)
612 {
613 struct pci_dev *pci_dev = to_pci_dev(dev);
614 struct pci_driver *drv = pci_dev->driver;
615
616 return drv && drv->resume_early ?
617 drv->resume_early(pci_dev) : 0;
618 }
619
620 static int pci_legacy_resume(struct device *dev)
621 {
622 struct pci_dev *pci_dev = to_pci_dev(dev);
623 struct pci_driver *drv = pci_dev->driver;
624
625 pci_fixup_device(pci_fixup_resume, pci_dev);
626
627 return drv && drv->resume ?
628 drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev);
629 }
630
631 /* Auxiliary functions used by the new power management framework */
632
633 static void pci_pm_default_resume(struct pci_dev *pci_dev)
634 {
635 pci_fixup_device(pci_fixup_resume, pci_dev);
636
637 if (!pci_has_subordinate(pci_dev))
638 pci_enable_wake(pci_dev, PCI_D0, false);
639 }
640
641 static void pci_pm_default_suspend(struct pci_dev *pci_dev)
642 {
643 /* Disable non-bridge devices without PM support */
644 if (!pci_has_subordinate(pci_dev))
645 pci_disable_enabled_device(pci_dev);
646 }
647
648 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev)
649 {
650 struct pci_driver *drv = pci_dev->driver;
651 bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume
652 || drv->resume_early);
653
654 /*
655 * Legacy PM support is used by default, so warn if the new framework is
656 * supported as well. Drivers are supposed to support either the
657 * former, or the latter, but not both at the same time.
658 */
659 WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n",
660 drv->name, pci_dev->vendor, pci_dev->device);
661
662 return ret;
663 }
664
665 /* New power management framework */
666
667 static int pci_pm_prepare(struct device *dev)
668 {
669 struct device_driver *drv = dev->driver;
670
671 /*
672 * Devices having power.ignore_children set may still be necessary for
673 * suspending their children in the next phase of device suspend.
674 */
675 if (dev->power.ignore_children)
676 pm_runtime_resume(dev);
677
678 if (drv && drv->pm && drv->pm->prepare) {
679 int error = drv->pm->prepare(dev);
680 if (error)
681 return error;
682 }
683 return pci_dev_keep_suspended(to_pci_dev(dev));
684 }
685
686
687 #else /* !CONFIG_PM_SLEEP */
688
689 #define pci_pm_prepare NULL
690
691 #endif /* !CONFIG_PM_SLEEP */
692
693 #ifdef CONFIG_SUSPEND
694
695 static int pci_pm_suspend(struct device *dev)
696 {
697 struct pci_dev *pci_dev = to_pci_dev(dev);
698 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
699
700 if (pci_has_legacy_pm_support(pci_dev))
701 return pci_legacy_suspend(dev, PMSG_SUSPEND);
702
703 if (!pm) {
704 pci_pm_default_suspend(pci_dev);
705 goto Fixup;
706 }
707
708 /*
709 * PCI devices suspended at run time need to be resumed at this point,
710 * because in general it is necessary to reconfigure them for system
711 * suspend. Namely, if the device is supposed to wake up the system
712 * from the sleep state, we may need to reconfigure it for this purpose.
713 * In turn, if the device is not supposed to wake up the system from the
714 * sleep state, we'll have to prevent it from signaling wake-up.
715 */
716 pm_runtime_resume(dev);
717
718 pci_dev->state_saved = false;
719 if (pm->suspend) {
720 pci_power_t prev = pci_dev->current_state;
721 int error;
722
723 error = pm->suspend(dev);
724 suspend_report_result(pm->suspend, error);
725 if (error)
726 return error;
727
728 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
729 && pci_dev->current_state != PCI_UNKNOWN) {
730 WARN_ONCE(pci_dev->current_state != prev,
731 "PCI PM: State of device not saved by %pF\n",
732 pm->suspend);
733 }
734 }
735
736 Fixup:
737 pci_fixup_device(pci_fixup_suspend, pci_dev);
738
739 return 0;
740 }
741
742 static int pci_pm_suspend_noirq(struct device *dev)
743 {
744 struct pci_dev *pci_dev = to_pci_dev(dev);
745 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
746
747 if (pci_has_legacy_pm_support(pci_dev))
748 return pci_legacy_suspend_late(dev, PMSG_SUSPEND);
749
750 if (!pm) {
751 pci_save_state(pci_dev);
752 goto Fixup;
753 }
754
755 if (pm->suspend_noirq) {
756 pci_power_t prev = pci_dev->current_state;
757 int error;
758
759 error = pm->suspend_noirq(dev);
760 suspend_report_result(pm->suspend_noirq, error);
761 if (error)
762 return error;
763
764 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
765 && pci_dev->current_state != PCI_UNKNOWN) {
766 WARN_ONCE(pci_dev->current_state != prev,
767 "PCI PM: State of device not saved by %pF\n",
768 pm->suspend_noirq);
769 goto Fixup;
770 }
771 }
772
773 if (!pci_dev->state_saved) {
774 pci_save_state(pci_dev);
775 if (!pci_has_subordinate(pci_dev))
776 pci_prepare_to_sleep(pci_dev);
777 }
778
779 pci_pm_set_unknown_state(pci_dev);
780
781 /*
782 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's
783 * PCI COMMAND register isn't 0, the BIOS assumes that the controller
784 * hasn't been quiesced and tries to turn it off. If the controller
785 * is already in D3, this can hang or cause memory corruption.
786 *
787 * Since the value of the COMMAND register doesn't matter once the
788 * device has been suspended, we can safely set it to 0 here.
789 */
790 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
791 pci_write_config_word(pci_dev, PCI_COMMAND, 0);
792
793 Fixup:
794 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
795
796 return 0;
797 }
798
799 static int pci_pm_resume_noirq(struct device *dev)
800 {
801 struct pci_dev *pci_dev = to_pci_dev(dev);
802 struct device_driver *drv = dev->driver;
803 int error = 0;
804
805 pci_pm_default_resume_early(pci_dev);
806
807 if (pci_has_legacy_pm_support(pci_dev))
808 return pci_legacy_resume_early(dev);
809
810 if (drv && drv->pm && drv->pm->resume_noirq)
811 error = drv->pm->resume_noirq(dev);
812
813 return error;
814 }
815
816 static int pci_pm_resume(struct device *dev)
817 {
818 struct pci_dev *pci_dev = to_pci_dev(dev);
819 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
820 int error = 0;
821
822 /*
823 * This is necessary for the suspend error path in which resume is
824 * called without restoring the standard config registers of the device.
825 */
826 if (pci_dev->state_saved)
827 pci_restore_standard_config(pci_dev);
828
829 if (pci_has_legacy_pm_support(pci_dev))
830 return pci_legacy_resume(dev);
831
832 pci_pm_default_resume(pci_dev);
833
834 if (pm) {
835 if (pm->resume)
836 error = pm->resume(dev);
837 } else {
838 pci_pm_reenable_device(pci_dev);
839 }
840
841 return error;
842 }
843
844 #else /* !CONFIG_SUSPEND */
845
846 #define pci_pm_suspend NULL
847 #define pci_pm_suspend_noirq NULL
848 #define pci_pm_resume NULL
849 #define pci_pm_resume_noirq NULL
850
851 #endif /* !CONFIG_SUSPEND */
852
853 #ifdef CONFIG_HIBERNATE_CALLBACKS
854
855
856 /*
857 * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing
858 * a hibernate transition
859 */
860 struct dev_pm_ops __weak pcibios_pm_ops;
861
862 static int pci_pm_freeze(struct device *dev)
863 {
864 struct pci_dev *pci_dev = to_pci_dev(dev);
865 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
866
867 if (pci_has_legacy_pm_support(pci_dev))
868 return pci_legacy_suspend(dev, PMSG_FREEZE);
869
870 if (!pm) {
871 pci_pm_default_suspend(pci_dev);
872 return 0;
873 }
874
875 /*
876 * This used to be done in pci_pm_prepare() for all devices and some
877 * drivers may depend on it, so do it here. Ideally, runtime-suspended
878 * devices should not be touched during freeze/thaw transitions,
879 * however.
880 */
881 pm_runtime_resume(dev);
882
883 pci_dev->state_saved = false;
884 if (pm->freeze) {
885 int error;
886
887 error = pm->freeze(dev);
888 suspend_report_result(pm->freeze, error);
889 if (error)
890 return error;
891 }
892
893 if (pcibios_pm_ops.freeze)
894 return pcibios_pm_ops.freeze(dev);
895
896 return 0;
897 }
898
899 static int pci_pm_freeze_noirq(struct device *dev)
900 {
901 struct pci_dev *pci_dev = to_pci_dev(dev);
902 struct device_driver *drv = dev->driver;
903
904 if (pci_has_legacy_pm_support(pci_dev))
905 return pci_legacy_suspend_late(dev, PMSG_FREEZE);
906
907 if (drv && drv->pm && drv->pm->freeze_noirq) {
908 int error;
909
910 error = drv->pm->freeze_noirq(dev);
911 suspend_report_result(drv->pm->freeze_noirq, error);
912 if (error)
913 return error;
914 }
915
916 if (!pci_dev->state_saved)
917 pci_save_state(pci_dev);
918
919 pci_pm_set_unknown_state(pci_dev);
920
921 if (pcibios_pm_ops.freeze_noirq)
922 return pcibios_pm_ops.freeze_noirq(dev);
923
924 return 0;
925 }
926
927 static int pci_pm_thaw_noirq(struct device *dev)
928 {
929 struct pci_dev *pci_dev = to_pci_dev(dev);
930 struct device_driver *drv = dev->driver;
931 int error = 0;
932
933 if (pcibios_pm_ops.thaw_noirq) {
934 error = pcibios_pm_ops.thaw_noirq(dev);
935 if (error)
936 return error;
937 }
938
939 if (pci_has_legacy_pm_support(pci_dev))
940 return pci_legacy_resume_early(dev);
941
942 pci_update_current_state(pci_dev, PCI_D0);
943
944 if (drv && drv->pm && drv->pm->thaw_noirq)
945 error = drv->pm->thaw_noirq(dev);
946
947 return error;
948 }
949
950 static int pci_pm_thaw(struct device *dev)
951 {
952 struct pci_dev *pci_dev = to_pci_dev(dev);
953 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
954 int error = 0;
955
956 if (pcibios_pm_ops.thaw) {
957 error = pcibios_pm_ops.thaw(dev);
958 if (error)
959 return error;
960 }
961
962 if (pci_has_legacy_pm_support(pci_dev))
963 return pci_legacy_resume(dev);
964
965 if (pm) {
966 if (pm->thaw)
967 error = pm->thaw(dev);
968 } else {
969 pci_pm_reenable_device(pci_dev);
970 }
971
972 pci_dev->state_saved = false;
973
974 return error;
975 }
976
977 static int pci_pm_poweroff(struct device *dev)
978 {
979 struct pci_dev *pci_dev = to_pci_dev(dev);
980 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
981
982 if (pci_has_legacy_pm_support(pci_dev))
983 return pci_legacy_suspend(dev, PMSG_HIBERNATE);
984
985 if (!pm) {
986 pci_pm_default_suspend(pci_dev);
987 goto Fixup;
988 }
989
990 /* The reason to do that is the same as in pci_pm_suspend(). */
991 pm_runtime_resume(dev);
992
993 pci_dev->state_saved = false;
994 if (pm->poweroff) {
995 int error;
996
997 error = pm->poweroff(dev);
998 suspend_report_result(pm->poweroff, error);
999 if (error)
1000 return error;
1001 }
1002
1003 Fixup:
1004 pci_fixup_device(pci_fixup_suspend, pci_dev);
1005
1006 if (pcibios_pm_ops.poweroff)
1007 return pcibios_pm_ops.poweroff(dev);
1008
1009 return 0;
1010 }
1011
1012 static int pci_pm_poweroff_noirq(struct device *dev)
1013 {
1014 struct pci_dev *pci_dev = to_pci_dev(dev);
1015 struct device_driver *drv = dev->driver;
1016
1017 if (pci_has_legacy_pm_support(to_pci_dev(dev)))
1018 return pci_legacy_suspend_late(dev, PMSG_HIBERNATE);
1019
1020 if (!drv || !drv->pm) {
1021 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1022 return 0;
1023 }
1024
1025 if (drv->pm->poweroff_noirq) {
1026 int error;
1027
1028 error = drv->pm->poweroff_noirq(dev);
1029 suspend_report_result(drv->pm->poweroff_noirq, error);
1030 if (error)
1031 return error;
1032 }
1033
1034 if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev))
1035 pci_prepare_to_sleep(pci_dev);
1036
1037 /*
1038 * The reason for doing this here is the same as for the analogous code
1039 * in pci_pm_suspend_noirq().
1040 */
1041 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1042 pci_write_config_word(pci_dev, PCI_COMMAND, 0);
1043
1044 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1045
1046 if (pcibios_pm_ops.poweroff_noirq)
1047 return pcibios_pm_ops.poweroff_noirq(dev);
1048
1049 return 0;
1050 }
1051
1052 static int pci_pm_restore_noirq(struct device *dev)
1053 {
1054 struct pci_dev *pci_dev = to_pci_dev(dev);
1055 struct device_driver *drv = dev->driver;
1056 int error = 0;
1057
1058 if (pcibios_pm_ops.restore_noirq) {
1059 error = pcibios_pm_ops.restore_noirq(dev);
1060 if (error)
1061 return error;
1062 }
1063
1064 pci_pm_default_resume_early(pci_dev);
1065
1066 if (pci_has_legacy_pm_support(pci_dev))
1067 return pci_legacy_resume_early(dev);
1068
1069 if (drv && drv->pm && drv->pm->restore_noirq)
1070 error = drv->pm->restore_noirq(dev);
1071
1072 return error;
1073 }
1074
1075 static int pci_pm_restore(struct device *dev)
1076 {
1077 struct pci_dev *pci_dev = to_pci_dev(dev);
1078 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1079 int error = 0;
1080
1081 if (pcibios_pm_ops.restore) {
1082 error = pcibios_pm_ops.restore(dev);
1083 if (error)
1084 return error;
1085 }
1086
1087 /*
1088 * This is necessary for the hibernation error path in which restore is
1089 * called without restoring the standard config registers of the device.
1090 */
1091 if (pci_dev->state_saved)
1092 pci_restore_standard_config(pci_dev);
1093
1094 if (pci_has_legacy_pm_support(pci_dev))
1095 return pci_legacy_resume(dev);
1096
1097 pci_pm_default_resume(pci_dev);
1098
1099 if (pm) {
1100 if (pm->restore)
1101 error = pm->restore(dev);
1102 } else {
1103 pci_pm_reenable_device(pci_dev);
1104 }
1105
1106 return error;
1107 }
1108
1109 #else /* !CONFIG_HIBERNATE_CALLBACKS */
1110
1111 #define pci_pm_freeze NULL
1112 #define pci_pm_freeze_noirq NULL
1113 #define pci_pm_thaw NULL
1114 #define pci_pm_thaw_noirq NULL
1115 #define pci_pm_poweroff NULL
1116 #define pci_pm_poweroff_noirq NULL
1117 #define pci_pm_restore NULL
1118 #define pci_pm_restore_noirq NULL
1119
1120 #endif /* !CONFIG_HIBERNATE_CALLBACKS */
1121
1122 #ifdef CONFIG_PM
1123
1124 static int pci_pm_runtime_suspend(struct device *dev)
1125 {
1126 struct pci_dev *pci_dev = to_pci_dev(dev);
1127 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1128 pci_power_t prev = pci_dev->current_state;
1129 int error;
1130
1131 /*
1132 * If pci_dev->driver is not set (unbound), the device should
1133 * always remain in D0 regardless of the runtime PM status
1134 */
1135 if (!pci_dev->driver)
1136 return 0;
1137
1138 if (!pm || !pm->runtime_suspend)
1139 return -ENOSYS;
1140
1141 pci_dev->state_saved = false;
1142 pci_dev->no_d3cold = false;
1143 error = pm->runtime_suspend(dev);
1144 suspend_report_result(pm->runtime_suspend, error);
1145 if (error)
1146 return error;
1147 if (!pci_dev->d3cold_allowed)
1148 pci_dev->no_d3cold = true;
1149
1150 pci_fixup_device(pci_fixup_suspend, pci_dev);
1151
1152 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
1153 && pci_dev->current_state != PCI_UNKNOWN) {
1154 WARN_ONCE(pci_dev->current_state != prev,
1155 "PCI PM: State of device not saved by %pF\n",
1156 pm->runtime_suspend);
1157 return 0;
1158 }
1159
1160 if (!pci_dev->state_saved) {
1161 pci_save_state(pci_dev);
1162 pci_finish_runtime_suspend(pci_dev);
1163 }
1164
1165 return 0;
1166 }
1167
1168 static int pci_pm_runtime_resume(struct device *dev)
1169 {
1170 int rc;
1171 struct pci_dev *pci_dev = to_pci_dev(dev);
1172 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1173
1174 /*
1175 * If pci_dev->driver is not set (unbound), the device should
1176 * always remain in D0 regardless of the runtime PM status
1177 */
1178 if (!pci_dev->driver)
1179 return 0;
1180
1181 if (!pm || !pm->runtime_resume)
1182 return -ENOSYS;
1183
1184 pci_restore_standard_config(pci_dev);
1185 pci_fixup_device(pci_fixup_resume_early, pci_dev);
1186 __pci_enable_wake(pci_dev, PCI_D0, true, false);
1187 pci_fixup_device(pci_fixup_resume, pci_dev);
1188
1189 rc = pm->runtime_resume(dev);
1190
1191 pci_dev->runtime_d3cold = false;
1192
1193 return rc;
1194 }
1195
1196 static int pci_pm_runtime_idle(struct device *dev)
1197 {
1198 struct pci_dev *pci_dev = to_pci_dev(dev);
1199 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1200 int ret = 0;
1201
1202 /*
1203 * If pci_dev->driver is not set (unbound), the device should
1204 * always remain in D0 regardless of the runtime PM status
1205 */
1206 if (!pci_dev->driver)
1207 return 0;
1208
1209 if (!pm)
1210 return -ENOSYS;
1211
1212 if (pm->runtime_idle)
1213 ret = pm->runtime_idle(dev);
1214
1215 return ret;
1216 }
1217
1218 static const struct dev_pm_ops pci_dev_pm_ops = {
1219 .prepare = pci_pm_prepare,
1220 .suspend = pci_pm_suspend,
1221 .resume = pci_pm_resume,
1222 .freeze = pci_pm_freeze,
1223 .thaw = pci_pm_thaw,
1224 .poweroff = pci_pm_poweroff,
1225 .restore = pci_pm_restore,
1226 .suspend_noirq = pci_pm_suspend_noirq,
1227 .resume_noirq = pci_pm_resume_noirq,
1228 .freeze_noirq = pci_pm_freeze_noirq,
1229 .thaw_noirq = pci_pm_thaw_noirq,
1230 .poweroff_noirq = pci_pm_poweroff_noirq,
1231 .restore_noirq = pci_pm_restore_noirq,
1232 .runtime_suspend = pci_pm_runtime_suspend,
1233 .runtime_resume = pci_pm_runtime_resume,
1234 .runtime_idle = pci_pm_runtime_idle,
1235 };
1236
1237 #define PCI_PM_OPS_PTR (&pci_dev_pm_ops)
1238
1239 #else /* !CONFIG_PM */
1240
1241 #define pci_pm_runtime_suspend NULL
1242 #define pci_pm_runtime_resume NULL
1243 #define pci_pm_runtime_idle NULL
1244
1245 #define PCI_PM_OPS_PTR NULL
1246
1247 #endif /* !CONFIG_PM */
1248
1249 /**
1250 * __pci_register_driver - register a new pci driver
1251 * @drv: the driver structure to register
1252 * @owner: owner module of drv
1253 * @mod_name: module name string
1254 *
1255 * Adds the driver structure to the list of registered drivers.
1256 * Returns a negative value on error, otherwise 0.
1257 * If no error occurred, the driver remains registered even if
1258 * no device was claimed during registration.
1259 */
1260 int __pci_register_driver(struct pci_driver *drv, struct module *owner,
1261 const char *mod_name)
1262 {
1263 /* initialize common driver fields */
1264 drv->driver.name = drv->name;
1265 drv->driver.bus = &pci_bus_type;
1266 drv->driver.owner = owner;
1267 drv->driver.mod_name = mod_name;
1268
1269 spin_lock_init(&drv->dynids.lock);
1270 INIT_LIST_HEAD(&drv->dynids.list);
1271
1272 /* register with core */
1273 return driver_register(&drv->driver);
1274 }
1275 EXPORT_SYMBOL(__pci_register_driver);
1276
1277 /**
1278 * pci_unregister_driver - unregister a pci driver
1279 * @drv: the driver structure to unregister
1280 *
1281 * Deletes the driver structure from the list of registered PCI drivers,
1282 * gives it a chance to clean up by calling its remove() function for
1283 * each device it was responsible for, and marks those devices as
1284 * driverless.
1285 */
1286
1287 void pci_unregister_driver(struct pci_driver *drv)
1288 {
1289 driver_unregister(&drv->driver);
1290 pci_free_dynids(drv);
1291 }
1292 EXPORT_SYMBOL(pci_unregister_driver);
1293
1294 static struct pci_driver pci_compat_driver = {
1295 .name = "compat"
1296 };
1297
1298 /**
1299 * pci_dev_driver - get the pci_driver of a device
1300 * @dev: the device to query
1301 *
1302 * Returns the appropriate pci_driver structure or %NULL if there is no
1303 * registered driver for the device.
1304 */
1305 struct pci_driver *pci_dev_driver(const struct pci_dev *dev)
1306 {
1307 if (dev->driver)
1308 return dev->driver;
1309 else {
1310 int i;
1311 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1312 if (dev->resource[i].flags & IORESOURCE_BUSY)
1313 return &pci_compat_driver;
1314 }
1315 return NULL;
1316 }
1317 EXPORT_SYMBOL(pci_dev_driver);
1318
1319 /**
1320 * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure
1321 * @dev: the PCI device structure to match against
1322 * @drv: the device driver to search for matching PCI device id structures
1323 *
1324 * Used by a driver to check whether a PCI device present in the
1325 * system is in its list of supported devices. Returns the matching
1326 * pci_device_id structure or %NULL if there is no match.
1327 */
1328 static int pci_bus_match(struct device *dev, struct device_driver *drv)
1329 {
1330 struct pci_dev *pci_dev = to_pci_dev(dev);
1331 struct pci_driver *pci_drv;
1332 const struct pci_device_id *found_id;
1333
1334 if (!pci_dev->match_driver)
1335 return 0;
1336
1337 pci_drv = to_pci_driver(drv);
1338 found_id = pci_match_device(pci_drv, pci_dev);
1339 if (found_id)
1340 return 1;
1341
1342 return 0;
1343 }
1344
1345 /**
1346 * pci_dev_get - increments the reference count of the pci device structure
1347 * @dev: the device being referenced
1348 *
1349 * Each live reference to a device should be refcounted.
1350 *
1351 * Drivers for PCI devices should normally record such references in
1352 * their probe() methods, when they bind to a device, and release
1353 * them by calling pci_dev_put(), in their disconnect() methods.
1354 *
1355 * A pointer to the device with the incremented reference counter is returned.
1356 */
1357 struct pci_dev *pci_dev_get(struct pci_dev *dev)
1358 {
1359 if (dev)
1360 get_device(&dev->dev);
1361 return dev;
1362 }
1363 EXPORT_SYMBOL(pci_dev_get);
1364
1365 /**
1366 * pci_dev_put - release a use of the pci device structure
1367 * @dev: device that's been disconnected
1368 *
1369 * Must be called when a user of a device is finished with it. When the last
1370 * user of the device calls this function, the memory of the device is freed.
1371 */
1372 void pci_dev_put(struct pci_dev *dev)
1373 {
1374 if (dev)
1375 put_device(&dev->dev);
1376 }
1377 EXPORT_SYMBOL(pci_dev_put);
1378
1379 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env)
1380 {
1381 struct pci_dev *pdev;
1382
1383 if (!dev)
1384 return -ENODEV;
1385
1386 pdev = to_pci_dev(dev);
1387
1388 if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class))
1389 return -ENOMEM;
1390
1391 if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device))
1392 return -ENOMEM;
1393
1394 if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor,
1395 pdev->subsystem_device))
1396 return -ENOMEM;
1397
1398 if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev)))
1399 return -ENOMEM;
1400
1401 if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X",
1402 pdev->vendor, pdev->device,
1403 pdev->subsystem_vendor, pdev->subsystem_device,
1404 (u8)(pdev->class >> 16), (u8)(pdev->class >> 8),
1405 (u8)(pdev->class)))
1406 return -ENOMEM;
1407
1408 return 0;
1409 }
1410
1411 struct bus_type pci_bus_type = {
1412 .name = "pci",
1413 .match = pci_bus_match,
1414 .uevent = pci_uevent,
1415 .probe = pci_device_probe,
1416 .remove = pci_device_remove,
1417 .shutdown = pci_device_shutdown,
1418 .dev_groups = pci_dev_groups,
1419 .bus_groups = pci_bus_groups,
1420 .drv_groups = pci_drv_groups,
1421 .pm = PCI_PM_OPS_PTR,
1422 };
1423 EXPORT_SYMBOL(pci_bus_type);
1424
1425 static int __init pci_driver_init(void)
1426 {
1427 return bus_register(&pci_bus_type);
1428 }
1429 postcore_initcall(pci_driver_init);