]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/pci/pci-driver.c
PCI: Remove dead code
[mirror_ubuntu-zesty-kernel.git] / drivers / pci / pci-driver.c
1 /*
2 * drivers/pci/pci-driver.c
3 *
4 * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com>
5 * (C) Copyright 2007 Novell Inc.
6 *
7 * Released under the GPL v2 only.
8 *
9 */
10
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/device.h>
15 #include <linux/mempolicy.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/cpu.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/suspend.h>
22 #include <linux/kexec.h>
23 #include "pci.h"
24
25 struct pci_dynid {
26 struct list_head node;
27 struct pci_device_id id;
28 };
29
30 /**
31 * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices
32 * @drv: target pci driver
33 * @vendor: PCI vendor ID
34 * @device: PCI device ID
35 * @subvendor: PCI subvendor ID
36 * @subdevice: PCI subdevice ID
37 * @class: PCI class
38 * @class_mask: PCI class mask
39 * @driver_data: private driver data
40 *
41 * Adds a new dynamic pci device ID to this driver and causes the
42 * driver to probe for all devices again. @drv must have been
43 * registered prior to calling this function.
44 *
45 * CONTEXT:
46 * Does GFP_KERNEL allocation.
47 *
48 * RETURNS:
49 * 0 on success, -errno on failure.
50 */
51 int pci_add_dynid(struct pci_driver *drv,
52 unsigned int vendor, unsigned int device,
53 unsigned int subvendor, unsigned int subdevice,
54 unsigned int class, unsigned int class_mask,
55 unsigned long driver_data)
56 {
57 struct pci_dynid *dynid;
58 int retval;
59
60 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
61 if (!dynid)
62 return -ENOMEM;
63
64 dynid->id.vendor = vendor;
65 dynid->id.device = device;
66 dynid->id.subvendor = subvendor;
67 dynid->id.subdevice = subdevice;
68 dynid->id.class = class;
69 dynid->id.class_mask = class_mask;
70 dynid->id.driver_data = driver_data;
71
72 spin_lock(&drv->dynids.lock);
73 list_add_tail(&dynid->node, &drv->dynids.list);
74 spin_unlock(&drv->dynids.lock);
75
76 retval = driver_attach(&drv->driver);
77
78 return retval;
79 }
80
81 static void pci_free_dynids(struct pci_driver *drv)
82 {
83 struct pci_dynid *dynid, *n;
84
85 spin_lock(&drv->dynids.lock);
86 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
87 list_del(&dynid->node);
88 kfree(dynid);
89 }
90 spin_unlock(&drv->dynids.lock);
91 }
92
93 /**
94 * store_new_id - sysfs frontend to pci_add_dynid()
95 * @driver: target device driver
96 * @buf: buffer for scanning device ID data
97 * @count: input size
98 *
99 * Allow PCI IDs to be added to an existing driver via sysfs.
100 */
101 static ssize_t
102 store_new_id(struct device_driver *driver, const char *buf, size_t count)
103 {
104 struct pci_driver *pdrv = to_pci_driver(driver);
105 const struct pci_device_id *ids = pdrv->id_table;
106 __u32 vendor, device, subvendor=PCI_ANY_ID,
107 subdevice=PCI_ANY_ID, class=0, class_mask=0;
108 unsigned long driver_data=0;
109 int fields=0;
110 int retval = 0;
111
112 fields = sscanf(buf, "%x %x %x %x %x %x %lx",
113 &vendor, &device, &subvendor, &subdevice,
114 &class, &class_mask, &driver_data);
115 if (fields < 2)
116 return -EINVAL;
117
118 if (fields != 7) {
119 struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
120 if (!pdev)
121 return -ENOMEM;
122
123 pdev->vendor = vendor;
124 pdev->device = device;
125 pdev->subsystem_vendor = subvendor;
126 pdev->subsystem_device = subdevice;
127 pdev->class = class;
128
129 if (pci_match_id(pdrv->id_table, pdev))
130 retval = -EEXIST;
131
132 kfree(pdev);
133
134 if (retval)
135 return retval;
136 }
137
138 /* Only accept driver_data values that match an existing id_table
139 entry */
140 if (ids) {
141 retval = -EINVAL;
142 while (ids->vendor || ids->subvendor || ids->class_mask) {
143 if (driver_data == ids->driver_data) {
144 retval = 0;
145 break;
146 }
147 ids++;
148 }
149 if (retval) /* No match */
150 return retval;
151 }
152
153 retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice,
154 class, class_mask, driver_data);
155 if (retval)
156 return retval;
157 return count;
158 }
159 static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
160
161 /**
162 * store_remove_id - remove a PCI device ID from this driver
163 * @driver: target device driver
164 * @buf: buffer for scanning device ID data
165 * @count: input size
166 *
167 * Removes a dynamic pci device ID to this driver.
168 */
169 static ssize_t
170 store_remove_id(struct device_driver *driver, const char *buf, size_t count)
171 {
172 struct pci_dynid *dynid, *n;
173 struct pci_driver *pdrv = to_pci_driver(driver);
174 __u32 vendor, device, subvendor = PCI_ANY_ID,
175 subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
176 int fields = 0;
177 int retval = -ENODEV;
178
179 fields = sscanf(buf, "%x %x %x %x %x %x",
180 &vendor, &device, &subvendor, &subdevice,
181 &class, &class_mask);
182 if (fields < 2)
183 return -EINVAL;
184
185 spin_lock(&pdrv->dynids.lock);
186 list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) {
187 struct pci_device_id *id = &dynid->id;
188 if ((id->vendor == vendor) &&
189 (id->device == device) &&
190 (subvendor == PCI_ANY_ID || id->subvendor == subvendor) &&
191 (subdevice == PCI_ANY_ID || id->subdevice == subdevice) &&
192 !((id->class ^ class) & class_mask)) {
193 list_del(&dynid->node);
194 kfree(dynid);
195 retval = 0;
196 break;
197 }
198 }
199 spin_unlock(&pdrv->dynids.lock);
200
201 if (retval)
202 return retval;
203 return count;
204 }
205 static DRIVER_ATTR(remove_id, S_IWUSR, NULL, store_remove_id);
206
207 static struct attribute *pci_drv_attrs[] = {
208 &driver_attr_new_id.attr,
209 &driver_attr_remove_id.attr,
210 NULL,
211 };
212 ATTRIBUTE_GROUPS(pci_drv);
213
214 /**
215 * pci_match_id - See if a pci device matches a given pci_id table
216 * @ids: array of PCI device id structures to search in
217 * @dev: the PCI device structure to match against.
218 *
219 * Used by a driver to check whether a PCI device present in the
220 * system is in its list of supported devices. Returns the matching
221 * pci_device_id structure or %NULL if there is no match.
222 *
223 * Deprecated, don't use this as it will not catch any dynamic ids
224 * that a driver might want to check for.
225 */
226 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids,
227 struct pci_dev *dev)
228 {
229 if (ids) {
230 while (ids->vendor || ids->subvendor || ids->class_mask) {
231 if (pci_match_one_device(ids, dev))
232 return ids;
233 ids++;
234 }
235 }
236 return NULL;
237 }
238
239 /**
240 * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure
241 * @drv: the PCI driver to match against
242 * @dev: the PCI device structure to match against
243 *
244 * Used by a driver to check whether a PCI device present in the
245 * system is in its list of supported devices. Returns the matching
246 * pci_device_id structure or %NULL if there is no match.
247 */
248 static const struct pci_device_id *pci_match_device(struct pci_driver *drv,
249 struct pci_dev *dev)
250 {
251 struct pci_dynid *dynid;
252
253 /* Look at the dynamic ids first, before the static ones */
254 spin_lock(&drv->dynids.lock);
255 list_for_each_entry(dynid, &drv->dynids.list, node) {
256 if (pci_match_one_device(&dynid->id, dev)) {
257 spin_unlock(&drv->dynids.lock);
258 return &dynid->id;
259 }
260 }
261 spin_unlock(&drv->dynids.lock);
262
263 return pci_match_id(drv->id_table, dev);
264 }
265
266 struct drv_dev_and_id {
267 struct pci_driver *drv;
268 struct pci_dev *dev;
269 const struct pci_device_id *id;
270 };
271
272 static long local_pci_probe(void *_ddi)
273 {
274 struct drv_dev_and_id *ddi = _ddi;
275 struct pci_dev *pci_dev = ddi->dev;
276 struct pci_driver *pci_drv = ddi->drv;
277 struct device *dev = &pci_dev->dev;
278 int rc;
279
280 /*
281 * Unbound PCI devices are always put in D0, regardless of
282 * runtime PM status. During probe, the device is set to
283 * active and the usage count is incremented. If the driver
284 * supports runtime PM, it should call pm_runtime_put_noidle()
285 * in its probe routine and pm_runtime_get_noresume() in its
286 * remove routine.
287 */
288 pm_runtime_get_sync(dev);
289 pci_dev->driver = pci_drv;
290 rc = pci_drv->probe(pci_dev, ddi->id);
291 if (!rc)
292 return rc;
293 if (rc < 0) {
294 pci_dev->driver = NULL;
295 pm_runtime_put_sync(dev);
296 return rc;
297 }
298 /*
299 * Probe function should return < 0 for failure, 0 for success
300 * Treat values > 0 as success, but warn.
301 */
302 dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc);
303 return 0;
304 }
305
306 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev,
307 const struct pci_device_id *id)
308 {
309 int error, node;
310 struct drv_dev_and_id ddi = { drv, dev, id };
311
312 /*
313 * Execute driver initialization on node where the device is
314 * attached. This way the driver likely allocates its local memory
315 * on the right node.
316 */
317 node = dev_to_node(&dev->dev);
318
319 /*
320 * On NUMA systems, we are likely to call a PF probe function using
321 * work_on_cpu(). If that probe calls pci_enable_sriov() (which
322 * adds the VF devices via pci_bus_add_device()), we may re-enter
323 * this function to call the VF probe function. Calling
324 * work_on_cpu() again will cause a lockdep warning. Since VFs are
325 * always on the same node as the PF, we can work around this by
326 * avoiding work_on_cpu() when we're already on the correct node.
327 *
328 * Preemption is enabled, so it's theoretically unsafe to use
329 * numa_node_id(), but even if we run the probe function on the
330 * wrong node, it should be functionally correct.
331 */
332 if (node >= 0 && node != numa_node_id()) {
333 int cpu;
334
335 get_online_cpus();
336 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
337 if (cpu < nr_cpu_ids)
338 error = work_on_cpu(cpu, local_pci_probe, &ddi);
339 else
340 error = local_pci_probe(&ddi);
341 put_online_cpus();
342 } else
343 error = local_pci_probe(&ddi);
344
345 return error;
346 }
347
348 /**
349 * __pci_device_probe - check if a driver wants to claim a specific PCI device
350 * @drv: driver to call to check if it wants the PCI device
351 * @pci_dev: PCI device being probed
352 *
353 * returns 0 on success, else error.
354 * side-effect: pci_dev->driver is set to drv when drv claims pci_dev.
355 */
356 static int
357 __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev)
358 {
359 const struct pci_device_id *id;
360 int error = 0;
361
362 if (!pci_dev->driver && drv->probe) {
363 error = -ENODEV;
364
365 id = pci_match_device(drv, pci_dev);
366 if (id)
367 error = pci_call_probe(drv, pci_dev, id);
368 if (error >= 0)
369 error = 0;
370 }
371 return error;
372 }
373
374 static int pci_device_probe(struct device * dev)
375 {
376 int error = 0;
377 struct pci_driver *drv;
378 struct pci_dev *pci_dev;
379
380 drv = to_pci_driver(dev->driver);
381 pci_dev = to_pci_dev(dev);
382 pci_dev_get(pci_dev);
383 error = __pci_device_probe(drv, pci_dev);
384 if (error)
385 pci_dev_put(pci_dev);
386
387 return error;
388 }
389
390 static int pci_device_remove(struct device * dev)
391 {
392 struct pci_dev * pci_dev = to_pci_dev(dev);
393 struct pci_driver * drv = pci_dev->driver;
394
395 if (drv) {
396 if (drv->remove) {
397 pm_runtime_get_sync(dev);
398 drv->remove(pci_dev);
399 pm_runtime_put_noidle(dev);
400 }
401 pci_dev->driver = NULL;
402 }
403
404 /* Undo the runtime PM settings in local_pci_probe() */
405 pm_runtime_put_sync(dev);
406
407 /*
408 * If the device is still on, set the power state as "unknown",
409 * since it might change by the next time we load the driver.
410 */
411 if (pci_dev->current_state == PCI_D0)
412 pci_dev->current_state = PCI_UNKNOWN;
413
414 /*
415 * We would love to complain here if pci_dev->is_enabled is set, that
416 * the driver should have called pci_disable_device(), but the
417 * unfortunate fact is there are too many odd BIOS and bridge setups
418 * that don't like drivers doing that all of the time.
419 * Oh well, we can dream of sane hardware when we sleep, no matter how
420 * horrible the crap we have to deal with is when we are awake...
421 */
422
423 pci_dev_put(pci_dev);
424 return 0;
425 }
426
427 static void pci_device_shutdown(struct device *dev)
428 {
429 struct pci_dev *pci_dev = to_pci_dev(dev);
430 struct pci_driver *drv = pci_dev->driver;
431
432 pm_runtime_resume(dev);
433
434 if (drv && drv->shutdown)
435 drv->shutdown(pci_dev);
436 pci_msi_shutdown(pci_dev);
437 pci_msix_shutdown(pci_dev);
438
439 #ifdef CONFIG_KEXEC
440 /*
441 * If this is a kexec reboot, turn off Bus Master bit on the
442 * device to tell it to not continue to do DMA. Don't touch
443 * devices in D3cold or unknown states.
444 * If it is not a kexec reboot, firmware will hit the PCI
445 * devices with big hammer and stop their DMA any way.
446 */
447 if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot))
448 pci_clear_master(pci_dev);
449 #endif
450 }
451
452 #ifdef CONFIG_PM
453
454 /* Auxiliary functions used for system resume and run-time resume. */
455
456 /**
457 * pci_restore_standard_config - restore standard config registers of PCI device
458 * @pci_dev: PCI device to handle
459 */
460 static int pci_restore_standard_config(struct pci_dev *pci_dev)
461 {
462 pci_update_current_state(pci_dev, PCI_UNKNOWN);
463
464 if (pci_dev->current_state != PCI_D0) {
465 int error = pci_set_power_state(pci_dev, PCI_D0);
466 if (error)
467 return error;
468 }
469
470 pci_restore_state(pci_dev);
471 return 0;
472 }
473
474 #endif
475
476 #ifdef CONFIG_PM_SLEEP
477
478 static void pci_pm_default_resume_early(struct pci_dev *pci_dev)
479 {
480 pci_power_up(pci_dev);
481 pci_restore_state(pci_dev);
482 pci_fixup_device(pci_fixup_resume_early, pci_dev);
483 }
484
485 /*
486 * Default "suspend" method for devices that have no driver provided suspend,
487 * or not even a driver at all (second part).
488 */
489 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev)
490 {
491 /*
492 * mark its power state as "unknown", since we don't know if
493 * e.g. the BIOS will change its device state when we suspend.
494 */
495 if (pci_dev->current_state == PCI_D0)
496 pci_dev->current_state = PCI_UNKNOWN;
497 }
498
499 /*
500 * Default "resume" method for devices that have no driver provided resume,
501 * or not even a driver at all (second part).
502 */
503 static int pci_pm_reenable_device(struct pci_dev *pci_dev)
504 {
505 int retval;
506
507 /* if the device was enabled before suspend, reenable */
508 retval = pci_reenable_device(pci_dev);
509 /*
510 * if the device was busmaster before the suspend, make it busmaster
511 * again
512 */
513 if (pci_dev->is_busmaster)
514 pci_set_master(pci_dev);
515
516 return retval;
517 }
518
519 static int pci_legacy_suspend(struct device *dev, pm_message_t state)
520 {
521 struct pci_dev * pci_dev = to_pci_dev(dev);
522 struct pci_driver * drv = pci_dev->driver;
523
524 if (drv && drv->suspend) {
525 pci_power_t prev = pci_dev->current_state;
526 int error;
527
528 error = drv->suspend(pci_dev, state);
529 suspend_report_result(drv->suspend, error);
530 if (error)
531 return error;
532
533 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
534 && pci_dev->current_state != PCI_UNKNOWN) {
535 WARN_ONCE(pci_dev->current_state != prev,
536 "PCI PM: Device state not saved by %pF\n",
537 drv->suspend);
538 }
539 }
540
541 pci_fixup_device(pci_fixup_suspend, pci_dev);
542
543 return 0;
544 }
545
546 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state)
547 {
548 struct pci_dev * pci_dev = to_pci_dev(dev);
549 struct pci_driver * drv = pci_dev->driver;
550
551 if (drv && drv->suspend_late) {
552 pci_power_t prev = pci_dev->current_state;
553 int error;
554
555 error = drv->suspend_late(pci_dev, state);
556 suspend_report_result(drv->suspend_late, error);
557 if (error)
558 return error;
559
560 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
561 && pci_dev->current_state != PCI_UNKNOWN) {
562 WARN_ONCE(pci_dev->current_state != prev,
563 "PCI PM: Device state not saved by %pF\n",
564 drv->suspend_late);
565 return 0;
566 }
567 }
568
569 if (!pci_dev->state_saved)
570 pci_save_state(pci_dev);
571
572 pci_pm_set_unknown_state(pci_dev);
573
574 return 0;
575 }
576
577 static int pci_legacy_resume_early(struct device *dev)
578 {
579 struct pci_dev * pci_dev = to_pci_dev(dev);
580 struct pci_driver * drv = pci_dev->driver;
581
582 return drv && drv->resume_early ?
583 drv->resume_early(pci_dev) : 0;
584 }
585
586 static int pci_legacy_resume(struct device *dev)
587 {
588 struct pci_dev * pci_dev = to_pci_dev(dev);
589 struct pci_driver * drv = pci_dev->driver;
590
591 pci_fixup_device(pci_fixup_resume, pci_dev);
592
593 return drv && drv->resume ?
594 drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev);
595 }
596
597 /* Auxiliary functions used by the new power management framework */
598
599 static void pci_pm_default_resume(struct pci_dev *pci_dev)
600 {
601 pci_fixup_device(pci_fixup_resume, pci_dev);
602
603 if (!pci_is_bridge(pci_dev))
604 pci_enable_wake(pci_dev, PCI_D0, false);
605 }
606
607 static void pci_pm_default_suspend(struct pci_dev *pci_dev)
608 {
609 /* Disable non-bridge devices without PM support */
610 if (!pci_is_bridge(pci_dev))
611 pci_disable_enabled_device(pci_dev);
612 }
613
614 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev)
615 {
616 struct pci_driver *drv = pci_dev->driver;
617 bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume
618 || drv->resume_early);
619
620 /*
621 * Legacy PM support is used by default, so warn if the new framework is
622 * supported as well. Drivers are supposed to support either the
623 * former, or the latter, but not both at the same time.
624 */
625 WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n",
626 drv->name, pci_dev->vendor, pci_dev->device);
627
628 return ret;
629 }
630
631 /* New power management framework */
632
633 static int pci_pm_prepare(struct device *dev)
634 {
635 struct device_driver *drv = dev->driver;
636 int error = 0;
637
638 /*
639 * Devices having power.ignore_children set may still be necessary for
640 * suspending their children in the next phase of device suspend.
641 */
642 if (dev->power.ignore_children)
643 pm_runtime_resume(dev);
644
645 if (drv && drv->pm && drv->pm->prepare)
646 error = drv->pm->prepare(dev);
647
648 return error;
649 }
650
651
652 #else /* !CONFIG_PM_SLEEP */
653
654 #define pci_pm_prepare NULL
655
656 #endif /* !CONFIG_PM_SLEEP */
657
658 #ifdef CONFIG_SUSPEND
659
660 static int pci_pm_suspend(struct device *dev)
661 {
662 struct pci_dev *pci_dev = to_pci_dev(dev);
663 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
664
665 if (pci_has_legacy_pm_support(pci_dev))
666 return pci_legacy_suspend(dev, PMSG_SUSPEND);
667
668 if (!pm) {
669 pci_pm_default_suspend(pci_dev);
670 goto Fixup;
671 }
672
673 /*
674 * PCI devices suspended at run time need to be resumed at this point,
675 * because in general it is necessary to reconfigure them for system
676 * suspend. Namely, if the device is supposed to wake up the system
677 * from the sleep state, we may need to reconfigure it for this purpose.
678 * In turn, if the device is not supposed to wake up the system from the
679 * sleep state, we'll have to prevent it from signaling wake-up.
680 */
681 pm_runtime_resume(dev);
682
683 pci_dev->state_saved = false;
684 if (pm->suspend) {
685 pci_power_t prev = pci_dev->current_state;
686 int error;
687
688 error = pm->suspend(dev);
689 suspend_report_result(pm->suspend, error);
690 if (error)
691 return error;
692
693 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
694 && pci_dev->current_state != PCI_UNKNOWN) {
695 WARN_ONCE(pci_dev->current_state != prev,
696 "PCI PM: State of device not saved by %pF\n",
697 pm->suspend);
698 }
699 }
700
701 Fixup:
702 pci_fixup_device(pci_fixup_suspend, pci_dev);
703
704 return 0;
705 }
706
707 static int pci_pm_suspend_noirq(struct device *dev)
708 {
709 struct pci_dev *pci_dev = to_pci_dev(dev);
710 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
711
712 if (pci_has_legacy_pm_support(pci_dev))
713 return pci_legacy_suspend_late(dev, PMSG_SUSPEND);
714
715 if (!pm) {
716 pci_save_state(pci_dev);
717 return 0;
718 }
719
720 if (pm->suspend_noirq) {
721 pci_power_t prev = pci_dev->current_state;
722 int error;
723
724 error = pm->suspend_noirq(dev);
725 suspend_report_result(pm->suspend_noirq, error);
726 if (error)
727 return error;
728
729 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
730 && pci_dev->current_state != PCI_UNKNOWN) {
731 WARN_ONCE(pci_dev->current_state != prev,
732 "PCI PM: State of device not saved by %pF\n",
733 pm->suspend_noirq);
734 return 0;
735 }
736 }
737
738 if (!pci_dev->state_saved) {
739 pci_save_state(pci_dev);
740 if (!pci_is_bridge(pci_dev))
741 pci_prepare_to_sleep(pci_dev);
742 }
743
744 pci_pm_set_unknown_state(pci_dev);
745
746 /*
747 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's
748 * PCI COMMAND register isn't 0, the BIOS assumes that the controller
749 * hasn't been quiesced and tries to turn it off. If the controller
750 * is already in D3, this can hang or cause memory corruption.
751 *
752 * Since the value of the COMMAND register doesn't matter once the
753 * device has been suspended, we can safely set it to 0 here.
754 */
755 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
756 pci_write_config_word(pci_dev, PCI_COMMAND, 0);
757
758 return 0;
759 }
760
761 static int pci_pm_resume_noirq(struct device *dev)
762 {
763 struct pci_dev *pci_dev = to_pci_dev(dev);
764 struct device_driver *drv = dev->driver;
765 int error = 0;
766
767 pci_pm_default_resume_early(pci_dev);
768
769 if (pci_has_legacy_pm_support(pci_dev))
770 return pci_legacy_resume_early(dev);
771
772 if (drv && drv->pm && drv->pm->resume_noirq)
773 error = drv->pm->resume_noirq(dev);
774
775 return error;
776 }
777
778 static int pci_pm_resume(struct device *dev)
779 {
780 struct pci_dev *pci_dev = to_pci_dev(dev);
781 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
782 int error = 0;
783
784 /*
785 * This is necessary for the suspend error path in which resume is
786 * called without restoring the standard config registers of the device.
787 */
788 if (pci_dev->state_saved)
789 pci_restore_standard_config(pci_dev);
790
791 if (pci_has_legacy_pm_support(pci_dev))
792 return pci_legacy_resume(dev);
793
794 pci_pm_default_resume(pci_dev);
795
796 if (pm) {
797 if (pm->resume)
798 error = pm->resume(dev);
799 } else {
800 pci_pm_reenable_device(pci_dev);
801 }
802
803 return error;
804 }
805
806 #else /* !CONFIG_SUSPEND */
807
808 #define pci_pm_suspend NULL
809 #define pci_pm_suspend_noirq NULL
810 #define pci_pm_resume NULL
811 #define pci_pm_resume_noirq NULL
812
813 #endif /* !CONFIG_SUSPEND */
814
815 #ifdef CONFIG_HIBERNATE_CALLBACKS
816
817
818 /*
819 * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing
820 * a hibernate transition
821 */
822 struct dev_pm_ops __weak pcibios_pm_ops;
823
824 static int pci_pm_freeze(struct device *dev)
825 {
826 struct pci_dev *pci_dev = to_pci_dev(dev);
827 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
828
829 if (pci_has_legacy_pm_support(pci_dev))
830 return pci_legacy_suspend(dev, PMSG_FREEZE);
831
832 if (!pm) {
833 pci_pm_default_suspend(pci_dev);
834 return 0;
835 }
836
837 /*
838 * This used to be done in pci_pm_prepare() for all devices and some
839 * drivers may depend on it, so do it here. Ideally, runtime-suspended
840 * devices should not be touched during freeze/thaw transitions,
841 * however.
842 */
843 pm_runtime_resume(dev);
844
845 pci_dev->state_saved = false;
846 if (pm->freeze) {
847 int error;
848
849 error = pm->freeze(dev);
850 suspend_report_result(pm->freeze, error);
851 if (error)
852 return error;
853 }
854
855 if (pcibios_pm_ops.freeze)
856 return pcibios_pm_ops.freeze(dev);
857
858 return 0;
859 }
860
861 static int pci_pm_freeze_noirq(struct device *dev)
862 {
863 struct pci_dev *pci_dev = to_pci_dev(dev);
864 struct device_driver *drv = dev->driver;
865
866 if (pci_has_legacy_pm_support(pci_dev))
867 return pci_legacy_suspend_late(dev, PMSG_FREEZE);
868
869 if (drv && drv->pm && drv->pm->freeze_noirq) {
870 int error;
871
872 error = drv->pm->freeze_noirq(dev);
873 suspend_report_result(drv->pm->freeze_noirq, error);
874 if (error)
875 return error;
876 }
877
878 if (!pci_dev->state_saved)
879 pci_save_state(pci_dev);
880
881 pci_pm_set_unknown_state(pci_dev);
882
883 if (pcibios_pm_ops.freeze_noirq)
884 return pcibios_pm_ops.freeze_noirq(dev);
885
886 return 0;
887 }
888
889 static int pci_pm_thaw_noirq(struct device *dev)
890 {
891 struct pci_dev *pci_dev = to_pci_dev(dev);
892 struct device_driver *drv = dev->driver;
893 int error = 0;
894
895 if (pcibios_pm_ops.thaw_noirq) {
896 error = pcibios_pm_ops.thaw_noirq(dev);
897 if (error)
898 return error;
899 }
900
901 if (pci_has_legacy_pm_support(pci_dev))
902 return pci_legacy_resume_early(dev);
903
904 pci_update_current_state(pci_dev, PCI_D0);
905
906 if (drv && drv->pm && drv->pm->thaw_noirq)
907 error = drv->pm->thaw_noirq(dev);
908
909 return error;
910 }
911
912 static int pci_pm_thaw(struct device *dev)
913 {
914 struct pci_dev *pci_dev = to_pci_dev(dev);
915 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
916 int error = 0;
917
918 if (pcibios_pm_ops.thaw) {
919 error = pcibios_pm_ops.thaw(dev);
920 if (error)
921 return error;
922 }
923
924 if (pci_has_legacy_pm_support(pci_dev))
925 return pci_legacy_resume(dev);
926
927 if (pm) {
928 if (pm->thaw)
929 error = pm->thaw(dev);
930 } else {
931 pci_pm_reenable_device(pci_dev);
932 }
933
934 pci_dev->state_saved = false;
935
936 return error;
937 }
938
939 static int pci_pm_poweroff(struct device *dev)
940 {
941 struct pci_dev *pci_dev = to_pci_dev(dev);
942 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
943
944 if (pci_has_legacy_pm_support(pci_dev))
945 return pci_legacy_suspend(dev, PMSG_HIBERNATE);
946
947 if (!pm) {
948 pci_pm_default_suspend(pci_dev);
949 goto Fixup;
950 }
951
952 /* The reason to do that is the same as in pci_pm_suspend(). */
953 pm_runtime_resume(dev);
954
955 pci_dev->state_saved = false;
956 if (pm->poweroff) {
957 int error;
958
959 error = pm->poweroff(dev);
960 suspend_report_result(pm->poweroff, error);
961 if (error)
962 return error;
963 }
964
965 Fixup:
966 pci_fixup_device(pci_fixup_suspend, pci_dev);
967
968 if (pcibios_pm_ops.poweroff)
969 return pcibios_pm_ops.poweroff(dev);
970
971 return 0;
972 }
973
974 static int pci_pm_poweroff_noirq(struct device *dev)
975 {
976 struct pci_dev *pci_dev = to_pci_dev(dev);
977 struct device_driver *drv = dev->driver;
978
979 if (pci_has_legacy_pm_support(to_pci_dev(dev)))
980 return pci_legacy_suspend_late(dev, PMSG_HIBERNATE);
981
982 if (!drv || !drv->pm)
983 return 0;
984
985 if (drv->pm->poweroff_noirq) {
986 int error;
987
988 error = drv->pm->poweroff_noirq(dev);
989 suspend_report_result(drv->pm->poweroff_noirq, error);
990 if (error)
991 return error;
992 }
993
994 if (!pci_dev->state_saved && !pci_is_bridge(pci_dev))
995 pci_prepare_to_sleep(pci_dev);
996
997 /*
998 * The reason for doing this here is the same as for the analogous code
999 * in pci_pm_suspend_noirq().
1000 */
1001 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1002 pci_write_config_word(pci_dev, PCI_COMMAND, 0);
1003
1004 if (pcibios_pm_ops.poweroff_noirq)
1005 return pcibios_pm_ops.poweroff_noirq(dev);
1006
1007 return 0;
1008 }
1009
1010 static int pci_pm_restore_noirq(struct device *dev)
1011 {
1012 struct pci_dev *pci_dev = to_pci_dev(dev);
1013 struct device_driver *drv = dev->driver;
1014 int error = 0;
1015
1016 if (pcibios_pm_ops.restore_noirq) {
1017 error = pcibios_pm_ops.restore_noirq(dev);
1018 if (error)
1019 return error;
1020 }
1021
1022 pci_pm_default_resume_early(pci_dev);
1023
1024 if (pci_has_legacy_pm_support(pci_dev))
1025 return pci_legacy_resume_early(dev);
1026
1027 if (drv && drv->pm && drv->pm->restore_noirq)
1028 error = drv->pm->restore_noirq(dev);
1029
1030 return error;
1031 }
1032
1033 static int pci_pm_restore(struct device *dev)
1034 {
1035 struct pci_dev *pci_dev = to_pci_dev(dev);
1036 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1037 int error = 0;
1038
1039 if (pcibios_pm_ops.restore) {
1040 error = pcibios_pm_ops.restore(dev);
1041 if (error)
1042 return error;
1043 }
1044
1045 /*
1046 * This is necessary for the hibernation error path in which restore is
1047 * called without restoring the standard config registers of the device.
1048 */
1049 if (pci_dev->state_saved)
1050 pci_restore_standard_config(pci_dev);
1051
1052 if (pci_has_legacy_pm_support(pci_dev))
1053 return pci_legacy_resume(dev);
1054
1055 pci_pm_default_resume(pci_dev);
1056
1057 if (pm) {
1058 if (pm->restore)
1059 error = pm->restore(dev);
1060 } else {
1061 pci_pm_reenable_device(pci_dev);
1062 }
1063
1064 return error;
1065 }
1066
1067 #else /* !CONFIG_HIBERNATE_CALLBACKS */
1068
1069 #define pci_pm_freeze NULL
1070 #define pci_pm_freeze_noirq NULL
1071 #define pci_pm_thaw NULL
1072 #define pci_pm_thaw_noirq NULL
1073 #define pci_pm_poweroff NULL
1074 #define pci_pm_poweroff_noirq NULL
1075 #define pci_pm_restore NULL
1076 #define pci_pm_restore_noirq NULL
1077
1078 #endif /* !CONFIG_HIBERNATE_CALLBACKS */
1079
1080 #ifdef CONFIG_PM_RUNTIME
1081
1082 static int pci_pm_runtime_suspend(struct device *dev)
1083 {
1084 struct pci_dev *pci_dev = to_pci_dev(dev);
1085 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1086 pci_power_t prev = pci_dev->current_state;
1087 int error;
1088
1089 /*
1090 * If pci_dev->driver is not set (unbound), the device should
1091 * always remain in D0 regardless of the runtime PM status
1092 */
1093 if (!pci_dev->driver)
1094 return 0;
1095
1096 if (!pm || !pm->runtime_suspend)
1097 return -ENOSYS;
1098
1099 pci_dev->state_saved = false;
1100 pci_dev->no_d3cold = false;
1101 error = pm->runtime_suspend(dev);
1102 suspend_report_result(pm->runtime_suspend, error);
1103 if (error)
1104 return error;
1105 if (!pci_dev->d3cold_allowed)
1106 pci_dev->no_d3cold = true;
1107
1108 pci_fixup_device(pci_fixup_suspend, pci_dev);
1109
1110 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
1111 && pci_dev->current_state != PCI_UNKNOWN) {
1112 WARN_ONCE(pci_dev->current_state != prev,
1113 "PCI PM: State of device not saved by %pF\n",
1114 pm->runtime_suspend);
1115 return 0;
1116 }
1117
1118 if (!pci_dev->state_saved) {
1119 pci_save_state(pci_dev);
1120 pci_finish_runtime_suspend(pci_dev);
1121 }
1122
1123 return 0;
1124 }
1125
1126 static int pci_pm_runtime_resume(struct device *dev)
1127 {
1128 int rc;
1129 struct pci_dev *pci_dev = to_pci_dev(dev);
1130 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1131
1132 /*
1133 * If pci_dev->driver is not set (unbound), the device should
1134 * always remain in D0 regardless of the runtime PM status
1135 */
1136 if (!pci_dev->driver)
1137 return 0;
1138
1139 if (!pm || !pm->runtime_resume)
1140 return -ENOSYS;
1141
1142 pci_restore_standard_config(pci_dev);
1143 pci_fixup_device(pci_fixup_resume_early, pci_dev);
1144 __pci_enable_wake(pci_dev, PCI_D0, true, false);
1145 pci_fixup_device(pci_fixup_resume, pci_dev);
1146
1147 rc = pm->runtime_resume(dev);
1148
1149 pci_dev->runtime_d3cold = false;
1150
1151 return rc;
1152 }
1153
1154 static int pci_pm_runtime_idle(struct device *dev)
1155 {
1156 struct pci_dev *pci_dev = to_pci_dev(dev);
1157 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1158 int ret = 0;
1159
1160 /*
1161 * If pci_dev->driver is not set (unbound), the device should
1162 * always remain in D0 regardless of the runtime PM status
1163 */
1164 if (!pci_dev->driver)
1165 return 0;
1166
1167 if (!pm)
1168 return -ENOSYS;
1169
1170 if (pm->runtime_idle)
1171 ret = pm->runtime_idle(dev);
1172
1173 return ret;
1174 }
1175
1176 #else /* !CONFIG_PM_RUNTIME */
1177
1178 #define pci_pm_runtime_suspend NULL
1179 #define pci_pm_runtime_resume NULL
1180 #define pci_pm_runtime_idle NULL
1181
1182 #endif /* !CONFIG_PM_RUNTIME */
1183
1184 #ifdef CONFIG_PM
1185
1186 static const struct dev_pm_ops pci_dev_pm_ops = {
1187 .prepare = pci_pm_prepare,
1188 .suspend = pci_pm_suspend,
1189 .resume = pci_pm_resume,
1190 .freeze = pci_pm_freeze,
1191 .thaw = pci_pm_thaw,
1192 .poweroff = pci_pm_poweroff,
1193 .restore = pci_pm_restore,
1194 .suspend_noirq = pci_pm_suspend_noirq,
1195 .resume_noirq = pci_pm_resume_noirq,
1196 .freeze_noirq = pci_pm_freeze_noirq,
1197 .thaw_noirq = pci_pm_thaw_noirq,
1198 .poweroff_noirq = pci_pm_poweroff_noirq,
1199 .restore_noirq = pci_pm_restore_noirq,
1200 .runtime_suspend = pci_pm_runtime_suspend,
1201 .runtime_resume = pci_pm_runtime_resume,
1202 .runtime_idle = pci_pm_runtime_idle,
1203 };
1204
1205 #define PCI_PM_OPS_PTR (&pci_dev_pm_ops)
1206
1207 #else /* !COMFIG_PM_OPS */
1208
1209 #define PCI_PM_OPS_PTR NULL
1210
1211 #endif /* !COMFIG_PM_OPS */
1212
1213 /**
1214 * __pci_register_driver - register a new pci driver
1215 * @drv: the driver structure to register
1216 * @owner: owner module of drv
1217 * @mod_name: module name string
1218 *
1219 * Adds the driver structure to the list of registered drivers.
1220 * Returns a negative value on error, otherwise 0.
1221 * If no error occurred, the driver remains registered even if
1222 * no device was claimed during registration.
1223 */
1224 int __pci_register_driver(struct pci_driver *drv, struct module *owner,
1225 const char *mod_name)
1226 {
1227 /* initialize common driver fields */
1228 drv->driver.name = drv->name;
1229 drv->driver.bus = &pci_bus_type;
1230 drv->driver.owner = owner;
1231 drv->driver.mod_name = mod_name;
1232
1233 spin_lock_init(&drv->dynids.lock);
1234 INIT_LIST_HEAD(&drv->dynids.list);
1235
1236 /* register with core */
1237 return driver_register(&drv->driver);
1238 }
1239
1240 /**
1241 * pci_unregister_driver - unregister a pci driver
1242 * @drv: the driver structure to unregister
1243 *
1244 * Deletes the driver structure from the list of registered PCI drivers,
1245 * gives it a chance to clean up by calling its remove() function for
1246 * each device it was responsible for, and marks those devices as
1247 * driverless.
1248 */
1249
1250 void
1251 pci_unregister_driver(struct pci_driver *drv)
1252 {
1253 driver_unregister(&drv->driver);
1254 pci_free_dynids(drv);
1255 }
1256
1257 static struct pci_driver pci_compat_driver = {
1258 .name = "compat"
1259 };
1260
1261 /**
1262 * pci_dev_driver - get the pci_driver of a device
1263 * @dev: the device to query
1264 *
1265 * Returns the appropriate pci_driver structure or %NULL if there is no
1266 * registered driver for the device.
1267 */
1268 struct pci_driver *
1269 pci_dev_driver(const struct pci_dev *dev)
1270 {
1271 if (dev->driver)
1272 return dev->driver;
1273 else {
1274 int i;
1275 for(i=0; i<=PCI_ROM_RESOURCE; i++)
1276 if (dev->resource[i].flags & IORESOURCE_BUSY)
1277 return &pci_compat_driver;
1278 }
1279 return NULL;
1280 }
1281
1282 /**
1283 * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure
1284 * @dev: the PCI device structure to match against
1285 * @drv: the device driver to search for matching PCI device id structures
1286 *
1287 * Used by a driver to check whether a PCI device present in the
1288 * system is in its list of supported devices. Returns the matching
1289 * pci_device_id structure or %NULL if there is no match.
1290 */
1291 static int pci_bus_match(struct device *dev, struct device_driver *drv)
1292 {
1293 struct pci_dev *pci_dev = to_pci_dev(dev);
1294 struct pci_driver *pci_drv;
1295 const struct pci_device_id *found_id;
1296
1297 if (!pci_dev->match_driver)
1298 return 0;
1299
1300 pci_drv = to_pci_driver(drv);
1301 found_id = pci_match_device(pci_drv, pci_dev);
1302 if (found_id)
1303 return 1;
1304
1305 return 0;
1306 }
1307
1308 /**
1309 * pci_dev_get - increments the reference count of the pci device structure
1310 * @dev: the device being referenced
1311 *
1312 * Each live reference to a device should be refcounted.
1313 *
1314 * Drivers for PCI devices should normally record such references in
1315 * their probe() methods, when they bind to a device, and release
1316 * them by calling pci_dev_put(), in their disconnect() methods.
1317 *
1318 * A pointer to the device with the incremented reference counter is returned.
1319 */
1320 struct pci_dev *pci_dev_get(struct pci_dev *dev)
1321 {
1322 if (dev)
1323 get_device(&dev->dev);
1324 return dev;
1325 }
1326
1327 /**
1328 * pci_dev_put - release a use of the pci device structure
1329 * @dev: device that's been disconnected
1330 *
1331 * Must be called when a user of a device is finished with it. When the last
1332 * user of the device calls this function, the memory of the device is freed.
1333 */
1334 void pci_dev_put(struct pci_dev *dev)
1335 {
1336 if (dev)
1337 put_device(&dev->dev);
1338 }
1339
1340 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env)
1341 {
1342 struct pci_dev *pdev;
1343
1344 if (!dev)
1345 return -ENODEV;
1346
1347 pdev = to_pci_dev(dev);
1348
1349 if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class))
1350 return -ENOMEM;
1351
1352 if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device))
1353 return -ENOMEM;
1354
1355 if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor,
1356 pdev->subsystem_device))
1357 return -ENOMEM;
1358
1359 if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev)))
1360 return -ENOMEM;
1361
1362 if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02x",
1363 pdev->vendor, pdev->device,
1364 pdev->subsystem_vendor, pdev->subsystem_device,
1365 (u8)(pdev->class >> 16), (u8)(pdev->class >> 8),
1366 (u8)(pdev->class)))
1367 return -ENOMEM;
1368
1369 return 0;
1370 }
1371
1372 struct bus_type pci_bus_type = {
1373 .name = "pci",
1374 .match = pci_bus_match,
1375 .uevent = pci_uevent,
1376 .probe = pci_device_probe,
1377 .remove = pci_device_remove,
1378 .shutdown = pci_device_shutdown,
1379 .dev_groups = pci_dev_groups,
1380 .bus_groups = pci_bus_groups,
1381 .drv_groups = pci_drv_groups,
1382 .pm = PCI_PM_OPS_PTR,
1383 };
1384
1385 static int __init pci_driver_init(void)
1386 {
1387 return bus_register(&pci_bus_type);
1388 }
1389
1390 postcore_initcall(pci_driver_init);
1391
1392 EXPORT_SYMBOL_GPL(pci_add_dynid);
1393 EXPORT_SYMBOL(pci_match_id);
1394 EXPORT_SYMBOL(__pci_register_driver);
1395 EXPORT_SYMBOL(pci_unregister_driver);
1396 EXPORT_SYMBOL(pci_dev_driver);
1397 EXPORT_SYMBOL(pci_bus_type);
1398 EXPORT_SYMBOL(pci_dev_get);
1399 EXPORT_SYMBOL(pci_dev_put);