]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/pci/pci-driver.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[mirror_ubuntu-artful-kernel.git] / drivers / pci / pci-driver.c
1 /*
2 * drivers/pci/pci-driver.c
3 *
4 * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com>
5 * (C) Copyright 2007 Novell Inc.
6 *
7 * Released under the GPL v2 only.
8 *
9 */
10
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/device.h>
15 #include <linux/mempolicy.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/cpu.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/suspend.h>
22 #include <linux/kexec.h>
23 #include "pci.h"
24
25 struct pci_dynid {
26 struct list_head node;
27 struct pci_device_id id;
28 };
29
30 /**
31 * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices
32 * @drv: target pci driver
33 * @vendor: PCI vendor ID
34 * @device: PCI device ID
35 * @subvendor: PCI subvendor ID
36 * @subdevice: PCI subdevice ID
37 * @class: PCI class
38 * @class_mask: PCI class mask
39 * @driver_data: private driver data
40 *
41 * Adds a new dynamic pci device ID to this driver and causes the
42 * driver to probe for all devices again. @drv must have been
43 * registered prior to calling this function.
44 *
45 * CONTEXT:
46 * Does GFP_KERNEL allocation.
47 *
48 * RETURNS:
49 * 0 on success, -errno on failure.
50 */
51 int pci_add_dynid(struct pci_driver *drv,
52 unsigned int vendor, unsigned int device,
53 unsigned int subvendor, unsigned int subdevice,
54 unsigned int class, unsigned int class_mask,
55 unsigned long driver_data)
56 {
57 struct pci_dynid *dynid;
58
59 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
60 if (!dynid)
61 return -ENOMEM;
62
63 dynid->id.vendor = vendor;
64 dynid->id.device = device;
65 dynid->id.subvendor = subvendor;
66 dynid->id.subdevice = subdevice;
67 dynid->id.class = class;
68 dynid->id.class_mask = class_mask;
69 dynid->id.driver_data = driver_data;
70
71 spin_lock(&drv->dynids.lock);
72 list_add_tail(&dynid->node, &drv->dynids.list);
73 spin_unlock(&drv->dynids.lock);
74
75 return driver_attach(&drv->driver);
76 }
77 EXPORT_SYMBOL_GPL(pci_add_dynid);
78
79 static void pci_free_dynids(struct pci_driver *drv)
80 {
81 struct pci_dynid *dynid, *n;
82
83 spin_lock(&drv->dynids.lock);
84 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
85 list_del(&dynid->node);
86 kfree(dynid);
87 }
88 spin_unlock(&drv->dynids.lock);
89 }
90
91 /**
92 * store_new_id - sysfs frontend to pci_add_dynid()
93 * @driver: target device driver
94 * @buf: buffer for scanning device ID data
95 * @count: input size
96 *
97 * Allow PCI IDs to be added to an existing driver via sysfs.
98 */
99 static ssize_t store_new_id(struct device_driver *driver, const char *buf,
100 size_t count)
101 {
102 struct pci_driver *pdrv = to_pci_driver(driver);
103 const struct pci_device_id *ids = pdrv->id_table;
104 __u32 vendor, device, subvendor = PCI_ANY_ID,
105 subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
106 unsigned long driver_data = 0;
107 int fields = 0;
108 int retval = 0;
109
110 fields = sscanf(buf, "%x %x %x %x %x %x %lx",
111 &vendor, &device, &subvendor, &subdevice,
112 &class, &class_mask, &driver_data);
113 if (fields < 2)
114 return -EINVAL;
115
116 if (fields != 7) {
117 struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
118 if (!pdev)
119 return -ENOMEM;
120
121 pdev->vendor = vendor;
122 pdev->device = device;
123 pdev->subsystem_vendor = subvendor;
124 pdev->subsystem_device = subdevice;
125 pdev->class = class;
126
127 if (pci_match_id(pdrv->id_table, pdev))
128 retval = -EEXIST;
129
130 kfree(pdev);
131
132 if (retval)
133 return retval;
134 }
135
136 /* Only accept driver_data values that match an existing id_table
137 entry */
138 if (ids) {
139 retval = -EINVAL;
140 while (ids->vendor || ids->subvendor || ids->class_mask) {
141 if (driver_data == ids->driver_data) {
142 retval = 0;
143 break;
144 }
145 ids++;
146 }
147 if (retval) /* No match */
148 return retval;
149 }
150
151 retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice,
152 class, class_mask, driver_data);
153 if (retval)
154 return retval;
155 return count;
156 }
157 static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
158
159 /**
160 * store_remove_id - remove a PCI device ID from this driver
161 * @driver: target device driver
162 * @buf: buffer for scanning device ID data
163 * @count: input size
164 *
165 * Removes a dynamic pci device ID to this driver.
166 */
167 static ssize_t store_remove_id(struct device_driver *driver, const char *buf,
168 size_t count)
169 {
170 struct pci_dynid *dynid, *n;
171 struct pci_driver *pdrv = to_pci_driver(driver);
172 __u32 vendor, device, subvendor = PCI_ANY_ID,
173 subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
174 int fields = 0;
175 size_t retval = -ENODEV;
176
177 fields = sscanf(buf, "%x %x %x %x %x %x",
178 &vendor, &device, &subvendor, &subdevice,
179 &class, &class_mask);
180 if (fields < 2)
181 return -EINVAL;
182
183 spin_lock(&pdrv->dynids.lock);
184 list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) {
185 struct pci_device_id *id = &dynid->id;
186 if ((id->vendor == vendor) &&
187 (id->device == device) &&
188 (subvendor == PCI_ANY_ID || id->subvendor == subvendor) &&
189 (subdevice == PCI_ANY_ID || id->subdevice == subdevice) &&
190 !((id->class ^ class) & class_mask)) {
191 list_del(&dynid->node);
192 kfree(dynid);
193 retval = count;
194 break;
195 }
196 }
197 spin_unlock(&pdrv->dynids.lock);
198
199 return retval;
200 }
201 static DRIVER_ATTR(remove_id, S_IWUSR, NULL, store_remove_id);
202
203 static struct attribute *pci_drv_attrs[] = {
204 &driver_attr_new_id.attr,
205 &driver_attr_remove_id.attr,
206 NULL,
207 };
208 ATTRIBUTE_GROUPS(pci_drv);
209
210 /**
211 * pci_match_id - See if a pci device matches a given pci_id table
212 * @ids: array of PCI device id structures to search in
213 * @dev: the PCI device structure to match against.
214 *
215 * Used by a driver to check whether a PCI device present in the
216 * system is in its list of supported devices. Returns the matching
217 * pci_device_id structure or %NULL if there is no match.
218 *
219 * Deprecated, don't use this as it will not catch any dynamic ids
220 * that a driver might want to check for.
221 */
222 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids,
223 struct pci_dev *dev)
224 {
225 if (ids) {
226 while (ids->vendor || ids->subvendor || ids->class_mask) {
227 if (pci_match_one_device(ids, dev))
228 return ids;
229 ids++;
230 }
231 }
232 return NULL;
233 }
234 EXPORT_SYMBOL(pci_match_id);
235
236 static const struct pci_device_id pci_device_id_any = {
237 .vendor = PCI_ANY_ID,
238 .device = PCI_ANY_ID,
239 .subvendor = PCI_ANY_ID,
240 .subdevice = PCI_ANY_ID,
241 };
242
243 /**
244 * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure
245 * @drv: the PCI driver to match against
246 * @dev: the PCI device structure to match against
247 *
248 * Used by a driver to check whether a PCI device present in the
249 * system is in its list of supported devices. Returns the matching
250 * pci_device_id structure or %NULL if there is no match.
251 */
252 static const struct pci_device_id *pci_match_device(struct pci_driver *drv,
253 struct pci_dev *dev)
254 {
255 struct pci_dynid *dynid;
256 const struct pci_device_id *found_id = NULL;
257
258 /* When driver_override is set, only bind to the matching driver */
259 if (dev->driver_override && strcmp(dev->driver_override, drv->name))
260 return NULL;
261
262 /* Look at the dynamic ids first, before the static ones */
263 spin_lock(&drv->dynids.lock);
264 list_for_each_entry(dynid, &drv->dynids.list, node) {
265 if (pci_match_one_device(&dynid->id, dev)) {
266 found_id = &dynid->id;
267 break;
268 }
269 }
270 spin_unlock(&drv->dynids.lock);
271
272 if (!found_id)
273 found_id = pci_match_id(drv->id_table, dev);
274
275 /* driver_override will always match, send a dummy id */
276 if (!found_id && dev->driver_override)
277 found_id = &pci_device_id_any;
278
279 return found_id;
280 }
281
282 struct drv_dev_and_id {
283 struct pci_driver *drv;
284 struct pci_dev *dev;
285 const struct pci_device_id *id;
286 };
287
288 static long local_pci_probe(void *_ddi)
289 {
290 struct drv_dev_and_id *ddi = _ddi;
291 struct pci_dev *pci_dev = ddi->dev;
292 struct pci_driver *pci_drv = ddi->drv;
293 struct device *dev = &pci_dev->dev;
294 int rc;
295
296 /*
297 * Unbound PCI devices are always put in D0, regardless of
298 * runtime PM status. During probe, the device is set to
299 * active and the usage count is incremented. If the driver
300 * supports runtime PM, it should call pm_runtime_put_noidle(),
301 * or any other runtime PM helper function decrementing the usage
302 * count, in its probe routine and pm_runtime_get_noresume() in
303 * its remove routine.
304 */
305 pm_runtime_get_sync(dev);
306 pci_dev->driver = pci_drv;
307 rc = pci_drv->probe(pci_dev, ddi->id);
308 if (!rc)
309 return rc;
310 if (rc < 0) {
311 pci_dev->driver = NULL;
312 pm_runtime_put_sync(dev);
313 return rc;
314 }
315 /*
316 * Probe function should return < 0 for failure, 0 for success
317 * Treat values > 0 as success, but warn.
318 */
319 dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc);
320 return 0;
321 }
322
323 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev,
324 const struct pci_device_id *id)
325 {
326 int error, node;
327 struct drv_dev_and_id ddi = { drv, dev, id };
328
329 /*
330 * Execute driver initialization on node where the device is
331 * attached. This way the driver likely allocates its local memory
332 * on the right node.
333 */
334 node = dev_to_node(&dev->dev);
335
336 /*
337 * On NUMA systems, we are likely to call a PF probe function using
338 * work_on_cpu(). If that probe calls pci_enable_sriov() (which
339 * adds the VF devices via pci_bus_add_device()), we may re-enter
340 * this function to call the VF probe function. Calling
341 * work_on_cpu() again will cause a lockdep warning. Since VFs are
342 * always on the same node as the PF, we can work around this by
343 * avoiding work_on_cpu() when we're already on the correct node.
344 *
345 * Preemption is enabled, so it's theoretically unsafe to use
346 * numa_node_id(), but even if we run the probe function on the
347 * wrong node, it should be functionally correct.
348 */
349 if (node >= 0 && node != numa_node_id()) {
350 int cpu;
351
352 get_online_cpus();
353 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
354 if (cpu < nr_cpu_ids)
355 error = work_on_cpu(cpu, local_pci_probe, &ddi);
356 else
357 error = local_pci_probe(&ddi);
358 put_online_cpus();
359 } else
360 error = local_pci_probe(&ddi);
361
362 return error;
363 }
364
365 /**
366 * __pci_device_probe - check if a driver wants to claim a specific PCI device
367 * @drv: driver to call to check if it wants the PCI device
368 * @pci_dev: PCI device being probed
369 *
370 * returns 0 on success, else error.
371 * side-effect: pci_dev->driver is set to drv when drv claims pci_dev.
372 */
373 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev)
374 {
375 const struct pci_device_id *id;
376 int error = 0;
377
378 if (!pci_dev->driver && drv->probe) {
379 error = -ENODEV;
380
381 id = pci_match_device(drv, pci_dev);
382 if (id)
383 error = pci_call_probe(drv, pci_dev, id);
384 }
385 return error;
386 }
387
388 int __weak pcibios_alloc_irq(struct pci_dev *dev)
389 {
390 return 0;
391 }
392
393 void __weak pcibios_free_irq(struct pci_dev *dev)
394 {
395 }
396
397 #ifdef CONFIG_PCI_IOV
398 static inline bool pci_device_can_probe(struct pci_dev *pdev)
399 {
400 return (!pdev->is_virtfn || pdev->physfn->sriov->drivers_autoprobe);
401 }
402 #else
403 static inline bool pci_device_can_probe(struct pci_dev *pdev)
404 {
405 return true;
406 }
407 #endif
408
409 static int pci_device_probe(struct device *dev)
410 {
411 int error;
412 struct pci_dev *pci_dev = to_pci_dev(dev);
413 struct pci_driver *drv = to_pci_driver(dev->driver);
414
415 error = pcibios_alloc_irq(pci_dev);
416 if (error < 0)
417 return error;
418
419 pci_dev_get(pci_dev);
420 if (pci_device_can_probe(pci_dev)) {
421 error = __pci_device_probe(drv, pci_dev);
422 if (error) {
423 pcibios_free_irq(pci_dev);
424 pci_dev_put(pci_dev);
425 }
426 }
427
428 return error;
429 }
430
431 static int pci_device_remove(struct device *dev)
432 {
433 struct pci_dev *pci_dev = to_pci_dev(dev);
434 struct pci_driver *drv = pci_dev->driver;
435
436 if (drv) {
437 if (drv->remove) {
438 pm_runtime_get_sync(dev);
439 drv->remove(pci_dev);
440 pm_runtime_put_noidle(dev);
441 }
442 pcibios_free_irq(pci_dev);
443 pci_dev->driver = NULL;
444 }
445
446 /* Undo the runtime PM settings in local_pci_probe() */
447 pm_runtime_put_sync(dev);
448
449 /*
450 * If the device is still on, set the power state as "unknown",
451 * since it might change by the next time we load the driver.
452 */
453 if (pci_dev->current_state == PCI_D0)
454 pci_dev->current_state = PCI_UNKNOWN;
455
456 /*
457 * We would love to complain here if pci_dev->is_enabled is set, that
458 * the driver should have called pci_disable_device(), but the
459 * unfortunate fact is there are too many odd BIOS and bridge setups
460 * that don't like drivers doing that all of the time.
461 * Oh well, we can dream of sane hardware when we sleep, no matter how
462 * horrible the crap we have to deal with is when we are awake...
463 */
464
465 pci_dev_put(pci_dev);
466 return 0;
467 }
468
469 static void pci_device_shutdown(struct device *dev)
470 {
471 struct pci_dev *pci_dev = to_pci_dev(dev);
472 struct pci_driver *drv = pci_dev->driver;
473
474 pm_runtime_resume(dev);
475
476 if (drv && drv->shutdown)
477 drv->shutdown(pci_dev);
478
479 /*
480 * If this is a kexec reboot, turn off Bus Master bit on the
481 * device to tell it to not continue to do DMA. Don't touch
482 * devices in D3cold or unknown states.
483 * If it is not a kexec reboot, firmware will hit the PCI
484 * devices with big hammer and stop their DMA any way.
485 */
486 if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot))
487 pci_clear_master(pci_dev);
488 }
489
490 #ifdef CONFIG_PM
491
492 /* Auxiliary functions used for system resume and run-time resume. */
493
494 /**
495 * pci_restore_standard_config - restore standard config registers of PCI device
496 * @pci_dev: PCI device to handle
497 */
498 static int pci_restore_standard_config(struct pci_dev *pci_dev)
499 {
500 pci_update_current_state(pci_dev, PCI_UNKNOWN);
501
502 if (pci_dev->current_state != PCI_D0) {
503 int error = pci_set_power_state(pci_dev, PCI_D0);
504 if (error)
505 return error;
506 }
507
508 pci_restore_state(pci_dev);
509 return 0;
510 }
511
512 #endif
513
514 #ifdef CONFIG_PM_SLEEP
515
516 static void pci_pm_default_resume_early(struct pci_dev *pci_dev)
517 {
518 pci_power_up(pci_dev);
519 pci_restore_state(pci_dev);
520 pci_fixup_device(pci_fixup_resume_early, pci_dev);
521 }
522
523 /*
524 * Default "suspend" method for devices that have no driver provided suspend,
525 * or not even a driver at all (second part).
526 */
527 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev)
528 {
529 /*
530 * mark its power state as "unknown", since we don't know if
531 * e.g. the BIOS will change its device state when we suspend.
532 */
533 if (pci_dev->current_state == PCI_D0)
534 pci_dev->current_state = PCI_UNKNOWN;
535 }
536
537 /*
538 * Default "resume" method for devices that have no driver provided resume,
539 * or not even a driver at all (second part).
540 */
541 static int pci_pm_reenable_device(struct pci_dev *pci_dev)
542 {
543 int retval;
544
545 /* if the device was enabled before suspend, reenable */
546 retval = pci_reenable_device(pci_dev);
547 /*
548 * if the device was busmaster before the suspend, make it busmaster
549 * again
550 */
551 if (pci_dev->is_busmaster)
552 pci_set_master(pci_dev);
553
554 return retval;
555 }
556
557 static int pci_legacy_suspend(struct device *dev, pm_message_t state)
558 {
559 struct pci_dev *pci_dev = to_pci_dev(dev);
560 struct pci_driver *drv = pci_dev->driver;
561
562 if (drv && drv->suspend) {
563 pci_power_t prev = pci_dev->current_state;
564 int error;
565
566 error = drv->suspend(pci_dev, state);
567 suspend_report_result(drv->suspend, error);
568 if (error)
569 return error;
570
571 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
572 && pci_dev->current_state != PCI_UNKNOWN) {
573 WARN_ONCE(pci_dev->current_state != prev,
574 "PCI PM: Device state not saved by %pF\n",
575 drv->suspend);
576 }
577 }
578
579 pci_fixup_device(pci_fixup_suspend, pci_dev);
580
581 return 0;
582 }
583
584 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state)
585 {
586 struct pci_dev *pci_dev = to_pci_dev(dev);
587 struct pci_driver *drv = pci_dev->driver;
588
589 if (drv && drv->suspend_late) {
590 pci_power_t prev = pci_dev->current_state;
591 int error;
592
593 error = drv->suspend_late(pci_dev, state);
594 suspend_report_result(drv->suspend_late, error);
595 if (error)
596 return error;
597
598 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
599 && pci_dev->current_state != PCI_UNKNOWN) {
600 WARN_ONCE(pci_dev->current_state != prev,
601 "PCI PM: Device state not saved by %pF\n",
602 drv->suspend_late);
603 goto Fixup;
604 }
605 }
606
607 if (!pci_dev->state_saved)
608 pci_save_state(pci_dev);
609
610 pci_pm_set_unknown_state(pci_dev);
611
612 Fixup:
613 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
614
615 return 0;
616 }
617
618 static int pci_legacy_resume_early(struct device *dev)
619 {
620 struct pci_dev *pci_dev = to_pci_dev(dev);
621 struct pci_driver *drv = pci_dev->driver;
622
623 return drv && drv->resume_early ?
624 drv->resume_early(pci_dev) : 0;
625 }
626
627 static int pci_legacy_resume(struct device *dev)
628 {
629 struct pci_dev *pci_dev = to_pci_dev(dev);
630 struct pci_driver *drv = pci_dev->driver;
631
632 pci_fixup_device(pci_fixup_resume, pci_dev);
633
634 return drv && drv->resume ?
635 drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev);
636 }
637
638 /* Auxiliary functions used by the new power management framework */
639
640 static void pci_pm_default_resume(struct pci_dev *pci_dev)
641 {
642 pci_fixup_device(pci_fixup_resume, pci_dev);
643
644 if (!pci_has_subordinate(pci_dev))
645 pci_enable_wake(pci_dev, PCI_D0, false);
646 }
647
648 static void pci_pm_default_suspend(struct pci_dev *pci_dev)
649 {
650 /* Disable non-bridge devices without PM support */
651 if (!pci_has_subordinate(pci_dev))
652 pci_disable_enabled_device(pci_dev);
653 }
654
655 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev)
656 {
657 struct pci_driver *drv = pci_dev->driver;
658 bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume
659 || drv->resume_early);
660
661 /*
662 * Legacy PM support is used by default, so warn if the new framework is
663 * supported as well. Drivers are supposed to support either the
664 * former, or the latter, but not both at the same time.
665 */
666 WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n",
667 drv->name, pci_dev->vendor, pci_dev->device);
668
669 return ret;
670 }
671
672 /* New power management framework */
673
674 static int pci_pm_prepare(struct device *dev)
675 {
676 struct device_driver *drv = dev->driver;
677
678 /*
679 * Devices having power.ignore_children set may still be necessary for
680 * suspending their children in the next phase of device suspend.
681 */
682 if (dev->power.ignore_children)
683 pm_runtime_resume(dev);
684
685 if (drv && drv->pm && drv->pm->prepare) {
686 int error = drv->pm->prepare(dev);
687 if (error)
688 return error;
689 }
690 return pci_dev_keep_suspended(to_pci_dev(dev));
691 }
692
693 static void pci_pm_complete(struct device *dev)
694 {
695 struct pci_dev *pci_dev = to_pci_dev(dev);
696
697 pci_dev_complete_resume(pci_dev);
698 pm_generic_complete(dev);
699
700 /* Resume device if platform firmware has put it in reset-power-on */
701 if (dev->power.direct_complete && pm_resume_via_firmware()) {
702 pci_power_t pre_sleep_state = pci_dev->current_state;
703
704 pci_update_current_state(pci_dev, pci_dev->current_state);
705 if (pci_dev->current_state < pre_sleep_state)
706 pm_request_resume(dev);
707 }
708 }
709
710 #else /* !CONFIG_PM_SLEEP */
711
712 #define pci_pm_prepare NULL
713 #define pci_pm_complete NULL
714
715 #endif /* !CONFIG_PM_SLEEP */
716
717 #ifdef CONFIG_SUSPEND
718
719 static int pci_pm_suspend(struct device *dev)
720 {
721 struct pci_dev *pci_dev = to_pci_dev(dev);
722 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
723
724 if (pci_has_legacy_pm_support(pci_dev))
725 return pci_legacy_suspend(dev, PMSG_SUSPEND);
726
727 if (!pm) {
728 pci_pm_default_suspend(pci_dev);
729 goto Fixup;
730 }
731
732 /*
733 * PCI devices suspended at run time need to be resumed at this point,
734 * because in general it is necessary to reconfigure them for system
735 * suspend. Namely, if the device is supposed to wake up the system
736 * from the sleep state, we may need to reconfigure it for this purpose.
737 * In turn, if the device is not supposed to wake up the system from the
738 * sleep state, we'll have to prevent it from signaling wake-up.
739 */
740 pm_runtime_resume(dev);
741
742 pci_dev->state_saved = false;
743 if (pm->suspend) {
744 pci_power_t prev = pci_dev->current_state;
745 int error;
746
747 error = pm->suspend(dev);
748 suspend_report_result(pm->suspend, error);
749 if (error)
750 return error;
751
752 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
753 && pci_dev->current_state != PCI_UNKNOWN) {
754 WARN_ONCE(pci_dev->current_state != prev,
755 "PCI PM: State of device not saved by %pF\n",
756 pm->suspend);
757 }
758 }
759
760 Fixup:
761 pci_fixup_device(pci_fixup_suspend, pci_dev);
762
763 return 0;
764 }
765
766 static int pci_pm_suspend_noirq(struct device *dev)
767 {
768 struct pci_dev *pci_dev = to_pci_dev(dev);
769 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
770
771 if (pci_has_legacy_pm_support(pci_dev))
772 return pci_legacy_suspend_late(dev, PMSG_SUSPEND);
773
774 if (!pm) {
775 pci_save_state(pci_dev);
776 goto Fixup;
777 }
778
779 if (pm->suspend_noirq) {
780 pci_power_t prev = pci_dev->current_state;
781 int error;
782
783 error = pm->suspend_noirq(dev);
784 suspend_report_result(pm->suspend_noirq, error);
785 if (error)
786 return error;
787
788 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
789 && pci_dev->current_state != PCI_UNKNOWN) {
790 WARN_ONCE(pci_dev->current_state != prev,
791 "PCI PM: State of device not saved by %pF\n",
792 pm->suspend_noirq);
793 goto Fixup;
794 }
795 }
796
797 if (!pci_dev->state_saved) {
798 pci_save_state(pci_dev);
799 if (pci_power_manageable(pci_dev))
800 pci_prepare_to_sleep(pci_dev);
801 }
802
803 pci_pm_set_unknown_state(pci_dev);
804
805 /*
806 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's
807 * PCI COMMAND register isn't 0, the BIOS assumes that the controller
808 * hasn't been quiesced and tries to turn it off. If the controller
809 * is already in D3, this can hang or cause memory corruption.
810 *
811 * Since the value of the COMMAND register doesn't matter once the
812 * device has been suspended, we can safely set it to 0 here.
813 */
814 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
815 pci_write_config_word(pci_dev, PCI_COMMAND, 0);
816
817 Fixup:
818 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
819
820 return 0;
821 }
822
823 static int pci_pm_resume_noirq(struct device *dev)
824 {
825 struct pci_dev *pci_dev = to_pci_dev(dev);
826 struct device_driver *drv = dev->driver;
827 int error = 0;
828
829 pci_pm_default_resume_early(pci_dev);
830
831 if (pci_has_legacy_pm_support(pci_dev))
832 return pci_legacy_resume_early(dev);
833
834 if (drv && drv->pm && drv->pm->resume_noirq)
835 error = drv->pm->resume_noirq(dev);
836
837 return error;
838 }
839
840 static int pci_pm_resume(struct device *dev)
841 {
842 struct pci_dev *pci_dev = to_pci_dev(dev);
843 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
844 int error = 0;
845
846 /*
847 * This is necessary for the suspend error path in which resume is
848 * called without restoring the standard config registers of the device.
849 */
850 if (pci_dev->state_saved)
851 pci_restore_standard_config(pci_dev);
852
853 if (pci_has_legacy_pm_support(pci_dev))
854 return pci_legacy_resume(dev);
855
856 pci_pm_default_resume(pci_dev);
857
858 if (pm) {
859 if (pm->resume)
860 error = pm->resume(dev);
861 } else {
862 pci_pm_reenable_device(pci_dev);
863 }
864
865 return error;
866 }
867
868 #else /* !CONFIG_SUSPEND */
869
870 #define pci_pm_suspend NULL
871 #define pci_pm_suspend_noirq NULL
872 #define pci_pm_resume NULL
873 #define pci_pm_resume_noirq NULL
874
875 #endif /* !CONFIG_SUSPEND */
876
877 #ifdef CONFIG_HIBERNATE_CALLBACKS
878
879
880 /*
881 * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing
882 * a hibernate transition
883 */
884 struct dev_pm_ops __weak pcibios_pm_ops;
885
886 static int pci_pm_freeze(struct device *dev)
887 {
888 struct pci_dev *pci_dev = to_pci_dev(dev);
889 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
890
891 if (pci_has_legacy_pm_support(pci_dev))
892 return pci_legacy_suspend(dev, PMSG_FREEZE);
893
894 if (!pm) {
895 pci_pm_default_suspend(pci_dev);
896 return 0;
897 }
898
899 /*
900 * This used to be done in pci_pm_prepare() for all devices and some
901 * drivers may depend on it, so do it here. Ideally, runtime-suspended
902 * devices should not be touched during freeze/thaw transitions,
903 * however.
904 */
905 pm_runtime_resume(dev);
906
907 pci_dev->state_saved = false;
908 if (pm->freeze) {
909 int error;
910
911 error = pm->freeze(dev);
912 suspend_report_result(pm->freeze, error);
913 if (error)
914 return error;
915 }
916
917 if (pcibios_pm_ops.freeze)
918 return pcibios_pm_ops.freeze(dev);
919
920 return 0;
921 }
922
923 static int pci_pm_freeze_noirq(struct device *dev)
924 {
925 struct pci_dev *pci_dev = to_pci_dev(dev);
926 struct device_driver *drv = dev->driver;
927
928 if (pci_has_legacy_pm_support(pci_dev))
929 return pci_legacy_suspend_late(dev, PMSG_FREEZE);
930
931 if (drv && drv->pm && drv->pm->freeze_noirq) {
932 int error;
933
934 error = drv->pm->freeze_noirq(dev);
935 suspend_report_result(drv->pm->freeze_noirq, error);
936 if (error)
937 return error;
938 }
939
940 if (!pci_dev->state_saved)
941 pci_save_state(pci_dev);
942
943 pci_pm_set_unknown_state(pci_dev);
944
945 if (pcibios_pm_ops.freeze_noirq)
946 return pcibios_pm_ops.freeze_noirq(dev);
947
948 return 0;
949 }
950
951 static int pci_pm_thaw_noirq(struct device *dev)
952 {
953 struct pci_dev *pci_dev = to_pci_dev(dev);
954 struct device_driver *drv = dev->driver;
955 int error = 0;
956
957 if (pcibios_pm_ops.thaw_noirq) {
958 error = pcibios_pm_ops.thaw_noirq(dev);
959 if (error)
960 return error;
961 }
962
963 if (pci_has_legacy_pm_support(pci_dev))
964 return pci_legacy_resume_early(dev);
965
966 pci_update_current_state(pci_dev, PCI_D0);
967
968 if (drv && drv->pm && drv->pm->thaw_noirq)
969 error = drv->pm->thaw_noirq(dev);
970
971 return error;
972 }
973
974 static int pci_pm_thaw(struct device *dev)
975 {
976 struct pci_dev *pci_dev = to_pci_dev(dev);
977 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
978 int error = 0;
979
980 if (pcibios_pm_ops.thaw) {
981 error = pcibios_pm_ops.thaw(dev);
982 if (error)
983 return error;
984 }
985
986 if (pci_has_legacy_pm_support(pci_dev))
987 return pci_legacy_resume(dev);
988
989 if (pm) {
990 if (pm->thaw)
991 error = pm->thaw(dev);
992 } else {
993 pci_pm_reenable_device(pci_dev);
994 }
995
996 pci_dev->state_saved = false;
997
998 return error;
999 }
1000
1001 static int pci_pm_poweroff(struct device *dev)
1002 {
1003 struct pci_dev *pci_dev = to_pci_dev(dev);
1004 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1005
1006 if (pci_has_legacy_pm_support(pci_dev))
1007 return pci_legacy_suspend(dev, PMSG_HIBERNATE);
1008
1009 if (!pm) {
1010 pci_pm_default_suspend(pci_dev);
1011 goto Fixup;
1012 }
1013
1014 /* The reason to do that is the same as in pci_pm_suspend(). */
1015 pm_runtime_resume(dev);
1016
1017 pci_dev->state_saved = false;
1018 if (pm->poweroff) {
1019 int error;
1020
1021 error = pm->poweroff(dev);
1022 suspend_report_result(pm->poweroff, error);
1023 if (error)
1024 return error;
1025 }
1026
1027 Fixup:
1028 pci_fixup_device(pci_fixup_suspend, pci_dev);
1029
1030 if (pcibios_pm_ops.poweroff)
1031 return pcibios_pm_ops.poweroff(dev);
1032
1033 return 0;
1034 }
1035
1036 static int pci_pm_poweroff_noirq(struct device *dev)
1037 {
1038 struct pci_dev *pci_dev = to_pci_dev(dev);
1039 struct device_driver *drv = dev->driver;
1040
1041 if (pci_has_legacy_pm_support(to_pci_dev(dev)))
1042 return pci_legacy_suspend_late(dev, PMSG_HIBERNATE);
1043
1044 if (!drv || !drv->pm) {
1045 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1046 return 0;
1047 }
1048
1049 if (drv->pm->poweroff_noirq) {
1050 int error;
1051
1052 error = drv->pm->poweroff_noirq(dev);
1053 suspend_report_result(drv->pm->poweroff_noirq, error);
1054 if (error)
1055 return error;
1056 }
1057
1058 if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev))
1059 pci_prepare_to_sleep(pci_dev);
1060
1061 /*
1062 * The reason for doing this here is the same as for the analogous code
1063 * in pci_pm_suspend_noirq().
1064 */
1065 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1066 pci_write_config_word(pci_dev, PCI_COMMAND, 0);
1067
1068 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1069
1070 if (pcibios_pm_ops.poweroff_noirq)
1071 return pcibios_pm_ops.poweroff_noirq(dev);
1072
1073 return 0;
1074 }
1075
1076 static int pci_pm_restore_noirq(struct device *dev)
1077 {
1078 struct pci_dev *pci_dev = to_pci_dev(dev);
1079 struct device_driver *drv = dev->driver;
1080 int error = 0;
1081
1082 if (pcibios_pm_ops.restore_noirq) {
1083 error = pcibios_pm_ops.restore_noirq(dev);
1084 if (error)
1085 return error;
1086 }
1087
1088 pci_pm_default_resume_early(pci_dev);
1089
1090 if (pci_has_legacy_pm_support(pci_dev))
1091 return pci_legacy_resume_early(dev);
1092
1093 if (drv && drv->pm && drv->pm->restore_noirq)
1094 error = drv->pm->restore_noirq(dev);
1095
1096 return error;
1097 }
1098
1099 static int pci_pm_restore(struct device *dev)
1100 {
1101 struct pci_dev *pci_dev = to_pci_dev(dev);
1102 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1103 int error = 0;
1104
1105 if (pcibios_pm_ops.restore) {
1106 error = pcibios_pm_ops.restore(dev);
1107 if (error)
1108 return error;
1109 }
1110
1111 /*
1112 * This is necessary for the hibernation error path in which restore is
1113 * called without restoring the standard config registers of the device.
1114 */
1115 if (pci_dev->state_saved)
1116 pci_restore_standard_config(pci_dev);
1117
1118 if (pci_has_legacy_pm_support(pci_dev))
1119 return pci_legacy_resume(dev);
1120
1121 pci_pm_default_resume(pci_dev);
1122
1123 if (pm) {
1124 if (pm->restore)
1125 error = pm->restore(dev);
1126 } else {
1127 pci_pm_reenable_device(pci_dev);
1128 }
1129
1130 return error;
1131 }
1132
1133 #else /* !CONFIG_HIBERNATE_CALLBACKS */
1134
1135 #define pci_pm_freeze NULL
1136 #define pci_pm_freeze_noirq NULL
1137 #define pci_pm_thaw NULL
1138 #define pci_pm_thaw_noirq NULL
1139 #define pci_pm_poweroff NULL
1140 #define pci_pm_poweroff_noirq NULL
1141 #define pci_pm_restore NULL
1142 #define pci_pm_restore_noirq NULL
1143
1144 #endif /* !CONFIG_HIBERNATE_CALLBACKS */
1145
1146 #ifdef CONFIG_PM
1147
1148 static int pci_pm_runtime_suspend(struct device *dev)
1149 {
1150 struct pci_dev *pci_dev = to_pci_dev(dev);
1151 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1152 pci_power_t prev = pci_dev->current_state;
1153 int error;
1154
1155 /*
1156 * If pci_dev->driver is not set (unbound), the device should
1157 * always remain in D0 regardless of the runtime PM status
1158 */
1159 if (!pci_dev->driver)
1160 return 0;
1161
1162 if (!pm || !pm->runtime_suspend)
1163 return -ENOSYS;
1164
1165 pci_dev->state_saved = false;
1166 error = pm->runtime_suspend(dev);
1167 if (error) {
1168 /*
1169 * -EBUSY and -EAGAIN is used to request the runtime PM core
1170 * to schedule a new suspend, so log the event only with debug
1171 * log level.
1172 */
1173 if (error == -EBUSY || error == -EAGAIN)
1174 dev_dbg(dev, "can't suspend now (%pf returned %d)\n",
1175 pm->runtime_suspend, error);
1176 else
1177 dev_err(dev, "can't suspend (%pf returned %d)\n",
1178 pm->runtime_suspend, error);
1179
1180 return error;
1181 }
1182
1183 pci_fixup_device(pci_fixup_suspend, pci_dev);
1184
1185 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
1186 && pci_dev->current_state != PCI_UNKNOWN) {
1187 WARN_ONCE(pci_dev->current_state != prev,
1188 "PCI PM: State of device not saved by %pF\n",
1189 pm->runtime_suspend);
1190 return 0;
1191 }
1192
1193 if (!pci_dev->state_saved) {
1194 pci_save_state(pci_dev);
1195 pci_finish_runtime_suspend(pci_dev);
1196 }
1197
1198 return 0;
1199 }
1200
1201 static int pci_pm_runtime_resume(struct device *dev)
1202 {
1203 int rc;
1204 struct pci_dev *pci_dev = to_pci_dev(dev);
1205 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1206
1207 /*
1208 * If pci_dev->driver is not set (unbound), the device should
1209 * always remain in D0 regardless of the runtime PM status
1210 */
1211 if (!pci_dev->driver)
1212 return 0;
1213
1214 if (!pm || !pm->runtime_resume)
1215 return -ENOSYS;
1216
1217 pci_restore_standard_config(pci_dev);
1218 pci_fixup_device(pci_fixup_resume_early, pci_dev);
1219 __pci_enable_wake(pci_dev, PCI_D0, true, false);
1220 pci_fixup_device(pci_fixup_resume, pci_dev);
1221
1222 rc = pm->runtime_resume(dev);
1223
1224 pci_dev->runtime_d3cold = false;
1225
1226 return rc;
1227 }
1228
1229 static int pci_pm_runtime_idle(struct device *dev)
1230 {
1231 struct pci_dev *pci_dev = to_pci_dev(dev);
1232 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1233 int ret = 0;
1234
1235 /*
1236 * If pci_dev->driver is not set (unbound), the device should
1237 * always remain in D0 regardless of the runtime PM status
1238 */
1239 if (!pci_dev->driver)
1240 return 0;
1241
1242 if (!pm)
1243 return -ENOSYS;
1244
1245 if (pm->runtime_idle)
1246 ret = pm->runtime_idle(dev);
1247
1248 return ret;
1249 }
1250
1251 static const struct dev_pm_ops pci_dev_pm_ops = {
1252 .prepare = pci_pm_prepare,
1253 .complete = pci_pm_complete,
1254 .suspend = pci_pm_suspend,
1255 .resume = pci_pm_resume,
1256 .freeze = pci_pm_freeze,
1257 .thaw = pci_pm_thaw,
1258 .poweroff = pci_pm_poweroff,
1259 .restore = pci_pm_restore,
1260 .suspend_noirq = pci_pm_suspend_noirq,
1261 .resume_noirq = pci_pm_resume_noirq,
1262 .freeze_noirq = pci_pm_freeze_noirq,
1263 .thaw_noirq = pci_pm_thaw_noirq,
1264 .poweroff_noirq = pci_pm_poweroff_noirq,
1265 .restore_noirq = pci_pm_restore_noirq,
1266 .runtime_suspend = pci_pm_runtime_suspend,
1267 .runtime_resume = pci_pm_runtime_resume,
1268 .runtime_idle = pci_pm_runtime_idle,
1269 };
1270
1271 #define PCI_PM_OPS_PTR (&pci_dev_pm_ops)
1272
1273 #else /* !CONFIG_PM */
1274
1275 #define pci_pm_runtime_suspend NULL
1276 #define pci_pm_runtime_resume NULL
1277 #define pci_pm_runtime_idle NULL
1278
1279 #define PCI_PM_OPS_PTR NULL
1280
1281 #endif /* !CONFIG_PM */
1282
1283 /**
1284 * __pci_register_driver - register a new pci driver
1285 * @drv: the driver structure to register
1286 * @owner: owner module of drv
1287 * @mod_name: module name string
1288 *
1289 * Adds the driver structure to the list of registered drivers.
1290 * Returns a negative value on error, otherwise 0.
1291 * If no error occurred, the driver remains registered even if
1292 * no device was claimed during registration.
1293 */
1294 int __pci_register_driver(struct pci_driver *drv, struct module *owner,
1295 const char *mod_name)
1296 {
1297 /* initialize common driver fields */
1298 drv->driver.name = drv->name;
1299 drv->driver.bus = &pci_bus_type;
1300 drv->driver.owner = owner;
1301 drv->driver.mod_name = mod_name;
1302
1303 spin_lock_init(&drv->dynids.lock);
1304 INIT_LIST_HEAD(&drv->dynids.list);
1305
1306 /* register with core */
1307 return driver_register(&drv->driver);
1308 }
1309 EXPORT_SYMBOL(__pci_register_driver);
1310
1311 /**
1312 * pci_unregister_driver - unregister a pci driver
1313 * @drv: the driver structure to unregister
1314 *
1315 * Deletes the driver structure from the list of registered PCI drivers,
1316 * gives it a chance to clean up by calling its remove() function for
1317 * each device it was responsible for, and marks those devices as
1318 * driverless.
1319 */
1320
1321 void pci_unregister_driver(struct pci_driver *drv)
1322 {
1323 driver_unregister(&drv->driver);
1324 pci_free_dynids(drv);
1325 }
1326 EXPORT_SYMBOL(pci_unregister_driver);
1327
1328 static struct pci_driver pci_compat_driver = {
1329 .name = "compat"
1330 };
1331
1332 /**
1333 * pci_dev_driver - get the pci_driver of a device
1334 * @dev: the device to query
1335 *
1336 * Returns the appropriate pci_driver structure or %NULL if there is no
1337 * registered driver for the device.
1338 */
1339 struct pci_driver *pci_dev_driver(const struct pci_dev *dev)
1340 {
1341 if (dev->driver)
1342 return dev->driver;
1343 else {
1344 int i;
1345 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1346 if (dev->resource[i].flags & IORESOURCE_BUSY)
1347 return &pci_compat_driver;
1348 }
1349 return NULL;
1350 }
1351 EXPORT_SYMBOL(pci_dev_driver);
1352
1353 /**
1354 * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure
1355 * @dev: the PCI device structure to match against
1356 * @drv: the device driver to search for matching PCI device id structures
1357 *
1358 * Used by a driver to check whether a PCI device present in the
1359 * system is in its list of supported devices. Returns the matching
1360 * pci_device_id structure or %NULL if there is no match.
1361 */
1362 static int pci_bus_match(struct device *dev, struct device_driver *drv)
1363 {
1364 struct pci_dev *pci_dev = to_pci_dev(dev);
1365 struct pci_driver *pci_drv;
1366 const struct pci_device_id *found_id;
1367
1368 if (!pci_dev->match_driver)
1369 return 0;
1370
1371 pci_drv = to_pci_driver(drv);
1372 found_id = pci_match_device(pci_drv, pci_dev);
1373 if (found_id)
1374 return 1;
1375
1376 return 0;
1377 }
1378
1379 /**
1380 * pci_dev_get - increments the reference count of the pci device structure
1381 * @dev: the device being referenced
1382 *
1383 * Each live reference to a device should be refcounted.
1384 *
1385 * Drivers for PCI devices should normally record such references in
1386 * their probe() methods, when they bind to a device, and release
1387 * them by calling pci_dev_put(), in their disconnect() methods.
1388 *
1389 * A pointer to the device with the incremented reference counter is returned.
1390 */
1391 struct pci_dev *pci_dev_get(struct pci_dev *dev)
1392 {
1393 if (dev)
1394 get_device(&dev->dev);
1395 return dev;
1396 }
1397 EXPORT_SYMBOL(pci_dev_get);
1398
1399 /**
1400 * pci_dev_put - release a use of the pci device structure
1401 * @dev: device that's been disconnected
1402 *
1403 * Must be called when a user of a device is finished with it. When the last
1404 * user of the device calls this function, the memory of the device is freed.
1405 */
1406 void pci_dev_put(struct pci_dev *dev)
1407 {
1408 if (dev)
1409 put_device(&dev->dev);
1410 }
1411 EXPORT_SYMBOL(pci_dev_put);
1412
1413 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env)
1414 {
1415 struct pci_dev *pdev;
1416
1417 if (!dev)
1418 return -ENODEV;
1419
1420 pdev = to_pci_dev(dev);
1421
1422 if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class))
1423 return -ENOMEM;
1424
1425 if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device))
1426 return -ENOMEM;
1427
1428 if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor,
1429 pdev->subsystem_device))
1430 return -ENOMEM;
1431
1432 if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev)))
1433 return -ENOMEM;
1434
1435 if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X",
1436 pdev->vendor, pdev->device,
1437 pdev->subsystem_vendor, pdev->subsystem_device,
1438 (u8)(pdev->class >> 16), (u8)(pdev->class >> 8),
1439 (u8)(pdev->class)))
1440 return -ENOMEM;
1441
1442 return 0;
1443 }
1444
1445 static int pci_bus_num_vf(struct device *dev)
1446 {
1447 return pci_num_vf(to_pci_dev(dev));
1448 }
1449
1450 struct bus_type pci_bus_type = {
1451 .name = "pci",
1452 .match = pci_bus_match,
1453 .uevent = pci_uevent,
1454 .probe = pci_device_probe,
1455 .remove = pci_device_remove,
1456 .shutdown = pci_device_shutdown,
1457 .dev_groups = pci_dev_groups,
1458 .bus_groups = pci_bus_groups,
1459 .drv_groups = pci_drv_groups,
1460 .pm = PCI_PM_OPS_PTR,
1461 .num_vf = pci_bus_num_vf,
1462 };
1463 EXPORT_SYMBOL(pci_bus_type);
1464
1465 static int __init pci_driver_init(void)
1466 {
1467 return bus_register(&pci_bus_type);
1468 }
1469 postcore_initcall(pci_driver_init);