]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/pci/pci.c
PCI: fix coding style issue in pci_save_state()
[mirror_ubuntu-bionic-kernel.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <linux/pm_wakeup.h>
21 #include <linux/interrupt.h>
22 #include <asm/dma.h> /* isa_dma_bridge_buggy */
23 #include <linux/device.h>
24 #include <asm/setup.h>
25 #include "pci.h"
26
27 const char *pci_power_names[] = {
28 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
29 };
30 EXPORT_SYMBOL_GPL(pci_power_names);
31
32 unsigned int pci_pm_d3_delay = PCI_PM_D3_WAIT;
33
34 #ifdef CONFIG_PCI_DOMAINS
35 int pci_domains_supported = 1;
36 #endif
37
38 #define DEFAULT_CARDBUS_IO_SIZE (256)
39 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
40 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
41 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
42 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
43
44 #define DEFAULT_HOTPLUG_IO_SIZE (256)
45 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
46 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
47 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
48 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
49
50 /*
51 * The default CLS is used if arch didn't set CLS explicitly and not
52 * all pci devices agree on the same value. Arch can override either
53 * the dfl or actual value as it sees fit. Don't forget this is
54 * measured in 32-bit words, not bytes.
55 */
56 u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2;
57 u8 pci_cache_line_size;
58
59 /**
60 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
61 * @bus: pointer to PCI bus structure to search
62 *
63 * Given a PCI bus, returns the highest PCI bus number present in the set
64 * including the given PCI bus and its list of child PCI buses.
65 */
66 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
67 {
68 struct list_head *tmp;
69 unsigned char max, n;
70
71 max = bus->subordinate;
72 list_for_each(tmp, &bus->children) {
73 n = pci_bus_max_busnr(pci_bus_b(tmp));
74 if(n > max)
75 max = n;
76 }
77 return max;
78 }
79 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
80
81 #ifdef CONFIG_HAS_IOMEM
82 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
83 {
84 /*
85 * Make sure the BAR is actually a memory resource, not an IO resource
86 */
87 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
88 WARN_ON(1);
89 return NULL;
90 }
91 return ioremap_nocache(pci_resource_start(pdev, bar),
92 pci_resource_len(pdev, bar));
93 }
94 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
95 #endif
96
97 #if 0
98 /**
99 * pci_max_busnr - returns maximum PCI bus number
100 *
101 * Returns the highest PCI bus number present in the system global list of
102 * PCI buses.
103 */
104 unsigned char __devinit
105 pci_max_busnr(void)
106 {
107 struct pci_bus *bus = NULL;
108 unsigned char max, n;
109
110 max = 0;
111 while ((bus = pci_find_next_bus(bus)) != NULL) {
112 n = pci_bus_max_busnr(bus);
113 if(n > max)
114 max = n;
115 }
116 return max;
117 }
118
119 #endif /* 0 */
120
121 #define PCI_FIND_CAP_TTL 48
122
123 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
124 u8 pos, int cap, int *ttl)
125 {
126 u8 id;
127
128 while ((*ttl)--) {
129 pci_bus_read_config_byte(bus, devfn, pos, &pos);
130 if (pos < 0x40)
131 break;
132 pos &= ~3;
133 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
134 &id);
135 if (id == 0xff)
136 break;
137 if (id == cap)
138 return pos;
139 pos += PCI_CAP_LIST_NEXT;
140 }
141 return 0;
142 }
143
144 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
145 u8 pos, int cap)
146 {
147 int ttl = PCI_FIND_CAP_TTL;
148
149 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
150 }
151
152 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
153 {
154 return __pci_find_next_cap(dev->bus, dev->devfn,
155 pos + PCI_CAP_LIST_NEXT, cap);
156 }
157 EXPORT_SYMBOL_GPL(pci_find_next_capability);
158
159 static int __pci_bus_find_cap_start(struct pci_bus *bus,
160 unsigned int devfn, u8 hdr_type)
161 {
162 u16 status;
163
164 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
165 if (!(status & PCI_STATUS_CAP_LIST))
166 return 0;
167
168 switch (hdr_type) {
169 case PCI_HEADER_TYPE_NORMAL:
170 case PCI_HEADER_TYPE_BRIDGE:
171 return PCI_CAPABILITY_LIST;
172 case PCI_HEADER_TYPE_CARDBUS:
173 return PCI_CB_CAPABILITY_LIST;
174 default:
175 return 0;
176 }
177
178 return 0;
179 }
180
181 /**
182 * pci_find_capability - query for devices' capabilities
183 * @dev: PCI device to query
184 * @cap: capability code
185 *
186 * Tell if a device supports a given PCI capability.
187 * Returns the address of the requested capability structure within the
188 * device's PCI configuration space or 0 in case the device does not
189 * support it. Possible values for @cap:
190 *
191 * %PCI_CAP_ID_PM Power Management
192 * %PCI_CAP_ID_AGP Accelerated Graphics Port
193 * %PCI_CAP_ID_VPD Vital Product Data
194 * %PCI_CAP_ID_SLOTID Slot Identification
195 * %PCI_CAP_ID_MSI Message Signalled Interrupts
196 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
197 * %PCI_CAP_ID_PCIX PCI-X
198 * %PCI_CAP_ID_EXP PCI Express
199 */
200 int pci_find_capability(struct pci_dev *dev, int cap)
201 {
202 int pos;
203
204 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
205 if (pos)
206 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
207
208 return pos;
209 }
210
211 /**
212 * pci_bus_find_capability - query for devices' capabilities
213 * @bus: the PCI bus to query
214 * @devfn: PCI device to query
215 * @cap: capability code
216 *
217 * Like pci_find_capability() but works for pci devices that do not have a
218 * pci_dev structure set up yet.
219 *
220 * Returns the address of the requested capability structure within the
221 * device's PCI configuration space or 0 in case the device does not
222 * support it.
223 */
224 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
225 {
226 int pos;
227 u8 hdr_type;
228
229 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
230
231 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
232 if (pos)
233 pos = __pci_find_next_cap(bus, devfn, pos, cap);
234
235 return pos;
236 }
237
238 /**
239 * pci_find_ext_capability - Find an extended capability
240 * @dev: PCI device to query
241 * @cap: capability code
242 *
243 * Returns the address of the requested extended capability structure
244 * within the device's PCI configuration space or 0 if the device does
245 * not support it. Possible values for @cap:
246 *
247 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
248 * %PCI_EXT_CAP_ID_VC Virtual Channel
249 * %PCI_EXT_CAP_ID_DSN Device Serial Number
250 * %PCI_EXT_CAP_ID_PWR Power Budgeting
251 */
252 int pci_find_ext_capability(struct pci_dev *dev, int cap)
253 {
254 u32 header;
255 int ttl;
256 int pos = PCI_CFG_SPACE_SIZE;
257
258 /* minimum 8 bytes per capability */
259 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
260
261 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
262 return 0;
263
264 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
265 return 0;
266
267 /*
268 * If we have no capabilities, this is indicated by cap ID,
269 * cap version and next pointer all being 0.
270 */
271 if (header == 0)
272 return 0;
273
274 while (ttl-- > 0) {
275 if (PCI_EXT_CAP_ID(header) == cap)
276 return pos;
277
278 pos = PCI_EXT_CAP_NEXT(header);
279 if (pos < PCI_CFG_SPACE_SIZE)
280 break;
281
282 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
283 break;
284 }
285
286 return 0;
287 }
288 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
289
290 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
291 {
292 int rc, ttl = PCI_FIND_CAP_TTL;
293 u8 cap, mask;
294
295 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
296 mask = HT_3BIT_CAP_MASK;
297 else
298 mask = HT_5BIT_CAP_MASK;
299
300 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
301 PCI_CAP_ID_HT, &ttl);
302 while (pos) {
303 rc = pci_read_config_byte(dev, pos + 3, &cap);
304 if (rc != PCIBIOS_SUCCESSFUL)
305 return 0;
306
307 if ((cap & mask) == ht_cap)
308 return pos;
309
310 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
311 pos + PCI_CAP_LIST_NEXT,
312 PCI_CAP_ID_HT, &ttl);
313 }
314
315 return 0;
316 }
317 /**
318 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
319 * @dev: PCI device to query
320 * @pos: Position from which to continue searching
321 * @ht_cap: Hypertransport capability code
322 *
323 * To be used in conjunction with pci_find_ht_capability() to search for
324 * all capabilities matching @ht_cap. @pos should always be a value returned
325 * from pci_find_ht_capability().
326 *
327 * NB. To be 100% safe against broken PCI devices, the caller should take
328 * steps to avoid an infinite loop.
329 */
330 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
331 {
332 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
333 }
334 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
335
336 /**
337 * pci_find_ht_capability - query a device's Hypertransport capabilities
338 * @dev: PCI device to query
339 * @ht_cap: Hypertransport capability code
340 *
341 * Tell if a device supports a given Hypertransport capability.
342 * Returns an address within the device's PCI configuration space
343 * or 0 in case the device does not support the request capability.
344 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
345 * which has a Hypertransport capability matching @ht_cap.
346 */
347 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
348 {
349 int pos;
350
351 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
352 if (pos)
353 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
354
355 return pos;
356 }
357 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
358
359 /**
360 * pci_find_parent_resource - return resource region of parent bus of given region
361 * @dev: PCI device structure contains resources to be searched
362 * @res: child resource record for which parent is sought
363 *
364 * For given resource region of given device, return the resource
365 * region of parent bus the given region is contained in or where
366 * it should be allocated from.
367 */
368 struct resource *
369 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
370 {
371 const struct pci_bus *bus = dev->bus;
372 int i;
373 struct resource *best = NULL;
374
375 for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
376 struct resource *r = bus->resource[i];
377 if (!r)
378 continue;
379 if (res->start && !(res->start >= r->start && res->end <= r->end))
380 continue; /* Not contained */
381 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
382 continue; /* Wrong type */
383 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
384 return r; /* Exact match */
385 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
386 if (r->flags & IORESOURCE_PREFETCH)
387 continue;
388 /* .. but we can put a prefetchable resource inside a non-prefetchable one */
389 if (!best)
390 best = r;
391 }
392 return best;
393 }
394
395 /**
396 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
397 * @dev: PCI device to have its BARs restored
398 *
399 * Restore the BAR values for a given device, so as to make it
400 * accessible by its driver.
401 */
402 static void
403 pci_restore_bars(struct pci_dev *dev)
404 {
405 int i;
406
407 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
408 pci_update_resource(dev, i);
409 }
410
411 static struct pci_platform_pm_ops *pci_platform_pm;
412
413 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
414 {
415 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
416 || !ops->sleep_wake || !ops->can_wakeup)
417 return -EINVAL;
418 pci_platform_pm = ops;
419 return 0;
420 }
421
422 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
423 {
424 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
425 }
426
427 static inline int platform_pci_set_power_state(struct pci_dev *dev,
428 pci_power_t t)
429 {
430 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
431 }
432
433 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
434 {
435 return pci_platform_pm ?
436 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
437 }
438
439 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
440 {
441 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
442 }
443
444 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
445 {
446 return pci_platform_pm ?
447 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
448 }
449
450 /**
451 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
452 * given PCI device
453 * @dev: PCI device to handle.
454 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
455 *
456 * RETURN VALUE:
457 * -EINVAL if the requested state is invalid.
458 * -EIO if device does not support PCI PM or its PM capabilities register has a
459 * wrong version, or device doesn't support the requested state.
460 * 0 if device already is in the requested state.
461 * 0 if device's power state has been successfully changed.
462 */
463 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
464 {
465 u16 pmcsr;
466 bool need_restore = false;
467
468 /* Check if we're already there */
469 if (dev->current_state == state)
470 return 0;
471
472 if (!dev->pm_cap)
473 return -EIO;
474
475 if (state < PCI_D0 || state > PCI_D3hot)
476 return -EINVAL;
477
478 /* Validate current state:
479 * Can enter D0 from any state, but if we can only go deeper
480 * to sleep if we're already in a low power state
481 */
482 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
483 && dev->current_state > state) {
484 dev_err(&dev->dev, "invalid power transition "
485 "(from state %d to %d)\n", dev->current_state, state);
486 return -EINVAL;
487 }
488
489 /* check if this device supports the desired state */
490 if ((state == PCI_D1 && !dev->d1_support)
491 || (state == PCI_D2 && !dev->d2_support))
492 return -EIO;
493
494 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
495
496 /* If we're (effectively) in D3, force entire word to 0.
497 * This doesn't affect PME_Status, disables PME_En, and
498 * sets PowerState to 0.
499 */
500 switch (dev->current_state) {
501 case PCI_D0:
502 case PCI_D1:
503 case PCI_D2:
504 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
505 pmcsr |= state;
506 break;
507 case PCI_D3hot:
508 case PCI_D3cold:
509 case PCI_UNKNOWN: /* Boot-up */
510 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
511 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
512 need_restore = true;
513 /* Fall-through: force to D0 */
514 default:
515 pmcsr = 0;
516 break;
517 }
518
519 /* enter specified state */
520 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
521
522 /* Mandatory power management transition delays */
523 /* see PCI PM 1.1 5.6.1 table 18 */
524 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
525 msleep(pci_pm_d3_delay);
526 else if (state == PCI_D2 || dev->current_state == PCI_D2)
527 udelay(PCI_PM_D2_DELAY);
528
529 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
530 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
531 if (dev->current_state != state && printk_ratelimit())
532 dev_info(&dev->dev, "Refused to change power state, "
533 "currently in D%d\n", dev->current_state);
534
535 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
536 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
537 * from D3hot to D0 _may_ perform an internal reset, thereby
538 * going to "D0 Uninitialized" rather than "D0 Initialized".
539 * For example, at least some versions of the 3c905B and the
540 * 3c556B exhibit this behaviour.
541 *
542 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
543 * devices in a D3hot state at boot. Consequently, we need to
544 * restore at least the BARs so that the device will be
545 * accessible to its driver.
546 */
547 if (need_restore)
548 pci_restore_bars(dev);
549
550 if (dev->bus->self)
551 pcie_aspm_pm_state_change(dev->bus->self);
552
553 return 0;
554 }
555
556 /**
557 * pci_update_current_state - Read PCI power state of given device from its
558 * PCI PM registers and cache it
559 * @dev: PCI device to handle.
560 * @state: State to cache in case the device doesn't have the PM capability
561 */
562 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
563 {
564 if (dev->pm_cap) {
565 u16 pmcsr;
566
567 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
568 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
569 } else {
570 dev->current_state = state;
571 }
572 }
573
574 /**
575 * pci_platform_power_transition - Use platform to change device power state
576 * @dev: PCI device to handle.
577 * @state: State to put the device into.
578 */
579 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
580 {
581 int error;
582
583 if (platform_pci_power_manageable(dev)) {
584 error = platform_pci_set_power_state(dev, state);
585 if (!error)
586 pci_update_current_state(dev, state);
587 } else {
588 error = -ENODEV;
589 /* Fall back to PCI_D0 if native PM is not supported */
590 if (!dev->pm_cap)
591 dev->current_state = PCI_D0;
592 }
593
594 return error;
595 }
596
597 /**
598 * __pci_start_power_transition - Start power transition of a PCI device
599 * @dev: PCI device to handle.
600 * @state: State to put the device into.
601 */
602 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
603 {
604 if (state == PCI_D0)
605 pci_platform_power_transition(dev, PCI_D0);
606 }
607
608 /**
609 * __pci_complete_power_transition - Complete power transition of a PCI device
610 * @dev: PCI device to handle.
611 * @state: State to put the device into.
612 *
613 * This function should not be called directly by device drivers.
614 */
615 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
616 {
617 return state > PCI_D0 ?
618 pci_platform_power_transition(dev, state) : -EINVAL;
619 }
620 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
621
622 /**
623 * pci_set_power_state - Set the power state of a PCI device
624 * @dev: PCI device to handle.
625 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
626 *
627 * Transition a device to a new power state, using the platform firmware and/or
628 * the device's PCI PM registers.
629 *
630 * RETURN VALUE:
631 * -EINVAL if the requested state is invalid.
632 * -EIO if device does not support PCI PM or its PM capabilities register has a
633 * wrong version, or device doesn't support the requested state.
634 * 0 if device already is in the requested state.
635 * 0 if device's power state has been successfully changed.
636 */
637 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
638 {
639 int error;
640
641 /* bound the state we're entering */
642 if (state > PCI_D3hot)
643 state = PCI_D3hot;
644 else if (state < PCI_D0)
645 state = PCI_D0;
646 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
647 /*
648 * If the device or the parent bridge do not support PCI PM,
649 * ignore the request if we're doing anything other than putting
650 * it into D0 (which would only happen on boot).
651 */
652 return 0;
653
654 /* Check if we're already there */
655 if (dev->current_state == state)
656 return 0;
657
658 __pci_start_power_transition(dev, state);
659
660 /* This device is quirked not to be put into D3, so
661 don't put it in D3 */
662 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
663 return 0;
664
665 error = pci_raw_set_power_state(dev, state);
666
667 if (!__pci_complete_power_transition(dev, state))
668 error = 0;
669
670 return error;
671 }
672
673 /**
674 * pci_choose_state - Choose the power state of a PCI device
675 * @dev: PCI device to be suspended
676 * @state: target sleep state for the whole system. This is the value
677 * that is passed to suspend() function.
678 *
679 * Returns PCI power state suitable for given device and given system
680 * message.
681 */
682
683 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
684 {
685 pci_power_t ret;
686
687 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
688 return PCI_D0;
689
690 ret = platform_pci_choose_state(dev);
691 if (ret != PCI_POWER_ERROR)
692 return ret;
693
694 switch (state.event) {
695 case PM_EVENT_ON:
696 return PCI_D0;
697 case PM_EVENT_FREEZE:
698 case PM_EVENT_PRETHAW:
699 /* REVISIT both freeze and pre-thaw "should" use D0 */
700 case PM_EVENT_SUSPEND:
701 case PM_EVENT_HIBERNATE:
702 return PCI_D3hot;
703 default:
704 dev_info(&dev->dev, "unrecognized suspend event %d\n",
705 state.event);
706 BUG();
707 }
708 return PCI_D0;
709 }
710
711 EXPORT_SYMBOL(pci_choose_state);
712
713 #define PCI_EXP_SAVE_REGS 7
714
715 #define pcie_cap_has_devctl(type, flags) 1
716 #define pcie_cap_has_lnkctl(type, flags) \
717 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
718 (type == PCI_EXP_TYPE_ROOT_PORT || \
719 type == PCI_EXP_TYPE_ENDPOINT || \
720 type == PCI_EXP_TYPE_LEG_END))
721 #define pcie_cap_has_sltctl(type, flags) \
722 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
723 ((type == PCI_EXP_TYPE_ROOT_PORT) || \
724 (type == PCI_EXP_TYPE_DOWNSTREAM && \
725 (flags & PCI_EXP_FLAGS_SLOT))))
726 #define pcie_cap_has_rtctl(type, flags) \
727 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
728 (type == PCI_EXP_TYPE_ROOT_PORT || \
729 type == PCI_EXP_TYPE_RC_EC))
730 #define pcie_cap_has_devctl2(type, flags) \
731 ((flags & PCI_EXP_FLAGS_VERS) > 1)
732 #define pcie_cap_has_lnkctl2(type, flags) \
733 ((flags & PCI_EXP_FLAGS_VERS) > 1)
734 #define pcie_cap_has_sltctl2(type, flags) \
735 ((flags & PCI_EXP_FLAGS_VERS) > 1)
736
737 static int pci_save_pcie_state(struct pci_dev *dev)
738 {
739 int pos, i = 0;
740 struct pci_cap_saved_state *save_state;
741 u16 *cap;
742 u16 flags;
743
744 pos = pci_pcie_cap(dev);
745 if (!pos)
746 return 0;
747
748 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
749 if (!save_state) {
750 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
751 return -ENOMEM;
752 }
753 cap = (u16 *)&save_state->data[0];
754
755 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
756
757 if (pcie_cap_has_devctl(dev->pcie_type, flags))
758 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
759 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
760 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
761 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
762 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
763 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
764 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
765 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
766 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
767 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
768 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
769 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
770 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
771
772 return 0;
773 }
774
775 static void pci_restore_pcie_state(struct pci_dev *dev)
776 {
777 int i = 0, pos;
778 struct pci_cap_saved_state *save_state;
779 u16 *cap;
780 u16 flags;
781
782 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
783 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
784 if (!save_state || pos <= 0)
785 return;
786 cap = (u16 *)&save_state->data[0];
787
788 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
789
790 if (pcie_cap_has_devctl(dev->pcie_type, flags))
791 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
792 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
793 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
794 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
795 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
796 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
797 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
798 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
799 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
800 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
801 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
802 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
803 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
804 }
805
806
807 static int pci_save_pcix_state(struct pci_dev *dev)
808 {
809 int pos;
810 struct pci_cap_saved_state *save_state;
811
812 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
813 if (pos <= 0)
814 return 0;
815
816 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
817 if (!save_state) {
818 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
819 return -ENOMEM;
820 }
821
822 pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
823
824 return 0;
825 }
826
827 static void pci_restore_pcix_state(struct pci_dev *dev)
828 {
829 int i = 0, pos;
830 struct pci_cap_saved_state *save_state;
831 u16 *cap;
832
833 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
834 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
835 if (!save_state || pos <= 0)
836 return;
837 cap = (u16 *)&save_state->data[0];
838
839 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
840 }
841
842
843 /**
844 * pci_save_state - save the PCI configuration space of a device before suspending
845 * @dev: - PCI device that we're dealing with
846 */
847 int
848 pci_save_state(struct pci_dev *dev)
849 {
850 int i;
851 /* XXX: 100% dword access ok here? */
852 for (i = 0; i < 16; i++)
853 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
854 dev->state_saved = true;
855 if ((i = pci_save_pcie_state(dev)) != 0)
856 return i;
857 if ((i = pci_save_pcix_state(dev)) != 0)
858 return i;
859 return 0;
860 }
861
862 /**
863 * pci_restore_state - Restore the saved state of a PCI device
864 * @dev: - PCI device that we're dealing with
865 */
866 int
867 pci_restore_state(struct pci_dev *dev)
868 {
869 int i;
870 u32 val;
871
872 if (!dev->state_saved)
873 return 0;
874
875 /* PCI Express register must be restored first */
876 pci_restore_pcie_state(dev);
877
878 /*
879 * The Base Address register should be programmed before the command
880 * register(s)
881 */
882 for (i = 15; i >= 0; i--) {
883 pci_read_config_dword(dev, i * 4, &val);
884 if (val != dev->saved_config_space[i]) {
885 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
886 "space at offset %#x (was %#x, writing %#x)\n",
887 i, val, (int)dev->saved_config_space[i]);
888 pci_write_config_dword(dev,i * 4,
889 dev->saved_config_space[i]);
890 }
891 }
892 pci_restore_pcix_state(dev);
893 pci_restore_msi_state(dev);
894 pci_restore_iov_state(dev);
895
896 dev->state_saved = false;
897
898 return 0;
899 }
900
901 static int do_pci_enable_device(struct pci_dev *dev, int bars)
902 {
903 int err;
904
905 err = pci_set_power_state(dev, PCI_D0);
906 if (err < 0 && err != -EIO)
907 return err;
908 err = pcibios_enable_device(dev, bars);
909 if (err < 0)
910 return err;
911 pci_fixup_device(pci_fixup_enable, dev);
912
913 return 0;
914 }
915
916 /**
917 * pci_reenable_device - Resume abandoned device
918 * @dev: PCI device to be resumed
919 *
920 * Note this function is a backend of pci_default_resume and is not supposed
921 * to be called by normal code, write proper resume handler and use it instead.
922 */
923 int pci_reenable_device(struct pci_dev *dev)
924 {
925 if (pci_is_enabled(dev))
926 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
927 return 0;
928 }
929
930 static int __pci_enable_device_flags(struct pci_dev *dev,
931 resource_size_t flags)
932 {
933 int err;
934 int i, bars = 0;
935
936 if (atomic_add_return(1, &dev->enable_cnt) > 1)
937 return 0; /* already enabled */
938
939 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
940 if (dev->resource[i].flags & flags)
941 bars |= (1 << i);
942
943 err = do_pci_enable_device(dev, bars);
944 if (err < 0)
945 atomic_dec(&dev->enable_cnt);
946 return err;
947 }
948
949 /**
950 * pci_enable_device_io - Initialize a device for use with IO space
951 * @dev: PCI device to be initialized
952 *
953 * Initialize device before it's used by a driver. Ask low-level code
954 * to enable I/O resources. Wake up the device if it was suspended.
955 * Beware, this function can fail.
956 */
957 int pci_enable_device_io(struct pci_dev *dev)
958 {
959 return __pci_enable_device_flags(dev, IORESOURCE_IO);
960 }
961
962 /**
963 * pci_enable_device_mem - Initialize a device for use with Memory space
964 * @dev: PCI device to be initialized
965 *
966 * Initialize device before it's used by a driver. Ask low-level code
967 * to enable Memory resources. Wake up the device if it was suspended.
968 * Beware, this function can fail.
969 */
970 int pci_enable_device_mem(struct pci_dev *dev)
971 {
972 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
973 }
974
975 /**
976 * pci_enable_device - Initialize device before it's used by a driver.
977 * @dev: PCI device to be initialized
978 *
979 * Initialize device before it's used by a driver. Ask low-level code
980 * to enable I/O and memory. Wake up the device if it was suspended.
981 * Beware, this function can fail.
982 *
983 * Note we don't actually enable the device many times if we call
984 * this function repeatedly (we just increment the count).
985 */
986 int pci_enable_device(struct pci_dev *dev)
987 {
988 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
989 }
990
991 /*
992 * Managed PCI resources. This manages device on/off, intx/msi/msix
993 * on/off and BAR regions. pci_dev itself records msi/msix status, so
994 * there's no need to track it separately. pci_devres is initialized
995 * when a device is enabled using managed PCI device enable interface.
996 */
997 struct pci_devres {
998 unsigned int enabled:1;
999 unsigned int pinned:1;
1000 unsigned int orig_intx:1;
1001 unsigned int restore_intx:1;
1002 u32 region_mask;
1003 };
1004
1005 static void pcim_release(struct device *gendev, void *res)
1006 {
1007 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1008 struct pci_devres *this = res;
1009 int i;
1010
1011 if (dev->msi_enabled)
1012 pci_disable_msi(dev);
1013 if (dev->msix_enabled)
1014 pci_disable_msix(dev);
1015
1016 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1017 if (this->region_mask & (1 << i))
1018 pci_release_region(dev, i);
1019
1020 if (this->restore_intx)
1021 pci_intx(dev, this->orig_intx);
1022
1023 if (this->enabled && !this->pinned)
1024 pci_disable_device(dev);
1025 }
1026
1027 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1028 {
1029 struct pci_devres *dr, *new_dr;
1030
1031 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1032 if (dr)
1033 return dr;
1034
1035 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1036 if (!new_dr)
1037 return NULL;
1038 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1039 }
1040
1041 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1042 {
1043 if (pci_is_managed(pdev))
1044 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1045 return NULL;
1046 }
1047
1048 /**
1049 * pcim_enable_device - Managed pci_enable_device()
1050 * @pdev: PCI device to be initialized
1051 *
1052 * Managed pci_enable_device().
1053 */
1054 int pcim_enable_device(struct pci_dev *pdev)
1055 {
1056 struct pci_devres *dr;
1057 int rc;
1058
1059 dr = get_pci_dr(pdev);
1060 if (unlikely(!dr))
1061 return -ENOMEM;
1062 if (dr->enabled)
1063 return 0;
1064
1065 rc = pci_enable_device(pdev);
1066 if (!rc) {
1067 pdev->is_managed = 1;
1068 dr->enabled = 1;
1069 }
1070 return rc;
1071 }
1072
1073 /**
1074 * pcim_pin_device - Pin managed PCI device
1075 * @pdev: PCI device to pin
1076 *
1077 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1078 * driver detach. @pdev must have been enabled with
1079 * pcim_enable_device().
1080 */
1081 void pcim_pin_device(struct pci_dev *pdev)
1082 {
1083 struct pci_devres *dr;
1084
1085 dr = find_pci_dr(pdev);
1086 WARN_ON(!dr || !dr->enabled);
1087 if (dr)
1088 dr->pinned = 1;
1089 }
1090
1091 /**
1092 * pcibios_disable_device - disable arch specific PCI resources for device dev
1093 * @dev: the PCI device to disable
1094 *
1095 * Disables architecture specific PCI resources for the device. This
1096 * is the default implementation. Architecture implementations can
1097 * override this.
1098 */
1099 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1100
1101 static void do_pci_disable_device(struct pci_dev *dev)
1102 {
1103 u16 pci_command;
1104
1105 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1106 if (pci_command & PCI_COMMAND_MASTER) {
1107 pci_command &= ~PCI_COMMAND_MASTER;
1108 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1109 }
1110
1111 pcibios_disable_device(dev);
1112 }
1113
1114 /**
1115 * pci_disable_enabled_device - Disable device without updating enable_cnt
1116 * @dev: PCI device to disable
1117 *
1118 * NOTE: This function is a backend of PCI power management routines and is
1119 * not supposed to be called drivers.
1120 */
1121 void pci_disable_enabled_device(struct pci_dev *dev)
1122 {
1123 if (pci_is_enabled(dev))
1124 do_pci_disable_device(dev);
1125 }
1126
1127 /**
1128 * pci_disable_device - Disable PCI device after use
1129 * @dev: PCI device to be disabled
1130 *
1131 * Signal to the system that the PCI device is not in use by the system
1132 * anymore. This only involves disabling PCI bus-mastering, if active.
1133 *
1134 * Note we don't actually disable the device until all callers of
1135 * pci_device_enable() have called pci_device_disable().
1136 */
1137 void
1138 pci_disable_device(struct pci_dev *dev)
1139 {
1140 struct pci_devres *dr;
1141
1142 dr = find_pci_dr(dev);
1143 if (dr)
1144 dr->enabled = 0;
1145
1146 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1147 return;
1148
1149 do_pci_disable_device(dev);
1150
1151 dev->is_busmaster = 0;
1152 }
1153
1154 /**
1155 * pcibios_set_pcie_reset_state - set reset state for device dev
1156 * @dev: the PCI-E device reset
1157 * @state: Reset state to enter into
1158 *
1159 *
1160 * Sets the PCI-E reset state for the device. This is the default
1161 * implementation. Architecture implementations can override this.
1162 */
1163 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1164 enum pcie_reset_state state)
1165 {
1166 return -EINVAL;
1167 }
1168
1169 /**
1170 * pci_set_pcie_reset_state - set reset state for device dev
1171 * @dev: the PCI-E device reset
1172 * @state: Reset state to enter into
1173 *
1174 *
1175 * Sets the PCI reset state for the device.
1176 */
1177 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1178 {
1179 return pcibios_set_pcie_reset_state(dev, state);
1180 }
1181
1182 /**
1183 * pci_pme_capable - check the capability of PCI device to generate PME#
1184 * @dev: PCI device to handle.
1185 * @state: PCI state from which device will issue PME#.
1186 */
1187 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1188 {
1189 if (!dev->pm_cap)
1190 return false;
1191
1192 return !!(dev->pme_support & (1 << state));
1193 }
1194
1195 /**
1196 * pci_pme_active - enable or disable PCI device's PME# function
1197 * @dev: PCI device to handle.
1198 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1199 *
1200 * The caller must verify that the device is capable of generating PME# before
1201 * calling this function with @enable equal to 'true'.
1202 */
1203 void pci_pme_active(struct pci_dev *dev, bool enable)
1204 {
1205 u16 pmcsr;
1206
1207 if (!dev->pm_cap)
1208 return;
1209
1210 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1211 /* Clear PME_Status by writing 1 to it and enable PME# */
1212 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1213 if (!enable)
1214 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1215
1216 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1217
1218 dev_printk(KERN_DEBUG, &dev->dev, "PME# %s\n",
1219 enable ? "enabled" : "disabled");
1220 }
1221
1222 /**
1223 * pci_enable_wake - enable PCI device as wakeup event source
1224 * @dev: PCI device affected
1225 * @state: PCI state from which device will issue wakeup events
1226 * @enable: True to enable event generation; false to disable
1227 *
1228 * This enables the device as a wakeup event source, or disables it.
1229 * When such events involves platform-specific hooks, those hooks are
1230 * called automatically by this routine.
1231 *
1232 * Devices with legacy power management (no standard PCI PM capabilities)
1233 * always require such platform hooks.
1234 *
1235 * RETURN VALUE:
1236 * 0 is returned on success
1237 * -EINVAL is returned if device is not supposed to wake up the system
1238 * Error code depending on the platform is returned if both the platform and
1239 * the native mechanism fail to enable the generation of wake-up events
1240 */
1241 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1242 {
1243 int ret = 0;
1244
1245 if (enable && !device_may_wakeup(&dev->dev))
1246 return -EINVAL;
1247
1248 /* Don't do the same thing twice in a row for one device. */
1249 if (!!enable == !!dev->wakeup_prepared)
1250 return 0;
1251
1252 /*
1253 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1254 * Anderson we should be doing PME# wake enable followed by ACPI wake
1255 * enable. To disable wake-up we call the platform first, for symmetry.
1256 */
1257
1258 if (enable) {
1259 int error;
1260
1261 if (pci_pme_capable(dev, state))
1262 pci_pme_active(dev, true);
1263 else
1264 ret = 1;
1265 error = platform_pci_sleep_wake(dev, true);
1266 if (ret)
1267 ret = error;
1268 if (!ret)
1269 dev->wakeup_prepared = true;
1270 } else {
1271 platform_pci_sleep_wake(dev, false);
1272 pci_pme_active(dev, false);
1273 dev->wakeup_prepared = false;
1274 }
1275
1276 return ret;
1277 }
1278
1279 /**
1280 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1281 * @dev: PCI device to prepare
1282 * @enable: True to enable wake-up event generation; false to disable
1283 *
1284 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1285 * and this function allows them to set that up cleanly - pci_enable_wake()
1286 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1287 * ordering constraints.
1288 *
1289 * This function only returns error code if the device is not capable of
1290 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1291 * enable wake-up power for it.
1292 */
1293 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1294 {
1295 return pci_pme_capable(dev, PCI_D3cold) ?
1296 pci_enable_wake(dev, PCI_D3cold, enable) :
1297 pci_enable_wake(dev, PCI_D3hot, enable);
1298 }
1299
1300 /**
1301 * pci_target_state - find an appropriate low power state for a given PCI dev
1302 * @dev: PCI device
1303 *
1304 * Use underlying platform code to find a supported low power state for @dev.
1305 * If the platform can't manage @dev, return the deepest state from which it
1306 * can generate wake events, based on any available PME info.
1307 */
1308 pci_power_t pci_target_state(struct pci_dev *dev)
1309 {
1310 pci_power_t target_state = PCI_D3hot;
1311
1312 if (platform_pci_power_manageable(dev)) {
1313 /*
1314 * Call the platform to choose the target state of the device
1315 * and enable wake-up from this state if supported.
1316 */
1317 pci_power_t state = platform_pci_choose_state(dev);
1318
1319 switch (state) {
1320 case PCI_POWER_ERROR:
1321 case PCI_UNKNOWN:
1322 break;
1323 case PCI_D1:
1324 case PCI_D2:
1325 if (pci_no_d1d2(dev))
1326 break;
1327 default:
1328 target_state = state;
1329 }
1330 } else if (!dev->pm_cap) {
1331 target_state = PCI_D0;
1332 } else if (device_may_wakeup(&dev->dev)) {
1333 /*
1334 * Find the deepest state from which the device can generate
1335 * wake-up events, make it the target state and enable device
1336 * to generate PME#.
1337 */
1338 if (dev->pme_support) {
1339 while (target_state
1340 && !(dev->pme_support & (1 << target_state)))
1341 target_state--;
1342 }
1343 }
1344
1345 return target_state;
1346 }
1347
1348 /**
1349 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1350 * @dev: Device to handle.
1351 *
1352 * Choose the power state appropriate for the device depending on whether
1353 * it can wake up the system and/or is power manageable by the platform
1354 * (PCI_D3hot is the default) and put the device into that state.
1355 */
1356 int pci_prepare_to_sleep(struct pci_dev *dev)
1357 {
1358 pci_power_t target_state = pci_target_state(dev);
1359 int error;
1360
1361 if (target_state == PCI_POWER_ERROR)
1362 return -EIO;
1363
1364 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1365
1366 error = pci_set_power_state(dev, target_state);
1367
1368 if (error)
1369 pci_enable_wake(dev, target_state, false);
1370
1371 return error;
1372 }
1373
1374 /**
1375 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1376 * @dev: Device to handle.
1377 *
1378 * Disable device's sytem wake-up capability and put it into D0.
1379 */
1380 int pci_back_from_sleep(struct pci_dev *dev)
1381 {
1382 pci_enable_wake(dev, PCI_D0, false);
1383 return pci_set_power_state(dev, PCI_D0);
1384 }
1385
1386 /**
1387 * pci_pm_init - Initialize PM functions of given PCI device
1388 * @dev: PCI device to handle.
1389 */
1390 void pci_pm_init(struct pci_dev *dev)
1391 {
1392 int pm;
1393 u16 pmc;
1394
1395 dev->wakeup_prepared = false;
1396 dev->pm_cap = 0;
1397
1398 /* find PCI PM capability in list */
1399 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1400 if (!pm)
1401 return;
1402 /* Check device's ability to generate PME# */
1403 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1404
1405 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1406 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1407 pmc & PCI_PM_CAP_VER_MASK);
1408 return;
1409 }
1410
1411 dev->pm_cap = pm;
1412
1413 dev->d1_support = false;
1414 dev->d2_support = false;
1415 if (!pci_no_d1d2(dev)) {
1416 if (pmc & PCI_PM_CAP_D1)
1417 dev->d1_support = true;
1418 if (pmc & PCI_PM_CAP_D2)
1419 dev->d2_support = true;
1420
1421 if (dev->d1_support || dev->d2_support)
1422 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1423 dev->d1_support ? " D1" : "",
1424 dev->d2_support ? " D2" : "");
1425 }
1426
1427 pmc &= PCI_PM_CAP_PME_MASK;
1428 if (pmc) {
1429 dev_printk(KERN_DEBUG, &dev->dev,
1430 "PME# supported from%s%s%s%s%s\n",
1431 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1432 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1433 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1434 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1435 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1436 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1437 /*
1438 * Make device's PM flags reflect the wake-up capability, but
1439 * let the user space enable it to wake up the system as needed.
1440 */
1441 device_set_wakeup_capable(&dev->dev, true);
1442 device_set_wakeup_enable(&dev->dev, false);
1443 /* Disable the PME# generation functionality */
1444 pci_pme_active(dev, false);
1445 } else {
1446 dev->pme_support = 0;
1447 }
1448 }
1449
1450 /**
1451 * platform_pci_wakeup_init - init platform wakeup if present
1452 * @dev: PCI device
1453 *
1454 * Some devices don't have PCI PM caps but can still generate wakeup
1455 * events through platform methods (like ACPI events). If @dev supports
1456 * platform wakeup events, set the device flag to indicate as much. This
1457 * may be redundant if the device also supports PCI PM caps, but double
1458 * initialization should be safe in that case.
1459 */
1460 void platform_pci_wakeup_init(struct pci_dev *dev)
1461 {
1462 if (!platform_pci_can_wakeup(dev))
1463 return;
1464
1465 device_set_wakeup_capable(&dev->dev, true);
1466 device_set_wakeup_enable(&dev->dev, false);
1467 platform_pci_sleep_wake(dev, false);
1468 }
1469
1470 /**
1471 * pci_add_save_buffer - allocate buffer for saving given capability registers
1472 * @dev: the PCI device
1473 * @cap: the capability to allocate the buffer for
1474 * @size: requested size of the buffer
1475 */
1476 static int pci_add_cap_save_buffer(
1477 struct pci_dev *dev, char cap, unsigned int size)
1478 {
1479 int pos;
1480 struct pci_cap_saved_state *save_state;
1481
1482 pos = pci_find_capability(dev, cap);
1483 if (pos <= 0)
1484 return 0;
1485
1486 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1487 if (!save_state)
1488 return -ENOMEM;
1489
1490 save_state->cap_nr = cap;
1491 pci_add_saved_cap(dev, save_state);
1492
1493 return 0;
1494 }
1495
1496 /**
1497 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1498 * @dev: the PCI device
1499 */
1500 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1501 {
1502 int error;
1503
1504 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1505 PCI_EXP_SAVE_REGS * sizeof(u16));
1506 if (error)
1507 dev_err(&dev->dev,
1508 "unable to preallocate PCI Express save buffer\n");
1509
1510 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1511 if (error)
1512 dev_err(&dev->dev,
1513 "unable to preallocate PCI-X save buffer\n");
1514 }
1515
1516 /**
1517 * pci_enable_ari - enable ARI forwarding if hardware support it
1518 * @dev: the PCI device
1519 */
1520 void pci_enable_ari(struct pci_dev *dev)
1521 {
1522 int pos;
1523 u32 cap;
1524 u16 ctrl;
1525 struct pci_dev *bridge;
1526
1527 if (!pci_is_pcie(dev) || dev->devfn)
1528 return;
1529
1530 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1531 if (!pos)
1532 return;
1533
1534 bridge = dev->bus->self;
1535 if (!bridge || !pci_is_pcie(bridge))
1536 return;
1537
1538 pos = pci_pcie_cap(bridge);
1539 if (!pos)
1540 return;
1541
1542 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1543 if (!(cap & PCI_EXP_DEVCAP2_ARI))
1544 return;
1545
1546 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1547 ctrl |= PCI_EXP_DEVCTL2_ARI;
1548 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1549
1550 bridge->ari_enabled = 1;
1551 }
1552
1553 static int pci_acs_enable;
1554
1555 /**
1556 * pci_request_acs - ask for ACS to be enabled if supported
1557 */
1558 void pci_request_acs(void)
1559 {
1560 pci_acs_enable = 1;
1561 }
1562
1563 /**
1564 * pci_enable_acs - enable ACS if hardware support it
1565 * @dev: the PCI device
1566 */
1567 void pci_enable_acs(struct pci_dev *dev)
1568 {
1569 int pos;
1570 u16 cap;
1571 u16 ctrl;
1572
1573 if (!pci_acs_enable)
1574 return;
1575
1576 if (!pci_is_pcie(dev))
1577 return;
1578
1579 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
1580 if (!pos)
1581 return;
1582
1583 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
1584 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
1585
1586 /* Source Validation */
1587 ctrl |= (cap & PCI_ACS_SV);
1588
1589 /* P2P Request Redirect */
1590 ctrl |= (cap & PCI_ACS_RR);
1591
1592 /* P2P Completion Redirect */
1593 ctrl |= (cap & PCI_ACS_CR);
1594
1595 /* Upstream Forwarding */
1596 ctrl |= (cap & PCI_ACS_UF);
1597
1598 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1599 }
1600
1601 /**
1602 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1603 * @dev: the PCI device
1604 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1605 *
1606 * Perform INTx swizzling for a device behind one level of bridge. This is
1607 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1608 * behind bridges on add-in cards. For devices with ARI enabled, the slot
1609 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
1610 * the PCI Express Base Specification, Revision 2.1)
1611 */
1612 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1613 {
1614 int slot;
1615
1616 if (pci_ari_enabled(dev->bus))
1617 slot = 0;
1618 else
1619 slot = PCI_SLOT(dev->devfn);
1620
1621 return (((pin - 1) + slot) % 4) + 1;
1622 }
1623
1624 int
1625 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1626 {
1627 u8 pin;
1628
1629 pin = dev->pin;
1630 if (!pin)
1631 return -1;
1632
1633 while (!pci_is_root_bus(dev->bus)) {
1634 pin = pci_swizzle_interrupt_pin(dev, pin);
1635 dev = dev->bus->self;
1636 }
1637 *bridge = dev;
1638 return pin;
1639 }
1640
1641 /**
1642 * pci_common_swizzle - swizzle INTx all the way to root bridge
1643 * @dev: the PCI device
1644 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1645 *
1646 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
1647 * bridges all the way up to a PCI root bus.
1648 */
1649 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
1650 {
1651 u8 pin = *pinp;
1652
1653 while (!pci_is_root_bus(dev->bus)) {
1654 pin = pci_swizzle_interrupt_pin(dev, pin);
1655 dev = dev->bus->self;
1656 }
1657 *pinp = pin;
1658 return PCI_SLOT(dev->devfn);
1659 }
1660
1661 /**
1662 * pci_release_region - Release a PCI bar
1663 * @pdev: PCI device whose resources were previously reserved by pci_request_region
1664 * @bar: BAR to release
1665 *
1666 * Releases the PCI I/O and memory resources previously reserved by a
1667 * successful call to pci_request_region. Call this function only
1668 * after all use of the PCI regions has ceased.
1669 */
1670 void pci_release_region(struct pci_dev *pdev, int bar)
1671 {
1672 struct pci_devres *dr;
1673
1674 if (pci_resource_len(pdev, bar) == 0)
1675 return;
1676 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1677 release_region(pci_resource_start(pdev, bar),
1678 pci_resource_len(pdev, bar));
1679 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1680 release_mem_region(pci_resource_start(pdev, bar),
1681 pci_resource_len(pdev, bar));
1682
1683 dr = find_pci_dr(pdev);
1684 if (dr)
1685 dr->region_mask &= ~(1 << bar);
1686 }
1687
1688 /**
1689 * __pci_request_region - Reserved PCI I/O and memory resource
1690 * @pdev: PCI device whose resources are to be reserved
1691 * @bar: BAR to be reserved
1692 * @res_name: Name to be associated with resource.
1693 * @exclusive: whether the region access is exclusive or not
1694 *
1695 * Mark the PCI region associated with PCI device @pdev BR @bar as
1696 * being reserved by owner @res_name. Do not access any
1697 * address inside the PCI regions unless this call returns
1698 * successfully.
1699 *
1700 * If @exclusive is set, then the region is marked so that userspace
1701 * is explicitly not allowed to map the resource via /dev/mem or
1702 * sysfs MMIO access.
1703 *
1704 * Returns 0 on success, or %EBUSY on error. A warning
1705 * message is also printed on failure.
1706 */
1707 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1708 int exclusive)
1709 {
1710 struct pci_devres *dr;
1711
1712 if (pci_resource_len(pdev, bar) == 0)
1713 return 0;
1714
1715 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1716 if (!request_region(pci_resource_start(pdev, bar),
1717 pci_resource_len(pdev, bar), res_name))
1718 goto err_out;
1719 }
1720 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1721 if (!__request_mem_region(pci_resource_start(pdev, bar),
1722 pci_resource_len(pdev, bar), res_name,
1723 exclusive))
1724 goto err_out;
1725 }
1726
1727 dr = find_pci_dr(pdev);
1728 if (dr)
1729 dr->region_mask |= 1 << bar;
1730
1731 return 0;
1732
1733 err_out:
1734 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
1735 &pdev->resource[bar]);
1736 return -EBUSY;
1737 }
1738
1739 /**
1740 * pci_request_region - Reserve PCI I/O and memory resource
1741 * @pdev: PCI device whose resources are to be reserved
1742 * @bar: BAR to be reserved
1743 * @res_name: Name to be associated with resource
1744 *
1745 * Mark the PCI region associated with PCI device @pdev BAR @bar as
1746 * being reserved by owner @res_name. Do not access any
1747 * address inside the PCI regions unless this call returns
1748 * successfully.
1749 *
1750 * Returns 0 on success, or %EBUSY on error. A warning
1751 * message is also printed on failure.
1752 */
1753 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1754 {
1755 return __pci_request_region(pdev, bar, res_name, 0);
1756 }
1757
1758 /**
1759 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
1760 * @pdev: PCI device whose resources are to be reserved
1761 * @bar: BAR to be reserved
1762 * @res_name: Name to be associated with resource.
1763 *
1764 * Mark the PCI region associated with PCI device @pdev BR @bar as
1765 * being reserved by owner @res_name. Do not access any
1766 * address inside the PCI regions unless this call returns
1767 * successfully.
1768 *
1769 * Returns 0 on success, or %EBUSY on error. A warning
1770 * message is also printed on failure.
1771 *
1772 * The key difference that _exclusive makes it that userspace is
1773 * explicitly not allowed to map the resource via /dev/mem or
1774 * sysfs.
1775 */
1776 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
1777 {
1778 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
1779 }
1780 /**
1781 * pci_release_selected_regions - Release selected PCI I/O and memory resources
1782 * @pdev: PCI device whose resources were previously reserved
1783 * @bars: Bitmask of BARs to be released
1784 *
1785 * Release selected PCI I/O and memory resources previously reserved.
1786 * Call this function only after all use of the PCI regions has ceased.
1787 */
1788 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1789 {
1790 int i;
1791
1792 for (i = 0; i < 6; i++)
1793 if (bars & (1 << i))
1794 pci_release_region(pdev, i);
1795 }
1796
1797 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
1798 const char *res_name, int excl)
1799 {
1800 int i;
1801
1802 for (i = 0; i < 6; i++)
1803 if (bars & (1 << i))
1804 if (__pci_request_region(pdev, i, res_name, excl))
1805 goto err_out;
1806 return 0;
1807
1808 err_out:
1809 while(--i >= 0)
1810 if (bars & (1 << i))
1811 pci_release_region(pdev, i);
1812
1813 return -EBUSY;
1814 }
1815
1816
1817 /**
1818 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1819 * @pdev: PCI device whose resources are to be reserved
1820 * @bars: Bitmask of BARs to be requested
1821 * @res_name: Name to be associated with resource
1822 */
1823 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1824 const char *res_name)
1825 {
1826 return __pci_request_selected_regions(pdev, bars, res_name, 0);
1827 }
1828
1829 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
1830 int bars, const char *res_name)
1831 {
1832 return __pci_request_selected_regions(pdev, bars, res_name,
1833 IORESOURCE_EXCLUSIVE);
1834 }
1835
1836 /**
1837 * pci_release_regions - Release reserved PCI I/O and memory resources
1838 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
1839 *
1840 * Releases all PCI I/O and memory resources previously reserved by a
1841 * successful call to pci_request_regions. Call this function only
1842 * after all use of the PCI regions has ceased.
1843 */
1844
1845 void pci_release_regions(struct pci_dev *pdev)
1846 {
1847 pci_release_selected_regions(pdev, (1 << 6) - 1);
1848 }
1849
1850 /**
1851 * pci_request_regions - Reserved PCI I/O and memory resources
1852 * @pdev: PCI device whose resources are to be reserved
1853 * @res_name: Name to be associated with resource.
1854 *
1855 * Mark all PCI regions associated with PCI device @pdev as
1856 * being reserved by owner @res_name. Do not access any
1857 * address inside the PCI regions unless this call returns
1858 * successfully.
1859 *
1860 * Returns 0 on success, or %EBUSY on error. A warning
1861 * message is also printed on failure.
1862 */
1863 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1864 {
1865 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1866 }
1867
1868 /**
1869 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
1870 * @pdev: PCI device whose resources are to be reserved
1871 * @res_name: Name to be associated with resource.
1872 *
1873 * Mark all PCI regions associated with PCI device @pdev as
1874 * being reserved by owner @res_name. Do not access any
1875 * address inside the PCI regions unless this call returns
1876 * successfully.
1877 *
1878 * pci_request_regions_exclusive() will mark the region so that
1879 * /dev/mem and the sysfs MMIO access will not be allowed.
1880 *
1881 * Returns 0 on success, or %EBUSY on error. A warning
1882 * message is also printed on failure.
1883 */
1884 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
1885 {
1886 return pci_request_selected_regions_exclusive(pdev,
1887 ((1 << 6) - 1), res_name);
1888 }
1889
1890 static void __pci_set_master(struct pci_dev *dev, bool enable)
1891 {
1892 u16 old_cmd, cmd;
1893
1894 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
1895 if (enable)
1896 cmd = old_cmd | PCI_COMMAND_MASTER;
1897 else
1898 cmd = old_cmd & ~PCI_COMMAND_MASTER;
1899 if (cmd != old_cmd) {
1900 dev_dbg(&dev->dev, "%s bus mastering\n",
1901 enable ? "enabling" : "disabling");
1902 pci_write_config_word(dev, PCI_COMMAND, cmd);
1903 }
1904 dev->is_busmaster = enable;
1905 }
1906
1907 /**
1908 * pci_set_master - enables bus-mastering for device dev
1909 * @dev: the PCI device to enable
1910 *
1911 * Enables bus-mastering on the device and calls pcibios_set_master()
1912 * to do the needed arch specific settings.
1913 */
1914 void pci_set_master(struct pci_dev *dev)
1915 {
1916 __pci_set_master(dev, true);
1917 pcibios_set_master(dev);
1918 }
1919
1920 /**
1921 * pci_clear_master - disables bus-mastering for device dev
1922 * @dev: the PCI device to disable
1923 */
1924 void pci_clear_master(struct pci_dev *dev)
1925 {
1926 __pci_set_master(dev, false);
1927 }
1928
1929 /**
1930 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
1931 * @dev: the PCI device for which MWI is to be enabled
1932 *
1933 * Helper function for pci_set_mwi.
1934 * Originally copied from drivers/net/acenic.c.
1935 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
1936 *
1937 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1938 */
1939 int pci_set_cacheline_size(struct pci_dev *dev)
1940 {
1941 u8 cacheline_size;
1942
1943 if (!pci_cache_line_size)
1944 return -EINVAL;
1945
1946 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
1947 equal to or multiple of the right value. */
1948 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1949 if (cacheline_size >= pci_cache_line_size &&
1950 (cacheline_size % pci_cache_line_size) == 0)
1951 return 0;
1952
1953 /* Write the correct value. */
1954 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
1955 /* Read it back. */
1956 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1957 if (cacheline_size == pci_cache_line_size)
1958 return 0;
1959
1960 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
1961 "supported\n", pci_cache_line_size << 2);
1962
1963 return -EINVAL;
1964 }
1965 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
1966
1967 #ifdef PCI_DISABLE_MWI
1968 int pci_set_mwi(struct pci_dev *dev)
1969 {
1970 return 0;
1971 }
1972
1973 int pci_try_set_mwi(struct pci_dev *dev)
1974 {
1975 return 0;
1976 }
1977
1978 void pci_clear_mwi(struct pci_dev *dev)
1979 {
1980 }
1981
1982 #else
1983
1984 /**
1985 * pci_set_mwi - enables memory-write-invalidate PCI transaction
1986 * @dev: the PCI device for which MWI is enabled
1987 *
1988 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1989 *
1990 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1991 */
1992 int
1993 pci_set_mwi(struct pci_dev *dev)
1994 {
1995 int rc;
1996 u16 cmd;
1997
1998 rc = pci_set_cacheline_size(dev);
1999 if (rc)
2000 return rc;
2001
2002 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2003 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2004 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2005 cmd |= PCI_COMMAND_INVALIDATE;
2006 pci_write_config_word(dev, PCI_COMMAND, cmd);
2007 }
2008
2009 return 0;
2010 }
2011
2012 /**
2013 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2014 * @dev: the PCI device for which MWI is enabled
2015 *
2016 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2017 * Callers are not required to check the return value.
2018 *
2019 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2020 */
2021 int pci_try_set_mwi(struct pci_dev *dev)
2022 {
2023 int rc = pci_set_mwi(dev);
2024 return rc;
2025 }
2026
2027 /**
2028 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2029 * @dev: the PCI device to disable
2030 *
2031 * Disables PCI Memory-Write-Invalidate transaction on the device
2032 */
2033 void
2034 pci_clear_mwi(struct pci_dev *dev)
2035 {
2036 u16 cmd;
2037
2038 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2039 if (cmd & PCI_COMMAND_INVALIDATE) {
2040 cmd &= ~PCI_COMMAND_INVALIDATE;
2041 pci_write_config_word(dev, PCI_COMMAND, cmd);
2042 }
2043 }
2044 #endif /* ! PCI_DISABLE_MWI */
2045
2046 /**
2047 * pci_intx - enables/disables PCI INTx for device dev
2048 * @pdev: the PCI device to operate on
2049 * @enable: boolean: whether to enable or disable PCI INTx
2050 *
2051 * Enables/disables PCI INTx for device dev
2052 */
2053 void
2054 pci_intx(struct pci_dev *pdev, int enable)
2055 {
2056 u16 pci_command, new;
2057
2058 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2059
2060 if (enable) {
2061 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2062 } else {
2063 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2064 }
2065
2066 if (new != pci_command) {
2067 struct pci_devres *dr;
2068
2069 pci_write_config_word(pdev, PCI_COMMAND, new);
2070
2071 dr = find_pci_dr(pdev);
2072 if (dr && !dr->restore_intx) {
2073 dr->restore_intx = 1;
2074 dr->orig_intx = !enable;
2075 }
2076 }
2077 }
2078
2079 /**
2080 * pci_msi_off - disables any msi or msix capabilities
2081 * @dev: the PCI device to operate on
2082 *
2083 * If you want to use msi see pci_enable_msi and friends.
2084 * This is a lower level primitive that allows us to disable
2085 * msi operation at the device level.
2086 */
2087 void pci_msi_off(struct pci_dev *dev)
2088 {
2089 int pos;
2090 u16 control;
2091
2092 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2093 if (pos) {
2094 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2095 control &= ~PCI_MSI_FLAGS_ENABLE;
2096 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2097 }
2098 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2099 if (pos) {
2100 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2101 control &= ~PCI_MSIX_FLAGS_ENABLE;
2102 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2103 }
2104 }
2105
2106 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
2107 /*
2108 * These can be overridden by arch-specific implementations
2109 */
2110 int
2111 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
2112 {
2113 if (!pci_dma_supported(dev, mask))
2114 return -EIO;
2115
2116 dev->dma_mask = mask;
2117 dev_dbg(&dev->dev, "using %dbit DMA mask\n", fls64(mask));
2118
2119 return 0;
2120 }
2121
2122 int
2123 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
2124 {
2125 if (!pci_dma_supported(dev, mask))
2126 return -EIO;
2127
2128 dev->dev.coherent_dma_mask = mask;
2129 dev_dbg(&dev->dev, "using %dbit consistent DMA mask\n", fls64(mask));
2130
2131 return 0;
2132 }
2133 #endif
2134
2135 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
2136 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2137 {
2138 return dma_set_max_seg_size(&dev->dev, size);
2139 }
2140 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2141 #endif
2142
2143 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
2144 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2145 {
2146 return dma_set_seg_boundary(&dev->dev, mask);
2147 }
2148 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2149 #endif
2150
2151 static int pcie_flr(struct pci_dev *dev, int probe)
2152 {
2153 int i;
2154 int pos;
2155 u32 cap;
2156 u16 status, control;
2157
2158 pos = pci_pcie_cap(dev);
2159 if (!pos)
2160 return -ENOTTY;
2161
2162 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
2163 if (!(cap & PCI_EXP_DEVCAP_FLR))
2164 return -ENOTTY;
2165
2166 if (probe)
2167 return 0;
2168
2169 /* Wait for Transaction Pending bit clean */
2170 for (i = 0; i < 4; i++) {
2171 if (i)
2172 msleep((1 << (i - 1)) * 100);
2173
2174 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
2175 if (!(status & PCI_EXP_DEVSTA_TRPND))
2176 goto clear;
2177 }
2178
2179 dev_err(&dev->dev, "transaction is not cleared; "
2180 "proceeding with reset anyway\n");
2181
2182 clear:
2183 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &control);
2184 control |= PCI_EXP_DEVCTL_BCR_FLR;
2185 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, control);
2186
2187 msleep(100);
2188
2189 return 0;
2190 }
2191
2192 static int pci_af_flr(struct pci_dev *dev, int probe)
2193 {
2194 int i;
2195 int pos;
2196 u8 cap;
2197 u8 status;
2198
2199 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
2200 if (!pos)
2201 return -ENOTTY;
2202
2203 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
2204 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2205 return -ENOTTY;
2206
2207 if (probe)
2208 return 0;
2209
2210 /* Wait for Transaction Pending bit clean */
2211 for (i = 0; i < 4; i++) {
2212 if (i)
2213 msleep((1 << (i - 1)) * 100);
2214
2215 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
2216 if (!(status & PCI_AF_STATUS_TP))
2217 goto clear;
2218 }
2219
2220 dev_err(&dev->dev, "transaction is not cleared; "
2221 "proceeding with reset anyway\n");
2222
2223 clear:
2224 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2225 msleep(100);
2226
2227 return 0;
2228 }
2229
2230 static int pci_pm_reset(struct pci_dev *dev, int probe)
2231 {
2232 u16 csr;
2233
2234 if (!dev->pm_cap)
2235 return -ENOTTY;
2236
2237 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
2238 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
2239 return -ENOTTY;
2240
2241 if (probe)
2242 return 0;
2243
2244 if (dev->current_state != PCI_D0)
2245 return -EINVAL;
2246
2247 csr &= ~PCI_PM_CTRL_STATE_MASK;
2248 csr |= PCI_D3hot;
2249 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2250 msleep(pci_pm_d3_delay);
2251
2252 csr &= ~PCI_PM_CTRL_STATE_MASK;
2253 csr |= PCI_D0;
2254 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2255 msleep(pci_pm_d3_delay);
2256
2257 return 0;
2258 }
2259
2260 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
2261 {
2262 u16 ctrl;
2263 struct pci_dev *pdev;
2264
2265 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
2266 return -ENOTTY;
2267
2268 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
2269 if (pdev != dev)
2270 return -ENOTTY;
2271
2272 if (probe)
2273 return 0;
2274
2275 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
2276 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
2277 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2278 msleep(100);
2279
2280 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
2281 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2282 msleep(100);
2283
2284 return 0;
2285 }
2286
2287 static int pci_dev_reset(struct pci_dev *dev, int probe)
2288 {
2289 int rc;
2290
2291 might_sleep();
2292
2293 if (!probe) {
2294 pci_block_user_cfg_access(dev);
2295 /* block PM suspend, driver probe, etc. */
2296 down(&dev->dev.sem);
2297 }
2298
2299 rc = pcie_flr(dev, probe);
2300 if (rc != -ENOTTY)
2301 goto done;
2302
2303 rc = pci_af_flr(dev, probe);
2304 if (rc != -ENOTTY)
2305 goto done;
2306
2307 rc = pci_pm_reset(dev, probe);
2308 if (rc != -ENOTTY)
2309 goto done;
2310
2311 rc = pci_parent_bus_reset(dev, probe);
2312 done:
2313 if (!probe) {
2314 up(&dev->dev.sem);
2315 pci_unblock_user_cfg_access(dev);
2316 }
2317
2318 return rc;
2319 }
2320
2321 /**
2322 * __pci_reset_function - reset a PCI device function
2323 * @dev: PCI device to reset
2324 *
2325 * Some devices allow an individual function to be reset without affecting
2326 * other functions in the same device. The PCI device must be responsive
2327 * to PCI config space in order to use this function.
2328 *
2329 * The device function is presumed to be unused when this function is called.
2330 * Resetting the device will make the contents of PCI configuration space
2331 * random, so any caller of this must be prepared to reinitialise the
2332 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
2333 * etc.
2334 *
2335 * Returns 0 if the device function was successfully reset or negative if the
2336 * device doesn't support resetting a single function.
2337 */
2338 int __pci_reset_function(struct pci_dev *dev)
2339 {
2340 return pci_dev_reset(dev, 0);
2341 }
2342 EXPORT_SYMBOL_GPL(__pci_reset_function);
2343
2344 /**
2345 * pci_probe_reset_function - check whether the device can be safely reset
2346 * @dev: PCI device to reset
2347 *
2348 * Some devices allow an individual function to be reset without affecting
2349 * other functions in the same device. The PCI device must be responsive
2350 * to PCI config space in order to use this function.
2351 *
2352 * Returns 0 if the device function can be reset or negative if the
2353 * device doesn't support resetting a single function.
2354 */
2355 int pci_probe_reset_function(struct pci_dev *dev)
2356 {
2357 return pci_dev_reset(dev, 1);
2358 }
2359
2360 /**
2361 * pci_reset_function - quiesce and reset a PCI device function
2362 * @dev: PCI device to reset
2363 *
2364 * Some devices allow an individual function to be reset without affecting
2365 * other functions in the same device. The PCI device must be responsive
2366 * to PCI config space in order to use this function.
2367 *
2368 * This function does not just reset the PCI portion of a device, but
2369 * clears all the state associated with the device. This function differs
2370 * from __pci_reset_function in that it saves and restores device state
2371 * over the reset.
2372 *
2373 * Returns 0 if the device function was successfully reset or negative if the
2374 * device doesn't support resetting a single function.
2375 */
2376 int pci_reset_function(struct pci_dev *dev)
2377 {
2378 int rc;
2379
2380 rc = pci_dev_reset(dev, 1);
2381 if (rc)
2382 return rc;
2383
2384 pci_save_state(dev);
2385
2386 /*
2387 * both INTx and MSI are disabled after the Interrupt Disable bit
2388 * is set and the Bus Master bit is cleared.
2389 */
2390 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2391
2392 rc = pci_dev_reset(dev, 0);
2393
2394 pci_restore_state(dev);
2395
2396 return rc;
2397 }
2398 EXPORT_SYMBOL_GPL(pci_reset_function);
2399
2400 /**
2401 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2402 * @dev: PCI device to query
2403 *
2404 * Returns mmrbc: maximum designed memory read count in bytes
2405 * or appropriate error value.
2406 */
2407 int pcix_get_max_mmrbc(struct pci_dev *dev)
2408 {
2409 int err, cap;
2410 u32 stat;
2411
2412 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2413 if (!cap)
2414 return -EINVAL;
2415
2416 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2417 if (err)
2418 return -EINVAL;
2419
2420 return (stat & PCI_X_STATUS_MAX_READ) >> 12;
2421 }
2422 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2423
2424 /**
2425 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2426 * @dev: PCI device to query
2427 *
2428 * Returns mmrbc: maximum memory read count in bytes
2429 * or appropriate error value.
2430 */
2431 int pcix_get_mmrbc(struct pci_dev *dev)
2432 {
2433 int ret, cap;
2434 u32 cmd;
2435
2436 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2437 if (!cap)
2438 return -EINVAL;
2439
2440 ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2441 if (!ret)
2442 ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2443
2444 return ret;
2445 }
2446 EXPORT_SYMBOL(pcix_get_mmrbc);
2447
2448 /**
2449 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2450 * @dev: PCI device to query
2451 * @mmrbc: maximum memory read count in bytes
2452 * valid values are 512, 1024, 2048, 4096
2453 *
2454 * If possible sets maximum memory read byte count, some bridges have erratas
2455 * that prevent this.
2456 */
2457 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2458 {
2459 int cap, err = -EINVAL;
2460 u32 stat, cmd, v, o;
2461
2462 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2463 goto out;
2464
2465 v = ffs(mmrbc) - 10;
2466
2467 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2468 if (!cap)
2469 goto out;
2470
2471 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2472 if (err)
2473 goto out;
2474
2475 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2476 return -E2BIG;
2477
2478 err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2479 if (err)
2480 goto out;
2481
2482 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2483 if (o != v) {
2484 if (v > o && dev->bus &&
2485 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2486 return -EIO;
2487
2488 cmd &= ~PCI_X_CMD_MAX_READ;
2489 cmd |= v << 2;
2490 err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
2491 }
2492 out:
2493 return err;
2494 }
2495 EXPORT_SYMBOL(pcix_set_mmrbc);
2496
2497 /**
2498 * pcie_get_readrq - get PCI Express read request size
2499 * @dev: PCI device to query
2500 *
2501 * Returns maximum memory read request in bytes
2502 * or appropriate error value.
2503 */
2504 int pcie_get_readrq(struct pci_dev *dev)
2505 {
2506 int ret, cap;
2507 u16 ctl;
2508
2509 cap = pci_pcie_cap(dev);
2510 if (!cap)
2511 return -EINVAL;
2512
2513 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2514 if (!ret)
2515 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2516
2517 return ret;
2518 }
2519 EXPORT_SYMBOL(pcie_get_readrq);
2520
2521 /**
2522 * pcie_set_readrq - set PCI Express maximum memory read request
2523 * @dev: PCI device to query
2524 * @rq: maximum memory read count in bytes
2525 * valid values are 128, 256, 512, 1024, 2048, 4096
2526 *
2527 * If possible sets maximum read byte count
2528 */
2529 int pcie_set_readrq(struct pci_dev *dev, int rq)
2530 {
2531 int cap, err = -EINVAL;
2532 u16 ctl, v;
2533
2534 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2535 goto out;
2536
2537 v = (ffs(rq) - 8) << 12;
2538
2539 cap = pci_pcie_cap(dev);
2540 if (!cap)
2541 goto out;
2542
2543 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2544 if (err)
2545 goto out;
2546
2547 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2548 ctl &= ~PCI_EXP_DEVCTL_READRQ;
2549 ctl |= v;
2550 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2551 }
2552
2553 out:
2554 return err;
2555 }
2556 EXPORT_SYMBOL(pcie_set_readrq);
2557
2558 /**
2559 * pci_select_bars - Make BAR mask from the type of resource
2560 * @dev: the PCI device for which BAR mask is made
2561 * @flags: resource type mask to be selected
2562 *
2563 * This helper routine makes bar mask from the type of resource.
2564 */
2565 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2566 {
2567 int i, bars = 0;
2568 for (i = 0; i < PCI_NUM_RESOURCES; i++)
2569 if (pci_resource_flags(dev, i) & flags)
2570 bars |= (1 << i);
2571 return bars;
2572 }
2573
2574 /**
2575 * pci_resource_bar - get position of the BAR associated with a resource
2576 * @dev: the PCI device
2577 * @resno: the resource number
2578 * @type: the BAR type to be filled in
2579 *
2580 * Returns BAR position in config space, or 0 if the BAR is invalid.
2581 */
2582 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2583 {
2584 int reg;
2585
2586 if (resno < PCI_ROM_RESOURCE) {
2587 *type = pci_bar_unknown;
2588 return PCI_BASE_ADDRESS_0 + 4 * resno;
2589 } else if (resno == PCI_ROM_RESOURCE) {
2590 *type = pci_bar_mem32;
2591 return dev->rom_base_reg;
2592 } else if (resno < PCI_BRIDGE_RESOURCES) {
2593 /* device specific resource */
2594 reg = pci_iov_resource_bar(dev, resno, type);
2595 if (reg)
2596 return reg;
2597 }
2598
2599 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
2600 return 0;
2601 }
2602
2603 /**
2604 * pci_set_vga_state - set VGA decode state on device and parents if requested
2605 * @dev: the PCI device
2606 * @decode: true = enable decoding, false = disable decoding
2607 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
2608 * @change_bridge: traverse ancestors and change bridges
2609 */
2610 int pci_set_vga_state(struct pci_dev *dev, bool decode,
2611 unsigned int command_bits, bool change_bridge)
2612 {
2613 struct pci_bus *bus;
2614 struct pci_dev *bridge;
2615 u16 cmd;
2616
2617 WARN_ON(command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY));
2618
2619 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2620 if (decode == true)
2621 cmd |= command_bits;
2622 else
2623 cmd &= ~command_bits;
2624 pci_write_config_word(dev, PCI_COMMAND, cmd);
2625
2626 if (change_bridge == false)
2627 return 0;
2628
2629 bus = dev->bus;
2630 while (bus) {
2631 bridge = bus->self;
2632 if (bridge) {
2633 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
2634 &cmd);
2635 if (decode == true)
2636 cmd |= PCI_BRIDGE_CTL_VGA;
2637 else
2638 cmd &= ~PCI_BRIDGE_CTL_VGA;
2639 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
2640 cmd);
2641 }
2642 bus = bus->parent;
2643 }
2644 return 0;
2645 }
2646
2647 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
2648 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
2649 static DEFINE_SPINLOCK(resource_alignment_lock);
2650
2651 /**
2652 * pci_specified_resource_alignment - get resource alignment specified by user.
2653 * @dev: the PCI device to get
2654 *
2655 * RETURNS: Resource alignment if it is specified.
2656 * Zero if it is not specified.
2657 */
2658 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
2659 {
2660 int seg, bus, slot, func, align_order, count;
2661 resource_size_t align = 0;
2662 char *p;
2663
2664 spin_lock(&resource_alignment_lock);
2665 p = resource_alignment_param;
2666 while (*p) {
2667 count = 0;
2668 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
2669 p[count] == '@') {
2670 p += count + 1;
2671 } else {
2672 align_order = -1;
2673 }
2674 if (sscanf(p, "%x:%x:%x.%x%n",
2675 &seg, &bus, &slot, &func, &count) != 4) {
2676 seg = 0;
2677 if (sscanf(p, "%x:%x.%x%n",
2678 &bus, &slot, &func, &count) != 3) {
2679 /* Invalid format */
2680 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
2681 p);
2682 break;
2683 }
2684 }
2685 p += count;
2686 if (seg == pci_domain_nr(dev->bus) &&
2687 bus == dev->bus->number &&
2688 slot == PCI_SLOT(dev->devfn) &&
2689 func == PCI_FUNC(dev->devfn)) {
2690 if (align_order == -1) {
2691 align = PAGE_SIZE;
2692 } else {
2693 align = 1 << align_order;
2694 }
2695 /* Found */
2696 break;
2697 }
2698 if (*p != ';' && *p != ',') {
2699 /* End of param or invalid format */
2700 break;
2701 }
2702 p++;
2703 }
2704 spin_unlock(&resource_alignment_lock);
2705 return align;
2706 }
2707
2708 /**
2709 * pci_is_reassigndev - check if specified PCI is target device to reassign
2710 * @dev: the PCI device to check
2711 *
2712 * RETURNS: non-zero for PCI device is a target device to reassign,
2713 * or zero is not.
2714 */
2715 int pci_is_reassigndev(struct pci_dev *dev)
2716 {
2717 return (pci_specified_resource_alignment(dev) != 0);
2718 }
2719
2720 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
2721 {
2722 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
2723 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
2724 spin_lock(&resource_alignment_lock);
2725 strncpy(resource_alignment_param, buf, count);
2726 resource_alignment_param[count] = '\0';
2727 spin_unlock(&resource_alignment_lock);
2728 return count;
2729 }
2730
2731 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
2732 {
2733 size_t count;
2734 spin_lock(&resource_alignment_lock);
2735 count = snprintf(buf, size, "%s", resource_alignment_param);
2736 spin_unlock(&resource_alignment_lock);
2737 return count;
2738 }
2739
2740 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
2741 {
2742 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
2743 }
2744
2745 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
2746 const char *buf, size_t count)
2747 {
2748 return pci_set_resource_alignment_param(buf, count);
2749 }
2750
2751 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
2752 pci_resource_alignment_store);
2753
2754 static int __init pci_resource_alignment_sysfs_init(void)
2755 {
2756 return bus_create_file(&pci_bus_type,
2757 &bus_attr_resource_alignment);
2758 }
2759
2760 late_initcall(pci_resource_alignment_sysfs_init);
2761
2762 static void __devinit pci_no_domains(void)
2763 {
2764 #ifdef CONFIG_PCI_DOMAINS
2765 pci_domains_supported = 0;
2766 #endif
2767 }
2768
2769 /**
2770 * pci_ext_cfg_enabled - can we access extended PCI config space?
2771 * @dev: The PCI device of the root bridge.
2772 *
2773 * Returns 1 if we can access PCI extended config space (offsets
2774 * greater than 0xff). This is the default implementation. Architecture
2775 * implementations can override this.
2776 */
2777 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
2778 {
2779 return 1;
2780 }
2781
2782 static int __init pci_setup(char *str)
2783 {
2784 while (str) {
2785 char *k = strchr(str, ',');
2786 if (k)
2787 *k++ = 0;
2788 if (*str && (str = pcibios_setup(str)) && *str) {
2789 if (!strcmp(str, "nomsi")) {
2790 pci_no_msi();
2791 } else if (!strcmp(str, "noaer")) {
2792 pci_no_aer();
2793 } else if (!strcmp(str, "nodomains")) {
2794 pci_no_domains();
2795 } else if (!strncmp(str, "cbiosize=", 9)) {
2796 pci_cardbus_io_size = memparse(str + 9, &str);
2797 } else if (!strncmp(str, "cbmemsize=", 10)) {
2798 pci_cardbus_mem_size = memparse(str + 10, &str);
2799 } else if (!strncmp(str, "resource_alignment=", 19)) {
2800 pci_set_resource_alignment_param(str + 19,
2801 strlen(str + 19));
2802 } else if (!strncmp(str, "ecrc=", 5)) {
2803 pcie_ecrc_get_policy(str + 5);
2804 } else if (!strncmp(str, "hpiosize=", 9)) {
2805 pci_hotplug_io_size = memparse(str + 9, &str);
2806 } else if (!strncmp(str, "hpmemsize=", 10)) {
2807 pci_hotplug_mem_size = memparse(str + 10, &str);
2808 } else {
2809 printk(KERN_ERR "PCI: Unknown option `%s'\n",
2810 str);
2811 }
2812 }
2813 str = k;
2814 }
2815 return 0;
2816 }
2817 early_param("pci", pci_setup);
2818
2819 EXPORT_SYMBOL(pci_reenable_device);
2820 EXPORT_SYMBOL(pci_enable_device_io);
2821 EXPORT_SYMBOL(pci_enable_device_mem);
2822 EXPORT_SYMBOL(pci_enable_device);
2823 EXPORT_SYMBOL(pcim_enable_device);
2824 EXPORT_SYMBOL(pcim_pin_device);
2825 EXPORT_SYMBOL(pci_disable_device);
2826 EXPORT_SYMBOL(pci_find_capability);
2827 EXPORT_SYMBOL(pci_bus_find_capability);
2828 EXPORT_SYMBOL(pci_release_regions);
2829 EXPORT_SYMBOL(pci_request_regions);
2830 EXPORT_SYMBOL(pci_request_regions_exclusive);
2831 EXPORT_SYMBOL(pci_release_region);
2832 EXPORT_SYMBOL(pci_request_region);
2833 EXPORT_SYMBOL(pci_request_region_exclusive);
2834 EXPORT_SYMBOL(pci_release_selected_regions);
2835 EXPORT_SYMBOL(pci_request_selected_regions);
2836 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2837 EXPORT_SYMBOL(pci_set_master);
2838 EXPORT_SYMBOL(pci_clear_master);
2839 EXPORT_SYMBOL(pci_set_mwi);
2840 EXPORT_SYMBOL(pci_try_set_mwi);
2841 EXPORT_SYMBOL(pci_clear_mwi);
2842 EXPORT_SYMBOL_GPL(pci_intx);
2843 EXPORT_SYMBOL(pci_set_dma_mask);
2844 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
2845 EXPORT_SYMBOL(pci_assign_resource);
2846 EXPORT_SYMBOL(pci_find_parent_resource);
2847 EXPORT_SYMBOL(pci_select_bars);
2848
2849 EXPORT_SYMBOL(pci_set_power_state);
2850 EXPORT_SYMBOL(pci_save_state);
2851 EXPORT_SYMBOL(pci_restore_state);
2852 EXPORT_SYMBOL(pci_pme_capable);
2853 EXPORT_SYMBOL(pci_pme_active);
2854 EXPORT_SYMBOL(pci_enable_wake);
2855 EXPORT_SYMBOL(pci_wake_from_d3);
2856 EXPORT_SYMBOL(pci_target_state);
2857 EXPORT_SYMBOL(pci_prepare_to_sleep);
2858 EXPORT_SYMBOL(pci_back_from_sleep);
2859 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2860