]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/pci/pci.c
pci: use new of_dma_configure* apis
[mirror_ubuntu-zesty-kernel.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/of.h>
14 #include <linux/of_pci.h>
15 #include <linux/pci.h>
16 #include <linux/pm.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/string.h>
21 #include <linux/log2.h>
22 #include <linux/pci-aspm.h>
23 #include <linux/pm_wakeup.h>
24 #include <linux/interrupt.h>
25 #include <linux/device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/pci_hotplug.h>
28 #include <asm-generic/pci-bridge.h>
29 #include <asm/setup.h>
30 #include <linux/aer.h>
31 #include "pci.h"
32
33 const char *pci_power_names[] = {
34 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
35 };
36 EXPORT_SYMBOL_GPL(pci_power_names);
37
38 int isa_dma_bridge_buggy;
39 EXPORT_SYMBOL(isa_dma_bridge_buggy);
40
41 int pci_pci_problems;
42 EXPORT_SYMBOL(pci_pci_problems);
43
44 unsigned int pci_pm_d3_delay;
45
46 static void pci_pme_list_scan(struct work_struct *work);
47
48 static LIST_HEAD(pci_pme_list);
49 static DEFINE_MUTEX(pci_pme_list_mutex);
50 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
51
52 struct pci_pme_device {
53 struct list_head list;
54 struct pci_dev *dev;
55 };
56
57 #define PME_TIMEOUT 1000 /* How long between PME checks */
58
59 static void pci_dev_d3_sleep(struct pci_dev *dev)
60 {
61 unsigned int delay = dev->d3_delay;
62
63 if (delay < pci_pm_d3_delay)
64 delay = pci_pm_d3_delay;
65
66 msleep(delay);
67 }
68
69 #ifdef CONFIG_PCI_DOMAINS
70 int pci_domains_supported = 1;
71 #endif
72
73 #define DEFAULT_CARDBUS_IO_SIZE (256)
74 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
75 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
76 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
77 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
78
79 #define DEFAULT_HOTPLUG_IO_SIZE (256)
80 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
81 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
82 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
83 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
84
85 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
86
87 /*
88 * The default CLS is used if arch didn't set CLS explicitly and not
89 * all pci devices agree on the same value. Arch can override either
90 * the dfl or actual value as it sees fit. Don't forget this is
91 * measured in 32-bit words, not bytes.
92 */
93 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
94 u8 pci_cache_line_size;
95
96 /*
97 * If we set up a device for bus mastering, we need to check the latency
98 * timer as certain BIOSes forget to set it properly.
99 */
100 unsigned int pcibios_max_latency = 255;
101
102 /* If set, the PCIe ARI capability will not be used. */
103 static bool pcie_ari_disabled;
104
105 /**
106 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
107 * @bus: pointer to PCI bus structure to search
108 *
109 * Given a PCI bus, returns the highest PCI bus number present in the set
110 * including the given PCI bus and its list of child PCI buses.
111 */
112 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
113 {
114 struct pci_bus *tmp;
115 unsigned char max, n;
116
117 max = bus->busn_res.end;
118 list_for_each_entry(tmp, &bus->children, node) {
119 n = pci_bus_max_busnr(tmp);
120 if (n > max)
121 max = n;
122 }
123 return max;
124 }
125 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
126
127 #ifdef CONFIG_HAS_IOMEM
128 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
129 {
130 struct resource *res = &pdev->resource[bar];
131
132 /*
133 * Make sure the BAR is actually a memory resource, not an IO resource
134 */
135 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
136 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
137 return NULL;
138 }
139 return ioremap_nocache(res->start, resource_size(res));
140 }
141 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
142
143 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
144 {
145 /*
146 * Make sure the BAR is actually a memory resource, not an IO resource
147 */
148 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
149 WARN_ON(1);
150 return NULL;
151 }
152 return ioremap_wc(pci_resource_start(pdev, bar),
153 pci_resource_len(pdev, bar));
154 }
155 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
156 #endif
157
158
159 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
160 u8 pos, int cap, int *ttl)
161 {
162 u8 id;
163 u16 ent;
164
165 pci_bus_read_config_byte(bus, devfn, pos, &pos);
166
167 while ((*ttl)--) {
168 if (pos < 0x40)
169 break;
170 pos &= ~3;
171 pci_bus_read_config_word(bus, devfn, pos, &ent);
172
173 id = ent & 0xff;
174 if (id == 0xff)
175 break;
176 if (id == cap)
177 return pos;
178 pos = (ent >> 8);
179 }
180 return 0;
181 }
182
183 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
184 u8 pos, int cap)
185 {
186 int ttl = PCI_FIND_CAP_TTL;
187
188 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
189 }
190
191 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
192 {
193 return __pci_find_next_cap(dev->bus, dev->devfn,
194 pos + PCI_CAP_LIST_NEXT, cap);
195 }
196 EXPORT_SYMBOL_GPL(pci_find_next_capability);
197
198 static int __pci_bus_find_cap_start(struct pci_bus *bus,
199 unsigned int devfn, u8 hdr_type)
200 {
201 u16 status;
202
203 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
204 if (!(status & PCI_STATUS_CAP_LIST))
205 return 0;
206
207 switch (hdr_type) {
208 case PCI_HEADER_TYPE_NORMAL:
209 case PCI_HEADER_TYPE_BRIDGE:
210 return PCI_CAPABILITY_LIST;
211 case PCI_HEADER_TYPE_CARDBUS:
212 return PCI_CB_CAPABILITY_LIST;
213 }
214
215 return 0;
216 }
217
218 /**
219 * pci_find_capability - query for devices' capabilities
220 * @dev: PCI device to query
221 * @cap: capability code
222 *
223 * Tell if a device supports a given PCI capability.
224 * Returns the address of the requested capability structure within the
225 * device's PCI configuration space or 0 in case the device does not
226 * support it. Possible values for @cap:
227 *
228 * %PCI_CAP_ID_PM Power Management
229 * %PCI_CAP_ID_AGP Accelerated Graphics Port
230 * %PCI_CAP_ID_VPD Vital Product Data
231 * %PCI_CAP_ID_SLOTID Slot Identification
232 * %PCI_CAP_ID_MSI Message Signalled Interrupts
233 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
234 * %PCI_CAP_ID_PCIX PCI-X
235 * %PCI_CAP_ID_EXP PCI Express
236 */
237 int pci_find_capability(struct pci_dev *dev, int cap)
238 {
239 int pos;
240
241 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
242 if (pos)
243 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
244
245 return pos;
246 }
247 EXPORT_SYMBOL(pci_find_capability);
248
249 /**
250 * pci_bus_find_capability - query for devices' capabilities
251 * @bus: the PCI bus to query
252 * @devfn: PCI device to query
253 * @cap: capability code
254 *
255 * Like pci_find_capability() but works for pci devices that do not have a
256 * pci_dev structure set up yet.
257 *
258 * Returns the address of the requested capability structure within the
259 * device's PCI configuration space or 0 in case the device does not
260 * support it.
261 */
262 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
263 {
264 int pos;
265 u8 hdr_type;
266
267 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
268
269 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
270 if (pos)
271 pos = __pci_find_next_cap(bus, devfn, pos, cap);
272
273 return pos;
274 }
275 EXPORT_SYMBOL(pci_bus_find_capability);
276
277 /**
278 * pci_find_next_ext_capability - Find an extended capability
279 * @dev: PCI device to query
280 * @start: address at which to start looking (0 to start at beginning of list)
281 * @cap: capability code
282 *
283 * Returns the address of the next matching extended capability structure
284 * within the device's PCI configuration space or 0 if the device does
285 * not support it. Some capabilities can occur several times, e.g., the
286 * vendor-specific capability, and this provides a way to find them all.
287 */
288 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
289 {
290 u32 header;
291 int ttl;
292 int pos = PCI_CFG_SPACE_SIZE;
293
294 /* minimum 8 bytes per capability */
295 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
296
297 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
298 return 0;
299
300 if (start)
301 pos = start;
302
303 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
304 return 0;
305
306 /*
307 * If we have no capabilities, this is indicated by cap ID,
308 * cap version and next pointer all being 0.
309 */
310 if (header == 0)
311 return 0;
312
313 while (ttl-- > 0) {
314 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
315 return pos;
316
317 pos = PCI_EXT_CAP_NEXT(header);
318 if (pos < PCI_CFG_SPACE_SIZE)
319 break;
320
321 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
322 break;
323 }
324
325 return 0;
326 }
327 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
328
329 /**
330 * pci_find_ext_capability - Find an extended capability
331 * @dev: PCI device to query
332 * @cap: capability code
333 *
334 * Returns the address of the requested extended capability structure
335 * within the device's PCI configuration space or 0 if the device does
336 * not support it. Possible values for @cap:
337 *
338 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
339 * %PCI_EXT_CAP_ID_VC Virtual Channel
340 * %PCI_EXT_CAP_ID_DSN Device Serial Number
341 * %PCI_EXT_CAP_ID_PWR Power Budgeting
342 */
343 int pci_find_ext_capability(struct pci_dev *dev, int cap)
344 {
345 return pci_find_next_ext_capability(dev, 0, cap);
346 }
347 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
348
349 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
350 {
351 int rc, ttl = PCI_FIND_CAP_TTL;
352 u8 cap, mask;
353
354 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
355 mask = HT_3BIT_CAP_MASK;
356 else
357 mask = HT_5BIT_CAP_MASK;
358
359 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
360 PCI_CAP_ID_HT, &ttl);
361 while (pos) {
362 rc = pci_read_config_byte(dev, pos + 3, &cap);
363 if (rc != PCIBIOS_SUCCESSFUL)
364 return 0;
365
366 if ((cap & mask) == ht_cap)
367 return pos;
368
369 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
370 pos + PCI_CAP_LIST_NEXT,
371 PCI_CAP_ID_HT, &ttl);
372 }
373
374 return 0;
375 }
376 /**
377 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
378 * @dev: PCI device to query
379 * @pos: Position from which to continue searching
380 * @ht_cap: Hypertransport capability code
381 *
382 * To be used in conjunction with pci_find_ht_capability() to search for
383 * all capabilities matching @ht_cap. @pos should always be a value returned
384 * from pci_find_ht_capability().
385 *
386 * NB. To be 100% safe against broken PCI devices, the caller should take
387 * steps to avoid an infinite loop.
388 */
389 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
390 {
391 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
392 }
393 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
394
395 /**
396 * pci_find_ht_capability - query a device's Hypertransport capabilities
397 * @dev: PCI device to query
398 * @ht_cap: Hypertransport capability code
399 *
400 * Tell if a device supports a given Hypertransport capability.
401 * Returns an address within the device's PCI configuration space
402 * or 0 in case the device does not support the request capability.
403 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
404 * which has a Hypertransport capability matching @ht_cap.
405 */
406 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
407 {
408 int pos;
409
410 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
411 if (pos)
412 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
413
414 return pos;
415 }
416 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
417
418 /**
419 * pci_find_parent_resource - return resource region of parent bus of given region
420 * @dev: PCI device structure contains resources to be searched
421 * @res: child resource record for which parent is sought
422 *
423 * For given resource region of given device, return the resource
424 * region of parent bus the given region is contained in.
425 */
426 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
427 struct resource *res)
428 {
429 const struct pci_bus *bus = dev->bus;
430 struct resource *r;
431 int i;
432
433 pci_bus_for_each_resource(bus, r, i) {
434 if (!r)
435 continue;
436 if (res->start && resource_contains(r, res)) {
437
438 /*
439 * If the window is prefetchable but the BAR is
440 * not, the allocator made a mistake.
441 */
442 if (r->flags & IORESOURCE_PREFETCH &&
443 !(res->flags & IORESOURCE_PREFETCH))
444 return NULL;
445
446 /*
447 * If we're below a transparent bridge, there may
448 * be both a positively-decoded aperture and a
449 * subtractively-decoded region that contain the BAR.
450 * We want the positively-decoded one, so this depends
451 * on pci_bus_for_each_resource() giving us those
452 * first.
453 */
454 return r;
455 }
456 }
457 return NULL;
458 }
459 EXPORT_SYMBOL(pci_find_parent_resource);
460
461 /**
462 * pci_find_pcie_root_port - return PCIe Root Port
463 * @dev: PCI device to query
464 *
465 * Traverse up the parent chain and return the PCIe Root Port PCI Device
466 * for a given PCI Device.
467 */
468 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
469 {
470 struct pci_dev *bridge, *highest_pcie_bridge = NULL;
471
472 bridge = pci_upstream_bridge(dev);
473 while (bridge && pci_is_pcie(bridge)) {
474 highest_pcie_bridge = bridge;
475 bridge = pci_upstream_bridge(bridge);
476 }
477
478 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
479 return NULL;
480
481 return highest_pcie_bridge;
482 }
483 EXPORT_SYMBOL(pci_find_pcie_root_port);
484
485 /**
486 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
487 * @dev: the PCI device to operate on
488 * @pos: config space offset of status word
489 * @mask: mask of bit(s) to care about in status word
490 *
491 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
492 */
493 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
494 {
495 int i;
496
497 /* Wait for Transaction Pending bit clean */
498 for (i = 0; i < 4; i++) {
499 u16 status;
500 if (i)
501 msleep((1 << (i - 1)) * 100);
502
503 pci_read_config_word(dev, pos, &status);
504 if (!(status & mask))
505 return 1;
506 }
507
508 return 0;
509 }
510
511 /**
512 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
513 * @dev: PCI device to have its BARs restored
514 *
515 * Restore the BAR values for a given device, so as to make it
516 * accessible by its driver.
517 */
518 static void pci_restore_bars(struct pci_dev *dev)
519 {
520 int i;
521
522 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
523 pci_update_resource(dev, i);
524 }
525
526 static struct pci_platform_pm_ops *pci_platform_pm;
527
528 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
529 {
530 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
531 || !ops->sleep_wake)
532 return -EINVAL;
533 pci_platform_pm = ops;
534 return 0;
535 }
536
537 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
538 {
539 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
540 }
541
542 static inline int platform_pci_set_power_state(struct pci_dev *dev,
543 pci_power_t t)
544 {
545 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
546 }
547
548 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
549 {
550 return pci_platform_pm ?
551 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
552 }
553
554 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
555 {
556 return pci_platform_pm ?
557 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
558 }
559
560 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
561 {
562 return pci_platform_pm ?
563 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
564 }
565
566 static inline bool platform_pci_need_resume(struct pci_dev *dev)
567 {
568 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
569 }
570
571 /**
572 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
573 * given PCI device
574 * @dev: PCI device to handle.
575 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
576 *
577 * RETURN VALUE:
578 * -EINVAL if the requested state is invalid.
579 * -EIO if device does not support PCI PM or its PM capabilities register has a
580 * wrong version, or device doesn't support the requested state.
581 * 0 if device already is in the requested state.
582 * 0 if device's power state has been successfully changed.
583 */
584 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
585 {
586 u16 pmcsr;
587 bool need_restore = false;
588
589 /* Check if we're already there */
590 if (dev->current_state == state)
591 return 0;
592
593 if (!dev->pm_cap)
594 return -EIO;
595
596 if (state < PCI_D0 || state > PCI_D3hot)
597 return -EINVAL;
598
599 /* Validate current state:
600 * Can enter D0 from any state, but if we can only go deeper
601 * to sleep if we're already in a low power state
602 */
603 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
604 && dev->current_state > state) {
605 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
606 dev->current_state, state);
607 return -EINVAL;
608 }
609
610 /* check if this device supports the desired state */
611 if ((state == PCI_D1 && !dev->d1_support)
612 || (state == PCI_D2 && !dev->d2_support))
613 return -EIO;
614
615 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
616
617 /* If we're (effectively) in D3, force entire word to 0.
618 * This doesn't affect PME_Status, disables PME_En, and
619 * sets PowerState to 0.
620 */
621 switch (dev->current_state) {
622 case PCI_D0:
623 case PCI_D1:
624 case PCI_D2:
625 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
626 pmcsr |= state;
627 break;
628 case PCI_D3hot:
629 case PCI_D3cold:
630 case PCI_UNKNOWN: /* Boot-up */
631 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
632 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
633 need_restore = true;
634 /* Fall-through: force to D0 */
635 default:
636 pmcsr = 0;
637 break;
638 }
639
640 /* enter specified state */
641 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
642
643 /* Mandatory power management transition delays */
644 /* see PCI PM 1.1 5.6.1 table 18 */
645 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
646 pci_dev_d3_sleep(dev);
647 else if (state == PCI_D2 || dev->current_state == PCI_D2)
648 udelay(PCI_PM_D2_DELAY);
649
650 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
651 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
652 if (dev->current_state != state && printk_ratelimit())
653 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
654 dev->current_state);
655
656 /*
657 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
658 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
659 * from D3hot to D0 _may_ perform an internal reset, thereby
660 * going to "D0 Uninitialized" rather than "D0 Initialized".
661 * For example, at least some versions of the 3c905B and the
662 * 3c556B exhibit this behaviour.
663 *
664 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
665 * devices in a D3hot state at boot. Consequently, we need to
666 * restore at least the BARs so that the device will be
667 * accessible to its driver.
668 */
669 if (need_restore)
670 pci_restore_bars(dev);
671
672 if (dev->bus->self)
673 pcie_aspm_pm_state_change(dev->bus->self);
674
675 return 0;
676 }
677
678 /**
679 * pci_update_current_state - Read PCI power state of given device from its
680 * PCI PM registers and cache it
681 * @dev: PCI device to handle.
682 * @state: State to cache in case the device doesn't have the PM capability
683 */
684 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
685 {
686 if (dev->pm_cap) {
687 u16 pmcsr;
688
689 /*
690 * Configuration space is not accessible for device in
691 * D3cold, so just keep or set D3cold for safety
692 */
693 if (dev->current_state == PCI_D3cold)
694 return;
695 if (state == PCI_D3cold) {
696 dev->current_state = PCI_D3cold;
697 return;
698 }
699 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
700 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
701 } else {
702 dev->current_state = state;
703 }
704 }
705
706 /**
707 * pci_power_up - Put the given device into D0 forcibly
708 * @dev: PCI device to power up
709 */
710 void pci_power_up(struct pci_dev *dev)
711 {
712 if (platform_pci_power_manageable(dev))
713 platform_pci_set_power_state(dev, PCI_D0);
714
715 pci_raw_set_power_state(dev, PCI_D0);
716 pci_update_current_state(dev, PCI_D0);
717 }
718
719 /**
720 * pci_platform_power_transition - Use platform to change device power state
721 * @dev: PCI device to handle.
722 * @state: State to put the device into.
723 */
724 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
725 {
726 int error;
727
728 if (platform_pci_power_manageable(dev)) {
729 error = platform_pci_set_power_state(dev, state);
730 if (!error)
731 pci_update_current_state(dev, state);
732 } else
733 error = -ENODEV;
734
735 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
736 dev->current_state = PCI_D0;
737
738 return error;
739 }
740
741 /**
742 * pci_wakeup - Wake up a PCI device
743 * @pci_dev: Device to handle.
744 * @ign: ignored parameter
745 */
746 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
747 {
748 pci_wakeup_event(pci_dev);
749 pm_request_resume(&pci_dev->dev);
750 return 0;
751 }
752
753 /**
754 * pci_wakeup_bus - Walk given bus and wake up devices on it
755 * @bus: Top bus of the subtree to walk.
756 */
757 static void pci_wakeup_bus(struct pci_bus *bus)
758 {
759 if (bus)
760 pci_walk_bus(bus, pci_wakeup, NULL);
761 }
762
763 /**
764 * __pci_start_power_transition - Start power transition of a PCI device
765 * @dev: PCI device to handle.
766 * @state: State to put the device into.
767 */
768 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
769 {
770 if (state == PCI_D0) {
771 pci_platform_power_transition(dev, PCI_D0);
772 /*
773 * Mandatory power management transition delays, see
774 * PCI Express Base Specification Revision 2.0 Section
775 * 6.6.1: Conventional Reset. Do not delay for
776 * devices powered on/off by corresponding bridge,
777 * because have already delayed for the bridge.
778 */
779 if (dev->runtime_d3cold) {
780 msleep(dev->d3cold_delay);
781 /*
782 * When powering on a bridge from D3cold, the
783 * whole hierarchy may be powered on into
784 * D0uninitialized state, resume them to give
785 * them a chance to suspend again
786 */
787 pci_wakeup_bus(dev->subordinate);
788 }
789 }
790 }
791
792 /**
793 * __pci_dev_set_current_state - Set current state of a PCI device
794 * @dev: Device to handle
795 * @data: pointer to state to be set
796 */
797 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
798 {
799 pci_power_t state = *(pci_power_t *)data;
800
801 dev->current_state = state;
802 return 0;
803 }
804
805 /**
806 * __pci_bus_set_current_state - Walk given bus and set current state of devices
807 * @bus: Top bus of the subtree to walk.
808 * @state: state to be set
809 */
810 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
811 {
812 if (bus)
813 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
814 }
815
816 /**
817 * __pci_complete_power_transition - Complete power transition of a PCI device
818 * @dev: PCI device to handle.
819 * @state: State to put the device into.
820 *
821 * This function should not be called directly by device drivers.
822 */
823 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
824 {
825 int ret;
826
827 if (state <= PCI_D0)
828 return -EINVAL;
829 ret = pci_platform_power_transition(dev, state);
830 /* Power off the bridge may power off the whole hierarchy */
831 if (!ret && state == PCI_D3cold)
832 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
833 return ret;
834 }
835 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
836
837 /**
838 * pci_set_power_state - Set the power state of a PCI device
839 * @dev: PCI device to handle.
840 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
841 *
842 * Transition a device to a new power state, using the platform firmware and/or
843 * the device's PCI PM registers.
844 *
845 * RETURN VALUE:
846 * -EINVAL if the requested state is invalid.
847 * -EIO if device does not support PCI PM or its PM capabilities register has a
848 * wrong version, or device doesn't support the requested state.
849 * 0 if device already is in the requested state.
850 * 0 if device's power state has been successfully changed.
851 */
852 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
853 {
854 int error;
855
856 /* bound the state we're entering */
857 if (state > PCI_D3cold)
858 state = PCI_D3cold;
859 else if (state < PCI_D0)
860 state = PCI_D0;
861 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
862 /*
863 * If the device or the parent bridge do not support PCI PM,
864 * ignore the request if we're doing anything other than putting
865 * it into D0 (which would only happen on boot).
866 */
867 return 0;
868
869 /* Check if we're already there */
870 if (dev->current_state == state)
871 return 0;
872
873 __pci_start_power_transition(dev, state);
874
875 /* This device is quirked not to be put into D3, so
876 don't put it in D3 */
877 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
878 return 0;
879
880 /*
881 * To put device in D3cold, we put device into D3hot in native
882 * way, then put device into D3cold with platform ops
883 */
884 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
885 PCI_D3hot : state);
886
887 if (!__pci_complete_power_transition(dev, state))
888 error = 0;
889
890 return error;
891 }
892 EXPORT_SYMBOL(pci_set_power_state);
893
894 /**
895 * pci_choose_state - Choose the power state of a PCI device
896 * @dev: PCI device to be suspended
897 * @state: target sleep state for the whole system. This is the value
898 * that is passed to suspend() function.
899 *
900 * Returns PCI power state suitable for given device and given system
901 * message.
902 */
903
904 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
905 {
906 pci_power_t ret;
907
908 if (!dev->pm_cap)
909 return PCI_D0;
910
911 ret = platform_pci_choose_state(dev);
912 if (ret != PCI_POWER_ERROR)
913 return ret;
914
915 switch (state.event) {
916 case PM_EVENT_ON:
917 return PCI_D0;
918 case PM_EVENT_FREEZE:
919 case PM_EVENT_PRETHAW:
920 /* REVISIT both freeze and pre-thaw "should" use D0 */
921 case PM_EVENT_SUSPEND:
922 case PM_EVENT_HIBERNATE:
923 return PCI_D3hot;
924 default:
925 dev_info(&dev->dev, "unrecognized suspend event %d\n",
926 state.event);
927 BUG();
928 }
929 return PCI_D0;
930 }
931 EXPORT_SYMBOL(pci_choose_state);
932
933 #define PCI_EXP_SAVE_REGS 7
934
935 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
936 u16 cap, bool extended)
937 {
938 struct pci_cap_saved_state *tmp;
939
940 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
941 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
942 return tmp;
943 }
944 return NULL;
945 }
946
947 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
948 {
949 return _pci_find_saved_cap(dev, cap, false);
950 }
951
952 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
953 {
954 return _pci_find_saved_cap(dev, cap, true);
955 }
956
957 static int pci_save_pcie_state(struct pci_dev *dev)
958 {
959 int i = 0;
960 struct pci_cap_saved_state *save_state;
961 u16 *cap;
962
963 if (!pci_is_pcie(dev))
964 return 0;
965
966 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
967 if (!save_state) {
968 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
969 return -ENOMEM;
970 }
971
972 cap = (u16 *)&save_state->cap.data[0];
973 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
974 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
975 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
976 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
977 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
978 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
979 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
980
981 return 0;
982 }
983
984 static void pci_restore_pcie_state(struct pci_dev *dev)
985 {
986 int i = 0;
987 struct pci_cap_saved_state *save_state;
988 u16 *cap;
989
990 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
991 if (!save_state)
992 return;
993
994 cap = (u16 *)&save_state->cap.data[0];
995 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
996 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
997 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
998 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
999 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1000 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1001 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1002 }
1003
1004
1005 static int pci_save_pcix_state(struct pci_dev *dev)
1006 {
1007 int pos;
1008 struct pci_cap_saved_state *save_state;
1009
1010 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1011 if (!pos)
1012 return 0;
1013
1014 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1015 if (!save_state) {
1016 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1017 return -ENOMEM;
1018 }
1019
1020 pci_read_config_word(dev, pos + PCI_X_CMD,
1021 (u16 *)save_state->cap.data);
1022
1023 return 0;
1024 }
1025
1026 static void pci_restore_pcix_state(struct pci_dev *dev)
1027 {
1028 int i = 0, pos;
1029 struct pci_cap_saved_state *save_state;
1030 u16 *cap;
1031
1032 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1033 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1034 if (!save_state || !pos)
1035 return;
1036 cap = (u16 *)&save_state->cap.data[0];
1037
1038 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1039 }
1040
1041
1042 /**
1043 * pci_save_state - save the PCI configuration space of a device before suspending
1044 * @dev: - PCI device that we're dealing with
1045 */
1046 int pci_save_state(struct pci_dev *dev)
1047 {
1048 int i;
1049 /* XXX: 100% dword access ok here? */
1050 for (i = 0; i < 16; i++)
1051 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1052 dev->state_saved = true;
1053
1054 i = pci_save_pcie_state(dev);
1055 if (i != 0)
1056 return i;
1057
1058 i = pci_save_pcix_state(dev);
1059 if (i != 0)
1060 return i;
1061
1062 return pci_save_vc_state(dev);
1063 }
1064 EXPORT_SYMBOL(pci_save_state);
1065
1066 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1067 u32 saved_val, int retry)
1068 {
1069 u32 val;
1070
1071 pci_read_config_dword(pdev, offset, &val);
1072 if (val == saved_val)
1073 return;
1074
1075 for (;;) {
1076 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1077 offset, val, saved_val);
1078 pci_write_config_dword(pdev, offset, saved_val);
1079 if (retry-- <= 0)
1080 return;
1081
1082 pci_read_config_dword(pdev, offset, &val);
1083 if (val == saved_val)
1084 return;
1085
1086 mdelay(1);
1087 }
1088 }
1089
1090 static void pci_restore_config_space_range(struct pci_dev *pdev,
1091 int start, int end, int retry)
1092 {
1093 int index;
1094
1095 for (index = end; index >= start; index--)
1096 pci_restore_config_dword(pdev, 4 * index,
1097 pdev->saved_config_space[index],
1098 retry);
1099 }
1100
1101 static void pci_restore_config_space(struct pci_dev *pdev)
1102 {
1103 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1104 pci_restore_config_space_range(pdev, 10, 15, 0);
1105 /* Restore BARs before the command register. */
1106 pci_restore_config_space_range(pdev, 4, 9, 10);
1107 pci_restore_config_space_range(pdev, 0, 3, 0);
1108 } else {
1109 pci_restore_config_space_range(pdev, 0, 15, 0);
1110 }
1111 }
1112
1113 /**
1114 * pci_restore_state - Restore the saved state of a PCI device
1115 * @dev: - PCI device that we're dealing with
1116 */
1117 void pci_restore_state(struct pci_dev *dev)
1118 {
1119 if (!dev->state_saved)
1120 return;
1121
1122 /* PCI Express register must be restored first */
1123 pci_restore_pcie_state(dev);
1124 pci_restore_ats_state(dev);
1125 pci_restore_vc_state(dev);
1126
1127 pci_cleanup_aer_error_status_regs(dev);
1128
1129 pci_restore_config_space(dev);
1130
1131 pci_restore_pcix_state(dev);
1132 pci_restore_msi_state(dev);
1133
1134 /* Restore ACS and IOV configuration state */
1135 pci_enable_acs(dev);
1136 pci_restore_iov_state(dev);
1137
1138 dev->state_saved = false;
1139 }
1140 EXPORT_SYMBOL(pci_restore_state);
1141
1142 struct pci_saved_state {
1143 u32 config_space[16];
1144 struct pci_cap_saved_data cap[0];
1145 };
1146
1147 /**
1148 * pci_store_saved_state - Allocate and return an opaque struct containing
1149 * the device saved state.
1150 * @dev: PCI device that we're dealing with
1151 *
1152 * Return NULL if no state or error.
1153 */
1154 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1155 {
1156 struct pci_saved_state *state;
1157 struct pci_cap_saved_state *tmp;
1158 struct pci_cap_saved_data *cap;
1159 size_t size;
1160
1161 if (!dev->state_saved)
1162 return NULL;
1163
1164 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1165
1166 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1167 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1168
1169 state = kzalloc(size, GFP_KERNEL);
1170 if (!state)
1171 return NULL;
1172
1173 memcpy(state->config_space, dev->saved_config_space,
1174 sizeof(state->config_space));
1175
1176 cap = state->cap;
1177 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1178 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1179 memcpy(cap, &tmp->cap, len);
1180 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1181 }
1182 /* Empty cap_save terminates list */
1183
1184 return state;
1185 }
1186 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1187
1188 /**
1189 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1190 * @dev: PCI device that we're dealing with
1191 * @state: Saved state returned from pci_store_saved_state()
1192 */
1193 int pci_load_saved_state(struct pci_dev *dev,
1194 struct pci_saved_state *state)
1195 {
1196 struct pci_cap_saved_data *cap;
1197
1198 dev->state_saved = false;
1199
1200 if (!state)
1201 return 0;
1202
1203 memcpy(dev->saved_config_space, state->config_space,
1204 sizeof(state->config_space));
1205
1206 cap = state->cap;
1207 while (cap->size) {
1208 struct pci_cap_saved_state *tmp;
1209
1210 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1211 if (!tmp || tmp->cap.size != cap->size)
1212 return -EINVAL;
1213
1214 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1215 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1216 sizeof(struct pci_cap_saved_data) + cap->size);
1217 }
1218
1219 dev->state_saved = true;
1220 return 0;
1221 }
1222 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1223
1224 /**
1225 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1226 * and free the memory allocated for it.
1227 * @dev: PCI device that we're dealing with
1228 * @state: Pointer to saved state returned from pci_store_saved_state()
1229 */
1230 int pci_load_and_free_saved_state(struct pci_dev *dev,
1231 struct pci_saved_state **state)
1232 {
1233 int ret = pci_load_saved_state(dev, *state);
1234 kfree(*state);
1235 *state = NULL;
1236 return ret;
1237 }
1238 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1239
1240 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1241 {
1242 return pci_enable_resources(dev, bars);
1243 }
1244
1245 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1246 {
1247 int err;
1248 struct pci_dev *bridge;
1249 u16 cmd;
1250 u8 pin;
1251
1252 err = pci_set_power_state(dev, PCI_D0);
1253 if (err < 0 && err != -EIO)
1254 return err;
1255
1256 bridge = pci_upstream_bridge(dev);
1257 if (bridge)
1258 pcie_aspm_powersave_config_link(bridge);
1259
1260 err = pcibios_enable_device(dev, bars);
1261 if (err < 0)
1262 return err;
1263 pci_fixup_device(pci_fixup_enable, dev);
1264
1265 if (dev->msi_enabled || dev->msix_enabled)
1266 return 0;
1267
1268 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1269 if (pin) {
1270 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1271 if (cmd & PCI_COMMAND_INTX_DISABLE)
1272 pci_write_config_word(dev, PCI_COMMAND,
1273 cmd & ~PCI_COMMAND_INTX_DISABLE);
1274 }
1275
1276 return 0;
1277 }
1278
1279 /**
1280 * pci_reenable_device - Resume abandoned device
1281 * @dev: PCI device to be resumed
1282 *
1283 * Note this function is a backend of pci_default_resume and is not supposed
1284 * to be called by normal code, write proper resume handler and use it instead.
1285 */
1286 int pci_reenable_device(struct pci_dev *dev)
1287 {
1288 if (pci_is_enabled(dev))
1289 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1290 return 0;
1291 }
1292 EXPORT_SYMBOL(pci_reenable_device);
1293
1294 static void pci_enable_bridge(struct pci_dev *dev)
1295 {
1296 struct pci_dev *bridge;
1297 int retval;
1298
1299 bridge = pci_upstream_bridge(dev);
1300 if (bridge)
1301 pci_enable_bridge(bridge);
1302
1303 if (pci_is_enabled(dev)) {
1304 if (!dev->is_busmaster)
1305 pci_set_master(dev);
1306 return;
1307 }
1308
1309 retval = pci_enable_device(dev);
1310 if (retval)
1311 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1312 retval);
1313 pci_set_master(dev);
1314 }
1315
1316 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1317 {
1318 struct pci_dev *bridge;
1319 int err;
1320 int i, bars = 0;
1321
1322 /*
1323 * Power state could be unknown at this point, either due to a fresh
1324 * boot or a device removal call. So get the current power state
1325 * so that things like MSI message writing will behave as expected
1326 * (e.g. if the device really is in D0 at enable time).
1327 */
1328 if (dev->pm_cap) {
1329 u16 pmcsr;
1330 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1331 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1332 }
1333
1334 if (atomic_inc_return(&dev->enable_cnt) > 1)
1335 return 0; /* already enabled */
1336
1337 bridge = pci_upstream_bridge(dev);
1338 if (bridge)
1339 pci_enable_bridge(bridge);
1340
1341 /* only skip sriov related */
1342 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1343 if (dev->resource[i].flags & flags)
1344 bars |= (1 << i);
1345 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1346 if (dev->resource[i].flags & flags)
1347 bars |= (1 << i);
1348
1349 err = do_pci_enable_device(dev, bars);
1350 if (err < 0)
1351 atomic_dec(&dev->enable_cnt);
1352 return err;
1353 }
1354
1355 /**
1356 * pci_enable_device_io - Initialize a device for use with IO space
1357 * @dev: PCI device to be initialized
1358 *
1359 * Initialize device before it's used by a driver. Ask low-level code
1360 * to enable I/O resources. Wake up the device if it was suspended.
1361 * Beware, this function can fail.
1362 */
1363 int pci_enable_device_io(struct pci_dev *dev)
1364 {
1365 return pci_enable_device_flags(dev, IORESOURCE_IO);
1366 }
1367 EXPORT_SYMBOL(pci_enable_device_io);
1368
1369 /**
1370 * pci_enable_device_mem - Initialize a device for use with Memory space
1371 * @dev: PCI device to be initialized
1372 *
1373 * Initialize device before it's used by a driver. Ask low-level code
1374 * to enable Memory resources. Wake up the device if it was suspended.
1375 * Beware, this function can fail.
1376 */
1377 int pci_enable_device_mem(struct pci_dev *dev)
1378 {
1379 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1380 }
1381 EXPORT_SYMBOL(pci_enable_device_mem);
1382
1383 /**
1384 * pci_enable_device - Initialize device before it's used by a driver.
1385 * @dev: PCI device to be initialized
1386 *
1387 * Initialize device before it's used by a driver. Ask low-level code
1388 * to enable I/O and memory. Wake up the device if it was suspended.
1389 * Beware, this function can fail.
1390 *
1391 * Note we don't actually enable the device many times if we call
1392 * this function repeatedly (we just increment the count).
1393 */
1394 int pci_enable_device(struct pci_dev *dev)
1395 {
1396 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1397 }
1398 EXPORT_SYMBOL(pci_enable_device);
1399
1400 /*
1401 * Managed PCI resources. This manages device on/off, intx/msi/msix
1402 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1403 * there's no need to track it separately. pci_devres is initialized
1404 * when a device is enabled using managed PCI device enable interface.
1405 */
1406 struct pci_devres {
1407 unsigned int enabled:1;
1408 unsigned int pinned:1;
1409 unsigned int orig_intx:1;
1410 unsigned int restore_intx:1;
1411 u32 region_mask;
1412 };
1413
1414 static void pcim_release(struct device *gendev, void *res)
1415 {
1416 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1417 struct pci_devres *this = res;
1418 int i;
1419
1420 if (dev->msi_enabled)
1421 pci_disable_msi(dev);
1422 if (dev->msix_enabled)
1423 pci_disable_msix(dev);
1424
1425 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1426 if (this->region_mask & (1 << i))
1427 pci_release_region(dev, i);
1428
1429 if (this->restore_intx)
1430 pci_intx(dev, this->orig_intx);
1431
1432 if (this->enabled && !this->pinned)
1433 pci_disable_device(dev);
1434 }
1435
1436 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1437 {
1438 struct pci_devres *dr, *new_dr;
1439
1440 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1441 if (dr)
1442 return dr;
1443
1444 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1445 if (!new_dr)
1446 return NULL;
1447 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1448 }
1449
1450 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1451 {
1452 if (pci_is_managed(pdev))
1453 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1454 return NULL;
1455 }
1456
1457 /**
1458 * pcim_enable_device - Managed pci_enable_device()
1459 * @pdev: PCI device to be initialized
1460 *
1461 * Managed pci_enable_device().
1462 */
1463 int pcim_enable_device(struct pci_dev *pdev)
1464 {
1465 struct pci_devres *dr;
1466 int rc;
1467
1468 dr = get_pci_dr(pdev);
1469 if (unlikely(!dr))
1470 return -ENOMEM;
1471 if (dr->enabled)
1472 return 0;
1473
1474 rc = pci_enable_device(pdev);
1475 if (!rc) {
1476 pdev->is_managed = 1;
1477 dr->enabled = 1;
1478 }
1479 return rc;
1480 }
1481 EXPORT_SYMBOL(pcim_enable_device);
1482
1483 /**
1484 * pcim_pin_device - Pin managed PCI device
1485 * @pdev: PCI device to pin
1486 *
1487 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1488 * driver detach. @pdev must have been enabled with
1489 * pcim_enable_device().
1490 */
1491 void pcim_pin_device(struct pci_dev *pdev)
1492 {
1493 struct pci_devres *dr;
1494
1495 dr = find_pci_dr(pdev);
1496 WARN_ON(!dr || !dr->enabled);
1497 if (dr)
1498 dr->pinned = 1;
1499 }
1500 EXPORT_SYMBOL(pcim_pin_device);
1501
1502 /*
1503 * pcibios_add_device - provide arch specific hooks when adding device dev
1504 * @dev: the PCI device being added
1505 *
1506 * Permits the platform to provide architecture specific functionality when
1507 * devices are added. This is the default implementation. Architecture
1508 * implementations can override this.
1509 */
1510 int __weak pcibios_add_device(struct pci_dev *dev)
1511 {
1512 return 0;
1513 }
1514
1515 /**
1516 * pcibios_release_device - provide arch specific hooks when releasing device dev
1517 * @dev: the PCI device being released
1518 *
1519 * Permits the platform to provide architecture specific functionality when
1520 * devices are released. This is the default implementation. Architecture
1521 * implementations can override this.
1522 */
1523 void __weak pcibios_release_device(struct pci_dev *dev) {}
1524
1525 /**
1526 * pcibios_disable_device - disable arch specific PCI resources for device dev
1527 * @dev: the PCI device to disable
1528 *
1529 * Disables architecture specific PCI resources for the device. This
1530 * is the default implementation. Architecture implementations can
1531 * override this.
1532 */
1533 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1534
1535 /**
1536 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1537 * @irq: ISA IRQ to penalize
1538 * @active: IRQ active or not
1539 *
1540 * Permits the platform to provide architecture-specific functionality when
1541 * penalizing ISA IRQs. This is the default implementation. Architecture
1542 * implementations can override this.
1543 */
1544 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1545
1546 static void do_pci_disable_device(struct pci_dev *dev)
1547 {
1548 u16 pci_command;
1549
1550 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1551 if (pci_command & PCI_COMMAND_MASTER) {
1552 pci_command &= ~PCI_COMMAND_MASTER;
1553 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1554 }
1555
1556 pcibios_disable_device(dev);
1557 }
1558
1559 /**
1560 * pci_disable_enabled_device - Disable device without updating enable_cnt
1561 * @dev: PCI device to disable
1562 *
1563 * NOTE: This function is a backend of PCI power management routines and is
1564 * not supposed to be called drivers.
1565 */
1566 void pci_disable_enabled_device(struct pci_dev *dev)
1567 {
1568 if (pci_is_enabled(dev))
1569 do_pci_disable_device(dev);
1570 }
1571
1572 /**
1573 * pci_disable_device - Disable PCI device after use
1574 * @dev: PCI device to be disabled
1575 *
1576 * Signal to the system that the PCI device is not in use by the system
1577 * anymore. This only involves disabling PCI bus-mastering, if active.
1578 *
1579 * Note we don't actually disable the device until all callers of
1580 * pci_enable_device() have called pci_disable_device().
1581 */
1582 void pci_disable_device(struct pci_dev *dev)
1583 {
1584 struct pci_devres *dr;
1585
1586 dr = find_pci_dr(dev);
1587 if (dr)
1588 dr->enabled = 0;
1589
1590 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1591 "disabling already-disabled device");
1592
1593 if (atomic_dec_return(&dev->enable_cnt) != 0)
1594 return;
1595
1596 do_pci_disable_device(dev);
1597
1598 dev->is_busmaster = 0;
1599 }
1600 EXPORT_SYMBOL(pci_disable_device);
1601
1602 /**
1603 * pcibios_set_pcie_reset_state - set reset state for device dev
1604 * @dev: the PCIe device reset
1605 * @state: Reset state to enter into
1606 *
1607 *
1608 * Sets the PCIe reset state for the device. This is the default
1609 * implementation. Architecture implementations can override this.
1610 */
1611 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1612 enum pcie_reset_state state)
1613 {
1614 return -EINVAL;
1615 }
1616
1617 /**
1618 * pci_set_pcie_reset_state - set reset state for device dev
1619 * @dev: the PCIe device reset
1620 * @state: Reset state to enter into
1621 *
1622 *
1623 * Sets the PCI reset state for the device.
1624 */
1625 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1626 {
1627 return pcibios_set_pcie_reset_state(dev, state);
1628 }
1629 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1630
1631 /**
1632 * pci_check_pme_status - Check if given device has generated PME.
1633 * @dev: Device to check.
1634 *
1635 * Check the PME status of the device and if set, clear it and clear PME enable
1636 * (if set). Return 'true' if PME status and PME enable were both set or
1637 * 'false' otherwise.
1638 */
1639 bool pci_check_pme_status(struct pci_dev *dev)
1640 {
1641 int pmcsr_pos;
1642 u16 pmcsr;
1643 bool ret = false;
1644
1645 if (!dev->pm_cap)
1646 return false;
1647
1648 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1649 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1650 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1651 return false;
1652
1653 /* Clear PME status. */
1654 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1655 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1656 /* Disable PME to avoid interrupt flood. */
1657 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1658 ret = true;
1659 }
1660
1661 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1662
1663 return ret;
1664 }
1665
1666 /**
1667 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1668 * @dev: Device to handle.
1669 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1670 *
1671 * Check if @dev has generated PME and queue a resume request for it in that
1672 * case.
1673 */
1674 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1675 {
1676 if (pme_poll_reset && dev->pme_poll)
1677 dev->pme_poll = false;
1678
1679 if (pci_check_pme_status(dev)) {
1680 pci_wakeup_event(dev);
1681 pm_request_resume(&dev->dev);
1682 }
1683 return 0;
1684 }
1685
1686 /**
1687 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1688 * @bus: Top bus of the subtree to walk.
1689 */
1690 void pci_pme_wakeup_bus(struct pci_bus *bus)
1691 {
1692 if (bus)
1693 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1694 }
1695
1696
1697 /**
1698 * pci_pme_capable - check the capability of PCI device to generate PME#
1699 * @dev: PCI device to handle.
1700 * @state: PCI state from which device will issue PME#.
1701 */
1702 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1703 {
1704 if (!dev->pm_cap)
1705 return false;
1706
1707 return !!(dev->pme_support & (1 << state));
1708 }
1709 EXPORT_SYMBOL(pci_pme_capable);
1710
1711 static void pci_pme_list_scan(struct work_struct *work)
1712 {
1713 struct pci_pme_device *pme_dev, *n;
1714
1715 mutex_lock(&pci_pme_list_mutex);
1716 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1717 if (pme_dev->dev->pme_poll) {
1718 struct pci_dev *bridge;
1719
1720 bridge = pme_dev->dev->bus->self;
1721 /*
1722 * If bridge is in low power state, the
1723 * configuration space of subordinate devices
1724 * may be not accessible
1725 */
1726 if (bridge && bridge->current_state != PCI_D0)
1727 continue;
1728 pci_pme_wakeup(pme_dev->dev, NULL);
1729 } else {
1730 list_del(&pme_dev->list);
1731 kfree(pme_dev);
1732 }
1733 }
1734 if (!list_empty(&pci_pme_list))
1735 queue_delayed_work(system_freezable_wq, &pci_pme_work,
1736 msecs_to_jiffies(PME_TIMEOUT));
1737 mutex_unlock(&pci_pme_list_mutex);
1738 }
1739
1740 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1741 {
1742 u16 pmcsr;
1743
1744 if (!dev->pme_support)
1745 return;
1746
1747 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1748 /* Clear PME_Status by writing 1 to it and enable PME# */
1749 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1750 if (!enable)
1751 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1752
1753 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1754 }
1755
1756 /**
1757 * pci_pme_active - enable or disable PCI device's PME# function
1758 * @dev: PCI device to handle.
1759 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1760 *
1761 * The caller must verify that the device is capable of generating PME# before
1762 * calling this function with @enable equal to 'true'.
1763 */
1764 void pci_pme_active(struct pci_dev *dev, bool enable)
1765 {
1766 __pci_pme_active(dev, enable);
1767
1768 /*
1769 * PCI (as opposed to PCIe) PME requires that the device have
1770 * its PME# line hooked up correctly. Not all hardware vendors
1771 * do this, so the PME never gets delivered and the device
1772 * remains asleep. The easiest way around this is to
1773 * periodically walk the list of suspended devices and check
1774 * whether any have their PME flag set. The assumption is that
1775 * we'll wake up often enough anyway that this won't be a huge
1776 * hit, and the power savings from the devices will still be a
1777 * win.
1778 *
1779 * Although PCIe uses in-band PME message instead of PME# line
1780 * to report PME, PME does not work for some PCIe devices in
1781 * reality. For example, there are devices that set their PME
1782 * status bits, but don't really bother to send a PME message;
1783 * there are PCI Express Root Ports that don't bother to
1784 * trigger interrupts when they receive PME messages from the
1785 * devices below. So PME poll is used for PCIe devices too.
1786 */
1787
1788 if (dev->pme_poll) {
1789 struct pci_pme_device *pme_dev;
1790 if (enable) {
1791 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1792 GFP_KERNEL);
1793 if (!pme_dev) {
1794 dev_warn(&dev->dev, "can't enable PME#\n");
1795 return;
1796 }
1797 pme_dev->dev = dev;
1798 mutex_lock(&pci_pme_list_mutex);
1799 list_add(&pme_dev->list, &pci_pme_list);
1800 if (list_is_singular(&pci_pme_list))
1801 queue_delayed_work(system_freezable_wq,
1802 &pci_pme_work,
1803 msecs_to_jiffies(PME_TIMEOUT));
1804 mutex_unlock(&pci_pme_list_mutex);
1805 } else {
1806 mutex_lock(&pci_pme_list_mutex);
1807 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1808 if (pme_dev->dev == dev) {
1809 list_del(&pme_dev->list);
1810 kfree(pme_dev);
1811 break;
1812 }
1813 }
1814 mutex_unlock(&pci_pme_list_mutex);
1815 }
1816 }
1817
1818 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1819 }
1820 EXPORT_SYMBOL(pci_pme_active);
1821
1822 /**
1823 * __pci_enable_wake - enable PCI device as wakeup event source
1824 * @dev: PCI device affected
1825 * @state: PCI state from which device will issue wakeup events
1826 * @runtime: True if the events are to be generated at run time
1827 * @enable: True to enable event generation; false to disable
1828 *
1829 * This enables the device as a wakeup event source, or disables it.
1830 * When such events involves platform-specific hooks, those hooks are
1831 * called automatically by this routine.
1832 *
1833 * Devices with legacy power management (no standard PCI PM capabilities)
1834 * always require such platform hooks.
1835 *
1836 * RETURN VALUE:
1837 * 0 is returned on success
1838 * -EINVAL is returned if device is not supposed to wake up the system
1839 * Error code depending on the platform is returned if both the platform and
1840 * the native mechanism fail to enable the generation of wake-up events
1841 */
1842 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1843 bool runtime, bool enable)
1844 {
1845 int ret = 0;
1846
1847 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1848 return -EINVAL;
1849
1850 /* Don't do the same thing twice in a row for one device. */
1851 if (!!enable == !!dev->wakeup_prepared)
1852 return 0;
1853
1854 /*
1855 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1856 * Anderson we should be doing PME# wake enable followed by ACPI wake
1857 * enable. To disable wake-up we call the platform first, for symmetry.
1858 */
1859
1860 if (enable) {
1861 int error;
1862
1863 if (pci_pme_capable(dev, state))
1864 pci_pme_active(dev, true);
1865 else
1866 ret = 1;
1867 error = runtime ? platform_pci_run_wake(dev, true) :
1868 platform_pci_sleep_wake(dev, true);
1869 if (ret)
1870 ret = error;
1871 if (!ret)
1872 dev->wakeup_prepared = true;
1873 } else {
1874 if (runtime)
1875 platform_pci_run_wake(dev, false);
1876 else
1877 platform_pci_sleep_wake(dev, false);
1878 pci_pme_active(dev, false);
1879 dev->wakeup_prepared = false;
1880 }
1881
1882 return ret;
1883 }
1884 EXPORT_SYMBOL(__pci_enable_wake);
1885
1886 /**
1887 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1888 * @dev: PCI device to prepare
1889 * @enable: True to enable wake-up event generation; false to disable
1890 *
1891 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1892 * and this function allows them to set that up cleanly - pci_enable_wake()
1893 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1894 * ordering constraints.
1895 *
1896 * This function only returns error code if the device is not capable of
1897 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1898 * enable wake-up power for it.
1899 */
1900 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1901 {
1902 return pci_pme_capable(dev, PCI_D3cold) ?
1903 pci_enable_wake(dev, PCI_D3cold, enable) :
1904 pci_enable_wake(dev, PCI_D3hot, enable);
1905 }
1906 EXPORT_SYMBOL(pci_wake_from_d3);
1907
1908 /**
1909 * pci_target_state - find an appropriate low power state for a given PCI dev
1910 * @dev: PCI device
1911 *
1912 * Use underlying platform code to find a supported low power state for @dev.
1913 * If the platform can't manage @dev, return the deepest state from which it
1914 * can generate wake events, based on any available PME info.
1915 */
1916 static pci_power_t pci_target_state(struct pci_dev *dev)
1917 {
1918 pci_power_t target_state = PCI_D3hot;
1919
1920 if (platform_pci_power_manageable(dev)) {
1921 /*
1922 * Call the platform to choose the target state of the device
1923 * and enable wake-up from this state if supported.
1924 */
1925 pci_power_t state = platform_pci_choose_state(dev);
1926
1927 switch (state) {
1928 case PCI_POWER_ERROR:
1929 case PCI_UNKNOWN:
1930 break;
1931 case PCI_D1:
1932 case PCI_D2:
1933 if (pci_no_d1d2(dev))
1934 break;
1935 default:
1936 target_state = state;
1937 }
1938 } else if (!dev->pm_cap) {
1939 target_state = PCI_D0;
1940 } else if (device_may_wakeup(&dev->dev)) {
1941 /*
1942 * Find the deepest state from which the device can generate
1943 * wake-up events, make it the target state and enable device
1944 * to generate PME#.
1945 */
1946 if (dev->pme_support) {
1947 while (target_state
1948 && !(dev->pme_support & (1 << target_state)))
1949 target_state--;
1950 }
1951 }
1952
1953 return target_state;
1954 }
1955
1956 /**
1957 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1958 * @dev: Device to handle.
1959 *
1960 * Choose the power state appropriate for the device depending on whether
1961 * it can wake up the system and/or is power manageable by the platform
1962 * (PCI_D3hot is the default) and put the device into that state.
1963 */
1964 int pci_prepare_to_sleep(struct pci_dev *dev)
1965 {
1966 pci_power_t target_state = pci_target_state(dev);
1967 int error;
1968
1969 if (target_state == PCI_POWER_ERROR)
1970 return -EIO;
1971
1972 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1973
1974 error = pci_set_power_state(dev, target_state);
1975
1976 if (error)
1977 pci_enable_wake(dev, target_state, false);
1978
1979 return error;
1980 }
1981 EXPORT_SYMBOL(pci_prepare_to_sleep);
1982
1983 /**
1984 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1985 * @dev: Device to handle.
1986 *
1987 * Disable device's system wake-up capability and put it into D0.
1988 */
1989 int pci_back_from_sleep(struct pci_dev *dev)
1990 {
1991 pci_enable_wake(dev, PCI_D0, false);
1992 return pci_set_power_state(dev, PCI_D0);
1993 }
1994 EXPORT_SYMBOL(pci_back_from_sleep);
1995
1996 /**
1997 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1998 * @dev: PCI device being suspended.
1999 *
2000 * Prepare @dev to generate wake-up events at run time and put it into a low
2001 * power state.
2002 */
2003 int pci_finish_runtime_suspend(struct pci_dev *dev)
2004 {
2005 pci_power_t target_state = pci_target_state(dev);
2006 int error;
2007
2008 if (target_state == PCI_POWER_ERROR)
2009 return -EIO;
2010
2011 dev->runtime_d3cold = target_state == PCI_D3cold;
2012
2013 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
2014
2015 error = pci_set_power_state(dev, target_state);
2016
2017 if (error) {
2018 __pci_enable_wake(dev, target_state, true, false);
2019 dev->runtime_d3cold = false;
2020 }
2021
2022 return error;
2023 }
2024
2025 /**
2026 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2027 * @dev: Device to check.
2028 *
2029 * Return true if the device itself is capable of generating wake-up events
2030 * (through the platform or using the native PCIe PME) or if the device supports
2031 * PME and one of its upstream bridges can generate wake-up events.
2032 */
2033 bool pci_dev_run_wake(struct pci_dev *dev)
2034 {
2035 struct pci_bus *bus = dev->bus;
2036
2037 if (device_run_wake(&dev->dev))
2038 return true;
2039
2040 if (!dev->pme_support)
2041 return false;
2042
2043 /* PME-capable in principle, but not from the intended sleep state */
2044 if (!pci_pme_capable(dev, pci_target_state(dev)))
2045 return false;
2046
2047 while (bus->parent) {
2048 struct pci_dev *bridge = bus->self;
2049
2050 if (device_run_wake(&bridge->dev))
2051 return true;
2052
2053 bus = bus->parent;
2054 }
2055
2056 /* We have reached the root bus. */
2057 if (bus->bridge)
2058 return device_run_wake(bus->bridge);
2059
2060 return false;
2061 }
2062 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2063
2064 /**
2065 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2066 * @pci_dev: Device to check.
2067 *
2068 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2069 * reconfigured due to wakeup settings difference between system and runtime
2070 * suspend and the current power state of it is suitable for the upcoming
2071 * (system) transition.
2072 *
2073 * If the device is not configured for system wakeup, disable PME for it before
2074 * returning 'true' to prevent it from waking up the system unnecessarily.
2075 */
2076 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2077 {
2078 struct device *dev = &pci_dev->dev;
2079
2080 if (!pm_runtime_suspended(dev)
2081 || pci_target_state(pci_dev) != pci_dev->current_state
2082 || platform_pci_need_resume(pci_dev))
2083 return false;
2084
2085 /*
2086 * At this point the device is good to go unless it's been configured
2087 * to generate PME at the runtime suspend time, but it is not supposed
2088 * to wake up the system. In that case, simply disable PME for it
2089 * (it will have to be re-enabled on exit from system resume).
2090 *
2091 * If the device's power state is D3cold and the platform check above
2092 * hasn't triggered, the device's configuration is suitable and we don't
2093 * need to manipulate it at all.
2094 */
2095 spin_lock_irq(&dev->power.lock);
2096
2097 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2098 !device_may_wakeup(dev))
2099 __pci_pme_active(pci_dev, false);
2100
2101 spin_unlock_irq(&dev->power.lock);
2102 return true;
2103 }
2104
2105 /**
2106 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2107 * @pci_dev: Device to handle.
2108 *
2109 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2110 * it might have been disabled during the prepare phase of system suspend if
2111 * the device was not configured for system wakeup.
2112 */
2113 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2114 {
2115 struct device *dev = &pci_dev->dev;
2116
2117 if (!pci_dev_run_wake(pci_dev))
2118 return;
2119
2120 spin_lock_irq(&dev->power.lock);
2121
2122 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2123 __pci_pme_active(pci_dev, true);
2124
2125 spin_unlock_irq(&dev->power.lock);
2126 }
2127
2128 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2129 {
2130 struct device *dev = &pdev->dev;
2131 struct device *parent = dev->parent;
2132
2133 if (parent)
2134 pm_runtime_get_sync(parent);
2135 pm_runtime_get_noresume(dev);
2136 /*
2137 * pdev->current_state is set to PCI_D3cold during suspending,
2138 * so wait until suspending completes
2139 */
2140 pm_runtime_barrier(dev);
2141 /*
2142 * Only need to resume devices in D3cold, because config
2143 * registers are still accessible for devices suspended but
2144 * not in D3cold.
2145 */
2146 if (pdev->current_state == PCI_D3cold)
2147 pm_runtime_resume(dev);
2148 }
2149
2150 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2151 {
2152 struct device *dev = &pdev->dev;
2153 struct device *parent = dev->parent;
2154
2155 pm_runtime_put(dev);
2156 if (parent)
2157 pm_runtime_put_sync(parent);
2158 }
2159
2160 /**
2161 * pci_pm_init - Initialize PM functions of given PCI device
2162 * @dev: PCI device to handle.
2163 */
2164 void pci_pm_init(struct pci_dev *dev)
2165 {
2166 int pm;
2167 u16 pmc;
2168
2169 pm_runtime_forbid(&dev->dev);
2170 pm_runtime_set_active(&dev->dev);
2171 pm_runtime_enable(&dev->dev);
2172 device_enable_async_suspend(&dev->dev);
2173 dev->wakeup_prepared = false;
2174
2175 dev->pm_cap = 0;
2176 dev->pme_support = 0;
2177
2178 /* find PCI PM capability in list */
2179 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2180 if (!pm)
2181 return;
2182 /* Check device's ability to generate PME# */
2183 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2184
2185 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2186 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2187 pmc & PCI_PM_CAP_VER_MASK);
2188 return;
2189 }
2190
2191 dev->pm_cap = pm;
2192 dev->d3_delay = PCI_PM_D3_WAIT;
2193 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2194 dev->d3cold_allowed = true;
2195
2196 dev->d1_support = false;
2197 dev->d2_support = false;
2198 if (!pci_no_d1d2(dev)) {
2199 if (pmc & PCI_PM_CAP_D1)
2200 dev->d1_support = true;
2201 if (pmc & PCI_PM_CAP_D2)
2202 dev->d2_support = true;
2203
2204 if (dev->d1_support || dev->d2_support)
2205 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2206 dev->d1_support ? " D1" : "",
2207 dev->d2_support ? " D2" : "");
2208 }
2209
2210 pmc &= PCI_PM_CAP_PME_MASK;
2211 if (pmc) {
2212 dev_printk(KERN_DEBUG, &dev->dev,
2213 "PME# supported from%s%s%s%s%s\n",
2214 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2215 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2216 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2217 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2218 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2219 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2220 dev->pme_poll = true;
2221 /*
2222 * Make device's PM flags reflect the wake-up capability, but
2223 * let the user space enable it to wake up the system as needed.
2224 */
2225 device_set_wakeup_capable(&dev->dev, true);
2226 /* Disable the PME# generation functionality */
2227 pci_pme_active(dev, false);
2228 }
2229 }
2230
2231 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2232 {
2233 unsigned long flags = IORESOURCE_PCI_FIXED;
2234
2235 switch (prop) {
2236 case PCI_EA_P_MEM:
2237 case PCI_EA_P_VF_MEM:
2238 flags |= IORESOURCE_MEM;
2239 break;
2240 case PCI_EA_P_MEM_PREFETCH:
2241 case PCI_EA_P_VF_MEM_PREFETCH:
2242 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2243 break;
2244 case PCI_EA_P_IO:
2245 flags |= IORESOURCE_IO;
2246 break;
2247 default:
2248 return 0;
2249 }
2250
2251 return flags;
2252 }
2253
2254 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2255 u8 prop)
2256 {
2257 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2258 return &dev->resource[bei];
2259 #ifdef CONFIG_PCI_IOV
2260 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2261 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2262 return &dev->resource[PCI_IOV_RESOURCES +
2263 bei - PCI_EA_BEI_VF_BAR0];
2264 #endif
2265 else if (bei == PCI_EA_BEI_ROM)
2266 return &dev->resource[PCI_ROM_RESOURCE];
2267 else
2268 return NULL;
2269 }
2270
2271 /* Read an Enhanced Allocation (EA) entry */
2272 static int pci_ea_read(struct pci_dev *dev, int offset)
2273 {
2274 struct resource *res;
2275 int ent_size, ent_offset = offset;
2276 resource_size_t start, end;
2277 unsigned long flags;
2278 u32 dw0, bei, base, max_offset;
2279 u8 prop;
2280 bool support_64 = (sizeof(resource_size_t) >= 8);
2281
2282 pci_read_config_dword(dev, ent_offset, &dw0);
2283 ent_offset += 4;
2284
2285 /* Entry size field indicates DWORDs after 1st */
2286 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2287
2288 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2289 goto out;
2290
2291 bei = (dw0 & PCI_EA_BEI) >> 4;
2292 prop = (dw0 & PCI_EA_PP) >> 8;
2293
2294 /*
2295 * If the Property is in the reserved range, try the Secondary
2296 * Property instead.
2297 */
2298 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2299 prop = (dw0 & PCI_EA_SP) >> 16;
2300 if (prop > PCI_EA_P_BRIDGE_IO)
2301 goto out;
2302
2303 res = pci_ea_get_resource(dev, bei, prop);
2304 if (!res) {
2305 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2306 goto out;
2307 }
2308
2309 flags = pci_ea_flags(dev, prop);
2310 if (!flags) {
2311 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2312 goto out;
2313 }
2314
2315 /* Read Base */
2316 pci_read_config_dword(dev, ent_offset, &base);
2317 start = (base & PCI_EA_FIELD_MASK);
2318 ent_offset += 4;
2319
2320 /* Read MaxOffset */
2321 pci_read_config_dword(dev, ent_offset, &max_offset);
2322 ent_offset += 4;
2323
2324 /* Read Base MSBs (if 64-bit entry) */
2325 if (base & PCI_EA_IS_64) {
2326 u32 base_upper;
2327
2328 pci_read_config_dword(dev, ent_offset, &base_upper);
2329 ent_offset += 4;
2330
2331 flags |= IORESOURCE_MEM_64;
2332
2333 /* entry starts above 32-bit boundary, can't use */
2334 if (!support_64 && base_upper)
2335 goto out;
2336
2337 if (support_64)
2338 start |= ((u64)base_upper << 32);
2339 }
2340
2341 end = start + (max_offset | 0x03);
2342
2343 /* Read MaxOffset MSBs (if 64-bit entry) */
2344 if (max_offset & PCI_EA_IS_64) {
2345 u32 max_offset_upper;
2346
2347 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2348 ent_offset += 4;
2349
2350 flags |= IORESOURCE_MEM_64;
2351
2352 /* entry too big, can't use */
2353 if (!support_64 && max_offset_upper)
2354 goto out;
2355
2356 if (support_64)
2357 end += ((u64)max_offset_upper << 32);
2358 }
2359
2360 if (end < start) {
2361 dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2362 goto out;
2363 }
2364
2365 if (ent_size != ent_offset - offset) {
2366 dev_err(&dev->dev,
2367 "EA Entry Size (%d) does not match length read (%d)\n",
2368 ent_size, ent_offset - offset);
2369 goto out;
2370 }
2371
2372 res->name = pci_name(dev);
2373 res->start = start;
2374 res->end = end;
2375 res->flags = flags;
2376
2377 if (bei <= PCI_EA_BEI_BAR5)
2378 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2379 bei, res, prop);
2380 else if (bei == PCI_EA_BEI_ROM)
2381 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2382 res, prop);
2383 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2384 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2385 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2386 else
2387 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2388 bei, res, prop);
2389
2390 out:
2391 return offset + ent_size;
2392 }
2393
2394 /* Enhanced Allocation Initalization */
2395 void pci_ea_init(struct pci_dev *dev)
2396 {
2397 int ea;
2398 u8 num_ent;
2399 int offset;
2400 int i;
2401
2402 /* find PCI EA capability in list */
2403 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2404 if (!ea)
2405 return;
2406
2407 /* determine the number of entries */
2408 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2409 &num_ent);
2410 num_ent &= PCI_EA_NUM_ENT_MASK;
2411
2412 offset = ea + PCI_EA_FIRST_ENT;
2413
2414 /* Skip DWORD 2 for type 1 functions */
2415 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2416 offset += 4;
2417
2418 /* parse each EA entry */
2419 for (i = 0; i < num_ent; ++i)
2420 offset = pci_ea_read(dev, offset);
2421 }
2422
2423 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2424 struct pci_cap_saved_state *new_cap)
2425 {
2426 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2427 }
2428
2429 /**
2430 * _pci_add_cap_save_buffer - allocate buffer for saving given
2431 * capability registers
2432 * @dev: the PCI device
2433 * @cap: the capability to allocate the buffer for
2434 * @extended: Standard or Extended capability ID
2435 * @size: requested size of the buffer
2436 */
2437 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2438 bool extended, unsigned int size)
2439 {
2440 int pos;
2441 struct pci_cap_saved_state *save_state;
2442
2443 if (extended)
2444 pos = pci_find_ext_capability(dev, cap);
2445 else
2446 pos = pci_find_capability(dev, cap);
2447
2448 if (!pos)
2449 return 0;
2450
2451 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2452 if (!save_state)
2453 return -ENOMEM;
2454
2455 save_state->cap.cap_nr = cap;
2456 save_state->cap.cap_extended = extended;
2457 save_state->cap.size = size;
2458 pci_add_saved_cap(dev, save_state);
2459
2460 return 0;
2461 }
2462
2463 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2464 {
2465 return _pci_add_cap_save_buffer(dev, cap, false, size);
2466 }
2467
2468 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2469 {
2470 return _pci_add_cap_save_buffer(dev, cap, true, size);
2471 }
2472
2473 /**
2474 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2475 * @dev: the PCI device
2476 */
2477 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2478 {
2479 int error;
2480
2481 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2482 PCI_EXP_SAVE_REGS * sizeof(u16));
2483 if (error)
2484 dev_err(&dev->dev,
2485 "unable to preallocate PCI Express save buffer\n");
2486
2487 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2488 if (error)
2489 dev_err(&dev->dev,
2490 "unable to preallocate PCI-X save buffer\n");
2491
2492 pci_allocate_vc_save_buffers(dev);
2493 }
2494
2495 void pci_free_cap_save_buffers(struct pci_dev *dev)
2496 {
2497 struct pci_cap_saved_state *tmp;
2498 struct hlist_node *n;
2499
2500 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2501 kfree(tmp);
2502 }
2503
2504 /**
2505 * pci_configure_ari - enable or disable ARI forwarding
2506 * @dev: the PCI device
2507 *
2508 * If @dev and its upstream bridge both support ARI, enable ARI in the
2509 * bridge. Otherwise, disable ARI in the bridge.
2510 */
2511 void pci_configure_ari(struct pci_dev *dev)
2512 {
2513 u32 cap;
2514 struct pci_dev *bridge;
2515
2516 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2517 return;
2518
2519 bridge = dev->bus->self;
2520 if (!bridge)
2521 return;
2522
2523 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2524 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2525 return;
2526
2527 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2528 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2529 PCI_EXP_DEVCTL2_ARI);
2530 bridge->ari_enabled = 1;
2531 } else {
2532 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2533 PCI_EXP_DEVCTL2_ARI);
2534 bridge->ari_enabled = 0;
2535 }
2536 }
2537
2538 static int pci_acs_enable;
2539
2540 /**
2541 * pci_request_acs - ask for ACS to be enabled if supported
2542 */
2543 void pci_request_acs(void)
2544 {
2545 pci_acs_enable = 1;
2546 }
2547
2548 /**
2549 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2550 * @dev: the PCI device
2551 */
2552 static int pci_std_enable_acs(struct pci_dev *dev)
2553 {
2554 int pos;
2555 u16 cap;
2556 u16 ctrl;
2557
2558 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2559 if (!pos)
2560 return -ENODEV;
2561
2562 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2563 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2564
2565 /* Source Validation */
2566 ctrl |= (cap & PCI_ACS_SV);
2567
2568 /* P2P Request Redirect */
2569 ctrl |= (cap & PCI_ACS_RR);
2570
2571 /* P2P Completion Redirect */
2572 ctrl |= (cap & PCI_ACS_CR);
2573
2574 /* Upstream Forwarding */
2575 ctrl |= (cap & PCI_ACS_UF);
2576
2577 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2578
2579 return 0;
2580 }
2581
2582 /**
2583 * pci_enable_acs - enable ACS if hardware support it
2584 * @dev: the PCI device
2585 */
2586 void pci_enable_acs(struct pci_dev *dev)
2587 {
2588 if (!pci_acs_enable)
2589 return;
2590
2591 if (!pci_std_enable_acs(dev))
2592 return;
2593
2594 pci_dev_specific_enable_acs(dev);
2595 }
2596
2597 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2598 {
2599 int pos;
2600 u16 cap, ctrl;
2601
2602 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2603 if (!pos)
2604 return false;
2605
2606 /*
2607 * Except for egress control, capabilities are either required
2608 * or only required if controllable. Features missing from the
2609 * capability field can therefore be assumed as hard-wired enabled.
2610 */
2611 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2612 acs_flags &= (cap | PCI_ACS_EC);
2613
2614 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2615 return (ctrl & acs_flags) == acs_flags;
2616 }
2617
2618 /**
2619 * pci_acs_enabled - test ACS against required flags for a given device
2620 * @pdev: device to test
2621 * @acs_flags: required PCI ACS flags
2622 *
2623 * Return true if the device supports the provided flags. Automatically
2624 * filters out flags that are not implemented on multifunction devices.
2625 *
2626 * Note that this interface checks the effective ACS capabilities of the
2627 * device rather than the actual capabilities. For instance, most single
2628 * function endpoints are not required to support ACS because they have no
2629 * opportunity for peer-to-peer access. We therefore return 'true'
2630 * regardless of whether the device exposes an ACS capability. This makes
2631 * it much easier for callers of this function to ignore the actual type
2632 * or topology of the device when testing ACS support.
2633 */
2634 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2635 {
2636 int ret;
2637
2638 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2639 if (ret >= 0)
2640 return ret > 0;
2641
2642 /*
2643 * Conventional PCI and PCI-X devices never support ACS, either
2644 * effectively or actually. The shared bus topology implies that
2645 * any device on the bus can receive or snoop DMA.
2646 */
2647 if (!pci_is_pcie(pdev))
2648 return false;
2649
2650 switch (pci_pcie_type(pdev)) {
2651 /*
2652 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2653 * but since their primary interface is PCI/X, we conservatively
2654 * handle them as we would a non-PCIe device.
2655 */
2656 case PCI_EXP_TYPE_PCIE_BRIDGE:
2657 /*
2658 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2659 * applicable... must never implement an ACS Extended Capability...".
2660 * This seems arbitrary, but we take a conservative interpretation
2661 * of this statement.
2662 */
2663 case PCI_EXP_TYPE_PCI_BRIDGE:
2664 case PCI_EXP_TYPE_RC_EC:
2665 return false;
2666 /*
2667 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2668 * implement ACS in order to indicate their peer-to-peer capabilities,
2669 * regardless of whether they are single- or multi-function devices.
2670 */
2671 case PCI_EXP_TYPE_DOWNSTREAM:
2672 case PCI_EXP_TYPE_ROOT_PORT:
2673 return pci_acs_flags_enabled(pdev, acs_flags);
2674 /*
2675 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2676 * implemented by the remaining PCIe types to indicate peer-to-peer
2677 * capabilities, but only when they are part of a multifunction
2678 * device. The footnote for section 6.12 indicates the specific
2679 * PCIe types included here.
2680 */
2681 case PCI_EXP_TYPE_ENDPOINT:
2682 case PCI_EXP_TYPE_UPSTREAM:
2683 case PCI_EXP_TYPE_LEG_END:
2684 case PCI_EXP_TYPE_RC_END:
2685 if (!pdev->multifunction)
2686 break;
2687
2688 return pci_acs_flags_enabled(pdev, acs_flags);
2689 }
2690
2691 /*
2692 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2693 * to single function devices with the exception of downstream ports.
2694 */
2695 return true;
2696 }
2697
2698 /**
2699 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2700 * @start: starting downstream device
2701 * @end: ending upstream device or NULL to search to the root bus
2702 * @acs_flags: required flags
2703 *
2704 * Walk up a device tree from start to end testing PCI ACS support. If
2705 * any step along the way does not support the required flags, return false.
2706 */
2707 bool pci_acs_path_enabled(struct pci_dev *start,
2708 struct pci_dev *end, u16 acs_flags)
2709 {
2710 struct pci_dev *pdev, *parent = start;
2711
2712 do {
2713 pdev = parent;
2714
2715 if (!pci_acs_enabled(pdev, acs_flags))
2716 return false;
2717
2718 if (pci_is_root_bus(pdev->bus))
2719 return (end == NULL);
2720
2721 parent = pdev->bus->self;
2722 } while (pdev != end);
2723
2724 return true;
2725 }
2726
2727 /**
2728 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2729 * @dev: the PCI device
2730 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2731 *
2732 * Perform INTx swizzling for a device behind one level of bridge. This is
2733 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2734 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2735 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2736 * the PCI Express Base Specification, Revision 2.1)
2737 */
2738 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2739 {
2740 int slot;
2741
2742 if (pci_ari_enabled(dev->bus))
2743 slot = 0;
2744 else
2745 slot = PCI_SLOT(dev->devfn);
2746
2747 return (((pin - 1) + slot) % 4) + 1;
2748 }
2749
2750 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2751 {
2752 u8 pin;
2753
2754 pin = dev->pin;
2755 if (!pin)
2756 return -1;
2757
2758 while (!pci_is_root_bus(dev->bus)) {
2759 pin = pci_swizzle_interrupt_pin(dev, pin);
2760 dev = dev->bus->self;
2761 }
2762 *bridge = dev;
2763 return pin;
2764 }
2765
2766 /**
2767 * pci_common_swizzle - swizzle INTx all the way to root bridge
2768 * @dev: the PCI device
2769 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2770 *
2771 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2772 * bridges all the way up to a PCI root bus.
2773 */
2774 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2775 {
2776 u8 pin = *pinp;
2777
2778 while (!pci_is_root_bus(dev->bus)) {
2779 pin = pci_swizzle_interrupt_pin(dev, pin);
2780 dev = dev->bus->self;
2781 }
2782 *pinp = pin;
2783 return PCI_SLOT(dev->devfn);
2784 }
2785 EXPORT_SYMBOL_GPL(pci_common_swizzle);
2786
2787 /**
2788 * pci_release_region - Release a PCI bar
2789 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2790 * @bar: BAR to release
2791 *
2792 * Releases the PCI I/O and memory resources previously reserved by a
2793 * successful call to pci_request_region. Call this function only
2794 * after all use of the PCI regions has ceased.
2795 */
2796 void pci_release_region(struct pci_dev *pdev, int bar)
2797 {
2798 struct pci_devres *dr;
2799
2800 if (pci_resource_len(pdev, bar) == 0)
2801 return;
2802 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2803 release_region(pci_resource_start(pdev, bar),
2804 pci_resource_len(pdev, bar));
2805 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2806 release_mem_region(pci_resource_start(pdev, bar),
2807 pci_resource_len(pdev, bar));
2808
2809 dr = find_pci_dr(pdev);
2810 if (dr)
2811 dr->region_mask &= ~(1 << bar);
2812 }
2813 EXPORT_SYMBOL(pci_release_region);
2814
2815 /**
2816 * __pci_request_region - Reserved PCI I/O and memory resource
2817 * @pdev: PCI device whose resources are to be reserved
2818 * @bar: BAR to be reserved
2819 * @res_name: Name to be associated with resource.
2820 * @exclusive: whether the region access is exclusive or not
2821 *
2822 * Mark the PCI region associated with PCI device @pdev BR @bar as
2823 * being reserved by owner @res_name. Do not access any
2824 * address inside the PCI regions unless this call returns
2825 * successfully.
2826 *
2827 * If @exclusive is set, then the region is marked so that userspace
2828 * is explicitly not allowed to map the resource via /dev/mem or
2829 * sysfs MMIO access.
2830 *
2831 * Returns 0 on success, or %EBUSY on error. A warning
2832 * message is also printed on failure.
2833 */
2834 static int __pci_request_region(struct pci_dev *pdev, int bar,
2835 const char *res_name, int exclusive)
2836 {
2837 struct pci_devres *dr;
2838
2839 if (pci_resource_len(pdev, bar) == 0)
2840 return 0;
2841
2842 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2843 if (!request_region(pci_resource_start(pdev, bar),
2844 pci_resource_len(pdev, bar), res_name))
2845 goto err_out;
2846 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2847 if (!__request_mem_region(pci_resource_start(pdev, bar),
2848 pci_resource_len(pdev, bar), res_name,
2849 exclusive))
2850 goto err_out;
2851 }
2852
2853 dr = find_pci_dr(pdev);
2854 if (dr)
2855 dr->region_mask |= 1 << bar;
2856
2857 return 0;
2858
2859 err_out:
2860 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2861 &pdev->resource[bar]);
2862 return -EBUSY;
2863 }
2864
2865 /**
2866 * pci_request_region - Reserve PCI I/O and memory resource
2867 * @pdev: PCI device whose resources are to be reserved
2868 * @bar: BAR to be reserved
2869 * @res_name: Name to be associated with resource
2870 *
2871 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2872 * being reserved by owner @res_name. Do not access any
2873 * address inside the PCI regions unless this call returns
2874 * successfully.
2875 *
2876 * Returns 0 on success, or %EBUSY on error. A warning
2877 * message is also printed on failure.
2878 */
2879 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2880 {
2881 return __pci_request_region(pdev, bar, res_name, 0);
2882 }
2883 EXPORT_SYMBOL(pci_request_region);
2884
2885 /**
2886 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2887 * @pdev: PCI device whose resources are to be reserved
2888 * @bar: BAR to be reserved
2889 * @res_name: Name to be associated with resource.
2890 *
2891 * Mark the PCI region associated with PCI device @pdev BR @bar as
2892 * being reserved by owner @res_name. Do not access any
2893 * address inside the PCI regions unless this call returns
2894 * successfully.
2895 *
2896 * Returns 0 on success, or %EBUSY on error. A warning
2897 * message is also printed on failure.
2898 *
2899 * The key difference that _exclusive makes it that userspace is
2900 * explicitly not allowed to map the resource via /dev/mem or
2901 * sysfs.
2902 */
2903 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
2904 const char *res_name)
2905 {
2906 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2907 }
2908 EXPORT_SYMBOL(pci_request_region_exclusive);
2909
2910 /**
2911 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2912 * @pdev: PCI device whose resources were previously reserved
2913 * @bars: Bitmask of BARs to be released
2914 *
2915 * Release selected PCI I/O and memory resources previously reserved.
2916 * Call this function only after all use of the PCI regions has ceased.
2917 */
2918 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2919 {
2920 int i;
2921
2922 for (i = 0; i < 6; i++)
2923 if (bars & (1 << i))
2924 pci_release_region(pdev, i);
2925 }
2926 EXPORT_SYMBOL(pci_release_selected_regions);
2927
2928 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2929 const char *res_name, int excl)
2930 {
2931 int i;
2932
2933 for (i = 0; i < 6; i++)
2934 if (bars & (1 << i))
2935 if (__pci_request_region(pdev, i, res_name, excl))
2936 goto err_out;
2937 return 0;
2938
2939 err_out:
2940 while (--i >= 0)
2941 if (bars & (1 << i))
2942 pci_release_region(pdev, i);
2943
2944 return -EBUSY;
2945 }
2946
2947
2948 /**
2949 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2950 * @pdev: PCI device whose resources are to be reserved
2951 * @bars: Bitmask of BARs to be requested
2952 * @res_name: Name to be associated with resource
2953 */
2954 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2955 const char *res_name)
2956 {
2957 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2958 }
2959 EXPORT_SYMBOL(pci_request_selected_regions);
2960
2961 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
2962 const char *res_name)
2963 {
2964 return __pci_request_selected_regions(pdev, bars, res_name,
2965 IORESOURCE_EXCLUSIVE);
2966 }
2967 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2968
2969 /**
2970 * pci_release_regions - Release reserved PCI I/O and memory resources
2971 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2972 *
2973 * Releases all PCI I/O and memory resources previously reserved by a
2974 * successful call to pci_request_regions. Call this function only
2975 * after all use of the PCI regions has ceased.
2976 */
2977
2978 void pci_release_regions(struct pci_dev *pdev)
2979 {
2980 pci_release_selected_regions(pdev, (1 << 6) - 1);
2981 }
2982 EXPORT_SYMBOL(pci_release_regions);
2983
2984 /**
2985 * pci_request_regions - Reserved PCI I/O and memory resources
2986 * @pdev: PCI device whose resources are to be reserved
2987 * @res_name: Name to be associated with resource.
2988 *
2989 * Mark all PCI regions associated with PCI device @pdev as
2990 * being reserved by owner @res_name. Do not access any
2991 * address inside the PCI regions unless this call returns
2992 * successfully.
2993 *
2994 * Returns 0 on success, or %EBUSY on error. A warning
2995 * message is also printed on failure.
2996 */
2997 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2998 {
2999 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3000 }
3001 EXPORT_SYMBOL(pci_request_regions);
3002
3003 /**
3004 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3005 * @pdev: PCI device whose resources are to be reserved
3006 * @res_name: Name to be associated with resource.
3007 *
3008 * Mark all PCI regions associated with PCI device @pdev as
3009 * being reserved by owner @res_name. Do not access any
3010 * address inside the PCI regions unless this call returns
3011 * successfully.
3012 *
3013 * pci_request_regions_exclusive() will mark the region so that
3014 * /dev/mem and the sysfs MMIO access will not be allowed.
3015 *
3016 * Returns 0 on success, or %EBUSY on error. A warning
3017 * message is also printed on failure.
3018 */
3019 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3020 {
3021 return pci_request_selected_regions_exclusive(pdev,
3022 ((1 << 6) - 1), res_name);
3023 }
3024 EXPORT_SYMBOL(pci_request_regions_exclusive);
3025
3026 /**
3027 * pci_remap_iospace - Remap the memory mapped I/O space
3028 * @res: Resource describing the I/O space
3029 * @phys_addr: physical address of range to be mapped
3030 *
3031 * Remap the memory mapped I/O space described by the @res
3032 * and the CPU physical address @phys_addr into virtual address space.
3033 * Only architectures that have memory mapped IO functions defined
3034 * (and the PCI_IOBASE value defined) should call this function.
3035 */
3036 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3037 {
3038 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3039 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3040
3041 if (!(res->flags & IORESOURCE_IO))
3042 return -EINVAL;
3043
3044 if (res->end > IO_SPACE_LIMIT)
3045 return -EINVAL;
3046
3047 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3048 pgprot_device(PAGE_KERNEL));
3049 #else
3050 /* this architecture does not have memory mapped I/O space,
3051 so this function should never be called */
3052 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3053 return -ENODEV;
3054 #endif
3055 }
3056
3057 static void __pci_set_master(struct pci_dev *dev, bool enable)
3058 {
3059 u16 old_cmd, cmd;
3060
3061 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3062 if (enable)
3063 cmd = old_cmd | PCI_COMMAND_MASTER;
3064 else
3065 cmd = old_cmd & ~PCI_COMMAND_MASTER;
3066 if (cmd != old_cmd) {
3067 dev_dbg(&dev->dev, "%s bus mastering\n",
3068 enable ? "enabling" : "disabling");
3069 pci_write_config_word(dev, PCI_COMMAND, cmd);
3070 }
3071 dev->is_busmaster = enable;
3072 }
3073
3074 /**
3075 * pcibios_setup - process "pci=" kernel boot arguments
3076 * @str: string used to pass in "pci=" kernel boot arguments
3077 *
3078 * Process kernel boot arguments. This is the default implementation.
3079 * Architecture specific implementations can override this as necessary.
3080 */
3081 char * __weak __init pcibios_setup(char *str)
3082 {
3083 return str;
3084 }
3085
3086 /**
3087 * pcibios_set_master - enable PCI bus-mastering for device dev
3088 * @dev: the PCI device to enable
3089 *
3090 * Enables PCI bus-mastering for the device. This is the default
3091 * implementation. Architecture specific implementations can override
3092 * this if necessary.
3093 */
3094 void __weak pcibios_set_master(struct pci_dev *dev)
3095 {
3096 u8 lat;
3097
3098 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3099 if (pci_is_pcie(dev))
3100 return;
3101
3102 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3103 if (lat < 16)
3104 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3105 else if (lat > pcibios_max_latency)
3106 lat = pcibios_max_latency;
3107 else
3108 return;
3109
3110 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3111 }
3112
3113 /**
3114 * pci_set_master - enables bus-mastering for device dev
3115 * @dev: the PCI device to enable
3116 *
3117 * Enables bus-mastering on the device and calls pcibios_set_master()
3118 * to do the needed arch specific settings.
3119 */
3120 void pci_set_master(struct pci_dev *dev)
3121 {
3122 __pci_set_master(dev, true);
3123 pcibios_set_master(dev);
3124 }
3125 EXPORT_SYMBOL(pci_set_master);
3126
3127 /**
3128 * pci_clear_master - disables bus-mastering for device dev
3129 * @dev: the PCI device to disable
3130 */
3131 void pci_clear_master(struct pci_dev *dev)
3132 {
3133 __pci_set_master(dev, false);
3134 }
3135 EXPORT_SYMBOL(pci_clear_master);
3136
3137 /**
3138 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3139 * @dev: the PCI device for which MWI is to be enabled
3140 *
3141 * Helper function for pci_set_mwi.
3142 * Originally copied from drivers/net/acenic.c.
3143 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3144 *
3145 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3146 */
3147 int pci_set_cacheline_size(struct pci_dev *dev)
3148 {
3149 u8 cacheline_size;
3150
3151 if (!pci_cache_line_size)
3152 return -EINVAL;
3153
3154 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3155 equal to or multiple of the right value. */
3156 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3157 if (cacheline_size >= pci_cache_line_size &&
3158 (cacheline_size % pci_cache_line_size) == 0)
3159 return 0;
3160
3161 /* Write the correct value. */
3162 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3163 /* Read it back. */
3164 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3165 if (cacheline_size == pci_cache_line_size)
3166 return 0;
3167
3168 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3169 pci_cache_line_size << 2);
3170
3171 return -EINVAL;
3172 }
3173 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3174
3175 /**
3176 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3177 * @dev: the PCI device for which MWI is enabled
3178 *
3179 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3180 *
3181 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3182 */
3183 int pci_set_mwi(struct pci_dev *dev)
3184 {
3185 #ifdef PCI_DISABLE_MWI
3186 return 0;
3187 #else
3188 int rc;
3189 u16 cmd;
3190
3191 rc = pci_set_cacheline_size(dev);
3192 if (rc)
3193 return rc;
3194
3195 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3196 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3197 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3198 cmd |= PCI_COMMAND_INVALIDATE;
3199 pci_write_config_word(dev, PCI_COMMAND, cmd);
3200 }
3201 return 0;
3202 #endif
3203 }
3204 EXPORT_SYMBOL(pci_set_mwi);
3205
3206 /**
3207 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3208 * @dev: the PCI device for which MWI is enabled
3209 *
3210 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3211 * Callers are not required to check the return value.
3212 *
3213 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3214 */
3215 int pci_try_set_mwi(struct pci_dev *dev)
3216 {
3217 #ifdef PCI_DISABLE_MWI
3218 return 0;
3219 #else
3220 return pci_set_mwi(dev);
3221 #endif
3222 }
3223 EXPORT_SYMBOL(pci_try_set_mwi);
3224
3225 /**
3226 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3227 * @dev: the PCI device to disable
3228 *
3229 * Disables PCI Memory-Write-Invalidate transaction on the device
3230 */
3231 void pci_clear_mwi(struct pci_dev *dev)
3232 {
3233 #ifndef PCI_DISABLE_MWI
3234 u16 cmd;
3235
3236 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3237 if (cmd & PCI_COMMAND_INVALIDATE) {
3238 cmd &= ~PCI_COMMAND_INVALIDATE;
3239 pci_write_config_word(dev, PCI_COMMAND, cmd);
3240 }
3241 #endif
3242 }
3243 EXPORT_SYMBOL(pci_clear_mwi);
3244
3245 /**
3246 * pci_intx - enables/disables PCI INTx for device dev
3247 * @pdev: the PCI device to operate on
3248 * @enable: boolean: whether to enable or disable PCI INTx
3249 *
3250 * Enables/disables PCI INTx for device dev
3251 */
3252 void pci_intx(struct pci_dev *pdev, int enable)
3253 {
3254 u16 pci_command, new;
3255
3256 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3257
3258 if (enable)
3259 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3260 else
3261 new = pci_command | PCI_COMMAND_INTX_DISABLE;
3262
3263 if (new != pci_command) {
3264 struct pci_devres *dr;
3265
3266 pci_write_config_word(pdev, PCI_COMMAND, new);
3267
3268 dr = find_pci_dr(pdev);
3269 if (dr && !dr->restore_intx) {
3270 dr->restore_intx = 1;
3271 dr->orig_intx = !enable;
3272 }
3273 }
3274 }
3275 EXPORT_SYMBOL_GPL(pci_intx);
3276
3277 /**
3278 * pci_intx_mask_supported - probe for INTx masking support
3279 * @dev: the PCI device to operate on
3280 *
3281 * Check if the device dev support INTx masking via the config space
3282 * command word.
3283 */
3284 bool pci_intx_mask_supported(struct pci_dev *dev)
3285 {
3286 bool mask_supported = false;
3287 u16 orig, new;
3288
3289 if (dev->broken_intx_masking)
3290 return false;
3291
3292 pci_cfg_access_lock(dev);
3293
3294 pci_read_config_word(dev, PCI_COMMAND, &orig);
3295 pci_write_config_word(dev, PCI_COMMAND,
3296 orig ^ PCI_COMMAND_INTX_DISABLE);
3297 pci_read_config_word(dev, PCI_COMMAND, &new);
3298
3299 /*
3300 * There's no way to protect against hardware bugs or detect them
3301 * reliably, but as long as we know what the value should be, let's
3302 * go ahead and check it.
3303 */
3304 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3305 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3306 orig, new);
3307 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3308 mask_supported = true;
3309 pci_write_config_word(dev, PCI_COMMAND, orig);
3310 }
3311
3312 pci_cfg_access_unlock(dev);
3313 return mask_supported;
3314 }
3315 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3316
3317 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3318 {
3319 struct pci_bus *bus = dev->bus;
3320 bool mask_updated = true;
3321 u32 cmd_status_dword;
3322 u16 origcmd, newcmd;
3323 unsigned long flags;
3324 bool irq_pending;
3325
3326 /*
3327 * We do a single dword read to retrieve both command and status.
3328 * Document assumptions that make this possible.
3329 */
3330 BUILD_BUG_ON(PCI_COMMAND % 4);
3331 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3332
3333 raw_spin_lock_irqsave(&pci_lock, flags);
3334
3335 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3336
3337 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3338
3339 /*
3340 * Check interrupt status register to see whether our device
3341 * triggered the interrupt (when masking) or the next IRQ is
3342 * already pending (when unmasking).
3343 */
3344 if (mask != irq_pending) {
3345 mask_updated = false;
3346 goto done;
3347 }
3348
3349 origcmd = cmd_status_dword;
3350 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3351 if (mask)
3352 newcmd |= PCI_COMMAND_INTX_DISABLE;
3353 if (newcmd != origcmd)
3354 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3355
3356 done:
3357 raw_spin_unlock_irqrestore(&pci_lock, flags);
3358
3359 return mask_updated;
3360 }
3361
3362 /**
3363 * pci_check_and_mask_intx - mask INTx on pending interrupt
3364 * @dev: the PCI device to operate on
3365 *
3366 * Check if the device dev has its INTx line asserted, mask it and
3367 * return true in that case. False is returned if not interrupt was
3368 * pending.
3369 */
3370 bool pci_check_and_mask_intx(struct pci_dev *dev)
3371 {
3372 return pci_check_and_set_intx_mask(dev, true);
3373 }
3374 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3375
3376 /**
3377 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3378 * @dev: the PCI device to operate on
3379 *
3380 * Check if the device dev has its INTx line asserted, unmask it if not
3381 * and return true. False is returned and the mask remains active if
3382 * there was still an interrupt pending.
3383 */
3384 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3385 {
3386 return pci_check_and_set_intx_mask(dev, false);
3387 }
3388 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3389
3390 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3391 {
3392 return dma_set_max_seg_size(&dev->dev, size);
3393 }
3394 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3395
3396 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3397 {
3398 return dma_set_seg_boundary(&dev->dev, mask);
3399 }
3400 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3401
3402 /**
3403 * pci_wait_for_pending_transaction - waits for pending transaction
3404 * @dev: the PCI device to operate on
3405 *
3406 * Return 0 if transaction is pending 1 otherwise.
3407 */
3408 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3409 {
3410 if (!pci_is_pcie(dev))
3411 return 1;
3412
3413 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3414 PCI_EXP_DEVSTA_TRPND);
3415 }
3416 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3417
3418 static int pcie_flr(struct pci_dev *dev, int probe)
3419 {
3420 u32 cap;
3421
3422 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3423 if (!(cap & PCI_EXP_DEVCAP_FLR))
3424 return -ENOTTY;
3425
3426 if (probe)
3427 return 0;
3428
3429 if (!pci_wait_for_pending_transaction(dev))
3430 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3431
3432 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3433 msleep(100);
3434 return 0;
3435 }
3436
3437 static int pci_af_flr(struct pci_dev *dev, int probe)
3438 {
3439 int pos;
3440 u8 cap;
3441
3442 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3443 if (!pos)
3444 return -ENOTTY;
3445
3446 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3447 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3448 return -ENOTTY;
3449
3450 if (probe)
3451 return 0;
3452
3453 /*
3454 * Wait for Transaction Pending bit to clear. A word-aligned test
3455 * is used, so we use the conrol offset rather than status and shift
3456 * the test bit to match.
3457 */
3458 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3459 PCI_AF_STATUS_TP << 8))
3460 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3461
3462 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3463 msleep(100);
3464 return 0;
3465 }
3466
3467 /**
3468 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3469 * @dev: Device to reset.
3470 * @probe: If set, only check if the device can be reset this way.
3471 *
3472 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3473 * unset, it will be reinitialized internally when going from PCI_D3hot to
3474 * PCI_D0. If that's the case and the device is not in a low-power state
3475 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3476 *
3477 * NOTE: This causes the caller to sleep for twice the device power transition
3478 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3479 * by default (i.e. unless the @dev's d3_delay field has a different value).
3480 * Moreover, only devices in D0 can be reset by this function.
3481 */
3482 static int pci_pm_reset(struct pci_dev *dev, int probe)
3483 {
3484 u16 csr;
3485
3486 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3487 return -ENOTTY;
3488
3489 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3490 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3491 return -ENOTTY;
3492
3493 if (probe)
3494 return 0;
3495
3496 if (dev->current_state != PCI_D0)
3497 return -EINVAL;
3498
3499 csr &= ~PCI_PM_CTRL_STATE_MASK;
3500 csr |= PCI_D3hot;
3501 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3502 pci_dev_d3_sleep(dev);
3503
3504 csr &= ~PCI_PM_CTRL_STATE_MASK;
3505 csr |= PCI_D0;
3506 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3507 pci_dev_d3_sleep(dev);
3508
3509 return 0;
3510 }
3511
3512 void pci_reset_secondary_bus(struct pci_dev *dev)
3513 {
3514 u16 ctrl;
3515
3516 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3517 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3518 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3519 /*
3520 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3521 * this to 2ms to ensure that we meet the minimum requirement.
3522 */
3523 msleep(2);
3524
3525 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3526 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3527
3528 /*
3529 * Trhfa for conventional PCI is 2^25 clock cycles.
3530 * Assuming a minimum 33MHz clock this results in a 1s
3531 * delay before we can consider subordinate devices to
3532 * be re-initialized. PCIe has some ways to shorten this,
3533 * but we don't make use of them yet.
3534 */
3535 ssleep(1);
3536 }
3537
3538 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3539 {
3540 pci_reset_secondary_bus(dev);
3541 }
3542
3543 /**
3544 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3545 * @dev: Bridge device
3546 *
3547 * Use the bridge control register to assert reset on the secondary bus.
3548 * Devices on the secondary bus are left in power-on state.
3549 */
3550 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3551 {
3552 pcibios_reset_secondary_bus(dev);
3553 }
3554 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3555
3556 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3557 {
3558 struct pci_dev *pdev;
3559
3560 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
3561 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3562 return -ENOTTY;
3563
3564 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3565 if (pdev != dev)
3566 return -ENOTTY;
3567
3568 if (probe)
3569 return 0;
3570
3571 pci_reset_bridge_secondary_bus(dev->bus->self);
3572
3573 return 0;
3574 }
3575
3576 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3577 {
3578 int rc = -ENOTTY;
3579
3580 if (!hotplug || !try_module_get(hotplug->ops->owner))
3581 return rc;
3582
3583 if (hotplug->ops->reset_slot)
3584 rc = hotplug->ops->reset_slot(hotplug, probe);
3585
3586 module_put(hotplug->ops->owner);
3587
3588 return rc;
3589 }
3590
3591 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3592 {
3593 struct pci_dev *pdev;
3594
3595 if (dev->subordinate || !dev->slot ||
3596 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3597 return -ENOTTY;
3598
3599 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3600 if (pdev != dev && pdev->slot == dev->slot)
3601 return -ENOTTY;
3602
3603 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3604 }
3605
3606 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3607 {
3608 int rc;
3609
3610 might_sleep();
3611
3612 rc = pci_dev_specific_reset(dev, probe);
3613 if (rc != -ENOTTY)
3614 goto done;
3615
3616 rc = pcie_flr(dev, probe);
3617 if (rc != -ENOTTY)
3618 goto done;
3619
3620 rc = pci_af_flr(dev, probe);
3621 if (rc != -ENOTTY)
3622 goto done;
3623
3624 rc = pci_pm_reset(dev, probe);
3625 if (rc != -ENOTTY)
3626 goto done;
3627
3628 rc = pci_dev_reset_slot_function(dev, probe);
3629 if (rc != -ENOTTY)
3630 goto done;
3631
3632 rc = pci_parent_bus_reset(dev, probe);
3633 done:
3634 return rc;
3635 }
3636
3637 static void pci_dev_lock(struct pci_dev *dev)
3638 {
3639 pci_cfg_access_lock(dev);
3640 /* block PM suspend, driver probe, etc. */
3641 device_lock(&dev->dev);
3642 }
3643
3644 /* Return 1 on successful lock, 0 on contention */
3645 static int pci_dev_trylock(struct pci_dev *dev)
3646 {
3647 if (pci_cfg_access_trylock(dev)) {
3648 if (device_trylock(&dev->dev))
3649 return 1;
3650 pci_cfg_access_unlock(dev);
3651 }
3652
3653 return 0;
3654 }
3655
3656 static void pci_dev_unlock(struct pci_dev *dev)
3657 {
3658 device_unlock(&dev->dev);
3659 pci_cfg_access_unlock(dev);
3660 }
3661
3662 /**
3663 * pci_reset_notify - notify device driver of reset
3664 * @dev: device to be notified of reset
3665 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3666 * completed
3667 *
3668 * Must be called prior to device access being disabled and after device
3669 * access is restored.
3670 */
3671 static void pci_reset_notify(struct pci_dev *dev, bool prepare)
3672 {
3673 const struct pci_error_handlers *err_handler =
3674 dev->driver ? dev->driver->err_handler : NULL;
3675 if (err_handler && err_handler->reset_notify)
3676 err_handler->reset_notify(dev, prepare);
3677 }
3678
3679 static void pci_dev_save_and_disable(struct pci_dev *dev)
3680 {
3681 pci_reset_notify(dev, true);
3682
3683 /*
3684 * Wake-up device prior to save. PM registers default to D0 after
3685 * reset and a simple register restore doesn't reliably return
3686 * to a non-D0 state anyway.
3687 */
3688 pci_set_power_state(dev, PCI_D0);
3689
3690 pci_save_state(dev);
3691 /*
3692 * Disable the device by clearing the Command register, except for
3693 * INTx-disable which is set. This not only disables MMIO and I/O port
3694 * BARs, but also prevents the device from being Bus Master, preventing
3695 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
3696 * compliant devices, INTx-disable prevents legacy interrupts.
3697 */
3698 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3699 }
3700
3701 static void pci_dev_restore(struct pci_dev *dev)
3702 {
3703 pci_restore_state(dev);
3704 pci_reset_notify(dev, false);
3705 }
3706
3707 static int pci_dev_reset(struct pci_dev *dev, int probe)
3708 {
3709 int rc;
3710
3711 if (!probe)
3712 pci_dev_lock(dev);
3713
3714 rc = __pci_dev_reset(dev, probe);
3715
3716 if (!probe)
3717 pci_dev_unlock(dev);
3718
3719 return rc;
3720 }
3721
3722 /**
3723 * __pci_reset_function - reset a PCI device function
3724 * @dev: PCI device to reset
3725 *
3726 * Some devices allow an individual function to be reset without affecting
3727 * other functions in the same device. The PCI device must be responsive
3728 * to PCI config space in order to use this function.
3729 *
3730 * The device function is presumed to be unused when this function is called.
3731 * Resetting the device will make the contents of PCI configuration space
3732 * random, so any caller of this must be prepared to reinitialise the
3733 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3734 * etc.
3735 *
3736 * Returns 0 if the device function was successfully reset or negative if the
3737 * device doesn't support resetting a single function.
3738 */
3739 int __pci_reset_function(struct pci_dev *dev)
3740 {
3741 return pci_dev_reset(dev, 0);
3742 }
3743 EXPORT_SYMBOL_GPL(__pci_reset_function);
3744
3745 /**
3746 * __pci_reset_function_locked - reset a PCI device function while holding
3747 * the @dev mutex lock.
3748 * @dev: PCI device to reset
3749 *
3750 * Some devices allow an individual function to be reset without affecting
3751 * other functions in the same device. The PCI device must be responsive
3752 * to PCI config space in order to use this function.
3753 *
3754 * The device function is presumed to be unused and the caller is holding
3755 * the device mutex lock when this function is called.
3756 * Resetting the device will make the contents of PCI configuration space
3757 * random, so any caller of this must be prepared to reinitialise the
3758 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3759 * etc.
3760 *
3761 * Returns 0 if the device function was successfully reset or negative if the
3762 * device doesn't support resetting a single function.
3763 */
3764 int __pci_reset_function_locked(struct pci_dev *dev)
3765 {
3766 return __pci_dev_reset(dev, 0);
3767 }
3768 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3769
3770 /**
3771 * pci_probe_reset_function - check whether the device can be safely reset
3772 * @dev: PCI device to reset
3773 *
3774 * Some devices allow an individual function to be reset without affecting
3775 * other functions in the same device. The PCI device must be responsive
3776 * to PCI config space in order to use this function.
3777 *
3778 * Returns 0 if the device function can be reset or negative if the
3779 * device doesn't support resetting a single function.
3780 */
3781 int pci_probe_reset_function(struct pci_dev *dev)
3782 {
3783 return pci_dev_reset(dev, 1);
3784 }
3785
3786 /**
3787 * pci_reset_function - quiesce and reset a PCI device function
3788 * @dev: PCI device to reset
3789 *
3790 * Some devices allow an individual function to be reset without affecting
3791 * other functions in the same device. The PCI device must be responsive
3792 * to PCI config space in order to use this function.
3793 *
3794 * This function does not just reset the PCI portion of a device, but
3795 * clears all the state associated with the device. This function differs
3796 * from __pci_reset_function in that it saves and restores device state
3797 * over the reset.
3798 *
3799 * Returns 0 if the device function was successfully reset or negative if the
3800 * device doesn't support resetting a single function.
3801 */
3802 int pci_reset_function(struct pci_dev *dev)
3803 {
3804 int rc;
3805
3806 rc = pci_dev_reset(dev, 1);
3807 if (rc)
3808 return rc;
3809
3810 pci_dev_save_and_disable(dev);
3811
3812 rc = pci_dev_reset(dev, 0);
3813
3814 pci_dev_restore(dev);
3815
3816 return rc;
3817 }
3818 EXPORT_SYMBOL_GPL(pci_reset_function);
3819
3820 /**
3821 * pci_try_reset_function - quiesce and reset a PCI device function
3822 * @dev: PCI device to reset
3823 *
3824 * Same as above, except return -EAGAIN if unable to lock device.
3825 */
3826 int pci_try_reset_function(struct pci_dev *dev)
3827 {
3828 int rc;
3829
3830 rc = pci_dev_reset(dev, 1);
3831 if (rc)
3832 return rc;
3833
3834 pci_dev_save_and_disable(dev);
3835
3836 if (pci_dev_trylock(dev)) {
3837 rc = __pci_dev_reset(dev, 0);
3838 pci_dev_unlock(dev);
3839 } else
3840 rc = -EAGAIN;
3841
3842 pci_dev_restore(dev);
3843
3844 return rc;
3845 }
3846 EXPORT_SYMBOL_GPL(pci_try_reset_function);
3847
3848 /* Do any devices on or below this bus prevent a bus reset? */
3849 static bool pci_bus_resetable(struct pci_bus *bus)
3850 {
3851 struct pci_dev *dev;
3852
3853 list_for_each_entry(dev, &bus->devices, bus_list) {
3854 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3855 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3856 return false;
3857 }
3858
3859 return true;
3860 }
3861
3862 /* Lock devices from the top of the tree down */
3863 static void pci_bus_lock(struct pci_bus *bus)
3864 {
3865 struct pci_dev *dev;
3866
3867 list_for_each_entry(dev, &bus->devices, bus_list) {
3868 pci_dev_lock(dev);
3869 if (dev->subordinate)
3870 pci_bus_lock(dev->subordinate);
3871 }
3872 }
3873
3874 /* Unlock devices from the bottom of the tree up */
3875 static void pci_bus_unlock(struct pci_bus *bus)
3876 {
3877 struct pci_dev *dev;
3878
3879 list_for_each_entry(dev, &bus->devices, bus_list) {
3880 if (dev->subordinate)
3881 pci_bus_unlock(dev->subordinate);
3882 pci_dev_unlock(dev);
3883 }
3884 }
3885
3886 /* Return 1 on successful lock, 0 on contention */
3887 static int pci_bus_trylock(struct pci_bus *bus)
3888 {
3889 struct pci_dev *dev;
3890
3891 list_for_each_entry(dev, &bus->devices, bus_list) {
3892 if (!pci_dev_trylock(dev))
3893 goto unlock;
3894 if (dev->subordinate) {
3895 if (!pci_bus_trylock(dev->subordinate)) {
3896 pci_dev_unlock(dev);
3897 goto unlock;
3898 }
3899 }
3900 }
3901 return 1;
3902
3903 unlock:
3904 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3905 if (dev->subordinate)
3906 pci_bus_unlock(dev->subordinate);
3907 pci_dev_unlock(dev);
3908 }
3909 return 0;
3910 }
3911
3912 /* Do any devices on or below this slot prevent a bus reset? */
3913 static bool pci_slot_resetable(struct pci_slot *slot)
3914 {
3915 struct pci_dev *dev;
3916
3917 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3918 if (!dev->slot || dev->slot != slot)
3919 continue;
3920 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3921 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3922 return false;
3923 }
3924
3925 return true;
3926 }
3927
3928 /* Lock devices from the top of the tree down */
3929 static void pci_slot_lock(struct pci_slot *slot)
3930 {
3931 struct pci_dev *dev;
3932
3933 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3934 if (!dev->slot || dev->slot != slot)
3935 continue;
3936 pci_dev_lock(dev);
3937 if (dev->subordinate)
3938 pci_bus_lock(dev->subordinate);
3939 }
3940 }
3941
3942 /* Unlock devices from the bottom of the tree up */
3943 static void pci_slot_unlock(struct pci_slot *slot)
3944 {
3945 struct pci_dev *dev;
3946
3947 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3948 if (!dev->slot || dev->slot != slot)
3949 continue;
3950 if (dev->subordinate)
3951 pci_bus_unlock(dev->subordinate);
3952 pci_dev_unlock(dev);
3953 }
3954 }
3955
3956 /* Return 1 on successful lock, 0 on contention */
3957 static int pci_slot_trylock(struct pci_slot *slot)
3958 {
3959 struct pci_dev *dev;
3960
3961 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3962 if (!dev->slot || dev->slot != slot)
3963 continue;
3964 if (!pci_dev_trylock(dev))
3965 goto unlock;
3966 if (dev->subordinate) {
3967 if (!pci_bus_trylock(dev->subordinate)) {
3968 pci_dev_unlock(dev);
3969 goto unlock;
3970 }
3971 }
3972 }
3973 return 1;
3974
3975 unlock:
3976 list_for_each_entry_continue_reverse(dev,
3977 &slot->bus->devices, bus_list) {
3978 if (!dev->slot || dev->slot != slot)
3979 continue;
3980 if (dev->subordinate)
3981 pci_bus_unlock(dev->subordinate);
3982 pci_dev_unlock(dev);
3983 }
3984 return 0;
3985 }
3986
3987 /* Save and disable devices from the top of the tree down */
3988 static void pci_bus_save_and_disable(struct pci_bus *bus)
3989 {
3990 struct pci_dev *dev;
3991
3992 list_for_each_entry(dev, &bus->devices, bus_list) {
3993 pci_dev_save_and_disable(dev);
3994 if (dev->subordinate)
3995 pci_bus_save_and_disable(dev->subordinate);
3996 }
3997 }
3998
3999 /*
4000 * Restore devices from top of the tree down - parent bridges need to be
4001 * restored before we can get to subordinate devices.
4002 */
4003 static void pci_bus_restore(struct pci_bus *bus)
4004 {
4005 struct pci_dev *dev;
4006
4007 list_for_each_entry(dev, &bus->devices, bus_list) {
4008 pci_dev_restore(dev);
4009 if (dev->subordinate)
4010 pci_bus_restore(dev->subordinate);
4011 }
4012 }
4013
4014 /* Save and disable devices from the top of the tree down */
4015 static void pci_slot_save_and_disable(struct pci_slot *slot)
4016 {
4017 struct pci_dev *dev;
4018
4019 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4020 if (!dev->slot || dev->slot != slot)
4021 continue;
4022 pci_dev_save_and_disable(dev);
4023 if (dev->subordinate)
4024 pci_bus_save_and_disable(dev->subordinate);
4025 }
4026 }
4027
4028 /*
4029 * Restore devices from top of the tree down - parent bridges need to be
4030 * restored before we can get to subordinate devices.
4031 */
4032 static void pci_slot_restore(struct pci_slot *slot)
4033 {
4034 struct pci_dev *dev;
4035
4036 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4037 if (!dev->slot || dev->slot != slot)
4038 continue;
4039 pci_dev_restore(dev);
4040 if (dev->subordinate)
4041 pci_bus_restore(dev->subordinate);
4042 }
4043 }
4044
4045 static int pci_slot_reset(struct pci_slot *slot, int probe)
4046 {
4047 int rc;
4048
4049 if (!slot || !pci_slot_resetable(slot))
4050 return -ENOTTY;
4051
4052 if (!probe)
4053 pci_slot_lock(slot);
4054
4055 might_sleep();
4056
4057 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4058
4059 if (!probe)
4060 pci_slot_unlock(slot);
4061
4062 return rc;
4063 }
4064
4065 /**
4066 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4067 * @slot: PCI slot to probe
4068 *
4069 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4070 */
4071 int pci_probe_reset_slot(struct pci_slot *slot)
4072 {
4073 return pci_slot_reset(slot, 1);
4074 }
4075 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4076
4077 /**
4078 * pci_reset_slot - reset a PCI slot
4079 * @slot: PCI slot to reset
4080 *
4081 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4082 * independent of other slots. For instance, some slots may support slot power
4083 * control. In the case of a 1:1 bus to slot architecture, this function may
4084 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4085 * Generally a slot reset should be attempted before a bus reset. All of the
4086 * function of the slot and any subordinate buses behind the slot are reset
4087 * through this function. PCI config space of all devices in the slot and
4088 * behind the slot is saved before and restored after reset.
4089 *
4090 * Return 0 on success, non-zero on error.
4091 */
4092 int pci_reset_slot(struct pci_slot *slot)
4093 {
4094 int rc;
4095
4096 rc = pci_slot_reset(slot, 1);
4097 if (rc)
4098 return rc;
4099
4100 pci_slot_save_and_disable(slot);
4101
4102 rc = pci_slot_reset(slot, 0);
4103
4104 pci_slot_restore(slot);
4105
4106 return rc;
4107 }
4108 EXPORT_SYMBOL_GPL(pci_reset_slot);
4109
4110 /**
4111 * pci_try_reset_slot - Try to reset a PCI slot
4112 * @slot: PCI slot to reset
4113 *
4114 * Same as above except return -EAGAIN if the slot cannot be locked
4115 */
4116 int pci_try_reset_slot(struct pci_slot *slot)
4117 {
4118 int rc;
4119
4120 rc = pci_slot_reset(slot, 1);
4121 if (rc)
4122 return rc;
4123
4124 pci_slot_save_and_disable(slot);
4125
4126 if (pci_slot_trylock(slot)) {
4127 might_sleep();
4128 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4129 pci_slot_unlock(slot);
4130 } else
4131 rc = -EAGAIN;
4132
4133 pci_slot_restore(slot);
4134
4135 return rc;
4136 }
4137 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4138
4139 static int pci_bus_reset(struct pci_bus *bus, int probe)
4140 {
4141 if (!bus->self || !pci_bus_resetable(bus))
4142 return -ENOTTY;
4143
4144 if (probe)
4145 return 0;
4146
4147 pci_bus_lock(bus);
4148
4149 might_sleep();
4150
4151 pci_reset_bridge_secondary_bus(bus->self);
4152
4153 pci_bus_unlock(bus);
4154
4155 return 0;
4156 }
4157
4158 /**
4159 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4160 * @bus: PCI bus to probe
4161 *
4162 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4163 */
4164 int pci_probe_reset_bus(struct pci_bus *bus)
4165 {
4166 return pci_bus_reset(bus, 1);
4167 }
4168 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4169
4170 /**
4171 * pci_reset_bus - reset a PCI bus
4172 * @bus: top level PCI bus to reset
4173 *
4174 * Do a bus reset on the given bus and any subordinate buses, saving
4175 * and restoring state of all devices.
4176 *
4177 * Return 0 on success, non-zero on error.
4178 */
4179 int pci_reset_bus(struct pci_bus *bus)
4180 {
4181 int rc;
4182
4183 rc = pci_bus_reset(bus, 1);
4184 if (rc)
4185 return rc;
4186
4187 pci_bus_save_and_disable(bus);
4188
4189 rc = pci_bus_reset(bus, 0);
4190
4191 pci_bus_restore(bus);
4192
4193 return rc;
4194 }
4195 EXPORT_SYMBOL_GPL(pci_reset_bus);
4196
4197 /**
4198 * pci_try_reset_bus - Try to reset a PCI bus
4199 * @bus: top level PCI bus to reset
4200 *
4201 * Same as above except return -EAGAIN if the bus cannot be locked
4202 */
4203 int pci_try_reset_bus(struct pci_bus *bus)
4204 {
4205 int rc;
4206
4207 rc = pci_bus_reset(bus, 1);
4208 if (rc)
4209 return rc;
4210
4211 pci_bus_save_and_disable(bus);
4212
4213 if (pci_bus_trylock(bus)) {
4214 might_sleep();
4215 pci_reset_bridge_secondary_bus(bus->self);
4216 pci_bus_unlock(bus);
4217 } else
4218 rc = -EAGAIN;
4219
4220 pci_bus_restore(bus);
4221
4222 return rc;
4223 }
4224 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4225
4226 /**
4227 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4228 * @dev: PCI device to query
4229 *
4230 * Returns mmrbc: maximum designed memory read count in bytes
4231 * or appropriate error value.
4232 */
4233 int pcix_get_max_mmrbc(struct pci_dev *dev)
4234 {
4235 int cap;
4236 u32 stat;
4237
4238 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4239 if (!cap)
4240 return -EINVAL;
4241
4242 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4243 return -EINVAL;
4244
4245 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4246 }
4247 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4248
4249 /**
4250 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4251 * @dev: PCI device to query
4252 *
4253 * Returns mmrbc: maximum memory read count in bytes
4254 * or appropriate error value.
4255 */
4256 int pcix_get_mmrbc(struct pci_dev *dev)
4257 {
4258 int cap;
4259 u16 cmd;
4260
4261 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4262 if (!cap)
4263 return -EINVAL;
4264
4265 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4266 return -EINVAL;
4267
4268 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4269 }
4270 EXPORT_SYMBOL(pcix_get_mmrbc);
4271
4272 /**
4273 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4274 * @dev: PCI device to query
4275 * @mmrbc: maximum memory read count in bytes
4276 * valid values are 512, 1024, 2048, 4096
4277 *
4278 * If possible sets maximum memory read byte count, some bridges have erratas
4279 * that prevent this.
4280 */
4281 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4282 {
4283 int cap;
4284 u32 stat, v, o;
4285 u16 cmd;
4286
4287 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4288 return -EINVAL;
4289
4290 v = ffs(mmrbc) - 10;
4291
4292 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4293 if (!cap)
4294 return -EINVAL;
4295
4296 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4297 return -EINVAL;
4298
4299 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4300 return -E2BIG;
4301
4302 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4303 return -EINVAL;
4304
4305 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4306 if (o != v) {
4307 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4308 return -EIO;
4309
4310 cmd &= ~PCI_X_CMD_MAX_READ;
4311 cmd |= v << 2;
4312 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4313 return -EIO;
4314 }
4315 return 0;
4316 }
4317 EXPORT_SYMBOL(pcix_set_mmrbc);
4318
4319 /**
4320 * pcie_get_readrq - get PCI Express read request size
4321 * @dev: PCI device to query
4322 *
4323 * Returns maximum memory read request in bytes
4324 * or appropriate error value.
4325 */
4326 int pcie_get_readrq(struct pci_dev *dev)
4327 {
4328 u16 ctl;
4329
4330 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4331
4332 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4333 }
4334 EXPORT_SYMBOL(pcie_get_readrq);
4335
4336 /**
4337 * pcie_set_readrq - set PCI Express maximum memory read request
4338 * @dev: PCI device to query
4339 * @rq: maximum memory read count in bytes
4340 * valid values are 128, 256, 512, 1024, 2048, 4096
4341 *
4342 * If possible sets maximum memory read request in bytes
4343 */
4344 int pcie_set_readrq(struct pci_dev *dev, int rq)
4345 {
4346 u16 v;
4347
4348 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4349 return -EINVAL;
4350
4351 /*
4352 * If using the "performance" PCIe config, we clamp the
4353 * read rq size to the max packet size to prevent the
4354 * host bridge generating requests larger than we can
4355 * cope with
4356 */
4357 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4358 int mps = pcie_get_mps(dev);
4359
4360 if (mps < rq)
4361 rq = mps;
4362 }
4363
4364 v = (ffs(rq) - 8) << 12;
4365
4366 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4367 PCI_EXP_DEVCTL_READRQ, v);
4368 }
4369 EXPORT_SYMBOL(pcie_set_readrq);
4370
4371 /**
4372 * pcie_get_mps - get PCI Express maximum payload size
4373 * @dev: PCI device to query
4374 *
4375 * Returns maximum payload size in bytes
4376 */
4377 int pcie_get_mps(struct pci_dev *dev)
4378 {
4379 u16 ctl;
4380
4381 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4382
4383 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4384 }
4385 EXPORT_SYMBOL(pcie_get_mps);
4386
4387 /**
4388 * pcie_set_mps - set PCI Express maximum payload size
4389 * @dev: PCI device to query
4390 * @mps: maximum payload size in bytes
4391 * valid values are 128, 256, 512, 1024, 2048, 4096
4392 *
4393 * If possible sets maximum payload size
4394 */
4395 int pcie_set_mps(struct pci_dev *dev, int mps)
4396 {
4397 u16 v;
4398
4399 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4400 return -EINVAL;
4401
4402 v = ffs(mps) - 8;
4403 if (v > dev->pcie_mpss)
4404 return -EINVAL;
4405 v <<= 5;
4406
4407 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4408 PCI_EXP_DEVCTL_PAYLOAD, v);
4409 }
4410 EXPORT_SYMBOL(pcie_set_mps);
4411
4412 /**
4413 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4414 * @dev: PCI device to query
4415 * @speed: storage for minimum speed
4416 * @width: storage for minimum width
4417 *
4418 * This function will walk up the PCI device chain and determine the minimum
4419 * link width and speed of the device.
4420 */
4421 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4422 enum pcie_link_width *width)
4423 {
4424 int ret;
4425
4426 *speed = PCI_SPEED_UNKNOWN;
4427 *width = PCIE_LNK_WIDTH_UNKNOWN;
4428
4429 while (dev) {
4430 u16 lnksta;
4431 enum pci_bus_speed next_speed;
4432 enum pcie_link_width next_width;
4433
4434 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4435 if (ret)
4436 return ret;
4437
4438 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4439 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4440 PCI_EXP_LNKSTA_NLW_SHIFT;
4441
4442 if (next_speed < *speed)
4443 *speed = next_speed;
4444
4445 if (next_width < *width)
4446 *width = next_width;
4447
4448 dev = dev->bus->self;
4449 }
4450
4451 return 0;
4452 }
4453 EXPORT_SYMBOL(pcie_get_minimum_link);
4454
4455 /**
4456 * pci_select_bars - Make BAR mask from the type of resource
4457 * @dev: the PCI device for which BAR mask is made
4458 * @flags: resource type mask to be selected
4459 *
4460 * This helper routine makes bar mask from the type of resource.
4461 */
4462 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4463 {
4464 int i, bars = 0;
4465 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4466 if (pci_resource_flags(dev, i) & flags)
4467 bars |= (1 << i);
4468 return bars;
4469 }
4470 EXPORT_SYMBOL(pci_select_bars);
4471
4472 /* Some architectures require additional programming to enable VGA */
4473 static arch_set_vga_state_t arch_set_vga_state;
4474
4475 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4476 {
4477 arch_set_vga_state = func; /* NULL disables */
4478 }
4479
4480 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4481 unsigned int command_bits, u32 flags)
4482 {
4483 if (arch_set_vga_state)
4484 return arch_set_vga_state(dev, decode, command_bits,
4485 flags);
4486 return 0;
4487 }
4488
4489 /**
4490 * pci_set_vga_state - set VGA decode state on device and parents if requested
4491 * @dev: the PCI device
4492 * @decode: true = enable decoding, false = disable decoding
4493 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4494 * @flags: traverse ancestors and change bridges
4495 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4496 */
4497 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4498 unsigned int command_bits, u32 flags)
4499 {
4500 struct pci_bus *bus;
4501 struct pci_dev *bridge;
4502 u16 cmd;
4503 int rc;
4504
4505 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4506
4507 /* ARCH specific VGA enables */
4508 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4509 if (rc)
4510 return rc;
4511
4512 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4513 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4514 if (decode == true)
4515 cmd |= command_bits;
4516 else
4517 cmd &= ~command_bits;
4518 pci_write_config_word(dev, PCI_COMMAND, cmd);
4519 }
4520
4521 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4522 return 0;
4523
4524 bus = dev->bus;
4525 while (bus) {
4526 bridge = bus->self;
4527 if (bridge) {
4528 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4529 &cmd);
4530 if (decode == true)
4531 cmd |= PCI_BRIDGE_CTL_VGA;
4532 else
4533 cmd &= ~PCI_BRIDGE_CTL_VGA;
4534 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4535 cmd);
4536 }
4537 bus = bus->parent;
4538 }
4539 return 0;
4540 }
4541
4542 bool pci_device_is_present(struct pci_dev *pdev)
4543 {
4544 u32 v;
4545
4546 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4547 }
4548 EXPORT_SYMBOL_GPL(pci_device_is_present);
4549
4550 void pci_ignore_hotplug(struct pci_dev *dev)
4551 {
4552 struct pci_dev *bridge = dev->bus->self;
4553
4554 dev->ignore_hotplug = 1;
4555 /* Propagate the "ignore hotplug" setting to the parent bridge. */
4556 if (bridge)
4557 bridge->ignore_hotplug = 1;
4558 }
4559 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
4560
4561 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4562 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4563 static DEFINE_SPINLOCK(resource_alignment_lock);
4564
4565 /**
4566 * pci_specified_resource_alignment - get resource alignment specified by user.
4567 * @dev: the PCI device to get
4568 *
4569 * RETURNS: Resource alignment if it is specified.
4570 * Zero if it is not specified.
4571 */
4572 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4573 {
4574 int seg, bus, slot, func, align_order, count;
4575 resource_size_t align = 0;
4576 char *p;
4577
4578 spin_lock(&resource_alignment_lock);
4579 p = resource_alignment_param;
4580 while (*p) {
4581 count = 0;
4582 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4583 p[count] == '@') {
4584 p += count + 1;
4585 } else {
4586 align_order = -1;
4587 }
4588 if (sscanf(p, "%x:%x:%x.%x%n",
4589 &seg, &bus, &slot, &func, &count) != 4) {
4590 seg = 0;
4591 if (sscanf(p, "%x:%x.%x%n",
4592 &bus, &slot, &func, &count) != 3) {
4593 /* Invalid format */
4594 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4595 p);
4596 break;
4597 }
4598 }
4599 p += count;
4600 if (seg == pci_domain_nr(dev->bus) &&
4601 bus == dev->bus->number &&
4602 slot == PCI_SLOT(dev->devfn) &&
4603 func == PCI_FUNC(dev->devfn)) {
4604 if (align_order == -1)
4605 align = PAGE_SIZE;
4606 else
4607 align = 1 << align_order;
4608 /* Found */
4609 break;
4610 }
4611 if (*p != ';' && *p != ',') {
4612 /* End of param or invalid format */
4613 break;
4614 }
4615 p++;
4616 }
4617 spin_unlock(&resource_alignment_lock);
4618 return align;
4619 }
4620
4621 /*
4622 * This function disables memory decoding and releases memory resources
4623 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4624 * It also rounds up size to specified alignment.
4625 * Later on, the kernel will assign page-aligned memory resource back
4626 * to the device.
4627 */
4628 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4629 {
4630 int i;
4631 struct resource *r;
4632 resource_size_t align, size;
4633 u16 command;
4634
4635 /* check if specified PCI is target device to reassign */
4636 align = pci_specified_resource_alignment(dev);
4637 if (!align)
4638 return;
4639
4640 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4641 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4642 dev_warn(&dev->dev,
4643 "Can't reassign resources to host bridge.\n");
4644 return;
4645 }
4646
4647 dev_info(&dev->dev,
4648 "Disabling memory decoding and releasing memory resources.\n");
4649 pci_read_config_word(dev, PCI_COMMAND, &command);
4650 command &= ~PCI_COMMAND_MEMORY;
4651 pci_write_config_word(dev, PCI_COMMAND, command);
4652
4653 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4654 r = &dev->resource[i];
4655 if (!(r->flags & IORESOURCE_MEM))
4656 continue;
4657 size = resource_size(r);
4658 if (size < align) {
4659 size = align;
4660 dev_info(&dev->dev,
4661 "Rounding up size of resource #%d to %#llx.\n",
4662 i, (unsigned long long)size);
4663 }
4664 r->flags |= IORESOURCE_UNSET;
4665 r->end = size - 1;
4666 r->start = 0;
4667 }
4668 /* Need to disable bridge's resource window,
4669 * to enable the kernel to reassign new resource
4670 * window later on.
4671 */
4672 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4673 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4674 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4675 r = &dev->resource[i];
4676 if (!(r->flags & IORESOURCE_MEM))
4677 continue;
4678 r->flags |= IORESOURCE_UNSET;
4679 r->end = resource_size(r) - 1;
4680 r->start = 0;
4681 }
4682 pci_disable_bridge_window(dev);
4683 }
4684 }
4685
4686 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4687 {
4688 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4689 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4690 spin_lock(&resource_alignment_lock);
4691 strncpy(resource_alignment_param, buf, count);
4692 resource_alignment_param[count] = '\0';
4693 spin_unlock(&resource_alignment_lock);
4694 return count;
4695 }
4696
4697 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4698 {
4699 size_t count;
4700 spin_lock(&resource_alignment_lock);
4701 count = snprintf(buf, size, "%s", resource_alignment_param);
4702 spin_unlock(&resource_alignment_lock);
4703 return count;
4704 }
4705
4706 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4707 {
4708 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4709 }
4710
4711 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4712 const char *buf, size_t count)
4713 {
4714 return pci_set_resource_alignment_param(buf, count);
4715 }
4716
4717 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4718 pci_resource_alignment_store);
4719
4720 static int __init pci_resource_alignment_sysfs_init(void)
4721 {
4722 return bus_create_file(&pci_bus_type,
4723 &bus_attr_resource_alignment);
4724 }
4725 late_initcall(pci_resource_alignment_sysfs_init);
4726
4727 static void pci_no_domains(void)
4728 {
4729 #ifdef CONFIG_PCI_DOMAINS
4730 pci_domains_supported = 0;
4731 #endif
4732 }
4733
4734 #ifdef CONFIG_PCI_DOMAINS
4735 static atomic_t __domain_nr = ATOMIC_INIT(-1);
4736
4737 int pci_get_new_domain_nr(void)
4738 {
4739 return atomic_inc_return(&__domain_nr);
4740 }
4741
4742 #ifdef CONFIG_PCI_DOMAINS_GENERIC
4743 void pci_bus_assign_domain_nr(struct pci_bus *bus, struct device *parent)
4744 {
4745 static int use_dt_domains = -1;
4746 int domain = -1;
4747
4748 if (parent)
4749 domain = of_get_pci_domain_nr(parent->of_node);
4750 /*
4751 * Check DT domain and use_dt_domains values.
4752 *
4753 * If DT domain property is valid (domain >= 0) and
4754 * use_dt_domains != 0, the DT assignment is valid since this means
4755 * we have not previously allocated a domain number by using
4756 * pci_get_new_domain_nr(); we should also update use_dt_domains to
4757 * 1, to indicate that we have just assigned a domain number from
4758 * DT.
4759 *
4760 * If DT domain property value is not valid (ie domain < 0), and we
4761 * have not previously assigned a domain number from DT
4762 * (use_dt_domains != 1) we should assign a domain number by
4763 * using the:
4764 *
4765 * pci_get_new_domain_nr()
4766 *
4767 * API and update the use_dt_domains value to keep track of method we
4768 * are using to assign domain numbers (use_dt_domains = 0).
4769 *
4770 * All other combinations imply we have a platform that is trying
4771 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
4772 * which is a recipe for domain mishandling and it is prevented by
4773 * invalidating the domain value (domain = -1) and printing a
4774 * corresponding error.
4775 */
4776 if (domain >= 0 && use_dt_domains) {
4777 use_dt_domains = 1;
4778 } else if (domain < 0 && use_dt_domains != 1) {
4779 use_dt_domains = 0;
4780 domain = pci_get_new_domain_nr();
4781 } else {
4782 dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
4783 parent->of_node->full_name);
4784 domain = -1;
4785 }
4786
4787 bus->domain_nr = domain;
4788 }
4789 #endif
4790 #endif
4791
4792 /**
4793 * pci_ext_cfg_avail - can we access extended PCI config space?
4794 *
4795 * Returns 1 if we can access PCI extended config space (offsets
4796 * greater than 0xff). This is the default implementation. Architecture
4797 * implementations can override this.
4798 */
4799 int __weak pci_ext_cfg_avail(void)
4800 {
4801 return 1;
4802 }
4803
4804 void __weak pci_fixup_cardbus(struct pci_bus *bus)
4805 {
4806 }
4807 EXPORT_SYMBOL(pci_fixup_cardbus);
4808
4809 static int __init pci_setup(char *str)
4810 {
4811 while (str) {
4812 char *k = strchr(str, ',');
4813 if (k)
4814 *k++ = 0;
4815 if (*str && (str = pcibios_setup(str)) && *str) {
4816 if (!strcmp(str, "nomsi")) {
4817 pci_no_msi();
4818 } else if (!strcmp(str, "noaer")) {
4819 pci_no_aer();
4820 } else if (!strncmp(str, "realloc=", 8)) {
4821 pci_realloc_get_opt(str + 8);
4822 } else if (!strncmp(str, "realloc", 7)) {
4823 pci_realloc_get_opt("on");
4824 } else if (!strcmp(str, "nodomains")) {
4825 pci_no_domains();
4826 } else if (!strncmp(str, "noari", 5)) {
4827 pcie_ari_disabled = true;
4828 } else if (!strncmp(str, "cbiosize=", 9)) {
4829 pci_cardbus_io_size = memparse(str + 9, &str);
4830 } else if (!strncmp(str, "cbmemsize=", 10)) {
4831 pci_cardbus_mem_size = memparse(str + 10, &str);
4832 } else if (!strncmp(str, "resource_alignment=", 19)) {
4833 pci_set_resource_alignment_param(str + 19,
4834 strlen(str + 19));
4835 } else if (!strncmp(str, "ecrc=", 5)) {
4836 pcie_ecrc_get_policy(str + 5);
4837 } else if (!strncmp(str, "hpiosize=", 9)) {
4838 pci_hotplug_io_size = memparse(str + 9, &str);
4839 } else if (!strncmp(str, "hpmemsize=", 10)) {
4840 pci_hotplug_mem_size = memparse(str + 10, &str);
4841 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4842 pcie_bus_config = PCIE_BUS_TUNE_OFF;
4843 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
4844 pcie_bus_config = PCIE_BUS_SAFE;
4845 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
4846 pcie_bus_config = PCIE_BUS_PERFORMANCE;
4847 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4848 pcie_bus_config = PCIE_BUS_PEER2PEER;
4849 } else if (!strncmp(str, "pcie_scan_all", 13)) {
4850 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4851 } else {
4852 printk(KERN_ERR "PCI: Unknown option `%s'\n",
4853 str);
4854 }
4855 }
4856 str = k;
4857 }
4858 return 0;
4859 }
4860 early_param("pci", pci_setup);