]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/pci/pci.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi-rc-fixes-2.6
[mirror_ubuntu-artful-kernel.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <linux/pm_wakeup.h>
21 #include <linux/interrupt.h>
22 #include <asm/dma.h> /* isa_dma_bridge_buggy */
23 #include <linux/device.h>
24 #include <asm/setup.h>
25 #include "pci.h"
26
27 unsigned int pci_pm_d3_delay = PCI_PM_D3_WAIT;
28
29 #ifdef CONFIG_PCI_DOMAINS
30 int pci_domains_supported = 1;
31 #endif
32
33 #define DEFAULT_CARDBUS_IO_SIZE (256)
34 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
35 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
36 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
37 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
38
39 /**
40 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
41 * @bus: pointer to PCI bus structure to search
42 *
43 * Given a PCI bus, returns the highest PCI bus number present in the set
44 * including the given PCI bus and its list of child PCI buses.
45 */
46 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
47 {
48 struct list_head *tmp;
49 unsigned char max, n;
50
51 max = bus->subordinate;
52 list_for_each(tmp, &bus->children) {
53 n = pci_bus_max_busnr(pci_bus_b(tmp));
54 if(n > max)
55 max = n;
56 }
57 return max;
58 }
59 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
60
61 #ifdef CONFIG_HAS_IOMEM
62 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
63 {
64 /*
65 * Make sure the BAR is actually a memory resource, not an IO resource
66 */
67 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
68 WARN_ON(1);
69 return NULL;
70 }
71 return ioremap_nocache(pci_resource_start(pdev, bar),
72 pci_resource_len(pdev, bar));
73 }
74 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
75 #endif
76
77 #if 0
78 /**
79 * pci_max_busnr - returns maximum PCI bus number
80 *
81 * Returns the highest PCI bus number present in the system global list of
82 * PCI buses.
83 */
84 unsigned char __devinit
85 pci_max_busnr(void)
86 {
87 struct pci_bus *bus = NULL;
88 unsigned char max, n;
89
90 max = 0;
91 while ((bus = pci_find_next_bus(bus)) != NULL) {
92 n = pci_bus_max_busnr(bus);
93 if(n > max)
94 max = n;
95 }
96 return max;
97 }
98
99 #endif /* 0 */
100
101 #define PCI_FIND_CAP_TTL 48
102
103 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
104 u8 pos, int cap, int *ttl)
105 {
106 u8 id;
107
108 while ((*ttl)--) {
109 pci_bus_read_config_byte(bus, devfn, pos, &pos);
110 if (pos < 0x40)
111 break;
112 pos &= ~3;
113 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
114 &id);
115 if (id == 0xff)
116 break;
117 if (id == cap)
118 return pos;
119 pos += PCI_CAP_LIST_NEXT;
120 }
121 return 0;
122 }
123
124 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
125 u8 pos, int cap)
126 {
127 int ttl = PCI_FIND_CAP_TTL;
128
129 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
130 }
131
132 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
133 {
134 return __pci_find_next_cap(dev->bus, dev->devfn,
135 pos + PCI_CAP_LIST_NEXT, cap);
136 }
137 EXPORT_SYMBOL_GPL(pci_find_next_capability);
138
139 static int __pci_bus_find_cap_start(struct pci_bus *bus,
140 unsigned int devfn, u8 hdr_type)
141 {
142 u16 status;
143
144 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
145 if (!(status & PCI_STATUS_CAP_LIST))
146 return 0;
147
148 switch (hdr_type) {
149 case PCI_HEADER_TYPE_NORMAL:
150 case PCI_HEADER_TYPE_BRIDGE:
151 return PCI_CAPABILITY_LIST;
152 case PCI_HEADER_TYPE_CARDBUS:
153 return PCI_CB_CAPABILITY_LIST;
154 default:
155 return 0;
156 }
157
158 return 0;
159 }
160
161 /**
162 * pci_find_capability - query for devices' capabilities
163 * @dev: PCI device to query
164 * @cap: capability code
165 *
166 * Tell if a device supports a given PCI capability.
167 * Returns the address of the requested capability structure within the
168 * device's PCI configuration space or 0 in case the device does not
169 * support it. Possible values for @cap:
170 *
171 * %PCI_CAP_ID_PM Power Management
172 * %PCI_CAP_ID_AGP Accelerated Graphics Port
173 * %PCI_CAP_ID_VPD Vital Product Data
174 * %PCI_CAP_ID_SLOTID Slot Identification
175 * %PCI_CAP_ID_MSI Message Signalled Interrupts
176 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
177 * %PCI_CAP_ID_PCIX PCI-X
178 * %PCI_CAP_ID_EXP PCI Express
179 */
180 int pci_find_capability(struct pci_dev *dev, int cap)
181 {
182 int pos;
183
184 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
185 if (pos)
186 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
187
188 return pos;
189 }
190
191 /**
192 * pci_bus_find_capability - query for devices' capabilities
193 * @bus: the PCI bus to query
194 * @devfn: PCI device to query
195 * @cap: capability code
196 *
197 * Like pci_find_capability() but works for pci devices that do not have a
198 * pci_dev structure set up yet.
199 *
200 * Returns the address of the requested capability structure within the
201 * device's PCI configuration space or 0 in case the device does not
202 * support it.
203 */
204 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
205 {
206 int pos;
207 u8 hdr_type;
208
209 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
210
211 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
212 if (pos)
213 pos = __pci_find_next_cap(bus, devfn, pos, cap);
214
215 return pos;
216 }
217
218 /**
219 * pci_find_ext_capability - Find an extended capability
220 * @dev: PCI device to query
221 * @cap: capability code
222 *
223 * Returns the address of the requested extended capability structure
224 * within the device's PCI configuration space or 0 if the device does
225 * not support it. Possible values for @cap:
226 *
227 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
228 * %PCI_EXT_CAP_ID_VC Virtual Channel
229 * %PCI_EXT_CAP_ID_DSN Device Serial Number
230 * %PCI_EXT_CAP_ID_PWR Power Budgeting
231 */
232 int pci_find_ext_capability(struct pci_dev *dev, int cap)
233 {
234 u32 header;
235 int ttl;
236 int pos = PCI_CFG_SPACE_SIZE;
237
238 /* minimum 8 bytes per capability */
239 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
240
241 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
242 return 0;
243
244 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
245 return 0;
246
247 /*
248 * If we have no capabilities, this is indicated by cap ID,
249 * cap version and next pointer all being 0.
250 */
251 if (header == 0)
252 return 0;
253
254 while (ttl-- > 0) {
255 if (PCI_EXT_CAP_ID(header) == cap)
256 return pos;
257
258 pos = PCI_EXT_CAP_NEXT(header);
259 if (pos < PCI_CFG_SPACE_SIZE)
260 break;
261
262 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
263 break;
264 }
265
266 return 0;
267 }
268 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
269
270 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
271 {
272 int rc, ttl = PCI_FIND_CAP_TTL;
273 u8 cap, mask;
274
275 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
276 mask = HT_3BIT_CAP_MASK;
277 else
278 mask = HT_5BIT_CAP_MASK;
279
280 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
281 PCI_CAP_ID_HT, &ttl);
282 while (pos) {
283 rc = pci_read_config_byte(dev, pos + 3, &cap);
284 if (rc != PCIBIOS_SUCCESSFUL)
285 return 0;
286
287 if ((cap & mask) == ht_cap)
288 return pos;
289
290 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
291 pos + PCI_CAP_LIST_NEXT,
292 PCI_CAP_ID_HT, &ttl);
293 }
294
295 return 0;
296 }
297 /**
298 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
299 * @dev: PCI device to query
300 * @pos: Position from which to continue searching
301 * @ht_cap: Hypertransport capability code
302 *
303 * To be used in conjunction with pci_find_ht_capability() to search for
304 * all capabilities matching @ht_cap. @pos should always be a value returned
305 * from pci_find_ht_capability().
306 *
307 * NB. To be 100% safe against broken PCI devices, the caller should take
308 * steps to avoid an infinite loop.
309 */
310 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
311 {
312 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
313 }
314 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
315
316 /**
317 * pci_find_ht_capability - query a device's Hypertransport capabilities
318 * @dev: PCI device to query
319 * @ht_cap: Hypertransport capability code
320 *
321 * Tell if a device supports a given Hypertransport capability.
322 * Returns an address within the device's PCI configuration space
323 * or 0 in case the device does not support the request capability.
324 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
325 * which has a Hypertransport capability matching @ht_cap.
326 */
327 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
328 {
329 int pos;
330
331 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
332 if (pos)
333 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
334
335 return pos;
336 }
337 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
338
339 /**
340 * pci_find_parent_resource - return resource region of parent bus of given region
341 * @dev: PCI device structure contains resources to be searched
342 * @res: child resource record for which parent is sought
343 *
344 * For given resource region of given device, return the resource
345 * region of parent bus the given region is contained in or where
346 * it should be allocated from.
347 */
348 struct resource *
349 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
350 {
351 const struct pci_bus *bus = dev->bus;
352 int i;
353 struct resource *best = NULL;
354
355 for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
356 struct resource *r = bus->resource[i];
357 if (!r)
358 continue;
359 if (res->start && !(res->start >= r->start && res->end <= r->end))
360 continue; /* Not contained */
361 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
362 continue; /* Wrong type */
363 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
364 return r; /* Exact match */
365 if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH))
366 best = r; /* Approximating prefetchable by non-prefetchable */
367 }
368 return best;
369 }
370
371 /**
372 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
373 * @dev: PCI device to have its BARs restored
374 *
375 * Restore the BAR values for a given device, so as to make it
376 * accessible by its driver.
377 */
378 static void
379 pci_restore_bars(struct pci_dev *dev)
380 {
381 int i;
382
383 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
384 pci_update_resource(dev, i);
385 }
386
387 static struct pci_platform_pm_ops *pci_platform_pm;
388
389 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
390 {
391 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
392 || !ops->sleep_wake || !ops->can_wakeup)
393 return -EINVAL;
394 pci_platform_pm = ops;
395 return 0;
396 }
397
398 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
399 {
400 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
401 }
402
403 static inline int platform_pci_set_power_state(struct pci_dev *dev,
404 pci_power_t t)
405 {
406 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
407 }
408
409 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
410 {
411 return pci_platform_pm ?
412 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
413 }
414
415 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
416 {
417 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
418 }
419
420 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
421 {
422 return pci_platform_pm ?
423 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
424 }
425
426 /**
427 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
428 * given PCI device
429 * @dev: PCI device to handle.
430 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
431 *
432 * RETURN VALUE:
433 * -EINVAL if the requested state is invalid.
434 * -EIO if device does not support PCI PM or its PM capabilities register has a
435 * wrong version, or device doesn't support the requested state.
436 * 0 if device already is in the requested state.
437 * 0 if device's power state has been successfully changed.
438 */
439 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
440 {
441 u16 pmcsr;
442 bool need_restore = false;
443
444 /* Check if we're already there */
445 if (dev->current_state == state)
446 return 0;
447
448 if (!dev->pm_cap)
449 return -EIO;
450
451 if (state < PCI_D0 || state > PCI_D3hot)
452 return -EINVAL;
453
454 /* Validate current state:
455 * Can enter D0 from any state, but if we can only go deeper
456 * to sleep if we're already in a low power state
457 */
458 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
459 && dev->current_state > state) {
460 dev_err(&dev->dev, "invalid power transition "
461 "(from state %d to %d)\n", dev->current_state, state);
462 return -EINVAL;
463 }
464
465 /* check if this device supports the desired state */
466 if ((state == PCI_D1 && !dev->d1_support)
467 || (state == PCI_D2 && !dev->d2_support))
468 return -EIO;
469
470 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
471
472 /* If we're (effectively) in D3, force entire word to 0.
473 * This doesn't affect PME_Status, disables PME_En, and
474 * sets PowerState to 0.
475 */
476 switch (dev->current_state) {
477 case PCI_D0:
478 case PCI_D1:
479 case PCI_D2:
480 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
481 pmcsr |= state;
482 break;
483 case PCI_UNKNOWN: /* Boot-up */
484 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
485 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
486 need_restore = true;
487 /* Fall-through: force to D0 */
488 default:
489 pmcsr = 0;
490 break;
491 }
492
493 /* enter specified state */
494 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
495
496 /* Mandatory power management transition delays */
497 /* see PCI PM 1.1 5.6.1 table 18 */
498 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
499 msleep(pci_pm_d3_delay);
500 else if (state == PCI_D2 || dev->current_state == PCI_D2)
501 udelay(PCI_PM_D2_DELAY);
502
503 dev->current_state = state;
504
505 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
506 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
507 * from D3hot to D0 _may_ perform an internal reset, thereby
508 * going to "D0 Uninitialized" rather than "D0 Initialized".
509 * For example, at least some versions of the 3c905B and the
510 * 3c556B exhibit this behaviour.
511 *
512 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
513 * devices in a D3hot state at boot. Consequently, we need to
514 * restore at least the BARs so that the device will be
515 * accessible to its driver.
516 */
517 if (need_restore)
518 pci_restore_bars(dev);
519
520 if (dev->bus->self)
521 pcie_aspm_pm_state_change(dev->bus->self);
522
523 return 0;
524 }
525
526 /**
527 * pci_update_current_state - Read PCI power state of given device from its
528 * PCI PM registers and cache it
529 * @dev: PCI device to handle.
530 * @state: State to cache in case the device doesn't have the PM capability
531 */
532 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
533 {
534 if (dev->pm_cap) {
535 u16 pmcsr;
536
537 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
538 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
539 } else {
540 dev->current_state = state;
541 }
542 }
543
544 /**
545 * pci_platform_power_transition - Use platform to change device power state
546 * @dev: PCI device to handle.
547 * @state: State to put the device into.
548 */
549 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
550 {
551 int error;
552
553 if (platform_pci_power_manageable(dev)) {
554 error = platform_pci_set_power_state(dev, state);
555 if (!error)
556 pci_update_current_state(dev, state);
557 } else {
558 error = -ENODEV;
559 /* Fall back to PCI_D0 if native PM is not supported */
560 if (!dev->pm_cap)
561 dev->current_state = PCI_D0;
562 }
563
564 return error;
565 }
566
567 /**
568 * __pci_start_power_transition - Start power transition of a PCI device
569 * @dev: PCI device to handle.
570 * @state: State to put the device into.
571 */
572 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
573 {
574 if (state == PCI_D0)
575 pci_platform_power_transition(dev, PCI_D0);
576 }
577
578 /**
579 * __pci_complete_power_transition - Complete power transition of a PCI device
580 * @dev: PCI device to handle.
581 * @state: State to put the device into.
582 *
583 * This function should not be called directly by device drivers.
584 */
585 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
586 {
587 return state > PCI_D0 ?
588 pci_platform_power_transition(dev, state) : -EINVAL;
589 }
590 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
591
592 /**
593 * pci_set_power_state - Set the power state of a PCI device
594 * @dev: PCI device to handle.
595 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
596 *
597 * Transition a device to a new power state, using the platform firmware and/or
598 * the device's PCI PM registers.
599 *
600 * RETURN VALUE:
601 * -EINVAL if the requested state is invalid.
602 * -EIO if device does not support PCI PM or its PM capabilities register has a
603 * wrong version, or device doesn't support the requested state.
604 * 0 if device already is in the requested state.
605 * 0 if device's power state has been successfully changed.
606 */
607 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
608 {
609 int error;
610
611 /* bound the state we're entering */
612 if (state > PCI_D3hot)
613 state = PCI_D3hot;
614 else if (state < PCI_D0)
615 state = PCI_D0;
616 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
617 /*
618 * If the device or the parent bridge do not support PCI PM,
619 * ignore the request if we're doing anything other than putting
620 * it into D0 (which would only happen on boot).
621 */
622 return 0;
623
624 /* Check if we're already there */
625 if (dev->current_state == state)
626 return 0;
627
628 __pci_start_power_transition(dev, state);
629
630 /* This device is quirked not to be put into D3, so
631 don't put it in D3 */
632 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
633 return 0;
634
635 error = pci_raw_set_power_state(dev, state);
636
637 if (!__pci_complete_power_transition(dev, state))
638 error = 0;
639
640 return error;
641 }
642
643 /**
644 * pci_choose_state - Choose the power state of a PCI device
645 * @dev: PCI device to be suspended
646 * @state: target sleep state for the whole system. This is the value
647 * that is passed to suspend() function.
648 *
649 * Returns PCI power state suitable for given device and given system
650 * message.
651 */
652
653 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
654 {
655 pci_power_t ret;
656
657 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
658 return PCI_D0;
659
660 ret = platform_pci_choose_state(dev);
661 if (ret != PCI_POWER_ERROR)
662 return ret;
663
664 switch (state.event) {
665 case PM_EVENT_ON:
666 return PCI_D0;
667 case PM_EVENT_FREEZE:
668 case PM_EVENT_PRETHAW:
669 /* REVISIT both freeze and pre-thaw "should" use D0 */
670 case PM_EVENT_SUSPEND:
671 case PM_EVENT_HIBERNATE:
672 return PCI_D3hot;
673 default:
674 dev_info(&dev->dev, "unrecognized suspend event %d\n",
675 state.event);
676 BUG();
677 }
678 return PCI_D0;
679 }
680
681 EXPORT_SYMBOL(pci_choose_state);
682
683 #define PCI_EXP_SAVE_REGS 7
684
685 #define pcie_cap_has_devctl(type, flags) 1
686 #define pcie_cap_has_lnkctl(type, flags) \
687 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
688 (type == PCI_EXP_TYPE_ROOT_PORT || \
689 type == PCI_EXP_TYPE_ENDPOINT || \
690 type == PCI_EXP_TYPE_LEG_END))
691 #define pcie_cap_has_sltctl(type, flags) \
692 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
693 ((type == PCI_EXP_TYPE_ROOT_PORT) || \
694 (type == PCI_EXP_TYPE_DOWNSTREAM && \
695 (flags & PCI_EXP_FLAGS_SLOT))))
696 #define pcie_cap_has_rtctl(type, flags) \
697 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
698 (type == PCI_EXP_TYPE_ROOT_PORT || \
699 type == PCI_EXP_TYPE_RC_EC))
700 #define pcie_cap_has_devctl2(type, flags) \
701 ((flags & PCI_EXP_FLAGS_VERS) > 1)
702 #define pcie_cap_has_lnkctl2(type, flags) \
703 ((flags & PCI_EXP_FLAGS_VERS) > 1)
704 #define pcie_cap_has_sltctl2(type, flags) \
705 ((flags & PCI_EXP_FLAGS_VERS) > 1)
706
707 static int pci_save_pcie_state(struct pci_dev *dev)
708 {
709 int pos, i = 0;
710 struct pci_cap_saved_state *save_state;
711 u16 *cap;
712 u16 flags;
713
714 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
715 if (pos <= 0)
716 return 0;
717
718 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
719 if (!save_state) {
720 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
721 return -ENOMEM;
722 }
723 cap = (u16 *)&save_state->data[0];
724
725 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
726
727 if (pcie_cap_has_devctl(dev->pcie_type, flags))
728 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
729 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
730 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
731 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
732 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
733 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
734 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
735 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
736 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
737 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
738 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
739 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
740 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
741
742 return 0;
743 }
744
745 static void pci_restore_pcie_state(struct pci_dev *dev)
746 {
747 int i = 0, pos;
748 struct pci_cap_saved_state *save_state;
749 u16 *cap;
750 u16 flags;
751
752 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
753 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
754 if (!save_state || pos <= 0)
755 return;
756 cap = (u16 *)&save_state->data[0];
757
758 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
759
760 if (pcie_cap_has_devctl(dev->pcie_type, flags))
761 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
762 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
763 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
764 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
765 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
766 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
767 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
768 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
769 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
770 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
771 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
772 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
773 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
774 }
775
776
777 static int pci_save_pcix_state(struct pci_dev *dev)
778 {
779 int pos;
780 struct pci_cap_saved_state *save_state;
781
782 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
783 if (pos <= 0)
784 return 0;
785
786 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
787 if (!save_state) {
788 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
789 return -ENOMEM;
790 }
791
792 pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
793
794 return 0;
795 }
796
797 static void pci_restore_pcix_state(struct pci_dev *dev)
798 {
799 int i = 0, pos;
800 struct pci_cap_saved_state *save_state;
801 u16 *cap;
802
803 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
804 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
805 if (!save_state || pos <= 0)
806 return;
807 cap = (u16 *)&save_state->data[0];
808
809 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
810 }
811
812
813 /**
814 * pci_save_state - save the PCI configuration space of a device before suspending
815 * @dev: - PCI device that we're dealing with
816 */
817 int
818 pci_save_state(struct pci_dev *dev)
819 {
820 int i;
821 /* XXX: 100% dword access ok here? */
822 for (i = 0; i < 16; i++)
823 pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]);
824 dev->state_saved = true;
825 if ((i = pci_save_pcie_state(dev)) != 0)
826 return i;
827 if ((i = pci_save_pcix_state(dev)) != 0)
828 return i;
829 return 0;
830 }
831
832 /**
833 * pci_restore_state - Restore the saved state of a PCI device
834 * @dev: - PCI device that we're dealing with
835 */
836 int
837 pci_restore_state(struct pci_dev *dev)
838 {
839 int i;
840 u32 val;
841
842 /* PCI Express register must be restored first */
843 pci_restore_pcie_state(dev);
844
845 /*
846 * The Base Address register should be programmed before the command
847 * register(s)
848 */
849 for (i = 15; i >= 0; i--) {
850 pci_read_config_dword(dev, i * 4, &val);
851 if (val != dev->saved_config_space[i]) {
852 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
853 "space at offset %#x (was %#x, writing %#x)\n",
854 i, val, (int)dev->saved_config_space[i]);
855 pci_write_config_dword(dev,i * 4,
856 dev->saved_config_space[i]);
857 }
858 }
859 pci_restore_pcix_state(dev);
860 pci_restore_msi_state(dev);
861 pci_restore_iov_state(dev);
862
863 return 0;
864 }
865
866 static int do_pci_enable_device(struct pci_dev *dev, int bars)
867 {
868 int err;
869
870 err = pci_set_power_state(dev, PCI_D0);
871 if (err < 0 && err != -EIO)
872 return err;
873 err = pcibios_enable_device(dev, bars);
874 if (err < 0)
875 return err;
876 pci_fixup_device(pci_fixup_enable, dev);
877
878 return 0;
879 }
880
881 /**
882 * pci_reenable_device - Resume abandoned device
883 * @dev: PCI device to be resumed
884 *
885 * Note this function is a backend of pci_default_resume and is not supposed
886 * to be called by normal code, write proper resume handler and use it instead.
887 */
888 int pci_reenable_device(struct pci_dev *dev)
889 {
890 if (pci_is_enabled(dev))
891 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
892 return 0;
893 }
894
895 static int __pci_enable_device_flags(struct pci_dev *dev,
896 resource_size_t flags)
897 {
898 int err;
899 int i, bars = 0;
900
901 if (atomic_add_return(1, &dev->enable_cnt) > 1)
902 return 0; /* already enabled */
903
904 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
905 if (dev->resource[i].flags & flags)
906 bars |= (1 << i);
907
908 err = do_pci_enable_device(dev, bars);
909 if (err < 0)
910 atomic_dec(&dev->enable_cnt);
911 return err;
912 }
913
914 /**
915 * pci_enable_device_io - Initialize a device for use with IO space
916 * @dev: PCI device to be initialized
917 *
918 * Initialize device before it's used by a driver. Ask low-level code
919 * to enable I/O resources. Wake up the device if it was suspended.
920 * Beware, this function can fail.
921 */
922 int pci_enable_device_io(struct pci_dev *dev)
923 {
924 return __pci_enable_device_flags(dev, IORESOURCE_IO);
925 }
926
927 /**
928 * pci_enable_device_mem - Initialize a device for use with Memory space
929 * @dev: PCI device to be initialized
930 *
931 * Initialize device before it's used by a driver. Ask low-level code
932 * to enable Memory resources. Wake up the device if it was suspended.
933 * Beware, this function can fail.
934 */
935 int pci_enable_device_mem(struct pci_dev *dev)
936 {
937 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
938 }
939
940 /**
941 * pci_enable_device - Initialize device before it's used by a driver.
942 * @dev: PCI device to be initialized
943 *
944 * Initialize device before it's used by a driver. Ask low-level code
945 * to enable I/O and memory. Wake up the device if it was suspended.
946 * Beware, this function can fail.
947 *
948 * Note we don't actually enable the device many times if we call
949 * this function repeatedly (we just increment the count).
950 */
951 int pci_enable_device(struct pci_dev *dev)
952 {
953 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
954 }
955
956 /*
957 * Managed PCI resources. This manages device on/off, intx/msi/msix
958 * on/off and BAR regions. pci_dev itself records msi/msix status, so
959 * there's no need to track it separately. pci_devres is initialized
960 * when a device is enabled using managed PCI device enable interface.
961 */
962 struct pci_devres {
963 unsigned int enabled:1;
964 unsigned int pinned:1;
965 unsigned int orig_intx:1;
966 unsigned int restore_intx:1;
967 u32 region_mask;
968 };
969
970 static void pcim_release(struct device *gendev, void *res)
971 {
972 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
973 struct pci_devres *this = res;
974 int i;
975
976 if (dev->msi_enabled)
977 pci_disable_msi(dev);
978 if (dev->msix_enabled)
979 pci_disable_msix(dev);
980
981 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
982 if (this->region_mask & (1 << i))
983 pci_release_region(dev, i);
984
985 if (this->restore_intx)
986 pci_intx(dev, this->orig_intx);
987
988 if (this->enabled && !this->pinned)
989 pci_disable_device(dev);
990 }
991
992 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
993 {
994 struct pci_devres *dr, *new_dr;
995
996 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
997 if (dr)
998 return dr;
999
1000 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1001 if (!new_dr)
1002 return NULL;
1003 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1004 }
1005
1006 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1007 {
1008 if (pci_is_managed(pdev))
1009 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1010 return NULL;
1011 }
1012
1013 /**
1014 * pcim_enable_device - Managed pci_enable_device()
1015 * @pdev: PCI device to be initialized
1016 *
1017 * Managed pci_enable_device().
1018 */
1019 int pcim_enable_device(struct pci_dev *pdev)
1020 {
1021 struct pci_devres *dr;
1022 int rc;
1023
1024 dr = get_pci_dr(pdev);
1025 if (unlikely(!dr))
1026 return -ENOMEM;
1027 if (dr->enabled)
1028 return 0;
1029
1030 rc = pci_enable_device(pdev);
1031 if (!rc) {
1032 pdev->is_managed = 1;
1033 dr->enabled = 1;
1034 }
1035 return rc;
1036 }
1037
1038 /**
1039 * pcim_pin_device - Pin managed PCI device
1040 * @pdev: PCI device to pin
1041 *
1042 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1043 * driver detach. @pdev must have been enabled with
1044 * pcim_enable_device().
1045 */
1046 void pcim_pin_device(struct pci_dev *pdev)
1047 {
1048 struct pci_devres *dr;
1049
1050 dr = find_pci_dr(pdev);
1051 WARN_ON(!dr || !dr->enabled);
1052 if (dr)
1053 dr->pinned = 1;
1054 }
1055
1056 /**
1057 * pcibios_disable_device - disable arch specific PCI resources for device dev
1058 * @dev: the PCI device to disable
1059 *
1060 * Disables architecture specific PCI resources for the device. This
1061 * is the default implementation. Architecture implementations can
1062 * override this.
1063 */
1064 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1065
1066 static void do_pci_disable_device(struct pci_dev *dev)
1067 {
1068 u16 pci_command;
1069
1070 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1071 if (pci_command & PCI_COMMAND_MASTER) {
1072 pci_command &= ~PCI_COMMAND_MASTER;
1073 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1074 }
1075
1076 pcibios_disable_device(dev);
1077 }
1078
1079 /**
1080 * pci_disable_enabled_device - Disable device without updating enable_cnt
1081 * @dev: PCI device to disable
1082 *
1083 * NOTE: This function is a backend of PCI power management routines and is
1084 * not supposed to be called drivers.
1085 */
1086 void pci_disable_enabled_device(struct pci_dev *dev)
1087 {
1088 if (pci_is_enabled(dev))
1089 do_pci_disable_device(dev);
1090 }
1091
1092 /**
1093 * pci_disable_device - Disable PCI device after use
1094 * @dev: PCI device to be disabled
1095 *
1096 * Signal to the system that the PCI device is not in use by the system
1097 * anymore. This only involves disabling PCI bus-mastering, if active.
1098 *
1099 * Note we don't actually disable the device until all callers of
1100 * pci_device_enable() have called pci_device_disable().
1101 */
1102 void
1103 pci_disable_device(struct pci_dev *dev)
1104 {
1105 struct pci_devres *dr;
1106
1107 dr = find_pci_dr(dev);
1108 if (dr)
1109 dr->enabled = 0;
1110
1111 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1112 return;
1113
1114 do_pci_disable_device(dev);
1115
1116 dev->is_busmaster = 0;
1117 }
1118
1119 /**
1120 * pcibios_set_pcie_reset_state - set reset state for device dev
1121 * @dev: the PCI-E device reset
1122 * @state: Reset state to enter into
1123 *
1124 *
1125 * Sets the PCI-E reset state for the device. This is the default
1126 * implementation. Architecture implementations can override this.
1127 */
1128 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1129 enum pcie_reset_state state)
1130 {
1131 return -EINVAL;
1132 }
1133
1134 /**
1135 * pci_set_pcie_reset_state - set reset state for device dev
1136 * @dev: the PCI-E device reset
1137 * @state: Reset state to enter into
1138 *
1139 *
1140 * Sets the PCI reset state for the device.
1141 */
1142 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1143 {
1144 return pcibios_set_pcie_reset_state(dev, state);
1145 }
1146
1147 /**
1148 * pci_pme_capable - check the capability of PCI device to generate PME#
1149 * @dev: PCI device to handle.
1150 * @state: PCI state from which device will issue PME#.
1151 */
1152 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1153 {
1154 if (!dev->pm_cap)
1155 return false;
1156
1157 return !!(dev->pme_support & (1 << state));
1158 }
1159
1160 /**
1161 * pci_pme_active - enable or disable PCI device's PME# function
1162 * @dev: PCI device to handle.
1163 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1164 *
1165 * The caller must verify that the device is capable of generating PME# before
1166 * calling this function with @enable equal to 'true'.
1167 */
1168 void pci_pme_active(struct pci_dev *dev, bool enable)
1169 {
1170 u16 pmcsr;
1171
1172 if (!dev->pm_cap)
1173 return;
1174
1175 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1176 /* Clear PME_Status by writing 1 to it and enable PME# */
1177 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1178 if (!enable)
1179 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1180
1181 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1182
1183 dev_printk(KERN_INFO, &dev->dev, "PME# %s\n",
1184 enable ? "enabled" : "disabled");
1185 }
1186
1187 /**
1188 * pci_enable_wake - enable PCI device as wakeup event source
1189 * @dev: PCI device affected
1190 * @state: PCI state from which device will issue wakeup events
1191 * @enable: True to enable event generation; false to disable
1192 *
1193 * This enables the device as a wakeup event source, or disables it.
1194 * When such events involves platform-specific hooks, those hooks are
1195 * called automatically by this routine.
1196 *
1197 * Devices with legacy power management (no standard PCI PM capabilities)
1198 * always require such platform hooks.
1199 *
1200 * RETURN VALUE:
1201 * 0 is returned on success
1202 * -EINVAL is returned if device is not supposed to wake up the system
1203 * Error code depending on the platform is returned if both the platform and
1204 * the native mechanism fail to enable the generation of wake-up events
1205 */
1206 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, int enable)
1207 {
1208 int error = 0;
1209 bool pme_done = false;
1210
1211 if (enable && !device_may_wakeup(&dev->dev))
1212 return -EINVAL;
1213
1214 /*
1215 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1216 * Anderson we should be doing PME# wake enable followed by ACPI wake
1217 * enable. To disable wake-up we call the platform first, for symmetry.
1218 */
1219
1220 if (!enable && platform_pci_can_wakeup(dev))
1221 error = platform_pci_sleep_wake(dev, false);
1222
1223 if (!enable || pci_pme_capable(dev, state)) {
1224 pci_pme_active(dev, enable);
1225 pme_done = true;
1226 }
1227
1228 if (enable && platform_pci_can_wakeup(dev))
1229 error = platform_pci_sleep_wake(dev, true);
1230
1231 return pme_done ? 0 : error;
1232 }
1233
1234 /**
1235 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1236 * @dev: PCI device to prepare
1237 * @enable: True to enable wake-up event generation; false to disable
1238 *
1239 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1240 * and this function allows them to set that up cleanly - pci_enable_wake()
1241 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1242 * ordering constraints.
1243 *
1244 * This function only returns error code if the device is not capable of
1245 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1246 * enable wake-up power for it.
1247 */
1248 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1249 {
1250 return pci_pme_capable(dev, PCI_D3cold) ?
1251 pci_enable_wake(dev, PCI_D3cold, enable) :
1252 pci_enable_wake(dev, PCI_D3hot, enable);
1253 }
1254
1255 /**
1256 * pci_target_state - find an appropriate low power state for a given PCI dev
1257 * @dev: PCI device
1258 *
1259 * Use underlying platform code to find a supported low power state for @dev.
1260 * If the platform can't manage @dev, return the deepest state from which it
1261 * can generate wake events, based on any available PME info.
1262 */
1263 pci_power_t pci_target_state(struct pci_dev *dev)
1264 {
1265 pci_power_t target_state = PCI_D3hot;
1266
1267 if (platform_pci_power_manageable(dev)) {
1268 /*
1269 * Call the platform to choose the target state of the device
1270 * and enable wake-up from this state if supported.
1271 */
1272 pci_power_t state = platform_pci_choose_state(dev);
1273
1274 switch (state) {
1275 case PCI_POWER_ERROR:
1276 case PCI_UNKNOWN:
1277 break;
1278 case PCI_D1:
1279 case PCI_D2:
1280 if (pci_no_d1d2(dev))
1281 break;
1282 default:
1283 target_state = state;
1284 }
1285 } else if (device_may_wakeup(&dev->dev)) {
1286 /*
1287 * Find the deepest state from which the device can generate
1288 * wake-up events, make it the target state and enable device
1289 * to generate PME#.
1290 */
1291 if (!dev->pm_cap)
1292 return PCI_POWER_ERROR;
1293
1294 if (dev->pme_support) {
1295 while (target_state
1296 && !(dev->pme_support & (1 << target_state)))
1297 target_state--;
1298 }
1299 }
1300
1301 return target_state;
1302 }
1303
1304 /**
1305 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1306 * @dev: Device to handle.
1307 *
1308 * Choose the power state appropriate for the device depending on whether
1309 * it can wake up the system and/or is power manageable by the platform
1310 * (PCI_D3hot is the default) and put the device into that state.
1311 */
1312 int pci_prepare_to_sleep(struct pci_dev *dev)
1313 {
1314 pci_power_t target_state = pci_target_state(dev);
1315 int error;
1316
1317 if (target_state == PCI_POWER_ERROR)
1318 return -EIO;
1319
1320 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1321
1322 error = pci_set_power_state(dev, target_state);
1323
1324 if (error)
1325 pci_enable_wake(dev, target_state, false);
1326
1327 return error;
1328 }
1329
1330 /**
1331 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1332 * @dev: Device to handle.
1333 *
1334 * Disable device's sytem wake-up capability and put it into D0.
1335 */
1336 int pci_back_from_sleep(struct pci_dev *dev)
1337 {
1338 pci_enable_wake(dev, PCI_D0, false);
1339 return pci_set_power_state(dev, PCI_D0);
1340 }
1341
1342 /**
1343 * pci_pm_init - Initialize PM functions of given PCI device
1344 * @dev: PCI device to handle.
1345 */
1346 void pci_pm_init(struct pci_dev *dev)
1347 {
1348 int pm;
1349 u16 pmc;
1350
1351 dev->pm_cap = 0;
1352
1353 /* find PCI PM capability in list */
1354 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1355 if (!pm)
1356 return;
1357 /* Check device's ability to generate PME# */
1358 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1359
1360 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1361 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1362 pmc & PCI_PM_CAP_VER_MASK);
1363 return;
1364 }
1365
1366 dev->pm_cap = pm;
1367
1368 dev->d1_support = false;
1369 dev->d2_support = false;
1370 if (!pci_no_d1d2(dev)) {
1371 if (pmc & PCI_PM_CAP_D1)
1372 dev->d1_support = true;
1373 if (pmc & PCI_PM_CAP_D2)
1374 dev->d2_support = true;
1375
1376 if (dev->d1_support || dev->d2_support)
1377 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1378 dev->d1_support ? " D1" : "",
1379 dev->d2_support ? " D2" : "");
1380 }
1381
1382 pmc &= PCI_PM_CAP_PME_MASK;
1383 if (pmc) {
1384 dev_info(&dev->dev, "PME# supported from%s%s%s%s%s\n",
1385 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1386 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1387 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1388 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1389 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1390 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1391 /*
1392 * Make device's PM flags reflect the wake-up capability, but
1393 * let the user space enable it to wake up the system as needed.
1394 */
1395 device_set_wakeup_capable(&dev->dev, true);
1396 device_set_wakeup_enable(&dev->dev, false);
1397 /* Disable the PME# generation functionality */
1398 pci_pme_active(dev, false);
1399 } else {
1400 dev->pme_support = 0;
1401 }
1402 }
1403
1404 /**
1405 * platform_pci_wakeup_init - init platform wakeup if present
1406 * @dev: PCI device
1407 *
1408 * Some devices don't have PCI PM caps but can still generate wakeup
1409 * events through platform methods (like ACPI events). If @dev supports
1410 * platform wakeup events, set the device flag to indicate as much. This
1411 * may be redundant if the device also supports PCI PM caps, but double
1412 * initialization should be safe in that case.
1413 */
1414 void platform_pci_wakeup_init(struct pci_dev *dev)
1415 {
1416 if (!platform_pci_can_wakeup(dev))
1417 return;
1418
1419 device_set_wakeup_capable(&dev->dev, true);
1420 device_set_wakeup_enable(&dev->dev, false);
1421 platform_pci_sleep_wake(dev, false);
1422 }
1423
1424 /**
1425 * pci_add_save_buffer - allocate buffer for saving given capability registers
1426 * @dev: the PCI device
1427 * @cap: the capability to allocate the buffer for
1428 * @size: requested size of the buffer
1429 */
1430 static int pci_add_cap_save_buffer(
1431 struct pci_dev *dev, char cap, unsigned int size)
1432 {
1433 int pos;
1434 struct pci_cap_saved_state *save_state;
1435
1436 pos = pci_find_capability(dev, cap);
1437 if (pos <= 0)
1438 return 0;
1439
1440 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1441 if (!save_state)
1442 return -ENOMEM;
1443
1444 save_state->cap_nr = cap;
1445 pci_add_saved_cap(dev, save_state);
1446
1447 return 0;
1448 }
1449
1450 /**
1451 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1452 * @dev: the PCI device
1453 */
1454 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1455 {
1456 int error;
1457
1458 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1459 PCI_EXP_SAVE_REGS * sizeof(u16));
1460 if (error)
1461 dev_err(&dev->dev,
1462 "unable to preallocate PCI Express save buffer\n");
1463
1464 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1465 if (error)
1466 dev_err(&dev->dev,
1467 "unable to preallocate PCI-X save buffer\n");
1468 }
1469
1470 /**
1471 * pci_enable_ari - enable ARI forwarding if hardware support it
1472 * @dev: the PCI device
1473 */
1474 void pci_enable_ari(struct pci_dev *dev)
1475 {
1476 int pos;
1477 u32 cap;
1478 u16 ctrl;
1479 struct pci_dev *bridge;
1480
1481 if (!dev->is_pcie || dev->devfn)
1482 return;
1483
1484 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1485 if (!pos)
1486 return;
1487
1488 bridge = dev->bus->self;
1489 if (!bridge || !bridge->is_pcie)
1490 return;
1491
1492 pos = pci_find_capability(bridge, PCI_CAP_ID_EXP);
1493 if (!pos)
1494 return;
1495
1496 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1497 if (!(cap & PCI_EXP_DEVCAP2_ARI))
1498 return;
1499
1500 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1501 ctrl |= PCI_EXP_DEVCTL2_ARI;
1502 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1503
1504 bridge->ari_enabled = 1;
1505 }
1506
1507 /**
1508 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1509 * @dev: the PCI device
1510 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1511 *
1512 * Perform INTx swizzling for a device behind one level of bridge. This is
1513 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1514 * behind bridges on add-in cards.
1515 */
1516 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1517 {
1518 return (((pin - 1) + PCI_SLOT(dev->devfn)) % 4) + 1;
1519 }
1520
1521 int
1522 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1523 {
1524 u8 pin;
1525
1526 pin = dev->pin;
1527 if (!pin)
1528 return -1;
1529
1530 while (dev->bus->parent) {
1531 pin = pci_swizzle_interrupt_pin(dev, pin);
1532 dev = dev->bus->self;
1533 }
1534 *bridge = dev;
1535 return pin;
1536 }
1537
1538 /**
1539 * pci_common_swizzle - swizzle INTx all the way to root bridge
1540 * @dev: the PCI device
1541 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1542 *
1543 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
1544 * bridges all the way up to a PCI root bus.
1545 */
1546 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
1547 {
1548 u8 pin = *pinp;
1549
1550 while (dev->bus->parent) {
1551 pin = pci_swizzle_interrupt_pin(dev, pin);
1552 dev = dev->bus->self;
1553 }
1554 *pinp = pin;
1555 return PCI_SLOT(dev->devfn);
1556 }
1557
1558 /**
1559 * pci_release_region - Release a PCI bar
1560 * @pdev: PCI device whose resources were previously reserved by pci_request_region
1561 * @bar: BAR to release
1562 *
1563 * Releases the PCI I/O and memory resources previously reserved by a
1564 * successful call to pci_request_region. Call this function only
1565 * after all use of the PCI regions has ceased.
1566 */
1567 void pci_release_region(struct pci_dev *pdev, int bar)
1568 {
1569 struct pci_devres *dr;
1570
1571 if (pci_resource_len(pdev, bar) == 0)
1572 return;
1573 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1574 release_region(pci_resource_start(pdev, bar),
1575 pci_resource_len(pdev, bar));
1576 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1577 release_mem_region(pci_resource_start(pdev, bar),
1578 pci_resource_len(pdev, bar));
1579
1580 dr = find_pci_dr(pdev);
1581 if (dr)
1582 dr->region_mask &= ~(1 << bar);
1583 }
1584
1585 /**
1586 * __pci_request_region - Reserved PCI I/O and memory resource
1587 * @pdev: PCI device whose resources are to be reserved
1588 * @bar: BAR to be reserved
1589 * @res_name: Name to be associated with resource.
1590 * @exclusive: whether the region access is exclusive or not
1591 *
1592 * Mark the PCI region associated with PCI device @pdev BR @bar as
1593 * being reserved by owner @res_name. Do not access any
1594 * address inside the PCI regions unless this call returns
1595 * successfully.
1596 *
1597 * If @exclusive is set, then the region is marked so that userspace
1598 * is explicitly not allowed to map the resource via /dev/mem or
1599 * sysfs MMIO access.
1600 *
1601 * Returns 0 on success, or %EBUSY on error. A warning
1602 * message is also printed on failure.
1603 */
1604 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1605 int exclusive)
1606 {
1607 struct pci_devres *dr;
1608
1609 if (pci_resource_len(pdev, bar) == 0)
1610 return 0;
1611
1612 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1613 if (!request_region(pci_resource_start(pdev, bar),
1614 pci_resource_len(pdev, bar), res_name))
1615 goto err_out;
1616 }
1617 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1618 if (!__request_mem_region(pci_resource_start(pdev, bar),
1619 pci_resource_len(pdev, bar), res_name,
1620 exclusive))
1621 goto err_out;
1622 }
1623
1624 dr = find_pci_dr(pdev);
1625 if (dr)
1626 dr->region_mask |= 1 << bar;
1627
1628 return 0;
1629
1630 err_out:
1631 dev_warn(&pdev->dev, "BAR %d: can't reserve %s region %pR\n",
1632 bar,
1633 pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem",
1634 &pdev->resource[bar]);
1635 return -EBUSY;
1636 }
1637
1638 /**
1639 * pci_request_region - Reserve PCI I/O and memory resource
1640 * @pdev: PCI device whose resources are to be reserved
1641 * @bar: BAR to be reserved
1642 * @res_name: Name to be associated with resource
1643 *
1644 * Mark the PCI region associated with PCI device @pdev BAR @bar as
1645 * being reserved by owner @res_name. Do not access any
1646 * address inside the PCI regions unless this call returns
1647 * successfully.
1648 *
1649 * Returns 0 on success, or %EBUSY on error. A warning
1650 * message is also printed on failure.
1651 */
1652 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1653 {
1654 return __pci_request_region(pdev, bar, res_name, 0);
1655 }
1656
1657 /**
1658 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
1659 * @pdev: PCI device whose resources are to be reserved
1660 * @bar: BAR to be reserved
1661 * @res_name: Name to be associated with resource.
1662 *
1663 * Mark the PCI region associated with PCI device @pdev BR @bar as
1664 * being reserved by owner @res_name. Do not access any
1665 * address inside the PCI regions unless this call returns
1666 * successfully.
1667 *
1668 * Returns 0 on success, or %EBUSY on error. A warning
1669 * message is also printed on failure.
1670 *
1671 * The key difference that _exclusive makes it that userspace is
1672 * explicitly not allowed to map the resource via /dev/mem or
1673 * sysfs.
1674 */
1675 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
1676 {
1677 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
1678 }
1679 /**
1680 * pci_release_selected_regions - Release selected PCI I/O and memory resources
1681 * @pdev: PCI device whose resources were previously reserved
1682 * @bars: Bitmask of BARs to be released
1683 *
1684 * Release selected PCI I/O and memory resources previously reserved.
1685 * Call this function only after all use of the PCI regions has ceased.
1686 */
1687 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1688 {
1689 int i;
1690
1691 for (i = 0; i < 6; i++)
1692 if (bars & (1 << i))
1693 pci_release_region(pdev, i);
1694 }
1695
1696 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
1697 const char *res_name, int excl)
1698 {
1699 int i;
1700
1701 for (i = 0; i < 6; i++)
1702 if (bars & (1 << i))
1703 if (__pci_request_region(pdev, i, res_name, excl))
1704 goto err_out;
1705 return 0;
1706
1707 err_out:
1708 while(--i >= 0)
1709 if (bars & (1 << i))
1710 pci_release_region(pdev, i);
1711
1712 return -EBUSY;
1713 }
1714
1715
1716 /**
1717 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1718 * @pdev: PCI device whose resources are to be reserved
1719 * @bars: Bitmask of BARs to be requested
1720 * @res_name: Name to be associated with resource
1721 */
1722 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1723 const char *res_name)
1724 {
1725 return __pci_request_selected_regions(pdev, bars, res_name, 0);
1726 }
1727
1728 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
1729 int bars, const char *res_name)
1730 {
1731 return __pci_request_selected_regions(pdev, bars, res_name,
1732 IORESOURCE_EXCLUSIVE);
1733 }
1734
1735 /**
1736 * pci_release_regions - Release reserved PCI I/O and memory resources
1737 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
1738 *
1739 * Releases all PCI I/O and memory resources previously reserved by a
1740 * successful call to pci_request_regions. Call this function only
1741 * after all use of the PCI regions has ceased.
1742 */
1743
1744 void pci_release_regions(struct pci_dev *pdev)
1745 {
1746 pci_release_selected_regions(pdev, (1 << 6) - 1);
1747 }
1748
1749 /**
1750 * pci_request_regions - Reserved PCI I/O and memory resources
1751 * @pdev: PCI device whose resources are to be reserved
1752 * @res_name: Name to be associated with resource.
1753 *
1754 * Mark all PCI regions associated with PCI device @pdev as
1755 * being reserved by owner @res_name. Do not access any
1756 * address inside the PCI regions unless this call returns
1757 * successfully.
1758 *
1759 * Returns 0 on success, or %EBUSY on error. A warning
1760 * message is also printed on failure.
1761 */
1762 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1763 {
1764 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1765 }
1766
1767 /**
1768 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
1769 * @pdev: PCI device whose resources are to be reserved
1770 * @res_name: Name to be associated with resource.
1771 *
1772 * Mark all PCI regions associated with PCI device @pdev as
1773 * being reserved by owner @res_name. Do not access any
1774 * address inside the PCI regions unless this call returns
1775 * successfully.
1776 *
1777 * pci_request_regions_exclusive() will mark the region so that
1778 * /dev/mem and the sysfs MMIO access will not be allowed.
1779 *
1780 * Returns 0 on success, or %EBUSY on error. A warning
1781 * message is also printed on failure.
1782 */
1783 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
1784 {
1785 return pci_request_selected_regions_exclusive(pdev,
1786 ((1 << 6) - 1), res_name);
1787 }
1788
1789 static void __pci_set_master(struct pci_dev *dev, bool enable)
1790 {
1791 u16 old_cmd, cmd;
1792
1793 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
1794 if (enable)
1795 cmd = old_cmd | PCI_COMMAND_MASTER;
1796 else
1797 cmd = old_cmd & ~PCI_COMMAND_MASTER;
1798 if (cmd != old_cmd) {
1799 dev_dbg(&dev->dev, "%s bus mastering\n",
1800 enable ? "enabling" : "disabling");
1801 pci_write_config_word(dev, PCI_COMMAND, cmd);
1802 }
1803 dev->is_busmaster = enable;
1804 }
1805
1806 /**
1807 * pci_set_master - enables bus-mastering for device dev
1808 * @dev: the PCI device to enable
1809 *
1810 * Enables bus-mastering on the device and calls pcibios_set_master()
1811 * to do the needed arch specific settings.
1812 */
1813 void pci_set_master(struct pci_dev *dev)
1814 {
1815 __pci_set_master(dev, true);
1816 pcibios_set_master(dev);
1817 }
1818
1819 /**
1820 * pci_clear_master - disables bus-mastering for device dev
1821 * @dev: the PCI device to disable
1822 */
1823 void pci_clear_master(struct pci_dev *dev)
1824 {
1825 __pci_set_master(dev, false);
1826 }
1827
1828 #ifdef PCI_DISABLE_MWI
1829 int pci_set_mwi(struct pci_dev *dev)
1830 {
1831 return 0;
1832 }
1833
1834 int pci_try_set_mwi(struct pci_dev *dev)
1835 {
1836 return 0;
1837 }
1838
1839 void pci_clear_mwi(struct pci_dev *dev)
1840 {
1841 }
1842
1843 #else
1844
1845 #ifndef PCI_CACHE_LINE_BYTES
1846 #define PCI_CACHE_LINE_BYTES L1_CACHE_BYTES
1847 #endif
1848
1849 /* This can be overridden by arch code. */
1850 /* Don't forget this is measured in 32-bit words, not bytes */
1851 u8 pci_cache_line_size = PCI_CACHE_LINE_BYTES / 4;
1852
1853 /**
1854 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
1855 * @dev: the PCI device for which MWI is to be enabled
1856 *
1857 * Helper function for pci_set_mwi.
1858 * Originally copied from drivers/net/acenic.c.
1859 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
1860 *
1861 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1862 */
1863 static int
1864 pci_set_cacheline_size(struct pci_dev *dev)
1865 {
1866 u8 cacheline_size;
1867
1868 if (!pci_cache_line_size)
1869 return -EINVAL; /* The system doesn't support MWI. */
1870
1871 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
1872 equal to or multiple of the right value. */
1873 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1874 if (cacheline_size >= pci_cache_line_size &&
1875 (cacheline_size % pci_cache_line_size) == 0)
1876 return 0;
1877
1878 /* Write the correct value. */
1879 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
1880 /* Read it back. */
1881 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1882 if (cacheline_size == pci_cache_line_size)
1883 return 0;
1884
1885 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
1886 "supported\n", pci_cache_line_size << 2);
1887
1888 return -EINVAL;
1889 }
1890
1891 /**
1892 * pci_set_mwi - enables memory-write-invalidate PCI transaction
1893 * @dev: the PCI device for which MWI is enabled
1894 *
1895 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1896 *
1897 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1898 */
1899 int
1900 pci_set_mwi(struct pci_dev *dev)
1901 {
1902 int rc;
1903 u16 cmd;
1904
1905 rc = pci_set_cacheline_size(dev);
1906 if (rc)
1907 return rc;
1908
1909 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1910 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
1911 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1912 cmd |= PCI_COMMAND_INVALIDATE;
1913 pci_write_config_word(dev, PCI_COMMAND, cmd);
1914 }
1915
1916 return 0;
1917 }
1918
1919 /**
1920 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
1921 * @dev: the PCI device for which MWI is enabled
1922 *
1923 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1924 * Callers are not required to check the return value.
1925 *
1926 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1927 */
1928 int pci_try_set_mwi(struct pci_dev *dev)
1929 {
1930 int rc = pci_set_mwi(dev);
1931 return rc;
1932 }
1933
1934 /**
1935 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
1936 * @dev: the PCI device to disable
1937 *
1938 * Disables PCI Memory-Write-Invalidate transaction on the device
1939 */
1940 void
1941 pci_clear_mwi(struct pci_dev *dev)
1942 {
1943 u16 cmd;
1944
1945 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1946 if (cmd & PCI_COMMAND_INVALIDATE) {
1947 cmd &= ~PCI_COMMAND_INVALIDATE;
1948 pci_write_config_word(dev, PCI_COMMAND, cmd);
1949 }
1950 }
1951 #endif /* ! PCI_DISABLE_MWI */
1952
1953 /**
1954 * pci_intx - enables/disables PCI INTx for device dev
1955 * @pdev: the PCI device to operate on
1956 * @enable: boolean: whether to enable or disable PCI INTx
1957 *
1958 * Enables/disables PCI INTx for device dev
1959 */
1960 void
1961 pci_intx(struct pci_dev *pdev, int enable)
1962 {
1963 u16 pci_command, new;
1964
1965 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1966
1967 if (enable) {
1968 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
1969 } else {
1970 new = pci_command | PCI_COMMAND_INTX_DISABLE;
1971 }
1972
1973 if (new != pci_command) {
1974 struct pci_devres *dr;
1975
1976 pci_write_config_word(pdev, PCI_COMMAND, new);
1977
1978 dr = find_pci_dr(pdev);
1979 if (dr && !dr->restore_intx) {
1980 dr->restore_intx = 1;
1981 dr->orig_intx = !enable;
1982 }
1983 }
1984 }
1985
1986 /**
1987 * pci_msi_off - disables any msi or msix capabilities
1988 * @dev: the PCI device to operate on
1989 *
1990 * If you want to use msi see pci_enable_msi and friends.
1991 * This is a lower level primitive that allows us to disable
1992 * msi operation at the device level.
1993 */
1994 void pci_msi_off(struct pci_dev *dev)
1995 {
1996 int pos;
1997 u16 control;
1998
1999 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2000 if (pos) {
2001 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2002 control &= ~PCI_MSI_FLAGS_ENABLE;
2003 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2004 }
2005 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2006 if (pos) {
2007 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2008 control &= ~PCI_MSIX_FLAGS_ENABLE;
2009 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2010 }
2011 }
2012
2013 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
2014 /*
2015 * These can be overridden by arch-specific implementations
2016 */
2017 int
2018 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
2019 {
2020 if (!pci_dma_supported(dev, mask))
2021 return -EIO;
2022
2023 dev->dma_mask = mask;
2024
2025 return 0;
2026 }
2027
2028 int
2029 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
2030 {
2031 if (!pci_dma_supported(dev, mask))
2032 return -EIO;
2033
2034 dev->dev.coherent_dma_mask = mask;
2035
2036 return 0;
2037 }
2038 #endif
2039
2040 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
2041 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2042 {
2043 return dma_set_max_seg_size(&dev->dev, size);
2044 }
2045 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2046 #endif
2047
2048 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
2049 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2050 {
2051 return dma_set_seg_boundary(&dev->dev, mask);
2052 }
2053 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2054 #endif
2055
2056 static int __pcie_flr(struct pci_dev *dev, int probe)
2057 {
2058 u16 status;
2059 u32 cap;
2060 int exppos = pci_find_capability(dev, PCI_CAP_ID_EXP);
2061
2062 if (!exppos)
2063 return -ENOTTY;
2064 pci_read_config_dword(dev, exppos + PCI_EXP_DEVCAP, &cap);
2065 if (!(cap & PCI_EXP_DEVCAP_FLR))
2066 return -ENOTTY;
2067
2068 if (probe)
2069 return 0;
2070
2071 pci_block_user_cfg_access(dev);
2072
2073 /* Wait for Transaction Pending bit clean */
2074 pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
2075 if (!(status & PCI_EXP_DEVSTA_TRPND))
2076 goto transaction_done;
2077
2078 msleep(100);
2079 pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
2080 if (!(status & PCI_EXP_DEVSTA_TRPND))
2081 goto transaction_done;
2082
2083 dev_info(&dev->dev, "Busy after 100ms while trying to reset; "
2084 "sleeping for 1 second\n");
2085 ssleep(1);
2086 pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
2087 if (status & PCI_EXP_DEVSTA_TRPND)
2088 dev_info(&dev->dev, "Still busy after 1s; "
2089 "proceeding with reset anyway\n");
2090
2091 transaction_done:
2092 pci_write_config_word(dev, exppos + PCI_EXP_DEVCTL,
2093 PCI_EXP_DEVCTL_BCR_FLR);
2094 mdelay(100);
2095
2096 pci_unblock_user_cfg_access(dev);
2097 return 0;
2098 }
2099
2100 static int __pci_af_flr(struct pci_dev *dev, int probe)
2101 {
2102 int cappos = pci_find_capability(dev, PCI_CAP_ID_AF);
2103 u8 status;
2104 u8 cap;
2105
2106 if (!cappos)
2107 return -ENOTTY;
2108 pci_read_config_byte(dev, cappos + PCI_AF_CAP, &cap);
2109 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2110 return -ENOTTY;
2111
2112 if (probe)
2113 return 0;
2114
2115 pci_block_user_cfg_access(dev);
2116
2117 /* Wait for Transaction Pending bit clean */
2118 pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status);
2119 if (!(status & PCI_AF_STATUS_TP))
2120 goto transaction_done;
2121
2122 msleep(100);
2123 pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status);
2124 if (!(status & PCI_AF_STATUS_TP))
2125 goto transaction_done;
2126
2127 dev_info(&dev->dev, "Busy after 100ms while trying to"
2128 " reset; sleeping for 1 second\n");
2129 ssleep(1);
2130 pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status);
2131 if (status & PCI_AF_STATUS_TP)
2132 dev_info(&dev->dev, "Still busy after 1s; "
2133 "proceeding with reset anyway\n");
2134
2135 transaction_done:
2136 pci_write_config_byte(dev, cappos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2137 mdelay(100);
2138
2139 pci_unblock_user_cfg_access(dev);
2140 return 0;
2141 }
2142
2143 static int __pci_reset_function(struct pci_dev *pdev, int probe)
2144 {
2145 int res;
2146
2147 res = __pcie_flr(pdev, probe);
2148 if (res != -ENOTTY)
2149 return res;
2150
2151 res = __pci_af_flr(pdev, probe);
2152 if (res != -ENOTTY)
2153 return res;
2154
2155 return res;
2156 }
2157
2158 /**
2159 * pci_execute_reset_function() - Reset a PCI device function
2160 * @dev: Device function to reset
2161 *
2162 * Some devices allow an individual function to be reset without affecting
2163 * other functions in the same device. The PCI device must be responsive
2164 * to PCI config space in order to use this function.
2165 *
2166 * The device function is presumed to be unused when this function is called.
2167 * Resetting the device will make the contents of PCI configuration space
2168 * random, so any caller of this must be prepared to reinitialise the
2169 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
2170 * etc.
2171 *
2172 * Returns 0 if the device function was successfully reset or -ENOTTY if the
2173 * device doesn't support resetting a single function.
2174 */
2175 int pci_execute_reset_function(struct pci_dev *dev)
2176 {
2177 return __pci_reset_function(dev, 0);
2178 }
2179 EXPORT_SYMBOL_GPL(pci_execute_reset_function);
2180
2181 /**
2182 * pci_reset_function() - quiesce and reset a PCI device function
2183 * @dev: Device function to reset
2184 *
2185 * Some devices allow an individual function to be reset without affecting
2186 * other functions in the same device. The PCI device must be responsive
2187 * to PCI config space in order to use this function.
2188 *
2189 * This function does not just reset the PCI portion of a device, but
2190 * clears all the state associated with the device. This function differs
2191 * from pci_execute_reset_function in that it saves and restores device state
2192 * over the reset.
2193 *
2194 * Returns 0 if the device function was successfully reset or -ENOTTY if the
2195 * device doesn't support resetting a single function.
2196 */
2197 int pci_reset_function(struct pci_dev *dev)
2198 {
2199 int r = __pci_reset_function(dev, 1);
2200
2201 if (r < 0)
2202 return r;
2203
2204 if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0)
2205 disable_irq(dev->irq);
2206 pci_save_state(dev);
2207
2208 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2209
2210 r = pci_execute_reset_function(dev);
2211
2212 pci_restore_state(dev);
2213 if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0)
2214 enable_irq(dev->irq);
2215
2216 return r;
2217 }
2218 EXPORT_SYMBOL_GPL(pci_reset_function);
2219
2220 /**
2221 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2222 * @dev: PCI device to query
2223 *
2224 * Returns mmrbc: maximum designed memory read count in bytes
2225 * or appropriate error value.
2226 */
2227 int pcix_get_max_mmrbc(struct pci_dev *dev)
2228 {
2229 int err, cap;
2230 u32 stat;
2231
2232 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2233 if (!cap)
2234 return -EINVAL;
2235
2236 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2237 if (err)
2238 return -EINVAL;
2239
2240 return (stat & PCI_X_STATUS_MAX_READ) >> 12;
2241 }
2242 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2243
2244 /**
2245 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2246 * @dev: PCI device to query
2247 *
2248 * Returns mmrbc: maximum memory read count in bytes
2249 * or appropriate error value.
2250 */
2251 int pcix_get_mmrbc(struct pci_dev *dev)
2252 {
2253 int ret, cap;
2254 u32 cmd;
2255
2256 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2257 if (!cap)
2258 return -EINVAL;
2259
2260 ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2261 if (!ret)
2262 ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2263
2264 return ret;
2265 }
2266 EXPORT_SYMBOL(pcix_get_mmrbc);
2267
2268 /**
2269 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2270 * @dev: PCI device to query
2271 * @mmrbc: maximum memory read count in bytes
2272 * valid values are 512, 1024, 2048, 4096
2273 *
2274 * If possible sets maximum memory read byte count, some bridges have erratas
2275 * that prevent this.
2276 */
2277 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2278 {
2279 int cap, err = -EINVAL;
2280 u32 stat, cmd, v, o;
2281
2282 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2283 goto out;
2284
2285 v = ffs(mmrbc) - 10;
2286
2287 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2288 if (!cap)
2289 goto out;
2290
2291 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2292 if (err)
2293 goto out;
2294
2295 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2296 return -E2BIG;
2297
2298 err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2299 if (err)
2300 goto out;
2301
2302 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2303 if (o != v) {
2304 if (v > o && dev->bus &&
2305 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2306 return -EIO;
2307
2308 cmd &= ~PCI_X_CMD_MAX_READ;
2309 cmd |= v << 2;
2310 err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
2311 }
2312 out:
2313 return err;
2314 }
2315 EXPORT_SYMBOL(pcix_set_mmrbc);
2316
2317 /**
2318 * pcie_get_readrq - get PCI Express read request size
2319 * @dev: PCI device to query
2320 *
2321 * Returns maximum memory read request in bytes
2322 * or appropriate error value.
2323 */
2324 int pcie_get_readrq(struct pci_dev *dev)
2325 {
2326 int ret, cap;
2327 u16 ctl;
2328
2329 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2330 if (!cap)
2331 return -EINVAL;
2332
2333 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2334 if (!ret)
2335 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2336
2337 return ret;
2338 }
2339 EXPORT_SYMBOL(pcie_get_readrq);
2340
2341 /**
2342 * pcie_set_readrq - set PCI Express maximum memory read request
2343 * @dev: PCI device to query
2344 * @rq: maximum memory read count in bytes
2345 * valid values are 128, 256, 512, 1024, 2048, 4096
2346 *
2347 * If possible sets maximum read byte count
2348 */
2349 int pcie_set_readrq(struct pci_dev *dev, int rq)
2350 {
2351 int cap, err = -EINVAL;
2352 u16 ctl, v;
2353
2354 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2355 goto out;
2356
2357 v = (ffs(rq) - 8) << 12;
2358
2359 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2360 if (!cap)
2361 goto out;
2362
2363 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2364 if (err)
2365 goto out;
2366
2367 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2368 ctl &= ~PCI_EXP_DEVCTL_READRQ;
2369 ctl |= v;
2370 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2371 }
2372
2373 out:
2374 return err;
2375 }
2376 EXPORT_SYMBOL(pcie_set_readrq);
2377
2378 /**
2379 * pci_select_bars - Make BAR mask from the type of resource
2380 * @dev: the PCI device for which BAR mask is made
2381 * @flags: resource type mask to be selected
2382 *
2383 * This helper routine makes bar mask from the type of resource.
2384 */
2385 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2386 {
2387 int i, bars = 0;
2388 for (i = 0; i < PCI_NUM_RESOURCES; i++)
2389 if (pci_resource_flags(dev, i) & flags)
2390 bars |= (1 << i);
2391 return bars;
2392 }
2393
2394 /**
2395 * pci_resource_bar - get position of the BAR associated with a resource
2396 * @dev: the PCI device
2397 * @resno: the resource number
2398 * @type: the BAR type to be filled in
2399 *
2400 * Returns BAR position in config space, or 0 if the BAR is invalid.
2401 */
2402 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2403 {
2404 int reg;
2405
2406 if (resno < PCI_ROM_RESOURCE) {
2407 *type = pci_bar_unknown;
2408 return PCI_BASE_ADDRESS_0 + 4 * resno;
2409 } else if (resno == PCI_ROM_RESOURCE) {
2410 *type = pci_bar_mem32;
2411 return dev->rom_base_reg;
2412 } else if (resno < PCI_BRIDGE_RESOURCES) {
2413 /* device specific resource */
2414 reg = pci_iov_resource_bar(dev, resno, type);
2415 if (reg)
2416 return reg;
2417 }
2418
2419 dev_err(&dev->dev, "BAR: invalid resource #%d\n", resno);
2420 return 0;
2421 }
2422
2423 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
2424 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
2425 spinlock_t resource_alignment_lock = SPIN_LOCK_UNLOCKED;
2426
2427 /**
2428 * pci_specified_resource_alignment - get resource alignment specified by user.
2429 * @dev: the PCI device to get
2430 *
2431 * RETURNS: Resource alignment if it is specified.
2432 * Zero if it is not specified.
2433 */
2434 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
2435 {
2436 int seg, bus, slot, func, align_order, count;
2437 resource_size_t align = 0;
2438 char *p;
2439
2440 spin_lock(&resource_alignment_lock);
2441 p = resource_alignment_param;
2442 while (*p) {
2443 count = 0;
2444 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
2445 p[count] == '@') {
2446 p += count + 1;
2447 } else {
2448 align_order = -1;
2449 }
2450 if (sscanf(p, "%x:%x:%x.%x%n",
2451 &seg, &bus, &slot, &func, &count) != 4) {
2452 seg = 0;
2453 if (sscanf(p, "%x:%x.%x%n",
2454 &bus, &slot, &func, &count) != 3) {
2455 /* Invalid format */
2456 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
2457 p);
2458 break;
2459 }
2460 }
2461 p += count;
2462 if (seg == pci_domain_nr(dev->bus) &&
2463 bus == dev->bus->number &&
2464 slot == PCI_SLOT(dev->devfn) &&
2465 func == PCI_FUNC(dev->devfn)) {
2466 if (align_order == -1) {
2467 align = PAGE_SIZE;
2468 } else {
2469 align = 1 << align_order;
2470 }
2471 /* Found */
2472 break;
2473 }
2474 if (*p != ';' && *p != ',') {
2475 /* End of param or invalid format */
2476 break;
2477 }
2478 p++;
2479 }
2480 spin_unlock(&resource_alignment_lock);
2481 return align;
2482 }
2483
2484 /**
2485 * pci_is_reassigndev - check if specified PCI is target device to reassign
2486 * @dev: the PCI device to check
2487 *
2488 * RETURNS: non-zero for PCI device is a target device to reassign,
2489 * or zero is not.
2490 */
2491 int pci_is_reassigndev(struct pci_dev *dev)
2492 {
2493 return (pci_specified_resource_alignment(dev) != 0);
2494 }
2495
2496 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
2497 {
2498 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
2499 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
2500 spin_lock(&resource_alignment_lock);
2501 strncpy(resource_alignment_param, buf, count);
2502 resource_alignment_param[count] = '\0';
2503 spin_unlock(&resource_alignment_lock);
2504 return count;
2505 }
2506
2507 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
2508 {
2509 size_t count;
2510 spin_lock(&resource_alignment_lock);
2511 count = snprintf(buf, size, "%s", resource_alignment_param);
2512 spin_unlock(&resource_alignment_lock);
2513 return count;
2514 }
2515
2516 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
2517 {
2518 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
2519 }
2520
2521 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
2522 const char *buf, size_t count)
2523 {
2524 return pci_set_resource_alignment_param(buf, count);
2525 }
2526
2527 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
2528 pci_resource_alignment_store);
2529
2530 static int __init pci_resource_alignment_sysfs_init(void)
2531 {
2532 return bus_create_file(&pci_bus_type,
2533 &bus_attr_resource_alignment);
2534 }
2535
2536 late_initcall(pci_resource_alignment_sysfs_init);
2537
2538 static void __devinit pci_no_domains(void)
2539 {
2540 #ifdef CONFIG_PCI_DOMAINS
2541 pci_domains_supported = 0;
2542 #endif
2543 }
2544
2545 /**
2546 * pci_ext_cfg_enabled - can we access extended PCI config space?
2547 * @dev: The PCI device of the root bridge.
2548 *
2549 * Returns 1 if we can access PCI extended config space (offsets
2550 * greater than 0xff). This is the default implementation. Architecture
2551 * implementations can override this.
2552 */
2553 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
2554 {
2555 return 1;
2556 }
2557
2558 static int __devinit pci_init(void)
2559 {
2560 struct pci_dev *dev = NULL;
2561
2562 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2563 pci_fixup_device(pci_fixup_final, dev);
2564 }
2565
2566 return 0;
2567 }
2568
2569 static int __init pci_setup(char *str)
2570 {
2571 while (str) {
2572 char *k = strchr(str, ',');
2573 if (k)
2574 *k++ = 0;
2575 if (*str && (str = pcibios_setup(str)) && *str) {
2576 if (!strcmp(str, "nomsi")) {
2577 pci_no_msi();
2578 } else if (!strcmp(str, "noaer")) {
2579 pci_no_aer();
2580 } else if (!strcmp(str, "nodomains")) {
2581 pci_no_domains();
2582 } else if (!strncmp(str, "cbiosize=", 9)) {
2583 pci_cardbus_io_size = memparse(str + 9, &str);
2584 } else if (!strncmp(str, "cbmemsize=", 10)) {
2585 pci_cardbus_mem_size = memparse(str + 10, &str);
2586 } else if (!strncmp(str, "resource_alignment=", 19)) {
2587 pci_set_resource_alignment_param(str + 19,
2588 strlen(str + 19));
2589 } else {
2590 printk(KERN_ERR "PCI: Unknown option `%s'\n",
2591 str);
2592 }
2593 }
2594 str = k;
2595 }
2596 return 0;
2597 }
2598 early_param("pci", pci_setup);
2599
2600 device_initcall(pci_init);
2601
2602 EXPORT_SYMBOL(pci_reenable_device);
2603 EXPORT_SYMBOL(pci_enable_device_io);
2604 EXPORT_SYMBOL(pci_enable_device_mem);
2605 EXPORT_SYMBOL(pci_enable_device);
2606 EXPORT_SYMBOL(pcim_enable_device);
2607 EXPORT_SYMBOL(pcim_pin_device);
2608 EXPORT_SYMBOL(pci_disable_device);
2609 EXPORT_SYMBOL(pci_find_capability);
2610 EXPORT_SYMBOL(pci_bus_find_capability);
2611 EXPORT_SYMBOL(pci_release_regions);
2612 EXPORT_SYMBOL(pci_request_regions);
2613 EXPORT_SYMBOL(pci_request_regions_exclusive);
2614 EXPORT_SYMBOL(pci_release_region);
2615 EXPORT_SYMBOL(pci_request_region);
2616 EXPORT_SYMBOL(pci_request_region_exclusive);
2617 EXPORT_SYMBOL(pci_release_selected_regions);
2618 EXPORT_SYMBOL(pci_request_selected_regions);
2619 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2620 EXPORT_SYMBOL(pci_set_master);
2621 EXPORT_SYMBOL(pci_clear_master);
2622 EXPORT_SYMBOL(pci_set_mwi);
2623 EXPORT_SYMBOL(pci_try_set_mwi);
2624 EXPORT_SYMBOL(pci_clear_mwi);
2625 EXPORT_SYMBOL_GPL(pci_intx);
2626 EXPORT_SYMBOL(pci_set_dma_mask);
2627 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
2628 EXPORT_SYMBOL(pci_assign_resource);
2629 EXPORT_SYMBOL(pci_find_parent_resource);
2630 EXPORT_SYMBOL(pci_select_bars);
2631
2632 EXPORT_SYMBOL(pci_set_power_state);
2633 EXPORT_SYMBOL(pci_save_state);
2634 EXPORT_SYMBOL(pci_restore_state);
2635 EXPORT_SYMBOL(pci_pme_capable);
2636 EXPORT_SYMBOL(pci_pme_active);
2637 EXPORT_SYMBOL(pci_enable_wake);
2638 EXPORT_SYMBOL(pci_wake_from_d3);
2639 EXPORT_SYMBOL(pci_target_state);
2640 EXPORT_SYMBOL(pci_prepare_to_sleep);
2641 EXPORT_SYMBOL(pci_back_from_sleep);
2642 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2643