]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/pci/pci.c
PCI: initialize and release SR-IOV capability
[mirror_ubuntu-bionic-kernel.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <linux/pm_wakeup.h>
21 #include <linux/interrupt.h>
22 #include <asm/dma.h> /* isa_dma_bridge_buggy */
23 #include <linux/device.h>
24 #include <asm/setup.h>
25 #include "pci.h"
26
27 unsigned int pci_pm_d3_delay = PCI_PM_D3_WAIT;
28
29 #ifdef CONFIG_PCI_DOMAINS
30 int pci_domains_supported = 1;
31 #endif
32
33 #define DEFAULT_CARDBUS_IO_SIZE (256)
34 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
35 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
36 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
37 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
38
39 /**
40 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
41 * @bus: pointer to PCI bus structure to search
42 *
43 * Given a PCI bus, returns the highest PCI bus number present in the set
44 * including the given PCI bus and its list of child PCI buses.
45 */
46 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
47 {
48 struct list_head *tmp;
49 unsigned char max, n;
50
51 max = bus->subordinate;
52 list_for_each(tmp, &bus->children) {
53 n = pci_bus_max_busnr(pci_bus_b(tmp));
54 if(n > max)
55 max = n;
56 }
57 return max;
58 }
59 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
60
61 #ifdef CONFIG_HAS_IOMEM
62 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
63 {
64 /*
65 * Make sure the BAR is actually a memory resource, not an IO resource
66 */
67 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
68 WARN_ON(1);
69 return NULL;
70 }
71 return ioremap_nocache(pci_resource_start(pdev, bar),
72 pci_resource_len(pdev, bar));
73 }
74 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
75 #endif
76
77 #if 0
78 /**
79 * pci_max_busnr - returns maximum PCI bus number
80 *
81 * Returns the highest PCI bus number present in the system global list of
82 * PCI buses.
83 */
84 unsigned char __devinit
85 pci_max_busnr(void)
86 {
87 struct pci_bus *bus = NULL;
88 unsigned char max, n;
89
90 max = 0;
91 while ((bus = pci_find_next_bus(bus)) != NULL) {
92 n = pci_bus_max_busnr(bus);
93 if(n > max)
94 max = n;
95 }
96 return max;
97 }
98
99 #endif /* 0 */
100
101 #define PCI_FIND_CAP_TTL 48
102
103 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
104 u8 pos, int cap, int *ttl)
105 {
106 u8 id;
107
108 while ((*ttl)--) {
109 pci_bus_read_config_byte(bus, devfn, pos, &pos);
110 if (pos < 0x40)
111 break;
112 pos &= ~3;
113 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
114 &id);
115 if (id == 0xff)
116 break;
117 if (id == cap)
118 return pos;
119 pos += PCI_CAP_LIST_NEXT;
120 }
121 return 0;
122 }
123
124 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
125 u8 pos, int cap)
126 {
127 int ttl = PCI_FIND_CAP_TTL;
128
129 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
130 }
131
132 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
133 {
134 return __pci_find_next_cap(dev->bus, dev->devfn,
135 pos + PCI_CAP_LIST_NEXT, cap);
136 }
137 EXPORT_SYMBOL_GPL(pci_find_next_capability);
138
139 static int __pci_bus_find_cap_start(struct pci_bus *bus,
140 unsigned int devfn, u8 hdr_type)
141 {
142 u16 status;
143
144 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
145 if (!(status & PCI_STATUS_CAP_LIST))
146 return 0;
147
148 switch (hdr_type) {
149 case PCI_HEADER_TYPE_NORMAL:
150 case PCI_HEADER_TYPE_BRIDGE:
151 return PCI_CAPABILITY_LIST;
152 case PCI_HEADER_TYPE_CARDBUS:
153 return PCI_CB_CAPABILITY_LIST;
154 default:
155 return 0;
156 }
157
158 return 0;
159 }
160
161 /**
162 * pci_find_capability - query for devices' capabilities
163 * @dev: PCI device to query
164 * @cap: capability code
165 *
166 * Tell if a device supports a given PCI capability.
167 * Returns the address of the requested capability structure within the
168 * device's PCI configuration space or 0 in case the device does not
169 * support it. Possible values for @cap:
170 *
171 * %PCI_CAP_ID_PM Power Management
172 * %PCI_CAP_ID_AGP Accelerated Graphics Port
173 * %PCI_CAP_ID_VPD Vital Product Data
174 * %PCI_CAP_ID_SLOTID Slot Identification
175 * %PCI_CAP_ID_MSI Message Signalled Interrupts
176 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
177 * %PCI_CAP_ID_PCIX PCI-X
178 * %PCI_CAP_ID_EXP PCI Express
179 */
180 int pci_find_capability(struct pci_dev *dev, int cap)
181 {
182 int pos;
183
184 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
185 if (pos)
186 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
187
188 return pos;
189 }
190
191 /**
192 * pci_bus_find_capability - query for devices' capabilities
193 * @bus: the PCI bus to query
194 * @devfn: PCI device to query
195 * @cap: capability code
196 *
197 * Like pci_find_capability() but works for pci devices that do not have a
198 * pci_dev structure set up yet.
199 *
200 * Returns the address of the requested capability structure within the
201 * device's PCI configuration space or 0 in case the device does not
202 * support it.
203 */
204 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
205 {
206 int pos;
207 u8 hdr_type;
208
209 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
210
211 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
212 if (pos)
213 pos = __pci_find_next_cap(bus, devfn, pos, cap);
214
215 return pos;
216 }
217
218 /**
219 * pci_find_ext_capability - Find an extended capability
220 * @dev: PCI device to query
221 * @cap: capability code
222 *
223 * Returns the address of the requested extended capability structure
224 * within the device's PCI configuration space or 0 if the device does
225 * not support it. Possible values for @cap:
226 *
227 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
228 * %PCI_EXT_CAP_ID_VC Virtual Channel
229 * %PCI_EXT_CAP_ID_DSN Device Serial Number
230 * %PCI_EXT_CAP_ID_PWR Power Budgeting
231 */
232 int pci_find_ext_capability(struct pci_dev *dev, int cap)
233 {
234 u32 header;
235 int ttl;
236 int pos = PCI_CFG_SPACE_SIZE;
237
238 /* minimum 8 bytes per capability */
239 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
240
241 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
242 return 0;
243
244 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
245 return 0;
246
247 /*
248 * If we have no capabilities, this is indicated by cap ID,
249 * cap version and next pointer all being 0.
250 */
251 if (header == 0)
252 return 0;
253
254 while (ttl-- > 0) {
255 if (PCI_EXT_CAP_ID(header) == cap)
256 return pos;
257
258 pos = PCI_EXT_CAP_NEXT(header);
259 if (pos < PCI_CFG_SPACE_SIZE)
260 break;
261
262 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
263 break;
264 }
265
266 return 0;
267 }
268 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
269
270 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
271 {
272 int rc, ttl = PCI_FIND_CAP_TTL;
273 u8 cap, mask;
274
275 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
276 mask = HT_3BIT_CAP_MASK;
277 else
278 mask = HT_5BIT_CAP_MASK;
279
280 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
281 PCI_CAP_ID_HT, &ttl);
282 while (pos) {
283 rc = pci_read_config_byte(dev, pos + 3, &cap);
284 if (rc != PCIBIOS_SUCCESSFUL)
285 return 0;
286
287 if ((cap & mask) == ht_cap)
288 return pos;
289
290 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
291 pos + PCI_CAP_LIST_NEXT,
292 PCI_CAP_ID_HT, &ttl);
293 }
294
295 return 0;
296 }
297 /**
298 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
299 * @dev: PCI device to query
300 * @pos: Position from which to continue searching
301 * @ht_cap: Hypertransport capability code
302 *
303 * To be used in conjunction with pci_find_ht_capability() to search for
304 * all capabilities matching @ht_cap. @pos should always be a value returned
305 * from pci_find_ht_capability().
306 *
307 * NB. To be 100% safe against broken PCI devices, the caller should take
308 * steps to avoid an infinite loop.
309 */
310 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
311 {
312 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
313 }
314 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
315
316 /**
317 * pci_find_ht_capability - query a device's Hypertransport capabilities
318 * @dev: PCI device to query
319 * @ht_cap: Hypertransport capability code
320 *
321 * Tell if a device supports a given Hypertransport capability.
322 * Returns an address within the device's PCI configuration space
323 * or 0 in case the device does not support the request capability.
324 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
325 * which has a Hypertransport capability matching @ht_cap.
326 */
327 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
328 {
329 int pos;
330
331 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
332 if (pos)
333 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
334
335 return pos;
336 }
337 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
338
339 /**
340 * pci_find_parent_resource - return resource region of parent bus of given region
341 * @dev: PCI device structure contains resources to be searched
342 * @res: child resource record for which parent is sought
343 *
344 * For given resource region of given device, return the resource
345 * region of parent bus the given region is contained in or where
346 * it should be allocated from.
347 */
348 struct resource *
349 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
350 {
351 const struct pci_bus *bus = dev->bus;
352 int i;
353 struct resource *best = NULL;
354
355 for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
356 struct resource *r = bus->resource[i];
357 if (!r)
358 continue;
359 if (res->start && !(res->start >= r->start && res->end <= r->end))
360 continue; /* Not contained */
361 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
362 continue; /* Wrong type */
363 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
364 return r; /* Exact match */
365 if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH))
366 best = r; /* Approximating prefetchable by non-prefetchable */
367 }
368 return best;
369 }
370
371 /**
372 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
373 * @dev: PCI device to have its BARs restored
374 *
375 * Restore the BAR values for a given device, so as to make it
376 * accessible by its driver.
377 */
378 static void
379 pci_restore_bars(struct pci_dev *dev)
380 {
381 int i;
382
383 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
384 pci_update_resource(dev, i);
385 }
386
387 static struct pci_platform_pm_ops *pci_platform_pm;
388
389 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
390 {
391 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
392 || !ops->sleep_wake || !ops->can_wakeup)
393 return -EINVAL;
394 pci_platform_pm = ops;
395 return 0;
396 }
397
398 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
399 {
400 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
401 }
402
403 static inline int platform_pci_set_power_state(struct pci_dev *dev,
404 pci_power_t t)
405 {
406 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
407 }
408
409 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
410 {
411 return pci_platform_pm ?
412 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
413 }
414
415 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
416 {
417 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
418 }
419
420 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
421 {
422 return pci_platform_pm ?
423 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
424 }
425
426 /**
427 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
428 * given PCI device
429 * @dev: PCI device to handle.
430 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
431 * @wait: If 'true', wait for the device to change its power state
432 *
433 * RETURN VALUE:
434 * -EINVAL if the requested state is invalid.
435 * -EIO if device does not support PCI PM or its PM capabilities register has a
436 * wrong version, or device doesn't support the requested state.
437 * 0 if device already is in the requested state.
438 * 0 if device's power state has been successfully changed.
439 */
440 static int
441 pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state, bool wait)
442 {
443 u16 pmcsr;
444 bool need_restore = false;
445
446 if (!dev->pm_cap)
447 return -EIO;
448
449 if (state < PCI_D0 || state > PCI_D3hot)
450 return -EINVAL;
451
452 /* Validate current state:
453 * Can enter D0 from any state, but if we can only go deeper
454 * to sleep if we're already in a low power state
455 */
456 if (dev->current_state == state) {
457 /* we're already there */
458 return 0;
459 } else if (state != PCI_D0 && dev->current_state <= PCI_D3cold
460 && dev->current_state > state) {
461 dev_err(&dev->dev, "invalid power transition "
462 "(from state %d to %d)\n", dev->current_state, state);
463 return -EINVAL;
464 }
465
466 /* check if this device supports the desired state */
467 if ((state == PCI_D1 && !dev->d1_support)
468 || (state == PCI_D2 && !dev->d2_support))
469 return -EIO;
470
471 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
472
473 /* If we're (effectively) in D3, force entire word to 0.
474 * This doesn't affect PME_Status, disables PME_En, and
475 * sets PowerState to 0.
476 */
477 switch (dev->current_state) {
478 case PCI_D0:
479 case PCI_D1:
480 case PCI_D2:
481 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
482 pmcsr |= state;
483 break;
484 case PCI_UNKNOWN: /* Boot-up */
485 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
486 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) {
487 need_restore = true;
488 wait = true;
489 }
490 /* Fall-through: force to D0 */
491 default:
492 pmcsr = 0;
493 break;
494 }
495
496 /* enter specified state */
497 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
498
499 if (!wait)
500 return 0;
501
502 /* Mandatory power management transition delays */
503 /* see PCI PM 1.1 5.6.1 table 18 */
504 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
505 msleep(pci_pm_d3_delay);
506 else if (state == PCI_D2 || dev->current_state == PCI_D2)
507 udelay(PCI_PM_D2_DELAY);
508
509 dev->current_state = state;
510
511 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
512 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
513 * from D3hot to D0 _may_ perform an internal reset, thereby
514 * going to "D0 Uninitialized" rather than "D0 Initialized".
515 * For example, at least some versions of the 3c905B and the
516 * 3c556B exhibit this behaviour.
517 *
518 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
519 * devices in a D3hot state at boot. Consequently, we need to
520 * restore at least the BARs so that the device will be
521 * accessible to its driver.
522 */
523 if (need_restore)
524 pci_restore_bars(dev);
525
526 if (wait && dev->bus->self)
527 pcie_aspm_pm_state_change(dev->bus->self);
528
529 return 0;
530 }
531
532 /**
533 * pci_update_current_state - Read PCI power state of given device from its
534 * PCI PM registers and cache it
535 * @dev: PCI device to handle.
536 * @state: State to cache in case the device doesn't have the PM capability
537 */
538 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
539 {
540 if (dev->pm_cap) {
541 u16 pmcsr;
542
543 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
544 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
545 } else {
546 dev->current_state = state;
547 }
548 }
549
550 /**
551 * pci_set_power_state - Set the power state of a PCI device
552 * @dev: PCI device to handle.
553 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
554 *
555 * Transition a device to a new power state, using the platform formware and/or
556 * the device's PCI PM registers.
557 *
558 * RETURN VALUE:
559 * -EINVAL if the requested state is invalid.
560 * -EIO if device does not support PCI PM or its PM capabilities register has a
561 * wrong version, or device doesn't support the requested state.
562 * 0 if device already is in the requested state.
563 * 0 if device's power state has been successfully changed.
564 */
565 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
566 {
567 int error;
568
569 /* bound the state we're entering */
570 if (state > PCI_D3hot)
571 state = PCI_D3hot;
572 else if (state < PCI_D0)
573 state = PCI_D0;
574 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
575 /*
576 * If the device or the parent bridge do not support PCI PM,
577 * ignore the request if we're doing anything other than putting
578 * it into D0 (which would only happen on boot).
579 */
580 return 0;
581
582 if (state == PCI_D0 && platform_pci_power_manageable(dev)) {
583 /*
584 * Allow the platform to change the state, for example via ACPI
585 * _PR0, _PS0 and some such, but do not trust it.
586 */
587 int ret = platform_pci_set_power_state(dev, PCI_D0);
588 if (!ret)
589 pci_update_current_state(dev, PCI_D0);
590 }
591 /* This device is quirked not to be put into D3, so
592 don't put it in D3 */
593 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
594 return 0;
595
596 error = pci_raw_set_power_state(dev, state, true);
597
598 if (state > PCI_D0 && platform_pci_power_manageable(dev)) {
599 /* Allow the platform to finalize the transition */
600 int ret = platform_pci_set_power_state(dev, state);
601 if (!ret) {
602 pci_update_current_state(dev, state);
603 error = 0;
604 }
605 }
606
607 return error;
608 }
609
610 /**
611 * pci_choose_state - Choose the power state of a PCI device
612 * @dev: PCI device to be suspended
613 * @state: target sleep state for the whole system. This is the value
614 * that is passed to suspend() function.
615 *
616 * Returns PCI power state suitable for given device and given system
617 * message.
618 */
619
620 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
621 {
622 pci_power_t ret;
623
624 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
625 return PCI_D0;
626
627 ret = platform_pci_choose_state(dev);
628 if (ret != PCI_POWER_ERROR)
629 return ret;
630
631 switch (state.event) {
632 case PM_EVENT_ON:
633 return PCI_D0;
634 case PM_EVENT_FREEZE:
635 case PM_EVENT_PRETHAW:
636 /* REVISIT both freeze and pre-thaw "should" use D0 */
637 case PM_EVENT_SUSPEND:
638 case PM_EVENT_HIBERNATE:
639 return PCI_D3hot;
640 default:
641 dev_info(&dev->dev, "unrecognized suspend event %d\n",
642 state.event);
643 BUG();
644 }
645 return PCI_D0;
646 }
647
648 EXPORT_SYMBOL(pci_choose_state);
649
650 static int pci_save_pcie_state(struct pci_dev *dev)
651 {
652 int pos, i = 0;
653 struct pci_cap_saved_state *save_state;
654 u16 *cap;
655
656 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
657 if (pos <= 0)
658 return 0;
659
660 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
661 if (!save_state) {
662 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
663 return -ENOMEM;
664 }
665 cap = (u16 *)&save_state->data[0];
666
667 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
668 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
669 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
670 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
671
672 return 0;
673 }
674
675 static void pci_restore_pcie_state(struct pci_dev *dev)
676 {
677 int i = 0, pos;
678 struct pci_cap_saved_state *save_state;
679 u16 *cap;
680
681 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
682 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
683 if (!save_state || pos <= 0)
684 return;
685 cap = (u16 *)&save_state->data[0];
686
687 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
688 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
689 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
690 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
691 }
692
693
694 static int pci_save_pcix_state(struct pci_dev *dev)
695 {
696 int pos;
697 struct pci_cap_saved_state *save_state;
698
699 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
700 if (pos <= 0)
701 return 0;
702
703 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
704 if (!save_state) {
705 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
706 return -ENOMEM;
707 }
708
709 pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
710
711 return 0;
712 }
713
714 static void pci_restore_pcix_state(struct pci_dev *dev)
715 {
716 int i = 0, pos;
717 struct pci_cap_saved_state *save_state;
718 u16 *cap;
719
720 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
721 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
722 if (!save_state || pos <= 0)
723 return;
724 cap = (u16 *)&save_state->data[0];
725
726 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
727 }
728
729
730 /**
731 * pci_save_state - save the PCI configuration space of a device before suspending
732 * @dev: - PCI device that we're dealing with
733 */
734 int
735 pci_save_state(struct pci_dev *dev)
736 {
737 int i;
738 /* XXX: 100% dword access ok here? */
739 for (i = 0; i < 16; i++)
740 pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]);
741 dev->state_saved = true;
742 if ((i = pci_save_pcie_state(dev)) != 0)
743 return i;
744 if ((i = pci_save_pcix_state(dev)) != 0)
745 return i;
746 return 0;
747 }
748
749 /**
750 * pci_restore_state - Restore the saved state of a PCI device
751 * @dev: - PCI device that we're dealing with
752 */
753 int
754 pci_restore_state(struct pci_dev *dev)
755 {
756 int i;
757 u32 val;
758
759 /* PCI Express register must be restored first */
760 pci_restore_pcie_state(dev);
761
762 /*
763 * The Base Address register should be programmed before the command
764 * register(s)
765 */
766 for (i = 15; i >= 0; i--) {
767 pci_read_config_dword(dev, i * 4, &val);
768 if (val != dev->saved_config_space[i]) {
769 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
770 "space at offset %#x (was %#x, writing %#x)\n",
771 i, val, (int)dev->saved_config_space[i]);
772 pci_write_config_dword(dev,i * 4,
773 dev->saved_config_space[i]);
774 }
775 }
776 pci_restore_pcix_state(dev);
777 pci_restore_msi_state(dev);
778
779 return 0;
780 }
781
782 static int do_pci_enable_device(struct pci_dev *dev, int bars)
783 {
784 int err;
785
786 err = pci_set_power_state(dev, PCI_D0);
787 if (err < 0 && err != -EIO)
788 return err;
789 err = pcibios_enable_device(dev, bars);
790 if (err < 0)
791 return err;
792 pci_fixup_device(pci_fixup_enable, dev);
793
794 return 0;
795 }
796
797 /**
798 * pci_reenable_device - Resume abandoned device
799 * @dev: PCI device to be resumed
800 *
801 * Note this function is a backend of pci_default_resume and is not supposed
802 * to be called by normal code, write proper resume handler and use it instead.
803 */
804 int pci_reenable_device(struct pci_dev *dev)
805 {
806 if (atomic_read(&dev->enable_cnt))
807 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
808 return 0;
809 }
810
811 static int __pci_enable_device_flags(struct pci_dev *dev,
812 resource_size_t flags)
813 {
814 int err;
815 int i, bars = 0;
816
817 if (atomic_add_return(1, &dev->enable_cnt) > 1)
818 return 0; /* already enabled */
819
820 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
821 if (dev->resource[i].flags & flags)
822 bars |= (1 << i);
823
824 err = do_pci_enable_device(dev, bars);
825 if (err < 0)
826 atomic_dec(&dev->enable_cnt);
827 return err;
828 }
829
830 /**
831 * pci_enable_device_io - Initialize a device for use with IO space
832 * @dev: PCI device to be initialized
833 *
834 * Initialize device before it's used by a driver. Ask low-level code
835 * to enable I/O resources. Wake up the device if it was suspended.
836 * Beware, this function can fail.
837 */
838 int pci_enable_device_io(struct pci_dev *dev)
839 {
840 return __pci_enable_device_flags(dev, IORESOURCE_IO);
841 }
842
843 /**
844 * pci_enable_device_mem - Initialize a device for use with Memory space
845 * @dev: PCI device to be initialized
846 *
847 * Initialize device before it's used by a driver. Ask low-level code
848 * to enable Memory resources. Wake up the device if it was suspended.
849 * Beware, this function can fail.
850 */
851 int pci_enable_device_mem(struct pci_dev *dev)
852 {
853 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
854 }
855
856 /**
857 * pci_enable_device - Initialize device before it's used by a driver.
858 * @dev: PCI device to be initialized
859 *
860 * Initialize device before it's used by a driver. Ask low-level code
861 * to enable I/O and memory. Wake up the device if it was suspended.
862 * Beware, this function can fail.
863 *
864 * Note we don't actually enable the device many times if we call
865 * this function repeatedly (we just increment the count).
866 */
867 int pci_enable_device(struct pci_dev *dev)
868 {
869 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
870 }
871
872 /*
873 * Managed PCI resources. This manages device on/off, intx/msi/msix
874 * on/off and BAR regions. pci_dev itself records msi/msix status, so
875 * there's no need to track it separately. pci_devres is initialized
876 * when a device is enabled using managed PCI device enable interface.
877 */
878 struct pci_devres {
879 unsigned int enabled:1;
880 unsigned int pinned:1;
881 unsigned int orig_intx:1;
882 unsigned int restore_intx:1;
883 u32 region_mask;
884 };
885
886 static void pcim_release(struct device *gendev, void *res)
887 {
888 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
889 struct pci_devres *this = res;
890 int i;
891
892 if (dev->msi_enabled)
893 pci_disable_msi(dev);
894 if (dev->msix_enabled)
895 pci_disable_msix(dev);
896
897 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
898 if (this->region_mask & (1 << i))
899 pci_release_region(dev, i);
900
901 if (this->restore_intx)
902 pci_intx(dev, this->orig_intx);
903
904 if (this->enabled && !this->pinned)
905 pci_disable_device(dev);
906 }
907
908 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
909 {
910 struct pci_devres *dr, *new_dr;
911
912 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
913 if (dr)
914 return dr;
915
916 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
917 if (!new_dr)
918 return NULL;
919 return devres_get(&pdev->dev, new_dr, NULL, NULL);
920 }
921
922 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
923 {
924 if (pci_is_managed(pdev))
925 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
926 return NULL;
927 }
928
929 /**
930 * pcim_enable_device - Managed pci_enable_device()
931 * @pdev: PCI device to be initialized
932 *
933 * Managed pci_enable_device().
934 */
935 int pcim_enable_device(struct pci_dev *pdev)
936 {
937 struct pci_devres *dr;
938 int rc;
939
940 dr = get_pci_dr(pdev);
941 if (unlikely(!dr))
942 return -ENOMEM;
943 if (dr->enabled)
944 return 0;
945
946 rc = pci_enable_device(pdev);
947 if (!rc) {
948 pdev->is_managed = 1;
949 dr->enabled = 1;
950 }
951 return rc;
952 }
953
954 /**
955 * pcim_pin_device - Pin managed PCI device
956 * @pdev: PCI device to pin
957 *
958 * Pin managed PCI device @pdev. Pinned device won't be disabled on
959 * driver detach. @pdev must have been enabled with
960 * pcim_enable_device().
961 */
962 void pcim_pin_device(struct pci_dev *pdev)
963 {
964 struct pci_devres *dr;
965
966 dr = find_pci_dr(pdev);
967 WARN_ON(!dr || !dr->enabled);
968 if (dr)
969 dr->pinned = 1;
970 }
971
972 /**
973 * pcibios_disable_device - disable arch specific PCI resources for device dev
974 * @dev: the PCI device to disable
975 *
976 * Disables architecture specific PCI resources for the device. This
977 * is the default implementation. Architecture implementations can
978 * override this.
979 */
980 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
981
982 static void do_pci_disable_device(struct pci_dev *dev)
983 {
984 u16 pci_command;
985
986 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
987 if (pci_command & PCI_COMMAND_MASTER) {
988 pci_command &= ~PCI_COMMAND_MASTER;
989 pci_write_config_word(dev, PCI_COMMAND, pci_command);
990 }
991
992 pcibios_disable_device(dev);
993 }
994
995 /**
996 * pci_disable_enabled_device - Disable device without updating enable_cnt
997 * @dev: PCI device to disable
998 *
999 * NOTE: This function is a backend of PCI power management routines and is
1000 * not supposed to be called drivers.
1001 */
1002 void pci_disable_enabled_device(struct pci_dev *dev)
1003 {
1004 if (atomic_read(&dev->enable_cnt))
1005 do_pci_disable_device(dev);
1006 }
1007
1008 /**
1009 * pci_disable_device - Disable PCI device after use
1010 * @dev: PCI device to be disabled
1011 *
1012 * Signal to the system that the PCI device is not in use by the system
1013 * anymore. This only involves disabling PCI bus-mastering, if active.
1014 *
1015 * Note we don't actually disable the device until all callers of
1016 * pci_device_enable() have called pci_device_disable().
1017 */
1018 void
1019 pci_disable_device(struct pci_dev *dev)
1020 {
1021 struct pci_devres *dr;
1022
1023 dr = find_pci_dr(dev);
1024 if (dr)
1025 dr->enabled = 0;
1026
1027 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1028 return;
1029
1030 do_pci_disable_device(dev);
1031
1032 dev->is_busmaster = 0;
1033 }
1034
1035 /**
1036 * pcibios_set_pcie_reset_state - set reset state for device dev
1037 * @dev: the PCI-E device reset
1038 * @state: Reset state to enter into
1039 *
1040 *
1041 * Sets the PCI-E reset state for the device. This is the default
1042 * implementation. Architecture implementations can override this.
1043 */
1044 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1045 enum pcie_reset_state state)
1046 {
1047 return -EINVAL;
1048 }
1049
1050 /**
1051 * pci_set_pcie_reset_state - set reset state for device dev
1052 * @dev: the PCI-E device reset
1053 * @state: Reset state to enter into
1054 *
1055 *
1056 * Sets the PCI reset state for the device.
1057 */
1058 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1059 {
1060 return pcibios_set_pcie_reset_state(dev, state);
1061 }
1062
1063 /**
1064 * pci_pme_capable - check the capability of PCI device to generate PME#
1065 * @dev: PCI device to handle.
1066 * @state: PCI state from which device will issue PME#.
1067 */
1068 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1069 {
1070 if (!dev->pm_cap)
1071 return false;
1072
1073 return !!(dev->pme_support & (1 << state));
1074 }
1075
1076 /**
1077 * pci_pme_active - enable or disable PCI device's PME# function
1078 * @dev: PCI device to handle.
1079 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1080 *
1081 * The caller must verify that the device is capable of generating PME# before
1082 * calling this function with @enable equal to 'true'.
1083 */
1084 void pci_pme_active(struct pci_dev *dev, bool enable)
1085 {
1086 u16 pmcsr;
1087
1088 if (!dev->pm_cap)
1089 return;
1090
1091 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1092 /* Clear PME_Status by writing 1 to it and enable PME# */
1093 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1094 if (!enable)
1095 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1096
1097 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1098
1099 dev_printk(KERN_INFO, &dev->dev, "PME# %s\n",
1100 enable ? "enabled" : "disabled");
1101 }
1102
1103 /**
1104 * pci_enable_wake - enable PCI device as wakeup event source
1105 * @dev: PCI device affected
1106 * @state: PCI state from which device will issue wakeup events
1107 * @enable: True to enable event generation; false to disable
1108 *
1109 * This enables the device as a wakeup event source, or disables it.
1110 * When such events involves platform-specific hooks, those hooks are
1111 * called automatically by this routine.
1112 *
1113 * Devices with legacy power management (no standard PCI PM capabilities)
1114 * always require such platform hooks.
1115 *
1116 * RETURN VALUE:
1117 * 0 is returned on success
1118 * -EINVAL is returned if device is not supposed to wake up the system
1119 * Error code depending on the platform is returned if both the platform and
1120 * the native mechanism fail to enable the generation of wake-up events
1121 */
1122 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, int enable)
1123 {
1124 int error = 0;
1125 bool pme_done = false;
1126
1127 if (enable && !device_may_wakeup(&dev->dev))
1128 return -EINVAL;
1129
1130 /*
1131 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1132 * Anderson we should be doing PME# wake enable followed by ACPI wake
1133 * enable. To disable wake-up we call the platform first, for symmetry.
1134 */
1135
1136 if (!enable && platform_pci_can_wakeup(dev))
1137 error = platform_pci_sleep_wake(dev, false);
1138
1139 if (!enable || pci_pme_capable(dev, state)) {
1140 pci_pme_active(dev, enable);
1141 pme_done = true;
1142 }
1143
1144 if (enable && platform_pci_can_wakeup(dev))
1145 error = platform_pci_sleep_wake(dev, true);
1146
1147 return pme_done ? 0 : error;
1148 }
1149
1150 /**
1151 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1152 * @dev: PCI device to prepare
1153 * @enable: True to enable wake-up event generation; false to disable
1154 *
1155 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1156 * and this function allows them to set that up cleanly - pci_enable_wake()
1157 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1158 * ordering constraints.
1159 *
1160 * This function only returns error code if the device is not capable of
1161 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1162 * enable wake-up power for it.
1163 */
1164 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1165 {
1166 return pci_pme_capable(dev, PCI_D3cold) ?
1167 pci_enable_wake(dev, PCI_D3cold, enable) :
1168 pci_enable_wake(dev, PCI_D3hot, enable);
1169 }
1170
1171 /**
1172 * pci_target_state - find an appropriate low power state for a given PCI dev
1173 * @dev: PCI device
1174 *
1175 * Use underlying platform code to find a supported low power state for @dev.
1176 * If the platform can't manage @dev, return the deepest state from which it
1177 * can generate wake events, based on any available PME info.
1178 */
1179 pci_power_t pci_target_state(struct pci_dev *dev)
1180 {
1181 pci_power_t target_state = PCI_D3hot;
1182
1183 if (platform_pci_power_manageable(dev)) {
1184 /*
1185 * Call the platform to choose the target state of the device
1186 * and enable wake-up from this state if supported.
1187 */
1188 pci_power_t state = platform_pci_choose_state(dev);
1189
1190 switch (state) {
1191 case PCI_POWER_ERROR:
1192 case PCI_UNKNOWN:
1193 break;
1194 case PCI_D1:
1195 case PCI_D2:
1196 if (pci_no_d1d2(dev))
1197 break;
1198 default:
1199 target_state = state;
1200 }
1201 } else if (device_may_wakeup(&dev->dev)) {
1202 /*
1203 * Find the deepest state from which the device can generate
1204 * wake-up events, make it the target state and enable device
1205 * to generate PME#.
1206 */
1207 if (!dev->pm_cap)
1208 return PCI_POWER_ERROR;
1209
1210 if (dev->pme_support) {
1211 while (target_state
1212 && !(dev->pme_support & (1 << target_state)))
1213 target_state--;
1214 }
1215 }
1216
1217 return target_state;
1218 }
1219
1220 /**
1221 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1222 * @dev: Device to handle.
1223 *
1224 * Choose the power state appropriate for the device depending on whether
1225 * it can wake up the system and/or is power manageable by the platform
1226 * (PCI_D3hot is the default) and put the device into that state.
1227 */
1228 int pci_prepare_to_sleep(struct pci_dev *dev)
1229 {
1230 pci_power_t target_state = pci_target_state(dev);
1231 int error;
1232
1233 if (target_state == PCI_POWER_ERROR)
1234 return -EIO;
1235
1236 pci_enable_wake(dev, target_state, true);
1237
1238 error = pci_set_power_state(dev, target_state);
1239
1240 if (error)
1241 pci_enable_wake(dev, target_state, false);
1242
1243 return error;
1244 }
1245
1246 /**
1247 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1248 * @dev: Device to handle.
1249 *
1250 * Disable device's sytem wake-up capability and put it into D0.
1251 */
1252 int pci_back_from_sleep(struct pci_dev *dev)
1253 {
1254 pci_enable_wake(dev, PCI_D0, false);
1255 return pci_set_power_state(dev, PCI_D0);
1256 }
1257
1258 /**
1259 * pci_pm_init - Initialize PM functions of given PCI device
1260 * @dev: PCI device to handle.
1261 */
1262 void pci_pm_init(struct pci_dev *dev)
1263 {
1264 int pm;
1265 u16 pmc;
1266
1267 dev->pm_cap = 0;
1268
1269 /* find PCI PM capability in list */
1270 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1271 if (!pm)
1272 return;
1273 /* Check device's ability to generate PME# */
1274 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1275
1276 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1277 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1278 pmc & PCI_PM_CAP_VER_MASK);
1279 return;
1280 }
1281
1282 dev->pm_cap = pm;
1283
1284 dev->d1_support = false;
1285 dev->d2_support = false;
1286 if (!pci_no_d1d2(dev)) {
1287 if (pmc & PCI_PM_CAP_D1)
1288 dev->d1_support = true;
1289 if (pmc & PCI_PM_CAP_D2)
1290 dev->d2_support = true;
1291
1292 if (dev->d1_support || dev->d2_support)
1293 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1294 dev->d1_support ? " D1" : "",
1295 dev->d2_support ? " D2" : "");
1296 }
1297
1298 pmc &= PCI_PM_CAP_PME_MASK;
1299 if (pmc) {
1300 dev_info(&dev->dev, "PME# supported from%s%s%s%s%s\n",
1301 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1302 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1303 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1304 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1305 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1306 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1307 /*
1308 * Make device's PM flags reflect the wake-up capability, but
1309 * let the user space enable it to wake up the system as needed.
1310 */
1311 device_set_wakeup_capable(&dev->dev, true);
1312 device_set_wakeup_enable(&dev->dev, false);
1313 /* Disable the PME# generation functionality */
1314 pci_pme_active(dev, false);
1315 } else {
1316 dev->pme_support = 0;
1317 }
1318 }
1319
1320 /**
1321 * platform_pci_wakeup_init - init platform wakeup if present
1322 * @dev: PCI device
1323 *
1324 * Some devices don't have PCI PM caps but can still generate wakeup
1325 * events through platform methods (like ACPI events). If @dev supports
1326 * platform wakeup events, set the device flag to indicate as much. This
1327 * may be redundant if the device also supports PCI PM caps, but double
1328 * initialization should be safe in that case.
1329 */
1330 void platform_pci_wakeup_init(struct pci_dev *dev)
1331 {
1332 if (!platform_pci_can_wakeup(dev))
1333 return;
1334
1335 device_set_wakeup_capable(&dev->dev, true);
1336 device_set_wakeup_enable(&dev->dev, false);
1337 platform_pci_sleep_wake(dev, false);
1338 }
1339
1340 /**
1341 * pci_add_save_buffer - allocate buffer for saving given capability registers
1342 * @dev: the PCI device
1343 * @cap: the capability to allocate the buffer for
1344 * @size: requested size of the buffer
1345 */
1346 static int pci_add_cap_save_buffer(
1347 struct pci_dev *dev, char cap, unsigned int size)
1348 {
1349 int pos;
1350 struct pci_cap_saved_state *save_state;
1351
1352 pos = pci_find_capability(dev, cap);
1353 if (pos <= 0)
1354 return 0;
1355
1356 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1357 if (!save_state)
1358 return -ENOMEM;
1359
1360 save_state->cap_nr = cap;
1361 pci_add_saved_cap(dev, save_state);
1362
1363 return 0;
1364 }
1365
1366 /**
1367 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1368 * @dev: the PCI device
1369 */
1370 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1371 {
1372 int error;
1373
1374 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 4 * sizeof(u16));
1375 if (error)
1376 dev_err(&dev->dev,
1377 "unable to preallocate PCI Express save buffer\n");
1378
1379 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1380 if (error)
1381 dev_err(&dev->dev,
1382 "unable to preallocate PCI-X save buffer\n");
1383 }
1384
1385 /**
1386 * pci_restore_standard_config - restore standard config registers of PCI device
1387 * @dev: PCI device to handle
1388 *
1389 * This function assumes that the device's configuration space is accessible.
1390 * If the device needs to be powered up, the function will wait for it to
1391 * change the state.
1392 */
1393 int pci_restore_standard_config(struct pci_dev *dev)
1394 {
1395 pci_power_t prev_state;
1396 int error;
1397
1398 pci_update_current_state(dev, PCI_D0);
1399
1400 prev_state = dev->current_state;
1401 if (prev_state == PCI_D0)
1402 goto Restore;
1403
1404 error = pci_raw_set_power_state(dev, PCI_D0, false);
1405 if (error)
1406 return error;
1407
1408 /*
1409 * This assumes that we won't get a bus in B2 or B3 from the BIOS, but
1410 * we've made this assumption forever and it appears to be universally
1411 * satisfied.
1412 */
1413 switch(prev_state) {
1414 case PCI_D3cold:
1415 case PCI_D3hot:
1416 mdelay(pci_pm_d3_delay);
1417 break;
1418 case PCI_D2:
1419 udelay(PCI_PM_D2_DELAY);
1420 break;
1421 }
1422
1423 pci_update_current_state(dev, PCI_D0);
1424
1425 Restore:
1426 return dev->state_saved ? pci_restore_state(dev) : 0;
1427 }
1428
1429 /**
1430 * pci_enable_ari - enable ARI forwarding if hardware support it
1431 * @dev: the PCI device
1432 */
1433 void pci_enable_ari(struct pci_dev *dev)
1434 {
1435 int pos;
1436 u32 cap;
1437 u16 ctrl;
1438 struct pci_dev *bridge;
1439
1440 if (!dev->is_pcie || dev->devfn)
1441 return;
1442
1443 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1444 if (!pos)
1445 return;
1446
1447 bridge = dev->bus->self;
1448 if (!bridge || !bridge->is_pcie)
1449 return;
1450
1451 pos = pci_find_capability(bridge, PCI_CAP_ID_EXP);
1452 if (!pos)
1453 return;
1454
1455 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1456 if (!(cap & PCI_EXP_DEVCAP2_ARI))
1457 return;
1458
1459 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1460 ctrl |= PCI_EXP_DEVCTL2_ARI;
1461 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1462
1463 bridge->ari_enabled = 1;
1464 }
1465
1466 /**
1467 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1468 * @dev: the PCI device
1469 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1470 *
1471 * Perform INTx swizzling for a device behind one level of bridge. This is
1472 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1473 * behind bridges on add-in cards.
1474 */
1475 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1476 {
1477 return (((pin - 1) + PCI_SLOT(dev->devfn)) % 4) + 1;
1478 }
1479
1480 int
1481 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1482 {
1483 u8 pin;
1484
1485 pin = dev->pin;
1486 if (!pin)
1487 return -1;
1488
1489 while (dev->bus->parent) {
1490 pin = pci_swizzle_interrupt_pin(dev, pin);
1491 dev = dev->bus->self;
1492 }
1493 *bridge = dev;
1494 return pin;
1495 }
1496
1497 /**
1498 * pci_common_swizzle - swizzle INTx all the way to root bridge
1499 * @dev: the PCI device
1500 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1501 *
1502 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
1503 * bridges all the way up to a PCI root bus.
1504 */
1505 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
1506 {
1507 u8 pin = *pinp;
1508
1509 while (dev->bus->parent) {
1510 pin = pci_swizzle_interrupt_pin(dev, pin);
1511 dev = dev->bus->self;
1512 }
1513 *pinp = pin;
1514 return PCI_SLOT(dev->devfn);
1515 }
1516
1517 /**
1518 * pci_release_region - Release a PCI bar
1519 * @pdev: PCI device whose resources were previously reserved by pci_request_region
1520 * @bar: BAR to release
1521 *
1522 * Releases the PCI I/O and memory resources previously reserved by a
1523 * successful call to pci_request_region. Call this function only
1524 * after all use of the PCI regions has ceased.
1525 */
1526 void pci_release_region(struct pci_dev *pdev, int bar)
1527 {
1528 struct pci_devres *dr;
1529
1530 if (pci_resource_len(pdev, bar) == 0)
1531 return;
1532 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1533 release_region(pci_resource_start(pdev, bar),
1534 pci_resource_len(pdev, bar));
1535 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1536 release_mem_region(pci_resource_start(pdev, bar),
1537 pci_resource_len(pdev, bar));
1538
1539 dr = find_pci_dr(pdev);
1540 if (dr)
1541 dr->region_mask &= ~(1 << bar);
1542 }
1543
1544 /**
1545 * __pci_request_region - Reserved PCI I/O and memory resource
1546 * @pdev: PCI device whose resources are to be reserved
1547 * @bar: BAR to be reserved
1548 * @res_name: Name to be associated with resource.
1549 * @exclusive: whether the region access is exclusive or not
1550 *
1551 * Mark the PCI region associated with PCI device @pdev BR @bar as
1552 * being reserved by owner @res_name. Do not access any
1553 * address inside the PCI regions unless this call returns
1554 * successfully.
1555 *
1556 * If @exclusive is set, then the region is marked so that userspace
1557 * is explicitly not allowed to map the resource via /dev/mem or
1558 * sysfs MMIO access.
1559 *
1560 * Returns 0 on success, or %EBUSY on error. A warning
1561 * message is also printed on failure.
1562 */
1563 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1564 int exclusive)
1565 {
1566 struct pci_devres *dr;
1567
1568 if (pci_resource_len(pdev, bar) == 0)
1569 return 0;
1570
1571 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1572 if (!request_region(pci_resource_start(pdev, bar),
1573 pci_resource_len(pdev, bar), res_name))
1574 goto err_out;
1575 }
1576 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1577 if (!__request_mem_region(pci_resource_start(pdev, bar),
1578 pci_resource_len(pdev, bar), res_name,
1579 exclusive))
1580 goto err_out;
1581 }
1582
1583 dr = find_pci_dr(pdev);
1584 if (dr)
1585 dr->region_mask |= 1 << bar;
1586
1587 return 0;
1588
1589 err_out:
1590 dev_warn(&pdev->dev, "BAR %d: can't reserve %s region %pR\n",
1591 bar,
1592 pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem",
1593 &pdev->resource[bar]);
1594 return -EBUSY;
1595 }
1596
1597 /**
1598 * pci_request_region - Reserve PCI I/O and memory resource
1599 * @pdev: PCI device whose resources are to be reserved
1600 * @bar: BAR to be reserved
1601 * @res_name: Name to be associated with resource
1602 *
1603 * Mark the PCI region associated with PCI device @pdev BAR @bar as
1604 * being reserved by owner @res_name. Do not access any
1605 * address inside the PCI regions unless this call returns
1606 * successfully.
1607 *
1608 * Returns 0 on success, or %EBUSY on error. A warning
1609 * message is also printed on failure.
1610 */
1611 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1612 {
1613 return __pci_request_region(pdev, bar, res_name, 0);
1614 }
1615
1616 /**
1617 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
1618 * @pdev: PCI device whose resources are to be reserved
1619 * @bar: BAR to be reserved
1620 * @res_name: Name to be associated with resource.
1621 *
1622 * Mark the PCI region associated with PCI device @pdev BR @bar as
1623 * being reserved by owner @res_name. Do not access any
1624 * address inside the PCI regions unless this call returns
1625 * successfully.
1626 *
1627 * Returns 0 on success, or %EBUSY on error. A warning
1628 * message is also printed on failure.
1629 *
1630 * The key difference that _exclusive makes it that userspace is
1631 * explicitly not allowed to map the resource via /dev/mem or
1632 * sysfs.
1633 */
1634 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
1635 {
1636 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
1637 }
1638 /**
1639 * pci_release_selected_regions - Release selected PCI I/O and memory resources
1640 * @pdev: PCI device whose resources were previously reserved
1641 * @bars: Bitmask of BARs to be released
1642 *
1643 * Release selected PCI I/O and memory resources previously reserved.
1644 * Call this function only after all use of the PCI regions has ceased.
1645 */
1646 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1647 {
1648 int i;
1649
1650 for (i = 0; i < 6; i++)
1651 if (bars & (1 << i))
1652 pci_release_region(pdev, i);
1653 }
1654
1655 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
1656 const char *res_name, int excl)
1657 {
1658 int i;
1659
1660 for (i = 0; i < 6; i++)
1661 if (bars & (1 << i))
1662 if (__pci_request_region(pdev, i, res_name, excl))
1663 goto err_out;
1664 return 0;
1665
1666 err_out:
1667 while(--i >= 0)
1668 if (bars & (1 << i))
1669 pci_release_region(pdev, i);
1670
1671 return -EBUSY;
1672 }
1673
1674
1675 /**
1676 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1677 * @pdev: PCI device whose resources are to be reserved
1678 * @bars: Bitmask of BARs to be requested
1679 * @res_name: Name to be associated with resource
1680 */
1681 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1682 const char *res_name)
1683 {
1684 return __pci_request_selected_regions(pdev, bars, res_name, 0);
1685 }
1686
1687 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
1688 int bars, const char *res_name)
1689 {
1690 return __pci_request_selected_regions(pdev, bars, res_name,
1691 IORESOURCE_EXCLUSIVE);
1692 }
1693
1694 /**
1695 * pci_release_regions - Release reserved PCI I/O and memory resources
1696 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
1697 *
1698 * Releases all PCI I/O and memory resources previously reserved by a
1699 * successful call to pci_request_regions. Call this function only
1700 * after all use of the PCI regions has ceased.
1701 */
1702
1703 void pci_release_regions(struct pci_dev *pdev)
1704 {
1705 pci_release_selected_regions(pdev, (1 << 6) - 1);
1706 }
1707
1708 /**
1709 * pci_request_regions - Reserved PCI I/O and memory resources
1710 * @pdev: PCI device whose resources are to be reserved
1711 * @res_name: Name to be associated with resource.
1712 *
1713 * Mark all PCI regions associated with PCI device @pdev as
1714 * being reserved by owner @res_name. Do not access any
1715 * address inside the PCI regions unless this call returns
1716 * successfully.
1717 *
1718 * Returns 0 on success, or %EBUSY on error. A warning
1719 * message is also printed on failure.
1720 */
1721 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1722 {
1723 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1724 }
1725
1726 /**
1727 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
1728 * @pdev: PCI device whose resources are to be reserved
1729 * @res_name: Name to be associated with resource.
1730 *
1731 * Mark all PCI regions associated with PCI device @pdev as
1732 * being reserved by owner @res_name. Do not access any
1733 * address inside the PCI regions unless this call returns
1734 * successfully.
1735 *
1736 * pci_request_regions_exclusive() will mark the region so that
1737 * /dev/mem and the sysfs MMIO access will not be allowed.
1738 *
1739 * Returns 0 on success, or %EBUSY on error. A warning
1740 * message is also printed on failure.
1741 */
1742 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
1743 {
1744 return pci_request_selected_regions_exclusive(pdev,
1745 ((1 << 6) - 1), res_name);
1746 }
1747
1748 static void __pci_set_master(struct pci_dev *dev, bool enable)
1749 {
1750 u16 old_cmd, cmd;
1751
1752 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
1753 if (enable)
1754 cmd = old_cmd | PCI_COMMAND_MASTER;
1755 else
1756 cmd = old_cmd & ~PCI_COMMAND_MASTER;
1757 if (cmd != old_cmd) {
1758 dev_dbg(&dev->dev, "%s bus mastering\n",
1759 enable ? "enabling" : "disabling");
1760 pci_write_config_word(dev, PCI_COMMAND, cmd);
1761 }
1762 dev->is_busmaster = enable;
1763 }
1764
1765 /**
1766 * pci_set_master - enables bus-mastering for device dev
1767 * @dev: the PCI device to enable
1768 *
1769 * Enables bus-mastering on the device and calls pcibios_set_master()
1770 * to do the needed arch specific settings.
1771 */
1772 void pci_set_master(struct pci_dev *dev)
1773 {
1774 __pci_set_master(dev, true);
1775 pcibios_set_master(dev);
1776 }
1777
1778 /**
1779 * pci_clear_master - disables bus-mastering for device dev
1780 * @dev: the PCI device to disable
1781 */
1782 void pci_clear_master(struct pci_dev *dev)
1783 {
1784 __pci_set_master(dev, false);
1785 }
1786
1787 #ifdef PCI_DISABLE_MWI
1788 int pci_set_mwi(struct pci_dev *dev)
1789 {
1790 return 0;
1791 }
1792
1793 int pci_try_set_mwi(struct pci_dev *dev)
1794 {
1795 return 0;
1796 }
1797
1798 void pci_clear_mwi(struct pci_dev *dev)
1799 {
1800 }
1801
1802 #else
1803
1804 #ifndef PCI_CACHE_LINE_BYTES
1805 #define PCI_CACHE_LINE_BYTES L1_CACHE_BYTES
1806 #endif
1807
1808 /* This can be overridden by arch code. */
1809 /* Don't forget this is measured in 32-bit words, not bytes */
1810 u8 pci_cache_line_size = PCI_CACHE_LINE_BYTES / 4;
1811
1812 /**
1813 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
1814 * @dev: the PCI device for which MWI is to be enabled
1815 *
1816 * Helper function for pci_set_mwi.
1817 * Originally copied from drivers/net/acenic.c.
1818 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
1819 *
1820 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1821 */
1822 static int
1823 pci_set_cacheline_size(struct pci_dev *dev)
1824 {
1825 u8 cacheline_size;
1826
1827 if (!pci_cache_line_size)
1828 return -EINVAL; /* The system doesn't support MWI. */
1829
1830 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
1831 equal to or multiple of the right value. */
1832 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1833 if (cacheline_size >= pci_cache_line_size &&
1834 (cacheline_size % pci_cache_line_size) == 0)
1835 return 0;
1836
1837 /* Write the correct value. */
1838 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
1839 /* Read it back. */
1840 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1841 if (cacheline_size == pci_cache_line_size)
1842 return 0;
1843
1844 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
1845 "supported\n", pci_cache_line_size << 2);
1846
1847 return -EINVAL;
1848 }
1849
1850 /**
1851 * pci_set_mwi - enables memory-write-invalidate PCI transaction
1852 * @dev: the PCI device for which MWI is enabled
1853 *
1854 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1855 *
1856 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1857 */
1858 int
1859 pci_set_mwi(struct pci_dev *dev)
1860 {
1861 int rc;
1862 u16 cmd;
1863
1864 rc = pci_set_cacheline_size(dev);
1865 if (rc)
1866 return rc;
1867
1868 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1869 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
1870 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1871 cmd |= PCI_COMMAND_INVALIDATE;
1872 pci_write_config_word(dev, PCI_COMMAND, cmd);
1873 }
1874
1875 return 0;
1876 }
1877
1878 /**
1879 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
1880 * @dev: the PCI device for which MWI is enabled
1881 *
1882 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1883 * Callers are not required to check the return value.
1884 *
1885 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1886 */
1887 int pci_try_set_mwi(struct pci_dev *dev)
1888 {
1889 int rc = pci_set_mwi(dev);
1890 return rc;
1891 }
1892
1893 /**
1894 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
1895 * @dev: the PCI device to disable
1896 *
1897 * Disables PCI Memory-Write-Invalidate transaction on the device
1898 */
1899 void
1900 pci_clear_mwi(struct pci_dev *dev)
1901 {
1902 u16 cmd;
1903
1904 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1905 if (cmd & PCI_COMMAND_INVALIDATE) {
1906 cmd &= ~PCI_COMMAND_INVALIDATE;
1907 pci_write_config_word(dev, PCI_COMMAND, cmd);
1908 }
1909 }
1910 #endif /* ! PCI_DISABLE_MWI */
1911
1912 /**
1913 * pci_intx - enables/disables PCI INTx for device dev
1914 * @pdev: the PCI device to operate on
1915 * @enable: boolean: whether to enable or disable PCI INTx
1916 *
1917 * Enables/disables PCI INTx for device dev
1918 */
1919 void
1920 pci_intx(struct pci_dev *pdev, int enable)
1921 {
1922 u16 pci_command, new;
1923
1924 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1925
1926 if (enable) {
1927 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
1928 } else {
1929 new = pci_command | PCI_COMMAND_INTX_DISABLE;
1930 }
1931
1932 if (new != pci_command) {
1933 struct pci_devres *dr;
1934
1935 pci_write_config_word(pdev, PCI_COMMAND, new);
1936
1937 dr = find_pci_dr(pdev);
1938 if (dr && !dr->restore_intx) {
1939 dr->restore_intx = 1;
1940 dr->orig_intx = !enable;
1941 }
1942 }
1943 }
1944
1945 /**
1946 * pci_msi_off - disables any msi or msix capabilities
1947 * @dev: the PCI device to operate on
1948 *
1949 * If you want to use msi see pci_enable_msi and friends.
1950 * This is a lower level primitive that allows us to disable
1951 * msi operation at the device level.
1952 */
1953 void pci_msi_off(struct pci_dev *dev)
1954 {
1955 int pos;
1956 u16 control;
1957
1958 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
1959 if (pos) {
1960 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
1961 control &= ~PCI_MSI_FLAGS_ENABLE;
1962 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
1963 }
1964 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
1965 if (pos) {
1966 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
1967 control &= ~PCI_MSIX_FLAGS_ENABLE;
1968 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
1969 }
1970 }
1971
1972 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
1973 /*
1974 * These can be overridden by arch-specific implementations
1975 */
1976 int
1977 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
1978 {
1979 if (!pci_dma_supported(dev, mask))
1980 return -EIO;
1981
1982 dev->dma_mask = mask;
1983
1984 return 0;
1985 }
1986
1987 int
1988 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
1989 {
1990 if (!pci_dma_supported(dev, mask))
1991 return -EIO;
1992
1993 dev->dev.coherent_dma_mask = mask;
1994
1995 return 0;
1996 }
1997 #endif
1998
1999 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
2000 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2001 {
2002 return dma_set_max_seg_size(&dev->dev, size);
2003 }
2004 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2005 #endif
2006
2007 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
2008 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2009 {
2010 return dma_set_seg_boundary(&dev->dev, mask);
2011 }
2012 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2013 #endif
2014
2015 static int __pcie_flr(struct pci_dev *dev, int probe)
2016 {
2017 u16 status;
2018 u32 cap;
2019 int exppos = pci_find_capability(dev, PCI_CAP_ID_EXP);
2020
2021 if (!exppos)
2022 return -ENOTTY;
2023 pci_read_config_dword(dev, exppos + PCI_EXP_DEVCAP, &cap);
2024 if (!(cap & PCI_EXP_DEVCAP_FLR))
2025 return -ENOTTY;
2026
2027 if (probe)
2028 return 0;
2029
2030 pci_block_user_cfg_access(dev);
2031
2032 /* Wait for Transaction Pending bit clean */
2033 pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
2034 if (!(status & PCI_EXP_DEVSTA_TRPND))
2035 goto transaction_done;
2036
2037 msleep(100);
2038 pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
2039 if (!(status & PCI_EXP_DEVSTA_TRPND))
2040 goto transaction_done;
2041
2042 dev_info(&dev->dev, "Busy after 100ms while trying to reset; "
2043 "sleeping for 1 second\n");
2044 ssleep(1);
2045 pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
2046 if (status & PCI_EXP_DEVSTA_TRPND)
2047 dev_info(&dev->dev, "Still busy after 1s; "
2048 "proceeding with reset anyway\n");
2049
2050 transaction_done:
2051 pci_write_config_word(dev, exppos + PCI_EXP_DEVCTL,
2052 PCI_EXP_DEVCTL_BCR_FLR);
2053 mdelay(100);
2054
2055 pci_unblock_user_cfg_access(dev);
2056 return 0;
2057 }
2058
2059 static int __pci_af_flr(struct pci_dev *dev, int probe)
2060 {
2061 int cappos = pci_find_capability(dev, PCI_CAP_ID_AF);
2062 u8 status;
2063 u8 cap;
2064
2065 if (!cappos)
2066 return -ENOTTY;
2067 pci_read_config_byte(dev, cappos + PCI_AF_CAP, &cap);
2068 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2069 return -ENOTTY;
2070
2071 if (probe)
2072 return 0;
2073
2074 pci_block_user_cfg_access(dev);
2075
2076 /* Wait for Transaction Pending bit clean */
2077 pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status);
2078 if (!(status & PCI_AF_STATUS_TP))
2079 goto transaction_done;
2080
2081 msleep(100);
2082 pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status);
2083 if (!(status & PCI_AF_STATUS_TP))
2084 goto transaction_done;
2085
2086 dev_info(&dev->dev, "Busy after 100ms while trying to"
2087 " reset; sleeping for 1 second\n");
2088 ssleep(1);
2089 pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status);
2090 if (status & PCI_AF_STATUS_TP)
2091 dev_info(&dev->dev, "Still busy after 1s; "
2092 "proceeding with reset anyway\n");
2093
2094 transaction_done:
2095 pci_write_config_byte(dev, cappos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2096 mdelay(100);
2097
2098 pci_unblock_user_cfg_access(dev);
2099 return 0;
2100 }
2101
2102 static int __pci_reset_function(struct pci_dev *pdev, int probe)
2103 {
2104 int res;
2105
2106 res = __pcie_flr(pdev, probe);
2107 if (res != -ENOTTY)
2108 return res;
2109
2110 res = __pci_af_flr(pdev, probe);
2111 if (res != -ENOTTY)
2112 return res;
2113
2114 return res;
2115 }
2116
2117 /**
2118 * pci_execute_reset_function() - Reset a PCI device function
2119 * @dev: Device function to reset
2120 *
2121 * Some devices allow an individual function to be reset without affecting
2122 * other functions in the same device. The PCI device must be responsive
2123 * to PCI config space in order to use this function.
2124 *
2125 * The device function is presumed to be unused when this function is called.
2126 * Resetting the device will make the contents of PCI configuration space
2127 * random, so any caller of this must be prepared to reinitialise the
2128 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
2129 * etc.
2130 *
2131 * Returns 0 if the device function was successfully reset or -ENOTTY if the
2132 * device doesn't support resetting a single function.
2133 */
2134 int pci_execute_reset_function(struct pci_dev *dev)
2135 {
2136 return __pci_reset_function(dev, 0);
2137 }
2138 EXPORT_SYMBOL_GPL(pci_execute_reset_function);
2139
2140 /**
2141 * pci_reset_function() - quiesce and reset a PCI device function
2142 * @dev: Device function to reset
2143 *
2144 * Some devices allow an individual function to be reset without affecting
2145 * other functions in the same device. The PCI device must be responsive
2146 * to PCI config space in order to use this function.
2147 *
2148 * This function does not just reset the PCI portion of a device, but
2149 * clears all the state associated with the device. This function differs
2150 * from pci_execute_reset_function in that it saves and restores device state
2151 * over the reset.
2152 *
2153 * Returns 0 if the device function was successfully reset or -ENOTTY if the
2154 * device doesn't support resetting a single function.
2155 */
2156 int pci_reset_function(struct pci_dev *dev)
2157 {
2158 int r = __pci_reset_function(dev, 1);
2159
2160 if (r < 0)
2161 return r;
2162
2163 if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0)
2164 disable_irq(dev->irq);
2165 pci_save_state(dev);
2166
2167 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2168
2169 r = pci_execute_reset_function(dev);
2170
2171 pci_restore_state(dev);
2172 if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0)
2173 enable_irq(dev->irq);
2174
2175 return r;
2176 }
2177 EXPORT_SYMBOL_GPL(pci_reset_function);
2178
2179 /**
2180 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2181 * @dev: PCI device to query
2182 *
2183 * Returns mmrbc: maximum designed memory read count in bytes
2184 * or appropriate error value.
2185 */
2186 int pcix_get_max_mmrbc(struct pci_dev *dev)
2187 {
2188 int err, cap;
2189 u32 stat;
2190
2191 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2192 if (!cap)
2193 return -EINVAL;
2194
2195 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2196 if (err)
2197 return -EINVAL;
2198
2199 return (stat & PCI_X_STATUS_MAX_READ) >> 12;
2200 }
2201 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2202
2203 /**
2204 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2205 * @dev: PCI device to query
2206 *
2207 * Returns mmrbc: maximum memory read count in bytes
2208 * or appropriate error value.
2209 */
2210 int pcix_get_mmrbc(struct pci_dev *dev)
2211 {
2212 int ret, cap;
2213 u32 cmd;
2214
2215 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2216 if (!cap)
2217 return -EINVAL;
2218
2219 ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2220 if (!ret)
2221 ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2222
2223 return ret;
2224 }
2225 EXPORT_SYMBOL(pcix_get_mmrbc);
2226
2227 /**
2228 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2229 * @dev: PCI device to query
2230 * @mmrbc: maximum memory read count in bytes
2231 * valid values are 512, 1024, 2048, 4096
2232 *
2233 * If possible sets maximum memory read byte count, some bridges have erratas
2234 * that prevent this.
2235 */
2236 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2237 {
2238 int cap, err = -EINVAL;
2239 u32 stat, cmd, v, o;
2240
2241 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2242 goto out;
2243
2244 v = ffs(mmrbc) - 10;
2245
2246 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2247 if (!cap)
2248 goto out;
2249
2250 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2251 if (err)
2252 goto out;
2253
2254 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2255 return -E2BIG;
2256
2257 err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2258 if (err)
2259 goto out;
2260
2261 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2262 if (o != v) {
2263 if (v > o && dev->bus &&
2264 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2265 return -EIO;
2266
2267 cmd &= ~PCI_X_CMD_MAX_READ;
2268 cmd |= v << 2;
2269 err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
2270 }
2271 out:
2272 return err;
2273 }
2274 EXPORT_SYMBOL(pcix_set_mmrbc);
2275
2276 /**
2277 * pcie_get_readrq - get PCI Express read request size
2278 * @dev: PCI device to query
2279 *
2280 * Returns maximum memory read request in bytes
2281 * or appropriate error value.
2282 */
2283 int pcie_get_readrq(struct pci_dev *dev)
2284 {
2285 int ret, cap;
2286 u16 ctl;
2287
2288 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2289 if (!cap)
2290 return -EINVAL;
2291
2292 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2293 if (!ret)
2294 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2295
2296 return ret;
2297 }
2298 EXPORT_SYMBOL(pcie_get_readrq);
2299
2300 /**
2301 * pcie_set_readrq - set PCI Express maximum memory read request
2302 * @dev: PCI device to query
2303 * @rq: maximum memory read count in bytes
2304 * valid values are 128, 256, 512, 1024, 2048, 4096
2305 *
2306 * If possible sets maximum read byte count
2307 */
2308 int pcie_set_readrq(struct pci_dev *dev, int rq)
2309 {
2310 int cap, err = -EINVAL;
2311 u16 ctl, v;
2312
2313 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2314 goto out;
2315
2316 v = (ffs(rq) - 8) << 12;
2317
2318 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2319 if (!cap)
2320 goto out;
2321
2322 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2323 if (err)
2324 goto out;
2325
2326 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2327 ctl &= ~PCI_EXP_DEVCTL_READRQ;
2328 ctl |= v;
2329 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2330 }
2331
2332 out:
2333 return err;
2334 }
2335 EXPORT_SYMBOL(pcie_set_readrq);
2336
2337 /**
2338 * pci_select_bars - Make BAR mask from the type of resource
2339 * @dev: the PCI device for which BAR mask is made
2340 * @flags: resource type mask to be selected
2341 *
2342 * This helper routine makes bar mask from the type of resource.
2343 */
2344 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2345 {
2346 int i, bars = 0;
2347 for (i = 0; i < PCI_NUM_RESOURCES; i++)
2348 if (pci_resource_flags(dev, i) & flags)
2349 bars |= (1 << i);
2350 return bars;
2351 }
2352
2353 /**
2354 * pci_resource_bar - get position of the BAR associated with a resource
2355 * @dev: the PCI device
2356 * @resno: the resource number
2357 * @type: the BAR type to be filled in
2358 *
2359 * Returns BAR position in config space, or 0 if the BAR is invalid.
2360 */
2361 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2362 {
2363 int reg;
2364
2365 if (resno < PCI_ROM_RESOURCE) {
2366 *type = pci_bar_unknown;
2367 return PCI_BASE_ADDRESS_0 + 4 * resno;
2368 } else if (resno == PCI_ROM_RESOURCE) {
2369 *type = pci_bar_mem32;
2370 return dev->rom_base_reg;
2371 } else if (resno < PCI_BRIDGE_RESOURCES) {
2372 /* device specific resource */
2373 reg = pci_iov_resource_bar(dev, resno, type);
2374 if (reg)
2375 return reg;
2376 }
2377
2378 dev_err(&dev->dev, "BAR: invalid resource #%d\n", resno);
2379 return 0;
2380 }
2381
2382 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
2383 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
2384 spinlock_t resource_alignment_lock = SPIN_LOCK_UNLOCKED;
2385
2386 /**
2387 * pci_specified_resource_alignment - get resource alignment specified by user.
2388 * @dev: the PCI device to get
2389 *
2390 * RETURNS: Resource alignment if it is specified.
2391 * Zero if it is not specified.
2392 */
2393 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
2394 {
2395 int seg, bus, slot, func, align_order, count;
2396 resource_size_t align = 0;
2397 char *p;
2398
2399 spin_lock(&resource_alignment_lock);
2400 p = resource_alignment_param;
2401 while (*p) {
2402 count = 0;
2403 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
2404 p[count] == '@') {
2405 p += count + 1;
2406 } else {
2407 align_order = -1;
2408 }
2409 if (sscanf(p, "%x:%x:%x.%x%n",
2410 &seg, &bus, &slot, &func, &count) != 4) {
2411 seg = 0;
2412 if (sscanf(p, "%x:%x.%x%n",
2413 &bus, &slot, &func, &count) != 3) {
2414 /* Invalid format */
2415 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
2416 p);
2417 break;
2418 }
2419 }
2420 p += count;
2421 if (seg == pci_domain_nr(dev->bus) &&
2422 bus == dev->bus->number &&
2423 slot == PCI_SLOT(dev->devfn) &&
2424 func == PCI_FUNC(dev->devfn)) {
2425 if (align_order == -1) {
2426 align = PAGE_SIZE;
2427 } else {
2428 align = 1 << align_order;
2429 }
2430 /* Found */
2431 break;
2432 }
2433 if (*p != ';' && *p != ',') {
2434 /* End of param or invalid format */
2435 break;
2436 }
2437 p++;
2438 }
2439 spin_unlock(&resource_alignment_lock);
2440 return align;
2441 }
2442
2443 /**
2444 * pci_is_reassigndev - check if specified PCI is target device to reassign
2445 * @dev: the PCI device to check
2446 *
2447 * RETURNS: non-zero for PCI device is a target device to reassign,
2448 * or zero is not.
2449 */
2450 int pci_is_reassigndev(struct pci_dev *dev)
2451 {
2452 return (pci_specified_resource_alignment(dev) != 0);
2453 }
2454
2455 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
2456 {
2457 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
2458 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
2459 spin_lock(&resource_alignment_lock);
2460 strncpy(resource_alignment_param, buf, count);
2461 resource_alignment_param[count] = '\0';
2462 spin_unlock(&resource_alignment_lock);
2463 return count;
2464 }
2465
2466 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
2467 {
2468 size_t count;
2469 spin_lock(&resource_alignment_lock);
2470 count = snprintf(buf, size, "%s", resource_alignment_param);
2471 spin_unlock(&resource_alignment_lock);
2472 return count;
2473 }
2474
2475 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
2476 {
2477 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
2478 }
2479
2480 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
2481 const char *buf, size_t count)
2482 {
2483 return pci_set_resource_alignment_param(buf, count);
2484 }
2485
2486 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
2487 pci_resource_alignment_store);
2488
2489 static int __init pci_resource_alignment_sysfs_init(void)
2490 {
2491 return bus_create_file(&pci_bus_type,
2492 &bus_attr_resource_alignment);
2493 }
2494
2495 late_initcall(pci_resource_alignment_sysfs_init);
2496
2497 static void __devinit pci_no_domains(void)
2498 {
2499 #ifdef CONFIG_PCI_DOMAINS
2500 pci_domains_supported = 0;
2501 #endif
2502 }
2503
2504 /**
2505 * pci_ext_cfg_enabled - can we access extended PCI config space?
2506 * @dev: The PCI device of the root bridge.
2507 *
2508 * Returns 1 if we can access PCI extended config space (offsets
2509 * greater than 0xff). This is the default implementation. Architecture
2510 * implementations can override this.
2511 */
2512 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
2513 {
2514 return 1;
2515 }
2516
2517 static int __devinit pci_init(void)
2518 {
2519 struct pci_dev *dev = NULL;
2520
2521 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2522 pci_fixup_device(pci_fixup_final, dev);
2523 }
2524
2525 return 0;
2526 }
2527
2528 static int __init pci_setup(char *str)
2529 {
2530 while (str) {
2531 char *k = strchr(str, ',');
2532 if (k)
2533 *k++ = 0;
2534 if (*str && (str = pcibios_setup(str)) && *str) {
2535 if (!strcmp(str, "nomsi")) {
2536 pci_no_msi();
2537 } else if (!strcmp(str, "noaer")) {
2538 pci_no_aer();
2539 } else if (!strcmp(str, "nodomains")) {
2540 pci_no_domains();
2541 } else if (!strncmp(str, "cbiosize=", 9)) {
2542 pci_cardbus_io_size = memparse(str + 9, &str);
2543 } else if (!strncmp(str, "cbmemsize=", 10)) {
2544 pci_cardbus_mem_size = memparse(str + 10, &str);
2545 } else if (!strncmp(str, "resource_alignment=", 19)) {
2546 pci_set_resource_alignment_param(str + 19,
2547 strlen(str + 19));
2548 } else {
2549 printk(KERN_ERR "PCI: Unknown option `%s'\n",
2550 str);
2551 }
2552 }
2553 str = k;
2554 }
2555 return 0;
2556 }
2557 early_param("pci", pci_setup);
2558
2559 device_initcall(pci_init);
2560
2561 EXPORT_SYMBOL(pci_reenable_device);
2562 EXPORT_SYMBOL(pci_enable_device_io);
2563 EXPORT_SYMBOL(pci_enable_device_mem);
2564 EXPORT_SYMBOL(pci_enable_device);
2565 EXPORT_SYMBOL(pcim_enable_device);
2566 EXPORT_SYMBOL(pcim_pin_device);
2567 EXPORT_SYMBOL(pci_disable_device);
2568 EXPORT_SYMBOL(pci_find_capability);
2569 EXPORT_SYMBOL(pci_bus_find_capability);
2570 EXPORT_SYMBOL(pci_release_regions);
2571 EXPORT_SYMBOL(pci_request_regions);
2572 EXPORT_SYMBOL(pci_request_regions_exclusive);
2573 EXPORT_SYMBOL(pci_release_region);
2574 EXPORT_SYMBOL(pci_request_region);
2575 EXPORT_SYMBOL(pci_request_region_exclusive);
2576 EXPORT_SYMBOL(pci_release_selected_regions);
2577 EXPORT_SYMBOL(pci_request_selected_regions);
2578 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2579 EXPORT_SYMBOL(pci_set_master);
2580 EXPORT_SYMBOL(pci_clear_master);
2581 EXPORT_SYMBOL(pci_set_mwi);
2582 EXPORT_SYMBOL(pci_try_set_mwi);
2583 EXPORT_SYMBOL(pci_clear_mwi);
2584 EXPORT_SYMBOL_GPL(pci_intx);
2585 EXPORT_SYMBOL(pci_set_dma_mask);
2586 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
2587 EXPORT_SYMBOL(pci_assign_resource);
2588 EXPORT_SYMBOL(pci_find_parent_resource);
2589 EXPORT_SYMBOL(pci_select_bars);
2590
2591 EXPORT_SYMBOL(pci_set_power_state);
2592 EXPORT_SYMBOL(pci_save_state);
2593 EXPORT_SYMBOL(pci_restore_state);
2594 EXPORT_SYMBOL(pci_pme_capable);
2595 EXPORT_SYMBOL(pci_pme_active);
2596 EXPORT_SYMBOL(pci_enable_wake);
2597 EXPORT_SYMBOL(pci_wake_from_d3);
2598 EXPORT_SYMBOL(pci_target_state);
2599 EXPORT_SYMBOL(pci_prepare_to_sleep);
2600 EXPORT_SYMBOL(pci_back_from_sleep);
2601 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2602