]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/pci/pci.c
PCI: Disable MSI for HiSilicon Hip06/Hip07 only in Root Port mode
[mirror_ubuntu-bionic-kernel.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/delay.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/of.h>
16 #include <linux/of_pci.h>
17 #include <linux/pci.h>
18 #include <linux/pm.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/spinlock.h>
22 #include <linux/string.h>
23 #include <linux/log2.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/pm_wakeup.h>
26 #include <linux/interrupt.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pci-ats.h>
32 #include <asm/setup.h>
33 #include <asm/dma.h>
34 #include <linux/aer.h>
35 #include "pci.h"
36
37 const char *pci_power_names[] = {
38 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
39 };
40 EXPORT_SYMBOL_GPL(pci_power_names);
41
42 int isa_dma_bridge_buggy;
43 EXPORT_SYMBOL(isa_dma_bridge_buggy);
44
45 int pci_pci_problems;
46 EXPORT_SYMBOL(pci_pci_problems);
47
48 unsigned int pci_pm_d3_delay;
49
50 static void pci_pme_list_scan(struct work_struct *work);
51
52 static LIST_HEAD(pci_pme_list);
53 static DEFINE_MUTEX(pci_pme_list_mutex);
54 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
55
56 struct pci_pme_device {
57 struct list_head list;
58 struct pci_dev *dev;
59 };
60
61 #define PME_TIMEOUT 1000 /* How long between PME checks */
62
63 static void pci_dev_d3_sleep(struct pci_dev *dev)
64 {
65 unsigned int delay = dev->d3_delay;
66
67 if (delay < pci_pm_d3_delay)
68 delay = pci_pm_d3_delay;
69
70 if (delay)
71 msleep(delay);
72 }
73
74 #ifdef CONFIG_PCI_DOMAINS
75 int pci_domains_supported = 1;
76 #endif
77
78 #define DEFAULT_CARDBUS_IO_SIZE (256)
79 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
80 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
81 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
82 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
83
84 #define DEFAULT_HOTPLUG_IO_SIZE (256)
85 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
86 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
87 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
88 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
89
90 #define DEFAULT_HOTPLUG_BUS_SIZE 1
91 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
92
93 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
94
95 /*
96 * The default CLS is used if arch didn't set CLS explicitly and not
97 * all pci devices agree on the same value. Arch can override either
98 * the dfl or actual value as it sees fit. Don't forget this is
99 * measured in 32-bit words, not bytes.
100 */
101 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
102 u8 pci_cache_line_size;
103
104 /*
105 * If we set up a device for bus mastering, we need to check the latency
106 * timer as certain BIOSes forget to set it properly.
107 */
108 unsigned int pcibios_max_latency = 255;
109
110 /* If set, the PCIe ARI capability will not be used. */
111 static bool pcie_ari_disabled;
112
113 /* Disable bridge_d3 for all PCIe ports */
114 static bool pci_bridge_d3_disable;
115 /* Force bridge_d3 for all PCIe ports */
116 static bool pci_bridge_d3_force;
117
118 static int __init pcie_port_pm_setup(char *str)
119 {
120 if (!strcmp(str, "off"))
121 pci_bridge_d3_disable = true;
122 else if (!strcmp(str, "force"))
123 pci_bridge_d3_force = true;
124 return 1;
125 }
126 __setup("pcie_port_pm=", pcie_port_pm_setup);
127
128 /**
129 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
130 * @bus: pointer to PCI bus structure to search
131 *
132 * Given a PCI bus, returns the highest PCI bus number present in the set
133 * including the given PCI bus and its list of child PCI buses.
134 */
135 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
136 {
137 struct pci_bus *tmp;
138 unsigned char max, n;
139
140 max = bus->busn_res.end;
141 list_for_each_entry(tmp, &bus->children, node) {
142 n = pci_bus_max_busnr(tmp);
143 if (n > max)
144 max = n;
145 }
146 return max;
147 }
148 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
149
150 #ifdef CONFIG_HAS_IOMEM
151 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
152 {
153 struct resource *res = &pdev->resource[bar];
154
155 /*
156 * Make sure the BAR is actually a memory resource, not an IO resource
157 */
158 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
159 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
160 return NULL;
161 }
162 return ioremap_nocache(res->start, resource_size(res));
163 }
164 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
165
166 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
167 {
168 /*
169 * Make sure the BAR is actually a memory resource, not an IO resource
170 */
171 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
172 WARN_ON(1);
173 return NULL;
174 }
175 return ioremap_wc(pci_resource_start(pdev, bar),
176 pci_resource_len(pdev, bar));
177 }
178 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
179 #endif
180
181
182 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
183 u8 pos, int cap, int *ttl)
184 {
185 u8 id;
186 u16 ent;
187
188 pci_bus_read_config_byte(bus, devfn, pos, &pos);
189
190 while ((*ttl)--) {
191 if (pos < 0x40)
192 break;
193 pos &= ~3;
194 pci_bus_read_config_word(bus, devfn, pos, &ent);
195
196 id = ent & 0xff;
197 if (id == 0xff)
198 break;
199 if (id == cap)
200 return pos;
201 pos = (ent >> 8);
202 }
203 return 0;
204 }
205
206 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
207 u8 pos, int cap)
208 {
209 int ttl = PCI_FIND_CAP_TTL;
210
211 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
212 }
213
214 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
215 {
216 return __pci_find_next_cap(dev->bus, dev->devfn,
217 pos + PCI_CAP_LIST_NEXT, cap);
218 }
219 EXPORT_SYMBOL_GPL(pci_find_next_capability);
220
221 static int __pci_bus_find_cap_start(struct pci_bus *bus,
222 unsigned int devfn, u8 hdr_type)
223 {
224 u16 status;
225
226 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
227 if (!(status & PCI_STATUS_CAP_LIST))
228 return 0;
229
230 switch (hdr_type) {
231 case PCI_HEADER_TYPE_NORMAL:
232 case PCI_HEADER_TYPE_BRIDGE:
233 return PCI_CAPABILITY_LIST;
234 case PCI_HEADER_TYPE_CARDBUS:
235 return PCI_CB_CAPABILITY_LIST;
236 }
237
238 return 0;
239 }
240
241 /**
242 * pci_find_capability - query for devices' capabilities
243 * @dev: PCI device to query
244 * @cap: capability code
245 *
246 * Tell if a device supports a given PCI capability.
247 * Returns the address of the requested capability structure within the
248 * device's PCI configuration space or 0 in case the device does not
249 * support it. Possible values for @cap:
250 *
251 * %PCI_CAP_ID_PM Power Management
252 * %PCI_CAP_ID_AGP Accelerated Graphics Port
253 * %PCI_CAP_ID_VPD Vital Product Data
254 * %PCI_CAP_ID_SLOTID Slot Identification
255 * %PCI_CAP_ID_MSI Message Signalled Interrupts
256 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
257 * %PCI_CAP_ID_PCIX PCI-X
258 * %PCI_CAP_ID_EXP PCI Express
259 */
260 int pci_find_capability(struct pci_dev *dev, int cap)
261 {
262 int pos;
263
264 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
265 if (pos)
266 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
267
268 return pos;
269 }
270 EXPORT_SYMBOL(pci_find_capability);
271
272 /**
273 * pci_bus_find_capability - query for devices' capabilities
274 * @bus: the PCI bus to query
275 * @devfn: PCI device to query
276 * @cap: capability code
277 *
278 * Like pci_find_capability() but works for pci devices that do not have a
279 * pci_dev structure set up yet.
280 *
281 * Returns the address of the requested capability structure within the
282 * device's PCI configuration space or 0 in case the device does not
283 * support it.
284 */
285 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
286 {
287 int pos;
288 u8 hdr_type;
289
290 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
291
292 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
293 if (pos)
294 pos = __pci_find_next_cap(bus, devfn, pos, cap);
295
296 return pos;
297 }
298 EXPORT_SYMBOL(pci_bus_find_capability);
299
300 /**
301 * pci_find_next_ext_capability - Find an extended capability
302 * @dev: PCI device to query
303 * @start: address at which to start looking (0 to start at beginning of list)
304 * @cap: capability code
305 *
306 * Returns the address of the next matching extended capability structure
307 * within the device's PCI configuration space or 0 if the device does
308 * not support it. Some capabilities can occur several times, e.g., the
309 * vendor-specific capability, and this provides a way to find them all.
310 */
311 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
312 {
313 u32 header;
314 int ttl;
315 int pos = PCI_CFG_SPACE_SIZE;
316
317 /* minimum 8 bytes per capability */
318 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
319
320 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
321 return 0;
322
323 if (start)
324 pos = start;
325
326 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
327 return 0;
328
329 /*
330 * If we have no capabilities, this is indicated by cap ID,
331 * cap version and next pointer all being 0.
332 */
333 if (header == 0)
334 return 0;
335
336 while (ttl-- > 0) {
337 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
338 return pos;
339
340 pos = PCI_EXT_CAP_NEXT(header);
341 if (pos < PCI_CFG_SPACE_SIZE)
342 break;
343
344 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
345 break;
346 }
347
348 return 0;
349 }
350 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
351
352 /**
353 * pci_find_ext_capability - Find an extended capability
354 * @dev: PCI device to query
355 * @cap: capability code
356 *
357 * Returns the address of the requested extended capability structure
358 * within the device's PCI configuration space or 0 if the device does
359 * not support it. Possible values for @cap:
360 *
361 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
362 * %PCI_EXT_CAP_ID_VC Virtual Channel
363 * %PCI_EXT_CAP_ID_DSN Device Serial Number
364 * %PCI_EXT_CAP_ID_PWR Power Budgeting
365 */
366 int pci_find_ext_capability(struct pci_dev *dev, int cap)
367 {
368 return pci_find_next_ext_capability(dev, 0, cap);
369 }
370 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
371
372 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
373 {
374 int rc, ttl = PCI_FIND_CAP_TTL;
375 u8 cap, mask;
376
377 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
378 mask = HT_3BIT_CAP_MASK;
379 else
380 mask = HT_5BIT_CAP_MASK;
381
382 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
383 PCI_CAP_ID_HT, &ttl);
384 while (pos) {
385 rc = pci_read_config_byte(dev, pos + 3, &cap);
386 if (rc != PCIBIOS_SUCCESSFUL)
387 return 0;
388
389 if ((cap & mask) == ht_cap)
390 return pos;
391
392 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
393 pos + PCI_CAP_LIST_NEXT,
394 PCI_CAP_ID_HT, &ttl);
395 }
396
397 return 0;
398 }
399 /**
400 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
401 * @dev: PCI device to query
402 * @pos: Position from which to continue searching
403 * @ht_cap: Hypertransport capability code
404 *
405 * To be used in conjunction with pci_find_ht_capability() to search for
406 * all capabilities matching @ht_cap. @pos should always be a value returned
407 * from pci_find_ht_capability().
408 *
409 * NB. To be 100% safe against broken PCI devices, the caller should take
410 * steps to avoid an infinite loop.
411 */
412 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
413 {
414 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
415 }
416 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
417
418 /**
419 * pci_find_ht_capability - query a device's Hypertransport capabilities
420 * @dev: PCI device to query
421 * @ht_cap: Hypertransport capability code
422 *
423 * Tell if a device supports a given Hypertransport capability.
424 * Returns an address within the device's PCI configuration space
425 * or 0 in case the device does not support the request capability.
426 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
427 * which has a Hypertransport capability matching @ht_cap.
428 */
429 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
430 {
431 int pos;
432
433 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
434 if (pos)
435 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
436
437 return pos;
438 }
439 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
440
441 /**
442 * pci_find_parent_resource - return resource region of parent bus of given region
443 * @dev: PCI device structure contains resources to be searched
444 * @res: child resource record for which parent is sought
445 *
446 * For given resource region of given device, return the resource
447 * region of parent bus the given region is contained in.
448 */
449 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
450 struct resource *res)
451 {
452 const struct pci_bus *bus = dev->bus;
453 struct resource *r;
454 int i;
455
456 pci_bus_for_each_resource(bus, r, i) {
457 if (!r)
458 continue;
459 if (resource_contains(r, res)) {
460
461 /*
462 * If the window is prefetchable but the BAR is
463 * not, the allocator made a mistake.
464 */
465 if (r->flags & IORESOURCE_PREFETCH &&
466 !(res->flags & IORESOURCE_PREFETCH))
467 return NULL;
468
469 /*
470 * If we're below a transparent bridge, there may
471 * be both a positively-decoded aperture and a
472 * subtractively-decoded region that contain the BAR.
473 * We want the positively-decoded one, so this depends
474 * on pci_bus_for_each_resource() giving us those
475 * first.
476 */
477 return r;
478 }
479 }
480 return NULL;
481 }
482 EXPORT_SYMBOL(pci_find_parent_resource);
483
484 /**
485 * pci_find_resource - Return matching PCI device resource
486 * @dev: PCI device to query
487 * @res: Resource to look for
488 *
489 * Goes over standard PCI resources (BARs) and checks if the given resource
490 * is partially or fully contained in any of them. In that case the
491 * matching resource is returned, %NULL otherwise.
492 */
493 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
494 {
495 int i;
496
497 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
498 struct resource *r = &dev->resource[i];
499
500 if (r->start && resource_contains(r, res))
501 return r;
502 }
503
504 return NULL;
505 }
506 EXPORT_SYMBOL(pci_find_resource);
507
508 /**
509 * pci_find_pcie_root_port - return PCIe Root Port
510 * @dev: PCI device to query
511 *
512 * Traverse up the parent chain and return the PCIe Root Port PCI Device
513 * for a given PCI Device.
514 */
515 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
516 {
517 struct pci_dev *bridge, *highest_pcie_bridge = dev;
518
519 bridge = pci_upstream_bridge(dev);
520 while (bridge && pci_is_pcie(bridge)) {
521 highest_pcie_bridge = bridge;
522 bridge = pci_upstream_bridge(bridge);
523 }
524
525 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
526 return NULL;
527
528 return highest_pcie_bridge;
529 }
530 EXPORT_SYMBOL(pci_find_pcie_root_port);
531
532 /**
533 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
534 * @dev: the PCI device to operate on
535 * @pos: config space offset of status word
536 * @mask: mask of bit(s) to care about in status word
537 *
538 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
539 */
540 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
541 {
542 int i;
543
544 /* Wait for Transaction Pending bit clean */
545 for (i = 0; i < 4; i++) {
546 u16 status;
547 if (i)
548 msleep((1 << (i - 1)) * 100);
549
550 pci_read_config_word(dev, pos, &status);
551 if (!(status & mask))
552 return 1;
553 }
554
555 return 0;
556 }
557
558 /**
559 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
560 * @dev: PCI device to have its BARs restored
561 *
562 * Restore the BAR values for a given device, so as to make it
563 * accessible by its driver.
564 */
565 static void pci_restore_bars(struct pci_dev *dev)
566 {
567 int i;
568
569 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
570 pci_update_resource(dev, i);
571 }
572
573 static const struct pci_platform_pm_ops *pci_platform_pm;
574
575 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
576 {
577 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
578 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
579 return -EINVAL;
580 pci_platform_pm = ops;
581 return 0;
582 }
583
584 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
585 {
586 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
587 }
588
589 static inline int platform_pci_set_power_state(struct pci_dev *dev,
590 pci_power_t t)
591 {
592 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
593 }
594
595 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
596 {
597 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
598 }
599
600 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
601 {
602 return pci_platform_pm ?
603 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
604 }
605
606 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
607 {
608 return pci_platform_pm ?
609 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
610 }
611
612 static inline bool platform_pci_need_resume(struct pci_dev *dev)
613 {
614 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
615 }
616
617 /**
618 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
619 * given PCI device
620 * @dev: PCI device to handle.
621 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
622 *
623 * RETURN VALUE:
624 * -EINVAL if the requested state is invalid.
625 * -EIO if device does not support PCI PM or its PM capabilities register has a
626 * wrong version, or device doesn't support the requested state.
627 * 0 if device already is in the requested state.
628 * 0 if device's power state has been successfully changed.
629 */
630 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
631 {
632 u16 pmcsr;
633 bool need_restore = false;
634
635 /* Check if we're already there */
636 if (dev->current_state == state)
637 return 0;
638
639 if (!dev->pm_cap)
640 return -EIO;
641
642 if (state < PCI_D0 || state > PCI_D3hot)
643 return -EINVAL;
644
645 /* Validate current state:
646 * Can enter D0 from any state, but if we can only go deeper
647 * to sleep if we're already in a low power state
648 */
649 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
650 && dev->current_state > state) {
651 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
652 dev->current_state, state);
653 return -EINVAL;
654 }
655
656 /* check if this device supports the desired state */
657 if ((state == PCI_D1 && !dev->d1_support)
658 || (state == PCI_D2 && !dev->d2_support))
659 return -EIO;
660
661 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
662
663 /* If we're (effectively) in D3, force entire word to 0.
664 * This doesn't affect PME_Status, disables PME_En, and
665 * sets PowerState to 0.
666 */
667 switch (dev->current_state) {
668 case PCI_D0:
669 case PCI_D1:
670 case PCI_D2:
671 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
672 pmcsr |= state;
673 break;
674 case PCI_D3hot:
675 case PCI_D3cold:
676 case PCI_UNKNOWN: /* Boot-up */
677 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
678 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
679 need_restore = true;
680 /* Fall-through: force to D0 */
681 default:
682 pmcsr = 0;
683 break;
684 }
685
686 /* enter specified state */
687 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
688
689 /* Mandatory power management transition delays */
690 /* see PCI PM 1.1 5.6.1 table 18 */
691 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
692 pci_dev_d3_sleep(dev);
693 else if (state == PCI_D2 || dev->current_state == PCI_D2)
694 udelay(PCI_PM_D2_DELAY);
695
696 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
697 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
698 if (dev->current_state != state && printk_ratelimit())
699 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
700 dev->current_state);
701
702 /*
703 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
704 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
705 * from D3hot to D0 _may_ perform an internal reset, thereby
706 * going to "D0 Uninitialized" rather than "D0 Initialized".
707 * For example, at least some versions of the 3c905B and the
708 * 3c556B exhibit this behaviour.
709 *
710 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
711 * devices in a D3hot state at boot. Consequently, we need to
712 * restore at least the BARs so that the device will be
713 * accessible to its driver.
714 */
715 if (need_restore)
716 pci_restore_bars(dev);
717
718 if (dev->bus->self)
719 pcie_aspm_pm_state_change(dev->bus->self);
720
721 return 0;
722 }
723
724 /**
725 * pci_update_current_state - Read power state of given device and cache it
726 * @dev: PCI device to handle.
727 * @state: State to cache in case the device doesn't have the PM capability
728 *
729 * The power state is read from the PMCSR register, which however is
730 * inaccessible in D3cold. The platform firmware is therefore queried first
731 * to detect accessibility of the register. In case the platform firmware
732 * reports an incorrect state or the device isn't power manageable by the
733 * platform at all, we try to detect D3cold by testing accessibility of the
734 * vendor ID in config space.
735 */
736 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
737 {
738 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
739 !pci_device_is_present(dev)) {
740 dev->current_state = PCI_D3cold;
741 } else if (dev->pm_cap) {
742 u16 pmcsr;
743
744 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
745 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
746 } else {
747 dev->current_state = state;
748 }
749 }
750
751 /**
752 * pci_power_up - Put the given device into D0 forcibly
753 * @dev: PCI device to power up
754 */
755 void pci_power_up(struct pci_dev *dev)
756 {
757 if (platform_pci_power_manageable(dev))
758 platform_pci_set_power_state(dev, PCI_D0);
759
760 pci_raw_set_power_state(dev, PCI_D0);
761 pci_update_current_state(dev, PCI_D0);
762 }
763
764 /**
765 * pci_platform_power_transition - Use platform to change device power state
766 * @dev: PCI device to handle.
767 * @state: State to put the device into.
768 */
769 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
770 {
771 int error;
772
773 if (platform_pci_power_manageable(dev)) {
774 error = platform_pci_set_power_state(dev, state);
775 if (!error)
776 pci_update_current_state(dev, state);
777 } else
778 error = -ENODEV;
779
780 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
781 dev->current_state = PCI_D0;
782
783 return error;
784 }
785
786 /**
787 * pci_wakeup - Wake up a PCI device
788 * @pci_dev: Device to handle.
789 * @ign: ignored parameter
790 */
791 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
792 {
793 pci_wakeup_event(pci_dev);
794 pm_request_resume(&pci_dev->dev);
795 return 0;
796 }
797
798 /**
799 * pci_wakeup_bus - Walk given bus and wake up devices on it
800 * @bus: Top bus of the subtree to walk.
801 */
802 static void pci_wakeup_bus(struct pci_bus *bus)
803 {
804 if (bus)
805 pci_walk_bus(bus, pci_wakeup, NULL);
806 }
807
808 /**
809 * __pci_start_power_transition - Start power transition of a PCI device
810 * @dev: PCI device to handle.
811 * @state: State to put the device into.
812 */
813 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
814 {
815 if (state == PCI_D0) {
816 pci_platform_power_transition(dev, PCI_D0);
817 /*
818 * Mandatory power management transition delays, see
819 * PCI Express Base Specification Revision 2.0 Section
820 * 6.6.1: Conventional Reset. Do not delay for
821 * devices powered on/off by corresponding bridge,
822 * because have already delayed for the bridge.
823 */
824 if (dev->runtime_d3cold) {
825 if (dev->d3cold_delay)
826 msleep(dev->d3cold_delay);
827 /*
828 * When powering on a bridge from D3cold, the
829 * whole hierarchy may be powered on into
830 * D0uninitialized state, resume them to give
831 * them a chance to suspend again
832 */
833 pci_wakeup_bus(dev->subordinate);
834 }
835 }
836 }
837
838 /**
839 * __pci_dev_set_current_state - Set current state of a PCI device
840 * @dev: Device to handle
841 * @data: pointer to state to be set
842 */
843 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
844 {
845 pci_power_t state = *(pci_power_t *)data;
846
847 dev->current_state = state;
848 return 0;
849 }
850
851 /**
852 * __pci_bus_set_current_state - Walk given bus and set current state of devices
853 * @bus: Top bus of the subtree to walk.
854 * @state: state to be set
855 */
856 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
857 {
858 if (bus)
859 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
860 }
861
862 /**
863 * __pci_complete_power_transition - Complete power transition of a PCI device
864 * @dev: PCI device to handle.
865 * @state: State to put the device into.
866 *
867 * This function should not be called directly by device drivers.
868 */
869 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
870 {
871 int ret;
872
873 if (state <= PCI_D0)
874 return -EINVAL;
875 ret = pci_platform_power_transition(dev, state);
876 /* Power off the bridge may power off the whole hierarchy */
877 if (!ret && state == PCI_D3cold)
878 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
879 return ret;
880 }
881 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
882
883 /**
884 * pci_set_power_state - Set the power state of a PCI device
885 * @dev: PCI device to handle.
886 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
887 *
888 * Transition a device to a new power state, using the platform firmware and/or
889 * the device's PCI PM registers.
890 *
891 * RETURN VALUE:
892 * -EINVAL if the requested state is invalid.
893 * -EIO if device does not support PCI PM or its PM capabilities register has a
894 * wrong version, or device doesn't support the requested state.
895 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
896 * 0 if device already is in the requested state.
897 * 0 if the transition is to D3 but D3 is not supported.
898 * 0 if device's power state has been successfully changed.
899 */
900 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
901 {
902 int error;
903
904 /* bound the state we're entering */
905 if (state > PCI_D3cold)
906 state = PCI_D3cold;
907 else if (state < PCI_D0)
908 state = PCI_D0;
909 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
910 /*
911 * If the device or the parent bridge do not support PCI PM,
912 * ignore the request if we're doing anything other than putting
913 * it into D0 (which would only happen on boot).
914 */
915 return 0;
916
917 /* Check if we're already there */
918 if (dev->current_state == state)
919 return 0;
920
921 __pci_start_power_transition(dev, state);
922
923 /* This device is quirked not to be put into D3, so
924 don't put it in D3 */
925 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
926 return 0;
927
928 /*
929 * To put device in D3cold, we put device into D3hot in native
930 * way, then put device into D3cold with platform ops
931 */
932 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
933 PCI_D3hot : state);
934
935 if (!__pci_complete_power_transition(dev, state))
936 error = 0;
937
938 return error;
939 }
940 EXPORT_SYMBOL(pci_set_power_state);
941
942 /**
943 * pci_choose_state - Choose the power state of a PCI device
944 * @dev: PCI device to be suspended
945 * @state: target sleep state for the whole system. This is the value
946 * that is passed to suspend() function.
947 *
948 * Returns PCI power state suitable for given device and given system
949 * message.
950 */
951
952 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
953 {
954 pci_power_t ret;
955
956 if (!dev->pm_cap)
957 return PCI_D0;
958
959 ret = platform_pci_choose_state(dev);
960 if (ret != PCI_POWER_ERROR)
961 return ret;
962
963 switch (state.event) {
964 case PM_EVENT_ON:
965 return PCI_D0;
966 case PM_EVENT_FREEZE:
967 case PM_EVENT_PRETHAW:
968 /* REVISIT both freeze and pre-thaw "should" use D0 */
969 case PM_EVENT_SUSPEND:
970 case PM_EVENT_HIBERNATE:
971 return PCI_D3hot;
972 default:
973 dev_info(&dev->dev, "unrecognized suspend event %d\n",
974 state.event);
975 BUG();
976 }
977 return PCI_D0;
978 }
979 EXPORT_SYMBOL(pci_choose_state);
980
981 #define PCI_EXP_SAVE_REGS 7
982
983 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
984 u16 cap, bool extended)
985 {
986 struct pci_cap_saved_state *tmp;
987
988 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
989 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
990 return tmp;
991 }
992 return NULL;
993 }
994
995 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
996 {
997 return _pci_find_saved_cap(dev, cap, false);
998 }
999
1000 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1001 {
1002 return _pci_find_saved_cap(dev, cap, true);
1003 }
1004
1005 static int pci_save_pcie_state(struct pci_dev *dev)
1006 {
1007 int i = 0;
1008 struct pci_cap_saved_state *save_state;
1009 u16 *cap;
1010
1011 if (!pci_is_pcie(dev))
1012 return 0;
1013
1014 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1015 if (!save_state) {
1016 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1017 return -ENOMEM;
1018 }
1019
1020 cap = (u16 *)&save_state->cap.data[0];
1021 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1022 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1023 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1024 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1025 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1026 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1027 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1028
1029 return 0;
1030 }
1031
1032 static void pci_restore_pcie_state(struct pci_dev *dev)
1033 {
1034 int i = 0;
1035 struct pci_cap_saved_state *save_state;
1036 u16 *cap;
1037
1038 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1039 if (!save_state)
1040 return;
1041
1042 cap = (u16 *)&save_state->cap.data[0];
1043 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1044 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1045 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1046 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1047 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1048 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1049 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1050 }
1051
1052
1053 static int pci_save_pcix_state(struct pci_dev *dev)
1054 {
1055 int pos;
1056 struct pci_cap_saved_state *save_state;
1057
1058 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1059 if (!pos)
1060 return 0;
1061
1062 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1063 if (!save_state) {
1064 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1065 return -ENOMEM;
1066 }
1067
1068 pci_read_config_word(dev, pos + PCI_X_CMD,
1069 (u16 *)save_state->cap.data);
1070
1071 return 0;
1072 }
1073
1074 static void pci_restore_pcix_state(struct pci_dev *dev)
1075 {
1076 int i = 0, pos;
1077 struct pci_cap_saved_state *save_state;
1078 u16 *cap;
1079
1080 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1081 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1082 if (!save_state || !pos)
1083 return;
1084 cap = (u16 *)&save_state->cap.data[0];
1085
1086 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1087 }
1088
1089
1090 /**
1091 * pci_save_state - save the PCI configuration space of a device before suspending
1092 * @dev: - PCI device that we're dealing with
1093 */
1094 int pci_save_state(struct pci_dev *dev)
1095 {
1096 int i;
1097 /* XXX: 100% dword access ok here? */
1098 for (i = 0; i < 16; i++)
1099 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1100 dev->state_saved = true;
1101
1102 i = pci_save_pcie_state(dev);
1103 if (i != 0)
1104 return i;
1105
1106 i = pci_save_pcix_state(dev);
1107 if (i != 0)
1108 return i;
1109
1110 return pci_save_vc_state(dev);
1111 }
1112 EXPORT_SYMBOL(pci_save_state);
1113
1114 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1115 u32 saved_val, int retry)
1116 {
1117 u32 val;
1118
1119 pci_read_config_dword(pdev, offset, &val);
1120 if (val == saved_val)
1121 return;
1122
1123 for (;;) {
1124 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1125 offset, val, saved_val);
1126 pci_write_config_dword(pdev, offset, saved_val);
1127 if (retry-- <= 0)
1128 return;
1129
1130 pci_read_config_dword(pdev, offset, &val);
1131 if (val == saved_val)
1132 return;
1133
1134 mdelay(1);
1135 }
1136 }
1137
1138 static void pci_restore_config_space_range(struct pci_dev *pdev,
1139 int start, int end, int retry)
1140 {
1141 int index;
1142
1143 for (index = end; index >= start; index--)
1144 pci_restore_config_dword(pdev, 4 * index,
1145 pdev->saved_config_space[index],
1146 retry);
1147 }
1148
1149 static void pci_restore_config_space(struct pci_dev *pdev)
1150 {
1151 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1152 pci_restore_config_space_range(pdev, 10, 15, 0);
1153 /* Restore BARs before the command register. */
1154 pci_restore_config_space_range(pdev, 4, 9, 10);
1155 pci_restore_config_space_range(pdev, 0, 3, 0);
1156 } else {
1157 pci_restore_config_space_range(pdev, 0, 15, 0);
1158 }
1159 }
1160
1161 /**
1162 * pci_restore_state - Restore the saved state of a PCI device
1163 * @dev: - PCI device that we're dealing with
1164 */
1165 void pci_restore_state(struct pci_dev *dev)
1166 {
1167 if (!dev->state_saved)
1168 return;
1169
1170 /* PCI Express register must be restored first */
1171 pci_restore_pcie_state(dev);
1172 pci_restore_pasid_state(dev);
1173 pci_restore_pri_state(dev);
1174 pci_restore_ats_state(dev);
1175 pci_restore_vc_state(dev);
1176
1177 pci_cleanup_aer_error_status_regs(dev);
1178
1179 pci_restore_config_space(dev);
1180
1181 pci_restore_pcix_state(dev);
1182 pci_restore_msi_state(dev);
1183
1184 /* Restore ACS and IOV configuration state */
1185 pci_enable_acs(dev);
1186 pci_restore_iov_state(dev);
1187
1188 dev->state_saved = false;
1189 }
1190 EXPORT_SYMBOL(pci_restore_state);
1191
1192 struct pci_saved_state {
1193 u32 config_space[16];
1194 struct pci_cap_saved_data cap[0];
1195 };
1196
1197 /**
1198 * pci_store_saved_state - Allocate and return an opaque struct containing
1199 * the device saved state.
1200 * @dev: PCI device that we're dealing with
1201 *
1202 * Return NULL if no state or error.
1203 */
1204 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1205 {
1206 struct pci_saved_state *state;
1207 struct pci_cap_saved_state *tmp;
1208 struct pci_cap_saved_data *cap;
1209 size_t size;
1210
1211 if (!dev->state_saved)
1212 return NULL;
1213
1214 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1215
1216 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1217 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1218
1219 state = kzalloc(size, GFP_KERNEL);
1220 if (!state)
1221 return NULL;
1222
1223 memcpy(state->config_space, dev->saved_config_space,
1224 sizeof(state->config_space));
1225
1226 cap = state->cap;
1227 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1228 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1229 memcpy(cap, &tmp->cap, len);
1230 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1231 }
1232 /* Empty cap_save terminates list */
1233
1234 return state;
1235 }
1236 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1237
1238 /**
1239 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1240 * @dev: PCI device that we're dealing with
1241 * @state: Saved state returned from pci_store_saved_state()
1242 */
1243 int pci_load_saved_state(struct pci_dev *dev,
1244 struct pci_saved_state *state)
1245 {
1246 struct pci_cap_saved_data *cap;
1247
1248 dev->state_saved = false;
1249
1250 if (!state)
1251 return 0;
1252
1253 memcpy(dev->saved_config_space, state->config_space,
1254 sizeof(state->config_space));
1255
1256 cap = state->cap;
1257 while (cap->size) {
1258 struct pci_cap_saved_state *tmp;
1259
1260 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1261 if (!tmp || tmp->cap.size != cap->size)
1262 return -EINVAL;
1263
1264 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1265 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1266 sizeof(struct pci_cap_saved_data) + cap->size);
1267 }
1268
1269 dev->state_saved = true;
1270 return 0;
1271 }
1272 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1273
1274 /**
1275 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1276 * and free the memory allocated for it.
1277 * @dev: PCI device that we're dealing with
1278 * @state: Pointer to saved state returned from pci_store_saved_state()
1279 */
1280 int pci_load_and_free_saved_state(struct pci_dev *dev,
1281 struct pci_saved_state **state)
1282 {
1283 int ret = pci_load_saved_state(dev, *state);
1284 kfree(*state);
1285 *state = NULL;
1286 return ret;
1287 }
1288 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1289
1290 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1291 {
1292 return pci_enable_resources(dev, bars);
1293 }
1294
1295 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1296 {
1297 int err;
1298 struct pci_dev *bridge;
1299 u16 cmd;
1300 u8 pin;
1301
1302 err = pci_set_power_state(dev, PCI_D0);
1303 if (err < 0 && err != -EIO)
1304 return err;
1305
1306 bridge = pci_upstream_bridge(dev);
1307 if (bridge)
1308 pcie_aspm_powersave_config_link(bridge);
1309
1310 err = pcibios_enable_device(dev, bars);
1311 if (err < 0)
1312 return err;
1313 pci_fixup_device(pci_fixup_enable, dev);
1314
1315 if (dev->msi_enabled || dev->msix_enabled)
1316 return 0;
1317
1318 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1319 if (pin) {
1320 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1321 if (cmd & PCI_COMMAND_INTX_DISABLE)
1322 pci_write_config_word(dev, PCI_COMMAND,
1323 cmd & ~PCI_COMMAND_INTX_DISABLE);
1324 }
1325
1326 return 0;
1327 }
1328
1329 /**
1330 * pci_reenable_device - Resume abandoned device
1331 * @dev: PCI device to be resumed
1332 *
1333 * Note this function is a backend of pci_default_resume and is not supposed
1334 * to be called by normal code, write proper resume handler and use it instead.
1335 */
1336 int pci_reenable_device(struct pci_dev *dev)
1337 {
1338 if (pci_is_enabled(dev))
1339 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1340 return 0;
1341 }
1342 EXPORT_SYMBOL(pci_reenable_device);
1343
1344 static void pci_enable_bridge(struct pci_dev *dev)
1345 {
1346 struct pci_dev *bridge;
1347 int retval;
1348
1349 bridge = pci_upstream_bridge(dev);
1350 if (bridge)
1351 pci_enable_bridge(bridge);
1352
1353 if (pci_is_enabled(dev)) {
1354 if (!dev->is_busmaster)
1355 pci_set_master(dev);
1356 return;
1357 }
1358
1359 retval = pci_enable_device(dev);
1360 if (retval)
1361 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1362 retval);
1363 pci_set_master(dev);
1364 }
1365
1366 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1367 {
1368 struct pci_dev *bridge;
1369 int err;
1370 int i, bars = 0;
1371
1372 /*
1373 * Power state could be unknown at this point, either due to a fresh
1374 * boot or a device removal call. So get the current power state
1375 * so that things like MSI message writing will behave as expected
1376 * (e.g. if the device really is in D0 at enable time).
1377 */
1378 if (dev->pm_cap) {
1379 u16 pmcsr;
1380 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1381 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1382 }
1383
1384 if (atomic_inc_return(&dev->enable_cnt) > 1)
1385 return 0; /* already enabled */
1386
1387 bridge = pci_upstream_bridge(dev);
1388 if (bridge)
1389 pci_enable_bridge(bridge);
1390
1391 /* only skip sriov related */
1392 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1393 if (dev->resource[i].flags & flags)
1394 bars |= (1 << i);
1395 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1396 if (dev->resource[i].flags & flags)
1397 bars |= (1 << i);
1398
1399 err = do_pci_enable_device(dev, bars);
1400 if (err < 0)
1401 atomic_dec(&dev->enable_cnt);
1402 return err;
1403 }
1404
1405 /**
1406 * pci_enable_device_io - Initialize a device for use with IO space
1407 * @dev: PCI device to be initialized
1408 *
1409 * Initialize device before it's used by a driver. Ask low-level code
1410 * to enable I/O resources. Wake up the device if it was suspended.
1411 * Beware, this function can fail.
1412 */
1413 int pci_enable_device_io(struct pci_dev *dev)
1414 {
1415 return pci_enable_device_flags(dev, IORESOURCE_IO);
1416 }
1417 EXPORT_SYMBOL(pci_enable_device_io);
1418
1419 /**
1420 * pci_enable_device_mem - Initialize a device for use with Memory space
1421 * @dev: PCI device to be initialized
1422 *
1423 * Initialize device before it's used by a driver. Ask low-level code
1424 * to enable Memory resources. Wake up the device if it was suspended.
1425 * Beware, this function can fail.
1426 */
1427 int pci_enable_device_mem(struct pci_dev *dev)
1428 {
1429 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1430 }
1431 EXPORT_SYMBOL(pci_enable_device_mem);
1432
1433 /**
1434 * pci_enable_device - Initialize device before it's used by a driver.
1435 * @dev: PCI device to be initialized
1436 *
1437 * Initialize device before it's used by a driver. Ask low-level code
1438 * to enable I/O and memory. Wake up the device if it was suspended.
1439 * Beware, this function can fail.
1440 *
1441 * Note we don't actually enable the device many times if we call
1442 * this function repeatedly (we just increment the count).
1443 */
1444 int pci_enable_device(struct pci_dev *dev)
1445 {
1446 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1447 }
1448 EXPORT_SYMBOL(pci_enable_device);
1449
1450 /*
1451 * Managed PCI resources. This manages device on/off, intx/msi/msix
1452 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1453 * there's no need to track it separately. pci_devres is initialized
1454 * when a device is enabled using managed PCI device enable interface.
1455 */
1456 struct pci_devres {
1457 unsigned int enabled:1;
1458 unsigned int pinned:1;
1459 unsigned int orig_intx:1;
1460 unsigned int restore_intx:1;
1461 u32 region_mask;
1462 };
1463
1464 static void pcim_release(struct device *gendev, void *res)
1465 {
1466 struct pci_dev *dev = to_pci_dev(gendev);
1467 struct pci_devres *this = res;
1468 int i;
1469
1470 if (dev->msi_enabled)
1471 pci_disable_msi(dev);
1472 if (dev->msix_enabled)
1473 pci_disable_msix(dev);
1474
1475 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1476 if (this->region_mask & (1 << i))
1477 pci_release_region(dev, i);
1478
1479 if (this->restore_intx)
1480 pci_intx(dev, this->orig_intx);
1481
1482 if (this->enabled && !this->pinned)
1483 pci_disable_device(dev);
1484 }
1485
1486 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1487 {
1488 struct pci_devres *dr, *new_dr;
1489
1490 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1491 if (dr)
1492 return dr;
1493
1494 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1495 if (!new_dr)
1496 return NULL;
1497 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1498 }
1499
1500 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1501 {
1502 if (pci_is_managed(pdev))
1503 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1504 return NULL;
1505 }
1506
1507 /**
1508 * pcim_enable_device - Managed pci_enable_device()
1509 * @pdev: PCI device to be initialized
1510 *
1511 * Managed pci_enable_device().
1512 */
1513 int pcim_enable_device(struct pci_dev *pdev)
1514 {
1515 struct pci_devres *dr;
1516 int rc;
1517
1518 dr = get_pci_dr(pdev);
1519 if (unlikely(!dr))
1520 return -ENOMEM;
1521 if (dr->enabled)
1522 return 0;
1523
1524 rc = pci_enable_device(pdev);
1525 if (!rc) {
1526 pdev->is_managed = 1;
1527 dr->enabled = 1;
1528 }
1529 return rc;
1530 }
1531 EXPORT_SYMBOL(pcim_enable_device);
1532
1533 /**
1534 * pcim_pin_device - Pin managed PCI device
1535 * @pdev: PCI device to pin
1536 *
1537 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1538 * driver detach. @pdev must have been enabled with
1539 * pcim_enable_device().
1540 */
1541 void pcim_pin_device(struct pci_dev *pdev)
1542 {
1543 struct pci_devres *dr;
1544
1545 dr = find_pci_dr(pdev);
1546 WARN_ON(!dr || !dr->enabled);
1547 if (dr)
1548 dr->pinned = 1;
1549 }
1550 EXPORT_SYMBOL(pcim_pin_device);
1551
1552 /*
1553 * pcibios_add_device - provide arch specific hooks when adding device dev
1554 * @dev: the PCI device being added
1555 *
1556 * Permits the platform to provide architecture specific functionality when
1557 * devices are added. This is the default implementation. Architecture
1558 * implementations can override this.
1559 */
1560 int __weak pcibios_add_device(struct pci_dev *dev)
1561 {
1562 return 0;
1563 }
1564
1565 /**
1566 * pcibios_release_device - provide arch specific hooks when releasing device dev
1567 * @dev: the PCI device being released
1568 *
1569 * Permits the platform to provide architecture specific functionality when
1570 * devices are released. This is the default implementation. Architecture
1571 * implementations can override this.
1572 */
1573 void __weak pcibios_release_device(struct pci_dev *dev) {}
1574
1575 /**
1576 * pcibios_disable_device - disable arch specific PCI resources for device dev
1577 * @dev: the PCI device to disable
1578 *
1579 * Disables architecture specific PCI resources for the device. This
1580 * is the default implementation. Architecture implementations can
1581 * override this.
1582 */
1583 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1584
1585 /**
1586 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1587 * @irq: ISA IRQ to penalize
1588 * @active: IRQ active or not
1589 *
1590 * Permits the platform to provide architecture-specific functionality when
1591 * penalizing ISA IRQs. This is the default implementation. Architecture
1592 * implementations can override this.
1593 */
1594 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1595
1596 static void do_pci_disable_device(struct pci_dev *dev)
1597 {
1598 u16 pci_command;
1599
1600 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1601 if (pci_command & PCI_COMMAND_MASTER) {
1602 pci_command &= ~PCI_COMMAND_MASTER;
1603 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1604 }
1605
1606 pcibios_disable_device(dev);
1607 }
1608
1609 /**
1610 * pci_disable_enabled_device - Disable device without updating enable_cnt
1611 * @dev: PCI device to disable
1612 *
1613 * NOTE: This function is a backend of PCI power management routines and is
1614 * not supposed to be called drivers.
1615 */
1616 void pci_disable_enabled_device(struct pci_dev *dev)
1617 {
1618 if (pci_is_enabled(dev))
1619 do_pci_disable_device(dev);
1620 }
1621
1622 /**
1623 * pci_disable_device - Disable PCI device after use
1624 * @dev: PCI device to be disabled
1625 *
1626 * Signal to the system that the PCI device is not in use by the system
1627 * anymore. This only involves disabling PCI bus-mastering, if active.
1628 *
1629 * Note we don't actually disable the device until all callers of
1630 * pci_enable_device() have called pci_disable_device().
1631 */
1632 void pci_disable_device(struct pci_dev *dev)
1633 {
1634 struct pci_devres *dr;
1635
1636 dr = find_pci_dr(dev);
1637 if (dr)
1638 dr->enabled = 0;
1639
1640 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1641 "disabling already-disabled device");
1642
1643 if (atomic_dec_return(&dev->enable_cnt) != 0)
1644 return;
1645
1646 do_pci_disable_device(dev);
1647
1648 dev->is_busmaster = 0;
1649 }
1650 EXPORT_SYMBOL(pci_disable_device);
1651
1652 /**
1653 * pcibios_set_pcie_reset_state - set reset state for device dev
1654 * @dev: the PCIe device reset
1655 * @state: Reset state to enter into
1656 *
1657 *
1658 * Sets the PCIe reset state for the device. This is the default
1659 * implementation. Architecture implementations can override this.
1660 */
1661 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1662 enum pcie_reset_state state)
1663 {
1664 return -EINVAL;
1665 }
1666
1667 /**
1668 * pci_set_pcie_reset_state - set reset state for device dev
1669 * @dev: the PCIe device reset
1670 * @state: Reset state to enter into
1671 *
1672 *
1673 * Sets the PCI reset state for the device.
1674 */
1675 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1676 {
1677 return pcibios_set_pcie_reset_state(dev, state);
1678 }
1679 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1680
1681 /**
1682 * pci_check_pme_status - Check if given device has generated PME.
1683 * @dev: Device to check.
1684 *
1685 * Check the PME status of the device and if set, clear it and clear PME enable
1686 * (if set). Return 'true' if PME status and PME enable were both set or
1687 * 'false' otherwise.
1688 */
1689 bool pci_check_pme_status(struct pci_dev *dev)
1690 {
1691 int pmcsr_pos;
1692 u16 pmcsr;
1693 bool ret = false;
1694
1695 if (!dev->pm_cap)
1696 return false;
1697
1698 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1699 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1700 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1701 return false;
1702
1703 /* Clear PME status. */
1704 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1705 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1706 /* Disable PME to avoid interrupt flood. */
1707 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1708 ret = true;
1709 }
1710
1711 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1712
1713 return ret;
1714 }
1715
1716 /**
1717 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1718 * @dev: Device to handle.
1719 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1720 *
1721 * Check if @dev has generated PME and queue a resume request for it in that
1722 * case.
1723 */
1724 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1725 {
1726 if (pme_poll_reset && dev->pme_poll)
1727 dev->pme_poll = false;
1728
1729 if (pci_check_pme_status(dev)) {
1730 pci_wakeup_event(dev);
1731 pm_request_resume(&dev->dev);
1732 }
1733 return 0;
1734 }
1735
1736 /**
1737 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1738 * @bus: Top bus of the subtree to walk.
1739 */
1740 void pci_pme_wakeup_bus(struct pci_bus *bus)
1741 {
1742 if (bus)
1743 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1744 }
1745
1746
1747 /**
1748 * pci_pme_capable - check the capability of PCI device to generate PME#
1749 * @dev: PCI device to handle.
1750 * @state: PCI state from which device will issue PME#.
1751 */
1752 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1753 {
1754 if (!dev->pm_cap)
1755 return false;
1756
1757 return !!(dev->pme_support & (1 << state));
1758 }
1759 EXPORT_SYMBOL(pci_pme_capable);
1760
1761 static void pci_pme_list_scan(struct work_struct *work)
1762 {
1763 struct pci_pme_device *pme_dev, *n;
1764
1765 mutex_lock(&pci_pme_list_mutex);
1766 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1767 if (pme_dev->dev->pme_poll) {
1768 struct pci_dev *bridge;
1769
1770 bridge = pme_dev->dev->bus->self;
1771 /*
1772 * If bridge is in low power state, the
1773 * configuration space of subordinate devices
1774 * may be not accessible
1775 */
1776 if (bridge && bridge->current_state != PCI_D0)
1777 continue;
1778 pci_pme_wakeup(pme_dev->dev, NULL);
1779 } else {
1780 list_del(&pme_dev->list);
1781 kfree(pme_dev);
1782 }
1783 }
1784 if (!list_empty(&pci_pme_list))
1785 queue_delayed_work(system_freezable_wq, &pci_pme_work,
1786 msecs_to_jiffies(PME_TIMEOUT));
1787 mutex_unlock(&pci_pme_list_mutex);
1788 }
1789
1790 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1791 {
1792 u16 pmcsr;
1793
1794 if (!dev->pme_support)
1795 return;
1796
1797 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1798 /* Clear PME_Status by writing 1 to it and enable PME# */
1799 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1800 if (!enable)
1801 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1802
1803 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1804 }
1805
1806 /**
1807 * pci_pme_restore - Restore PME configuration after config space restore.
1808 * @dev: PCI device to update.
1809 */
1810 void pci_pme_restore(struct pci_dev *dev)
1811 {
1812 u16 pmcsr;
1813
1814 if (!dev->pme_support)
1815 return;
1816
1817 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1818 if (dev->wakeup_prepared) {
1819 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
1820 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
1821 } else {
1822 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1823 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1824 }
1825 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1826 }
1827
1828 /**
1829 * pci_pme_active - enable or disable PCI device's PME# function
1830 * @dev: PCI device to handle.
1831 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1832 *
1833 * The caller must verify that the device is capable of generating PME# before
1834 * calling this function with @enable equal to 'true'.
1835 */
1836 void pci_pme_active(struct pci_dev *dev, bool enable)
1837 {
1838 __pci_pme_active(dev, enable);
1839
1840 /*
1841 * PCI (as opposed to PCIe) PME requires that the device have
1842 * its PME# line hooked up correctly. Not all hardware vendors
1843 * do this, so the PME never gets delivered and the device
1844 * remains asleep. The easiest way around this is to
1845 * periodically walk the list of suspended devices and check
1846 * whether any have their PME flag set. The assumption is that
1847 * we'll wake up often enough anyway that this won't be a huge
1848 * hit, and the power savings from the devices will still be a
1849 * win.
1850 *
1851 * Although PCIe uses in-band PME message instead of PME# line
1852 * to report PME, PME does not work for some PCIe devices in
1853 * reality. For example, there are devices that set their PME
1854 * status bits, but don't really bother to send a PME message;
1855 * there are PCI Express Root Ports that don't bother to
1856 * trigger interrupts when they receive PME messages from the
1857 * devices below. So PME poll is used for PCIe devices too.
1858 */
1859
1860 if (dev->pme_poll) {
1861 struct pci_pme_device *pme_dev;
1862 if (enable) {
1863 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1864 GFP_KERNEL);
1865 if (!pme_dev) {
1866 dev_warn(&dev->dev, "can't enable PME#\n");
1867 return;
1868 }
1869 pme_dev->dev = dev;
1870 mutex_lock(&pci_pme_list_mutex);
1871 list_add(&pme_dev->list, &pci_pme_list);
1872 if (list_is_singular(&pci_pme_list))
1873 queue_delayed_work(system_freezable_wq,
1874 &pci_pme_work,
1875 msecs_to_jiffies(PME_TIMEOUT));
1876 mutex_unlock(&pci_pme_list_mutex);
1877 } else {
1878 mutex_lock(&pci_pme_list_mutex);
1879 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1880 if (pme_dev->dev == dev) {
1881 list_del(&pme_dev->list);
1882 kfree(pme_dev);
1883 break;
1884 }
1885 }
1886 mutex_unlock(&pci_pme_list_mutex);
1887 }
1888 }
1889
1890 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1891 }
1892 EXPORT_SYMBOL(pci_pme_active);
1893
1894 /**
1895 * pci_enable_wake - enable PCI device as wakeup event source
1896 * @dev: PCI device affected
1897 * @state: PCI state from which device will issue wakeup events
1898 * @enable: True to enable event generation; false to disable
1899 *
1900 * This enables the device as a wakeup event source, or disables it.
1901 * When such events involves platform-specific hooks, those hooks are
1902 * called automatically by this routine.
1903 *
1904 * Devices with legacy power management (no standard PCI PM capabilities)
1905 * always require such platform hooks.
1906 *
1907 * RETURN VALUE:
1908 * 0 is returned on success
1909 * -EINVAL is returned if device is not supposed to wake up the system
1910 * Error code depending on the platform is returned if both the platform and
1911 * the native mechanism fail to enable the generation of wake-up events
1912 */
1913 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1914 {
1915 int ret = 0;
1916
1917 /*
1918 * Bridges can only signal wakeup on behalf of subordinate devices,
1919 * but that is set up elsewhere, so skip them.
1920 */
1921 if (pci_has_subordinate(dev))
1922 return 0;
1923
1924 /* Don't do the same thing twice in a row for one device. */
1925 if (!!enable == !!dev->wakeup_prepared)
1926 return 0;
1927
1928 /*
1929 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1930 * Anderson we should be doing PME# wake enable followed by ACPI wake
1931 * enable. To disable wake-up we call the platform first, for symmetry.
1932 */
1933
1934 if (enable) {
1935 int error;
1936
1937 if (pci_pme_capable(dev, state))
1938 pci_pme_active(dev, true);
1939 else
1940 ret = 1;
1941 error = platform_pci_set_wakeup(dev, true);
1942 if (ret)
1943 ret = error;
1944 if (!ret)
1945 dev->wakeup_prepared = true;
1946 } else {
1947 platform_pci_set_wakeup(dev, false);
1948 pci_pme_active(dev, false);
1949 dev->wakeup_prepared = false;
1950 }
1951
1952 return ret;
1953 }
1954 EXPORT_SYMBOL(pci_enable_wake);
1955
1956 /**
1957 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1958 * @dev: PCI device to prepare
1959 * @enable: True to enable wake-up event generation; false to disable
1960 *
1961 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1962 * and this function allows them to set that up cleanly - pci_enable_wake()
1963 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1964 * ordering constraints.
1965 *
1966 * This function only returns error code if the device is not capable of
1967 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1968 * enable wake-up power for it.
1969 */
1970 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1971 {
1972 return pci_pme_capable(dev, PCI_D3cold) ?
1973 pci_enable_wake(dev, PCI_D3cold, enable) :
1974 pci_enable_wake(dev, PCI_D3hot, enable);
1975 }
1976 EXPORT_SYMBOL(pci_wake_from_d3);
1977
1978 /**
1979 * pci_target_state - find an appropriate low power state for a given PCI dev
1980 * @dev: PCI device
1981 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
1982 *
1983 * Use underlying platform code to find a supported low power state for @dev.
1984 * If the platform can't manage @dev, return the deepest state from which it
1985 * can generate wake events, based on any available PME info.
1986 */
1987 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
1988 {
1989 pci_power_t target_state = PCI_D3hot;
1990
1991 if (platform_pci_power_manageable(dev)) {
1992 /*
1993 * Call the platform to choose the target state of the device
1994 * and enable wake-up from this state if supported.
1995 */
1996 pci_power_t state = platform_pci_choose_state(dev);
1997
1998 switch (state) {
1999 case PCI_POWER_ERROR:
2000 case PCI_UNKNOWN:
2001 break;
2002 case PCI_D1:
2003 case PCI_D2:
2004 if (pci_no_d1d2(dev))
2005 break;
2006 default:
2007 target_state = state;
2008 }
2009
2010 return target_state;
2011 }
2012
2013 if (!dev->pm_cap)
2014 target_state = PCI_D0;
2015
2016 /*
2017 * If the device is in D3cold even though it's not power-manageable by
2018 * the platform, it may have been powered down by non-standard means.
2019 * Best to let it slumber.
2020 */
2021 if (dev->current_state == PCI_D3cold)
2022 target_state = PCI_D3cold;
2023
2024 if (wakeup) {
2025 /*
2026 * Find the deepest state from which the device can generate
2027 * wake-up events, make it the target state and enable device
2028 * to generate PME#.
2029 */
2030 if (dev->pme_support) {
2031 while (target_state
2032 && !(dev->pme_support & (1 << target_state)))
2033 target_state--;
2034 }
2035 }
2036
2037 return target_state;
2038 }
2039
2040 /**
2041 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2042 * @dev: Device to handle.
2043 *
2044 * Choose the power state appropriate for the device depending on whether
2045 * it can wake up the system and/or is power manageable by the platform
2046 * (PCI_D3hot is the default) and put the device into that state.
2047 */
2048 int pci_prepare_to_sleep(struct pci_dev *dev)
2049 {
2050 bool wakeup = device_may_wakeup(&dev->dev);
2051 pci_power_t target_state = pci_target_state(dev, wakeup);
2052 int error;
2053
2054 if (target_state == PCI_POWER_ERROR)
2055 return -EIO;
2056
2057 pci_enable_wake(dev, target_state, wakeup);
2058
2059 error = pci_set_power_state(dev, target_state);
2060
2061 if (error)
2062 pci_enable_wake(dev, target_state, false);
2063
2064 return error;
2065 }
2066 EXPORT_SYMBOL(pci_prepare_to_sleep);
2067
2068 /**
2069 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2070 * @dev: Device to handle.
2071 *
2072 * Disable device's system wake-up capability and put it into D0.
2073 */
2074 int pci_back_from_sleep(struct pci_dev *dev)
2075 {
2076 pci_enable_wake(dev, PCI_D0, false);
2077 return pci_set_power_state(dev, PCI_D0);
2078 }
2079 EXPORT_SYMBOL(pci_back_from_sleep);
2080
2081 /**
2082 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2083 * @dev: PCI device being suspended.
2084 *
2085 * Prepare @dev to generate wake-up events at run time and put it into a low
2086 * power state.
2087 */
2088 int pci_finish_runtime_suspend(struct pci_dev *dev)
2089 {
2090 pci_power_t target_state;
2091 int error;
2092
2093 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2094 if (target_state == PCI_POWER_ERROR)
2095 return -EIO;
2096
2097 dev->runtime_d3cold = target_state == PCI_D3cold;
2098
2099 pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2100
2101 error = pci_set_power_state(dev, target_state);
2102
2103 if (error) {
2104 pci_enable_wake(dev, target_state, false);
2105 dev->runtime_d3cold = false;
2106 }
2107
2108 return error;
2109 }
2110
2111 /**
2112 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2113 * @dev: Device to check.
2114 *
2115 * Return true if the device itself is capable of generating wake-up events
2116 * (through the platform or using the native PCIe PME) or if the device supports
2117 * PME and one of its upstream bridges can generate wake-up events.
2118 */
2119 bool pci_dev_run_wake(struct pci_dev *dev)
2120 {
2121 struct pci_bus *bus = dev->bus;
2122
2123 if (device_can_wakeup(&dev->dev))
2124 return true;
2125
2126 if (!dev->pme_support)
2127 return false;
2128
2129 /* PME-capable in principle, but not from the target power state */
2130 if (!pci_pme_capable(dev, pci_target_state(dev, false)))
2131 return false;
2132
2133 while (bus->parent) {
2134 struct pci_dev *bridge = bus->self;
2135
2136 if (device_can_wakeup(&bridge->dev))
2137 return true;
2138
2139 bus = bus->parent;
2140 }
2141
2142 /* We have reached the root bus. */
2143 if (bus->bridge)
2144 return device_can_wakeup(bus->bridge);
2145
2146 return false;
2147 }
2148 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2149
2150 /**
2151 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2152 * @pci_dev: Device to check.
2153 *
2154 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2155 * reconfigured due to wakeup settings difference between system and runtime
2156 * suspend and the current power state of it is suitable for the upcoming
2157 * (system) transition.
2158 *
2159 * If the device is not configured for system wakeup, disable PME for it before
2160 * returning 'true' to prevent it from waking up the system unnecessarily.
2161 */
2162 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2163 {
2164 struct device *dev = &pci_dev->dev;
2165 bool wakeup = device_may_wakeup(dev);
2166
2167 if (!pm_runtime_suspended(dev)
2168 || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2169 || platform_pci_need_resume(pci_dev))
2170 return false;
2171
2172 /*
2173 * At this point the device is good to go unless it's been configured
2174 * to generate PME at the runtime suspend time, but it is not supposed
2175 * to wake up the system. In that case, simply disable PME for it
2176 * (it will have to be re-enabled on exit from system resume).
2177 *
2178 * If the device's power state is D3cold and the platform check above
2179 * hasn't triggered, the device's configuration is suitable and we don't
2180 * need to manipulate it at all.
2181 */
2182 spin_lock_irq(&dev->power.lock);
2183
2184 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2185 !wakeup)
2186 __pci_pme_active(pci_dev, false);
2187
2188 spin_unlock_irq(&dev->power.lock);
2189 return true;
2190 }
2191
2192 /**
2193 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2194 * @pci_dev: Device to handle.
2195 *
2196 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2197 * it might have been disabled during the prepare phase of system suspend if
2198 * the device was not configured for system wakeup.
2199 */
2200 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2201 {
2202 struct device *dev = &pci_dev->dev;
2203
2204 if (!pci_dev_run_wake(pci_dev))
2205 return;
2206
2207 spin_lock_irq(&dev->power.lock);
2208
2209 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2210 __pci_pme_active(pci_dev, true);
2211
2212 spin_unlock_irq(&dev->power.lock);
2213 }
2214
2215 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2216 {
2217 struct device *dev = &pdev->dev;
2218 struct device *parent = dev->parent;
2219
2220 if (parent)
2221 pm_runtime_get_sync(parent);
2222 pm_runtime_get_noresume(dev);
2223 /*
2224 * pdev->current_state is set to PCI_D3cold during suspending,
2225 * so wait until suspending completes
2226 */
2227 pm_runtime_barrier(dev);
2228 /*
2229 * Only need to resume devices in D3cold, because config
2230 * registers are still accessible for devices suspended but
2231 * not in D3cold.
2232 */
2233 if (pdev->current_state == PCI_D3cold)
2234 pm_runtime_resume(dev);
2235 }
2236
2237 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2238 {
2239 struct device *dev = &pdev->dev;
2240 struct device *parent = dev->parent;
2241
2242 pm_runtime_put(dev);
2243 if (parent)
2244 pm_runtime_put_sync(parent);
2245 }
2246
2247 /**
2248 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2249 * @bridge: Bridge to check
2250 *
2251 * This function checks if it is possible to move the bridge to D3.
2252 * Currently we only allow D3 for recent enough PCIe ports.
2253 */
2254 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2255 {
2256 unsigned int year;
2257
2258 if (!pci_is_pcie(bridge))
2259 return false;
2260
2261 switch (pci_pcie_type(bridge)) {
2262 case PCI_EXP_TYPE_ROOT_PORT:
2263 case PCI_EXP_TYPE_UPSTREAM:
2264 case PCI_EXP_TYPE_DOWNSTREAM:
2265 if (pci_bridge_d3_disable)
2266 return false;
2267
2268 /*
2269 * Hotplug interrupts cannot be delivered if the link is down,
2270 * so parents of a hotplug port must stay awake. In addition,
2271 * hotplug ports handled by firmware in System Management Mode
2272 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2273 * For simplicity, disallow in general for now.
2274 */
2275 if (bridge->is_hotplug_bridge)
2276 return false;
2277
2278 if (pci_bridge_d3_force)
2279 return true;
2280
2281 /*
2282 * It should be safe to put PCIe ports from 2015 or newer
2283 * to D3.
2284 */
2285 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2286 year >= 2015) {
2287 return true;
2288 }
2289 break;
2290 }
2291
2292 return false;
2293 }
2294
2295 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2296 {
2297 bool *d3cold_ok = data;
2298
2299 if (/* The device needs to be allowed to go D3cold ... */
2300 dev->no_d3cold || !dev->d3cold_allowed ||
2301
2302 /* ... and if it is wakeup capable to do so from D3cold. */
2303 (device_may_wakeup(&dev->dev) &&
2304 !pci_pme_capable(dev, PCI_D3cold)) ||
2305
2306 /* If it is a bridge it must be allowed to go to D3. */
2307 !pci_power_manageable(dev))
2308
2309 *d3cold_ok = false;
2310
2311 return !*d3cold_ok;
2312 }
2313
2314 /*
2315 * pci_bridge_d3_update - Update bridge D3 capabilities
2316 * @dev: PCI device which is changed
2317 *
2318 * Update upstream bridge PM capabilities accordingly depending on if the
2319 * device PM configuration was changed or the device is being removed. The
2320 * change is also propagated upstream.
2321 */
2322 void pci_bridge_d3_update(struct pci_dev *dev)
2323 {
2324 bool remove = !device_is_registered(&dev->dev);
2325 struct pci_dev *bridge;
2326 bool d3cold_ok = true;
2327
2328 bridge = pci_upstream_bridge(dev);
2329 if (!bridge || !pci_bridge_d3_possible(bridge))
2330 return;
2331
2332 /*
2333 * If D3 is currently allowed for the bridge, removing one of its
2334 * children won't change that.
2335 */
2336 if (remove && bridge->bridge_d3)
2337 return;
2338
2339 /*
2340 * If D3 is currently allowed for the bridge and a child is added or
2341 * changed, disallowance of D3 can only be caused by that child, so
2342 * we only need to check that single device, not any of its siblings.
2343 *
2344 * If D3 is currently not allowed for the bridge, checking the device
2345 * first may allow us to skip checking its siblings.
2346 */
2347 if (!remove)
2348 pci_dev_check_d3cold(dev, &d3cold_ok);
2349
2350 /*
2351 * If D3 is currently not allowed for the bridge, this may be caused
2352 * either by the device being changed/removed or any of its siblings,
2353 * so we need to go through all children to find out if one of them
2354 * continues to block D3.
2355 */
2356 if (d3cold_ok && !bridge->bridge_d3)
2357 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2358 &d3cold_ok);
2359
2360 if (bridge->bridge_d3 != d3cold_ok) {
2361 bridge->bridge_d3 = d3cold_ok;
2362 /* Propagate change to upstream bridges */
2363 pci_bridge_d3_update(bridge);
2364 }
2365 }
2366
2367 /**
2368 * pci_d3cold_enable - Enable D3cold for device
2369 * @dev: PCI device to handle
2370 *
2371 * This function can be used in drivers to enable D3cold from the device
2372 * they handle. It also updates upstream PCI bridge PM capabilities
2373 * accordingly.
2374 */
2375 void pci_d3cold_enable(struct pci_dev *dev)
2376 {
2377 if (dev->no_d3cold) {
2378 dev->no_d3cold = false;
2379 pci_bridge_d3_update(dev);
2380 }
2381 }
2382 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2383
2384 /**
2385 * pci_d3cold_disable - Disable D3cold for device
2386 * @dev: PCI device to handle
2387 *
2388 * This function can be used in drivers to disable D3cold from the device
2389 * they handle. It also updates upstream PCI bridge PM capabilities
2390 * accordingly.
2391 */
2392 void pci_d3cold_disable(struct pci_dev *dev)
2393 {
2394 if (!dev->no_d3cold) {
2395 dev->no_d3cold = true;
2396 pci_bridge_d3_update(dev);
2397 }
2398 }
2399 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2400
2401 /**
2402 * pci_pm_init - Initialize PM functions of given PCI device
2403 * @dev: PCI device to handle.
2404 */
2405 void pci_pm_init(struct pci_dev *dev)
2406 {
2407 int pm;
2408 u16 pmc;
2409
2410 pm_runtime_forbid(&dev->dev);
2411 pm_runtime_set_active(&dev->dev);
2412 pm_runtime_enable(&dev->dev);
2413 device_enable_async_suspend(&dev->dev);
2414 dev->wakeup_prepared = false;
2415
2416 dev->pm_cap = 0;
2417 dev->pme_support = 0;
2418
2419 /* find PCI PM capability in list */
2420 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2421 if (!pm)
2422 return;
2423 /* Check device's ability to generate PME# */
2424 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2425
2426 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2427 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2428 pmc & PCI_PM_CAP_VER_MASK);
2429 return;
2430 }
2431
2432 dev->pm_cap = pm;
2433 dev->d3_delay = PCI_PM_D3_WAIT;
2434 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2435 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2436 dev->d3cold_allowed = true;
2437
2438 dev->d1_support = false;
2439 dev->d2_support = false;
2440 if (!pci_no_d1d2(dev)) {
2441 if (pmc & PCI_PM_CAP_D1)
2442 dev->d1_support = true;
2443 if (pmc & PCI_PM_CAP_D2)
2444 dev->d2_support = true;
2445
2446 if (dev->d1_support || dev->d2_support)
2447 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2448 dev->d1_support ? " D1" : "",
2449 dev->d2_support ? " D2" : "");
2450 }
2451
2452 pmc &= PCI_PM_CAP_PME_MASK;
2453 if (pmc) {
2454 dev_printk(KERN_DEBUG, &dev->dev,
2455 "PME# supported from%s%s%s%s%s\n",
2456 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2457 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2458 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2459 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2460 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2461 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2462 dev->pme_poll = true;
2463 /*
2464 * Make device's PM flags reflect the wake-up capability, but
2465 * let the user space enable it to wake up the system as needed.
2466 */
2467 device_set_wakeup_capable(&dev->dev, true);
2468 /* Disable the PME# generation functionality */
2469 pci_pme_active(dev, false);
2470 }
2471 }
2472
2473 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2474 {
2475 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2476
2477 switch (prop) {
2478 case PCI_EA_P_MEM:
2479 case PCI_EA_P_VF_MEM:
2480 flags |= IORESOURCE_MEM;
2481 break;
2482 case PCI_EA_P_MEM_PREFETCH:
2483 case PCI_EA_P_VF_MEM_PREFETCH:
2484 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2485 break;
2486 case PCI_EA_P_IO:
2487 flags |= IORESOURCE_IO;
2488 break;
2489 default:
2490 return 0;
2491 }
2492
2493 return flags;
2494 }
2495
2496 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2497 u8 prop)
2498 {
2499 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2500 return &dev->resource[bei];
2501 #ifdef CONFIG_PCI_IOV
2502 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2503 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2504 return &dev->resource[PCI_IOV_RESOURCES +
2505 bei - PCI_EA_BEI_VF_BAR0];
2506 #endif
2507 else if (bei == PCI_EA_BEI_ROM)
2508 return &dev->resource[PCI_ROM_RESOURCE];
2509 else
2510 return NULL;
2511 }
2512
2513 /* Read an Enhanced Allocation (EA) entry */
2514 static int pci_ea_read(struct pci_dev *dev, int offset)
2515 {
2516 struct resource *res;
2517 int ent_size, ent_offset = offset;
2518 resource_size_t start, end;
2519 unsigned long flags;
2520 u32 dw0, bei, base, max_offset;
2521 u8 prop;
2522 bool support_64 = (sizeof(resource_size_t) >= 8);
2523
2524 pci_read_config_dword(dev, ent_offset, &dw0);
2525 ent_offset += 4;
2526
2527 /* Entry size field indicates DWORDs after 1st */
2528 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2529
2530 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2531 goto out;
2532
2533 bei = (dw0 & PCI_EA_BEI) >> 4;
2534 prop = (dw0 & PCI_EA_PP) >> 8;
2535
2536 /*
2537 * If the Property is in the reserved range, try the Secondary
2538 * Property instead.
2539 */
2540 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2541 prop = (dw0 & PCI_EA_SP) >> 16;
2542 if (prop > PCI_EA_P_BRIDGE_IO)
2543 goto out;
2544
2545 res = pci_ea_get_resource(dev, bei, prop);
2546 if (!res) {
2547 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2548 goto out;
2549 }
2550
2551 flags = pci_ea_flags(dev, prop);
2552 if (!flags) {
2553 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2554 goto out;
2555 }
2556
2557 /* Read Base */
2558 pci_read_config_dword(dev, ent_offset, &base);
2559 start = (base & PCI_EA_FIELD_MASK);
2560 ent_offset += 4;
2561
2562 /* Read MaxOffset */
2563 pci_read_config_dword(dev, ent_offset, &max_offset);
2564 ent_offset += 4;
2565
2566 /* Read Base MSBs (if 64-bit entry) */
2567 if (base & PCI_EA_IS_64) {
2568 u32 base_upper;
2569
2570 pci_read_config_dword(dev, ent_offset, &base_upper);
2571 ent_offset += 4;
2572
2573 flags |= IORESOURCE_MEM_64;
2574
2575 /* entry starts above 32-bit boundary, can't use */
2576 if (!support_64 && base_upper)
2577 goto out;
2578
2579 if (support_64)
2580 start |= ((u64)base_upper << 32);
2581 }
2582
2583 end = start + (max_offset | 0x03);
2584
2585 /* Read MaxOffset MSBs (if 64-bit entry) */
2586 if (max_offset & PCI_EA_IS_64) {
2587 u32 max_offset_upper;
2588
2589 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2590 ent_offset += 4;
2591
2592 flags |= IORESOURCE_MEM_64;
2593
2594 /* entry too big, can't use */
2595 if (!support_64 && max_offset_upper)
2596 goto out;
2597
2598 if (support_64)
2599 end += ((u64)max_offset_upper << 32);
2600 }
2601
2602 if (end < start) {
2603 dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2604 goto out;
2605 }
2606
2607 if (ent_size != ent_offset - offset) {
2608 dev_err(&dev->dev,
2609 "EA Entry Size (%d) does not match length read (%d)\n",
2610 ent_size, ent_offset - offset);
2611 goto out;
2612 }
2613
2614 res->name = pci_name(dev);
2615 res->start = start;
2616 res->end = end;
2617 res->flags = flags;
2618
2619 if (bei <= PCI_EA_BEI_BAR5)
2620 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2621 bei, res, prop);
2622 else if (bei == PCI_EA_BEI_ROM)
2623 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2624 res, prop);
2625 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2626 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2627 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2628 else
2629 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2630 bei, res, prop);
2631
2632 out:
2633 return offset + ent_size;
2634 }
2635
2636 /* Enhanced Allocation Initialization */
2637 void pci_ea_init(struct pci_dev *dev)
2638 {
2639 int ea;
2640 u8 num_ent;
2641 int offset;
2642 int i;
2643
2644 /* find PCI EA capability in list */
2645 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2646 if (!ea)
2647 return;
2648
2649 /* determine the number of entries */
2650 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2651 &num_ent);
2652 num_ent &= PCI_EA_NUM_ENT_MASK;
2653
2654 offset = ea + PCI_EA_FIRST_ENT;
2655
2656 /* Skip DWORD 2 for type 1 functions */
2657 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2658 offset += 4;
2659
2660 /* parse each EA entry */
2661 for (i = 0; i < num_ent; ++i)
2662 offset = pci_ea_read(dev, offset);
2663 }
2664
2665 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2666 struct pci_cap_saved_state *new_cap)
2667 {
2668 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2669 }
2670
2671 /**
2672 * _pci_add_cap_save_buffer - allocate buffer for saving given
2673 * capability registers
2674 * @dev: the PCI device
2675 * @cap: the capability to allocate the buffer for
2676 * @extended: Standard or Extended capability ID
2677 * @size: requested size of the buffer
2678 */
2679 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2680 bool extended, unsigned int size)
2681 {
2682 int pos;
2683 struct pci_cap_saved_state *save_state;
2684
2685 if (extended)
2686 pos = pci_find_ext_capability(dev, cap);
2687 else
2688 pos = pci_find_capability(dev, cap);
2689
2690 if (!pos)
2691 return 0;
2692
2693 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2694 if (!save_state)
2695 return -ENOMEM;
2696
2697 save_state->cap.cap_nr = cap;
2698 save_state->cap.cap_extended = extended;
2699 save_state->cap.size = size;
2700 pci_add_saved_cap(dev, save_state);
2701
2702 return 0;
2703 }
2704
2705 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2706 {
2707 return _pci_add_cap_save_buffer(dev, cap, false, size);
2708 }
2709
2710 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2711 {
2712 return _pci_add_cap_save_buffer(dev, cap, true, size);
2713 }
2714
2715 /**
2716 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2717 * @dev: the PCI device
2718 */
2719 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2720 {
2721 int error;
2722
2723 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2724 PCI_EXP_SAVE_REGS * sizeof(u16));
2725 if (error)
2726 dev_err(&dev->dev,
2727 "unable to preallocate PCI Express save buffer\n");
2728
2729 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2730 if (error)
2731 dev_err(&dev->dev,
2732 "unable to preallocate PCI-X save buffer\n");
2733
2734 pci_allocate_vc_save_buffers(dev);
2735 }
2736
2737 void pci_free_cap_save_buffers(struct pci_dev *dev)
2738 {
2739 struct pci_cap_saved_state *tmp;
2740 struct hlist_node *n;
2741
2742 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2743 kfree(tmp);
2744 }
2745
2746 /**
2747 * pci_configure_ari - enable or disable ARI forwarding
2748 * @dev: the PCI device
2749 *
2750 * If @dev and its upstream bridge both support ARI, enable ARI in the
2751 * bridge. Otherwise, disable ARI in the bridge.
2752 */
2753 void pci_configure_ari(struct pci_dev *dev)
2754 {
2755 u32 cap;
2756 struct pci_dev *bridge;
2757
2758 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2759 return;
2760
2761 bridge = dev->bus->self;
2762 if (!bridge)
2763 return;
2764
2765 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2766 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2767 return;
2768
2769 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2770 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2771 PCI_EXP_DEVCTL2_ARI);
2772 bridge->ari_enabled = 1;
2773 } else {
2774 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2775 PCI_EXP_DEVCTL2_ARI);
2776 bridge->ari_enabled = 0;
2777 }
2778 }
2779
2780 static int pci_acs_enable;
2781
2782 /**
2783 * pci_request_acs - ask for ACS to be enabled if supported
2784 */
2785 void pci_request_acs(void)
2786 {
2787 pci_acs_enable = 1;
2788 }
2789
2790 /**
2791 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2792 * @dev: the PCI device
2793 */
2794 static void pci_std_enable_acs(struct pci_dev *dev)
2795 {
2796 int pos;
2797 u16 cap;
2798 u16 ctrl;
2799
2800 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2801 if (!pos)
2802 return;
2803
2804 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2805 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2806
2807 /* Source Validation */
2808 ctrl |= (cap & PCI_ACS_SV);
2809
2810 /* P2P Request Redirect */
2811 ctrl |= (cap & PCI_ACS_RR);
2812
2813 /* P2P Completion Redirect */
2814 ctrl |= (cap & PCI_ACS_CR);
2815
2816 /* Upstream Forwarding */
2817 ctrl |= (cap & PCI_ACS_UF);
2818
2819 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2820 }
2821
2822 /**
2823 * pci_enable_acs - enable ACS if hardware support it
2824 * @dev: the PCI device
2825 */
2826 void pci_enable_acs(struct pci_dev *dev)
2827 {
2828 if (!pci_acs_enable)
2829 return;
2830
2831 if (!pci_dev_specific_enable_acs(dev))
2832 return;
2833
2834 pci_std_enable_acs(dev);
2835 }
2836
2837 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2838 {
2839 int pos;
2840 u16 cap, ctrl;
2841
2842 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2843 if (!pos)
2844 return false;
2845
2846 /*
2847 * Except for egress control, capabilities are either required
2848 * or only required if controllable. Features missing from the
2849 * capability field can therefore be assumed as hard-wired enabled.
2850 */
2851 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2852 acs_flags &= (cap | PCI_ACS_EC);
2853
2854 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2855 return (ctrl & acs_flags) == acs_flags;
2856 }
2857
2858 /**
2859 * pci_acs_enabled - test ACS against required flags for a given device
2860 * @pdev: device to test
2861 * @acs_flags: required PCI ACS flags
2862 *
2863 * Return true if the device supports the provided flags. Automatically
2864 * filters out flags that are not implemented on multifunction devices.
2865 *
2866 * Note that this interface checks the effective ACS capabilities of the
2867 * device rather than the actual capabilities. For instance, most single
2868 * function endpoints are not required to support ACS because they have no
2869 * opportunity for peer-to-peer access. We therefore return 'true'
2870 * regardless of whether the device exposes an ACS capability. This makes
2871 * it much easier for callers of this function to ignore the actual type
2872 * or topology of the device when testing ACS support.
2873 */
2874 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2875 {
2876 int ret;
2877
2878 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2879 if (ret >= 0)
2880 return ret > 0;
2881
2882 /*
2883 * Conventional PCI and PCI-X devices never support ACS, either
2884 * effectively or actually. The shared bus topology implies that
2885 * any device on the bus can receive or snoop DMA.
2886 */
2887 if (!pci_is_pcie(pdev))
2888 return false;
2889
2890 switch (pci_pcie_type(pdev)) {
2891 /*
2892 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2893 * but since their primary interface is PCI/X, we conservatively
2894 * handle them as we would a non-PCIe device.
2895 */
2896 case PCI_EXP_TYPE_PCIE_BRIDGE:
2897 /*
2898 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2899 * applicable... must never implement an ACS Extended Capability...".
2900 * This seems arbitrary, but we take a conservative interpretation
2901 * of this statement.
2902 */
2903 case PCI_EXP_TYPE_PCI_BRIDGE:
2904 case PCI_EXP_TYPE_RC_EC:
2905 return false;
2906 /*
2907 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2908 * implement ACS in order to indicate their peer-to-peer capabilities,
2909 * regardless of whether they are single- or multi-function devices.
2910 */
2911 case PCI_EXP_TYPE_DOWNSTREAM:
2912 case PCI_EXP_TYPE_ROOT_PORT:
2913 return pci_acs_flags_enabled(pdev, acs_flags);
2914 /*
2915 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2916 * implemented by the remaining PCIe types to indicate peer-to-peer
2917 * capabilities, but only when they are part of a multifunction
2918 * device. The footnote for section 6.12 indicates the specific
2919 * PCIe types included here.
2920 */
2921 case PCI_EXP_TYPE_ENDPOINT:
2922 case PCI_EXP_TYPE_UPSTREAM:
2923 case PCI_EXP_TYPE_LEG_END:
2924 case PCI_EXP_TYPE_RC_END:
2925 if (!pdev->multifunction)
2926 break;
2927
2928 return pci_acs_flags_enabled(pdev, acs_flags);
2929 }
2930
2931 /*
2932 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2933 * to single function devices with the exception of downstream ports.
2934 */
2935 return true;
2936 }
2937
2938 /**
2939 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2940 * @start: starting downstream device
2941 * @end: ending upstream device or NULL to search to the root bus
2942 * @acs_flags: required flags
2943 *
2944 * Walk up a device tree from start to end testing PCI ACS support. If
2945 * any step along the way does not support the required flags, return false.
2946 */
2947 bool pci_acs_path_enabled(struct pci_dev *start,
2948 struct pci_dev *end, u16 acs_flags)
2949 {
2950 struct pci_dev *pdev, *parent = start;
2951
2952 do {
2953 pdev = parent;
2954
2955 if (!pci_acs_enabled(pdev, acs_flags))
2956 return false;
2957
2958 if (pci_is_root_bus(pdev->bus))
2959 return (end == NULL);
2960
2961 parent = pdev->bus->self;
2962 } while (pdev != end);
2963
2964 return true;
2965 }
2966
2967 /**
2968 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
2969 * @pdev: PCI device
2970 * @bar: BAR to find
2971 *
2972 * Helper to find the position of the ctrl register for a BAR.
2973 * Returns -ENOTSUPP if resizable BARs are not supported at all.
2974 * Returns -ENOENT if no ctrl register for the BAR could be found.
2975 */
2976 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
2977 {
2978 unsigned int pos, nbars, i;
2979 u32 ctrl;
2980
2981 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
2982 if (!pos)
2983 return -ENOTSUPP;
2984
2985 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
2986 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
2987 PCI_REBAR_CTRL_NBAR_SHIFT;
2988
2989 for (i = 0; i < nbars; i++, pos += 8) {
2990 int bar_idx;
2991
2992 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
2993 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
2994 if (bar_idx == bar)
2995 return pos;
2996 }
2997
2998 return -ENOENT;
2999 }
3000
3001 /**
3002 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3003 * @pdev: PCI device
3004 * @bar: BAR to query
3005 *
3006 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3007 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3008 */
3009 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3010 {
3011 int pos;
3012 u32 cap;
3013
3014 pos = pci_rebar_find_pos(pdev, bar);
3015 if (pos < 0)
3016 return 0;
3017
3018 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3019 return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3020 }
3021
3022 /**
3023 * pci_rebar_get_current_size - get the current size of a BAR
3024 * @pdev: PCI device
3025 * @bar: BAR to set size to
3026 *
3027 * Read the size of a BAR from the resizable BAR config.
3028 * Returns size if found or negative error code.
3029 */
3030 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3031 {
3032 int pos;
3033 u32 ctrl;
3034
3035 pos = pci_rebar_find_pos(pdev, bar);
3036 if (pos < 0)
3037 return pos;
3038
3039 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3040 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> 8;
3041 }
3042
3043 /**
3044 * pci_rebar_set_size - set a new size for a BAR
3045 * @pdev: PCI device
3046 * @bar: BAR to set size to
3047 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3048 *
3049 * Set the new size of a BAR as defined in the spec.
3050 * Returns zero if resizing was successful, error code otherwise.
3051 */
3052 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3053 {
3054 int pos;
3055 u32 ctrl;
3056
3057 pos = pci_rebar_find_pos(pdev, bar);
3058 if (pos < 0)
3059 return pos;
3060
3061 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3062 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3063 ctrl |= size << 8;
3064 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3065 return 0;
3066 }
3067
3068 /**
3069 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3070 * @dev: the PCI device
3071 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3072 *
3073 * Perform INTx swizzling for a device behind one level of bridge. This is
3074 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3075 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3076 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3077 * the PCI Express Base Specification, Revision 2.1)
3078 */
3079 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3080 {
3081 int slot;
3082
3083 if (pci_ari_enabled(dev->bus))
3084 slot = 0;
3085 else
3086 slot = PCI_SLOT(dev->devfn);
3087
3088 return (((pin - 1) + slot) % 4) + 1;
3089 }
3090
3091 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3092 {
3093 u8 pin;
3094
3095 pin = dev->pin;
3096 if (!pin)
3097 return -1;
3098
3099 while (!pci_is_root_bus(dev->bus)) {
3100 pin = pci_swizzle_interrupt_pin(dev, pin);
3101 dev = dev->bus->self;
3102 }
3103 *bridge = dev;
3104 return pin;
3105 }
3106
3107 /**
3108 * pci_common_swizzle - swizzle INTx all the way to root bridge
3109 * @dev: the PCI device
3110 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3111 *
3112 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3113 * bridges all the way up to a PCI root bus.
3114 */
3115 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3116 {
3117 u8 pin = *pinp;
3118
3119 while (!pci_is_root_bus(dev->bus)) {
3120 pin = pci_swizzle_interrupt_pin(dev, pin);
3121 dev = dev->bus->self;
3122 }
3123 *pinp = pin;
3124 return PCI_SLOT(dev->devfn);
3125 }
3126 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3127
3128 /**
3129 * pci_release_region - Release a PCI bar
3130 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3131 * @bar: BAR to release
3132 *
3133 * Releases the PCI I/O and memory resources previously reserved by a
3134 * successful call to pci_request_region. Call this function only
3135 * after all use of the PCI regions has ceased.
3136 */
3137 void pci_release_region(struct pci_dev *pdev, int bar)
3138 {
3139 struct pci_devres *dr;
3140
3141 if (pci_resource_len(pdev, bar) == 0)
3142 return;
3143 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3144 release_region(pci_resource_start(pdev, bar),
3145 pci_resource_len(pdev, bar));
3146 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3147 release_mem_region(pci_resource_start(pdev, bar),
3148 pci_resource_len(pdev, bar));
3149
3150 dr = find_pci_dr(pdev);
3151 if (dr)
3152 dr->region_mask &= ~(1 << bar);
3153 }
3154 EXPORT_SYMBOL(pci_release_region);
3155
3156 /**
3157 * __pci_request_region - Reserved PCI I/O and memory resource
3158 * @pdev: PCI device whose resources are to be reserved
3159 * @bar: BAR to be reserved
3160 * @res_name: Name to be associated with resource.
3161 * @exclusive: whether the region access is exclusive or not
3162 *
3163 * Mark the PCI region associated with PCI device @pdev BR @bar as
3164 * being reserved by owner @res_name. Do not access any
3165 * address inside the PCI regions unless this call returns
3166 * successfully.
3167 *
3168 * If @exclusive is set, then the region is marked so that userspace
3169 * is explicitly not allowed to map the resource via /dev/mem or
3170 * sysfs MMIO access.
3171 *
3172 * Returns 0 on success, or %EBUSY on error. A warning
3173 * message is also printed on failure.
3174 */
3175 static int __pci_request_region(struct pci_dev *pdev, int bar,
3176 const char *res_name, int exclusive)
3177 {
3178 struct pci_devres *dr;
3179
3180 if (pci_resource_len(pdev, bar) == 0)
3181 return 0;
3182
3183 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3184 if (!request_region(pci_resource_start(pdev, bar),
3185 pci_resource_len(pdev, bar), res_name))
3186 goto err_out;
3187 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3188 if (!__request_mem_region(pci_resource_start(pdev, bar),
3189 pci_resource_len(pdev, bar), res_name,
3190 exclusive))
3191 goto err_out;
3192 }
3193
3194 dr = find_pci_dr(pdev);
3195 if (dr)
3196 dr->region_mask |= 1 << bar;
3197
3198 return 0;
3199
3200 err_out:
3201 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
3202 &pdev->resource[bar]);
3203 return -EBUSY;
3204 }
3205
3206 /**
3207 * pci_request_region - Reserve PCI I/O and memory resource
3208 * @pdev: PCI device whose resources are to be reserved
3209 * @bar: BAR to be reserved
3210 * @res_name: Name to be associated with resource
3211 *
3212 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3213 * being reserved by owner @res_name. Do not access any
3214 * address inside the PCI regions unless this call returns
3215 * successfully.
3216 *
3217 * Returns 0 on success, or %EBUSY on error. A warning
3218 * message is also printed on failure.
3219 */
3220 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3221 {
3222 return __pci_request_region(pdev, bar, res_name, 0);
3223 }
3224 EXPORT_SYMBOL(pci_request_region);
3225
3226 /**
3227 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3228 * @pdev: PCI device whose resources are to be reserved
3229 * @bar: BAR to be reserved
3230 * @res_name: Name to be associated with resource.
3231 *
3232 * Mark the PCI region associated with PCI device @pdev BR @bar as
3233 * being reserved by owner @res_name. Do not access any
3234 * address inside the PCI regions unless this call returns
3235 * successfully.
3236 *
3237 * Returns 0 on success, or %EBUSY on error. A warning
3238 * message is also printed on failure.
3239 *
3240 * The key difference that _exclusive makes it that userspace is
3241 * explicitly not allowed to map the resource via /dev/mem or
3242 * sysfs.
3243 */
3244 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3245 const char *res_name)
3246 {
3247 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3248 }
3249 EXPORT_SYMBOL(pci_request_region_exclusive);
3250
3251 /**
3252 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3253 * @pdev: PCI device whose resources were previously reserved
3254 * @bars: Bitmask of BARs to be released
3255 *
3256 * Release selected PCI I/O and memory resources previously reserved.
3257 * Call this function only after all use of the PCI regions has ceased.
3258 */
3259 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3260 {
3261 int i;
3262
3263 for (i = 0; i < 6; i++)
3264 if (bars & (1 << i))
3265 pci_release_region(pdev, i);
3266 }
3267 EXPORT_SYMBOL(pci_release_selected_regions);
3268
3269 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3270 const char *res_name, int excl)
3271 {
3272 int i;
3273
3274 for (i = 0; i < 6; i++)
3275 if (bars & (1 << i))
3276 if (__pci_request_region(pdev, i, res_name, excl))
3277 goto err_out;
3278 return 0;
3279
3280 err_out:
3281 while (--i >= 0)
3282 if (bars & (1 << i))
3283 pci_release_region(pdev, i);
3284
3285 return -EBUSY;
3286 }
3287
3288
3289 /**
3290 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3291 * @pdev: PCI device whose resources are to be reserved
3292 * @bars: Bitmask of BARs to be requested
3293 * @res_name: Name to be associated with resource
3294 */
3295 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3296 const char *res_name)
3297 {
3298 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3299 }
3300 EXPORT_SYMBOL(pci_request_selected_regions);
3301
3302 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3303 const char *res_name)
3304 {
3305 return __pci_request_selected_regions(pdev, bars, res_name,
3306 IORESOURCE_EXCLUSIVE);
3307 }
3308 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3309
3310 /**
3311 * pci_release_regions - Release reserved PCI I/O and memory resources
3312 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3313 *
3314 * Releases all PCI I/O and memory resources previously reserved by a
3315 * successful call to pci_request_regions. Call this function only
3316 * after all use of the PCI regions has ceased.
3317 */
3318
3319 void pci_release_regions(struct pci_dev *pdev)
3320 {
3321 pci_release_selected_regions(pdev, (1 << 6) - 1);
3322 }
3323 EXPORT_SYMBOL(pci_release_regions);
3324
3325 /**
3326 * pci_request_regions - Reserved PCI I/O and memory resources
3327 * @pdev: PCI device whose resources are to be reserved
3328 * @res_name: Name to be associated with resource.
3329 *
3330 * Mark all PCI regions associated with PCI device @pdev as
3331 * being reserved by owner @res_name. Do not access any
3332 * address inside the PCI regions unless this call returns
3333 * successfully.
3334 *
3335 * Returns 0 on success, or %EBUSY on error. A warning
3336 * message is also printed on failure.
3337 */
3338 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3339 {
3340 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3341 }
3342 EXPORT_SYMBOL(pci_request_regions);
3343
3344 /**
3345 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3346 * @pdev: PCI device whose resources are to be reserved
3347 * @res_name: Name to be associated with resource.
3348 *
3349 * Mark all PCI regions associated with PCI device @pdev as
3350 * being reserved by owner @res_name. Do not access any
3351 * address inside the PCI regions unless this call returns
3352 * successfully.
3353 *
3354 * pci_request_regions_exclusive() will mark the region so that
3355 * /dev/mem and the sysfs MMIO access will not be allowed.
3356 *
3357 * Returns 0 on success, or %EBUSY on error. A warning
3358 * message is also printed on failure.
3359 */
3360 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3361 {
3362 return pci_request_selected_regions_exclusive(pdev,
3363 ((1 << 6) - 1), res_name);
3364 }
3365 EXPORT_SYMBOL(pci_request_regions_exclusive);
3366
3367 #ifdef PCI_IOBASE
3368 struct io_range {
3369 struct list_head list;
3370 phys_addr_t start;
3371 resource_size_t size;
3372 };
3373
3374 static LIST_HEAD(io_range_list);
3375 static DEFINE_SPINLOCK(io_range_lock);
3376 #endif
3377
3378 /*
3379 * Record the PCI IO range (expressed as CPU physical address + size).
3380 * Return a negative value if an error has occured, zero otherwise
3381 */
3382 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
3383 {
3384 int err = 0;
3385
3386 #ifdef PCI_IOBASE
3387 struct io_range *range;
3388 resource_size_t allocated_size = 0;
3389
3390 /* check if the range hasn't been previously recorded */
3391 spin_lock(&io_range_lock);
3392 list_for_each_entry(range, &io_range_list, list) {
3393 if (addr >= range->start && addr + size <= range->start + size) {
3394 /* range already registered, bail out */
3395 goto end_register;
3396 }
3397 allocated_size += range->size;
3398 }
3399
3400 /* range not registed yet, check for available space */
3401 if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
3402 /* if it's too big check if 64K space can be reserved */
3403 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
3404 err = -E2BIG;
3405 goto end_register;
3406 }
3407
3408 size = SZ_64K;
3409 pr_warn("Requested IO range too big, new size set to 64K\n");
3410 }
3411
3412 /* add the range to the list */
3413 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3414 if (!range) {
3415 err = -ENOMEM;
3416 goto end_register;
3417 }
3418
3419 range->start = addr;
3420 range->size = size;
3421
3422 list_add_tail(&range->list, &io_range_list);
3423
3424 end_register:
3425 spin_unlock(&io_range_lock);
3426 #endif
3427
3428 return err;
3429 }
3430
3431 phys_addr_t pci_pio_to_address(unsigned long pio)
3432 {
3433 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3434
3435 #ifdef PCI_IOBASE
3436 struct io_range *range;
3437 resource_size_t allocated_size = 0;
3438
3439 if (pio > IO_SPACE_LIMIT)
3440 return address;
3441
3442 spin_lock(&io_range_lock);
3443 list_for_each_entry(range, &io_range_list, list) {
3444 if (pio >= allocated_size && pio < allocated_size + range->size) {
3445 address = range->start + pio - allocated_size;
3446 break;
3447 }
3448 allocated_size += range->size;
3449 }
3450 spin_unlock(&io_range_lock);
3451 #endif
3452
3453 return address;
3454 }
3455
3456 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3457 {
3458 #ifdef PCI_IOBASE
3459 struct io_range *res;
3460 resource_size_t offset = 0;
3461 unsigned long addr = -1;
3462
3463 spin_lock(&io_range_lock);
3464 list_for_each_entry(res, &io_range_list, list) {
3465 if (address >= res->start && address < res->start + res->size) {
3466 addr = address - res->start + offset;
3467 break;
3468 }
3469 offset += res->size;
3470 }
3471 spin_unlock(&io_range_lock);
3472
3473 return addr;
3474 #else
3475 if (address > IO_SPACE_LIMIT)
3476 return (unsigned long)-1;
3477
3478 return (unsigned long) address;
3479 #endif
3480 }
3481
3482 /**
3483 * pci_remap_iospace - Remap the memory mapped I/O space
3484 * @res: Resource describing the I/O space
3485 * @phys_addr: physical address of range to be mapped
3486 *
3487 * Remap the memory mapped I/O space described by the @res
3488 * and the CPU physical address @phys_addr into virtual address space.
3489 * Only architectures that have memory mapped IO functions defined
3490 * (and the PCI_IOBASE value defined) should call this function.
3491 */
3492 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3493 {
3494 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3495 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3496
3497 if (!(res->flags & IORESOURCE_IO))
3498 return -EINVAL;
3499
3500 if (res->end > IO_SPACE_LIMIT)
3501 return -EINVAL;
3502
3503 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3504 pgprot_device(PAGE_KERNEL));
3505 #else
3506 /* this architecture does not have memory mapped I/O space,
3507 so this function should never be called */
3508 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3509 return -ENODEV;
3510 #endif
3511 }
3512 EXPORT_SYMBOL(pci_remap_iospace);
3513
3514 /**
3515 * pci_unmap_iospace - Unmap the memory mapped I/O space
3516 * @res: resource to be unmapped
3517 *
3518 * Unmap the CPU virtual address @res from virtual address space.
3519 * Only architectures that have memory mapped IO functions defined
3520 * (and the PCI_IOBASE value defined) should call this function.
3521 */
3522 void pci_unmap_iospace(struct resource *res)
3523 {
3524 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3525 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3526
3527 unmap_kernel_range(vaddr, resource_size(res));
3528 #endif
3529 }
3530 EXPORT_SYMBOL(pci_unmap_iospace);
3531
3532 /**
3533 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3534 * @dev: Generic device to remap IO address for
3535 * @offset: Resource address to map
3536 * @size: Size of map
3537 *
3538 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
3539 * detach.
3540 */
3541 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3542 resource_size_t offset,
3543 resource_size_t size)
3544 {
3545 void __iomem **ptr, *addr;
3546
3547 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3548 if (!ptr)
3549 return NULL;
3550
3551 addr = pci_remap_cfgspace(offset, size);
3552 if (addr) {
3553 *ptr = addr;
3554 devres_add(dev, ptr);
3555 } else
3556 devres_free(ptr);
3557
3558 return addr;
3559 }
3560 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3561
3562 /**
3563 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3564 * @dev: generic device to handle the resource for
3565 * @res: configuration space resource to be handled
3566 *
3567 * Checks that a resource is a valid memory region, requests the memory
3568 * region and ioremaps with pci_remap_cfgspace() API that ensures the
3569 * proper PCI configuration space memory attributes are guaranteed.
3570 *
3571 * All operations are managed and will be undone on driver detach.
3572 *
3573 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3574 * on failure. Usage example::
3575 *
3576 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3577 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3578 * if (IS_ERR(base))
3579 * return PTR_ERR(base);
3580 */
3581 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3582 struct resource *res)
3583 {
3584 resource_size_t size;
3585 const char *name;
3586 void __iomem *dest_ptr;
3587
3588 BUG_ON(!dev);
3589
3590 if (!res || resource_type(res) != IORESOURCE_MEM) {
3591 dev_err(dev, "invalid resource\n");
3592 return IOMEM_ERR_PTR(-EINVAL);
3593 }
3594
3595 size = resource_size(res);
3596 name = res->name ?: dev_name(dev);
3597
3598 if (!devm_request_mem_region(dev, res->start, size, name)) {
3599 dev_err(dev, "can't request region for resource %pR\n", res);
3600 return IOMEM_ERR_PTR(-EBUSY);
3601 }
3602
3603 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3604 if (!dest_ptr) {
3605 dev_err(dev, "ioremap failed for resource %pR\n", res);
3606 devm_release_mem_region(dev, res->start, size);
3607 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3608 }
3609
3610 return dest_ptr;
3611 }
3612 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3613
3614 static void __pci_set_master(struct pci_dev *dev, bool enable)
3615 {
3616 u16 old_cmd, cmd;
3617
3618 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3619 if (enable)
3620 cmd = old_cmd | PCI_COMMAND_MASTER;
3621 else
3622 cmd = old_cmd & ~PCI_COMMAND_MASTER;
3623 if (cmd != old_cmd) {
3624 dev_dbg(&dev->dev, "%s bus mastering\n",
3625 enable ? "enabling" : "disabling");
3626 pci_write_config_word(dev, PCI_COMMAND, cmd);
3627 }
3628 dev->is_busmaster = enable;
3629 }
3630
3631 /**
3632 * pcibios_setup - process "pci=" kernel boot arguments
3633 * @str: string used to pass in "pci=" kernel boot arguments
3634 *
3635 * Process kernel boot arguments. This is the default implementation.
3636 * Architecture specific implementations can override this as necessary.
3637 */
3638 char * __weak __init pcibios_setup(char *str)
3639 {
3640 return str;
3641 }
3642
3643 /**
3644 * pcibios_set_master - enable PCI bus-mastering for device dev
3645 * @dev: the PCI device to enable
3646 *
3647 * Enables PCI bus-mastering for the device. This is the default
3648 * implementation. Architecture specific implementations can override
3649 * this if necessary.
3650 */
3651 void __weak pcibios_set_master(struct pci_dev *dev)
3652 {
3653 u8 lat;
3654
3655 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3656 if (pci_is_pcie(dev))
3657 return;
3658
3659 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3660 if (lat < 16)
3661 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3662 else if (lat > pcibios_max_latency)
3663 lat = pcibios_max_latency;
3664 else
3665 return;
3666
3667 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3668 }
3669
3670 /**
3671 * pci_set_master - enables bus-mastering for device dev
3672 * @dev: the PCI device to enable
3673 *
3674 * Enables bus-mastering on the device and calls pcibios_set_master()
3675 * to do the needed arch specific settings.
3676 */
3677 void pci_set_master(struct pci_dev *dev)
3678 {
3679 __pci_set_master(dev, true);
3680 pcibios_set_master(dev);
3681 }
3682 EXPORT_SYMBOL(pci_set_master);
3683
3684 /**
3685 * pci_clear_master - disables bus-mastering for device dev
3686 * @dev: the PCI device to disable
3687 */
3688 void pci_clear_master(struct pci_dev *dev)
3689 {
3690 __pci_set_master(dev, false);
3691 }
3692 EXPORT_SYMBOL(pci_clear_master);
3693
3694 /**
3695 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3696 * @dev: the PCI device for which MWI is to be enabled
3697 *
3698 * Helper function for pci_set_mwi.
3699 * Originally copied from drivers/net/acenic.c.
3700 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3701 *
3702 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3703 */
3704 int pci_set_cacheline_size(struct pci_dev *dev)
3705 {
3706 u8 cacheline_size;
3707
3708 if (!pci_cache_line_size)
3709 return -EINVAL;
3710
3711 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3712 equal to or multiple of the right value. */
3713 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3714 if (cacheline_size >= pci_cache_line_size &&
3715 (cacheline_size % pci_cache_line_size) == 0)
3716 return 0;
3717
3718 /* Write the correct value. */
3719 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3720 /* Read it back. */
3721 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3722 if (cacheline_size == pci_cache_line_size)
3723 return 0;
3724
3725 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3726 pci_cache_line_size << 2);
3727
3728 return -EINVAL;
3729 }
3730 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3731
3732 /**
3733 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3734 * @dev: the PCI device for which MWI is enabled
3735 *
3736 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3737 *
3738 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3739 */
3740 int pci_set_mwi(struct pci_dev *dev)
3741 {
3742 #ifdef PCI_DISABLE_MWI
3743 return 0;
3744 #else
3745 int rc;
3746 u16 cmd;
3747
3748 rc = pci_set_cacheline_size(dev);
3749 if (rc)
3750 return rc;
3751
3752 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3753 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3754 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3755 cmd |= PCI_COMMAND_INVALIDATE;
3756 pci_write_config_word(dev, PCI_COMMAND, cmd);
3757 }
3758 return 0;
3759 #endif
3760 }
3761 EXPORT_SYMBOL(pci_set_mwi);
3762
3763 /**
3764 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3765 * @dev: the PCI device for which MWI is enabled
3766 *
3767 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3768 * Callers are not required to check the return value.
3769 *
3770 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3771 */
3772 int pci_try_set_mwi(struct pci_dev *dev)
3773 {
3774 #ifdef PCI_DISABLE_MWI
3775 return 0;
3776 #else
3777 return pci_set_mwi(dev);
3778 #endif
3779 }
3780 EXPORT_SYMBOL(pci_try_set_mwi);
3781
3782 /**
3783 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3784 * @dev: the PCI device to disable
3785 *
3786 * Disables PCI Memory-Write-Invalidate transaction on the device
3787 */
3788 void pci_clear_mwi(struct pci_dev *dev)
3789 {
3790 #ifndef PCI_DISABLE_MWI
3791 u16 cmd;
3792
3793 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3794 if (cmd & PCI_COMMAND_INVALIDATE) {
3795 cmd &= ~PCI_COMMAND_INVALIDATE;
3796 pci_write_config_word(dev, PCI_COMMAND, cmd);
3797 }
3798 #endif
3799 }
3800 EXPORT_SYMBOL(pci_clear_mwi);
3801
3802 /**
3803 * pci_intx - enables/disables PCI INTx for device dev
3804 * @pdev: the PCI device to operate on
3805 * @enable: boolean: whether to enable or disable PCI INTx
3806 *
3807 * Enables/disables PCI INTx for device dev
3808 */
3809 void pci_intx(struct pci_dev *pdev, int enable)
3810 {
3811 u16 pci_command, new;
3812
3813 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3814
3815 if (enable)
3816 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3817 else
3818 new = pci_command | PCI_COMMAND_INTX_DISABLE;
3819
3820 if (new != pci_command) {
3821 struct pci_devres *dr;
3822
3823 pci_write_config_word(pdev, PCI_COMMAND, new);
3824
3825 dr = find_pci_dr(pdev);
3826 if (dr && !dr->restore_intx) {
3827 dr->restore_intx = 1;
3828 dr->orig_intx = !enable;
3829 }
3830 }
3831 }
3832 EXPORT_SYMBOL_GPL(pci_intx);
3833
3834 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3835 {
3836 struct pci_bus *bus = dev->bus;
3837 bool mask_updated = true;
3838 u32 cmd_status_dword;
3839 u16 origcmd, newcmd;
3840 unsigned long flags;
3841 bool irq_pending;
3842
3843 /*
3844 * We do a single dword read to retrieve both command and status.
3845 * Document assumptions that make this possible.
3846 */
3847 BUILD_BUG_ON(PCI_COMMAND % 4);
3848 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3849
3850 raw_spin_lock_irqsave(&pci_lock, flags);
3851
3852 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3853
3854 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3855
3856 /*
3857 * Check interrupt status register to see whether our device
3858 * triggered the interrupt (when masking) or the next IRQ is
3859 * already pending (when unmasking).
3860 */
3861 if (mask != irq_pending) {
3862 mask_updated = false;
3863 goto done;
3864 }
3865
3866 origcmd = cmd_status_dword;
3867 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3868 if (mask)
3869 newcmd |= PCI_COMMAND_INTX_DISABLE;
3870 if (newcmd != origcmd)
3871 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3872
3873 done:
3874 raw_spin_unlock_irqrestore(&pci_lock, flags);
3875
3876 return mask_updated;
3877 }
3878
3879 /**
3880 * pci_check_and_mask_intx - mask INTx on pending interrupt
3881 * @dev: the PCI device to operate on
3882 *
3883 * Check if the device dev has its INTx line asserted, mask it and
3884 * return true in that case. False is returned if no interrupt was
3885 * pending.
3886 */
3887 bool pci_check_and_mask_intx(struct pci_dev *dev)
3888 {
3889 return pci_check_and_set_intx_mask(dev, true);
3890 }
3891 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3892
3893 /**
3894 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3895 * @dev: the PCI device to operate on
3896 *
3897 * Check if the device dev has its INTx line asserted, unmask it if not
3898 * and return true. False is returned and the mask remains active if
3899 * there was still an interrupt pending.
3900 */
3901 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3902 {
3903 return pci_check_and_set_intx_mask(dev, false);
3904 }
3905 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3906
3907 /**
3908 * pci_wait_for_pending_transaction - waits for pending transaction
3909 * @dev: the PCI device to operate on
3910 *
3911 * Return 0 if transaction is pending 1 otherwise.
3912 */
3913 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3914 {
3915 if (!pci_is_pcie(dev))
3916 return 1;
3917
3918 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3919 PCI_EXP_DEVSTA_TRPND);
3920 }
3921 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3922
3923 static void pci_flr_wait(struct pci_dev *dev)
3924 {
3925 int delay = 1, timeout = 60000;
3926 u32 id;
3927
3928 /*
3929 * Per PCIe r3.1, sec 6.6.2, a device must complete an FLR within
3930 * 100ms, but may silently discard requests while the FLR is in
3931 * progress. Wait 100ms before trying to access the device.
3932 */
3933 msleep(100);
3934
3935 /*
3936 * After 100ms, the device should not silently discard config
3937 * requests, but it may still indicate that it needs more time by
3938 * responding to them with CRS completions. The Root Port will
3939 * generally synthesize ~0 data to complete the read (except when
3940 * CRS SV is enabled and the read was for the Vendor ID; in that
3941 * case it synthesizes 0x0001 data).
3942 *
3943 * Wait for the device to return a non-CRS completion. Read the
3944 * Command register instead of Vendor ID so we don't have to
3945 * contend with the CRS SV value.
3946 */
3947 pci_read_config_dword(dev, PCI_COMMAND, &id);
3948 while (id == ~0) {
3949 if (delay > timeout) {
3950 dev_warn(&dev->dev, "not ready %dms after FLR; giving up\n",
3951 100 + delay - 1);
3952 return;
3953 }
3954
3955 if (delay > 1000)
3956 dev_info(&dev->dev, "not ready %dms after FLR; waiting\n",
3957 100 + delay - 1);
3958
3959 msleep(delay);
3960 delay *= 2;
3961 pci_read_config_dword(dev, PCI_COMMAND, &id);
3962 }
3963
3964 if (delay > 1000)
3965 dev_info(&dev->dev, "ready %dms after FLR\n", 100 + delay - 1);
3966 }
3967
3968 /**
3969 * pcie_has_flr - check if a device supports function level resets
3970 * @dev: device to check
3971 *
3972 * Returns true if the device advertises support for PCIe function level
3973 * resets.
3974 */
3975 static bool pcie_has_flr(struct pci_dev *dev)
3976 {
3977 u32 cap;
3978
3979 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
3980 return false;
3981
3982 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3983 return cap & PCI_EXP_DEVCAP_FLR;
3984 }
3985
3986 /**
3987 * pcie_flr - initiate a PCIe function level reset
3988 * @dev: device to reset
3989 *
3990 * Initiate a function level reset on @dev. The caller should ensure the
3991 * device supports FLR before calling this function, e.g. by using the
3992 * pcie_has_flr() helper.
3993 */
3994 void pcie_flr(struct pci_dev *dev)
3995 {
3996 if (!pci_wait_for_pending_transaction(dev))
3997 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3998
3999 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4000 pci_flr_wait(dev);
4001 }
4002 EXPORT_SYMBOL_GPL(pcie_flr);
4003
4004 static int pci_af_flr(struct pci_dev *dev, int probe)
4005 {
4006 int pos;
4007 u8 cap;
4008
4009 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4010 if (!pos)
4011 return -ENOTTY;
4012
4013 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4014 return -ENOTTY;
4015
4016 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4017 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4018 return -ENOTTY;
4019
4020 if (probe)
4021 return 0;
4022
4023 /*
4024 * Wait for Transaction Pending bit to clear. A word-aligned test
4025 * is used, so we use the conrol offset rather than status and shift
4026 * the test bit to match.
4027 */
4028 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4029 PCI_AF_STATUS_TP << 8))
4030 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4031
4032 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4033 pci_flr_wait(dev);
4034 return 0;
4035 }
4036
4037 /**
4038 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4039 * @dev: Device to reset.
4040 * @probe: If set, only check if the device can be reset this way.
4041 *
4042 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4043 * unset, it will be reinitialized internally when going from PCI_D3hot to
4044 * PCI_D0. If that's the case and the device is not in a low-power state
4045 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4046 *
4047 * NOTE: This causes the caller to sleep for twice the device power transition
4048 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4049 * by default (i.e. unless the @dev's d3_delay field has a different value).
4050 * Moreover, only devices in D0 can be reset by this function.
4051 */
4052 static int pci_pm_reset(struct pci_dev *dev, int probe)
4053 {
4054 u16 csr;
4055
4056 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4057 return -ENOTTY;
4058
4059 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4060 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4061 return -ENOTTY;
4062
4063 if (probe)
4064 return 0;
4065
4066 if (dev->current_state != PCI_D0)
4067 return -EINVAL;
4068
4069 csr &= ~PCI_PM_CTRL_STATE_MASK;
4070 csr |= PCI_D3hot;
4071 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4072 pci_dev_d3_sleep(dev);
4073
4074 csr &= ~PCI_PM_CTRL_STATE_MASK;
4075 csr |= PCI_D0;
4076 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4077 pci_dev_d3_sleep(dev);
4078
4079 return 0;
4080 }
4081
4082 void pci_reset_secondary_bus(struct pci_dev *dev)
4083 {
4084 u16 ctrl;
4085
4086 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4087 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4088 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4089 /*
4090 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4091 * this to 2ms to ensure that we meet the minimum requirement.
4092 */
4093 msleep(2);
4094
4095 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4096 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4097
4098 /*
4099 * Trhfa for conventional PCI is 2^25 clock cycles.
4100 * Assuming a minimum 33MHz clock this results in a 1s
4101 * delay before we can consider subordinate devices to
4102 * be re-initialized. PCIe has some ways to shorten this,
4103 * but we don't make use of them yet.
4104 */
4105 ssleep(1);
4106 }
4107
4108 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4109 {
4110 pci_reset_secondary_bus(dev);
4111 }
4112
4113 /**
4114 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
4115 * @dev: Bridge device
4116 *
4117 * Use the bridge control register to assert reset on the secondary bus.
4118 * Devices on the secondary bus are left in power-on state.
4119 */
4120 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
4121 {
4122 pcibios_reset_secondary_bus(dev);
4123 }
4124 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
4125
4126 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4127 {
4128 struct pci_dev *pdev;
4129
4130 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4131 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4132 return -ENOTTY;
4133
4134 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4135 if (pdev != dev)
4136 return -ENOTTY;
4137
4138 if (probe)
4139 return 0;
4140
4141 pci_reset_bridge_secondary_bus(dev->bus->self);
4142
4143 return 0;
4144 }
4145
4146 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4147 {
4148 int rc = -ENOTTY;
4149
4150 if (!hotplug || !try_module_get(hotplug->ops->owner))
4151 return rc;
4152
4153 if (hotplug->ops->reset_slot)
4154 rc = hotplug->ops->reset_slot(hotplug, probe);
4155
4156 module_put(hotplug->ops->owner);
4157
4158 return rc;
4159 }
4160
4161 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4162 {
4163 struct pci_dev *pdev;
4164
4165 if (dev->subordinate || !dev->slot ||
4166 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4167 return -ENOTTY;
4168
4169 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4170 if (pdev != dev && pdev->slot == dev->slot)
4171 return -ENOTTY;
4172
4173 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4174 }
4175
4176 static void pci_dev_lock(struct pci_dev *dev)
4177 {
4178 pci_cfg_access_lock(dev);
4179 /* block PM suspend, driver probe, etc. */
4180 device_lock(&dev->dev);
4181 }
4182
4183 /* Return 1 on successful lock, 0 on contention */
4184 static int pci_dev_trylock(struct pci_dev *dev)
4185 {
4186 if (pci_cfg_access_trylock(dev)) {
4187 if (device_trylock(&dev->dev))
4188 return 1;
4189 pci_cfg_access_unlock(dev);
4190 }
4191
4192 return 0;
4193 }
4194
4195 static void pci_dev_unlock(struct pci_dev *dev)
4196 {
4197 device_unlock(&dev->dev);
4198 pci_cfg_access_unlock(dev);
4199 }
4200
4201 static void pci_dev_save_and_disable(struct pci_dev *dev)
4202 {
4203 const struct pci_error_handlers *err_handler =
4204 dev->driver ? dev->driver->err_handler : NULL;
4205
4206 /*
4207 * dev->driver->err_handler->reset_prepare() is protected against
4208 * races with ->remove() by the device lock, which must be held by
4209 * the caller.
4210 */
4211 if (err_handler && err_handler->reset_prepare)
4212 err_handler->reset_prepare(dev);
4213
4214 /*
4215 * Wake-up device prior to save. PM registers default to D0 after
4216 * reset and a simple register restore doesn't reliably return
4217 * to a non-D0 state anyway.
4218 */
4219 pci_set_power_state(dev, PCI_D0);
4220
4221 pci_save_state(dev);
4222 /*
4223 * Disable the device by clearing the Command register, except for
4224 * INTx-disable which is set. This not only disables MMIO and I/O port
4225 * BARs, but also prevents the device from being Bus Master, preventing
4226 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4227 * compliant devices, INTx-disable prevents legacy interrupts.
4228 */
4229 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4230 }
4231
4232 static void pci_dev_restore(struct pci_dev *dev)
4233 {
4234 const struct pci_error_handlers *err_handler =
4235 dev->driver ? dev->driver->err_handler : NULL;
4236
4237 pci_restore_state(dev);
4238
4239 /*
4240 * dev->driver->err_handler->reset_done() is protected against
4241 * races with ->remove() by the device lock, which must be held by
4242 * the caller.
4243 */
4244 if (err_handler && err_handler->reset_done)
4245 err_handler->reset_done(dev);
4246 }
4247
4248 /**
4249 * __pci_reset_function_locked - reset a PCI device function while holding
4250 * the @dev mutex lock.
4251 * @dev: PCI device to reset
4252 *
4253 * Some devices allow an individual function to be reset without affecting
4254 * other functions in the same device. The PCI device must be responsive
4255 * to PCI config space in order to use this function.
4256 *
4257 * The device function is presumed to be unused and the caller is holding
4258 * the device mutex lock when this function is called.
4259 * Resetting the device will make the contents of PCI configuration space
4260 * random, so any caller of this must be prepared to reinitialise the
4261 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4262 * etc.
4263 *
4264 * Returns 0 if the device function was successfully reset or negative if the
4265 * device doesn't support resetting a single function.
4266 */
4267 int __pci_reset_function_locked(struct pci_dev *dev)
4268 {
4269 int rc;
4270
4271 might_sleep();
4272
4273 /*
4274 * A reset method returns -ENOTTY if it doesn't support this device
4275 * and we should try the next method.
4276 *
4277 * If it returns 0 (success), we're finished. If it returns any
4278 * other error, we're also finished: this indicates that further
4279 * reset mechanisms might be broken on the device.
4280 */
4281 rc = pci_dev_specific_reset(dev, 0);
4282 if (rc != -ENOTTY)
4283 return rc;
4284 if (pcie_has_flr(dev)) {
4285 pcie_flr(dev);
4286 return 0;
4287 }
4288 rc = pci_af_flr(dev, 0);
4289 if (rc != -ENOTTY)
4290 return rc;
4291 rc = pci_pm_reset(dev, 0);
4292 if (rc != -ENOTTY)
4293 return rc;
4294 rc = pci_dev_reset_slot_function(dev, 0);
4295 if (rc != -ENOTTY)
4296 return rc;
4297 return pci_parent_bus_reset(dev, 0);
4298 }
4299 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4300
4301 /**
4302 * pci_probe_reset_function - check whether the device can be safely reset
4303 * @dev: PCI device to reset
4304 *
4305 * Some devices allow an individual function to be reset without affecting
4306 * other functions in the same device. The PCI device must be responsive
4307 * to PCI config space in order to use this function.
4308 *
4309 * Returns 0 if the device function can be reset or negative if the
4310 * device doesn't support resetting a single function.
4311 */
4312 int pci_probe_reset_function(struct pci_dev *dev)
4313 {
4314 int rc;
4315
4316 might_sleep();
4317
4318 rc = pci_dev_specific_reset(dev, 1);
4319 if (rc != -ENOTTY)
4320 return rc;
4321 if (pcie_has_flr(dev))
4322 return 0;
4323 rc = pci_af_flr(dev, 1);
4324 if (rc != -ENOTTY)
4325 return rc;
4326 rc = pci_pm_reset(dev, 1);
4327 if (rc != -ENOTTY)
4328 return rc;
4329 rc = pci_dev_reset_slot_function(dev, 1);
4330 if (rc != -ENOTTY)
4331 return rc;
4332
4333 return pci_parent_bus_reset(dev, 1);
4334 }
4335
4336 /**
4337 * pci_reset_function - quiesce and reset a PCI device function
4338 * @dev: PCI device to reset
4339 *
4340 * Some devices allow an individual function to be reset without affecting
4341 * other functions in the same device. The PCI device must be responsive
4342 * to PCI config space in order to use this function.
4343 *
4344 * This function does not just reset the PCI portion of a device, but
4345 * clears all the state associated with the device. This function differs
4346 * from __pci_reset_function_locked() in that it saves and restores device state
4347 * over the reset and takes the PCI device lock.
4348 *
4349 * Returns 0 if the device function was successfully reset or negative if the
4350 * device doesn't support resetting a single function.
4351 */
4352 int pci_reset_function(struct pci_dev *dev)
4353 {
4354 int rc;
4355
4356 rc = pci_probe_reset_function(dev);
4357 if (rc)
4358 return rc;
4359
4360 pci_dev_lock(dev);
4361 pci_dev_save_and_disable(dev);
4362
4363 rc = __pci_reset_function_locked(dev);
4364
4365 pci_dev_restore(dev);
4366 pci_dev_unlock(dev);
4367
4368 return rc;
4369 }
4370 EXPORT_SYMBOL_GPL(pci_reset_function);
4371
4372 /**
4373 * pci_reset_function_locked - quiesce and reset a PCI device function
4374 * @dev: PCI device to reset
4375 *
4376 * Some devices allow an individual function to be reset without affecting
4377 * other functions in the same device. The PCI device must be responsive
4378 * to PCI config space in order to use this function.
4379 *
4380 * This function does not just reset the PCI portion of a device, but
4381 * clears all the state associated with the device. This function differs
4382 * from __pci_reset_function_locked() in that it saves and restores device state
4383 * over the reset. It also differs from pci_reset_function() in that it
4384 * requires the PCI device lock to be held.
4385 *
4386 * Returns 0 if the device function was successfully reset or negative if the
4387 * device doesn't support resetting a single function.
4388 */
4389 int pci_reset_function_locked(struct pci_dev *dev)
4390 {
4391 int rc;
4392
4393 rc = pci_probe_reset_function(dev);
4394 if (rc)
4395 return rc;
4396
4397 pci_dev_save_and_disable(dev);
4398
4399 rc = __pci_reset_function_locked(dev);
4400
4401 pci_dev_restore(dev);
4402
4403 return rc;
4404 }
4405 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4406
4407 /**
4408 * pci_try_reset_function - quiesce and reset a PCI device function
4409 * @dev: PCI device to reset
4410 *
4411 * Same as above, except return -EAGAIN if unable to lock device.
4412 */
4413 int pci_try_reset_function(struct pci_dev *dev)
4414 {
4415 int rc;
4416
4417 rc = pci_probe_reset_function(dev);
4418 if (rc)
4419 return rc;
4420
4421 if (!pci_dev_trylock(dev))
4422 return -EAGAIN;
4423
4424 pci_dev_save_and_disable(dev);
4425 rc = __pci_reset_function_locked(dev);
4426 pci_dev_unlock(dev);
4427
4428 pci_dev_restore(dev);
4429 return rc;
4430 }
4431 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4432
4433 /* Do any devices on or below this bus prevent a bus reset? */
4434 static bool pci_bus_resetable(struct pci_bus *bus)
4435 {
4436 struct pci_dev *dev;
4437
4438
4439 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4440 return false;
4441
4442 list_for_each_entry(dev, &bus->devices, bus_list) {
4443 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4444 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4445 return false;
4446 }
4447
4448 return true;
4449 }
4450
4451 /* Lock devices from the top of the tree down */
4452 static void pci_bus_lock(struct pci_bus *bus)
4453 {
4454 struct pci_dev *dev;
4455
4456 list_for_each_entry(dev, &bus->devices, bus_list) {
4457 pci_dev_lock(dev);
4458 if (dev->subordinate)
4459 pci_bus_lock(dev->subordinate);
4460 }
4461 }
4462
4463 /* Unlock devices from the bottom of the tree up */
4464 static void pci_bus_unlock(struct pci_bus *bus)
4465 {
4466 struct pci_dev *dev;
4467
4468 list_for_each_entry(dev, &bus->devices, bus_list) {
4469 if (dev->subordinate)
4470 pci_bus_unlock(dev->subordinate);
4471 pci_dev_unlock(dev);
4472 }
4473 }
4474
4475 /* Return 1 on successful lock, 0 on contention */
4476 static int pci_bus_trylock(struct pci_bus *bus)
4477 {
4478 struct pci_dev *dev;
4479
4480 list_for_each_entry(dev, &bus->devices, bus_list) {
4481 if (!pci_dev_trylock(dev))
4482 goto unlock;
4483 if (dev->subordinate) {
4484 if (!pci_bus_trylock(dev->subordinate)) {
4485 pci_dev_unlock(dev);
4486 goto unlock;
4487 }
4488 }
4489 }
4490 return 1;
4491
4492 unlock:
4493 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4494 if (dev->subordinate)
4495 pci_bus_unlock(dev->subordinate);
4496 pci_dev_unlock(dev);
4497 }
4498 return 0;
4499 }
4500
4501 /* Do any devices on or below this slot prevent a bus reset? */
4502 static bool pci_slot_resetable(struct pci_slot *slot)
4503 {
4504 struct pci_dev *dev;
4505
4506 if (slot->bus->self &&
4507 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4508 return false;
4509
4510 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4511 if (!dev->slot || dev->slot != slot)
4512 continue;
4513 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4514 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4515 return false;
4516 }
4517
4518 return true;
4519 }
4520
4521 /* Lock devices from the top of the tree down */
4522 static void pci_slot_lock(struct pci_slot *slot)
4523 {
4524 struct pci_dev *dev;
4525
4526 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4527 if (!dev->slot || dev->slot != slot)
4528 continue;
4529 pci_dev_lock(dev);
4530 if (dev->subordinate)
4531 pci_bus_lock(dev->subordinate);
4532 }
4533 }
4534
4535 /* Unlock devices from the bottom of the tree up */
4536 static void pci_slot_unlock(struct pci_slot *slot)
4537 {
4538 struct pci_dev *dev;
4539
4540 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4541 if (!dev->slot || dev->slot != slot)
4542 continue;
4543 if (dev->subordinate)
4544 pci_bus_unlock(dev->subordinate);
4545 pci_dev_unlock(dev);
4546 }
4547 }
4548
4549 /* Return 1 on successful lock, 0 on contention */
4550 static int pci_slot_trylock(struct pci_slot *slot)
4551 {
4552 struct pci_dev *dev;
4553
4554 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4555 if (!dev->slot || dev->slot != slot)
4556 continue;
4557 if (!pci_dev_trylock(dev))
4558 goto unlock;
4559 if (dev->subordinate) {
4560 if (!pci_bus_trylock(dev->subordinate)) {
4561 pci_dev_unlock(dev);
4562 goto unlock;
4563 }
4564 }
4565 }
4566 return 1;
4567
4568 unlock:
4569 list_for_each_entry_continue_reverse(dev,
4570 &slot->bus->devices, bus_list) {
4571 if (!dev->slot || dev->slot != slot)
4572 continue;
4573 if (dev->subordinate)
4574 pci_bus_unlock(dev->subordinate);
4575 pci_dev_unlock(dev);
4576 }
4577 return 0;
4578 }
4579
4580 /* Save and disable devices from the top of the tree down */
4581 static void pci_bus_save_and_disable(struct pci_bus *bus)
4582 {
4583 struct pci_dev *dev;
4584
4585 list_for_each_entry(dev, &bus->devices, bus_list) {
4586 pci_dev_lock(dev);
4587 pci_dev_save_and_disable(dev);
4588 pci_dev_unlock(dev);
4589 if (dev->subordinate)
4590 pci_bus_save_and_disable(dev->subordinate);
4591 }
4592 }
4593
4594 /*
4595 * Restore devices from top of the tree down - parent bridges need to be
4596 * restored before we can get to subordinate devices.
4597 */
4598 static void pci_bus_restore(struct pci_bus *bus)
4599 {
4600 struct pci_dev *dev;
4601
4602 list_for_each_entry(dev, &bus->devices, bus_list) {
4603 pci_dev_lock(dev);
4604 pci_dev_restore(dev);
4605 pci_dev_unlock(dev);
4606 if (dev->subordinate)
4607 pci_bus_restore(dev->subordinate);
4608 }
4609 }
4610
4611 /* Save and disable devices from the top of the tree down */
4612 static void pci_slot_save_and_disable(struct pci_slot *slot)
4613 {
4614 struct pci_dev *dev;
4615
4616 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4617 if (!dev->slot || dev->slot != slot)
4618 continue;
4619 pci_dev_save_and_disable(dev);
4620 if (dev->subordinate)
4621 pci_bus_save_and_disable(dev->subordinate);
4622 }
4623 }
4624
4625 /*
4626 * Restore devices from top of the tree down - parent bridges need to be
4627 * restored before we can get to subordinate devices.
4628 */
4629 static void pci_slot_restore(struct pci_slot *slot)
4630 {
4631 struct pci_dev *dev;
4632
4633 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4634 if (!dev->slot || dev->slot != slot)
4635 continue;
4636 pci_dev_restore(dev);
4637 if (dev->subordinate)
4638 pci_bus_restore(dev->subordinate);
4639 }
4640 }
4641
4642 static int pci_slot_reset(struct pci_slot *slot, int probe)
4643 {
4644 int rc;
4645
4646 if (!slot || !pci_slot_resetable(slot))
4647 return -ENOTTY;
4648
4649 if (!probe)
4650 pci_slot_lock(slot);
4651
4652 might_sleep();
4653
4654 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4655
4656 if (!probe)
4657 pci_slot_unlock(slot);
4658
4659 return rc;
4660 }
4661
4662 /**
4663 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4664 * @slot: PCI slot to probe
4665 *
4666 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4667 */
4668 int pci_probe_reset_slot(struct pci_slot *slot)
4669 {
4670 return pci_slot_reset(slot, 1);
4671 }
4672 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4673
4674 /**
4675 * pci_reset_slot - reset a PCI slot
4676 * @slot: PCI slot to reset
4677 *
4678 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4679 * independent of other slots. For instance, some slots may support slot power
4680 * control. In the case of a 1:1 bus to slot architecture, this function may
4681 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4682 * Generally a slot reset should be attempted before a bus reset. All of the
4683 * function of the slot and any subordinate buses behind the slot are reset
4684 * through this function. PCI config space of all devices in the slot and
4685 * behind the slot is saved before and restored after reset.
4686 *
4687 * Return 0 on success, non-zero on error.
4688 */
4689 int pci_reset_slot(struct pci_slot *slot)
4690 {
4691 int rc;
4692
4693 rc = pci_slot_reset(slot, 1);
4694 if (rc)
4695 return rc;
4696
4697 pci_slot_save_and_disable(slot);
4698
4699 rc = pci_slot_reset(slot, 0);
4700
4701 pci_slot_restore(slot);
4702
4703 return rc;
4704 }
4705 EXPORT_SYMBOL_GPL(pci_reset_slot);
4706
4707 /**
4708 * pci_try_reset_slot - Try to reset a PCI slot
4709 * @slot: PCI slot to reset
4710 *
4711 * Same as above except return -EAGAIN if the slot cannot be locked
4712 */
4713 int pci_try_reset_slot(struct pci_slot *slot)
4714 {
4715 int rc;
4716
4717 rc = pci_slot_reset(slot, 1);
4718 if (rc)
4719 return rc;
4720
4721 pci_slot_save_and_disable(slot);
4722
4723 if (pci_slot_trylock(slot)) {
4724 might_sleep();
4725 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4726 pci_slot_unlock(slot);
4727 } else
4728 rc = -EAGAIN;
4729
4730 pci_slot_restore(slot);
4731
4732 return rc;
4733 }
4734 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4735
4736 static int pci_bus_reset(struct pci_bus *bus, int probe)
4737 {
4738 if (!bus->self || !pci_bus_resetable(bus))
4739 return -ENOTTY;
4740
4741 if (probe)
4742 return 0;
4743
4744 pci_bus_lock(bus);
4745
4746 might_sleep();
4747
4748 pci_reset_bridge_secondary_bus(bus->self);
4749
4750 pci_bus_unlock(bus);
4751
4752 return 0;
4753 }
4754
4755 /**
4756 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4757 * @bus: PCI bus to probe
4758 *
4759 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4760 */
4761 int pci_probe_reset_bus(struct pci_bus *bus)
4762 {
4763 return pci_bus_reset(bus, 1);
4764 }
4765 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4766
4767 /**
4768 * pci_reset_bus - reset a PCI bus
4769 * @bus: top level PCI bus to reset
4770 *
4771 * Do a bus reset on the given bus and any subordinate buses, saving
4772 * and restoring state of all devices.
4773 *
4774 * Return 0 on success, non-zero on error.
4775 */
4776 int pci_reset_bus(struct pci_bus *bus)
4777 {
4778 int rc;
4779
4780 rc = pci_bus_reset(bus, 1);
4781 if (rc)
4782 return rc;
4783
4784 pci_bus_save_and_disable(bus);
4785
4786 rc = pci_bus_reset(bus, 0);
4787
4788 pci_bus_restore(bus);
4789
4790 return rc;
4791 }
4792 EXPORT_SYMBOL_GPL(pci_reset_bus);
4793
4794 /**
4795 * pci_try_reset_bus - Try to reset a PCI bus
4796 * @bus: top level PCI bus to reset
4797 *
4798 * Same as above except return -EAGAIN if the bus cannot be locked
4799 */
4800 int pci_try_reset_bus(struct pci_bus *bus)
4801 {
4802 int rc;
4803
4804 rc = pci_bus_reset(bus, 1);
4805 if (rc)
4806 return rc;
4807
4808 pci_bus_save_and_disable(bus);
4809
4810 if (pci_bus_trylock(bus)) {
4811 might_sleep();
4812 pci_reset_bridge_secondary_bus(bus->self);
4813 pci_bus_unlock(bus);
4814 } else
4815 rc = -EAGAIN;
4816
4817 pci_bus_restore(bus);
4818
4819 return rc;
4820 }
4821 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4822
4823 /**
4824 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4825 * @dev: PCI device to query
4826 *
4827 * Returns mmrbc: maximum designed memory read count in bytes
4828 * or appropriate error value.
4829 */
4830 int pcix_get_max_mmrbc(struct pci_dev *dev)
4831 {
4832 int cap;
4833 u32 stat;
4834
4835 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4836 if (!cap)
4837 return -EINVAL;
4838
4839 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4840 return -EINVAL;
4841
4842 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4843 }
4844 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4845
4846 /**
4847 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4848 * @dev: PCI device to query
4849 *
4850 * Returns mmrbc: maximum memory read count in bytes
4851 * or appropriate error value.
4852 */
4853 int pcix_get_mmrbc(struct pci_dev *dev)
4854 {
4855 int cap;
4856 u16 cmd;
4857
4858 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4859 if (!cap)
4860 return -EINVAL;
4861
4862 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4863 return -EINVAL;
4864
4865 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4866 }
4867 EXPORT_SYMBOL(pcix_get_mmrbc);
4868
4869 /**
4870 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4871 * @dev: PCI device to query
4872 * @mmrbc: maximum memory read count in bytes
4873 * valid values are 512, 1024, 2048, 4096
4874 *
4875 * If possible sets maximum memory read byte count, some bridges have erratas
4876 * that prevent this.
4877 */
4878 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4879 {
4880 int cap;
4881 u32 stat, v, o;
4882 u16 cmd;
4883
4884 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4885 return -EINVAL;
4886
4887 v = ffs(mmrbc) - 10;
4888
4889 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4890 if (!cap)
4891 return -EINVAL;
4892
4893 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4894 return -EINVAL;
4895
4896 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4897 return -E2BIG;
4898
4899 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4900 return -EINVAL;
4901
4902 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4903 if (o != v) {
4904 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4905 return -EIO;
4906
4907 cmd &= ~PCI_X_CMD_MAX_READ;
4908 cmd |= v << 2;
4909 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4910 return -EIO;
4911 }
4912 return 0;
4913 }
4914 EXPORT_SYMBOL(pcix_set_mmrbc);
4915
4916 /**
4917 * pcie_get_readrq - get PCI Express read request size
4918 * @dev: PCI device to query
4919 *
4920 * Returns maximum memory read request in bytes
4921 * or appropriate error value.
4922 */
4923 int pcie_get_readrq(struct pci_dev *dev)
4924 {
4925 u16 ctl;
4926
4927 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4928
4929 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4930 }
4931 EXPORT_SYMBOL(pcie_get_readrq);
4932
4933 /**
4934 * pcie_set_readrq - set PCI Express maximum memory read request
4935 * @dev: PCI device to query
4936 * @rq: maximum memory read count in bytes
4937 * valid values are 128, 256, 512, 1024, 2048, 4096
4938 *
4939 * If possible sets maximum memory read request in bytes
4940 */
4941 int pcie_set_readrq(struct pci_dev *dev, int rq)
4942 {
4943 u16 v;
4944
4945 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4946 return -EINVAL;
4947
4948 /*
4949 * If using the "performance" PCIe config, we clamp the
4950 * read rq size to the max packet size to prevent the
4951 * host bridge generating requests larger than we can
4952 * cope with
4953 */
4954 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4955 int mps = pcie_get_mps(dev);
4956
4957 if (mps < rq)
4958 rq = mps;
4959 }
4960
4961 v = (ffs(rq) - 8) << 12;
4962
4963 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4964 PCI_EXP_DEVCTL_READRQ, v);
4965 }
4966 EXPORT_SYMBOL(pcie_set_readrq);
4967
4968 /**
4969 * pcie_get_mps - get PCI Express maximum payload size
4970 * @dev: PCI device to query
4971 *
4972 * Returns maximum payload size in bytes
4973 */
4974 int pcie_get_mps(struct pci_dev *dev)
4975 {
4976 u16 ctl;
4977
4978 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4979
4980 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4981 }
4982 EXPORT_SYMBOL(pcie_get_mps);
4983
4984 /**
4985 * pcie_set_mps - set PCI Express maximum payload size
4986 * @dev: PCI device to query
4987 * @mps: maximum payload size in bytes
4988 * valid values are 128, 256, 512, 1024, 2048, 4096
4989 *
4990 * If possible sets maximum payload size
4991 */
4992 int pcie_set_mps(struct pci_dev *dev, int mps)
4993 {
4994 u16 v;
4995
4996 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4997 return -EINVAL;
4998
4999 v = ffs(mps) - 8;
5000 if (v > dev->pcie_mpss)
5001 return -EINVAL;
5002 v <<= 5;
5003
5004 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5005 PCI_EXP_DEVCTL_PAYLOAD, v);
5006 }
5007 EXPORT_SYMBOL(pcie_set_mps);
5008
5009 /**
5010 * pcie_get_minimum_link - determine minimum link settings of a PCI device
5011 * @dev: PCI device to query
5012 * @speed: storage for minimum speed
5013 * @width: storage for minimum width
5014 *
5015 * This function will walk up the PCI device chain and determine the minimum
5016 * link width and speed of the device.
5017 */
5018 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
5019 enum pcie_link_width *width)
5020 {
5021 int ret;
5022
5023 *speed = PCI_SPEED_UNKNOWN;
5024 *width = PCIE_LNK_WIDTH_UNKNOWN;
5025
5026 while (dev) {
5027 u16 lnksta;
5028 enum pci_bus_speed next_speed;
5029 enum pcie_link_width next_width;
5030
5031 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5032 if (ret)
5033 return ret;
5034
5035 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5036 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5037 PCI_EXP_LNKSTA_NLW_SHIFT;
5038
5039 if (next_speed < *speed)
5040 *speed = next_speed;
5041
5042 if (next_width < *width)
5043 *width = next_width;
5044
5045 dev = dev->bus->self;
5046 }
5047
5048 return 0;
5049 }
5050 EXPORT_SYMBOL(pcie_get_minimum_link);
5051
5052 /**
5053 * pci_select_bars - Make BAR mask from the type of resource
5054 * @dev: the PCI device for which BAR mask is made
5055 * @flags: resource type mask to be selected
5056 *
5057 * This helper routine makes bar mask from the type of resource.
5058 */
5059 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5060 {
5061 int i, bars = 0;
5062 for (i = 0; i < PCI_NUM_RESOURCES; i++)
5063 if (pci_resource_flags(dev, i) & flags)
5064 bars |= (1 << i);
5065 return bars;
5066 }
5067 EXPORT_SYMBOL(pci_select_bars);
5068
5069 /* Some architectures require additional programming to enable VGA */
5070 static arch_set_vga_state_t arch_set_vga_state;
5071
5072 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5073 {
5074 arch_set_vga_state = func; /* NULL disables */
5075 }
5076
5077 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5078 unsigned int command_bits, u32 flags)
5079 {
5080 if (arch_set_vga_state)
5081 return arch_set_vga_state(dev, decode, command_bits,
5082 flags);
5083 return 0;
5084 }
5085
5086 /**
5087 * pci_set_vga_state - set VGA decode state on device and parents if requested
5088 * @dev: the PCI device
5089 * @decode: true = enable decoding, false = disable decoding
5090 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5091 * @flags: traverse ancestors and change bridges
5092 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5093 */
5094 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5095 unsigned int command_bits, u32 flags)
5096 {
5097 struct pci_bus *bus;
5098 struct pci_dev *bridge;
5099 u16 cmd;
5100 int rc;
5101
5102 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5103
5104 /* ARCH specific VGA enables */
5105 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5106 if (rc)
5107 return rc;
5108
5109 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5110 pci_read_config_word(dev, PCI_COMMAND, &cmd);
5111 if (decode == true)
5112 cmd |= command_bits;
5113 else
5114 cmd &= ~command_bits;
5115 pci_write_config_word(dev, PCI_COMMAND, cmd);
5116 }
5117
5118 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5119 return 0;
5120
5121 bus = dev->bus;
5122 while (bus) {
5123 bridge = bus->self;
5124 if (bridge) {
5125 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5126 &cmd);
5127 if (decode == true)
5128 cmd |= PCI_BRIDGE_CTL_VGA;
5129 else
5130 cmd &= ~PCI_BRIDGE_CTL_VGA;
5131 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5132 cmd);
5133 }
5134 bus = bus->parent;
5135 }
5136 return 0;
5137 }
5138
5139 /**
5140 * pci_add_dma_alias - Add a DMA devfn alias for a device
5141 * @dev: the PCI device for which alias is added
5142 * @devfn: alias slot and function
5143 *
5144 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
5145 * It should be called early, preferably as PCI fixup header quirk.
5146 */
5147 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5148 {
5149 if (!dev->dma_alias_mask)
5150 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5151 sizeof(long), GFP_KERNEL);
5152 if (!dev->dma_alias_mask) {
5153 dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n");
5154 return;
5155 }
5156
5157 set_bit(devfn, dev->dma_alias_mask);
5158 dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n",
5159 PCI_SLOT(devfn), PCI_FUNC(devfn));
5160 }
5161
5162 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5163 {
5164 return (dev1->dma_alias_mask &&
5165 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5166 (dev2->dma_alias_mask &&
5167 test_bit(dev1->devfn, dev2->dma_alias_mask));
5168 }
5169
5170 bool pci_device_is_present(struct pci_dev *pdev)
5171 {
5172 u32 v;
5173
5174 if (pci_dev_is_disconnected(pdev))
5175 return false;
5176 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5177 }
5178 EXPORT_SYMBOL_GPL(pci_device_is_present);
5179
5180 void pci_ignore_hotplug(struct pci_dev *dev)
5181 {
5182 struct pci_dev *bridge = dev->bus->self;
5183
5184 dev->ignore_hotplug = 1;
5185 /* Propagate the "ignore hotplug" setting to the parent bridge. */
5186 if (bridge)
5187 bridge->ignore_hotplug = 1;
5188 }
5189 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5190
5191 resource_size_t __weak pcibios_default_alignment(void)
5192 {
5193 return 0;
5194 }
5195
5196 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5197 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5198 static DEFINE_SPINLOCK(resource_alignment_lock);
5199
5200 /**
5201 * pci_specified_resource_alignment - get resource alignment specified by user.
5202 * @dev: the PCI device to get
5203 * @resize: whether or not to change resources' size when reassigning alignment
5204 *
5205 * RETURNS: Resource alignment if it is specified.
5206 * Zero if it is not specified.
5207 */
5208 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5209 bool *resize)
5210 {
5211 int seg, bus, slot, func, align_order, count;
5212 unsigned short vendor, device, subsystem_vendor, subsystem_device;
5213 resource_size_t align = pcibios_default_alignment();
5214 char *p;
5215
5216 spin_lock(&resource_alignment_lock);
5217 p = resource_alignment_param;
5218 if (!*p && !align)
5219 goto out;
5220 if (pci_has_flag(PCI_PROBE_ONLY)) {
5221 align = 0;
5222 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5223 goto out;
5224 }
5225
5226 while (*p) {
5227 count = 0;
5228 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5229 p[count] == '@') {
5230 p += count + 1;
5231 } else {
5232 align_order = -1;
5233 }
5234 if (strncmp(p, "pci:", 4) == 0) {
5235 /* PCI vendor/device (subvendor/subdevice) ids are specified */
5236 p += 4;
5237 if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5238 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5239 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5240 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5241 p);
5242 break;
5243 }
5244 subsystem_vendor = subsystem_device = 0;
5245 }
5246 p += count;
5247 if ((!vendor || (vendor == dev->vendor)) &&
5248 (!device || (device == dev->device)) &&
5249 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5250 (!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5251 *resize = true;
5252 if (align_order == -1)
5253 align = PAGE_SIZE;
5254 else
5255 align = 1 << align_order;
5256 /* Found */
5257 break;
5258 }
5259 }
5260 else {
5261 if (sscanf(p, "%x:%x:%x.%x%n",
5262 &seg, &bus, &slot, &func, &count) != 4) {
5263 seg = 0;
5264 if (sscanf(p, "%x:%x.%x%n",
5265 &bus, &slot, &func, &count) != 3) {
5266 /* Invalid format */
5267 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5268 p);
5269 break;
5270 }
5271 }
5272 p += count;
5273 if (seg == pci_domain_nr(dev->bus) &&
5274 bus == dev->bus->number &&
5275 slot == PCI_SLOT(dev->devfn) &&
5276 func == PCI_FUNC(dev->devfn)) {
5277 *resize = true;
5278 if (align_order == -1)
5279 align = PAGE_SIZE;
5280 else
5281 align = 1 << align_order;
5282 /* Found */
5283 break;
5284 }
5285 }
5286 if (*p != ';' && *p != ',') {
5287 /* End of param or invalid format */
5288 break;
5289 }
5290 p++;
5291 }
5292 out:
5293 spin_unlock(&resource_alignment_lock);
5294 return align;
5295 }
5296
5297 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5298 resource_size_t align, bool resize)
5299 {
5300 struct resource *r = &dev->resource[bar];
5301 resource_size_t size;
5302
5303 if (!(r->flags & IORESOURCE_MEM))
5304 return;
5305
5306 if (r->flags & IORESOURCE_PCI_FIXED) {
5307 dev_info(&dev->dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5308 bar, r, (unsigned long long)align);
5309 return;
5310 }
5311
5312 size = resource_size(r);
5313 if (size >= align)
5314 return;
5315
5316 /*
5317 * Increase the alignment of the resource. There are two ways we
5318 * can do this:
5319 *
5320 * 1) Increase the size of the resource. BARs are aligned on their
5321 * size, so when we reallocate space for this resource, we'll
5322 * allocate it with the larger alignment. This also prevents
5323 * assignment of any other BARs inside the alignment region, so
5324 * if we're requesting page alignment, this means no other BARs
5325 * will share the page.
5326 *
5327 * The disadvantage is that this makes the resource larger than
5328 * the hardware BAR, which may break drivers that compute things
5329 * based on the resource size, e.g., to find registers at a
5330 * fixed offset before the end of the BAR.
5331 *
5332 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5333 * set r->start to the desired alignment. By itself this
5334 * doesn't prevent other BARs being put inside the alignment
5335 * region, but if we realign *every* resource of every device in
5336 * the system, none of them will share an alignment region.
5337 *
5338 * When the user has requested alignment for only some devices via
5339 * the "pci=resource_alignment" argument, "resize" is true and we
5340 * use the first method. Otherwise we assume we're aligning all
5341 * devices and we use the second.
5342 */
5343
5344 dev_info(&dev->dev, "BAR%d %pR: requesting alignment to %#llx\n",
5345 bar, r, (unsigned long long)align);
5346
5347 if (resize) {
5348 r->start = 0;
5349 r->end = align - 1;
5350 } else {
5351 r->flags &= ~IORESOURCE_SIZEALIGN;
5352 r->flags |= IORESOURCE_STARTALIGN;
5353 r->start = align;
5354 r->end = r->start + size - 1;
5355 }
5356 r->flags |= IORESOURCE_UNSET;
5357 }
5358
5359 /*
5360 * This function disables memory decoding and releases memory resources
5361 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5362 * It also rounds up size to specified alignment.
5363 * Later on, the kernel will assign page-aligned memory resource back
5364 * to the device.
5365 */
5366 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5367 {
5368 int i;
5369 struct resource *r;
5370 resource_size_t align;
5371 u16 command;
5372 bool resize = false;
5373
5374 /*
5375 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5376 * 3.4.1.11. Their resources are allocated from the space
5377 * described by the VF BARx register in the PF's SR-IOV capability.
5378 * We can't influence their alignment here.
5379 */
5380 if (dev->is_virtfn)
5381 return;
5382
5383 /* check if specified PCI is target device to reassign */
5384 align = pci_specified_resource_alignment(dev, &resize);
5385 if (!align)
5386 return;
5387
5388 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5389 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5390 dev_warn(&dev->dev,
5391 "Can't reassign resources to host bridge.\n");
5392 return;
5393 }
5394
5395 dev_info(&dev->dev,
5396 "Disabling memory decoding and releasing memory resources.\n");
5397 pci_read_config_word(dev, PCI_COMMAND, &command);
5398 command &= ~PCI_COMMAND_MEMORY;
5399 pci_write_config_word(dev, PCI_COMMAND, command);
5400
5401 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
5402 pci_request_resource_alignment(dev, i, align, resize);
5403
5404 /*
5405 * Need to disable bridge's resource window,
5406 * to enable the kernel to reassign new resource
5407 * window later on.
5408 */
5409 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5410 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5411 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5412 r = &dev->resource[i];
5413 if (!(r->flags & IORESOURCE_MEM))
5414 continue;
5415 r->flags |= IORESOURCE_UNSET;
5416 r->end = resource_size(r) - 1;
5417 r->start = 0;
5418 }
5419 pci_disable_bridge_window(dev);
5420 }
5421 }
5422
5423 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5424 {
5425 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5426 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5427 spin_lock(&resource_alignment_lock);
5428 strncpy(resource_alignment_param, buf, count);
5429 resource_alignment_param[count] = '\0';
5430 spin_unlock(&resource_alignment_lock);
5431 return count;
5432 }
5433
5434 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5435 {
5436 size_t count;
5437 spin_lock(&resource_alignment_lock);
5438 count = snprintf(buf, size, "%s", resource_alignment_param);
5439 spin_unlock(&resource_alignment_lock);
5440 return count;
5441 }
5442
5443 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5444 {
5445 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5446 }
5447
5448 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5449 const char *buf, size_t count)
5450 {
5451 return pci_set_resource_alignment_param(buf, count);
5452 }
5453
5454 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5455 pci_resource_alignment_store);
5456
5457 static int __init pci_resource_alignment_sysfs_init(void)
5458 {
5459 return bus_create_file(&pci_bus_type,
5460 &bus_attr_resource_alignment);
5461 }
5462 late_initcall(pci_resource_alignment_sysfs_init);
5463
5464 static void pci_no_domains(void)
5465 {
5466 #ifdef CONFIG_PCI_DOMAINS
5467 pci_domains_supported = 0;
5468 #endif
5469 }
5470
5471 #ifdef CONFIG_PCI_DOMAINS
5472 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5473
5474 int pci_get_new_domain_nr(void)
5475 {
5476 return atomic_inc_return(&__domain_nr);
5477 }
5478
5479 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5480 static int of_pci_bus_find_domain_nr(struct device *parent)
5481 {
5482 static int use_dt_domains = -1;
5483 int domain = -1;
5484
5485 if (parent)
5486 domain = of_get_pci_domain_nr(parent->of_node);
5487 /*
5488 * Check DT domain and use_dt_domains values.
5489 *
5490 * If DT domain property is valid (domain >= 0) and
5491 * use_dt_domains != 0, the DT assignment is valid since this means
5492 * we have not previously allocated a domain number by using
5493 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5494 * 1, to indicate that we have just assigned a domain number from
5495 * DT.
5496 *
5497 * If DT domain property value is not valid (ie domain < 0), and we
5498 * have not previously assigned a domain number from DT
5499 * (use_dt_domains != 1) we should assign a domain number by
5500 * using the:
5501 *
5502 * pci_get_new_domain_nr()
5503 *
5504 * API and update the use_dt_domains value to keep track of method we
5505 * are using to assign domain numbers (use_dt_domains = 0).
5506 *
5507 * All other combinations imply we have a platform that is trying
5508 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5509 * which is a recipe for domain mishandling and it is prevented by
5510 * invalidating the domain value (domain = -1) and printing a
5511 * corresponding error.
5512 */
5513 if (domain >= 0 && use_dt_domains) {
5514 use_dt_domains = 1;
5515 } else if (domain < 0 && use_dt_domains != 1) {
5516 use_dt_domains = 0;
5517 domain = pci_get_new_domain_nr();
5518 } else {
5519 dev_err(parent, "Node %pOF has inconsistent \"linux,pci-domain\" property in DT\n",
5520 parent->of_node);
5521 domain = -1;
5522 }
5523
5524 return domain;
5525 }
5526
5527 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5528 {
5529 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5530 acpi_pci_bus_find_domain_nr(bus);
5531 }
5532 #endif
5533 #endif
5534
5535 /**
5536 * pci_ext_cfg_avail - can we access extended PCI config space?
5537 *
5538 * Returns 1 if we can access PCI extended config space (offsets
5539 * greater than 0xff). This is the default implementation. Architecture
5540 * implementations can override this.
5541 */
5542 int __weak pci_ext_cfg_avail(void)
5543 {
5544 return 1;
5545 }
5546
5547 void __weak pci_fixup_cardbus(struct pci_bus *bus)
5548 {
5549 }
5550 EXPORT_SYMBOL(pci_fixup_cardbus);
5551
5552 static int __init pci_setup(char *str)
5553 {
5554 while (str) {
5555 char *k = strchr(str, ',');
5556 if (k)
5557 *k++ = 0;
5558 if (*str && (str = pcibios_setup(str)) && *str) {
5559 if (!strcmp(str, "nomsi")) {
5560 pci_no_msi();
5561 } else if (!strcmp(str, "noaer")) {
5562 pci_no_aer();
5563 } else if (!strncmp(str, "realloc=", 8)) {
5564 pci_realloc_get_opt(str + 8);
5565 } else if (!strncmp(str, "realloc", 7)) {
5566 pci_realloc_get_opt("on");
5567 } else if (!strcmp(str, "nodomains")) {
5568 pci_no_domains();
5569 } else if (!strncmp(str, "noari", 5)) {
5570 pcie_ari_disabled = true;
5571 } else if (!strncmp(str, "cbiosize=", 9)) {
5572 pci_cardbus_io_size = memparse(str + 9, &str);
5573 } else if (!strncmp(str, "cbmemsize=", 10)) {
5574 pci_cardbus_mem_size = memparse(str + 10, &str);
5575 } else if (!strncmp(str, "resource_alignment=", 19)) {
5576 pci_set_resource_alignment_param(str + 19,
5577 strlen(str + 19));
5578 } else if (!strncmp(str, "ecrc=", 5)) {
5579 pcie_ecrc_get_policy(str + 5);
5580 } else if (!strncmp(str, "hpiosize=", 9)) {
5581 pci_hotplug_io_size = memparse(str + 9, &str);
5582 } else if (!strncmp(str, "hpmemsize=", 10)) {
5583 pci_hotplug_mem_size = memparse(str + 10, &str);
5584 } else if (!strncmp(str, "hpbussize=", 10)) {
5585 pci_hotplug_bus_size =
5586 simple_strtoul(str + 10, &str, 0);
5587 if (pci_hotplug_bus_size > 0xff)
5588 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5589 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5590 pcie_bus_config = PCIE_BUS_TUNE_OFF;
5591 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
5592 pcie_bus_config = PCIE_BUS_SAFE;
5593 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
5594 pcie_bus_config = PCIE_BUS_PERFORMANCE;
5595 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5596 pcie_bus_config = PCIE_BUS_PEER2PEER;
5597 } else if (!strncmp(str, "pcie_scan_all", 13)) {
5598 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5599 } else {
5600 printk(KERN_ERR "PCI: Unknown option `%s'\n",
5601 str);
5602 }
5603 }
5604 str = k;
5605 }
5606 return 0;
5607 }
5608 early_param("pci", pci_setup);