]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/pci/pci.c
Merge branch 'remotes/lorenzo/pci/dwc'
[mirror_ubuntu-jammy-kernel.git] / drivers / pci / pci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/of_pci.h>
19 #include <linux/pci.h>
20 #include <linux/pm.h>
21 #include <linux/slab.h>
22 #include <linux/module.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25 #include <linux/log2.h>
26 #include <linux/logic_pio.h>
27 #include <linux/pm_wakeup.h>
28 #include <linux/interrupt.h>
29 #include <linux/device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/pci_hotplug.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pci-ats.h>
34 #include <asm/setup.h>
35 #include <asm/dma.h>
36 #include <linux/aer.h>
37 #include "pci.h"
38
39 DEFINE_MUTEX(pci_slot_mutex);
40
41 const char *pci_power_names[] = {
42 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
43 };
44 EXPORT_SYMBOL_GPL(pci_power_names);
45
46 int isa_dma_bridge_buggy;
47 EXPORT_SYMBOL(isa_dma_bridge_buggy);
48
49 int pci_pci_problems;
50 EXPORT_SYMBOL(pci_pci_problems);
51
52 unsigned int pci_pm_d3_delay;
53
54 static void pci_pme_list_scan(struct work_struct *work);
55
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59
60 struct pci_pme_device {
61 struct list_head list;
62 struct pci_dev *dev;
63 };
64
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
66
67 static void pci_dev_d3_sleep(struct pci_dev *dev)
68 {
69 unsigned int delay = dev->d3_delay;
70
71 if (delay < pci_pm_d3_delay)
72 delay = pci_pm_d3_delay;
73
74 if (delay)
75 msleep(delay);
76 }
77
78 #ifdef CONFIG_PCI_DOMAINS
79 int pci_domains_supported = 1;
80 #endif
81
82 #define DEFAULT_CARDBUS_IO_SIZE (256)
83 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
84 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
85 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
86 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
87
88 #define DEFAULT_HOTPLUG_IO_SIZE (256)
89 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
90 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
91 /* hpiosize=nn can override this */
92 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
93 /*
94 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
95 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
96 * pci=hpmemsize=nnM overrides both
97 */
98 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
99 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
100
101 #define DEFAULT_HOTPLUG_BUS_SIZE 1
102 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
103
104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
105
106 /*
107 * The default CLS is used if arch didn't set CLS explicitly and not
108 * all pci devices agree on the same value. Arch can override either
109 * the dfl or actual value as it sees fit. Don't forget this is
110 * measured in 32-bit words, not bytes.
111 */
112 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
113 u8 pci_cache_line_size;
114
115 /*
116 * If we set up a device for bus mastering, we need to check the latency
117 * timer as certain BIOSes forget to set it properly.
118 */
119 unsigned int pcibios_max_latency = 255;
120
121 /* If set, the PCIe ARI capability will not be used. */
122 static bool pcie_ari_disabled;
123
124 /* If set, the PCIe ATS capability will not be used. */
125 static bool pcie_ats_disabled;
126
127 /* If set, the PCI config space of each device is printed during boot. */
128 bool pci_early_dump;
129
130 bool pci_ats_disabled(void)
131 {
132 return pcie_ats_disabled;
133 }
134 EXPORT_SYMBOL_GPL(pci_ats_disabled);
135
136 /* Disable bridge_d3 for all PCIe ports */
137 static bool pci_bridge_d3_disable;
138 /* Force bridge_d3 for all PCIe ports */
139 static bool pci_bridge_d3_force;
140
141 static int __init pcie_port_pm_setup(char *str)
142 {
143 if (!strcmp(str, "off"))
144 pci_bridge_d3_disable = true;
145 else if (!strcmp(str, "force"))
146 pci_bridge_d3_force = true;
147 return 1;
148 }
149 __setup("pcie_port_pm=", pcie_port_pm_setup);
150
151 /* Time to wait after a reset for device to become responsive */
152 #define PCIE_RESET_READY_POLL_MS 60000
153
154 /**
155 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
156 * @bus: pointer to PCI bus structure to search
157 *
158 * Given a PCI bus, returns the highest PCI bus number present in the set
159 * including the given PCI bus and its list of child PCI buses.
160 */
161 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
162 {
163 struct pci_bus *tmp;
164 unsigned char max, n;
165
166 max = bus->busn_res.end;
167 list_for_each_entry(tmp, &bus->children, node) {
168 n = pci_bus_max_busnr(tmp);
169 if (n > max)
170 max = n;
171 }
172 return max;
173 }
174 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
175
176 #ifdef CONFIG_HAS_IOMEM
177 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
178 {
179 struct resource *res = &pdev->resource[bar];
180
181 /*
182 * Make sure the BAR is actually a memory resource, not an IO resource
183 */
184 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
185 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
186 return NULL;
187 }
188 return ioremap(res->start, resource_size(res));
189 }
190 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
191
192 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
193 {
194 /*
195 * Make sure the BAR is actually a memory resource, not an IO resource
196 */
197 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
198 WARN_ON(1);
199 return NULL;
200 }
201 return ioremap_wc(pci_resource_start(pdev, bar),
202 pci_resource_len(pdev, bar));
203 }
204 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
205 #endif
206
207 /**
208 * pci_dev_str_match_path - test if a path string matches a device
209 * @dev: the PCI device to test
210 * @path: string to match the device against
211 * @endptr: pointer to the string after the match
212 *
213 * Test if a string (typically from a kernel parameter) formatted as a
214 * path of device/function addresses matches a PCI device. The string must
215 * be of the form:
216 *
217 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
218 *
219 * A path for a device can be obtained using 'lspci -t'. Using a path
220 * is more robust against bus renumbering than using only a single bus,
221 * device and function address.
222 *
223 * Returns 1 if the string matches the device, 0 if it does not and
224 * a negative error code if it fails to parse the string.
225 */
226 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
227 const char **endptr)
228 {
229 int ret;
230 int seg, bus, slot, func;
231 char *wpath, *p;
232 char end;
233
234 *endptr = strchrnul(path, ';');
235
236 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
237 if (!wpath)
238 return -ENOMEM;
239
240 while (1) {
241 p = strrchr(wpath, '/');
242 if (!p)
243 break;
244 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
245 if (ret != 2) {
246 ret = -EINVAL;
247 goto free_and_exit;
248 }
249
250 if (dev->devfn != PCI_DEVFN(slot, func)) {
251 ret = 0;
252 goto free_and_exit;
253 }
254
255 /*
256 * Note: we don't need to get a reference to the upstream
257 * bridge because we hold a reference to the top level
258 * device which should hold a reference to the bridge,
259 * and so on.
260 */
261 dev = pci_upstream_bridge(dev);
262 if (!dev) {
263 ret = 0;
264 goto free_and_exit;
265 }
266
267 *p = 0;
268 }
269
270 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
271 &func, &end);
272 if (ret != 4) {
273 seg = 0;
274 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
275 if (ret != 3) {
276 ret = -EINVAL;
277 goto free_and_exit;
278 }
279 }
280
281 ret = (seg == pci_domain_nr(dev->bus) &&
282 bus == dev->bus->number &&
283 dev->devfn == PCI_DEVFN(slot, func));
284
285 free_and_exit:
286 kfree(wpath);
287 return ret;
288 }
289
290 /**
291 * pci_dev_str_match - test if a string matches a device
292 * @dev: the PCI device to test
293 * @p: string to match the device against
294 * @endptr: pointer to the string after the match
295 *
296 * Test if a string (typically from a kernel parameter) matches a specified
297 * PCI device. The string may be of one of the following formats:
298 *
299 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
300 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
301 *
302 * The first format specifies a PCI bus/device/function address which
303 * may change if new hardware is inserted, if motherboard firmware changes,
304 * or due to changes caused in kernel parameters. If the domain is
305 * left unspecified, it is taken to be 0. In order to be robust against
306 * bus renumbering issues, a path of PCI device/function numbers may be used
307 * to address the specific device. The path for a device can be determined
308 * through the use of 'lspci -t'.
309 *
310 * The second format matches devices using IDs in the configuration
311 * space which may match multiple devices in the system. A value of 0
312 * for any field will match all devices. (Note: this differs from
313 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
314 * legacy reasons and convenience so users don't have to specify
315 * FFFFFFFFs on the command line.)
316 *
317 * Returns 1 if the string matches the device, 0 if it does not and
318 * a negative error code if the string cannot be parsed.
319 */
320 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
321 const char **endptr)
322 {
323 int ret;
324 int count;
325 unsigned short vendor, device, subsystem_vendor, subsystem_device;
326
327 if (strncmp(p, "pci:", 4) == 0) {
328 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
329 p += 4;
330 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
331 &subsystem_vendor, &subsystem_device, &count);
332 if (ret != 4) {
333 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
334 if (ret != 2)
335 return -EINVAL;
336
337 subsystem_vendor = 0;
338 subsystem_device = 0;
339 }
340
341 p += count;
342
343 if ((!vendor || vendor == dev->vendor) &&
344 (!device || device == dev->device) &&
345 (!subsystem_vendor ||
346 subsystem_vendor == dev->subsystem_vendor) &&
347 (!subsystem_device ||
348 subsystem_device == dev->subsystem_device))
349 goto found;
350 } else {
351 /*
352 * PCI Bus, Device, Function IDs are specified
353 * (optionally, may include a path of devfns following it)
354 */
355 ret = pci_dev_str_match_path(dev, p, &p);
356 if (ret < 0)
357 return ret;
358 else if (ret)
359 goto found;
360 }
361
362 *endptr = p;
363 return 0;
364
365 found:
366 *endptr = p;
367 return 1;
368 }
369
370 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
371 u8 pos, int cap, int *ttl)
372 {
373 u8 id;
374 u16 ent;
375
376 pci_bus_read_config_byte(bus, devfn, pos, &pos);
377
378 while ((*ttl)--) {
379 if (pos < 0x40)
380 break;
381 pos &= ~3;
382 pci_bus_read_config_word(bus, devfn, pos, &ent);
383
384 id = ent & 0xff;
385 if (id == 0xff)
386 break;
387 if (id == cap)
388 return pos;
389 pos = (ent >> 8);
390 }
391 return 0;
392 }
393
394 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
395 u8 pos, int cap)
396 {
397 int ttl = PCI_FIND_CAP_TTL;
398
399 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
400 }
401
402 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
403 {
404 return __pci_find_next_cap(dev->bus, dev->devfn,
405 pos + PCI_CAP_LIST_NEXT, cap);
406 }
407 EXPORT_SYMBOL_GPL(pci_find_next_capability);
408
409 static int __pci_bus_find_cap_start(struct pci_bus *bus,
410 unsigned int devfn, u8 hdr_type)
411 {
412 u16 status;
413
414 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
415 if (!(status & PCI_STATUS_CAP_LIST))
416 return 0;
417
418 switch (hdr_type) {
419 case PCI_HEADER_TYPE_NORMAL:
420 case PCI_HEADER_TYPE_BRIDGE:
421 return PCI_CAPABILITY_LIST;
422 case PCI_HEADER_TYPE_CARDBUS:
423 return PCI_CB_CAPABILITY_LIST;
424 }
425
426 return 0;
427 }
428
429 /**
430 * pci_find_capability - query for devices' capabilities
431 * @dev: PCI device to query
432 * @cap: capability code
433 *
434 * Tell if a device supports a given PCI capability.
435 * Returns the address of the requested capability structure within the
436 * device's PCI configuration space or 0 in case the device does not
437 * support it. Possible values for @cap include:
438 *
439 * %PCI_CAP_ID_PM Power Management
440 * %PCI_CAP_ID_AGP Accelerated Graphics Port
441 * %PCI_CAP_ID_VPD Vital Product Data
442 * %PCI_CAP_ID_SLOTID Slot Identification
443 * %PCI_CAP_ID_MSI Message Signalled Interrupts
444 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
445 * %PCI_CAP_ID_PCIX PCI-X
446 * %PCI_CAP_ID_EXP PCI Express
447 */
448 int pci_find_capability(struct pci_dev *dev, int cap)
449 {
450 int pos;
451
452 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
453 if (pos)
454 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
455
456 return pos;
457 }
458 EXPORT_SYMBOL(pci_find_capability);
459
460 /**
461 * pci_bus_find_capability - query for devices' capabilities
462 * @bus: the PCI bus to query
463 * @devfn: PCI device to query
464 * @cap: capability code
465 *
466 * Like pci_find_capability() but works for PCI devices that do not have a
467 * pci_dev structure set up yet.
468 *
469 * Returns the address of the requested capability structure within the
470 * device's PCI configuration space or 0 in case the device does not
471 * support it.
472 */
473 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
474 {
475 int pos;
476 u8 hdr_type;
477
478 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
479
480 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
481 if (pos)
482 pos = __pci_find_next_cap(bus, devfn, pos, cap);
483
484 return pos;
485 }
486 EXPORT_SYMBOL(pci_bus_find_capability);
487
488 /**
489 * pci_find_next_ext_capability - Find an extended capability
490 * @dev: PCI device to query
491 * @start: address at which to start looking (0 to start at beginning of list)
492 * @cap: capability code
493 *
494 * Returns the address of the next matching extended capability structure
495 * within the device's PCI configuration space or 0 if the device does
496 * not support it. Some capabilities can occur several times, e.g., the
497 * vendor-specific capability, and this provides a way to find them all.
498 */
499 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
500 {
501 u32 header;
502 int ttl;
503 int pos = PCI_CFG_SPACE_SIZE;
504
505 /* minimum 8 bytes per capability */
506 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
507
508 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
509 return 0;
510
511 if (start)
512 pos = start;
513
514 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
515 return 0;
516
517 /*
518 * If we have no capabilities, this is indicated by cap ID,
519 * cap version and next pointer all being 0.
520 */
521 if (header == 0)
522 return 0;
523
524 while (ttl-- > 0) {
525 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
526 return pos;
527
528 pos = PCI_EXT_CAP_NEXT(header);
529 if (pos < PCI_CFG_SPACE_SIZE)
530 break;
531
532 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
533 break;
534 }
535
536 return 0;
537 }
538 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
539
540 /**
541 * pci_find_ext_capability - Find an extended capability
542 * @dev: PCI device to query
543 * @cap: capability code
544 *
545 * Returns the address of the requested extended capability structure
546 * within the device's PCI configuration space or 0 if the device does
547 * not support it. Possible values for @cap include:
548 *
549 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
550 * %PCI_EXT_CAP_ID_VC Virtual Channel
551 * %PCI_EXT_CAP_ID_DSN Device Serial Number
552 * %PCI_EXT_CAP_ID_PWR Power Budgeting
553 */
554 int pci_find_ext_capability(struct pci_dev *dev, int cap)
555 {
556 return pci_find_next_ext_capability(dev, 0, cap);
557 }
558 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
559
560 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
561 {
562 int rc, ttl = PCI_FIND_CAP_TTL;
563 u8 cap, mask;
564
565 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
566 mask = HT_3BIT_CAP_MASK;
567 else
568 mask = HT_5BIT_CAP_MASK;
569
570 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
571 PCI_CAP_ID_HT, &ttl);
572 while (pos) {
573 rc = pci_read_config_byte(dev, pos + 3, &cap);
574 if (rc != PCIBIOS_SUCCESSFUL)
575 return 0;
576
577 if ((cap & mask) == ht_cap)
578 return pos;
579
580 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
581 pos + PCI_CAP_LIST_NEXT,
582 PCI_CAP_ID_HT, &ttl);
583 }
584
585 return 0;
586 }
587 /**
588 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
589 * @dev: PCI device to query
590 * @pos: Position from which to continue searching
591 * @ht_cap: Hypertransport capability code
592 *
593 * To be used in conjunction with pci_find_ht_capability() to search for
594 * all capabilities matching @ht_cap. @pos should always be a value returned
595 * from pci_find_ht_capability().
596 *
597 * NB. To be 100% safe against broken PCI devices, the caller should take
598 * steps to avoid an infinite loop.
599 */
600 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
601 {
602 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
603 }
604 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
605
606 /**
607 * pci_find_ht_capability - query a device's Hypertransport capabilities
608 * @dev: PCI device to query
609 * @ht_cap: Hypertransport capability code
610 *
611 * Tell if a device supports a given Hypertransport capability.
612 * Returns an address within the device's PCI configuration space
613 * or 0 in case the device does not support the request capability.
614 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
615 * which has a Hypertransport capability matching @ht_cap.
616 */
617 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
618 {
619 int pos;
620
621 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
622 if (pos)
623 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
624
625 return pos;
626 }
627 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
628
629 /**
630 * pci_find_parent_resource - return resource region of parent bus of given
631 * region
632 * @dev: PCI device structure contains resources to be searched
633 * @res: child resource record for which parent is sought
634 *
635 * For given resource region of given device, return the resource region of
636 * parent bus the given region is contained in.
637 */
638 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
639 struct resource *res)
640 {
641 const struct pci_bus *bus = dev->bus;
642 struct resource *r;
643 int i;
644
645 pci_bus_for_each_resource(bus, r, i) {
646 if (!r)
647 continue;
648 if (resource_contains(r, res)) {
649
650 /*
651 * If the window is prefetchable but the BAR is
652 * not, the allocator made a mistake.
653 */
654 if (r->flags & IORESOURCE_PREFETCH &&
655 !(res->flags & IORESOURCE_PREFETCH))
656 return NULL;
657
658 /*
659 * If we're below a transparent bridge, there may
660 * be both a positively-decoded aperture and a
661 * subtractively-decoded region that contain the BAR.
662 * We want the positively-decoded one, so this depends
663 * on pci_bus_for_each_resource() giving us those
664 * first.
665 */
666 return r;
667 }
668 }
669 return NULL;
670 }
671 EXPORT_SYMBOL(pci_find_parent_resource);
672
673 /**
674 * pci_find_resource - Return matching PCI device resource
675 * @dev: PCI device to query
676 * @res: Resource to look for
677 *
678 * Goes over standard PCI resources (BARs) and checks if the given resource
679 * is partially or fully contained in any of them. In that case the
680 * matching resource is returned, %NULL otherwise.
681 */
682 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
683 {
684 int i;
685
686 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
687 struct resource *r = &dev->resource[i];
688
689 if (r->start && resource_contains(r, res))
690 return r;
691 }
692
693 return NULL;
694 }
695 EXPORT_SYMBOL(pci_find_resource);
696
697 /**
698 * pci_find_pcie_root_port - return PCIe Root Port
699 * @dev: PCI device to query
700 *
701 * Traverse up the parent chain and return the PCIe Root Port PCI Device
702 * for a given PCI Device.
703 */
704 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
705 {
706 struct pci_dev *bridge, *highest_pcie_bridge = dev;
707
708 bridge = pci_upstream_bridge(dev);
709 while (bridge && pci_is_pcie(bridge)) {
710 highest_pcie_bridge = bridge;
711 bridge = pci_upstream_bridge(bridge);
712 }
713
714 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
715 return NULL;
716
717 return highest_pcie_bridge;
718 }
719 EXPORT_SYMBOL(pci_find_pcie_root_port);
720
721 /**
722 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
723 * @dev: the PCI device to operate on
724 * @pos: config space offset of status word
725 * @mask: mask of bit(s) to care about in status word
726 *
727 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
728 */
729 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
730 {
731 int i;
732
733 /* Wait for Transaction Pending bit clean */
734 for (i = 0; i < 4; i++) {
735 u16 status;
736 if (i)
737 msleep((1 << (i - 1)) * 100);
738
739 pci_read_config_word(dev, pos, &status);
740 if (!(status & mask))
741 return 1;
742 }
743
744 return 0;
745 }
746
747 /**
748 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
749 * @dev: PCI device to have its BARs restored
750 *
751 * Restore the BAR values for a given device, so as to make it
752 * accessible by its driver.
753 */
754 static void pci_restore_bars(struct pci_dev *dev)
755 {
756 int i;
757
758 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
759 pci_update_resource(dev, i);
760 }
761
762 static const struct pci_platform_pm_ops *pci_platform_pm;
763
764 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
765 {
766 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
767 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
768 return -EINVAL;
769 pci_platform_pm = ops;
770 return 0;
771 }
772
773 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
774 {
775 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
776 }
777
778 static inline int platform_pci_set_power_state(struct pci_dev *dev,
779 pci_power_t t)
780 {
781 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
782 }
783
784 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
785 {
786 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
787 }
788
789 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
790 {
791 if (pci_platform_pm && pci_platform_pm->refresh_state)
792 pci_platform_pm->refresh_state(dev);
793 }
794
795 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
796 {
797 return pci_platform_pm ?
798 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
799 }
800
801 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
802 {
803 return pci_platform_pm ?
804 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
805 }
806
807 static inline bool platform_pci_need_resume(struct pci_dev *dev)
808 {
809 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
810 }
811
812 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
813 {
814 return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false;
815 }
816
817 /**
818 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
819 * given PCI device
820 * @dev: PCI device to handle.
821 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
822 *
823 * RETURN VALUE:
824 * -EINVAL if the requested state is invalid.
825 * -EIO if device does not support PCI PM or its PM capabilities register has a
826 * wrong version, or device doesn't support the requested state.
827 * 0 if device already is in the requested state.
828 * 0 if device's power state has been successfully changed.
829 */
830 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
831 {
832 u16 pmcsr;
833 bool need_restore = false;
834
835 /* Check if we're already there */
836 if (dev->current_state == state)
837 return 0;
838
839 if (!dev->pm_cap)
840 return -EIO;
841
842 if (state < PCI_D0 || state > PCI_D3hot)
843 return -EINVAL;
844
845 /*
846 * Validate transition: We can enter D0 from any state, but if
847 * we're already in a low-power state, we can only go deeper. E.g.,
848 * we can go from D1 to D3, but we can't go directly from D3 to D1;
849 * we'd have to go from D3 to D0, then to D1.
850 */
851 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
852 && dev->current_state > state) {
853 pci_err(dev, "invalid power transition (from %s to %s)\n",
854 pci_power_name(dev->current_state),
855 pci_power_name(state));
856 return -EINVAL;
857 }
858
859 /* Check if this device supports the desired state */
860 if ((state == PCI_D1 && !dev->d1_support)
861 || (state == PCI_D2 && !dev->d2_support))
862 return -EIO;
863
864 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
865 if (pmcsr == (u16) ~0) {
866 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
867 pci_power_name(dev->current_state),
868 pci_power_name(state));
869 return -EIO;
870 }
871
872 /*
873 * If we're (effectively) in D3, force entire word to 0.
874 * This doesn't affect PME_Status, disables PME_En, and
875 * sets PowerState to 0.
876 */
877 switch (dev->current_state) {
878 case PCI_D0:
879 case PCI_D1:
880 case PCI_D2:
881 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
882 pmcsr |= state;
883 break;
884 case PCI_D3hot:
885 case PCI_D3cold:
886 case PCI_UNKNOWN: /* Boot-up */
887 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
888 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
889 need_restore = true;
890 /* Fall-through - force to D0 */
891 default:
892 pmcsr = 0;
893 break;
894 }
895
896 /* Enter specified state */
897 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
898
899 /*
900 * Mandatory power management transition delays; see PCI PM 1.1
901 * 5.6.1 table 18
902 */
903 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
904 pci_dev_d3_sleep(dev);
905 else if (state == PCI_D2 || dev->current_state == PCI_D2)
906 msleep(PCI_PM_D2_DELAY);
907
908 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
909 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
910 if (dev->current_state != state)
911 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
912 pci_power_name(dev->current_state),
913 pci_power_name(state));
914
915 /*
916 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
917 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
918 * from D3hot to D0 _may_ perform an internal reset, thereby
919 * going to "D0 Uninitialized" rather than "D0 Initialized".
920 * For example, at least some versions of the 3c905B and the
921 * 3c556B exhibit this behaviour.
922 *
923 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
924 * devices in a D3hot state at boot. Consequently, we need to
925 * restore at least the BARs so that the device will be
926 * accessible to its driver.
927 */
928 if (need_restore)
929 pci_restore_bars(dev);
930
931 if (dev->bus->self)
932 pcie_aspm_pm_state_change(dev->bus->self);
933
934 return 0;
935 }
936
937 /**
938 * pci_update_current_state - Read power state of given device and cache it
939 * @dev: PCI device to handle.
940 * @state: State to cache in case the device doesn't have the PM capability
941 *
942 * The power state is read from the PMCSR register, which however is
943 * inaccessible in D3cold. The platform firmware is therefore queried first
944 * to detect accessibility of the register. In case the platform firmware
945 * reports an incorrect state or the device isn't power manageable by the
946 * platform at all, we try to detect D3cold by testing accessibility of the
947 * vendor ID in config space.
948 */
949 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
950 {
951 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
952 !pci_device_is_present(dev)) {
953 dev->current_state = PCI_D3cold;
954 } else if (dev->pm_cap) {
955 u16 pmcsr;
956
957 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
958 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
959 } else {
960 dev->current_state = state;
961 }
962 }
963
964 /**
965 * pci_refresh_power_state - Refresh the given device's power state data
966 * @dev: Target PCI device.
967 *
968 * Ask the platform to refresh the devices power state information and invoke
969 * pci_update_current_state() to update its current PCI power state.
970 */
971 void pci_refresh_power_state(struct pci_dev *dev)
972 {
973 if (platform_pci_power_manageable(dev))
974 platform_pci_refresh_power_state(dev);
975
976 pci_update_current_state(dev, dev->current_state);
977 }
978
979 /**
980 * pci_platform_power_transition - Use platform to change device power state
981 * @dev: PCI device to handle.
982 * @state: State to put the device into.
983 */
984 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
985 {
986 int error;
987
988 if (platform_pci_power_manageable(dev)) {
989 error = platform_pci_set_power_state(dev, state);
990 if (!error)
991 pci_update_current_state(dev, state);
992 } else
993 error = -ENODEV;
994
995 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
996 dev->current_state = PCI_D0;
997
998 return error;
999 }
1000 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1001
1002 /**
1003 * pci_wakeup - Wake up a PCI device
1004 * @pci_dev: Device to handle.
1005 * @ign: ignored parameter
1006 */
1007 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1008 {
1009 pci_wakeup_event(pci_dev);
1010 pm_request_resume(&pci_dev->dev);
1011 return 0;
1012 }
1013
1014 /**
1015 * pci_wakeup_bus - Walk given bus and wake up devices on it
1016 * @bus: Top bus of the subtree to walk.
1017 */
1018 void pci_wakeup_bus(struct pci_bus *bus)
1019 {
1020 if (bus)
1021 pci_walk_bus(bus, pci_wakeup, NULL);
1022 }
1023
1024 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1025 {
1026 int delay = 1;
1027 u32 id;
1028
1029 /*
1030 * After reset, the device should not silently discard config
1031 * requests, but it may still indicate that it needs more time by
1032 * responding to them with CRS completions. The Root Port will
1033 * generally synthesize ~0 data to complete the read (except when
1034 * CRS SV is enabled and the read was for the Vendor ID; in that
1035 * case it synthesizes 0x0001 data).
1036 *
1037 * Wait for the device to return a non-CRS completion. Read the
1038 * Command register instead of Vendor ID so we don't have to
1039 * contend with the CRS SV value.
1040 */
1041 pci_read_config_dword(dev, PCI_COMMAND, &id);
1042 while (id == ~0) {
1043 if (delay > timeout) {
1044 pci_warn(dev, "not ready %dms after %s; giving up\n",
1045 delay - 1, reset_type);
1046 return -ENOTTY;
1047 }
1048
1049 if (delay > 1000)
1050 pci_info(dev, "not ready %dms after %s; waiting\n",
1051 delay - 1, reset_type);
1052
1053 msleep(delay);
1054 delay *= 2;
1055 pci_read_config_dword(dev, PCI_COMMAND, &id);
1056 }
1057
1058 if (delay > 1000)
1059 pci_info(dev, "ready %dms after %s\n", delay - 1,
1060 reset_type);
1061
1062 return 0;
1063 }
1064
1065 /**
1066 * pci_power_up - Put the given device into D0
1067 * @dev: PCI device to power up
1068 */
1069 int pci_power_up(struct pci_dev *dev)
1070 {
1071 pci_platform_power_transition(dev, PCI_D0);
1072
1073 /*
1074 * Mandatory power management transition delays are handled in
1075 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1076 * corresponding bridge.
1077 */
1078 if (dev->runtime_d3cold) {
1079 /*
1080 * When powering on a bridge from D3cold, the whole hierarchy
1081 * may be powered on into D0uninitialized state, resume them to
1082 * give them a chance to suspend again
1083 */
1084 pci_wakeup_bus(dev->subordinate);
1085 }
1086
1087 return pci_raw_set_power_state(dev, PCI_D0);
1088 }
1089
1090 /**
1091 * __pci_dev_set_current_state - Set current state of a PCI device
1092 * @dev: Device to handle
1093 * @data: pointer to state to be set
1094 */
1095 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1096 {
1097 pci_power_t state = *(pci_power_t *)data;
1098
1099 dev->current_state = state;
1100 return 0;
1101 }
1102
1103 /**
1104 * pci_bus_set_current_state - Walk given bus and set current state of devices
1105 * @bus: Top bus of the subtree to walk.
1106 * @state: state to be set
1107 */
1108 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1109 {
1110 if (bus)
1111 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1112 }
1113
1114 /**
1115 * pci_set_power_state - Set the power state of a PCI device
1116 * @dev: PCI device to handle.
1117 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1118 *
1119 * Transition a device to a new power state, using the platform firmware and/or
1120 * the device's PCI PM registers.
1121 *
1122 * RETURN VALUE:
1123 * -EINVAL if the requested state is invalid.
1124 * -EIO if device does not support PCI PM or its PM capabilities register has a
1125 * wrong version, or device doesn't support the requested state.
1126 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1127 * 0 if device already is in the requested state.
1128 * 0 if the transition is to D3 but D3 is not supported.
1129 * 0 if device's power state has been successfully changed.
1130 */
1131 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1132 {
1133 int error;
1134
1135 /* Bound the state we're entering */
1136 if (state > PCI_D3cold)
1137 state = PCI_D3cold;
1138 else if (state < PCI_D0)
1139 state = PCI_D0;
1140 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1141
1142 /*
1143 * If the device or the parent bridge do not support PCI
1144 * PM, ignore the request if we're doing anything other
1145 * than putting it into D0 (which would only happen on
1146 * boot).
1147 */
1148 return 0;
1149
1150 /* Check if we're already there */
1151 if (dev->current_state == state)
1152 return 0;
1153
1154 if (state == PCI_D0)
1155 return pci_power_up(dev);
1156
1157 /*
1158 * This device is quirked not to be put into D3, so don't put it in
1159 * D3
1160 */
1161 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1162 return 0;
1163
1164 /*
1165 * To put device in D3cold, we put device into D3hot in native
1166 * way, then put device into D3cold with platform ops
1167 */
1168 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1169 PCI_D3hot : state);
1170
1171 if (pci_platform_power_transition(dev, state))
1172 return error;
1173
1174 /* Powering off a bridge may power off the whole hierarchy */
1175 if (state == PCI_D3cold)
1176 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1177
1178 return 0;
1179 }
1180 EXPORT_SYMBOL(pci_set_power_state);
1181
1182 /**
1183 * pci_choose_state - Choose the power state of a PCI device
1184 * @dev: PCI device to be suspended
1185 * @state: target sleep state for the whole system. This is the value
1186 * that is passed to suspend() function.
1187 *
1188 * Returns PCI power state suitable for given device and given system
1189 * message.
1190 */
1191 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1192 {
1193 pci_power_t ret;
1194
1195 if (!dev->pm_cap)
1196 return PCI_D0;
1197
1198 ret = platform_pci_choose_state(dev);
1199 if (ret != PCI_POWER_ERROR)
1200 return ret;
1201
1202 switch (state.event) {
1203 case PM_EVENT_ON:
1204 return PCI_D0;
1205 case PM_EVENT_FREEZE:
1206 case PM_EVENT_PRETHAW:
1207 /* REVISIT both freeze and pre-thaw "should" use D0 */
1208 case PM_EVENT_SUSPEND:
1209 case PM_EVENT_HIBERNATE:
1210 return PCI_D3hot;
1211 default:
1212 pci_info(dev, "unrecognized suspend event %d\n",
1213 state.event);
1214 BUG();
1215 }
1216 return PCI_D0;
1217 }
1218 EXPORT_SYMBOL(pci_choose_state);
1219
1220 #define PCI_EXP_SAVE_REGS 7
1221
1222 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1223 u16 cap, bool extended)
1224 {
1225 struct pci_cap_saved_state *tmp;
1226
1227 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1228 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1229 return tmp;
1230 }
1231 return NULL;
1232 }
1233
1234 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1235 {
1236 return _pci_find_saved_cap(dev, cap, false);
1237 }
1238
1239 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1240 {
1241 return _pci_find_saved_cap(dev, cap, true);
1242 }
1243
1244 static int pci_save_pcie_state(struct pci_dev *dev)
1245 {
1246 int i = 0;
1247 struct pci_cap_saved_state *save_state;
1248 u16 *cap;
1249
1250 if (!pci_is_pcie(dev))
1251 return 0;
1252
1253 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1254 if (!save_state) {
1255 pci_err(dev, "buffer not found in %s\n", __func__);
1256 return -ENOMEM;
1257 }
1258
1259 cap = (u16 *)&save_state->cap.data[0];
1260 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1261 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1262 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1263 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1264 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1265 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1266 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1267
1268 return 0;
1269 }
1270
1271 static void pci_restore_pcie_state(struct pci_dev *dev)
1272 {
1273 int i = 0;
1274 struct pci_cap_saved_state *save_state;
1275 u16 *cap;
1276
1277 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1278 if (!save_state)
1279 return;
1280
1281 cap = (u16 *)&save_state->cap.data[0];
1282 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1283 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1284 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1285 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1286 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1287 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1288 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1289 }
1290
1291 static int pci_save_pcix_state(struct pci_dev *dev)
1292 {
1293 int pos;
1294 struct pci_cap_saved_state *save_state;
1295
1296 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1297 if (!pos)
1298 return 0;
1299
1300 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1301 if (!save_state) {
1302 pci_err(dev, "buffer not found in %s\n", __func__);
1303 return -ENOMEM;
1304 }
1305
1306 pci_read_config_word(dev, pos + PCI_X_CMD,
1307 (u16 *)save_state->cap.data);
1308
1309 return 0;
1310 }
1311
1312 static void pci_restore_pcix_state(struct pci_dev *dev)
1313 {
1314 int i = 0, pos;
1315 struct pci_cap_saved_state *save_state;
1316 u16 *cap;
1317
1318 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1319 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1320 if (!save_state || !pos)
1321 return;
1322 cap = (u16 *)&save_state->cap.data[0];
1323
1324 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1325 }
1326
1327 static void pci_save_ltr_state(struct pci_dev *dev)
1328 {
1329 int ltr;
1330 struct pci_cap_saved_state *save_state;
1331 u16 *cap;
1332
1333 if (!pci_is_pcie(dev))
1334 return;
1335
1336 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1337 if (!ltr)
1338 return;
1339
1340 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1341 if (!save_state) {
1342 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1343 return;
1344 }
1345
1346 cap = (u16 *)&save_state->cap.data[0];
1347 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1348 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1349 }
1350
1351 static void pci_restore_ltr_state(struct pci_dev *dev)
1352 {
1353 struct pci_cap_saved_state *save_state;
1354 int ltr;
1355 u16 *cap;
1356
1357 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1358 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1359 if (!save_state || !ltr)
1360 return;
1361
1362 cap = (u16 *)&save_state->cap.data[0];
1363 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1364 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1365 }
1366
1367 /**
1368 * pci_save_state - save the PCI configuration space of a device before
1369 * suspending
1370 * @dev: PCI device that we're dealing with
1371 */
1372 int pci_save_state(struct pci_dev *dev)
1373 {
1374 int i;
1375 /* XXX: 100% dword access ok here? */
1376 for (i = 0; i < 16; i++) {
1377 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1378 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1379 i * 4, dev->saved_config_space[i]);
1380 }
1381 dev->state_saved = true;
1382
1383 i = pci_save_pcie_state(dev);
1384 if (i != 0)
1385 return i;
1386
1387 i = pci_save_pcix_state(dev);
1388 if (i != 0)
1389 return i;
1390
1391 pci_save_ltr_state(dev);
1392 pci_save_dpc_state(dev);
1393 pci_save_aer_state(dev);
1394 return pci_save_vc_state(dev);
1395 }
1396 EXPORT_SYMBOL(pci_save_state);
1397
1398 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1399 u32 saved_val, int retry, bool force)
1400 {
1401 u32 val;
1402
1403 pci_read_config_dword(pdev, offset, &val);
1404 if (!force && val == saved_val)
1405 return;
1406
1407 for (;;) {
1408 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1409 offset, val, saved_val);
1410 pci_write_config_dword(pdev, offset, saved_val);
1411 if (retry-- <= 0)
1412 return;
1413
1414 pci_read_config_dword(pdev, offset, &val);
1415 if (val == saved_val)
1416 return;
1417
1418 mdelay(1);
1419 }
1420 }
1421
1422 static void pci_restore_config_space_range(struct pci_dev *pdev,
1423 int start, int end, int retry,
1424 bool force)
1425 {
1426 int index;
1427
1428 for (index = end; index >= start; index--)
1429 pci_restore_config_dword(pdev, 4 * index,
1430 pdev->saved_config_space[index],
1431 retry, force);
1432 }
1433
1434 static void pci_restore_config_space(struct pci_dev *pdev)
1435 {
1436 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1437 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1438 /* Restore BARs before the command register. */
1439 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1440 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1441 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1442 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1443
1444 /*
1445 * Force rewriting of prefetch registers to avoid S3 resume
1446 * issues on Intel PCI bridges that occur when these
1447 * registers are not explicitly written.
1448 */
1449 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1450 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1451 } else {
1452 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1453 }
1454 }
1455
1456 static void pci_restore_rebar_state(struct pci_dev *pdev)
1457 {
1458 unsigned int pos, nbars, i;
1459 u32 ctrl;
1460
1461 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1462 if (!pos)
1463 return;
1464
1465 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1466 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1467 PCI_REBAR_CTRL_NBAR_SHIFT;
1468
1469 for (i = 0; i < nbars; i++, pos += 8) {
1470 struct resource *res;
1471 int bar_idx, size;
1472
1473 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1474 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1475 res = pdev->resource + bar_idx;
1476 size = ilog2(resource_size(res)) - 20;
1477 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1478 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1479 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1480 }
1481 }
1482
1483 /**
1484 * pci_restore_state - Restore the saved state of a PCI device
1485 * @dev: PCI device that we're dealing with
1486 */
1487 void pci_restore_state(struct pci_dev *dev)
1488 {
1489 if (!dev->state_saved)
1490 return;
1491
1492 /*
1493 * Restore max latencies (in the LTR capability) before enabling
1494 * LTR itself (in the PCIe capability).
1495 */
1496 pci_restore_ltr_state(dev);
1497
1498 pci_restore_pcie_state(dev);
1499 pci_restore_pasid_state(dev);
1500 pci_restore_pri_state(dev);
1501 pci_restore_ats_state(dev);
1502 pci_restore_vc_state(dev);
1503 pci_restore_rebar_state(dev);
1504 pci_restore_dpc_state(dev);
1505
1506 pci_aer_clear_status(dev);
1507 pci_restore_aer_state(dev);
1508
1509 pci_restore_config_space(dev);
1510
1511 pci_restore_pcix_state(dev);
1512 pci_restore_msi_state(dev);
1513
1514 /* Restore ACS and IOV configuration state */
1515 pci_enable_acs(dev);
1516 pci_restore_iov_state(dev);
1517
1518 dev->state_saved = false;
1519 }
1520 EXPORT_SYMBOL(pci_restore_state);
1521
1522 struct pci_saved_state {
1523 u32 config_space[16];
1524 struct pci_cap_saved_data cap[0];
1525 };
1526
1527 /**
1528 * pci_store_saved_state - Allocate and return an opaque struct containing
1529 * the device saved state.
1530 * @dev: PCI device that we're dealing with
1531 *
1532 * Return NULL if no state or error.
1533 */
1534 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1535 {
1536 struct pci_saved_state *state;
1537 struct pci_cap_saved_state *tmp;
1538 struct pci_cap_saved_data *cap;
1539 size_t size;
1540
1541 if (!dev->state_saved)
1542 return NULL;
1543
1544 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1545
1546 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1547 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1548
1549 state = kzalloc(size, GFP_KERNEL);
1550 if (!state)
1551 return NULL;
1552
1553 memcpy(state->config_space, dev->saved_config_space,
1554 sizeof(state->config_space));
1555
1556 cap = state->cap;
1557 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1558 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1559 memcpy(cap, &tmp->cap, len);
1560 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1561 }
1562 /* Empty cap_save terminates list */
1563
1564 return state;
1565 }
1566 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1567
1568 /**
1569 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1570 * @dev: PCI device that we're dealing with
1571 * @state: Saved state returned from pci_store_saved_state()
1572 */
1573 int pci_load_saved_state(struct pci_dev *dev,
1574 struct pci_saved_state *state)
1575 {
1576 struct pci_cap_saved_data *cap;
1577
1578 dev->state_saved = false;
1579
1580 if (!state)
1581 return 0;
1582
1583 memcpy(dev->saved_config_space, state->config_space,
1584 sizeof(state->config_space));
1585
1586 cap = state->cap;
1587 while (cap->size) {
1588 struct pci_cap_saved_state *tmp;
1589
1590 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1591 if (!tmp || tmp->cap.size != cap->size)
1592 return -EINVAL;
1593
1594 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1595 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1596 sizeof(struct pci_cap_saved_data) + cap->size);
1597 }
1598
1599 dev->state_saved = true;
1600 return 0;
1601 }
1602 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1603
1604 /**
1605 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1606 * and free the memory allocated for it.
1607 * @dev: PCI device that we're dealing with
1608 * @state: Pointer to saved state returned from pci_store_saved_state()
1609 */
1610 int pci_load_and_free_saved_state(struct pci_dev *dev,
1611 struct pci_saved_state **state)
1612 {
1613 int ret = pci_load_saved_state(dev, *state);
1614 kfree(*state);
1615 *state = NULL;
1616 return ret;
1617 }
1618 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1619
1620 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1621 {
1622 return pci_enable_resources(dev, bars);
1623 }
1624
1625 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1626 {
1627 int err;
1628 struct pci_dev *bridge;
1629 u16 cmd;
1630 u8 pin;
1631
1632 err = pci_set_power_state(dev, PCI_D0);
1633 if (err < 0 && err != -EIO)
1634 return err;
1635
1636 bridge = pci_upstream_bridge(dev);
1637 if (bridge)
1638 pcie_aspm_powersave_config_link(bridge);
1639
1640 err = pcibios_enable_device(dev, bars);
1641 if (err < 0)
1642 return err;
1643 pci_fixup_device(pci_fixup_enable, dev);
1644
1645 if (dev->msi_enabled || dev->msix_enabled)
1646 return 0;
1647
1648 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1649 if (pin) {
1650 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1651 if (cmd & PCI_COMMAND_INTX_DISABLE)
1652 pci_write_config_word(dev, PCI_COMMAND,
1653 cmd & ~PCI_COMMAND_INTX_DISABLE);
1654 }
1655
1656 return 0;
1657 }
1658
1659 /**
1660 * pci_reenable_device - Resume abandoned device
1661 * @dev: PCI device to be resumed
1662 *
1663 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1664 * to be called by normal code, write proper resume handler and use it instead.
1665 */
1666 int pci_reenable_device(struct pci_dev *dev)
1667 {
1668 if (pci_is_enabled(dev))
1669 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1670 return 0;
1671 }
1672 EXPORT_SYMBOL(pci_reenable_device);
1673
1674 static void pci_enable_bridge(struct pci_dev *dev)
1675 {
1676 struct pci_dev *bridge;
1677 int retval;
1678
1679 bridge = pci_upstream_bridge(dev);
1680 if (bridge)
1681 pci_enable_bridge(bridge);
1682
1683 if (pci_is_enabled(dev)) {
1684 if (!dev->is_busmaster)
1685 pci_set_master(dev);
1686 return;
1687 }
1688
1689 retval = pci_enable_device(dev);
1690 if (retval)
1691 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1692 retval);
1693 pci_set_master(dev);
1694 }
1695
1696 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1697 {
1698 struct pci_dev *bridge;
1699 int err;
1700 int i, bars = 0;
1701
1702 /*
1703 * Power state could be unknown at this point, either due to a fresh
1704 * boot or a device removal call. So get the current power state
1705 * so that things like MSI message writing will behave as expected
1706 * (e.g. if the device really is in D0 at enable time).
1707 */
1708 if (dev->pm_cap) {
1709 u16 pmcsr;
1710 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1711 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1712 }
1713
1714 if (atomic_inc_return(&dev->enable_cnt) > 1)
1715 return 0; /* already enabled */
1716
1717 bridge = pci_upstream_bridge(dev);
1718 if (bridge)
1719 pci_enable_bridge(bridge);
1720
1721 /* only skip sriov related */
1722 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1723 if (dev->resource[i].flags & flags)
1724 bars |= (1 << i);
1725 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1726 if (dev->resource[i].flags & flags)
1727 bars |= (1 << i);
1728
1729 err = do_pci_enable_device(dev, bars);
1730 if (err < 0)
1731 atomic_dec(&dev->enable_cnt);
1732 return err;
1733 }
1734
1735 /**
1736 * pci_enable_device_io - Initialize a device for use with IO space
1737 * @dev: PCI device to be initialized
1738 *
1739 * Initialize device before it's used by a driver. Ask low-level code
1740 * to enable I/O resources. Wake up the device if it was suspended.
1741 * Beware, this function can fail.
1742 */
1743 int pci_enable_device_io(struct pci_dev *dev)
1744 {
1745 return pci_enable_device_flags(dev, IORESOURCE_IO);
1746 }
1747 EXPORT_SYMBOL(pci_enable_device_io);
1748
1749 /**
1750 * pci_enable_device_mem - Initialize a device for use with Memory space
1751 * @dev: PCI device to be initialized
1752 *
1753 * Initialize device before it's used by a driver. Ask low-level code
1754 * to enable Memory resources. Wake up the device if it was suspended.
1755 * Beware, this function can fail.
1756 */
1757 int pci_enable_device_mem(struct pci_dev *dev)
1758 {
1759 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1760 }
1761 EXPORT_SYMBOL(pci_enable_device_mem);
1762
1763 /**
1764 * pci_enable_device - Initialize device before it's used by a driver.
1765 * @dev: PCI device to be initialized
1766 *
1767 * Initialize device before it's used by a driver. Ask low-level code
1768 * to enable I/O and memory. Wake up the device if it was suspended.
1769 * Beware, this function can fail.
1770 *
1771 * Note we don't actually enable the device many times if we call
1772 * this function repeatedly (we just increment the count).
1773 */
1774 int pci_enable_device(struct pci_dev *dev)
1775 {
1776 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1777 }
1778 EXPORT_SYMBOL(pci_enable_device);
1779
1780 /*
1781 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
1782 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
1783 * there's no need to track it separately. pci_devres is initialized
1784 * when a device is enabled using managed PCI device enable interface.
1785 */
1786 struct pci_devres {
1787 unsigned int enabled:1;
1788 unsigned int pinned:1;
1789 unsigned int orig_intx:1;
1790 unsigned int restore_intx:1;
1791 unsigned int mwi:1;
1792 u32 region_mask;
1793 };
1794
1795 static void pcim_release(struct device *gendev, void *res)
1796 {
1797 struct pci_dev *dev = to_pci_dev(gendev);
1798 struct pci_devres *this = res;
1799 int i;
1800
1801 if (dev->msi_enabled)
1802 pci_disable_msi(dev);
1803 if (dev->msix_enabled)
1804 pci_disable_msix(dev);
1805
1806 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1807 if (this->region_mask & (1 << i))
1808 pci_release_region(dev, i);
1809
1810 if (this->mwi)
1811 pci_clear_mwi(dev);
1812
1813 if (this->restore_intx)
1814 pci_intx(dev, this->orig_intx);
1815
1816 if (this->enabled && !this->pinned)
1817 pci_disable_device(dev);
1818 }
1819
1820 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1821 {
1822 struct pci_devres *dr, *new_dr;
1823
1824 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1825 if (dr)
1826 return dr;
1827
1828 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1829 if (!new_dr)
1830 return NULL;
1831 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1832 }
1833
1834 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1835 {
1836 if (pci_is_managed(pdev))
1837 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1838 return NULL;
1839 }
1840
1841 /**
1842 * pcim_enable_device - Managed pci_enable_device()
1843 * @pdev: PCI device to be initialized
1844 *
1845 * Managed pci_enable_device().
1846 */
1847 int pcim_enable_device(struct pci_dev *pdev)
1848 {
1849 struct pci_devres *dr;
1850 int rc;
1851
1852 dr = get_pci_dr(pdev);
1853 if (unlikely(!dr))
1854 return -ENOMEM;
1855 if (dr->enabled)
1856 return 0;
1857
1858 rc = pci_enable_device(pdev);
1859 if (!rc) {
1860 pdev->is_managed = 1;
1861 dr->enabled = 1;
1862 }
1863 return rc;
1864 }
1865 EXPORT_SYMBOL(pcim_enable_device);
1866
1867 /**
1868 * pcim_pin_device - Pin managed PCI device
1869 * @pdev: PCI device to pin
1870 *
1871 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1872 * driver detach. @pdev must have been enabled with
1873 * pcim_enable_device().
1874 */
1875 void pcim_pin_device(struct pci_dev *pdev)
1876 {
1877 struct pci_devres *dr;
1878
1879 dr = find_pci_dr(pdev);
1880 WARN_ON(!dr || !dr->enabled);
1881 if (dr)
1882 dr->pinned = 1;
1883 }
1884 EXPORT_SYMBOL(pcim_pin_device);
1885
1886 /*
1887 * pcibios_add_device - provide arch specific hooks when adding device dev
1888 * @dev: the PCI device being added
1889 *
1890 * Permits the platform to provide architecture specific functionality when
1891 * devices are added. This is the default implementation. Architecture
1892 * implementations can override this.
1893 */
1894 int __weak pcibios_add_device(struct pci_dev *dev)
1895 {
1896 return 0;
1897 }
1898
1899 /**
1900 * pcibios_release_device - provide arch specific hooks when releasing
1901 * device dev
1902 * @dev: the PCI device being released
1903 *
1904 * Permits the platform to provide architecture specific functionality when
1905 * devices are released. This is the default implementation. Architecture
1906 * implementations can override this.
1907 */
1908 void __weak pcibios_release_device(struct pci_dev *dev) {}
1909
1910 /**
1911 * pcibios_disable_device - disable arch specific PCI resources for device dev
1912 * @dev: the PCI device to disable
1913 *
1914 * Disables architecture specific PCI resources for the device. This
1915 * is the default implementation. Architecture implementations can
1916 * override this.
1917 */
1918 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1919
1920 /**
1921 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1922 * @irq: ISA IRQ to penalize
1923 * @active: IRQ active or not
1924 *
1925 * Permits the platform to provide architecture-specific functionality when
1926 * penalizing ISA IRQs. This is the default implementation. Architecture
1927 * implementations can override this.
1928 */
1929 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1930
1931 static void do_pci_disable_device(struct pci_dev *dev)
1932 {
1933 u16 pci_command;
1934
1935 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1936 if (pci_command & PCI_COMMAND_MASTER) {
1937 pci_command &= ~PCI_COMMAND_MASTER;
1938 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1939 }
1940
1941 pcibios_disable_device(dev);
1942 }
1943
1944 /**
1945 * pci_disable_enabled_device - Disable device without updating enable_cnt
1946 * @dev: PCI device to disable
1947 *
1948 * NOTE: This function is a backend of PCI power management routines and is
1949 * not supposed to be called drivers.
1950 */
1951 void pci_disable_enabled_device(struct pci_dev *dev)
1952 {
1953 if (pci_is_enabled(dev))
1954 do_pci_disable_device(dev);
1955 }
1956
1957 /**
1958 * pci_disable_device - Disable PCI device after use
1959 * @dev: PCI device to be disabled
1960 *
1961 * Signal to the system that the PCI device is not in use by the system
1962 * anymore. This only involves disabling PCI bus-mastering, if active.
1963 *
1964 * Note we don't actually disable the device until all callers of
1965 * pci_enable_device() have called pci_disable_device().
1966 */
1967 void pci_disable_device(struct pci_dev *dev)
1968 {
1969 struct pci_devres *dr;
1970
1971 dr = find_pci_dr(dev);
1972 if (dr)
1973 dr->enabled = 0;
1974
1975 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1976 "disabling already-disabled device");
1977
1978 if (atomic_dec_return(&dev->enable_cnt) != 0)
1979 return;
1980
1981 do_pci_disable_device(dev);
1982
1983 dev->is_busmaster = 0;
1984 }
1985 EXPORT_SYMBOL(pci_disable_device);
1986
1987 /**
1988 * pcibios_set_pcie_reset_state - set reset state for device dev
1989 * @dev: the PCIe device reset
1990 * @state: Reset state to enter into
1991 *
1992 * Set the PCIe reset state for the device. This is the default
1993 * implementation. Architecture implementations can override this.
1994 */
1995 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1996 enum pcie_reset_state state)
1997 {
1998 return -EINVAL;
1999 }
2000
2001 /**
2002 * pci_set_pcie_reset_state - set reset state for device dev
2003 * @dev: the PCIe device reset
2004 * @state: Reset state to enter into
2005 *
2006 * Sets the PCI reset state for the device.
2007 */
2008 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2009 {
2010 return pcibios_set_pcie_reset_state(dev, state);
2011 }
2012 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2013
2014 /**
2015 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2016 * @dev: PCIe root port or event collector.
2017 */
2018 void pcie_clear_root_pme_status(struct pci_dev *dev)
2019 {
2020 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2021 }
2022
2023 /**
2024 * pci_check_pme_status - Check if given device has generated PME.
2025 * @dev: Device to check.
2026 *
2027 * Check the PME status of the device and if set, clear it and clear PME enable
2028 * (if set). Return 'true' if PME status and PME enable were both set or
2029 * 'false' otherwise.
2030 */
2031 bool pci_check_pme_status(struct pci_dev *dev)
2032 {
2033 int pmcsr_pos;
2034 u16 pmcsr;
2035 bool ret = false;
2036
2037 if (!dev->pm_cap)
2038 return false;
2039
2040 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2041 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2042 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2043 return false;
2044
2045 /* Clear PME status. */
2046 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2047 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2048 /* Disable PME to avoid interrupt flood. */
2049 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2050 ret = true;
2051 }
2052
2053 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2054
2055 return ret;
2056 }
2057
2058 /**
2059 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2060 * @dev: Device to handle.
2061 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2062 *
2063 * Check if @dev has generated PME and queue a resume request for it in that
2064 * case.
2065 */
2066 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2067 {
2068 if (pme_poll_reset && dev->pme_poll)
2069 dev->pme_poll = false;
2070
2071 if (pci_check_pme_status(dev)) {
2072 pci_wakeup_event(dev);
2073 pm_request_resume(&dev->dev);
2074 }
2075 return 0;
2076 }
2077
2078 /**
2079 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2080 * @bus: Top bus of the subtree to walk.
2081 */
2082 void pci_pme_wakeup_bus(struct pci_bus *bus)
2083 {
2084 if (bus)
2085 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2086 }
2087
2088
2089 /**
2090 * pci_pme_capable - check the capability of PCI device to generate PME#
2091 * @dev: PCI device to handle.
2092 * @state: PCI state from which device will issue PME#.
2093 */
2094 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2095 {
2096 if (!dev->pm_cap)
2097 return false;
2098
2099 return !!(dev->pme_support & (1 << state));
2100 }
2101 EXPORT_SYMBOL(pci_pme_capable);
2102
2103 static void pci_pme_list_scan(struct work_struct *work)
2104 {
2105 struct pci_pme_device *pme_dev, *n;
2106
2107 mutex_lock(&pci_pme_list_mutex);
2108 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2109 if (pme_dev->dev->pme_poll) {
2110 struct pci_dev *bridge;
2111
2112 bridge = pme_dev->dev->bus->self;
2113 /*
2114 * If bridge is in low power state, the
2115 * configuration space of subordinate devices
2116 * may be not accessible
2117 */
2118 if (bridge && bridge->current_state != PCI_D0)
2119 continue;
2120 /*
2121 * If the device is in D3cold it should not be
2122 * polled either.
2123 */
2124 if (pme_dev->dev->current_state == PCI_D3cold)
2125 continue;
2126
2127 pci_pme_wakeup(pme_dev->dev, NULL);
2128 } else {
2129 list_del(&pme_dev->list);
2130 kfree(pme_dev);
2131 }
2132 }
2133 if (!list_empty(&pci_pme_list))
2134 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2135 msecs_to_jiffies(PME_TIMEOUT));
2136 mutex_unlock(&pci_pme_list_mutex);
2137 }
2138
2139 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2140 {
2141 u16 pmcsr;
2142
2143 if (!dev->pme_support)
2144 return;
2145
2146 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2147 /* Clear PME_Status by writing 1 to it and enable PME# */
2148 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2149 if (!enable)
2150 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2151
2152 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2153 }
2154
2155 /**
2156 * pci_pme_restore - Restore PME configuration after config space restore.
2157 * @dev: PCI device to update.
2158 */
2159 void pci_pme_restore(struct pci_dev *dev)
2160 {
2161 u16 pmcsr;
2162
2163 if (!dev->pme_support)
2164 return;
2165
2166 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2167 if (dev->wakeup_prepared) {
2168 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2169 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2170 } else {
2171 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2172 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2173 }
2174 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2175 }
2176
2177 /**
2178 * pci_pme_active - enable or disable PCI device's PME# function
2179 * @dev: PCI device to handle.
2180 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2181 *
2182 * The caller must verify that the device is capable of generating PME# before
2183 * calling this function with @enable equal to 'true'.
2184 */
2185 void pci_pme_active(struct pci_dev *dev, bool enable)
2186 {
2187 __pci_pme_active(dev, enable);
2188
2189 /*
2190 * PCI (as opposed to PCIe) PME requires that the device have
2191 * its PME# line hooked up correctly. Not all hardware vendors
2192 * do this, so the PME never gets delivered and the device
2193 * remains asleep. The easiest way around this is to
2194 * periodically walk the list of suspended devices and check
2195 * whether any have their PME flag set. The assumption is that
2196 * we'll wake up often enough anyway that this won't be a huge
2197 * hit, and the power savings from the devices will still be a
2198 * win.
2199 *
2200 * Although PCIe uses in-band PME message instead of PME# line
2201 * to report PME, PME does not work for some PCIe devices in
2202 * reality. For example, there are devices that set their PME
2203 * status bits, but don't really bother to send a PME message;
2204 * there are PCI Express Root Ports that don't bother to
2205 * trigger interrupts when they receive PME messages from the
2206 * devices below. So PME poll is used for PCIe devices too.
2207 */
2208
2209 if (dev->pme_poll) {
2210 struct pci_pme_device *pme_dev;
2211 if (enable) {
2212 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2213 GFP_KERNEL);
2214 if (!pme_dev) {
2215 pci_warn(dev, "can't enable PME#\n");
2216 return;
2217 }
2218 pme_dev->dev = dev;
2219 mutex_lock(&pci_pme_list_mutex);
2220 list_add(&pme_dev->list, &pci_pme_list);
2221 if (list_is_singular(&pci_pme_list))
2222 queue_delayed_work(system_freezable_wq,
2223 &pci_pme_work,
2224 msecs_to_jiffies(PME_TIMEOUT));
2225 mutex_unlock(&pci_pme_list_mutex);
2226 } else {
2227 mutex_lock(&pci_pme_list_mutex);
2228 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2229 if (pme_dev->dev == dev) {
2230 list_del(&pme_dev->list);
2231 kfree(pme_dev);
2232 break;
2233 }
2234 }
2235 mutex_unlock(&pci_pme_list_mutex);
2236 }
2237 }
2238
2239 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2240 }
2241 EXPORT_SYMBOL(pci_pme_active);
2242
2243 /**
2244 * __pci_enable_wake - enable PCI device as wakeup event source
2245 * @dev: PCI device affected
2246 * @state: PCI state from which device will issue wakeup events
2247 * @enable: True to enable event generation; false to disable
2248 *
2249 * This enables the device as a wakeup event source, or disables it.
2250 * When such events involves platform-specific hooks, those hooks are
2251 * called automatically by this routine.
2252 *
2253 * Devices with legacy power management (no standard PCI PM capabilities)
2254 * always require such platform hooks.
2255 *
2256 * RETURN VALUE:
2257 * 0 is returned on success
2258 * -EINVAL is returned if device is not supposed to wake up the system
2259 * Error code depending on the platform is returned if both the platform and
2260 * the native mechanism fail to enable the generation of wake-up events
2261 */
2262 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2263 {
2264 int ret = 0;
2265
2266 /*
2267 * Bridges that are not power-manageable directly only signal
2268 * wakeup on behalf of subordinate devices which is set up
2269 * elsewhere, so skip them. However, bridges that are
2270 * power-manageable may signal wakeup for themselves (for example,
2271 * on a hotplug event) and they need to be covered here.
2272 */
2273 if (!pci_power_manageable(dev))
2274 return 0;
2275
2276 /* Don't do the same thing twice in a row for one device. */
2277 if (!!enable == !!dev->wakeup_prepared)
2278 return 0;
2279
2280 /*
2281 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2282 * Anderson we should be doing PME# wake enable followed by ACPI wake
2283 * enable. To disable wake-up we call the platform first, for symmetry.
2284 */
2285
2286 if (enable) {
2287 int error;
2288
2289 if (pci_pme_capable(dev, state))
2290 pci_pme_active(dev, true);
2291 else
2292 ret = 1;
2293 error = platform_pci_set_wakeup(dev, true);
2294 if (ret)
2295 ret = error;
2296 if (!ret)
2297 dev->wakeup_prepared = true;
2298 } else {
2299 platform_pci_set_wakeup(dev, false);
2300 pci_pme_active(dev, false);
2301 dev->wakeup_prepared = false;
2302 }
2303
2304 return ret;
2305 }
2306
2307 /**
2308 * pci_enable_wake - change wakeup settings for a PCI device
2309 * @pci_dev: Target device
2310 * @state: PCI state from which device will issue wakeup events
2311 * @enable: Whether or not to enable event generation
2312 *
2313 * If @enable is set, check device_may_wakeup() for the device before calling
2314 * __pci_enable_wake() for it.
2315 */
2316 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2317 {
2318 if (enable && !device_may_wakeup(&pci_dev->dev))
2319 return -EINVAL;
2320
2321 return __pci_enable_wake(pci_dev, state, enable);
2322 }
2323 EXPORT_SYMBOL(pci_enable_wake);
2324
2325 /**
2326 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2327 * @dev: PCI device to prepare
2328 * @enable: True to enable wake-up event generation; false to disable
2329 *
2330 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2331 * and this function allows them to set that up cleanly - pci_enable_wake()
2332 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2333 * ordering constraints.
2334 *
2335 * This function only returns error code if the device is not allowed to wake
2336 * up the system from sleep or it is not capable of generating PME# from both
2337 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2338 */
2339 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2340 {
2341 return pci_pme_capable(dev, PCI_D3cold) ?
2342 pci_enable_wake(dev, PCI_D3cold, enable) :
2343 pci_enable_wake(dev, PCI_D3hot, enable);
2344 }
2345 EXPORT_SYMBOL(pci_wake_from_d3);
2346
2347 /**
2348 * pci_target_state - find an appropriate low power state for a given PCI dev
2349 * @dev: PCI device
2350 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2351 *
2352 * Use underlying platform code to find a supported low power state for @dev.
2353 * If the platform can't manage @dev, return the deepest state from which it
2354 * can generate wake events, based on any available PME info.
2355 */
2356 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2357 {
2358 pci_power_t target_state = PCI_D3hot;
2359
2360 if (platform_pci_power_manageable(dev)) {
2361 /*
2362 * Call the platform to find the target state for the device.
2363 */
2364 pci_power_t state = platform_pci_choose_state(dev);
2365
2366 switch (state) {
2367 case PCI_POWER_ERROR:
2368 case PCI_UNKNOWN:
2369 break;
2370 case PCI_D1:
2371 case PCI_D2:
2372 if (pci_no_d1d2(dev))
2373 break;
2374 /* else, fall through */
2375 default:
2376 target_state = state;
2377 }
2378
2379 return target_state;
2380 }
2381
2382 if (!dev->pm_cap)
2383 target_state = PCI_D0;
2384
2385 /*
2386 * If the device is in D3cold even though it's not power-manageable by
2387 * the platform, it may have been powered down by non-standard means.
2388 * Best to let it slumber.
2389 */
2390 if (dev->current_state == PCI_D3cold)
2391 target_state = PCI_D3cold;
2392
2393 if (wakeup) {
2394 /*
2395 * Find the deepest state from which the device can generate
2396 * PME#.
2397 */
2398 if (dev->pme_support) {
2399 while (target_state
2400 && !(dev->pme_support & (1 << target_state)))
2401 target_state--;
2402 }
2403 }
2404
2405 return target_state;
2406 }
2407
2408 /**
2409 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2410 * into a sleep state
2411 * @dev: Device to handle.
2412 *
2413 * Choose the power state appropriate for the device depending on whether
2414 * it can wake up the system and/or is power manageable by the platform
2415 * (PCI_D3hot is the default) and put the device into that state.
2416 */
2417 int pci_prepare_to_sleep(struct pci_dev *dev)
2418 {
2419 bool wakeup = device_may_wakeup(&dev->dev);
2420 pci_power_t target_state = pci_target_state(dev, wakeup);
2421 int error;
2422
2423 if (target_state == PCI_POWER_ERROR)
2424 return -EIO;
2425
2426 pci_enable_wake(dev, target_state, wakeup);
2427
2428 error = pci_set_power_state(dev, target_state);
2429
2430 if (error)
2431 pci_enable_wake(dev, target_state, false);
2432
2433 return error;
2434 }
2435 EXPORT_SYMBOL(pci_prepare_to_sleep);
2436
2437 /**
2438 * pci_back_from_sleep - turn PCI device on during system-wide transition
2439 * into working state
2440 * @dev: Device to handle.
2441 *
2442 * Disable device's system wake-up capability and put it into D0.
2443 */
2444 int pci_back_from_sleep(struct pci_dev *dev)
2445 {
2446 pci_enable_wake(dev, PCI_D0, false);
2447 return pci_set_power_state(dev, PCI_D0);
2448 }
2449 EXPORT_SYMBOL(pci_back_from_sleep);
2450
2451 /**
2452 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2453 * @dev: PCI device being suspended.
2454 *
2455 * Prepare @dev to generate wake-up events at run time and put it into a low
2456 * power state.
2457 */
2458 int pci_finish_runtime_suspend(struct pci_dev *dev)
2459 {
2460 pci_power_t target_state;
2461 int error;
2462
2463 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2464 if (target_state == PCI_POWER_ERROR)
2465 return -EIO;
2466
2467 dev->runtime_d3cold = target_state == PCI_D3cold;
2468
2469 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2470
2471 error = pci_set_power_state(dev, target_state);
2472
2473 if (error) {
2474 pci_enable_wake(dev, target_state, false);
2475 dev->runtime_d3cold = false;
2476 }
2477
2478 return error;
2479 }
2480
2481 /**
2482 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2483 * @dev: Device to check.
2484 *
2485 * Return true if the device itself is capable of generating wake-up events
2486 * (through the platform or using the native PCIe PME) or if the device supports
2487 * PME and one of its upstream bridges can generate wake-up events.
2488 */
2489 bool pci_dev_run_wake(struct pci_dev *dev)
2490 {
2491 struct pci_bus *bus = dev->bus;
2492
2493 if (!dev->pme_support)
2494 return false;
2495
2496 /* PME-capable in principle, but not from the target power state */
2497 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2498 return false;
2499
2500 if (device_can_wakeup(&dev->dev))
2501 return true;
2502
2503 while (bus->parent) {
2504 struct pci_dev *bridge = bus->self;
2505
2506 if (device_can_wakeup(&bridge->dev))
2507 return true;
2508
2509 bus = bus->parent;
2510 }
2511
2512 /* We have reached the root bus. */
2513 if (bus->bridge)
2514 return device_can_wakeup(bus->bridge);
2515
2516 return false;
2517 }
2518 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2519
2520 /**
2521 * pci_dev_need_resume - Check if it is necessary to resume the device.
2522 * @pci_dev: Device to check.
2523 *
2524 * Return 'true' if the device is not runtime-suspended or it has to be
2525 * reconfigured due to wakeup settings difference between system and runtime
2526 * suspend, or the current power state of it is not suitable for the upcoming
2527 * (system-wide) transition.
2528 */
2529 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2530 {
2531 struct device *dev = &pci_dev->dev;
2532 pci_power_t target_state;
2533
2534 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2535 return true;
2536
2537 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2538
2539 /*
2540 * If the earlier platform check has not triggered, D3cold is just power
2541 * removal on top of D3hot, so no need to resume the device in that
2542 * case.
2543 */
2544 return target_state != pci_dev->current_state &&
2545 target_state != PCI_D3cold &&
2546 pci_dev->current_state != PCI_D3hot;
2547 }
2548
2549 /**
2550 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2551 * @pci_dev: Device to check.
2552 *
2553 * If the device is suspended and it is not configured for system wakeup,
2554 * disable PME for it to prevent it from waking up the system unnecessarily.
2555 *
2556 * Note that if the device's power state is D3cold and the platform check in
2557 * pci_dev_need_resume() has not triggered, the device's configuration need not
2558 * be changed.
2559 */
2560 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2561 {
2562 struct device *dev = &pci_dev->dev;
2563
2564 spin_lock_irq(&dev->power.lock);
2565
2566 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2567 pci_dev->current_state < PCI_D3cold)
2568 __pci_pme_active(pci_dev, false);
2569
2570 spin_unlock_irq(&dev->power.lock);
2571 }
2572
2573 /**
2574 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2575 * @pci_dev: Device to handle.
2576 *
2577 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2578 * it might have been disabled during the prepare phase of system suspend if
2579 * the device was not configured for system wakeup.
2580 */
2581 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2582 {
2583 struct device *dev = &pci_dev->dev;
2584
2585 if (!pci_dev_run_wake(pci_dev))
2586 return;
2587
2588 spin_lock_irq(&dev->power.lock);
2589
2590 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2591 __pci_pme_active(pci_dev, true);
2592
2593 spin_unlock_irq(&dev->power.lock);
2594 }
2595
2596 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2597 {
2598 struct device *dev = &pdev->dev;
2599 struct device *parent = dev->parent;
2600
2601 if (parent)
2602 pm_runtime_get_sync(parent);
2603 pm_runtime_get_noresume(dev);
2604 /*
2605 * pdev->current_state is set to PCI_D3cold during suspending,
2606 * so wait until suspending completes
2607 */
2608 pm_runtime_barrier(dev);
2609 /*
2610 * Only need to resume devices in D3cold, because config
2611 * registers are still accessible for devices suspended but
2612 * not in D3cold.
2613 */
2614 if (pdev->current_state == PCI_D3cold)
2615 pm_runtime_resume(dev);
2616 }
2617
2618 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2619 {
2620 struct device *dev = &pdev->dev;
2621 struct device *parent = dev->parent;
2622
2623 pm_runtime_put(dev);
2624 if (parent)
2625 pm_runtime_put_sync(parent);
2626 }
2627
2628 static const struct dmi_system_id bridge_d3_blacklist[] = {
2629 #ifdef CONFIG_X86
2630 {
2631 /*
2632 * Gigabyte X299 root port is not marked as hotplug capable
2633 * which allows Linux to power manage it. However, this
2634 * confuses the BIOS SMI handler so don't power manage root
2635 * ports on that system.
2636 */
2637 .ident = "X299 DESIGNARE EX-CF",
2638 .matches = {
2639 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2640 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2641 },
2642 },
2643 #endif
2644 { }
2645 };
2646
2647 /**
2648 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2649 * @bridge: Bridge to check
2650 *
2651 * This function checks if it is possible to move the bridge to D3.
2652 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2653 */
2654 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2655 {
2656 if (!pci_is_pcie(bridge))
2657 return false;
2658
2659 switch (pci_pcie_type(bridge)) {
2660 case PCI_EXP_TYPE_ROOT_PORT:
2661 case PCI_EXP_TYPE_UPSTREAM:
2662 case PCI_EXP_TYPE_DOWNSTREAM:
2663 if (pci_bridge_d3_disable)
2664 return false;
2665
2666 /*
2667 * Hotplug ports handled by firmware in System Management Mode
2668 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2669 */
2670 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2671 return false;
2672
2673 if (pci_bridge_d3_force)
2674 return true;
2675
2676 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2677 if (bridge->is_thunderbolt)
2678 return true;
2679
2680 /* Platform might know better if the bridge supports D3 */
2681 if (platform_pci_bridge_d3(bridge))
2682 return true;
2683
2684 /*
2685 * Hotplug ports handled natively by the OS were not validated
2686 * by vendors for runtime D3 at least until 2018 because there
2687 * was no OS support.
2688 */
2689 if (bridge->is_hotplug_bridge)
2690 return false;
2691
2692 if (dmi_check_system(bridge_d3_blacklist))
2693 return false;
2694
2695 /*
2696 * It should be safe to put PCIe ports from 2015 or newer
2697 * to D3.
2698 */
2699 if (dmi_get_bios_year() >= 2015)
2700 return true;
2701 break;
2702 }
2703
2704 return false;
2705 }
2706
2707 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2708 {
2709 bool *d3cold_ok = data;
2710
2711 if (/* The device needs to be allowed to go D3cold ... */
2712 dev->no_d3cold || !dev->d3cold_allowed ||
2713
2714 /* ... and if it is wakeup capable to do so from D3cold. */
2715 (device_may_wakeup(&dev->dev) &&
2716 !pci_pme_capable(dev, PCI_D3cold)) ||
2717
2718 /* If it is a bridge it must be allowed to go to D3. */
2719 !pci_power_manageable(dev))
2720
2721 *d3cold_ok = false;
2722
2723 return !*d3cold_ok;
2724 }
2725
2726 /*
2727 * pci_bridge_d3_update - Update bridge D3 capabilities
2728 * @dev: PCI device which is changed
2729 *
2730 * Update upstream bridge PM capabilities accordingly depending on if the
2731 * device PM configuration was changed or the device is being removed. The
2732 * change is also propagated upstream.
2733 */
2734 void pci_bridge_d3_update(struct pci_dev *dev)
2735 {
2736 bool remove = !device_is_registered(&dev->dev);
2737 struct pci_dev *bridge;
2738 bool d3cold_ok = true;
2739
2740 bridge = pci_upstream_bridge(dev);
2741 if (!bridge || !pci_bridge_d3_possible(bridge))
2742 return;
2743
2744 /*
2745 * If D3 is currently allowed for the bridge, removing one of its
2746 * children won't change that.
2747 */
2748 if (remove && bridge->bridge_d3)
2749 return;
2750
2751 /*
2752 * If D3 is currently allowed for the bridge and a child is added or
2753 * changed, disallowance of D3 can only be caused by that child, so
2754 * we only need to check that single device, not any of its siblings.
2755 *
2756 * If D3 is currently not allowed for the bridge, checking the device
2757 * first may allow us to skip checking its siblings.
2758 */
2759 if (!remove)
2760 pci_dev_check_d3cold(dev, &d3cold_ok);
2761
2762 /*
2763 * If D3 is currently not allowed for the bridge, this may be caused
2764 * either by the device being changed/removed or any of its siblings,
2765 * so we need to go through all children to find out if one of them
2766 * continues to block D3.
2767 */
2768 if (d3cold_ok && !bridge->bridge_d3)
2769 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2770 &d3cold_ok);
2771
2772 if (bridge->bridge_d3 != d3cold_ok) {
2773 bridge->bridge_d3 = d3cold_ok;
2774 /* Propagate change to upstream bridges */
2775 pci_bridge_d3_update(bridge);
2776 }
2777 }
2778
2779 /**
2780 * pci_d3cold_enable - Enable D3cold for device
2781 * @dev: PCI device to handle
2782 *
2783 * This function can be used in drivers to enable D3cold from the device
2784 * they handle. It also updates upstream PCI bridge PM capabilities
2785 * accordingly.
2786 */
2787 void pci_d3cold_enable(struct pci_dev *dev)
2788 {
2789 if (dev->no_d3cold) {
2790 dev->no_d3cold = false;
2791 pci_bridge_d3_update(dev);
2792 }
2793 }
2794 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2795
2796 /**
2797 * pci_d3cold_disable - Disable D3cold for device
2798 * @dev: PCI device to handle
2799 *
2800 * This function can be used in drivers to disable D3cold from the device
2801 * they handle. It also updates upstream PCI bridge PM capabilities
2802 * accordingly.
2803 */
2804 void pci_d3cold_disable(struct pci_dev *dev)
2805 {
2806 if (!dev->no_d3cold) {
2807 dev->no_d3cold = true;
2808 pci_bridge_d3_update(dev);
2809 }
2810 }
2811 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2812
2813 /**
2814 * pci_pm_init - Initialize PM functions of given PCI device
2815 * @dev: PCI device to handle.
2816 */
2817 void pci_pm_init(struct pci_dev *dev)
2818 {
2819 int pm;
2820 u16 status;
2821 u16 pmc;
2822
2823 pm_runtime_forbid(&dev->dev);
2824 pm_runtime_set_active(&dev->dev);
2825 pm_runtime_enable(&dev->dev);
2826 device_enable_async_suspend(&dev->dev);
2827 dev->wakeup_prepared = false;
2828
2829 dev->pm_cap = 0;
2830 dev->pme_support = 0;
2831
2832 /* find PCI PM capability in list */
2833 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2834 if (!pm)
2835 return;
2836 /* Check device's ability to generate PME# */
2837 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2838
2839 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2840 pci_err(dev, "unsupported PM cap regs version (%u)\n",
2841 pmc & PCI_PM_CAP_VER_MASK);
2842 return;
2843 }
2844
2845 dev->pm_cap = pm;
2846 dev->d3_delay = PCI_PM_D3_WAIT;
2847 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2848 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2849 dev->d3cold_allowed = true;
2850
2851 dev->d1_support = false;
2852 dev->d2_support = false;
2853 if (!pci_no_d1d2(dev)) {
2854 if (pmc & PCI_PM_CAP_D1)
2855 dev->d1_support = true;
2856 if (pmc & PCI_PM_CAP_D2)
2857 dev->d2_support = true;
2858
2859 if (dev->d1_support || dev->d2_support)
2860 pci_info(dev, "supports%s%s\n",
2861 dev->d1_support ? " D1" : "",
2862 dev->d2_support ? " D2" : "");
2863 }
2864
2865 pmc &= PCI_PM_CAP_PME_MASK;
2866 if (pmc) {
2867 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
2868 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2869 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2870 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2871 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2872 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2873 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2874 dev->pme_poll = true;
2875 /*
2876 * Make device's PM flags reflect the wake-up capability, but
2877 * let the user space enable it to wake up the system as needed.
2878 */
2879 device_set_wakeup_capable(&dev->dev, true);
2880 /* Disable the PME# generation functionality */
2881 pci_pme_active(dev, false);
2882 }
2883
2884 pci_read_config_word(dev, PCI_STATUS, &status);
2885 if (status & PCI_STATUS_IMM_READY)
2886 dev->imm_ready = 1;
2887 }
2888
2889 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2890 {
2891 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2892
2893 switch (prop) {
2894 case PCI_EA_P_MEM:
2895 case PCI_EA_P_VF_MEM:
2896 flags |= IORESOURCE_MEM;
2897 break;
2898 case PCI_EA_P_MEM_PREFETCH:
2899 case PCI_EA_P_VF_MEM_PREFETCH:
2900 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2901 break;
2902 case PCI_EA_P_IO:
2903 flags |= IORESOURCE_IO;
2904 break;
2905 default:
2906 return 0;
2907 }
2908
2909 return flags;
2910 }
2911
2912 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2913 u8 prop)
2914 {
2915 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2916 return &dev->resource[bei];
2917 #ifdef CONFIG_PCI_IOV
2918 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2919 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2920 return &dev->resource[PCI_IOV_RESOURCES +
2921 bei - PCI_EA_BEI_VF_BAR0];
2922 #endif
2923 else if (bei == PCI_EA_BEI_ROM)
2924 return &dev->resource[PCI_ROM_RESOURCE];
2925 else
2926 return NULL;
2927 }
2928
2929 /* Read an Enhanced Allocation (EA) entry */
2930 static int pci_ea_read(struct pci_dev *dev, int offset)
2931 {
2932 struct resource *res;
2933 int ent_size, ent_offset = offset;
2934 resource_size_t start, end;
2935 unsigned long flags;
2936 u32 dw0, bei, base, max_offset;
2937 u8 prop;
2938 bool support_64 = (sizeof(resource_size_t) >= 8);
2939
2940 pci_read_config_dword(dev, ent_offset, &dw0);
2941 ent_offset += 4;
2942
2943 /* Entry size field indicates DWORDs after 1st */
2944 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2945
2946 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2947 goto out;
2948
2949 bei = (dw0 & PCI_EA_BEI) >> 4;
2950 prop = (dw0 & PCI_EA_PP) >> 8;
2951
2952 /*
2953 * If the Property is in the reserved range, try the Secondary
2954 * Property instead.
2955 */
2956 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2957 prop = (dw0 & PCI_EA_SP) >> 16;
2958 if (prop > PCI_EA_P_BRIDGE_IO)
2959 goto out;
2960
2961 res = pci_ea_get_resource(dev, bei, prop);
2962 if (!res) {
2963 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2964 goto out;
2965 }
2966
2967 flags = pci_ea_flags(dev, prop);
2968 if (!flags) {
2969 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2970 goto out;
2971 }
2972
2973 /* Read Base */
2974 pci_read_config_dword(dev, ent_offset, &base);
2975 start = (base & PCI_EA_FIELD_MASK);
2976 ent_offset += 4;
2977
2978 /* Read MaxOffset */
2979 pci_read_config_dword(dev, ent_offset, &max_offset);
2980 ent_offset += 4;
2981
2982 /* Read Base MSBs (if 64-bit entry) */
2983 if (base & PCI_EA_IS_64) {
2984 u32 base_upper;
2985
2986 pci_read_config_dword(dev, ent_offset, &base_upper);
2987 ent_offset += 4;
2988
2989 flags |= IORESOURCE_MEM_64;
2990
2991 /* entry starts above 32-bit boundary, can't use */
2992 if (!support_64 && base_upper)
2993 goto out;
2994
2995 if (support_64)
2996 start |= ((u64)base_upper << 32);
2997 }
2998
2999 end = start + (max_offset | 0x03);
3000
3001 /* Read MaxOffset MSBs (if 64-bit entry) */
3002 if (max_offset & PCI_EA_IS_64) {
3003 u32 max_offset_upper;
3004
3005 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3006 ent_offset += 4;
3007
3008 flags |= IORESOURCE_MEM_64;
3009
3010 /* entry too big, can't use */
3011 if (!support_64 && max_offset_upper)
3012 goto out;
3013
3014 if (support_64)
3015 end += ((u64)max_offset_upper << 32);
3016 }
3017
3018 if (end < start) {
3019 pci_err(dev, "EA Entry crosses address boundary\n");
3020 goto out;
3021 }
3022
3023 if (ent_size != ent_offset - offset) {
3024 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3025 ent_size, ent_offset - offset);
3026 goto out;
3027 }
3028
3029 res->name = pci_name(dev);
3030 res->start = start;
3031 res->end = end;
3032 res->flags = flags;
3033
3034 if (bei <= PCI_EA_BEI_BAR5)
3035 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3036 bei, res, prop);
3037 else if (bei == PCI_EA_BEI_ROM)
3038 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3039 res, prop);
3040 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3041 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3042 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3043 else
3044 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3045 bei, res, prop);
3046
3047 out:
3048 return offset + ent_size;
3049 }
3050
3051 /* Enhanced Allocation Initialization */
3052 void pci_ea_init(struct pci_dev *dev)
3053 {
3054 int ea;
3055 u8 num_ent;
3056 int offset;
3057 int i;
3058
3059 /* find PCI EA capability in list */
3060 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3061 if (!ea)
3062 return;
3063
3064 /* determine the number of entries */
3065 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3066 &num_ent);
3067 num_ent &= PCI_EA_NUM_ENT_MASK;
3068
3069 offset = ea + PCI_EA_FIRST_ENT;
3070
3071 /* Skip DWORD 2 for type 1 functions */
3072 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3073 offset += 4;
3074
3075 /* parse each EA entry */
3076 for (i = 0; i < num_ent; ++i)
3077 offset = pci_ea_read(dev, offset);
3078 }
3079
3080 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3081 struct pci_cap_saved_state *new_cap)
3082 {
3083 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3084 }
3085
3086 /**
3087 * _pci_add_cap_save_buffer - allocate buffer for saving given
3088 * capability registers
3089 * @dev: the PCI device
3090 * @cap: the capability to allocate the buffer for
3091 * @extended: Standard or Extended capability ID
3092 * @size: requested size of the buffer
3093 */
3094 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3095 bool extended, unsigned int size)
3096 {
3097 int pos;
3098 struct pci_cap_saved_state *save_state;
3099
3100 if (extended)
3101 pos = pci_find_ext_capability(dev, cap);
3102 else
3103 pos = pci_find_capability(dev, cap);
3104
3105 if (!pos)
3106 return 0;
3107
3108 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3109 if (!save_state)
3110 return -ENOMEM;
3111
3112 save_state->cap.cap_nr = cap;
3113 save_state->cap.cap_extended = extended;
3114 save_state->cap.size = size;
3115 pci_add_saved_cap(dev, save_state);
3116
3117 return 0;
3118 }
3119
3120 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3121 {
3122 return _pci_add_cap_save_buffer(dev, cap, false, size);
3123 }
3124
3125 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3126 {
3127 return _pci_add_cap_save_buffer(dev, cap, true, size);
3128 }
3129
3130 /**
3131 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3132 * @dev: the PCI device
3133 */
3134 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3135 {
3136 int error;
3137
3138 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3139 PCI_EXP_SAVE_REGS * sizeof(u16));
3140 if (error)
3141 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3142
3143 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3144 if (error)
3145 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3146
3147 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3148 2 * sizeof(u16));
3149 if (error)
3150 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3151
3152 pci_allocate_vc_save_buffers(dev);
3153 }
3154
3155 void pci_free_cap_save_buffers(struct pci_dev *dev)
3156 {
3157 struct pci_cap_saved_state *tmp;
3158 struct hlist_node *n;
3159
3160 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3161 kfree(tmp);
3162 }
3163
3164 /**
3165 * pci_configure_ari - enable or disable ARI forwarding
3166 * @dev: the PCI device
3167 *
3168 * If @dev and its upstream bridge both support ARI, enable ARI in the
3169 * bridge. Otherwise, disable ARI in the bridge.
3170 */
3171 void pci_configure_ari(struct pci_dev *dev)
3172 {
3173 u32 cap;
3174 struct pci_dev *bridge;
3175
3176 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3177 return;
3178
3179 bridge = dev->bus->self;
3180 if (!bridge)
3181 return;
3182
3183 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3184 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3185 return;
3186
3187 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3188 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3189 PCI_EXP_DEVCTL2_ARI);
3190 bridge->ari_enabled = 1;
3191 } else {
3192 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3193 PCI_EXP_DEVCTL2_ARI);
3194 bridge->ari_enabled = 0;
3195 }
3196 }
3197
3198 static int pci_acs_enable;
3199
3200 /**
3201 * pci_request_acs - ask for ACS to be enabled if supported
3202 */
3203 void pci_request_acs(void)
3204 {
3205 pci_acs_enable = 1;
3206 }
3207
3208 static const char *disable_acs_redir_param;
3209
3210 /**
3211 * pci_disable_acs_redir - disable ACS redirect capabilities
3212 * @dev: the PCI device
3213 *
3214 * For only devices specified in the disable_acs_redir parameter.
3215 */
3216 static void pci_disable_acs_redir(struct pci_dev *dev)
3217 {
3218 int ret = 0;
3219 const char *p;
3220 int pos;
3221 u16 ctrl;
3222
3223 if (!disable_acs_redir_param)
3224 return;
3225
3226 p = disable_acs_redir_param;
3227 while (*p) {
3228 ret = pci_dev_str_match(dev, p, &p);
3229 if (ret < 0) {
3230 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3231 disable_acs_redir_param);
3232
3233 break;
3234 } else if (ret == 1) {
3235 /* Found a match */
3236 break;
3237 }
3238
3239 if (*p != ';' && *p != ',') {
3240 /* End of param or invalid format */
3241 break;
3242 }
3243 p++;
3244 }
3245
3246 if (ret != 1)
3247 return;
3248
3249 if (!pci_dev_specific_disable_acs_redir(dev))
3250 return;
3251
3252 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3253 if (!pos) {
3254 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3255 return;
3256 }
3257
3258 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3259
3260 /* P2P Request & Completion Redirect */
3261 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3262
3263 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3264
3265 pci_info(dev, "disabled ACS redirect\n");
3266 }
3267
3268 /**
3269 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
3270 * @dev: the PCI device
3271 */
3272 static void pci_std_enable_acs(struct pci_dev *dev)
3273 {
3274 int pos;
3275 u16 cap;
3276 u16 ctrl;
3277
3278 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3279 if (!pos)
3280 return;
3281
3282 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3283 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3284
3285 /* Source Validation */
3286 ctrl |= (cap & PCI_ACS_SV);
3287
3288 /* P2P Request Redirect */
3289 ctrl |= (cap & PCI_ACS_RR);
3290
3291 /* P2P Completion Redirect */
3292 ctrl |= (cap & PCI_ACS_CR);
3293
3294 /* Upstream Forwarding */
3295 ctrl |= (cap & PCI_ACS_UF);
3296
3297 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3298 }
3299
3300 /**
3301 * pci_enable_acs - enable ACS if hardware support it
3302 * @dev: the PCI device
3303 */
3304 void pci_enable_acs(struct pci_dev *dev)
3305 {
3306 if (!pci_acs_enable)
3307 goto disable_acs_redir;
3308
3309 if (!pci_dev_specific_enable_acs(dev))
3310 goto disable_acs_redir;
3311
3312 pci_std_enable_acs(dev);
3313
3314 disable_acs_redir:
3315 /*
3316 * Note: pci_disable_acs_redir() must be called even if ACS was not
3317 * enabled by the kernel because it may have been enabled by
3318 * platform firmware. So if we are told to disable it, we should
3319 * always disable it after setting the kernel's default
3320 * preferences.
3321 */
3322 pci_disable_acs_redir(dev);
3323 }
3324
3325 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3326 {
3327 int pos;
3328 u16 cap, ctrl;
3329
3330 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3331 if (!pos)
3332 return false;
3333
3334 /*
3335 * Except for egress control, capabilities are either required
3336 * or only required if controllable. Features missing from the
3337 * capability field can therefore be assumed as hard-wired enabled.
3338 */
3339 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3340 acs_flags &= (cap | PCI_ACS_EC);
3341
3342 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3343 return (ctrl & acs_flags) == acs_flags;
3344 }
3345
3346 /**
3347 * pci_acs_enabled - test ACS against required flags for a given device
3348 * @pdev: device to test
3349 * @acs_flags: required PCI ACS flags
3350 *
3351 * Return true if the device supports the provided flags. Automatically
3352 * filters out flags that are not implemented on multifunction devices.
3353 *
3354 * Note that this interface checks the effective ACS capabilities of the
3355 * device rather than the actual capabilities. For instance, most single
3356 * function endpoints are not required to support ACS because they have no
3357 * opportunity for peer-to-peer access. We therefore return 'true'
3358 * regardless of whether the device exposes an ACS capability. This makes
3359 * it much easier for callers of this function to ignore the actual type
3360 * or topology of the device when testing ACS support.
3361 */
3362 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3363 {
3364 int ret;
3365
3366 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3367 if (ret >= 0)
3368 return ret > 0;
3369
3370 /*
3371 * Conventional PCI and PCI-X devices never support ACS, either
3372 * effectively or actually. The shared bus topology implies that
3373 * any device on the bus can receive or snoop DMA.
3374 */
3375 if (!pci_is_pcie(pdev))
3376 return false;
3377
3378 switch (pci_pcie_type(pdev)) {
3379 /*
3380 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3381 * but since their primary interface is PCI/X, we conservatively
3382 * handle them as we would a non-PCIe device.
3383 */
3384 case PCI_EXP_TYPE_PCIE_BRIDGE:
3385 /*
3386 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3387 * applicable... must never implement an ACS Extended Capability...".
3388 * This seems arbitrary, but we take a conservative interpretation
3389 * of this statement.
3390 */
3391 case PCI_EXP_TYPE_PCI_BRIDGE:
3392 case PCI_EXP_TYPE_RC_EC:
3393 return false;
3394 /*
3395 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3396 * implement ACS in order to indicate their peer-to-peer capabilities,
3397 * regardless of whether they are single- or multi-function devices.
3398 */
3399 case PCI_EXP_TYPE_DOWNSTREAM:
3400 case PCI_EXP_TYPE_ROOT_PORT:
3401 return pci_acs_flags_enabled(pdev, acs_flags);
3402 /*
3403 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3404 * implemented by the remaining PCIe types to indicate peer-to-peer
3405 * capabilities, but only when they are part of a multifunction
3406 * device. The footnote for section 6.12 indicates the specific
3407 * PCIe types included here.
3408 */
3409 case PCI_EXP_TYPE_ENDPOINT:
3410 case PCI_EXP_TYPE_UPSTREAM:
3411 case PCI_EXP_TYPE_LEG_END:
3412 case PCI_EXP_TYPE_RC_END:
3413 if (!pdev->multifunction)
3414 break;
3415
3416 return pci_acs_flags_enabled(pdev, acs_flags);
3417 }
3418
3419 /*
3420 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3421 * to single function devices with the exception of downstream ports.
3422 */
3423 return true;
3424 }
3425
3426 /**
3427 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3428 * @start: starting downstream device
3429 * @end: ending upstream device or NULL to search to the root bus
3430 * @acs_flags: required flags
3431 *
3432 * Walk up a device tree from start to end testing PCI ACS support. If
3433 * any step along the way does not support the required flags, return false.
3434 */
3435 bool pci_acs_path_enabled(struct pci_dev *start,
3436 struct pci_dev *end, u16 acs_flags)
3437 {
3438 struct pci_dev *pdev, *parent = start;
3439
3440 do {
3441 pdev = parent;
3442
3443 if (!pci_acs_enabled(pdev, acs_flags))
3444 return false;
3445
3446 if (pci_is_root_bus(pdev->bus))
3447 return (end == NULL);
3448
3449 parent = pdev->bus->self;
3450 } while (pdev != end);
3451
3452 return true;
3453 }
3454
3455 /**
3456 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3457 * @pdev: PCI device
3458 * @bar: BAR to find
3459 *
3460 * Helper to find the position of the ctrl register for a BAR.
3461 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3462 * Returns -ENOENT if no ctrl register for the BAR could be found.
3463 */
3464 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3465 {
3466 unsigned int pos, nbars, i;
3467 u32 ctrl;
3468
3469 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3470 if (!pos)
3471 return -ENOTSUPP;
3472
3473 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3474 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3475 PCI_REBAR_CTRL_NBAR_SHIFT;
3476
3477 for (i = 0; i < nbars; i++, pos += 8) {
3478 int bar_idx;
3479
3480 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3481 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3482 if (bar_idx == bar)
3483 return pos;
3484 }
3485
3486 return -ENOENT;
3487 }
3488
3489 /**
3490 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3491 * @pdev: PCI device
3492 * @bar: BAR to query
3493 *
3494 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3495 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3496 */
3497 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3498 {
3499 int pos;
3500 u32 cap;
3501
3502 pos = pci_rebar_find_pos(pdev, bar);
3503 if (pos < 0)
3504 return 0;
3505
3506 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3507 return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3508 }
3509
3510 /**
3511 * pci_rebar_get_current_size - get the current size of a BAR
3512 * @pdev: PCI device
3513 * @bar: BAR to set size to
3514 *
3515 * Read the size of a BAR from the resizable BAR config.
3516 * Returns size if found or negative error code.
3517 */
3518 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3519 {
3520 int pos;
3521 u32 ctrl;
3522
3523 pos = pci_rebar_find_pos(pdev, bar);
3524 if (pos < 0)
3525 return pos;
3526
3527 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3528 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3529 }
3530
3531 /**
3532 * pci_rebar_set_size - set a new size for a BAR
3533 * @pdev: PCI device
3534 * @bar: BAR to set size to
3535 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3536 *
3537 * Set the new size of a BAR as defined in the spec.
3538 * Returns zero if resizing was successful, error code otherwise.
3539 */
3540 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3541 {
3542 int pos;
3543 u32 ctrl;
3544
3545 pos = pci_rebar_find_pos(pdev, bar);
3546 if (pos < 0)
3547 return pos;
3548
3549 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3550 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3551 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3552 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3553 return 0;
3554 }
3555
3556 /**
3557 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3558 * @dev: the PCI device
3559 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3560 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3561 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3562 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3563 *
3564 * Return 0 if all upstream bridges support AtomicOp routing, egress
3565 * blocking is disabled on all upstream ports, and the root port supports
3566 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3567 * AtomicOp completion), or negative otherwise.
3568 */
3569 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3570 {
3571 struct pci_bus *bus = dev->bus;
3572 struct pci_dev *bridge;
3573 u32 cap, ctl2;
3574
3575 if (!pci_is_pcie(dev))
3576 return -EINVAL;
3577
3578 /*
3579 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3580 * AtomicOp requesters. For now, we only support endpoints as
3581 * requesters and root ports as completers. No endpoints as
3582 * completers, and no peer-to-peer.
3583 */
3584
3585 switch (pci_pcie_type(dev)) {
3586 case PCI_EXP_TYPE_ENDPOINT:
3587 case PCI_EXP_TYPE_LEG_END:
3588 case PCI_EXP_TYPE_RC_END:
3589 break;
3590 default:
3591 return -EINVAL;
3592 }
3593
3594 while (bus->parent) {
3595 bridge = bus->self;
3596
3597 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3598
3599 switch (pci_pcie_type(bridge)) {
3600 /* Ensure switch ports support AtomicOp routing */
3601 case PCI_EXP_TYPE_UPSTREAM:
3602 case PCI_EXP_TYPE_DOWNSTREAM:
3603 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3604 return -EINVAL;
3605 break;
3606
3607 /* Ensure root port supports all the sizes we care about */
3608 case PCI_EXP_TYPE_ROOT_PORT:
3609 if ((cap & cap_mask) != cap_mask)
3610 return -EINVAL;
3611 break;
3612 }
3613
3614 /* Ensure upstream ports don't block AtomicOps on egress */
3615 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3616 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3617 &ctl2);
3618 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3619 return -EINVAL;
3620 }
3621
3622 bus = bus->parent;
3623 }
3624
3625 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3626 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3627 return 0;
3628 }
3629 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3630
3631 /**
3632 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3633 * @dev: the PCI device
3634 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3635 *
3636 * Perform INTx swizzling for a device behind one level of bridge. This is
3637 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3638 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3639 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3640 * the PCI Express Base Specification, Revision 2.1)
3641 */
3642 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3643 {
3644 int slot;
3645
3646 if (pci_ari_enabled(dev->bus))
3647 slot = 0;
3648 else
3649 slot = PCI_SLOT(dev->devfn);
3650
3651 return (((pin - 1) + slot) % 4) + 1;
3652 }
3653
3654 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3655 {
3656 u8 pin;
3657
3658 pin = dev->pin;
3659 if (!pin)
3660 return -1;
3661
3662 while (!pci_is_root_bus(dev->bus)) {
3663 pin = pci_swizzle_interrupt_pin(dev, pin);
3664 dev = dev->bus->self;
3665 }
3666 *bridge = dev;
3667 return pin;
3668 }
3669
3670 /**
3671 * pci_common_swizzle - swizzle INTx all the way to root bridge
3672 * @dev: the PCI device
3673 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3674 *
3675 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3676 * bridges all the way up to a PCI root bus.
3677 */
3678 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3679 {
3680 u8 pin = *pinp;
3681
3682 while (!pci_is_root_bus(dev->bus)) {
3683 pin = pci_swizzle_interrupt_pin(dev, pin);
3684 dev = dev->bus->self;
3685 }
3686 *pinp = pin;
3687 return PCI_SLOT(dev->devfn);
3688 }
3689 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3690
3691 /**
3692 * pci_release_region - Release a PCI bar
3693 * @pdev: PCI device whose resources were previously reserved by
3694 * pci_request_region()
3695 * @bar: BAR to release
3696 *
3697 * Releases the PCI I/O and memory resources previously reserved by a
3698 * successful call to pci_request_region(). Call this function only
3699 * after all use of the PCI regions has ceased.
3700 */
3701 void pci_release_region(struct pci_dev *pdev, int bar)
3702 {
3703 struct pci_devres *dr;
3704
3705 if (pci_resource_len(pdev, bar) == 0)
3706 return;
3707 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3708 release_region(pci_resource_start(pdev, bar),
3709 pci_resource_len(pdev, bar));
3710 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3711 release_mem_region(pci_resource_start(pdev, bar),
3712 pci_resource_len(pdev, bar));
3713
3714 dr = find_pci_dr(pdev);
3715 if (dr)
3716 dr->region_mask &= ~(1 << bar);
3717 }
3718 EXPORT_SYMBOL(pci_release_region);
3719
3720 /**
3721 * __pci_request_region - Reserved PCI I/O and memory resource
3722 * @pdev: PCI device whose resources are to be reserved
3723 * @bar: BAR to be reserved
3724 * @res_name: Name to be associated with resource.
3725 * @exclusive: whether the region access is exclusive or not
3726 *
3727 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3728 * being reserved by owner @res_name. Do not access any
3729 * address inside the PCI regions unless this call returns
3730 * successfully.
3731 *
3732 * If @exclusive is set, then the region is marked so that userspace
3733 * is explicitly not allowed to map the resource via /dev/mem or
3734 * sysfs MMIO access.
3735 *
3736 * Returns 0 on success, or %EBUSY on error. A warning
3737 * message is also printed on failure.
3738 */
3739 static int __pci_request_region(struct pci_dev *pdev, int bar,
3740 const char *res_name, int exclusive)
3741 {
3742 struct pci_devres *dr;
3743
3744 if (pci_resource_len(pdev, bar) == 0)
3745 return 0;
3746
3747 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3748 if (!request_region(pci_resource_start(pdev, bar),
3749 pci_resource_len(pdev, bar), res_name))
3750 goto err_out;
3751 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3752 if (!__request_mem_region(pci_resource_start(pdev, bar),
3753 pci_resource_len(pdev, bar), res_name,
3754 exclusive))
3755 goto err_out;
3756 }
3757
3758 dr = find_pci_dr(pdev);
3759 if (dr)
3760 dr->region_mask |= 1 << bar;
3761
3762 return 0;
3763
3764 err_out:
3765 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3766 &pdev->resource[bar]);
3767 return -EBUSY;
3768 }
3769
3770 /**
3771 * pci_request_region - Reserve PCI I/O and memory resource
3772 * @pdev: PCI device whose resources are to be reserved
3773 * @bar: BAR to be reserved
3774 * @res_name: Name to be associated with resource
3775 *
3776 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3777 * being reserved by owner @res_name. Do not access any
3778 * address inside the PCI regions unless this call returns
3779 * successfully.
3780 *
3781 * Returns 0 on success, or %EBUSY on error. A warning
3782 * message is also printed on failure.
3783 */
3784 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3785 {
3786 return __pci_request_region(pdev, bar, res_name, 0);
3787 }
3788 EXPORT_SYMBOL(pci_request_region);
3789
3790 /**
3791 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3792 * @pdev: PCI device whose resources were previously reserved
3793 * @bars: Bitmask of BARs to be released
3794 *
3795 * Release selected PCI I/O and memory resources previously reserved.
3796 * Call this function only after all use of the PCI regions has ceased.
3797 */
3798 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3799 {
3800 int i;
3801
3802 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3803 if (bars & (1 << i))
3804 pci_release_region(pdev, i);
3805 }
3806 EXPORT_SYMBOL(pci_release_selected_regions);
3807
3808 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3809 const char *res_name, int excl)
3810 {
3811 int i;
3812
3813 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3814 if (bars & (1 << i))
3815 if (__pci_request_region(pdev, i, res_name, excl))
3816 goto err_out;
3817 return 0;
3818
3819 err_out:
3820 while (--i >= 0)
3821 if (bars & (1 << i))
3822 pci_release_region(pdev, i);
3823
3824 return -EBUSY;
3825 }
3826
3827
3828 /**
3829 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3830 * @pdev: PCI device whose resources are to be reserved
3831 * @bars: Bitmask of BARs to be requested
3832 * @res_name: Name to be associated with resource
3833 */
3834 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3835 const char *res_name)
3836 {
3837 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3838 }
3839 EXPORT_SYMBOL(pci_request_selected_regions);
3840
3841 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3842 const char *res_name)
3843 {
3844 return __pci_request_selected_regions(pdev, bars, res_name,
3845 IORESOURCE_EXCLUSIVE);
3846 }
3847 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3848
3849 /**
3850 * pci_release_regions - Release reserved PCI I/O and memory resources
3851 * @pdev: PCI device whose resources were previously reserved by
3852 * pci_request_regions()
3853 *
3854 * Releases all PCI I/O and memory resources previously reserved by a
3855 * successful call to pci_request_regions(). Call this function only
3856 * after all use of the PCI regions has ceased.
3857 */
3858
3859 void pci_release_regions(struct pci_dev *pdev)
3860 {
3861 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3862 }
3863 EXPORT_SYMBOL(pci_release_regions);
3864
3865 /**
3866 * pci_request_regions - Reserve PCI I/O and memory resources
3867 * @pdev: PCI device whose resources are to be reserved
3868 * @res_name: Name to be associated with resource.
3869 *
3870 * Mark all PCI regions associated with PCI device @pdev as
3871 * being reserved by owner @res_name. Do not access any
3872 * address inside the PCI regions unless this call returns
3873 * successfully.
3874 *
3875 * Returns 0 on success, or %EBUSY on error. A warning
3876 * message is also printed on failure.
3877 */
3878 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3879 {
3880 return pci_request_selected_regions(pdev,
3881 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
3882 }
3883 EXPORT_SYMBOL(pci_request_regions);
3884
3885 /**
3886 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3887 * @pdev: PCI device whose resources are to be reserved
3888 * @res_name: Name to be associated with resource.
3889 *
3890 * Mark all PCI regions associated with PCI device @pdev as being reserved
3891 * by owner @res_name. Do not access any address inside the PCI regions
3892 * unless this call returns successfully.
3893 *
3894 * pci_request_regions_exclusive() will mark the region so that /dev/mem
3895 * and the sysfs MMIO access will not be allowed.
3896 *
3897 * Returns 0 on success, or %EBUSY on error. A warning message is also
3898 * printed on failure.
3899 */
3900 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3901 {
3902 return pci_request_selected_regions_exclusive(pdev,
3903 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
3904 }
3905 EXPORT_SYMBOL(pci_request_regions_exclusive);
3906
3907 /*
3908 * Record the PCI IO range (expressed as CPU physical address + size).
3909 * Return a negative value if an error has occurred, zero otherwise
3910 */
3911 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3912 resource_size_t size)
3913 {
3914 int ret = 0;
3915 #ifdef PCI_IOBASE
3916 struct logic_pio_hwaddr *range;
3917
3918 if (!size || addr + size < addr)
3919 return -EINVAL;
3920
3921 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3922 if (!range)
3923 return -ENOMEM;
3924
3925 range->fwnode = fwnode;
3926 range->size = size;
3927 range->hw_start = addr;
3928 range->flags = LOGIC_PIO_CPU_MMIO;
3929
3930 ret = logic_pio_register_range(range);
3931 if (ret)
3932 kfree(range);
3933 #endif
3934
3935 return ret;
3936 }
3937
3938 phys_addr_t pci_pio_to_address(unsigned long pio)
3939 {
3940 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3941
3942 #ifdef PCI_IOBASE
3943 if (pio >= MMIO_UPPER_LIMIT)
3944 return address;
3945
3946 address = logic_pio_to_hwaddr(pio);
3947 #endif
3948
3949 return address;
3950 }
3951
3952 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3953 {
3954 #ifdef PCI_IOBASE
3955 return logic_pio_trans_cpuaddr(address);
3956 #else
3957 if (address > IO_SPACE_LIMIT)
3958 return (unsigned long)-1;
3959
3960 return (unsigned long) address;
3961 #endif
3962 }
3963
3964 /**
3965 * pci_remap_iospace - Remap the memory mapped I/O space
3966 * @res: Resource describing the I/O space
3967 * @phys_addr: physical address of range to be mapped
3968 *
3969 * Remap the memory mapped I/O space described by the @res and the CPU
3970 * physical address @phys_addr into virtual address space. Only
3971 * architectures that have memory mapped IO functions defined (and the
3972 * PCI_IOBASE value defined) should call this function.
3973 */
3974 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3975 {
3976 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3977 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3978
3979 if (!(res->flags & IORESOURCE_IO))
3980 return -EINVAL;
3981
3982 if (res->end > IO_SPACE_LIMIT)
3983 return -EINVAL;
3984
3985 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3986 pgprot_device(PAGE_KERNEL));
3987 #else
3988 /*
3989 * This architecture does not have memory mapped I/O space,
3990 * so this function should never be called
3991 */
3992 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3993 return -ENODEV;
3994 #endif
3995 }
3996 EXPORT_SYMBOL(pci_remap_iospace);
3997
3998 /**
3999 * pci_unmap_iospace - Unmap the memory mapped I/O space
4000 * @res: resource to be unmapped
4001 *
4002 * Unmap the CPU virtual address @res from virtual address space. Only
4003 * architectures that have memory mapped IO functions defined (and the
4004 * PCI_IOBASE value defined) should call this function.
4005 */
4006 void pci_unmap_iospace(struct resource *res)
4007 {
4008 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4009 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4010
4011 unmap_kernel_range(vaddr, resource_size(res));
4012 #endif
4013 }
4014 EXPORT_SYMBOL(pci_unmap_iospace);
4015
4016 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4017 {
4018 struct resource **res = ptr;
4019
4020 pci_unmap_iospace(*res);
4021 }
4022
4023 /**
4024 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4025 * @dev: Generic device to remap IO address for
4026 * @res: Resource describing the I/O space
4027 * @phys_addr: physical address of range to be mapped
4028 *
4029 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4030 * detach.
4031 */
4032 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4033 phys_addr_t phys_addr)
4034 {
4035 const struct resource **ptr;
4036 int error;
4037
4038 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4039 if (!ptr)
4040 return -ENOMEM;
4041
4042 error = pci_remap_iospace(res, phys_addr);
4043 if (error) {
4044 devres_free(ptr);
4045 } else {
4046 *ptr = res;
4047 devres_add(dev, ptr);
4048 }
4049
4050 return error;
4051 }
4052 EXPORT_SYMBOL(devm_pci_remap_iospace);
4053
4054 /**
4055 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4056 * @dev: Generic device to remap IO address for
4057 * @offset: Resource address to map
4058 * @size: Size of map
4059 *
4060 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4061 * detach.
4062 */
4063 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4064 resource_size_t offset,
4065 resource_size_t size)
4066 {
4067 void __iomem **ptr, *addr;
4068
4069 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4070 if (!ptr)
4071 return NULL;
4072
4073 addr = pci_remap_cfgspace(offset, size);
4074 if (addr) {
4075 *ptr = addr;
4076 devres_add(dev, ptr);
4077 } else
4078 devres_free(ptr);
4079
4080 return addr;
4081 }
4082 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4083
4084 /**
4085 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4086 * @dev: generic device to handle the resource for
4087 * @res: configuration space resource to be handled
4088 *
4089 * Checks that a resource is a valid memory region, requests the memory
4090 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4091 * proper PCI configuration space memory attributes are guaranteed.
4092 *
4093 * All operations are managed and will be undone on driver detach.
4094 *
4095 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4096 * on failure. Usage example::
4097 *
4098 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4099 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4100 * if (IS_ERR(base))
4101 * return PTR_ERR(base);
4102 */
4103 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4104 struct resource *res)
4105 {
4106 resource_size_t size;
4107 const char *name;
4108 void __iomem *dest_ptr;
4109
4110 BUG_ON(!dev);
4111
4112 if (!res || resource_type(res) != IORESOURCE_MEM) {
4113 dev_err(dev, "invalid resource\n");
4114 return IOMEM_ERR_PTR(-EINVAL);
4115 }
4116
4117 size = resource_size(res);
4118 name = res->name ?: dev_name(dev);
4119
4120 if (!devm_request_mem_region(dev, res->start, size, name)) {
4121 dev_err(dev, "can't request region for resource %pR\n", res);
4122 return IOMEM_ERR_PTR(-EBUSY);
4123 }
4124
4125 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4126 if (!dest_ptr) {
4127 dev_err(dev, "ioremap failed for resource %pR\n", res);
4128 devm_release_mem_region(dev, res->start, size);
4129 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4130 }
4131
4132 return dest_ptr;
4133 }
4134 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4135
4136 static void __pci_set_master(struct pci_dev *dev, bool enable)
4137 {
4138 u16 old_cmd, cmd;
4139
4140 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4141 if (enable)
4142 cmd = old_cmd | PCI_COMMAND_MASTER;
4143 else
4144 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4145 if (cmd != old_cmd) {
4146 pci_dbg(dev, "%s bus mastering\n",
4147 enable ? "enabling" : "disabling");
4148 pci_write_config_word(dev, PCI_COMMAND, cmd);
4149 }
4150 dev->is_busmaster = enable;
4151 }
4152
4153 /**
4154 * pcibios_setup - process "pci=" kernel boot arguments
4155 * @str: string used to pass in "pci=" kernel boot arguments
4156 *
4157 * Process kernel boot arguments. This is the default implementation.
4158 * Architecture specific implementations can override this as necessary.
4159 */
4160 char * __weak __init pcibios_setup(char *str)
4161 {
4162 return str;
4163 }
4164
4165 /**
4166 * pcibios_set_master - enable PCI bus-mastering for device dev
4167 * @dev: the PCI device to enable
4168 *
4169 * Enables PCI bus-mastering for the device. This is the default
4170 * implementation. Architecture specific implementations can override
4171 * this if necessary.
4172 */
4173 void __weak pcibios_set_master(struct pci_dev *dev)
4174 {
4175 u8 lat;
4176
4177 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4178 if (pci_is_pcie(dev))
4179 return;
4180
4181 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4182 if (lat < 16)
4183 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4184 else if (lat > pcibios_max_latency)
4185 lat = pcibios_max_latency;
4186 else
4187 return;
4188
4189 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4190 }
4191
4192 /**
4193 * pci_set_master - enables bus-mastering for device dev
4194 * @dev: the PCI device to enable
4195 *
4196 * Enables bus-mastering on the device and calls pcibios_set_master()
4197 * to do the needed arch specific settings.
4198 */
4199 void pci_set_master(struct pci_dev *dev)
4200 {
4201 __pci_set_master(dev, true);
4202 pcibios_set_master(dev);
4203 }
4204 EXPORT_SYMBOL(pci_set_master);
4205
4206 /**
4207 * pci_clear_master - disables bus-mastering for device dev
4208 * @dev: the PCI device to disable
4209 */
4210 void pci_clear_master(struct pci_dev *dev)
4211 {
4212 __pci_set_master(dev, false);
4213 }
4214 EXPORT_SYMBOL(pci_clear_master);
4215
4216 /**
4217 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4218 * @dev: the PCI device for which MWI is to be enabled
4219 *
4220 * Helper function for pci_set_mwi.
4221 * Originally copied from drivers/net/acenic.c.
4222 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4223 *
4224 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4225 */
4226 int pci_set_cacheline_size(struct pci_dev *dev)
4227 {
4228 u8 cacheline_size;
4229
4230 if (!pci_cache_line_size)
4231 return -EINVAL;
4232
4233 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4234 equal to or multiple of the right value. */
4235 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4236 if (cacheline_size >= pci_cache_line_size &&
4237 (cacheline_size % pci_cache_line_size) == 0)
4238 return 0;
4239
4240 /* Write the correct value. */
4241 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4242 /* Read it back. */
4243 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4244 if (cacheline_size == pci_cache_line_size)
4245 return 0;
4246
4247 pci_info(dev, "cache line size of %d is not supported\n",
4248 pci_cache_line_size << 2);
4249
4250 return -EINVAL;
4251 }
4252 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4253
4254 /**
4255 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4256 * @dev: the PCI device for which MWI is enabled
4257 *
4258 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4259 *
4260 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4261 */
4262 int pci_set_mwi(struct pci_dev *dev)
4263 {
4264 #ifdef PCI_DISABLE_MWI
4265 return 0;
4266 #else
4267 int rc;
4268 u16 cmd;
4269
4270 rc = pci_set_cacheline_size(dev);
4271 if (rc)
4272 return rc;
4273
4274 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4275 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4276 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4277 cmd |= PCI_COMMAND_INVALIDATE;
4278 pci_write_config_word(dev, PCI_COMMAND, cmd);
4279 }
4280 return 0;
4281 #endif
4282 }
4283 EXPORT_SYMBOL(pci_set_mwi);
4284
4285 /**
4286 * pcim_set_mwi - a device-managed pci_set_mwi()
4287 * @dev: the PCI device for which MWI is enabled
4288 *
4289 * Managed pci_set_mwi().
4290 *
4291 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4292 */
4293 int pcim_set_mwi(struct pci_dev *dev)
4294 {
4295 struct pci_devres *dr;
4296
4297 dr = find_pci_dr(dev);
4298 if (!dr)
4299 return -ENOMEM;
4300
4301 dr->mwi = 1;
4302 return pci_set_mwi(dev);
4303 }
4304 EXPORT_SYMBOL(pcim_set_mwi);
4305
4306 /**
4307 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4308 * @dev: the PCI device for which MWI is enabled
4309 *
4310 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4311 * Callers are not required to check the return value.
4312 *
4313 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4314 */
4315 int pci_try_set_mwi(struct pci_dev *dev)
4316 {
4317 #ifdef PCI_DISABLE_MWI
4318 return 0;
4319 #else
4320 return pci_set_mwi(dev);
4321 #endif
4322 }
4323 EXPORT_SYMBOL(pci_try_set_mwi);
4324
4325 /**
4326 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4327 * @dev: the PCI device to disable
4328 *
4329 * Disables PCI Memory-Write-Invalidate transaction on the device
4330 */
4331 void pci_clear_mwi(struct pci_dev *dev)
4332 {
4333 #ifndef PCI_DISABLE_MWI
4334 u16 cmd;
4335
4336 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4337 if (cmd & PCI_COMMAND_INVALIDATE) {
4338 cmd &= ~PCI_COMMAND_INVALIDATE;
4339 pci_write_config_word(dev, PCI_COMMAND, cmd);
4340 }
4341 #endif
4342 }
4343 EXPORT_SYMBOL(pci_clear_mwi);
4344
4345 /**
4346 * pci_intx - enables/disables PCI INTx for device dev
4347 * @pdev: the PCI device to operate on
4348 * @enable: boolean: whether to enable or disable PCI INTx
4349 *
4350 * Enables/disables PCI INTx for device @pdev
4351 */
4352 void pci_intx(struct pci_dev *pdev, int enable)
4353 {
4354 u16 pci_command, new;
4355
4356 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4357
4358 if (enable)
4359 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4360 else
4361 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4362
4363 if (new != pci_command) {
4364 struct pci_devres *dr;
4365
4366 pci_write_config_word(pdev, PCI_COMMAND, new);
4367
4368 dr = find_pci_dr(pdev);
4369 if (dr && !dr->restore_intx) {
4370 dr->restore_intx = 1;
4371 dr->orig_intx = !enable;
4372 }
4373 }
4374 }
4375 EXPORT_SYMBOL_GPL(pci_intx);
4376
4377 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4378 {
4379 struct pci_bus *bus = dev->bus;
4380 bool mask_updated = true;
4381 u32 cmd_status_dword;
4382 u16 origcmd, newcmd;
4383 unsigned long flags;
4384 bool irq_pending;
4385
4386 /*
4387 * We do a single dword read to retrieve both command and status.
4388 * Document assumptions that make this possible.
4389 */
4390 BUILD_BUG_ON(PCI_COMMAND % 4);
4391 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4392
4393 raw_spin_lock_irqsave(&pci_lock, flags);
4394
4395 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4396
4397 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4398
4399 /*
4400 * Check interrupt status register to see whether our device
4401 * triggered the interrupt (when masking) or the next IRQ is
4402 * already pending (when unmasking).
4403 */
4404 if (mask != irq_pending) {
4405 mask_updated = false;
4406 goto done;
4407 }
4408
4409 origcmd = cmd_status_dword;
4410 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4411 if (mask)
4412 newcmd |= PCI_COMMAND_INTX_DISABLE;
4413 if (newcmd != origcmd)
4414 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4415
4416 done:
4417 raw_spin_unlock_irqrestore(&pci_lock, flags);
4418
4419 return mask_updated;
4420 }
4421
4422 /**
4423 * pci_check_and_mask_intx - mask INTx on pending interrupt
4424 * @dev: the PCI device to operate on
4425 *
4426 * Check if the device dev has its INTx line asserted, mask it and return
4427 * true in that case. False is returned if no interrupt was pending.
4428 */
4429 bool pci_check_and_mask_intx(struct pci_dev *dev)
4430 {
4431 return pci_check_and_set_intx_mask(dev, true);
4432 }
4433 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4434
4435 /**
4436 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4437 * @dev: the PCI device to operate on
4438 *
4439 * Check if the device dev has its INTx line asserted, unmask it if not and
4440 * return true. False is returned and the mask remains active if there was
4441 * still an interrupt pending.
4442 */
4443 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4444 {
4445 return pci_check_and_set_intx_mask(dev, false);
4446 }
4447 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4448
4449 /**
4450 * pci_wait_for_pending_transaction - wait for pending transaction
4451 * @dev: the PCI device to operate on
4452 *
4453 * Return 0 if transaction is pending 1 otherwise.
4454 */
4455 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4456 {
4457 if (!pci_is_pcie(dev))
4458 return 1;
4459
4460 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4461 PCI_EXP_DEVSTA_TRPND);
4462 }
4463 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4464
4465 /**
4466 * pcie_has_flr - check if a device supports function level resets
4467 * @dev: device to check
4468 *
4469 * Returns true if the device advertises support for PCIe function level
4470 * resets.
4471 */
4472 bool pcie_has_flr(struct pci_dev *dev)
4473 {
4474 u32 cap;
4475
4476 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4477 return false;
4478
4479 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4480 return cap & PCI_EXP_DEVCAP_FLR;
4481 }
4482 EXPORT_SYMBOL_GPL(pcie_has_flr);
4483
4484 /**
4485 * pcie_flr - initiate a PCIe function level reset
4486 * @dev: device to reset
4487 *
4488 * Initiate a function level reset on @dev. The caller should ensure the
4489 * device supports FLR before calling this function, e.g. by using the
4490 * pcie_has_flr() helper.
4491 */
4492 int pcie_flr(struct pci_dev *dev)
4493 {
4494 if (!pci_wait_for_pending_transaction(dev))
4495 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4496
4497 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4498
4499 if (dev->imm_ready)
4500 return 0;
4501
4502 /*
4503 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4504 * 100ms, but may silently discard requests while the FLR is in
4505 * progress. Wait 100ms before trying to access the device.
4506 */
4507 msleep(100);
4508
4509 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4510 }
4511 EXPORT_SYMBOL_GPL(pcie_flr);
4512
4513 static int pci_af_flr(struct pci_dev *dev, int probe)
4514 {
4515 int pos;
4516 u8 cap;
4517
4518 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4519 if (!pos)
4520 return -ENOTTY;
4521
4522 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4523 return -ENOTTY;
4524
4525 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4526 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4527 return -ENOTTY;
4528
4529 if (probe)
4530 return 0;
4531
4532 /*
4533 * Wait for Transaction Pending bit to clear. A word-aligned test
4534 * is used, so we use the control offset rather than status and shift
4535 * the test bit to match.
4536 */
4537 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4538 PCI_AF_STATUS_TP << 8))
4539 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4540
4541 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4542
4543 if (dev->imm_ready)
4544 return 0;
4545
4546 /*
4547 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4548 * updated 27 July 2006; a device must complete an FLR within
4549 * 100ms, but may silently discard requests while the FLR is in
4550 * progress. Wait 100ms before trying to access the device.
4551 */
4552 msleep(100);
4553
4554 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4555 }
4556
4557 /**
4558 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4559 * @dev: Device to reset.
4560 * @probe: If set, only check if the device can be reset this way.
4561 *
4562 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4563 * unset, it will be reinitialized internally when going from PCI_D3hot to
4564 * PCI_D0. If that's the case and the device is not in a low-power state
4565 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4566 *
4567 * NOTE: This causes the caller to sleep for twice the device power transition
4568 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4569 * by default (i.e. unless the @dev's d3_delay field has a different value).
4570 * Moreover, only devices in D0 can be reset by this function.
4571 */
4572 static int pci_pm_reset(struct pci_dev *dev, int probe)
4573 {
4574 u16 csr;
4575
4576 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4577 return -ENOTTY;
4578
4579 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4580 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4581 return -ENOTTY;
4582
4583 if (probe)
4584 return 0;
4585
4586 if (dev->current_state != PCI_D0)
4587 return -EINVAL;
4588
4589 csr &= ~PCI_PM_CTRL_STATE_MASK;
4590 csr |= PCI_D3hot;
4591 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4592 pci_dev_d3_sleep(dev);
4593
4594 csr &= ~PCI_PM_CTRL_STATE_MASK;
4595 csr |= PCI_D0;
4596 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4597 pci_dev_d3_sleep(dev);
4598
4599 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4600 }
4601
4602 /**
4603 * pcie_wait_for_link_delay - Wait until link is active or inactive
4604 * @pdev: Bridge device
4605 * @active: waiting for active or inactive?
4606 * @delay: Delay to wait after link has become active (in ms)
4607 *
4608 * Use this to wait till link becomes active or inactive.
4609 */
4610 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4611 int delay)
4612 {
4613 int timeout = 1000;
4614 bool ret;
4615 u16 lnk_status;
4616
4617 /*
4618 * Some controllers might not implement link active reporting. In this
4619 * case, we wait for 1000 + 100 ms.
4620 */
4621 if (!pdev->link_active_reporting) {
4622 msleep(1100);
4623 return true;
4624 }
4625
4626 /*
4627 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4628 * after which we should expect an link active if the reset was
4629 * successful. If so, software must wait a minimum 100ms before sending
4630 * configuration requests to devices downstream this port.
4631 *
4632 * If the link fails to activate, either the device was physically
4633 * removed or the link is permanently failed.
4634 */
4635 if (active)
4636 msleep(20);
4637 for (;;) {
4638 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4639 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4640 if (ret == active)
4641 break;
4642 if (timeout <= 0)
4643 break;
4644 msleep(10);
4645 timeout -= 10;
4646 }
4647 if (active && ret)
4648 msleep(delay);
4649 else if (ret != active)
4650 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4651 active ? "set" : "cleared");
4652 return ret == active;
4653 }
4654
4655 /**
4656 * pcie_wait_for_link - Wait until link is active or inactive
4657 * @pdev: Bridge device
4658 * @active: waiting for active or inactive?
4659 *
4660 * Use this to wait till link becomes active or inactive.
4661 */
4662 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4663 {
4664 return pcie_wait_for_link_delay(pdev, active, 100);
4665 }
4666
4667 /*
4668 * Find maximum D3cold delay required by all the devices on the bus. The
4669 * spec says 100 ms, but firmware can lower it and we allow drivers to
4670 * increase it as well.
4671 *
4672 * Called with @pci_bus_sem locked for reading.
4673 */
4674 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4675 {
4676 const struct pci_dev *pdev;
4677 int min_delay = 100;
4678 int max_delay = 0;
4679
4680 list_for_each_entry(pdev, &bus->devices, bus_list) {
4681 if (pdev->d3cold_delay < min_delay)
4682 min_delay = pdev->d3cold_delay;
4683 if (pdev->d3cold_delay > max_delay)
4684 max_delay = pdev->d3cold_delay;
4685 }
4686
4687 return max(min_delay, max_delay);
4688 }
4689
4690 /**
4691 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4692 * @dev: PCI bridge
4693 *
4694 * Handle necessary delays before access to the devices on the secondary
4695 * side of the bridge are permitted after D3cold to D0 transition.
4696 *
4697 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4698 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4699 * 4.3.2.
4700 */
4701 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4702 {
4703 struct pci_dev *child;
4704 int delay;
4705
4706 if (pci_dev_is_disconnected(dev))
4707 return;
4708
4709 if (!pci_is_bridge(dev) || !dev->bridge_d3)
4710 return;
4711
4712 down_read(&pci_bus_sem);
4713
4714 /*
4715 * We only deal with devices that are present currently on the bus.
4716 * For any hot-added devices the access delay is handled in pciehp
4717 * board_added(). In case of ACPI hotplug the firmware is expected
4718 * to configure the devices before OS is notified.
4719 */
4720 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4721 up_read(&pci_bus_sem);
4722 return;
4723 }
4724
4725 /* Take d3cold_delay requirements into account */
4726 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4727 if (!delay) {
4728 up_read(&pci_bus_sem);
4729 return;
4730 }
4731
4732 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4733 bus_list);
4734 up_read(&pci_bus_sem);
4735
4736 /*
4737 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4738 * accessing the device after reset (that is 1000 ms + 100 ms). In
4739 * practice this should not be needed because we don't do power
4740 * management for them (see pci_bridge_d3_possible()).
4741 */
4742 if (!pci_is_pcie(dev)) {
4743 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4744 msleep(1000 + delay);
4745 return;
4746 }
4747
4748 /*
4749 * For PCIe downstream and root ports that do not support speeds
4750 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4751 * speeds (gen3) we need to wait first for the data link layer to
4752 * become active.
4753 *
4754 * However, 100 ms is the minimum and the PCIe spec says the
4755 * software must allow at least 1s before it can determine that the
4756 * device that did not respond is a broken device. There is
4757 * evidence that 100 ms is not always enough, for example certain
4758 * Titan Ridge xHCI controller does not always respond to
4759 * configuration requests if we only wait for 100 ms (see
4760 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4761 *
4762 * Therefore we wait for 100 ms and check for the device presence.
4763 * If it is still not present give it an additional 100 ms.
4764 */
4765 if (!pcie_downstream_port(dev))
4766 return;
4767
4768 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4769 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4770 msleep(delay);
4771 } else {
4772 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4773 delay);
4774 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4775 /* Did not train, no need to wait any further */
4776 return;
4777 }
4778 }
4779
4780 if (!pci_device_is_present(child)) {
4781 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4782 msleep(delay);
4783 }
4784 }
4785
4786 void pci_reset_secondary_bus(struct pci_dev *dev)
4787 {
4788 u16 ctrl;
4789
4790 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4791 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4792 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4793
4794 /*
4795 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4796 * this to 2ms to ensure that we meet the minimum requirement.
4797 */
4798 msleep(2);
4799
4800 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4801 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4802
4803 /*
4804 * Trhfa for conventional PCI is 2^25 clock cycles.
4805 * Assuming a minimum 33MHz clock this results in a 1s
4806 * delay before we can consider subordinate devices to
4807 * be re-initialized. PCIe has some ways to shorten this,
4808 * but we don't make use of them yet.
4809 */
4810 ssleep(1);
4811 }
4812
4813 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4814 {
4815 pci_reset_secondary_bus(dev);
4816 }
4817
4818 /**
4819 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4820 * @dev: Bridge device
4821 *
4822 * Use the bridge control register to assert reset on the secondary bus.
4823 * Devices on the secondary bus are left in power-on state.
4824 */
4825 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4826 {
4827 pcibios_reset_secondary_bus(dev);
4828
4829 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4830 }
4831 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4832
4833 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4834 {
4835 struct pci_dev *pdev;
4836
4837 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4838 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4839 return -ENOTTY;
4840
4841 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4842 if (pdev != dev)
4843 return -ENOTTY;
4844
4845 if (probe)
4846 return 0;
4847
4848 return pci_bridge_secondary_bus_reset(dev->bus->self);
4849 }
4850
4851 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4852 {
4853 int rc = -ENOTTY;
4854
4855 if (!hotplug || !try_module_get(hotplug->owner))
4856 return rc;
4857
4858 if (hotplug->ops->reset_slot)
4859 rc = hotplug->ops->reset_slot(hotplug, probe);
4860
4861 module_put(hotplug->owner);
4862
4863 return rc;
4864 }
4865
4866 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4867 {
4868 struct pci_dev *pdev;
4869
4870 if (dev->subordinate || !dev->slot ||
4871 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4872 return -ENOTTY;
4873
4874 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4875 if (pdev != dev && pdev->slot == dev->slot)
4876 return -ENOTTY;
4877
4878 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4879 }
4880
4881 static void pci_dev_lock(struct pci_dev *dev)
4882 {
4883 pci_cfg_access_lock(dev);
4884 /* block PM suspend, driver probe, etc. */
4885 device_lock(&dev->dev);
4886 }
4887
4888 /* Return 1 on successful lock, 0 on contention */
4889 static int pci_dev_trylock(struct pci_dev *dev)
4890 {
4891 if (pci_cfg_access_trylock(dev)) {
4892 if (device_trylock(&dev->dev))
4893 return 1;
4894 pci_cfg_access_unlock(dev);
4895 }
4896
4897 return 0;
4898 }
4899
4900 static void pci_dev_unlock(struct pci_dev *dev)
4901 {
4902 device_unlock(&dev->dev);
4903 pci_cfg_access_unlock(dev);
4904 }
4905
4906 static void pci_dev_save_and_disable(struct pci_dev *dev)
4907 {
4908 const struct pci_error_handlers *err_handler =
4909 dev->driver ? dev->driver->err_handler : NULL;
4910
4911 /*
4912 * dev->driver->err_handler->reset_prepare() is protected against
4913 * races with ->remove() by the device lock, which must be held by
4914 * the caller.
4915 */
4916 if (err_handler && err_handler->reset_prepare)
4917 err_handler->reset_prepare(dev);
4918
4919 /*
4920 * Wake-up device prior to save. PM registers default to D0 after
4921 * reset and a simple register restore doesn't reliably return
4922 * to a non-D0 state anyway.
4923 */
4924 pci_set_power_state(dev, PCI_D0);
4925
4926 pci_save_state(dev);
4927 /*
4928 * Disable the device by clearing the Command register, except for
4929 * INTx-disable which is set. This not only disables MMIO and I/O port
4930 * BARs, but also prevents the device from being Bus Master, preventing
4931 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4932 * compliant devices, INTx-disable prevents legacy interrupts.
4933 */
4934 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4935 }
4936
4937 static void pci_dev_restore(struct pci_dev *dev)
4938 {
4939 const struct pci_error_handlers *err_handler =
4940 dev->driver ? dev->driver->err_handler : NULL;
4941
4942 pci_restore_state(dev);
4943
4944 /*
4945 * dev->driver->err_handler->reset_done() is protected against
4946 * races with ->remove() by the device lock, which must be held by
4947 * the caller.
4948 */
4949 if (err_handler && err_handler->reset_done)
4950 err_handler->reset_done(dev);
4951 }
4952
4953 /**
4954 * __pci_reset_function_locked - reset a PCI device function while holding
4955 * the @dev mutex lock.
4956 * @dev: PCI device to reset
4957 *
4958 * Some devices allow an individual function to be reset without affecting
4959 * other functions in the same device. The PCI device must be responsive
4960 * to PCI config space in order to use this function.
4961 *
4962 * The device function is presumed to be unused and the caller is holding
4963 * the device mutex lock when this function is called.
4964 *
4965 * Resetting the device will make the contents of PCI configuration space
4966 * random, so any caller of this must be prepared to reinitialise the
4967 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4968 * etc.
4969 *
4970 * Returns 0 if the device function was successfully reset or negative if the
4971 * device doesn't support resetting a single function.
4972 */
4973 int __pci_reset_function_locked(struct pci_dev *dev)
4974 {
4975 int rc;
4976
4977 might_sleep();
4978
4979 /*
4980 * A reset method returns -ENOTTY if it doesn't support this device
4981 * and we should try the next method.
4982 *
4983 * If it returns 0 (success), we're finished. If it returns any
4984 * other error, we're also finished: this indicates that further
4985 * reset mechanisms might be broken on the device.
4986 */
4987 rc = pci_dev_specific_reset(dev, 0);
4988 if (rc != -ENOTTY)
4989 return rc;
4990 if (pcie_has_flr(dev)) {
4991 rc = pcie_flr(dev);
4992 if (rc != -ENOTTY)
4993 return rc;
4994 }
4995 rc = pci_af_flr(dev, 0);
4996 if (rc != -ENOTTY)
4997 return rc;
4998 rc = pci_pm_reset(dev, 0);
4999 if (rc != -ENOTTY)
5000 return rc;
5001 rc = pci_dev_reset_slot_function(dev, 0);
5002 if (rc != -ENOTTY)
5003 return rc;
5004 return pci_parent_bus_reset(dev, 0);
5005 }
5006 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5007
5008 /**
5009 * pci_probe_reset_function - check whether the device can be safely reset
5010 * @dev: PCI device to reset
5011 *
5012 * Some devices allow an individual function to be reset without affecting
5013 * other functions in the same device. The PCI device must be responsive
5014 * to PCI config space in order to use this function.
5015 *
5016 * Returns 0 if the device function can be reset or negative if the
5017 * device doesn't support resetting a single function.
5018 */
5019 int pci_probe_reset_function(struct pci_dev *dev)
5020 {
5021 int rc;
5022
5023 might_sleep();
5024
5025 rc = pci_dev_specific_reset(dev, 1);
5026 if (rc != -ENOTTY)
5027 return rc;
5028 if (pcie_has_flr(dev))
5029 return 0;
5030 rc = pci_af_flr(dev, 1);
5031 if (rc != -ENOTTY)
5032 return rc;
5033 rc = pci_pm_reset(dev, 1);
5034 if (rc != -ENOTTY)
5035 return rc;
5036 rc = pci_dev_reset_slot_function(dev, 1);
5037 if (rc != -ENOTTY)
5038 return rc;
5039
5040 return pci_parent_bus_reset(dev, 1);
5041 }
5042
5043 /**
5044 * pci_reset_function - quiesce and reset a PCI device function
5045 * @dev: PCI device to reset
5046 *
5047 * Some devices allow an individual function to be reset without affecting
5048 * other functions in the same device. The PCI device must be responsive
5049 * to PCI config space in order to use this function.
5050 *
5051 * This function does not just reset the PCI portion of a device, but
5052 * clears all the state associated with the device. This function differs
5053 * from __pci_reset_function_locked() in that it saves and restores device state
5054 * over the reset and takes the PCI device lock.
5055 *
5056 * Returns 0 if the device function was successfully reset or negative if the
5057 * device doesn't support resetting a single function.
5058 */
5059 int pci_reset_function(struct pci_dev *dev)
5060 {
5061 int rc;
5062
5063 if (!dev->reset_fn)
5064 return -ENOTTY;
5065
5066 pci_dev_lock(dev);
5067 pci_dev_save_and_disable(dev);
5068
5069 rc = __pci_reset_function_locked(dev);
5070
5071 pci_dev_restore(dev);
5072 pci_dev_unlock(dev);
5073
5074 return rc;
5075 }
5076 EXPORT_SYMBOL_GPL(pci_reset_function);
5077
5078 /**
5079 * pci_reset_function_locked - quiesce and reset a PCI device function
5080 * @dev: PCI device to reset
5081 *
5082 * Some devices allow an individual function to be reset without affecting
5083 * other functions in the same device. The PCI device must be responsive
5084 * to PCI config space in order to use this function.
5085 *
5086 * This function does not just reset the PCI portion of a device, but
5087 * clears all the state associated with the device. This function differs
5088 * from __pci_reset_function_locked() in that it saves and restores device state
5089 * over the reset. It also differs from pci_reset_function() in that it
5090 * requires the PCI device lock to be held.
5091 *
5092 * Returns 0 if the device function was successfully reset or negative if the
5093 * device doesn't support resetting a single function.
5094 */
5095 int pci_reset_function_locked(struct pci_dev *dev)
5096 {
5097 int rc;
5098
5099 if (!dev->reset_fn)
5100 return -ENOTTY;
5101
5102 pci_dev_save_and_disable(dev);
5103
5104 rc = __pci_reset_function_locked(dev);
5105
5106 pci_dev_restore(dev);
5107
5108 return rc;
5109 }
5110 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5111
5112 /**
5113 * pci_try_reset_function - quiesce and reset a PCI device function
5114 * @dev: PCI device to reset
5115 *
5116 * Same as above, except return -EAGAIN if unable to lock device.
5117 */
5118 int pci_try_reset_function(struct pci_dev *dev)
5119 {
5120 int rc;
5121
5122 if (!dev->reset_fn)
5123 return -ENOTTY;
5124
5125 if (!pci_dev_trylock(dev))
5126 return -EAGAIN;
5127
5128 pci_dev_save_and_disable(dev);
5129 rc = __pci_reset_function_locked(dev);
5130 pci_dev_restore(dev);
5131 pci_dev_unlock(dev);
5132
5133 return rc;
5134 }
5135 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5136
5137 /* Do any devices on or below this bus prevent a bus reset? */
5138 static bool pci_bus_resetable(struct pci_bus *bus)
5139 {
5140 struct pci_dev *dev;
5141
5142
5143 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5144 return false;
5145
5146 list_for_each_entry(dev, &bus->devices, bus_list) {
5147 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5148 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5149 return false;
5150 }
5151
5152 return true;
5153 }
5154
5155 /* Lock devices from the top of the tree down */
5156 static void pci_bus_lock(struct pci_bus *bus)
5157 {
5158 struct pci_dev *dev;
5159
5160 list_for_each_entry(dev, &bus->devices, bus_list) {
5161 pci_dev_lock(dev);
5162 if (dev->subordinate)
5163 pci_bus_lock(dev->subordinate);
5164 }
5165 }
5166
5167 /* Unlock devices from the bottom of the tree up */
5168 static void pci_bus_unlock(struct pci_bus *bus)
5169 {
5170 struct pci_dev *dev;
5171
5172 list_for_each_entry(dev, &bus->devices, bus_list) {
5173 if (dev->subordinate)
5174 pci_bus_unlock(dev->subordinate);
5175 pci_dev_unlock(dev);
5176 }
5177 }
5178
5179 /* Return 1 on successful lock, 0 on contention */
5180 static int pci_bus_trylock(struct pci_bus *bus)
5181 {
5182 struct pci_dev *dev;
5183
5184 list_for_each_entry(dev, &bus->devices, bus_list) {
5185 if (!pci_dev_trylock(dev))
5186 goto unlock;
5187 if (dev->subordinate) {
5188 if (!pci_bus_trylock(dev->subordinate)) {
5189 pci_dev_unlock(dev);
5190 goto unlock;
5191 }
5192 }
5193 }
5194 return 1;
5195
5196 unlock:
5197 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5198 if (dev->subordinate)
5199 pci_bus_unlock(dev->subordinate);
5200 pci_dev_unlock(dev);
5201 }
5202 return 0;
5203 }
5204
5205 /* Do any devices on or below this slot prevent a bus reset? */
5206 static bool pci_slot_resetable(struct pci_slot *slot)
5207 {
5208 struct pci_dev *dev;
5209
5210 if (slot->bus->self &&
5211 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5212 return false;
5213
5214 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5215 if (!dev->slot || dev->slot != slot)
5216 continue;
5217 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5218 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5219 return false;
5220 }
5221
5222 return true;
5223 }
5224
5225 /* Lock devices from the top of the tree down */
5226 static void pci_slot_lock(struct pci_slot *slot)
5227 {
5228 struct pci_dev *dev;
5229
5230 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5231 if (!dev->slot || dev->slot != slot)
5232 continue;
5233 pci_dev_lock(dev);
5234 if (dev->subordinate)
5235 pci_bus_lock(dev->subordinate);
5236 }
5237 }
5238
5239 /* Unlock devices from the bottom of the tree up */
5240 static void pci_slot_unlock(struct pci_slot *slot)
5241 {
5242 struct pci_dev *dev;
5243
5244 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5245 if (!dev->slot || dev->slot != slot)
5246 continue;
5247 if (dev->subordinate)
5248 pci_bus_unlock(dev->subordinate);
5249 pci_dev_unlock(dev);
5250 }
5251 }
5252
5253 /* Return 1 on successful lock, 0 on contention */
5254 static int pci_slot_trylock(struct pci_slot *slot)
5255 {
5256 struct pci_dev *dev;
5257
5258 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5259 if (!dev->slot || dev->slot != slot)
5260 continue;
5261 if (!pci_dev_trylock(dev))
5262 goto unlock;
5263 if (dev->subordinate) {
5264 if (!pci_bus_trylock(dev->subordinate)) {
5265 pci_dev_unlock(dev);
5266 goto unlock;
5267 }
5268 }
5269 }
5270 return 1;
5271
5272 unlock:
5273 list_for_each_entry_continue_reverse(dev,
5274 &slot->bus->devices, bus_list) {
5275 if (!dev->slot || dev->slot != slot)
5276 continue;
5277 if (dev->subordinate)
5278 pci_bus_unlock(dev->subordinate);
5279 pci_dev_unlock(dev);
5280 }
5281 return 0;
5282 }
5283
5284 /*
5285 * Save and disable devices from the top of the tree down while holding
5286 * the @dev mutex lock for the entire tree.
5287 */
5288 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5289 {
5290 struct pci_dev *dev;
5291
5292 list_for_each_entry(dev, &bus->devices, bus_list) {
5293 pci_dev_save_and_disable(dev);
5294 if (dev->subordinate)
5295 pci_bus_save_and_disable_locked(dev->subordinate);
5296 }
5297 }
5298
5299 /*
5300 * Restore devices from top of the tree down while holding @dev mutex lock
5301 * for the entire tree. Parent bridges need to be restored before we can
5302 * get to subordinate devices.
5303 */
5304 static void pci_bus_restore_locked(struct pci_bus *bus)
5305 {
5306 struct pci_dev *dev;
5307
5308 list_for_each_entry(dev, &bus->devices, bus_list) {
5309 pci_dev_restore(dev);
5310 if (dev->subordinate)
5311 pci_bus_restore_locked(dev->subordinate);
5312 }
5313 }
5314
5315 /*
5316 * Save and disable devices from the top of the tree down while holding
5317 * the @dev mutex lock for the entire tree.
5318 */
5319 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5320 {
5321 struct pci_dev *dev;
5322
5323 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5324 if (!dev->slot || dev->slot != slot)
5325 continue;
5326 pci_dev_save_and_disable(dev);
5327 if (dev->subordinate)
5328 pci_bus_save_and_disable_locked(dev->subordinate);
5329 }
5330 }
5331
5332 /*
5333 * Restore devices from top of the tree down while holding @dev mutex lock
5334 * for the entire tree. Parent bridges need to be restored before we can
5335 * get to subordinate devices.
5336 */
5337 static void pci_slot_restore_locked(struct pci_slot *slot)
5338 {
5339 struct pci_dev *dev;
5340
5341 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5342 if (!dev->slot || dev->slot != slot)
5343 continue;
5344 pci_dev_restore(dev);
5345 if (dev->subordinate)
5346 pci_bus_restore_locked(dev->subordinate);
5347 }
5348 }
5349
5350 static int pci_slot_reset(struct pci_slot *slot, int probe)
5351 {
5352 int rc;
5353
5354 if (!slot || !pci_slot_resetable(slot))
5355 return -ENOTTY;
5356
5357 if (!probe)
5358 pci_slot_lock(slot);
5359
5360 might_sleep();
5361
5362 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5363
5364 if (!probe)
5365 pci_slot_unlock(slot);
5366
5367 return rc;
5368 }
5369
5370 /**
5371 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5372 * @slot: PCI slot to probe
5373 *
5374 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5375 */
5376 int pci_probe_reset_slot(struct pci_slot *slot)
5377 {
5378 return pci_slot_reset(slot, 1);
5379 }
5380 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5381
5382 /**
5383 * __pci_reset_slot - Try to reset a PCI slot
5384 * @slot: PCI slot to reset
5385 *
5386 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5387 * independent of other slots. For instance, some slots may support slot power
5388 * control. In the case of a 1:1 bus to slot architecture, this function may
5389 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5390 * Generally a slot reset should be attempted before a bus reset. All of the
5391 * function of the slot and any subordinate buses behind the slot are reset
5392 * through this function. PCI config space of all devices in the slot and
5393 * behind the slot is saved before and restored after reset.
5394 *
5395 * Same as above except return -EAGAIN if the slot cannot be locked
5396 */
5397 static int __pci_reset_slot(struct pci_slot *slot)
5398 {
5399 int rc;
5400
5401 rc = pci_slot_reset(slot, 1);
5402 if (rc)
5403 return rc;
5404
5405 if (pci_slot_trylock(slot)) {
5406 pci_slot_save_and_disable_locked(slot);
5407 might_sleep();
5408 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5409 pci_slot_restore_locked(slot);
5410 pci_slot_unlock(slot);
5411 } else
5412 rc = -EAGAIN;
5413
5414 return rc;
5415 }
5416
5417 static int pci_bus_reset(struct pci_bus *bus, int probe)
5418 {
5419 int ret;
5420
5421 if (!bus->self || !pci_bus_resetable(bus))
5422 return -ENOTTY;
5423
5424 if (probe)
5425 return 0;
5426
5427 pci_bus_lock(bus);
5428
5429 might_sleep();
5430
5431 ret = pci_bridge_secondary_bus_reset(bus->self);
5432
5433 pci_bus_unlock(bus);
5434
5435 return ret;
5436 }
5437
5438 /**
5439 * pci_bus_error_reset - reset the bridge's subordinate bus
5440 * @bridge: The parent device that connects to the bus to reset
5441 *
5442 * This function will first try to reset the slots on this bus if the method is
5443 * available. If slot reset fails or is not available, this will fall back to a
5444 * secondary bus reset.
5445 */
5446 int pci_bus_error_reset(struct pci_dev *bridge)
5447 {
5448 struct pci_bus *bus = bridge->subordinate;
5449 struct pci_slot *slot;
5450
5451 if (!bus)
5452 return -ENOTTY;
5453
5454 mutex_lock(&pci_slot_mutex);
5455 if (list_empty(&bus->slots))
5456 goto bus_reset;
5457
5458 list_for_each_entry(slot, &bus->slots, list)
5459 if (pci_probe_reset_slot(slot))
5460 goto bus_reset;
5461
5462 list_for_each_entry(slot, &bus->slots, list)
5463 if (pci_slot_reset(slot, 0))
5464 goto bus_reset;
5465
5466 mutex_unlock(&pci_slot_mutex);
5467 return 0;
5468 bus_reset:
5469 mutex_unlock(&pci_slot_mutex);
5470 return pci_bus_reset(bridge->subordinate, 0);
5471 }
5472
5473 /**
5474 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5475 * @bus: PCI bus to probe
5476 *
5477 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5478 */
5479 int pci_probe_reset_bus(struct pci_bus *bus)
5480 {
5481 return pci_bus_reset(bus, 1);
5482 }
5483 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5484
5485 /**
5486 * __pci_reset_bus - Try to reset a PCI bus
5487 * @bus: top level PCI bus to reset
5488 *
5489 * Same as above except return -EAGAIN if the bus cannot be locked
5490 */
5491 static int __pci_reset_bus(struct pci_bus *bus)
5492 {
5493 int rc;
5494
5495 rc = pci_bus_reset(bus, 1);
5496 if (rc)
5497 return rc;
5498
5499 if (pci_bus_trylock(bus)) {
5500 pci_bus_save_and_disable_locked(bus);
5501 might_sleep();
5502 rc = pci_bridge_secondary_bus_reset(bus->self);
5503 pci_bus_restore_locked(bus);
5504 pci_bus_unlock(bus);
5505 } else
5506 rc = -EAGAIN;
5507
5508 return rc;
5509 }
5510
5511 /**
5512 * pci_reset_bus - Try to reset a PCI bus
5513 * @pdev: top level PCI device to reset via slot/bus
5514 *
5515 * Same as above except return -EAGAIN if the bus cannot be locked
5516 */
5517 int pci_reset_bus(struct pci_dev *pdev)
5518 {
5519 return (!pci_probe_reset_slot(pdev->slot)) ?
5520 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5521 }
5522 EXPORT_SYMBOL_GPL(pci_reset_bus);
5523
5524 /**
5525 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5526 * @dev: PCI device to query
5527 *
5528 * Returns mmrbc: maximum designed memory read count in bytes or
5529 * appropriate error value.
5530 */
5531 int pcix_get_max_mmrbc(struct pci_dev *dev)
5532 {
5533 int cap;
5534 u32 stat;
5535
5536 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5537 if (!cap)
5538 return -EINVAL;
5539
5540 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5541 return -EINVAL;
5542
5543 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5544 }
5545 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5546
5547 /**
5548 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5549 * @dev: PCI device to query
5550 *
5551 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5552 * value.
5553 */
5554 int pcix_get_mmrbc(struct pci_dev *dev)
5555 {
5556 int cap;
5557 u16 cmd;
5558
5559 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5560 if (!cap)
5561 return -EINVAL;
5562
5563 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5564 return -EINVAL;
5565
5566 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5567 }
5568 EXPORT_SYMBOL(pcix_get_mmrbc);
5569
5570 /**
5571 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5572 * @dev: PCI device to query
5573 * @mmrbc: maximum memory read count in bytes
5574 * valid values are 512, 1024, 2048, 4096
5575 *
5576 * If possible sets maximum memory read byte count, some bridges have errata
5577 * that prevent this.
5578 */
5579 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5580 {
5581 int cap;
5582 u32 stat, v, o;
5583 u16 cmd;
5584
5585 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5586 return -EINVAL;
5587
5588 v = ffs(mmrbc) - 10;
5589
5590 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5591 if (!cap)
5592 return -EINVAL;
5593
5594 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5595 return -EINVAL;
5596
5597 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5598 return -E2BIG;
5599
5600 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5601 return -EINVAL;
5602
5603 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5604 if (o != v) {
5605 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5606 return -EIO;
5607
5608 cmd &= ~PCI_X_CMD_MAX_READ;
5609 cmd |= v << 2;
5610 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5611 return -EIO;
5612 }
5613 return 0;
5614 }
5615 EXPORT_SYMBOL(pcix_set_mmrbc);
5616
5617 /**
5618 * pcie_get_readrq - get PCI Express read request size
5619 * @dev: PCI device to query
5620 *
5621 * Returns maximum memory read request in bytes or appropriate error value.
5622 */
5623 int pcie_get_readrq(struct pci_dev *dev)
5624 {
5625 u16 ctl;
5626
5627 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5628
5629 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5630 }
5631 EXPORT_SYMBOL(pcie_get_readrq);
5632
5633 /**
5634 * pcie_set_readrq - set PCI Express maximum memory read request
5635 * @dev: PCI device to query
5636 * @rq: maximum memory read count in bytes
5637 * valid values are 128, 256, 512, 1024, 2048, 4096
5638 *
5639 * If possible sets maximum memory read request in bytes
5640 */
5641 int pcie_set_readrq(struct pci_dev *dev, int rq)
5642 {
5643 u16 v;
5644
5645 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5646 return -EINVAL;
5647
5648 /*
5649 * If using the "performance" PCIe config, we clamp the read rq
5650 * size to the max packet size to keep the host bridge from
5651 * generating requests larger than we can cope with.
5652 */
5653 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5654 int mps = pcie_get_mps(dev);
5655
5656 if (mps < rq)
5657 rq = mps;
5658 }
5659
5660 v = (ffs(rq) - 8) << 12;
5661
5662 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5663 PCI_EXP_DEVCTL_READRQ, v);
5664 }
5665 EXPORT_SYMBOL(pcie_set_readrq);
5666
5667 /**
5668 * pcie_get_mps - get PCI Express maximum payload size
5669 * @dev: PCI device to query
5670 *
5671 * Returns maximum payload size in bytes
5672 */
5673 int pcie_get_mps(struct pci_dev *dev)
5674 {
5675 u16 ctl;
5676
5677 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5678
5679 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5680 }
5681 EXPORT_SYMBOL(pcie_get_mps);
5682
5683 /**
5684 * pcie_set_mps - set PCI Express maximum payload size
5685 * @dev: PCI device to query
5686 * @mps: maximum payload size in bytes
5687 * valid values are 128, 256, 512, 1024, 2048, 4096
5688 *
5689 * If possible sets maximum payload size
5690 */
5691 int pcie_set_mps(struct pci_dev *dev, int mps)
5692 {
5693 u16 v;
5694
5695 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5696 return -EINVAL;
5697
5698 v = ffs(mps) - 8;
5699 if (v > dev->pcie_mpss)
5700 return -EINVAL;
5701 v <<= 5;
5702
5703 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5704 PCI_EXP_DEVCTL_PAYLOAD, v);
5705 }
5706 EXPORT_SYMBOL(pcie_set_mps);
5707
5708 /**
5709 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5710 * device and its bandwidth limitation
5711 * @dev: PCI device to query
5712 * @limiting_dev: storage for device causing the bandwidth limitation
5713 * @speed: storage for speed of limiting device
5714 * @width: storage for width of limiting device
5715 *
5716 * Walk up the PCI device chain and find the point where the minimum
5717 * bandwidth is available. Return the bandwidth available there and (if
5718 * limiting_dev, speed, and width pointers are supplied) information about
5719 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5720 * raw bandwidth.
5721 */
5722 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5723 enum pci_bus_speed *speed,
5724 enum pcie_link_width *width)
5725 {
5726 u16 lnksta;
5727 enum pci_bus_speed next_speed;
5728 enum pcie_link_width next_width;
5729 u32 bw, next_bw;
5730
5731 if (speed)
5732 *speed = PCI_SPEED_UNKNOWN;
5733 if (width)
5734 *width = PCIE_LNK_WIDTH_UNKNOWN;
5735
5736 bw = 0;
5737
5738 while (dev) {
5739 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5740
5741 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5742 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5743 PCI_EXP_LNKSTA_NLW_SHIFT;
5744
5745 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5746
5747 /* Check if current device limits the total bandwidth */
5748 if (!bw || next_bw <= bw) {
5749 bw = next_bw;
5750
5751 if (limiting_dev)
5752 *limiting_dev = dev;
5753 if (speed)
5754 *speed = next_speed;
5755 if (width)
5756 *width = next_width;
5757 }
5758
5759 dev = pci_upstream_bridge(dev);
5760 }
5761
5762 return bw;
5763 }
5764 EXPORT_SYMBOL(pcie_bandwidth_available);
5765
5766 /**
5767 * pcie_get_speed_cap - query for the PCI device's link speed capability
5768 * @dev: PCI device to query
5769 *
5770 * Query the PCI device speed capability. Return the maximum link speed
5771 * supported by the device.
5772 */
5773 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5774 {
5775 u32 lnkcap2, lnkcap;
5776
5777 /*
5778 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5779 * implementation note there recommends using the Supported Link
5780 * Speeds Vector in Link Capabilities 2 when supported.
5781 *
5782 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5783 * should use the Supported Link Speeds field in Link Capabilities,
5784 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5785 */
5786 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5787
5788 /* PCIe r3.0-compliant */
5789 if (lnkcap2)
5790 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5791
5792 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5793 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5794 return PCIE_SPEED_5_0GT;
5795 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5796 return PCIE_SPEED_2_5GT;
5797
5798 return PCI_SPEED_UNKNOWN;
5799 }
5800 EXPORT_SYMBOL(pcie_get_speed_cap);
5801
5802 /**
5803 * pcie_get_width_cap - query for the PCI device's link width capability
5804 * @dev: PCI device to query
5805 *
5806 * Query the PCI device width capability. Return the maximum link width
5807 * supported by the device.
5808 */
5809 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5810 {
5811 u32 lnkcap;
5812
5813 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5814 if (lnkcap)
5815 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5816
5817 return PCIE_LNK_WIDTH_UNKNOWN;
5818 }
5819 EXPORT_SYMBOL(pcie_get_width_cap);
5820
5821 /**
5822 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5823 * @dev: PCI device
5824 * @speed: storage for link speed
5825 * @width: storage for link width
5826 *
5827 * Calculate a PCI device's link bandwidth by querying for its link speed
5828 * and width, multiplying them, and applying encoding overhead. The result
5829 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5830 */
5831 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5832 enum pcie_link_width *width)
5833 {
5834 *speed = pcie_get_speed_cap(dev);
5835 *width = pcie_get_width_cap(dev);
5836
5837 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5838 return 0;
5839
5840 return *width * PCIE_SPEED2MBS_ENC(*speed);
5841 }
5842
5843 /**
5844 * __pcie_print_link_status - Report the PCI device's link speed and width
5845 * @dev: PCI device to query
5846 * @verbose: Print info even when enough bandwidth is available
5847 *
5848 * If the available bandwidth at the device is less than the device is
5849 * capable of, report the device's maximum possible bandwidth and the
5850 * upstream link that limits its performance. If @verbose, always print
5851 * the available bandwidth, even if the device isn't constrained.
5852 */
5853 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5854 {
5855 enum pcie_link_width width, width_cap;
5856 enum pci_bus_speed speed, speed_cap;
5857 struct pci_dev *limiting_dev = NULL;
5858 u32 bw_avail, bw_cap;
5859
5860 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5861 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5862
5863 if (bw_avail >= bw_cap && verbose)
5864 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5865 bw_cap / 1000, bw_cap % 1000,
5866 pci_speed_string(speed_cap), width_cap);
5867 else if (bw_avail < bw_cap)
5868 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5869 bw_avail / 1000, bw_avail % 1000,
5870 pci_speed_string(speed), width,
5871 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5872 bw_cap / 1000, bw_cap % 1000,
5873 pci_speed_string(speed_cap), width_cap);
5874 }
5875
5876 /**
5877 * pcie_print_link_status - Report the PCI device's link speed and width
5878 * @dev: PCI device to query
5879 *
5880 * Report the available bandwidth at the device.
5881 */
5882 void pcie_print_link_status(struct pci_dev *dev)
5883 {
5884 __pcie_print_link_status(dev, true);
5885 }
5886 EXPORT_SYMBOL(pcie_print_link_status);
5887
5888 /**
5889 * pci_select_bars - Make BAR mask from the type of resource
5890 * @dev: the PCI device for which BAR mask is made
5891 * @flags: resource type mask to be selected
5892 *
5893 * This helper routine makes bar mask from the type of resource.
5894 */
5895 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5896 {
5897 int i, bars = 0;
5898 for (i = 0; i < PCI_NUM_RESOURCES; i++)
5899 if (pci_resource_flags(dev, i) & flags)
5900 bars |= (1 << i);
5901 return bars;
5902 }
5903 EXPORT_SYMBOL(pci_select_bars);
5904
5905 /* Some architectures require additional programming to enable VGA */
5906 static arch_set_vga_state_t arch_set_vga_state;
5907
5908 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5909 {
5910 arch_set_vga_state = func; /* NULL disables */
5911 }
5912
5913 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5914 unsigned int command_bits, u32 flags)
5915 {
5916 if (arch_set_vga_state)
5917 return arch_set_vga_state(dev, decode, command_bits,
5918 flags);
5919 return 0;
5920 }
5921
5922 /**
5923 * pci_set_vga_state - set VGA decode state on device and parents if requested
5924 * @dev: the PCI device
5925 * @decode: true = enable decoding, false = disable decoding
5926 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5927 * @flags: traverse ancestors and change bridges
5928 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5929 */
5930 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5931 unsigned int command_bits, u32 flags)
5932 {
5933 struct pci_bus *bus;
5934 struct pci_dev *bridge;
5935 u16 cmd;
5936 int rc;
5937
5938 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5939
5940 /* ARCH specific VGA enables */
5941 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5942 if (rc)
5943 return rc;
5944
5945 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5946 pci_read_config_word(dev, PCI_COMMAND, &cmd);
5947 if (decode == true)
5948 cmd |= command_bits;
5949 else
5950 cmd &= ~command_bits;
5951 pci_write_config_word(dev, PCI_COMMAND, cmd);
5952 }
5953
5954 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5955 return 0;
5956
5957 bus = dev->bus;
5958 while (bus) {
5959 bridge = bus->self;
5960 if (bridge) {
5961 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5962 &cmd);
5963 if (decode == true)
5964 cmd |= PCI_BRIDGE_CTL_VGA;
5965 else
5966 cmd &= ~PCI_BRIDGE_CTL_VGA;
5967 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5968 cmd);
5969 }
5970 bus = bus->parent;
5971 }
5972 return 0;
5973 }
5974
5975 #ifdef CONFIG_ACPI
5976 bool pci_pr3_present(struct pci_dev *pdev)
5977 {
5978 struct acpi_device *adev;
5979
5980 if (acpi_disabled)
5981 return false;
5982
5983 adev = ACPI_COMPANION(&pdev->dev);
5984 if (!adev)
5985 return false;
5986
5987 return adev->power.flags.power_resources &&
5988 acpi_has_method(adev->handle, "_PR3");
5989 }
5990 EXPORT_SYMBOL_GPL(pci_pr3_present);
5991 #endif
5992
5993 /**
5994 * pci_add_dma_alias - Add a DMA devfn alias for a device
5995 * @dev: the PCI device for which alias is added
5996 * @devfn_from: alias slot and function
5997 * @nr_devfns: number of subsequent devfns to alias
5998 *
5999 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6000 * which is used to program permissible bus-devfn source addresses for DMA
6001 * requests in an IOMMU. These aliases factor into IOMMU group creation
6002 * and are useful for devices generating DMA requests beyond or different
6003 * from their logical bus-devfn. Examples include device quirks where the
6004 * device simply uses the wrong devfn, as well as non-transparent bridges
6005 * where the alias may be a proxy for devices in another domain.
6006 *
6007 * IOMMU group creation is performed during device discovery or addition,
6008 * prior to any potential DMA mapping and therefore prior to driver probing
6009 * (especially for userspace assigned devices where IOMMU group definition
6010 * cannot be left as a userspace activity). DMA aliases should therefore
6011 * be configured via quirks, such as the PCI fixup header quirk.
6012 */
6013 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6014 {
6015 int devfn_to;
6016
6017 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6018 devfn_to = devfn_from + nr_devfns - 1;
6019
6020 if (!dev->dma_alias_mask)
6021 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6022 if (!dev->dma_alias_mask) {
6023 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6024 return;
6025 }
6026
6027 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6028
6029 if (nr_devfns == 1)
6030 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6031 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6032 else if (nr_devfns > 1)
6033 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6034 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6035 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6036 }
6037
6038 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6039 {
6040 return (dev1->dma_alias_mask &&
6041 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6042 (dev2->dma_alias_mask &&
6043 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6044 pci_real_dma_dev(dev1) == dev2 ||
6045 pci_real_dma_dev(dev2) == dev1;
6046 }
6047
6048 bool pci_device_is_present(struct pci_dev *pdev)
6049 {
6050 u32 v;
6051
6052 if (pci_dev_is_disconnected(pdev))
6053 return false;
6054 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6055 }
6056 EXPORT_SYMBOL_GPL(pci_device_is_present);
6057
6058 void pci_ignore_hotplug(struct pci_dev *dev)
6059 {
6060 struct pci_dev *bridge = dev->bus->self;
6061
6062 dev->ignore_hotplug = 1;
6063 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6064 if (bridge)
6065 bridge->ignore_hotplug = 1;
6066 }
6067 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6068
6069 /**
6070 * pci_real_dma_dev - Get PCI DMA device for PCI device
6071 * @dev: the PCI device that may have a PCI DMA alias
6072 *
6073 * Permits the platform to provide architecture-specific functionality to
6074 * devices needing to alias DMA to another PCI device on another PCI bus. If
6075 * the PCI device is on the same bus, it is recommended to use
6076 * pci_add_dma_alias(). This is the default implementation. Architecture
6077 * implementations can override this.
6078 */
6079 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6080 {
6081 return dev;
6082 }
6083
6084 resource_size_t __weak pcibios_default_alignment(void)
6085 {
6086 return 0;
6087 }
6088
6089 /*
6090 * Arches that don't want to expose struct resource to userland as-is in
6091 * sysfs and /proc can implement their own pci_resource_to_user().
6092 */
6093 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6094 const struct resource *rsrc,
6095 resource_size_t *start, resource_size_t *end)
6096 {
6097 *start = rsrc->start;
6098 *end = rsrc->end;
6099 }
6100
6101 static char *resource_alignment_param;
6102 static DEFINE_SPINLOCK(resource_alignment_lock);
6103
6104 /**
6105 * pci_specified_resource_alignment - get resource alignment specified by user.
6106 * @dev: the PCI device to get
6107 * @resize: whether or not to change resources' size when reassigning alignment
6108 *
6109 * RETURNS: Resource alignment if it is specified.
6110 * Zero if it is not specified.
6111 */
6112 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6113 bool *resize)
6114 {
6115 int align_order, count;
6116 resource_size_t align = pcibios_default_alignment();
6117 const char *p;
6118 int ret;
6119
6120 spin_lock(&resource_alignment_lock);
6121 p = resource_alignment_param;
6122 if (!p || !*p)
6123 goto out;
6124 if (pci_has_flag(PCI_PROBE_ONLY)) {
6125 align = 0;
6126 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6127 goto out;
6128 }
6129
6130 while (*p) {
6131 count = 0;
6132 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6133 p[count] == '@') {
6134 p += count + 1;
6135 } else {
6136 align_order = -1;
6137 }
6138
6139 ret = pci_dev_str_match(dev, p, &p);
6140 if (ret == 1) {
6141 *resize = true;
6142 if (align_order == -1)
6143 align = PAGE_SIZE;
6144 else
6145 align = 1 << align_order;
6146 break;
6147 } else if (ret < 0) {
6148 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6149 p);
6150 break;
6151 }
6152
6153 if (*p != ';' && *p != ',') {
6154 /* End of param or invalid format */
6155 break;
6156 }
6157 p++;
6158 }
6159 out:
6160 spin_unlock(&resource_alignment_lock);
6161 return align;
6162 }
6163
6164 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6165 resource_size_t align, bool resize)
6166 {
6167 struct resource *r = &dev->resource[bar];
6168 resource_size_t size;
6169
6170 if (!(r->flags & IORESOURCE_MEM))
6171 return;
6172
6173 if (r->flags & IORESOURCE_PCI_FIXED) {
6174 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6175 bar, r, (unsigned long long)align);
6176 return;
6177 }
6178
6179 size = resource_size(r);
6180 if (size >= align)
6181 return;
6182
6183 /*
6184 * Increase the alignment of the resource. There are two ways we
6185 * can do this:
6186 *
6187 * 1) Increase the size of the resource. BARs are aligned on their
6188 * size, so when we reallocate space for this resource, we'll
6189 * allocate it with the larger alignment. This also prevents
6190 * assignment of any other BARs inside the alignment region, so
6191 * if we're requesting page alignment, this means no other BARs
6192 * will share the page.
6193 *
6194 * The disadvantage is that this makes the resource larger than
6195 * the hardware BAR, which may break drivers that compute things
6196 * based on the resource size, e.g., to find registers at a
6197 * fixed offset before the end of the BAR.
6198 *
6199 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6200 * set r->start to the desired alignment. By itself this
6201 * doesn't prevent other BARs being put inside the alignment
6202 * region, but if we realign *every* resource of every device in
6203 * the system, none of them will share an alignment region.
6204 *
6205 * When the user has requested alignment for only some devices via
6206 * the "pci=resource_alignment" argument, "resize" is true and we
6207 * use the first method. Otherwise we assume we're aligning all
6208 * devices and we use the second.
6209 */
6210
6211 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6212 bar, r, (unsigned long long)align);
6213
6214 if (resize) {
6215 r->start = 0;
6216 r->end = align - 1;
6217 } else {
6218 r->flags &= ~IORESOURCE_SIZEALIGN;
6219 r->flags |= IORESOURCE_STARTALIGN;
6220 r->start = align;
6221 r->end = r->start + size - 1;
6222 }
6223 r->flags |= IORESOURCE_UNSET;
6224 }
6225
6226 /*
6227 * This function disables memory decoding and releases memory resources
6228 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6229 * It also rounds up size to specified alignment.
6230 * Later on, the kernel will assign page-aligned memory resource back
6231 * to the device.
6232 */
6233 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6234 {
6235 int i;
6236 struct resource *r;
6237 resource_size_t align;
6238 u16 command;
6239 bool resize = false;
6240
6241 /*
6242 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6243 * 3.4.1.11. Their resources are allocated from the space
6244 * described by the VF BARx register in the PF's SR-IOV capability.
6245 * We can't influence their alignment here.
6246 */
6247 if (dev->is_virtfn)
6248 return;
6249
6250 /* check if specified PCI is target device to reassign */
6251 align = pci_specified_resource_alignment(dev, &resize);
6252 if (!align)
6253 return;
6254
6255 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6256 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6257 pci_warn(dev, "Can't reassign resources to host bridge\n");
6258 return;
6259 }
6260
6261 pci_read_config_word(dev, PCI_COMMAND, &command);
6262 command &= ~PCI_COMMAND_MEMORY;
6263 pci_write_config_word(dev, PCI_COMMAND, command);
6264
6265 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6266 pci_request_resource_alignment(dev, i, align, resize);
6267
6268 /*
6269 * Need to disable bridge's resource window,
6270 * to enable the kernel to reassign new resource
6271 * window later on.
6272 */
6273 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6274 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6275 r = &dev->resource[i];
6276 if (!(r->flags & IORESOURCE_MEM))
6277 continue;
6278 r->flags |= IORESOURCE_UNSET;
6279 r->end = resource_size(r) - 1;
6280 r->start = 0;
6281 }
6282 pci_disable_bridge_window(dev);
6283 }
6284 }
6285
6286 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6287 {
6288 size_t count = 0;
6289
6290 spin_lock(&resource_alignment_lock);
6291 if (resource_alignment_param)
6292 count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6293 spin_unlock(&resource_alignment_lock);
6294
6295 /*
6296 * When set by the command line, resource_alignment_param will not
6297 * have a trailing line feed, which is ugly. So conditionally add
6298 * it here.
6299 */
6300 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6301 buf[count - 1] = '\n';
6302 buf[count++] = 0;
6303 }
6304
6305 return count;
6306 }
6307
6308 static ssize_t resource_alignment_store(struct bus_type *bus,
6309 const char *buf, size_t count)
6310 {
6311 char *param = kstrndup(buf, count, GFP_KERNEL);
6312
6313 if (!param)
6314 return -ENOMEM;
6315
6316 spin_lock(&resource_alignment_lock);
6317 kfree(resource_alignment_param);
6318 resource_alignment_param = param;
6319 spin_unlock(&resource_alignment_lock);
6320 return count;
6321 }
6322
6323 static BUS_ATTR_RW(resource_alignment);
6324
6325 static int __init pci_resource_alignment_sysfs_init(void)
6326 {
6327 return bus_create_file(&pci_bus_type,
6328 &bus_attr_resource_alignment);
6329 }
6330 late_initcall(pci_resource_alignment_sysfs_init);
6331
6332 static void pci_no_domains(void)
6333 {
6334 #ifdef CONFIG_PCI_DOMAINS
6335 pci_domains_supported = 0;
6336 #endif
6337 }
6338
6339 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6340 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6341
6342 static int pci_get_new_domain_nr(void)
6343 {
6344 return atomic_inc_return(&__domain_nr);
6345 }
6346
6347 static int of_pci_bus_find_domain_nr(struct device *parent)
6348 {
6349 static int use_dt_domains = -1;
6350 int domain = -1;
6351
6352 if (parent)
6353 domain = of_get_pci_domain_nr(parent->of_node);
6354
6355 /*
6356 * Check DT domain and use_dt_domains values.
6357 *
6358 * If DT domain property is valid (domain >= 0) and
6359 * use_dt_domains != 0, the DT assignment is valid since this means
6360 * we have not previously allocated a domain number by using
6361 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6362 * 1, to indicate that we have just assigned a domain number from
6363 * DT.
6364 *
6365 * If DT domain property value is not valid (ie domain < 0), and we
6366 * have not previously assigned a domain number from DT
6367 * (use_dt_domains != 1) we should assign a domain number by
6368 * using the:
6369 *
6370 * pci_get_new_domain_nr()
6371 *
6372 * API and update the use_dt_domains value to keep track of method we
6373 * are using to assign domain numbers (use_dt_domains = 0).
6374 *
6375 * All other combinations imply we have a platform that is trying
6376 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6377 * which is a recipe for domain mishandling and it is prevented by
6378 * invalidating the domain value (domain = -1) and printing a
6379 * corresponding error.
6380 */
6381 if (domain >= 0 && use_dt_domains) {
6382 use_dt_domains = 1;
6383 } else if (domain < 0 && use_dt_domains != 1) {
6384 use_dt_domains = 0;
6385 domain = pci_get_new_domain_nr();
6386 } else {
6387 if (parent)
6388 pr_err("Node %pOF has ", parent->of_node);
6389 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6390 domain = -1;
6391 }
6392
6393 return domain;
6394 }
6395
6396 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6397 {
6398 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6399 acpi_pci_bus_find_domain_nr(bus);
6400 }
6401 #endif
6402
6403 /**
6404 * pci_ext_cfg_avail - can we access extended PCI config space?
6405 *
6406 * Returns 1 if we can access PCI extended config space (offsets
6407 * greater than 0xff). This is the default implementation. Architecture
6408 * implementations can override this.
6409 */
6410 int __weak pci_ext_cfg_avail(void)
6411 {
6412 return 1;
6413 }
6414
6415 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6416 {
6417 }
6418 EXPORT_SYMBOL(pci_fixup_cardbus);
6419
6420 static int __init pci_setup(char *str)
6421 {
6422 while (str) {
6423 char *k = strchr(str, ',');
6424 if (k)
6425 *k++ = 0;
6426 if (*str && (str = pcibios_setup(str)) && *str) {
6427 if (!strcmp(str, "nomsi")) {
6428 pci_no_msi();
6429 } else if (!strncmp(str, "noats", 5)) {
6430 pr_info("PCIe: ATS is disabled\n");
6431 pcie_ats_disabled = true;
6432 } else if (!strcmp(str, "noaer")) {
6433 pci_no_aer();
6434 } else if (!strcmp(str, "earlydump")) {
6435 pci_early_dump = true;
6436 } else if (!strncmp(str, "realloc=", 8)) {
6437 pci_realloc_get_opt(str + 8);
6438 } else if (!strncmp(str, "realloc", 7)) {
6439 pci_realloc_get_opt("on");
6440 } else if (!strcmp(str, "nodomains")) {
6441 pci_no_domains();
6442 } else if (!strncmp(str, "noari", 5)) {
6443 pcie_ari_disabled = true;
6444 } else if (!strncmp(str, "cbiosize=", 9)) {
6445 pci_cardbus_io_size = memparse(str + 9, &str);
6446 } else if (!strncmp(str, "cbmemsize=", 10)) {
6447 pci_cardbus_mem_size = memparse(str + 10, &str);
6448 } else if (!strncmp(str, "resource_alignment=", 19)) {
6449 resource_alignment_param = str + 19;
6450 } else if (!strncmp(str, "ecrc=", 5)) {
6451 pcie_ecrc_get_policy(str + 5);
6452 } else if (!strncmp(str, "hpiosize=", 9)) {
6453 pci_hotplug_io_size = memparse(str + 9, &str);
6454 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6455 pci_hotplug_mmio_size = memparse(str + 11, &str);
6456 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6457 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6458 } else if (!strncmp(str, "hpmemsize=", 10)) {
6459 pci_hotplug_mmio_size = memparse(str + 10, &str);
6460 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6461 } else if (!strncmp(str, "hpbussize=", 10)) {
6462 pci_hotplug_bus_size =
6463 simple_strtoul(str + 10, &str, 0);
6464 if (pci_hotplug_bus_size > 0xff)
6465 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6466 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6467 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6468 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6469 pcie_bus_config = PCIE_BUS_SAFE;
6470 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6471 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6472 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6473 pcie_bus_config = PCIE_BUS_PEER2PEER;
6474 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6475 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6476 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6477 disable_acs_redir_param = str + 18;
6478 } else {
6479 pr_err("PCI: Unknown option `%s'\n", str);
6480 }
6481 }
6482 str = k;
6483 }
6484 return 0;
6485 }
6486 early_param("pci", pci_setup);
6487
6488 /*
6489 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6490 * in pci_setup(), above, to point to data in the __initdata section which
6491 * will be freed after the init sequence is complete. We can't allocate memory
6492 * in pci_setup() because some architectures do not have any memory allocation
6493 * service available during an early_param() call. So we allocate memory and
6494 * copy the variable here before the init section is freed.
6495 *
6496 */
6497 static int __init pci_realloc_setup_params(void)
6498 {
6499 resource_alignment_param = kstrdup(resource_alignment_param,
6500 GFP_KERNEL);
6501 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6502
6503 return 0;
6504 }
6505 pure_initcall(pci_realloc_setup_params);