]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/pci/pci.c
553ca6657955597d7c18d6c9688b822a5d925b32
[mirror_ubuntu-bionic-kernel.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <linux/pm_wakeup.h>
21 #include <asm/dma.h> /* isa_dma_bridge_buggy */
22 #include "pci.h"
23
24 unsigned int pci_pm_d3_delay = 10;
25
26 #ifdef CONFIG_PCI_DOMAINS
27 int pci_domains_supported = 1;
28 #endif
29
30 #define DEFAULT_CARDBUS_IO_SIZE (256)
31 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
32 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
33 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
34 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
35
36 /**
37 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
38 * @bus: pointer to PCI bus structure to search
39 *
40 * Given a PCI bus, returns the highest PCI bus number present in the set
41 * including the given PCI bus and its list of child PCI buses.
42 */
43 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
44 {
45 struct list_head *tmp;
46 unsigned char max, n;
47
48 max = bus->subordinate;
49 list_for_each(tmp, &bus->children) {
50 n = pci_bus_max_busnr(pci_bus_b(tmp));
51 if(n > max)
52 max = n;
53 }
54 return max;
55 }
56 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
57
58 #if 0
59 /**
60 * pci_max_busnr - returns maximum PCI bus number
61 *
62 * Returns the highest PCI bus number present in the system global list of
63 * PCI buses.
64 */
65 unsigned char __devinit
66 pci_max_busnr(void)
67 {
68 struct pci_bus *bus = NULL;
69 unsigned char max, n;
70
71 max = 0;
72 while ((bus = pci_find_next_bus(bus)) != NULL) {
73 n = pci_bus_max_busnr(bus);
74 if(n > max)
75 max = n;
76 }
77 return max;
78 }
79
80 #endif /* 0 */
81
82 #define PCI_FIND_CAP_TTL 48
83
84 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
85 u8 pos, int cap, int *ttl)
86 {
87 u8 id;
88
89 while ((*ttl)--) {
90 pci_bus_read_config_byte(bus, devfn, pos, &pos);
91 if (pos < 0x40)
92 break;
93 pos &= ~3;
94 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
95 &id);
96 if (id == 0xff)
97 break;
98 if (id == cap)
99 return pos;
100 pos += PCI_CAP_LIST_NEXT;
101 }
102 return 0;
103 }
104
105 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
106 u8 pos, int cap)
107 {
108 int ttl = PCI_FIND_CAP_TTL;
109
110 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
111 }
112
113 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
114 {
115 return __pci_find_next_cap(dev->bus, dev->devfn,
116 pos + PCI_CAP_LIST_NEXT, cap);
117 }
118 EXPORT_SYMBOL_GPL(pci_find_next_capability);
119
120 static int __pci_bus_find_cap_start(struct pci_bus *bus,
121 unsigned int devfn, u8 hdr_type)
122 {
123 u16 status;
124
125 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
126 if (!(status & PCI_STATUS_CAP_LIST))
127 return 0;
128
129 switch (hdr_type) {
130 case PCI_HEADER_TYPE_NORMAL:
131 case PCI_HEADER_TYPE_BRIDGE:
132 return PCI_CAPABILITY_LIST;
133 case PCI_HEADER_TYPE_CARDBUS:
134 return PCI_CB_CAPABILITY_LIST;
135 default:
136 return 0;
137 }
138
139 return 0;
140 }
141
142 /**
143 * pci_find_capability - query for devices' capabilities
144 * @dev: PCI device to query
145 * @cap: capability code
146 *
147 * Tell if a device supports a given PCI capability.
148 * Returns the address of the requested capability structure within the
149 * device's PCI configuration space or 0 in case the device does not
150 * support it. Possible values for @cap:
151 *
152 * %PCI_CAP_ID_PM Power Management
153 * %PCI_CAP_ID_AGP Accelerated Graphics Port
154 * %PCI_CAP_ID_VPD Vital Product Data
155 * %PCI_CAP_ID_SLOTID Slot Identification
156 * %PCI_CAP_ID_MSI Message Signalled Interrupts
157 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
158 * %PCI_CAP_ID_PCIX PCI-X
159 * %PCI_CAP_ID_EXP PCI Express
160 */
161 int pci_find_capability(struct pci_dev *dev, int cap)
162 {
163 int pos;
164
165 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
166 if (pos)
167 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
168
169 return pos;
170 }
171
172 /**
173 * pci_bus_find_capability - query for devices' capabilities
174 * @bus: the PCI bus to query
175 * @devfn: PCI device to query
176 * @cap: capability code
177 *
178 * Like pci_find_capability() but works for pci devices that do not have a
179 * pci_dev structure set up yet.
180 *
181 * Returns the address of the requested capability structure within the
182 * device's PCI configuration space or 0 in case the device does not
183 * support it.
184 */
185 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
186 {
187 int pos;
188 u8 hdr_type;
189
190 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
191
192 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
193 if (pos)
194 pos = __pci_find_next_cap(bus, devfn, pos, cap);
195
196 return pos;
197 }
198
199 /**
200 * pci_find_ext_capability - Find an extended capability
201 * @dev: PCI device to query
202 * @cap: capability code
203 *
204 * Returns the address of the requested extended capability structure
205 * within the device's PCI configuration space or 0 if the device does
206 * not support it. Possible values for @cap:
207 *
208 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
209 * %PCI_EXT_CAP_ID_VC Virtual Channel
210 * %PCI_EXT_CAP_ID_DSN Device Serial Number
211 * %PCI_EXT_CAP_ID_PWR Power Budgeting
212 */
213 int pci_find_ext_capability(struct pci_dev *dev, int cap)
214 {
215 u32 header;
216 int ttl;
217 int pos = PCI_CFG_SPACE_SIZE;
218
219 /* minimum 8 bytes per capability */
220 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
221
222 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
223 return 0;
224
225 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
226 return 0;
227
228 /*
229 * If we have no capabilities, this is indicated by cap ID,
230 * cap version and next pointer all being 0.
231 */
232 if (header == 0)
233 return 0;
234
235 while (ttl-- > 0) {
236 if (PCI_EXT_CAP_ID(header) == cap)
237 return pos;
238
239 pos = PCI_EXT_CAP_NEXT(header);
240 if (pos < PCI_CFG_SPACE_SIZE)
241 break;
242
243 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
244 break;
245 }
246
247 return 0;
248 }
249 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
250
251 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
252 {
253 int rc, ttl = PCI_FIND_CAP_TTL;
254 u8 cap, mask;
255
256 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
257 mask = HT_3BIT_CAP_MASK;
258 else
259 mask = HT_5BIT_CAP_MASK;
260
261 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
262 PCI_CAP_ID_HT, &ttl);
263 while (pos) {
264 rc = pci_read_config_byte(dev, pos + 3, &cap);
265 if (rc != PCIBIOS_SUCCESSFUL)
266 return 0;
267
268 if ((cap & mask) == ht_cap)
269 return pos;
270
271 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
272 pos + PCI_CAP_LIST_NEXT,
273 PCI_CAP_ID_HT, &ttl);
274 }
275
276 return 0;
277 }
278 /**
279 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
280 * @dev: PCI device to query
281 * @pos: Position from which to continue searching
282 * @ht_cap: Hypertransport capability code
283 *
284 * To be used in conjunction with pci_find_ht_capability() to search for
285 * all capabilities matching @ht_cap. @pos should always be a value returned
286 * from pci_find_ht_capability().
287 *
288 * NB. To be 100% safe against broken PCI devices, the caller should take
289 * steps to avoid an infinite loop.
290 */
291 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
292 {
293 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
294 }
295 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
296
297 /**
298 * pci_find_ht_capability - query a device's Hypertransport capabilities
299 * @dev: PCI device to query
300 * @ht_cap: Hypertransport capability code
301 *
302 * Tell if a device supports a given Hypertransport capability.
303 * Returns an address within the device's PCI configuration space
304 * or 0 in case the device does not support the request capability.
305 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
306 * which has a Hypertransport capability matching @ht_cap.
307 */
308 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
309 {
310 int pos;
311
312 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
313 if (pos)
314 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
315
316 return pos;
317 }
318 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
319
320 /**
321 * pci_find_parent_resource - return resource region of parent bus of given region
322 * @dev: PCI device structure contains resources to be searched
323 * @res: child resource record for which parent is sought
324 *
325 * For given resource region of given device, return the resource
326 * region of parent bus the given region is contained in or where
327 * it should be allocated from.
328 */
329 struct resource *
330 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
331 {
332 const struct pci_bus *bus = dev->bus;
333 int i;
334 struct resource *best = NULL;
335
336 for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
337 struct resource *r = bus->resource[i];
338 if (!r)
339 continue;
340 if (res->start && !(res->start >= r->start && res->end <= r->end))
341 continue; /* Not contained */
342 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
343 continue; /* Wrong type */
344 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
345 return r; /* Exact match */
346 if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH))
347 best = r; /* Approximating prefetchable by non-prefetchable */
348 }
349 return best;
350 }
351
352 /**
353 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
354 * @dev: PCI device to have its BARs restored
355 *
356 * Restore the BAR values for a given device, so as to make it
357 * accessible by its driver.
358 */
359 static void
360 pci_restore_bars(struct pci_dev *dev)
361 {
362 int i, numres;
363
364 switch (dev->hdr_type) {
365 case PCI_HEADER_TYPE_NORMAL:
366 numres = 6;
367 break;
368 case PCI_HEADER_TYPE_BRIDGE:
369 numres = 2;
370 break;
371 case PCI_HEADER_TYPE_CARDBUS:
372 numres = 1;
373 break;
374 default:
375 /* Should never get here, but just in case... */
376 return;
377 }
378
379 for (i = 0; i < numres; i ++)
380 pci_update_resource(dev, &dev->resource[i], i);
381 }
382
383 static struct pci_platform_pm_ops *pci_platform_pm;
384
385 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
386 {
387 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
388 || !ops->sleep_wake || !ops->can_wakeup)
389 return -EINVAL;
390 pci_platform_pm = ops;
391 return 0;
392 }
393
394 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
395 {
396 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
397 }
398
399 static inline int platform_pci_set_power_state(struct pci_dev *dev,
400 pci_power_t t)
401 {
402 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
403 }
404
405 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
406 {
407 return pci_platform_pm ?
408 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
409 }
410
411 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
412 {
413 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
414 }
415
416 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
417 {
418 return pci_platform_pm ?
419 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
420 }
421
422 /**
423 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
424 * given PCI device
425 * @dev: PCI device to handle.
426 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
427 *
428 * RETURN VALUE:
429 * -EINVAL if the requested state is invalid.
430 * -EIO if device does not support PCI PM or its PM capabilities register has a
431 * wrong version, or device doesn't support the requested state.
432 * 0 if device already is in the requested state.
433 * 0 if device's power state has been successfully changed.
434 */
435 static int
436 pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
437 {
438 u16 pmcsr;
439 bool need_restore = false;
440
441 if (!dev->pm_cap)
442 return -EIO;
443
444 if (state < PCI_D0 || state > PCI_D3hot)
445 return -EINVAL;
446
447 /* Validate current state:
448 * Can enter D0 from any state, but if we can only go deeper
449 * to sleep if we're already in a low power state
450 */
451 if (dev->current_state == state) {
452 /* we're already there */
453 return 0;
454 } else if (state != PCI_D0 && dev->current_state <= PCI_D3cold
455 && dev->current_state > state) {
456 dev_err(&dev->dev, "invalid power transition "
457 "(from state %d to %d)\n", dev->current_state, state);
458 return -EINVAL;
459 }
460
461 /* check if this device supports the desired state */
462 if ((state == PCI_D1 && !dev->d1_support)
463 || (state == PCI_D2 && !dev->d2_support))
464 return -EIO;
465
466 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
467
468 /* If we're (effectively) in D3, force entire word to 0.
469 * This doesn't affect PME_Status, disables PME_En, and
470 * sets PowerState to 0.
471 */
472 switch (dev->current_state) {
473 case PCI_D0:
474 case PCI_D1:
475 case PCI_D2:
476 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
477 pmcsr |= state;
478 break;
479 case PCI_UNKNOWN: /* Boot-up */
480 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
481 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
482 need_restore = true;
483 /* Fall-through: force to D0 */
484 default:
485 pmcsr = 0;
486 break;
487 }
488
489 /* enter specified state */
490 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
491
492 /* Mandatory power management transition delays */
493 /* see PCI PM 1.1 5.6.1 table 18 */
494 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
495 msleep(pci_pm_d3_delay);
496 else if (state == PCI_D2 || dev->current_state == PCI_D2)
497 udelay(200);
498
499 dev->current_state = state;
500
501 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
502 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
503 * from D3hot to D0 _may_ perform an internal reset, thereby
504 * going to "D0 Uninitialized" rather than "D0 Initialized".
505 * For example, at least some versions of the 3c905B and the
506 * 3c556B exhibit this behaviour.
507 *
508 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
509 * devices in a D3hot state at boot. Consequently, we need to
510 * restore at least the BARs so that the device will be
511 * accessible to its driver.
512 */
513 if (need_restore)
514 pci_restore_bars(dev);
515
516 if (dev->bus->self)
517 pcie_aspm_pm_state_change(dev->bus->self);
518
519 return 0;
520 }
521
522 /**
523 * pci_update_current_state - Read PCI power state of given device from its
524 * PCI PM registers and cache it
525 * @dev: PCI device to handle.
526 */
527 static void pci_update_current_state(struct pci_dev *dev)
528 {
529 if (dev->pm_cap) {
530 u16 pmcsr;
531
532 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
533 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
534 }
535 }
536
537 /**
538 * pci_set_power_state - Set the power state of a PCI device
539 * @dev: PCI device to handle.
540 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
541 *
542 * Transition a device to a new power state, using the platform formware and/or
543 * the device's PCI PM registers.
544 *
545 * RETURN VALUE:
546 * -EINVAL if the requested state is invalid.
547 * -EIO if device does not support PCI PM or its PM capabilities register has a
548 * wrong version, or device doesn't support the requested state.
549 * 0 if device already is in the requested state.
550 * 0 if device's power state has been successfully changed.
551 */
552 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
553 {
554 int error;
555
556 /* bound the state we're entering */
557 if (state > PCI_D3hot)
558 state = PCI_D3hot;
559 else if (state < PCI_D0)
560 state = PCI_D0;
561 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
562 /*
563 * If the device or the parent bridge do not support PCI PM,
564 * ignore the request if we're doing anything other than putting
565 * it into D0 (which would only happen on boot).
566 */
567 return 0;
568
569 if (state == PCI_D0 && platform_pci_power_manageable(dev)) {
570 /*
571 * Allow the platform to change the state, for example via ACPI
572 * _PR0, _PS0 and some such, but do not trust it.
573 */
574 int ret = platform_pci_set_power_state(dev, PCI_D0);
575 if (!ret)
576 pci_update_current_state(dev);
577 }
578 /* This device is quirked not to be put into D3, so
579 don't put it in D3 */
580 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
581 return 0;
582
583 error = pci_raw_set_power_state(dev, state);
584
585 if (state > PCI_D0 && platform_pci_power_manageable(dev)) {
586 /* Allow the platform to finalize the transition */
587 int ret = platform_pci_set_power_state(dev, state);
588 if (!ret) {
589 pci_update_current_state(dev);
590 error = 0;
591 }
592 }
593
594 return error;
595 }
596
597 /**
598 * pci_choose_state - Choose the power state of a PCI device
599 * @dev: PCI device to be suspended
600 * @state: target sleep state for the whole system. This is the value
601 * that is passed to suspend() function.
602 *
603 * Returns PCI power state suitable for given device and given system
604 * message.
605 */
606
607 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
608 {
609 pci_power_t ret;
610
611 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
612 return PCI_D0;
613
614 ret = platform_pci_choose_state(dev);
615 if (ret != PCI_POWER_ERROR)
616 return ret;
617
618 switch (state.event) {
619 case PM_EVENT_ON:
620 return PCI_D0;
621 case PM_EVENT_FREEZE:
622 case PM_EVENT_PRETHAW:
623 /* REVISIT both freeze and pre-thaw "should" use D0 */
624 case PM_EVENT_SUSPEND:
625 case PM_EVENT_HIBERNATE:
626 return PCI_D3hot;
627 default:
628 dev_info(&dev->dev, "unrecognized suspend event %d\n",
629 state.event);
630 BUG();
631 }
632 return PCI_D0;
633 }
634
635 EXPORT_SYMBOL(pci_choose_state);
636
637 static int pci_save_pcie_state(struct pci_dev *dev)
638 {
639 int pos, i = 0;
640 struct pci_cap_saved_state *save_state;
641 u16 *cap;
642 int found = 0;
643
644 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
645 if (pos <= 0)
646 return 0;
647
648 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
649 if (!save_state)
650 save_state = kzalloc(sizeof(*save_state) + sizeof(u16) * 4, GFP_KERNEL);
651 else
652 found = 1;
653 if (!save_state) {
654 dev_err(&dev->dev, "out of memory in pci_save_pcie_state\n");
655 return -ENOMEM;
656 }
657 cap = (u16 *)&save_state->data[0];
658
659 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
660 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
661 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
662 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
663 save_state->cap_nr = PCI_CAP_ID_EXP;
664 if (!found)
665 pci_add_saved_cap(dev, save_state);
666 return 0;
667 }
668
669 static void pci_restore_pcie_state(struct pci_dev *dev)
670 {
671 int i = 0, pos;
672 struct pci_cap_saved_state *save_state;
673 u16 *cap;
674
675 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
676 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
677 if (!save_state || pos <= 0)
678 return;
679 cap = (u16 *)&save_state->data[0];
680
681 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
682 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
683 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
684 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
685 }
686
687
688 static int pci_save_pcix_state(struct pci_dev *dev)
689 {
690 int pos, i = 0;
691 struct pci_cap_saved_state *save_state;
692 u16 *cap;
693 int found = 0;
694
695 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
696 if (pos <= 0)
697 return 0;
698
699 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
700 if (!save_state)
701 save_state = kzalloc(sizeof(*save_state) + sizeof(u16), GFP_KERNEL);
702 else
703 found = 1;
704 if (!save_state) {
705 dev_err(&dev->dev, "out of memory in pci_save_pcie_state\n");
706 return -ENOMEM;
707 }
708 cap = (u16 *)&save_state->data[0];
709
710 pci_read_config_word(dev, pos + PCI_X_CMD, &cap[i++]);
711 save_state->cap_nr = PCI_CAP_ID_PCIX;
712 if (!found)
713 pci_add_saved_cap(dev, save_state);
714 return 0;
715 }
716
717 static void pci_restore_pcix_state(struct pci_dev *dev)
718 {
719 int i = 0, pos;
720 struct pci_cap_saved_state *save_state;
721 u16 *cap;
722
723 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
724 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
725 if (!save_state || pos <= 0)
726 return;
727 cap = (u16 *)&save_state->data[0];
728
729 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
730 }
731
732
733 /**
734 * pci_save_state - save the PCI configuration space of a device before suspending
735 * @dev: - PCI device that we're dealing with
736 */
737 int
738 pci_save_state(struct pci_dev *dev)
739 {
740 int i;
741 /* XXX: 100% dword access ok here? */
742 for (i = 0; i < 16; i++)
743 pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]);
744 if ((i = pci_save_pcie_state(dev)) != 0)
745 return i;
746 if ((i = pci_save_pcix_state(dev)) != 0)
747 return i;
748 return 0;
749 }
750
751 /**
752 * pci_restore_state - Restore the saved state of a PCI device
753 * @dev: - PCI device that we're dealing with
754 */
755 int
756 pci_restore_state(struct pci_dev *dev)
757 {
758 int i;
759 u32 val;
760
761 /* PCI Express register must be restored first */
762 pci_restore_pcie_state(dev);
763
764 /*
765 * The Base Address register should be programmed before the command
766 * register(s)
767 */
768 for (i = 15; i >= 0; i--) {
769 pci_read_config_dword(dev, i * 4, &val);
770 if (val != dev->saved_config_space[i]) {
771 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
772 "space at offset %#x (was %#x, writing %#x)\n",
773 i, val, (int)dev->saved_config_space[i]);
774 pci_write_config_dword(dev,i * 4,
775 dev->saved_config_space[i]);
776 }
777 }
778 pci_restore_pcix_state(dev);
779 pci_restore_msi_state(dev);
780
781 return 0;
782 }
783
784 static int do_pci_enable_device(struct pci_dev *dev, int bars)
785 {
786 int err;
787
788 err = pci_set_power_state(dev, PCI_D0);
789 if (err < 0 && err != -EIO)
790 return err;
791 err = pcibios_enable_device(dev, bars);
792 if (err < 0)
793 return err;
794 pci_fixup_device(pci_fixup_enable, dev);
795
796 return 0;
797 }
798
799 /**
800 * pci_reenable_device - Resume abandoned device
801 * @dev: PCI device to be resumed
802 *
803 * Note this function is a backend of pci_default_resume and is not supposed
804 * to be called by normal code, write proper resume handler and use it instead.
805 */
806 int pci_reenable_device(struct pci_dev *dev)
807 {
808 if (atomic_read(&dev->enable_cnt))
809 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
810 return 0;
811 }
812
813 static int __pci_enable_device_flags(struct pci_dev *dev,
814 resource_size_t flags)
815 {
816 int err;
817 int i, bars = 0;
818
819 if (atomic_add_return(1, &dev->enable_cnt) > 1)
820 return 0; /* already enabled */
821
822 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
823 if (dev->resource[i].flags & flags)
824 bars |= (1 << i);
825
826 err = do_pci_enable_device(dev, bars);
827 if (err < 0)
828 atomic_dec(&dev->enable_cnt);
829 return err;
830 }
831
832 /**
833 * pci_enable_device_io - Initialize a device for use with IO space
834 * @dev: PCI device to be initialized
835 *
836 * Initialize device before it's used by a driver. Ask low-level code
837 * to enable I/O resources. Wake up the device if it was suspended.
838 * Beware, this function can fail.
839 */
840 int pci_enable_device_io(struct pci_dev *dev)
841 {
842 return __pci_enable_device_flags(dev, IORESOURCE_IO);
843 }
844
845 /**
846 * pci_enable_device_mem - Initialize a device for use with Memory space
847 * @dev: PCI device to be initialized
848 *
849 * Initialize device before it's used by a driver. Ask low-level code
850 * to enable Memory resources. Wake up the device if it was suspended.
851 * Beware, this function can fail.
852 */
853 int pci_enable_device_mem(struct pci_dev *dev)
854 {
855 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
856 }
857
858 /**
859 * pci_enable_device - Initialize device before it's used by a driver.
860 * @dev: PCI device to be initialized
861 *
862 * Initialize device before it's used by a driver. Ask low-level code
863 * to enable I/O and memory. Wake up the device if it was suspended.
864 * Beware, this function can fail.
865 *
866 * Note we don't actually enable the device many times if we call
867 * this function repeatedly (we just increment the count).
868 */
869 int pci_enable_device(struct pci_dev *dev)
870 {
871 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
872 }
873
874 /*
875 * Managed PCI resources. This manages device on/off, intx/msi/msix
876 * on/off and BAR regions. pci_dev itself records msi/msix status, so
877 * there's no need to track it separately. pci_devres is initialized
878 * when a device is enabled using managed PCI device enable interface.
879 */
880 struct pci_devres {
881 unsigned int enabled:1;
882 unsigned int pinned:1;
883 unsigned int orig_intx:1;
884 unsigned int restore_intx:1;
885 u32 region_mask;
886 };
887
888 static void pcim_release(struct device *gendev, void *res)
889 {
890 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
891 struct pci_devres *this = res;
892 int i;
893
894 if (dev->msi_enabled)
895 pci_disable_msi(dev);
896 if (dev->msix_enabled)
897 pci_disable_msix(dev);
898
899 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
900 if (this->region_mask & (1 << i))
901 pci_release_region(dev, i);
902
903 if (this->restore_intx)
904 pci_intx(dev, this->orig_intx);
905
906 if (this->enabled && !this->pinned)
907 pci_disable_device(dev);
908 }
909
910 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
911 {
912 struct pci_devres *dr, *new_dr;
913
914 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
915 if (dr)
916 return dr;
917
918 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
919 if (!new_dr)
920 return NULL;
921 return devres_get(&pdev->dev, new_dr, NULL, NULL);
922 }
923
924 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
925 {
926 if (pci_is_managed(pdev))
927 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
928 return NULL;
929 }
930
931 /**
932 * pcim_enable_device - Managed pci_enable_device()
933 * @pdev: PCI device to be initialized
934 *
935 * Managed pci_enable_device().
936 */
937 int pcim_enable_device(struct pci_dev *pdev)
938 {
939 struct pci_devres *dr;
940 int rc;
941
942 dr = get_pci_dr(pdev);
943 if (unlikely(!dr))
944 return -ENOMEM;
945 if (dr->enabled)
946 return 0;
947
948 rc = pci_enable_device(pdev);
949 if (!rc) {
950 pdev->is_managed = 1;
951 dr->enabled = 1;
952 }
953 return rc;
954 }
955
956 /**
957 * pcim_pin_device - Pin managed PCI device
958 * @pdev: PCI device to pin
959 *
960 * Pin managed PCI device @pdev. Pinned device won't be disabled on
961 * driver detach. @pdev must have been enabled with
962 * pcim_enable_device().
963 */
964 void pcim_pin_device(struct pci_dev *pdev)
965 {
966 struct pci_devres *dr;
967
968 dr = find_pci_dr(pdev);
969 WARN_ON(!dr || !dr->enabled);
970 if (dr)
971 dr->pinned = 1;
972 }
973
974 /**
975 * pcibios_disable_device - disable arch specific PCI resources for device dev
976 * @dev: the PCI device to disable
977 *
978 * Disables architecture specific PCI resources for the device. This
979 * is the default implementation. Architecture implementations can
980 * override this.
981 */
982 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
983
984 /**
985 * pci_disable_device - Disable PCI device after use
986 * @dev: PCI device to be disabled
987 *
988 * Signal to the system that the PCI device is not in use by the system
989 * anymore. This only involves disabling PCI bus-mastering, if active.
990 *
991 * Note we don't actually disable the device until all callers of
992 * pci_device_enable() have called pci_device_disable().
993 */
994 void
995 pci_disable_device(struct pci_dev *dev)
996 {
997 struct pci_devres *dr;
998 u16 pci_command;
999
1000 dr = find_pci_dr(dev);
1001 if (dr)
1002 dr->enabled = 0;
1003
1004 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1005 return;
1006
1007 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1008 if (pci_command & PCI_COMMAND_MASTER) {
1009 pci_command &= ~PCI_COMMAND_MASTER;
1010 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1011 }
1012 dev->is_busmaster = 0;
1013
1014 pcibios_disable_device(dev);
1015 }
1016
1017 /**
1018 * pcibios_set_pcie_reset_state - set reset state for device dev
1019 * @dev: the PCI-E device reset
1020 * @state: Reset state to enter into
1021 *
1022 *
1023 * Sets the PCI-E reset state for the device. This is the default
1024 * implementation. Architecture implementations can override this.
1025 */
1026 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1027 enum pcie_reset_state state)
1028 {
1029 return -EINVAL;
1030 }
1031
1032 /**
1033 * pci_set_pcie_reset_state - set reset state for device dev
1034 * @dev: the PCI-E device reset
1035 * @state: Reset state to enter into
1036 *
1037 *
1038 * Sets the PCI reset state for the device.
1039 */
1040 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1041 {
1042 return pcibios_set_pcie_reset_state(dev, state);
1043 }
1044
1045 /**
1046 * pci_pme_capable - check the capability of PCI device to generate PME#
1047 * @dev: PCI device to handle.
1048 * @state: PCI state from which device will issue PME#.
1049 */
1050 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1051 {
1052 if (!dev->pm_cap)
1053 return false;
1054
1055 return !!(dev->pme_support & (1 << state));
1056 }
1057
1058 /**
1059 * pci_pme_active - enable or disable PCI device's PME# function
1060 * @dev: PCI device to handle.
1061 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1062 *
1063 * The caller must verify that the device is capable of generating PME# before
1064 * calling this function with @enable equal to 'true'.
1065 */
1066 void pci_pme_active(struct pci_dev *dev, bool enable)
1067 {
1068 u16 pmcsr;
1069
1070 if (!dev->pm_cap)
1071 return;
1072
1073 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1074 /* Clear PME_Status by writing 1 to it and enable PME# */
1075 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1076 if (!enable)
1077 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1078
1079 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1080
1081 dev_printk(KERN_INFO, &dev->dev, "PME# %s\n",
1082 enable ? "enabled" : "disabled");
1083 }
1084
1085 /**
1086 * pci_enable_wake - enable PCI device as wakeup event source
1087 * @dev: PCI device affected
1088 * @state: PCI state from which device will issue wakeup events
1089 * @enable: True to enable event generation; false to disable
1090 *
1091 * This enables the device as a wakeup event source, or disables it.
1092 * When such events involves platform-specific hooks, those hooks are
1093 * called automatically by this routine.
1094 *
1095 * Devices with legacy power management (no standard PCI PM capabilities)
1096 * always require such platform hooks.
1097 *
1098 * RETURN VALUE:
1099 * 0 is returned on success
1100 * -EINVAL is returned if device is not supposed to wake up the system
1101 * Error code depending on the platform is returned if both the platform and
1102 * the native mechanism fail to enable the generation of wake-up events
1103 */
1104 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, int enable)
1105 {
1106 int error = 0;
1107 bool pme_done = false;
1108
1109 if (!device_may_wakeup(&dev->dev))
1110 return -EINVAL;
1111
1112 /*
1113 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1114 * Anderson we should be doing PME# wake enable followed by ACPI wake
1115 * enable. To disable wake-up we call the platform first, for symmetry.
1116 */
1117
1118 if (!enable && platform_pci_can_wakeup(dev))
1119 error = platform_pci_sleep_wake(dev, false);
1120
1121 if (!enable || pci_pme_capable(dev, state)) {
1122 pci_pme_active(dev, enable);
1123 pme_done = true;
1124 }
1125
1126 if (enable && platform_pci_can_wakeup(dev))
1127 error = platform_pci_sleep_wake(dev, true);
1128
1129 return pme_done ? 0 : error;
1130 }
1131
1132 /**
1133 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1134 * @dev: PCI device to prepare
1135 * @enable: True to enable wake-up event generation; false to disable
1136 *
1137 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1138 * and this function allows them to set that up cleanly - pci_enable_wake()
1139 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1140 * ordering constraints.
1141 *
1142 * This function only returns error code if the device is not capable of
1143 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1144 * enable wake-up power for it.
1145 */
1146 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1147 {
1148 return pci_pme_capable(dev, PCI_D3cold) ?
1149 pci_enable_wake(dev, PCI_D3cold, enable) :
1150 pci_enable_wake(dev, PCI_D3hot, enable);
1151 }
1152
1153 /**
1154 * pci_target_state - find an appropriate low power state for a given PCI dev
1155 * @dev: PCI device
1156 *
1157 * Use underlying platform code to find a supported low power state for @dev.
1158 * If the platform can't manage @dev, return the deepest state from which it
1159 * can generate wake events, based on any available PME info.
1160 */
1161 pci_power_t pci_target_state(struct pci_dev *dev)
1162 {
1163 pci_power_t target_state = PCI_D3hot;
1164
1165 if (platform_pci_power_manageable(dev)) {
1166 /*
1167 * Call the platform to choose the target state of the device
1168 * and enable wake-up from this state if supported.
1169 */
1170 pci_power_t state = platform_pci_choose_state(dev);
1171
1172 switch (state) {
1173 case PCI_POWER_ERROR:
1174 case PCI_UNKNOWN:
1175 break;
1176 case PCI_D1:
1177 case PCI_D2:
1178 if (pci_no_d1d2(dev))
1179 break;
1180 default:
1181 target_state = state;
1182 }
1183 } else if (device_may_wakeup(&dev->dev)) {
1184 /*
1185 * Find the deepest state from which the device can generate
1186 * wake-up events, make it the target state and enable device
1187 * to generate PME#.
1188 */
1189 if (!dev->pm_cap)
1190 return PCI_POWER_ERROR;
1191
1192 if (dev->pme_support) {
1193 while (target_state
1194 && !(dev->pme_support & (1 << target_state)))
1195 target_state--;
1196 }
1197 }
1198
1199 return target_state;
1200 }
1201
1202 /**
1203 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1204 * @dev: Device to handle.
1205 *
1206 * Choose the power state appropriate for the device depending on whether
1207 * it can wake up the system and/or is power manageable by the platform
1208 * (PCI_D3hot is the default) and put the device into that state.
1209 */
1210 int pci_prepare_to_sleep(struct pci_dev *dev)
1211 {
1212 pci_power_t target_state = pci_target_state(dev);
1213 int error;
1214
1215 if (target_state == PCI_POWER_ERROR)
1216 return -EIO;
1217
1218 pci_enable_wake(dev, target_state, true);
1219
1220 error = pci_set_power_state(dev, target_state);
1221
1222 if (error)
1223 pci_enable_wake(dev, target_state, false);
1224
1225 return error;
1226 }
1227
1228 /**
1229 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1230 * @dev: Device to handle.
1231 *
1232 * Disable device's sytem wake-up capability and put it into D0.
1233 */
1234 int pci_back_from_sleep(struct pci_dev *dev)
1235 {
1236 pci_enable_wake(dev, PCI_D0, false);
1237 return pci_set_power_state(dev, PCI_D0);
1238 }
1239
1240 /**
1241 * pci_pm_init - Initialize PM functions of given PCI device
1242 * @dev: PCI device to handle.
1243 */
1244 void pci_pm_init(struct pci_dev *dev)
1245 {
1246 int pm;
1247 u16 pmc;
1248
1249 dev->pm_cap = 0;
1250
1251 /* find PCI PM capability in list */
1252 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1253 if (!pm)
1254 return;
1255 /* Check device's ability to generate PME# */
1256 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1257
1258 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1259 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1260 pmc & PCI_PM_CAP_VER_MASK);
1261 return;
1262 }
1263
1264 dev->pm_cap = pm;
1265
1266 dev->d1_support = false;
1267 dev->d2_support = false;
1268 if (!pci_no_d1d2(dev)) {
1269 if (pmc & PCI_PM_CAP_D1)
1270 dev->d1_support = true;
1271 if (pmc & PCI_PM_CAP_D2)
1272 dev->d2_support = true;
1273
1274 if (dev->d1_support || dev->d2_support)
1275 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1276 dev->d1_support ? " D1" : "",
1277 dev->d2_support ? " D2" : "");
1278 }
1279
1280 pmc &= PCI_PM_CAP_PME_MASK;
1281 if (pmc) {
1282 dev_info(&dev->dev, "PME# supported from%s%s%s%s%s\n",
1283 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1284 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1285 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1286 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1287 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1288 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1289 /*
1290 * Make device's PM flags reflect the wake-up capability, but
1291 * let the user space enable it to wake up the system as needed.
1292 */
1293 device_set_wakeup_capable(&dev->dev, true);
1294 device_set_wakeup_enable(&dev->dev, false);
1295 /* Disable the PME# generation functionality */
1296 pci_pme_active(dev, false);
1297 } else {
1298 dev->pme_support = 0;
1299 }
1300 }
1301
1302 int
1303 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1304 {
1305 u8 pin;
1306
1307 pin = dev->pin;
1308 if (!pin)
1309 return -1;
1310 pin--;
1311 while (dev->bus->self) {
1312 pin = (pin + PCI_SLOT(dev->devfn)) % 4;
1313 dev = dev->bus->self;
1314 }
1315 *bridge = dev;
1316 return pin;
1317 }
1318
1319 /**
1320 * pci_release_region - Release a PCI bar
1321 * @pdev: PCI device whose resources were previously reserved by pci_request_region
1322 * @bar: BAR to release
1323 *
1324 * Releases the PCI I/O and memory resources previously reserved by a
1325 * successful call to pci_request_region. Call this function only
1326 * after all use of the PCI regions has ceased.
1327 */
1328 void pci_release_region(struct pci_dev *pdev, int bar)
1329 {
1330 struct pci_devres *dr;
1331
1332 if (pci_resource_len(pdev, bar) == 0)
1333 return;
1334 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1335 release_region(pci_resource_start(pdev, bar),
1336 pci_resource_len(pdev, bar));
1337 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1338 release_mem_region(pci_resource_start(pdev, bar),
1339 pci_resource_len(pdev, bar));
1340
1341 dr = find_pci_dr(pdev);
1342 if (dr)
1343 dr->region_mask &= ~(1 << bar);
1344 }
1345
1346 /**
1347 * pci_request_region - Reserved PCI I/O and memory resource
1348 * @pdev: PCI device whose resources are to be reserved
1349 * @bar: BAR to be reserved
1350 * @res_name: Name to be associated with resource.
1351 *
1352 * Mark the PCI region associated with PCI device @pdev BR @bar as
1353 * being reserved by owner @res_name. Do not access any
1354 * address inside the PCI regions unless this call returns
1355 * successfully.
1356 *
1357 * Returns 0 on success, or %EBUSY on error. A warning
1358 * message is also printed on failure.
1359 */
1360 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1361 {
1362 struct pci_devres *dr;
1363
1364 if (pci_resource_len(pdev, bar) == 0)
1365 return 0;
1366
1367 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1368 if (!request_region(pci_resource_start(pdev, bar),
1369 pci_resource_len(pdev, bar), res_name))
1370 goto err_out;
1371 }
1372 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1373 if (!request_mem_region(pci_resource_start(pdev, bar),
1374 pci_resource_len(pdev, bar), res_name))
1375 goto err_out;
1376 }
1377
1378 dr = find_pci_dr(pdev);
1379 if (dr)
1380 dr->region_mask |= 1 << bar;
1381
1382 return 0;
1383
1384 err_out:
1385 dev_warn(&pdev->dev, "BAR %d: can't reserve %s region %pR\n",
1386 bar,
1387 pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem",
1388 &pdev->resource[bar]);
1389 return -EBUSY;
1390 }
1391
1392 /**
1393 * pci_release_selected_regions - Release selected PCI I/O and memory resources
1394 * @pdev: PCI device whose resources were previously reserved
1395 * @bars: Bitmask of BARs to be released
1396 *
1397 * Release selected PCI I/O and memory resources previously reserved.
1398 * Call this function only after all use of the PCI regions has ceased.
1399 */
1400 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1401 {
1402 int i;
1403
1404 for (i = 0; i < 6; i++)
1405 if (bars & (1 << i))
1406 pci_release_region(pdev, i);
1407 }
1408
1409 /**
1410 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1411 * @pdev: PCI device whose resources are to be reserved
1412 * @bars: Bitmask of BARs to be requested
1413 * @res_name: Name to be associated with resource
1414 */
1415 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1416 const char *res_name)
1417 {
1418 int i;
1419
1420 for (i = 0; i < 6; i++)
1421 if (bars & (1 << i))
1422 if(pci_request_region(pdev, i, res_name))
1423 goto err_out;
1424 return 0;
1425
1426 err_out:
1427 while(--i >= 0)
1428 if (bars & (1 << i))
1429 pci_release_region(pdev, i);
1430
1431 return -EBUSY;
1432 }
1433
1434 /**
1435 * pci_release_regions - Release reserved PCI I/O and memory resources
1436 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
1437 *
1438 * Releases all PCI I/O and memory resources previously reserved by a
1439 * successful call to pci_request_regions. Call this function only
1440 * after all use of the PCI regions has ceased.
1441 */
1442
1443 void pci_release_regions(struct pci_dev *pdev)
1444 {
1445 pci_release_selected_regions(pdev, (1 << 6) - 1);
1446 }
1447
1448 /**
1449 * pci_request_regions - Reserved PCI I/O and memory resources
1450 * @pdev: PCI device whose resources are to be reserved
1451 * @res_name: Name to be associated with resource.
1452 *
1453 * Mark all PCI regions associated with PCI device @pdev as
1454 * being reserved by owner @res_name. Do not access any
1455 * address inside the PCI regions unless this call returns
1456 * successfully.
1457 *
1458 * Returns 0 on success, or %EBUSY on error. A warning
1459 * message is also printed on failure.
1460 */
1461 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1462 {
1463 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1464 }
1465
1466 /**
1467 * pci_set_master - enables bus-mastering for device dev
1468 * @dev: the PCI device to enable
1469 *
1470 * Enables bus-mastering on the device and calls pcibios_set_master()
1471 * to do the needed arch specific settings.
1472 */
1473 void
1474 pci_set_master(struct pci_dev *dev)
1475 {
1476 u16 cmd;
1477
1478 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1479 if (! (cmd & PCI_COMMAND_MASTER)) {
1480 dev_dbg(&dev->dev, "enabling bus mastering\n");
1481 cmd |= PCI_COMMAND_MASTER;
1482 pci_write_config_word(dev, PCI_COMMAND, cmd);
1483 }
1484 dev->is_busmaster = 1;
1485 pcibios_set_master(dev);
1486 }
1487
1488 #ifdef PCI_DISABLE_MWI
1489 int pci_set_mwi(struct pci_dev *dev)
1490 {
1491 return 0;
1492 }
1493
1494 int pci_try_set_mwi(struct pci_dev *dev)
1495 {
1496 return 0;
1497 }
1498
1499 void pci_clear_mwi(struct pci_dev *dev)
1500 {
1501 }
1502
1503 #else
1504
1505 #ifndef PCI_CACHE_LINE_BYTES
1506 #define PCI_CACHE_LINE_BYTES L1_CACHE_BYTES
1507 #endif
1508
1509 /* This can be overridden by arch code. */
1510 /* Don't forget this is measured in 32-bit words, not bytes */
1511 u8 pci_cache_line_size = PCI_CACHE_LINE_BYTES / 4;
1512
1513 /**
1514 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
1515 * @dev: the PCI device for which MWI is to be enabled
1516 *
1517 * Helper function for pci_set_mwi.
1518 * Originally copied from drivers/net/acenic.c.
1519 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
1520 *
1521 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1522 */
1523 static int
1524 pci_set_cacheline_size(struct pci_dev *dev)
1525 {
1526 u8 cacheline_size;
1527
1528 if (!pci_cache_line_size)
1529 return -EINVAL; /* The system doesn't support MWI. */
1530
1531 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
1532 equal to or multiple of the right value. */
1533 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1534 if (cacheline_size >= pci_cache_line_size &&
1535 (cacheline_size % pci_cache_line_size) == 0)
1536 return 0;
1537
1538 /* Write the correct value. */
1539 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
1540 /* Read it back. */
1541 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1542 if (cacheline_size == pci_cache_line_size)
1543 return 0;
1544
1545 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
1546 "supported\n", pci_cache_line_size << 2);
1547
1548 return -EINVAL;
1549 }
1550
1551 /**
1552 * pci_set_mwi - enables memory-write-invalidate PCI transaction
1553 * @dev: the PCI device for which MWI is enabled
1554 *
1555 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1556 *
1557 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1558 */
1559 int
1560 pci_set_mwi(struct pci_dev *dev)
1561 {
1562 int rc;
1563 u16 cmd;
1564
1565 rc = pci_set_cacheline_size(dev);
1566 if (rc)
1567 return rc;
1568
1569 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1570 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
1571 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1572 cmd |= PCI_COMMAND_INVALIDATE;
1573 pci_write_config_word(dev, PCI_COMMAND, cmd);
1574 }
1575
1576 return 0;
1577 }
1578
1579 /**
1580 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
1581 * @dev: the PCI device for which MWI is enabled
1582 *
1583 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1584 * Callers are not required to check the return value.
1585 *
1586 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1587 */
1588 int pci_try_set_mwi(struct pci_dev *dev)
1589 {
1590 int rc = pci_set_mwi(dev);
1591 return rc;
1592 }
1593
1594 /**
1595 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
1596 * @dev: the PCI device to disable
1597 *
1598 * Disables PCI Memory-Write-Invalidate transaction on the device
1599 */
1600 void
1601 pci_clear_mwi(struct pci_dev *dev)
1602 {
1603 u16 cmd;
1604
1605 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1606 if (cmd & PCI_COMMAND_INVALIDATE) {
1607 cmd &= ~PCI_COMMAND_INVALIDATE;
1608 pci_write_config_word(dev, PCI_COMMAND, cmd);
1609 }
1610 }
1611 #endif /* ! PCI_DISABLE_MWI */
1612
1613 /**
1614 * pci_intx - enables/disables PCI INTx for device dev
1615 * @pdev: the PCI device to operate on
1616 * @enable: boolean: whether to enable or disable PCI INTx
1617 *
1618 * Enables/disables PCI INTx for device dev
1619 */
1620 void
1621 pci_intx(struct pci_dev *pdev, int enable)
1622 {
1623 u16 pci_command, new;
1624
1625 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1626
1627 if (enable) {
1628 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
1629 } else {
1630 new = pci_command | PCI_COMMAND_INTX_DISABLE;
1631 }
1632
1633 if (new != pci_command) {
1634 struct pci_devres *dr;
1635
1636 pci_write_config_word(pdev, PCI_COMMAND, new);
1637
1638 dr = find_pci_dr(pdev);
1639 if (dr && !dr->restore_intx) {
1640 dr->restore_intx = 1;
1641 dr->orig_intx = !enable;
1642 }
1643 }
1644 }
1645
1646 /**
1647 * pci_msi_off - disables any msi or msix capabilities
1648 * @dev: the PCI device to operate on
1649 *
1650 * If you want to use msi see pci_enable_msi and friends.
1651 * This is a lower level primitive that allows us to disable
1652 * msi operation at the device level.
1653 */
1654 void pci_msi_off(struct pci_dev *dev)
1655 {
1656 int pos;
1657 u16 control;
1658
1659 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
1660 if (pos) {
1661 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
1662 control &= ~PCI_MSI_FLAGS_ENABLE;
1663 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
1664 }
1665 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
1666 if (pos) {
1667 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
1668 control &= ~PCI_MSIX_FLAGS_ENABLE;
1669 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
1670 }
1671 }
1672
1673 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
1674 /*
1675 * These can be overridden by arch-specific implementations
1676 */
1677 int
1678 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
1679 {
1680 if (!pci_dma_supported(dev, mask))
1681 return -EIO;
1682
1683 dev->dma_mask = mask;
1684
1685 return 0;
1686 }
1687
1688 int
1689 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
1690 {
1691 if (!pci_dma_supported(dev, mask))
1692 return -EIO;
1693
1694 dev->dev.coherent_dma_mask = mask;
1695
1696 return 0;
1697 }
1698 #endif
1699
1700 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
1701 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
1702 {
1703 return dma_set_max_seg_size(&dev->dev, size);
1704 }
1705 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
1706 #endif
1707
1708 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
1709 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
1710 {
1711 return dma_set_seg_boundary(&dev->dev, mask);
1712 }
1713 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
1714 #endif
1715
1716 /**
1717 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
1718 * @dev: PCI device to query
1719 *
1720 * Returns mmrbc: maximum designed memory read count in bytes
1721 * or appropriate error value.
1722 */
1723 int pcix_get_max_mmrbc(struct pci_dev *dev)
1724 {
1725 int err, cap;
1726 u32 stat;
1727
1728 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1729 if (!cap)
1730 return -EINVAL;
1731
1732 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
1733 if (err)
1734 return -EINVAL;
1735
1736 return (stat & PCI_X_STATUS_MAX_READ) >> 12;
1737 }
1738 EXPORT_SYMBOL(pcix_get_max_mmrbc);
1739
1740 /**
1741 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
1742 * @dev: PCI device to query
1743 *
1744 * Returns mmrbc: maximum memory read count in bytes
1745 * or appropriate error value.
1746 */
1747 int pcix_get_mmrbc(struct pci_dev *dev)
1748 {
1749 int ret, cap;
1750 u32 cmd;
1751
1752 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1753 if (!cap)
1754 return -EINVAL;
1755
1756 ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
1757 if (!ret)
1758 ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
1759
1760 return ret;
1761 }
1762 EXPORT_SYMBOL(pcix_get_mmrbc);
1763
1764 /**
1765 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
1766 * @dev: PCI device to query
1767 * @mmrbc: maximum memory read count in bytes
1768 * valid values are 512, 1024, 2048, 4096
1769 *
1770 * If possible sets maximum memory read byte count, some bridges have erratas
1771 * that prevent this.
1772 */
1773 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
1774 {
1775 int cap, err = -EINVAL;
1776 u32 stat, cmd, v, o;
1777
1778 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
1779 goto out;
1780
1781 v = ffs(mmrbc) - 10;
1782
1783 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1784 if (!cap)
1785 goto out;
1786
1787 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
1788 if (err)
1789 goto out;
1790
1791 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
1792 return -E2BIG;
1793
1794 err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
1795 if (err)
1796 goto out;
1797
1798 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
1799 if (o != v) {
1800 if (v > o && dev->bus &&
1801 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
1802 return -EIO;
1803
1804 cmd &= ~PCI_X_CMD_MAX_READ;
1805 cmd |= v << 2;
1806 err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
1807 }
1808 out:
1809 return err;
1810 }
1811 EXPORT_SYMBOL(pcix_set_mmrbc);
1812
1813 /**
1814 * pcie_get_readrq - get PCI Express read request size
1815 * @dev: PCI device to query
1816 *
1817 * Returns maximum memory read request in bytes
1818 * or appropriate error value.
1819 */
1820 int pcie_get_readrq(struct pci_dev *dev)
1821 {
1822 int ret, cap;
1823 u16 ctl;
1824
1825 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
1826 if (!cap)
1827 return -EINVAL;
1828
1829 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
1830 if (!ret)
1831 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
1832
1833 return ret;
1834 }
1835 EXPORT_SYMBOL(pcie_get_readrq);
1836
1837 /**
1838 * pcie_set_readrq - set PCI Express maximum memory read request
1839 * @dev: PCI device to query
1840 * @rq: maximum memory read count in bytes
1841 * valid values are 128, 256, 512, 1024, 2048, 4096
1842 *
1843 * If possible sets maximum read byte count
1844 */
1845 int pcie_set_readrq(struct pci_dev *dev, int rq)
1846 {
1847 int cap, err = -EINVAL;
1848 u16 ctl, v;
1849
1850 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
1851 goto out;
1852
1853 v = (ffs(rq) - 8) << 12;
1854
1855 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
1856 if (!cap)
1857 goto out;
1858
1859 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
1860 if (err)
1861 goto out;
1862
1863 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
1864 ctl &= ~PCI_EXP_DEVCTL_READRQ;
1865 ctl |= v;
1866 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
1867 }
1868
1869 out:
1870 return err;
1871 }
1872 EXPORT_SYMBOL(pcie_set_readrq);
1873
1874 /**
1875 * pci_select_bars - Make BAR mask from the type of resource
1876 * @dev: the PCI device for which BAR mask is made
1877 * @flags: resource type mask to be selected
1878 *
1879 * This helper routine makes bar mask from the type of resource.
1880 */
1881 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
1882 {
1883 int i, bars = 0;
1884 for (i = 0; i < PCI_NUM_RESOURCES; i++)
1885 if (pci_resource_flags(dev, i) & flags)
1886 bars |= (1 << i);
1887 return bars;
1888 }
1889
1890 static void __devinit pci_no_domains(void)
1891 {
1892 #ifdef CONFIG_PCI_DOMAINS
1893 pci_domains_supported = 0;
1894 #endif
1895 }
1896
1897 static int __devinit pci_init(void)
1898 {
1899 struct pci_dev *dev = NULL;
1900
1901 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1902 pci_fixup_device(pci_fixup_final, dev);
1903 }
1904 return 0;
1905 }
1906
1907 static int __devinit pci_setup(char *str)
1908 {
1909 while (str) {
1910 char *k = strchr(str, ',');
1911 if (k)
1912 *k++ = 0;
1913 if (*str && (str = pcibios_setup(str)) && *str) {
1914 if (!strcmp(str, "nomsi")) {
1915 pci_no_msi();
1916 } else if (!strcmp(str, "noaer")) {
1917 pci_no_aer();
1918 } else if (!strcmp(str, "nodomains")) {
1919 pci_no_domains();
1920 } else if (!strncmp(str, "cbiosize=", 9)) {
1921 pci_cardbus_io_size = memparse(str + 9, &str);
1922 } else if (!strncmp(str, "cbmemsize=", 10)) {
1923 pci_cardbus_mem_size = memparse(str + 10, &str);
1924 } else {
1925 printk(KERN_ERR "PCI: Unknown option `%s'\n",
1926 str);
1927 }
1928 }
1929 str = k;
1930 }
1931 return 0;
1932 }
1933 early_param("pci", pci_setup);
1934
1935 device_initcall(pci_init);
1936
1937 EXPORT_SYMBOL(pci_reenable_device);
1938 EXPORT_SYMBOL(pci_enable_device_io);
1939 EXPORT_SYMBOL(pci_enable_device_mem);
1940 EXPORT_SYMBOL(pci_enable_device);
1941 EXPORT_SYMBOL(pcim_enable_device);
1942 EXPORT_SYMBOL(pcim_pin_device);
1943 EXPORT_SYMBOL(pci_disable_device);
1944 EXPORT_SYMBOL(pci_find_capability);
1945 EXPORT_SYMBOL(pci_bus_find_capability);
1946 EXPORT_SYMBOL(pci_release_regions);
1947 EXPORT_SYMBOL(pci_request_regions);
1948 EXPORT_SYMBOL(pci_release_region);
1949 EXPORT_SYMBOL(pci_request_region);
1950 EXPORT_SYMBOL(pci_release_selected_regions);
1951 EXPORT_SYMBOL(pci_request_selected_regions);
1952 EXPORT_SYMBOL(pci_set_master);
1953 EXPORT_SYMBOL(pci_set_mwi);
1954 EXPORT_SYMBOL(pci_try_set_mwi);
1955 EXPORT_SYMBOL(pci_clear_mwi);
1956 EXPORT_SYMBOL_GPL(pci_intx);
1957 EXPORT_SYMBOL(pci_set_dma_mask);
1958 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
1959 EXPORT_SYMBOL(pci_assign_resource);
1960 EXPORT_SYMBOL(pci_find_parent_resource);
1961 EXPORT_SYMBOL(pci_select_bars);
1962
1963 EXPORT_SYMBOL(pci_set_power_state);
1964 EXPORT_SYMBOL(pci_save_state);
1965 EXPORT_SYMBOL(pci_restore_state);
1966 EXPORT_SYMBOL(pci_pme_capable);
1967 EXPORT_SYMBOL(pci_pme_active);
1968 EXPORT_SYMBOL(pci_enable_wake);
1969 EXPORT_SYMBOL(pci_wake_from_d3);
1970 EXPORT_SYMBOL(pci_target_state);
1971 EXPORT_SYMBOL(pci_prepare_to_sleep);
1972 EXPORT_SYMBOL(pci_back_from_sleep);
1973 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1974