]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/pci/pci.c
Merge tag 'modules-for-v5.7' of git://git.kernel.org/pub/scm/linux/kernel/git/jeyu...
[mirror_ubuntu-jammy-kernel.git] / drivers / pci / pci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/of_pci.h>
19 #include <linux/pci.h>
20 #include <linux/pm.h>
21 #include <linux/slab.h>
22 #include <linux/module.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25 #include <linux/log2.h>
26 #include <linux/logic_pio.h>
27 #include <linux/pm_wakeup.h>
28 #include <linux/interrupt.h>
29 #include <linux/device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/pci_hotplug.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pci-ats.h>
34 #include <asm/setup.h>
35 #include <asm/dma.h>
36 #include <linux/aer.h>
37 #include "pci.h"
38
39 DEFINE_MUTEX(pci_slot_mutex);
40
41 const char *pci_power_names[] = {
42 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
43 };
44 EXPORT_SYMBOL_GPL(pci_power_names);
45
46 int isa_dma_bridge_buggy;
47 EXPORT_SYMBOL(isa_dma_bridge_buggy);
48
49 int pci_pci_problems;
50 EXPORT_SYMBOL(pci_pci_problems);
51
52 unsigned int pci_pm_d3_delay;
53
54 static void pci_pme_list_scan(struct work_struct *work);
55
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59
60 struct pci_pme_device {
61 struct list_head list;
62 struct pci_dev *dev;
63 };
64
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
66
67 static void pci_dev_d3_sleep(struct pci_dev *dev)
68 {
69 unsigned int delay = dev->d3_delay;
70
71 if (delay < pci_pm_d3_delay)
72 delay = pci_pm_d3_delay;
73
74 if (delay)
75 msleep(delay);
76 }
77
78 #ifdef CONFIG_PCI_DOMAINS
79 int pci_domains_supported = 1;
80 #endif
81
82 #define DEFAULT_CARDBUS_IO_SIZE (256)
83 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
84 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
85 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
86 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
87
88 #define DEFAULT_HOTPLUG_IO_SIZE (256)
89 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
90 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
91 /* hpiosize=nn can override this */
92 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
93 /*
94 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
95 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
96 * pci=hpmemsize=nnM overrides both
97 */
98 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
99 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
100
101 #define DEFAULT_HOTPLUG_BUS_SIZE 1
102 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
103
104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
105
106 /*
107 * The default CLS is used if arch didn't set CLS explicitly and not
108 * all pci devices agree on the same value. Arch can override either
109 * the dfl or actual value as it sees fit. Don't forget this is
110 * measured in 32-bit words, not bytes.
111 */
112 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
113 u8 pci_cache_line_size;
114
115 /*
116 * If we set up a device for bus mastering, we need to check the latency
117 * timer as certain BIOSes forget to set it properly.
118 */
119 unsigned int pcibios_max_latency = 255;
120
121 /* If set, the PCIe ARI capability will not be used. */
122 static bool pcie_ari_disabled;
123
124 /* If set, the PCIe ATS capability will not be used. */
125 static bool pcie_ats_disabled;
126
127 /* If set, the PCI config space of each device is printed during boot. */
128 bool pci_early_dump;
129
130 bool pci_ats_disabled(void)
131 {
132 return pcie_ats_disabled;
133 }
134 EXPORT_SYMBOL_GPL(pci_ats_disabled);
135
136 /* Disable bridge_d3 for all PCIe ports */
137 static bool pci_bridge_d3_disable;
138 /* Force bridge_d3 for all PCIe ports */
139 static bool pci_bridge_d3_force;
140
141 static int __init pcie_port_pm_setup(char *str)
142 {
143 if (!strcmp(str, "off"))
144 pci_bridge_d3_disable = true;
145 else if (!strcmp(str, "force"))
146 pci_bridge_d3_force = true;
147 return 1;
148 }
149 __setup("pcie_port_pm=", pcie_port_pm_setup);
150
151 /* Time to wait after a reset for device to become responsive */
152 #define PCIE_RESET_READY_POLL_MS 60000
153
154 /**
155 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
156 * @bus: pointer to PCI bus structure to search
157 *
158 * Given a PCI bus, returns the highest PCI bus number present in the set
159 * including the given PCI bus and its list of child PCI buses.
160 */
161 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
162 {
163 struct pci_bus *tmp;
164 unsigned char max, n;
165
166 max = bus->busn_res.end;
167 list_for_each_entry(tmp, &bus->children, node) {
168 n = pci_bus_max_busnr(tmp);
169 if (n > max)
170 max = n;
171 }
172 return max;
173 }
174 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
175
176 /**
177 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
178 * @pdev: the PCI device
179 *
180 * Returns error bits set in PCI_STATUS and clears them.
181 */
182 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
183 {
184 u16 status;
185 int ret;
186
187 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
188 if (ret != PCIBIOS_SUCCESSFUL)
189 return -EIO;
190
191 status &= PCI_STATUS_ERROR_BITS;
192 if (status)
193 pci_write_config_word(pdev, PCI_STATUS, status);
194
195 return status;
196 }
197 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
198
199 #ifdef CONFIG_HAS_IOMEM
200 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
201 {
202 struct resource *res = &pdev->resource[bar];
203
204 /*
205 * Make sure the BAR is actually a memory resource, not an IO resource
206 */
207 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
208 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
209 return NULL;
210 }
211 return ioremap(res->start, resource_size(res));
212 }
213 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
214
215 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
216 {
217 /*
218 * Make sure the BAR is actually a memory resource, not an IO resource
219 */
220 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
221 WARN_ON(1);
222 return NULL;
223 }
224 return ioremap_wc(pci_resource_start(pdev, bar),
225 pci_resource_len(pdev, bar));
226 }
227 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
228 #endif
229
230 /**
231 * pci_dev_str_match_path - test if a path string matches a device
232 * @dev: the PCI device to test
233 * @path: string to match the device against
234 * @endptr: pointer to the string after the match
235 *
236 * Test if a string (typically from a kernel parameter) formatted as a
237 * path of device/function addresses matches a PCI device. The string must
238 * be of the form:
239 *
240 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
241 *
242 * A path for a device can be obtained using 'lspci -t'. Using a path
243 * is more robust against bus renumbering than using only a single bus,
244 * device and function address.
245 *
246 * Returns 1 if the string matches the device, 0 if it does not and
247 * a negative error code if it fails to parse the string.
248 */
249 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
250 const char **endptr)
251 {
252 int ret;
253 int seg, bus, slot, func;
254 char *wpath, *p;
255 char end;
256
257 *endptr = strchrnul(path, ';');
258
259 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
260 if (!wpath)
261 return -ENOMEM;
262
263 while (1) {
264 p = strrchr(wpath, '/');
265 if (!p)
266 break;
267 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
268 if (ret != 2) {
269 ret = -EINVAL;
270 goto free_and_exit;
271 }
272
273 if (dev->devfn != PCI_DEVFN(slot, func)) {
274 ret = 0;
275 goto free_and_exit;
276 }
277
278 /*
279 * Note: we don't need to get a reference to the upstream
280 * bridge because we hold a reference to the top level
281 * device which should hold a reference to the bridge,
282 * and so on.
283 */
284 dev = pci_upstream_bridge(dev);
285 if (!dev) {
286 ret = 0;
287 goto free_and_exit;
288 }
289
290 *p = 0;
291 }
292
293 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
294 &func, &end);
295 if (ret != 4) {
296 seg = 0;
297 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
298 if (ret != 3) {
299 ret = -EINVAL;
300 goto free_and_exit;
301 }
302 }
303
304 ret = (seg == pci_domain_nr(dev->bus) &&
305 bus == dev->bus->number &&
306 dev->devfn == PCI_DEVFN(slot, func));
307
308 free_and_exit:
309 kfree(wpath);
310 return ret;
311 }
312
313 /**
314 * pci_dev_str_match - test if a string matches a device
315 * @dev: the PCI device to test
316 * @p: string to match the device against
317 * @endptr: pointer to the string after the match
318 *
319 * Test if a string (typically from a kernel parameter) matches a specified
320 * PCI device. The string may be of one of the following formats:
321 *
322 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
323 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
324 *
325 * The first format specifies a PCI bus/device/function address which
326 * may change if new hardware is inserted, if motherboard firmware changes,
327 * or due to changes caused in kernel parameters. If the domain is
328 * left unspecified, it is taken to be 0. In order to be robust against
329 * bus renumbering issues, a path of PCI device/function numbers may be used
330 * to address the specific device. The path for a device can be determined
331 * through the use of 'lspci -t'.
332 *
333 * The second format matches devices using IDs in the configuration
334 * space which may match multiple devices in the system. A value of 0
335 * for any field will match all devices. (Note: this differs from
336 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
337 * legacy reasons and convenience so users don't have to specify
338 * FFFFFFFFs on the command line.)
339 *
340 * Returns 1 if the string matches the device, 0 if it does not and
341 * a negative error code if the string cannot be parsed.
342 */
343 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
344 const char **endptr)
345 {
346 int ret;
347 int count;
348 unsigned short vendor, device, subsystem_vendor, subsystem_device;
349
350 if (strncmp(p, "pci:", 4) == 0) {
351 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
352 p += 4;
353 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
354 &subsystem_vendor, &subsystem_device, &count);
355 if (ret != 4) {
356 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
357 if (ret != 2)
358 return -EINVAL;
359
360 subsystem_vendor = 0;
361 subsystem_device = 0;
362 }
363
364 p += count;
365
366 if ((!vendor || vendor == dev->vendor) &&
367 (!device || device == dev->device) &&
368 (!subsystem_vendor ||
369 subsystem_vendor == dev->subsystem_vendor) &&
370 (!subsystem_device ||
371 subsystem_device == dev->subsystem_device))
372 goto found;
373 } else {
374 /*
375 * PCI Bus, Device, Function IDs are specified
376 * (optionally, may include a path of devfns following it)
377 */
378 ret = pci_dev_str_match_path(dev, p, &p);
379 if (ret < 0)
380 return ret;
381 else if (ret)
382 goto found;
383 }
384
385 *endptr = p;
386 return 0;
387
388 found:
389 *endptr = p;
390 return 1;
391 }
392
393 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
394 u8 pos, int cap, int *ttl)
395 {
396 u8 id;
397 u16 ent;
398
399 pci_bus_read_config_byte(bus, devfn, pos, &pos);
400
401 while ((*ttl)--) {
402 if (pos < 0x40)
403 break;
404 pos &= ~3;
405 pci_bus_read_config_word(bus, devfn, pos, &ent);
406
407 id = ent & 0xff;
408 if (id == 0xff)
409 break;
410 if (id == cap)
411 return pos;
412 pos = (ent >> 8);
413 }
414 return 0;
415 }
416
417 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
418 u8 pos, int cap)
419 {
420 int ttl = PCI_FIND_CAP_TTL;
421
422 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
423 }
424
425 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
426 {
427 return __pci_find_next_cap(dev->bus, dev->devfn,
428 pos + PCI_CAP_LIST_NEXT, cap);
429 }
430 EXPORT_SYMBOL_GPL(pci_find_next_capability);
431
432 static int __pci_bus_find_cap_start(struct pci_bus *bus,
433 unsigned int devfn, u8 hdr_type)
434 {
435 u16 status;
436
437 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
438 if (!(status & PCI_STATUS_CAP_LIST))
439 return 0;
440
441 switch (hdr_type) {
442 case PCI_HEADER_TYPE_NORMAL:
443 case PCI_HEADER_TYPE_BRIDGE:
444 return PCI_CAPABILITY_LIST;
445 case PCI_HEADER_TYPE_CARDBUS:
446 return PCI_CB_CAPABILITY_LIST;
447 }
448
449 return 0;
450 }
451
452 /**
453 * pci_find_capability - query for devices' capabilities
454 * @dev: PCI device to query
455 * @cap: capability code
456 *
457 * Tell if a device supports a given PCI capability.
458 * Returns the address of the requested capability structure within the
459 * device's PCI configuration space or 0 in case the device does not
460 * support it. Possible values for @cap include:
461 *
462 * %PCI_CAP_ID_PM Power Management
463 * %PCI_CAP_ID_AGP Accelerated Graphics Port
464 * %PCI_CAP_ID_VPD Vital Product Data
465 * %PCI_CAP_ID_SLOTID Slot Identification
466 * %PCI_CAP_ID_MSI Message Signalled Interrupts
467 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
468 * %PCI_CAP_ID_PCIX PCI-X
469 * %PCI_CAP_ID_EXP PCI Express
470 */
471 int pci_find_capability(struct pci_dev *dev, int cap)
472 {
473 int pos;
474
475 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
476 if (pos)
477 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
478
479 return pos;
480 }
481 EXPORT_SYMBOL(pci_find_capability);
482
483 /**
484 * pci_bus_find_capability - query for devices' capabilities
485 * @bus: the PCI bus to query
486 * @devfn: PCI device to query
487 * @cap: capability code
488 *
489 * Like pci_find_capability() but works for PCI devices that do not have a
490 * pci_dev structure set up yet.
491 *
492 * Returns the address of the requested capability structure within the
493 * device's PCI configuration space or 0 in case the device does not
494 * support it.
495 */
496 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
497 {
498 int pos;
499 u8 hdr_type;
500
501 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
502
503 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
504 if (pos)
505 pos = __pci_find_next_cap(bus, devfn, pos, cap);
506
507 return pos;
508 }
509 EXPORT_SYMBOL(pci_bus_find_capability);
510
511 /**
512 * pci_find_next_ext_capability - Find an extended capability
513 * @dev: PCI device to query
514 * @start: address at which to start looking (0 to start at beginning of list)
515 * @cap: capability code
516 *
517 * Returns the address of the next matching extended capability structure
518 * within the device's PCI configuration space or 0 if the device does
519 * not support it. Some capabilities can occur several times, e.g., the
520 * vendor-specific capability, and this provides a way to find them all.
521 */
522 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
523 {
524 u32 header;
525 int ttl;
526 int pos = PCI_CFG_SPACE_SIZE;
527
528 /* minimum 8 bytes per capability */
529 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
530
531 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
532 return 0;
533
534 if (start)
535 pos = start;
536
537 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
538 return 0;
539
540 /*
541 * If we have no capabilities, this is indicated by cap ID,
542 * cap version and next pointer all being 0.
543 */
544 if (header == 0)
545 return 0;
546
547 while (ttl-- > 0) {
548 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
549 return pos;
550
551 pos = PCI_EXT_CAP_NEXT(header);
552 if (pos < PCI_CFG_SPACE_SIZE)
553 break;
554
555 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
556 break;
557 }
558
559 return 0;
560 }
561 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
562
563 /**
564 * pci_find_ext_capability - Find an extended capability
565 * @dev: PCI device to query
566 * @cap: capability code
567 *
568 * Returns the address of the requested extended capability structure
569 * within the device's PCI configuration space or 0 if the device does
570 * not support it. Possible values for @cap include:
571 *
572 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
573 * %PCI_EXT_CAP_ID_VC Virtual Channel
574 * %PCI_EXT_CAP_ID_DSN Device Serial Number
575 * %PCI_EXT_CAP_ID_PWR Power Budgeting
576 */
577 int pci_find_ext_capability(struct pci_dev *dev, int cap)
578 {
579 return pci_find_next_ext_capability(dev, 0, cap);
580 }
581 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
582
583 /**
584 * pci_get_dsn - Read and return the 8-byte Device Serial Number
585 * @dev: PCI device to query
586 *
587 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
588 * Number.
589 *
590 * Returns the DSN, or zero if the capability does not exist.
591 */
592 u64 pci_get_dsn(struct pci_dev *dev)
593 {
594 u32 dword;
595 u64 dsn;
596 int pos;
597
598 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
599 if (!pos)
600 return 0;
601
602 /*
603 * The Device Serial Number is two dwords offset 4 bytes from the
604 * capability position. The specification says that the first dword is
605 * the lower half, and the second dword is the upper half.
606 */
607 pos += 4;
608 pci_read_config_dword(dev, pos, &dword);
609 dsn = (u64)dword;
610 pci_read_config_dword(dev, pos + 4, &dword);
611 dsn |= ((u64)dword) << 32;
612
613 return dsn;
614 }
615 EXPORT_SYMBOL_GPL(pci_get_dsn);
616
617 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
618 {
619 int rc, ttl = PCI_FIND_CAP_TTL;
620 u8 cap, mask;
621
622 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
623 mask = HT_3BIT_CAP_MASK;
624 else
625 mask = HT_5BIT_CAP_MASK;
626
627 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
628 PCI_CAP_ID_HT, &ttl);
629 while (pos) {
630 rc = pci_read_config_byte(dev, pos + 3, &cap);
631 if (rc != PCIBIOS_SUCCESSFUL)
632 return 0;
633
634 if ((cap & mask) == ht_cap)
635 return pos;
636
637 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
638 pos + PCI_CAP_LIST_NEXT,
639 PCI_CAP_ID_HT, &ttl);
640 }
641
642 return 0;
643 }
644 /**
645 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
646 * @dev: PCI device to query
647 * @pos: Position from which to continue searching
648 * @ht_cap: Hypertransport capability code
649 *
650 * To be used in conjunction with pci_find_ht_capability() to search for
651 * all capabilities matching @ht_cap. @pos should always be a value returned
652 * from pci_find_ht_capability().
653 *
654 * NB. To be 100% safe against broken PCI devices, the caller should take
655 * steps to avoid an infinite loop.
656 */
657 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
658 {
659 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
660 }
661 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
662
663 /**
664 * pci_find_ht_capability - query a device's Hypertransport capabilities
665 * @dev: PCI device to query
666 * @ht_cap: Hypertransport capability code
667 *
668 * Tell if a device supports a given Hypertransport capability.
669 * Returns an address within the device's PCI configuration space
670 * or 0 in case the device does not support the request capability.
671 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
672 * which has a Hypertransport capability matching @ht_cap.
673 */
674 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
675 {
676 int pos;
677
678 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
679 if (pos)
680 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
681
682 return pos;
683 }
684 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
685
686 /**
687 * pci_find_parent_resource - return resource region of parent bus of given
688 * region
689 * @dev: PCI device structure contains resources to be searched
690 * @res: child resource record for which parent is sought
691 *
692 * For given resource region of given device, return the resource region of
693 * parent bus the given region is contained in.
694 */
695 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
696 struct resource *res)
697 {
698 const struct pci_bus *bus = dev->bus;
699 struct resource *r;
700 int i;
701
702 pci_bus_for_each_resource(bus, r, i) {
703 if (!r)
704 continue;
705 if (resource_contains(r, res)) {
706
707 /*
708 * If the window is prefetchable but the BAR is
709 * not, the allocator made a mistake.
710 */
711 if (r->flags & IORESOURCE_PREFETCH &&
712 !(res->flags & IORESOURCE_PREFETCH))
713 return NULL;
714
715 /*
716 * If we're below a transparent bridge, there may
717 * be both a positively-decoded aperture and a
718 * subtractively-decoded region that contain the BAR.
719 * We want the positively-decoded one, so this depends
720 * on pci_bus_for_each_resource() giving us those
721 * first.
722 */
723 return r;
724 }
725 }
726 return NULL;
727 }
728 EXPORT_SYMBOL(pci_find_parent_resource);
729
730 /**
731 * pci_find_resource - Return matching PCI device resource
732 * @dev: PCI device to query
733 * @res: Resource to look for
734 *
735 * Goes over standard PCI resources (BARs) and checks if the given resource
736 * is partially or fully contained in any of them. In that case the
737 * matching resource is returned, %NULL otherwise.
738 */
739 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
740 {
741 int i;
742
743 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
744 struct resource *r = &dev->resource[i];
745
746 if (r->start && resource_contains(r, res))
747 return r;
748 }
749
750 return NULL;
751 }
752 EXPORT_SYMBOL(pci_find_resource);
753
754 /**
755 * pci_find_pcie_root_port - return PCIe Root Port
756 * @dev: PCI device to query
757 *
758 * Traverse up the parent chain and return the PCIe Root Port PCI Device
759 * for a given PCI Device.
760 */
761 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
762 {
763 struct pci_dev *bridge, *highest_pcie_bridge = dev;
764
765 bridge = pci_upstream_bridge(dev);
766 while (bridge && pci_is_pcie(bridge)) {
767 highest_pcie_bridge = bridge;
768 bridge = pci_upstream_bridge(bridge);
769 }
770
771 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
772 return NULL;
773
774 return highest_pcie_bridge;
775 }
776 EXPORT_SYMBOL(pci_find_pcie_root_port);
777
778 /**
779 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
780 * @dev: the PCI device to operate on
781 * @pos: config space offset of status word
782 * @mask: mask of bit(s) to care about in status word
783 *
784 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
785 */
786 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
787 {
788 int i;
789
790 /* Wait for Transaction Pending bit clean */
791 for (i = 0; i < 4; i++) {
792 u16 status;
793 if (i)
794 msleep((1 << (i - 1)) * 100);
795
796 pci_read_config_word(dev, pos, &status);
797 if (!(status & mask))
798 return 1;
799 }
800
801 return 0;
802 }
803
804 /**
805 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
806 * @dev: PCI device to have its BARs restored
807 *
808 * Restore the BAR values for a given device, so as to make it
809 * accessible by its driver.
810 */
811 static void pci_restore_bars(struct pci_dev *dev)
812 {
813 int i;
814
815 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
816 pci_update_resource(dev, i);
817 }
818
819 static const struct pci_platform_pm_ops *pci_platform_pm;
820
821 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
822 {
823 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
824 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
825 return -EINVAL;
826 pci_platform_pm = ops;
827 return 0;
828 }
829
830 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
831 {
832 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
833 }
834
835 static inline int platform_pci_set_power_state(struct pci_dev *dev,
836 pci_power_t t)
837 {
838 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
839 }
840
841 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
842 {
843 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
844 }
845
846 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
847 {
848 if (pci_platform_pm && pci_platform_pm->refresh_state)
849 pci_platform_pm->refresh_state(dev);
850 }
851
852 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
853 {
854 return pci_platform_pm ?
855 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
856 }
857
858 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
859 {
860 return pci_platform_pm ?
861 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
862 }
863
864 static inline bool platform_pci_need_resume(struct pci_dev *dev)
865 {
866 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
867 }
868
869 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
870 {
871 return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false;
872 }
873
874 /**
875 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
876 * given PCI device
877 * @dev: PCI device to handle.
878 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
879 *
880 * RETURN VALUE:
881 * -EINVAL if the requested state is invalid.
882 * -EIO if device does not support PCI PM or its PM capabilities register has a
883 * wrong version, or device doesn't support the requested state.
884 * 0 if device already is in the requested state.
885 * 0 if device's power state has been successfully changed.
886 */
887 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
888 {
889 u16 pmcsr;
890 bool need_restore = false;
891
892 /* Check if we're already there */
893 if (dev->current_state == state)
894 return 0;
895
896 if (!dev->pm_cap)
897 return -EIO;
898
899 if (state < PCI_D0 || state > PCI_D3hot)
900 return -EINVAL;
901
902 /*
903 * Validate transition: We can enter D0 from any state, but if
904 * we're already in a low-power state, we can only go deeper. E.g.,
905 * we can go from D1 to D3, but we can't go directly from D3 to D1;
906 * we'd have to go from D3 to D0, then to D1.
907 */
908 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
909 && dev->current_state > state) {
910 pci_err(dev, "invalid power transition (from %s to %s)\n",
911 pci_power_name(dev->current_state),
912 pci_power_name(state));
913 return -EINVAL;
914 }
915
916 /* Check if this device supports the desired state */
917 if ((state == PCI_D1 && !dev->d1_support)
918 || (state == PCI_D2 && !dev->d2_support))
919 return -EIO;
920
921 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
922 if (pmcsr == (u16) ~0) {
923 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
924 pci_power_name(dev->current_state),
925 pci_power_name(state));
926 return -EIO;
927 }
928
929 /*
930 * If we're (effectively) in D3, force entire word to 0.
931 * This doesn't affect PME_Status, disables PME_En, and
932 * sets PowerState to 0.
933 */
934 switch (dev->current_state) {
935 case PCI_D0:
936 case PCI_D1:
937 case PCI_D2:
938 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
939 pmcsr |= state;
940 break;
941 case PCI_D3hot:
942 case PCI_D3cold:
943 case PCI_UNKNOWN: /* Boot-up */
944 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
945 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
946 need_restore = true;
947 /* Fall-through - force to D0 */
948 default:
949 pmcsr = 0;
950 break;
951 }
952
953 /* Enter specified state */
954 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
955
956 /*
957 * Mandatory power management transition delays; see PCI PM 1.1
958 * 5.6.1 table 18
959 */
960 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
961 pci_dev_d3_sleep(dev);
962 else if (state == PCI_D2 || dev->current_state == PCI_D2)
963 msleep(PCI_PM_D2_DELAY);
964
965 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
966 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
967 if (dev->current_state != state)
968 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
969 pci_power_name(dev->current_state),
970 pci_power_name(state));
971
972 /*
973 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
974 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
975 * from D3hot to D0 _may_ perform an internal reset, thereby
976 * going to "D0 Uninitialized" rather than "D0 Initialized".
977 * For example, at least some versions of the 3c905B and the
978 * 3c556B exhibit this behaviour.
979 *
980 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
981 * devices in a D3hot state at boot. Consequently, we need to
982 * restore at least the BARs so that the device will be
983 * accessible to its driver.
984 */
985 if (need_restore)
986 pci_restore_bars(dev);
987
988 if (dev->bus->self)
989 pcie_aspm_pm_state_change(dev->bus->self);
990
991 return 0;
992 }
993
994 /**
995 * pci_update_current_state - Read power state of given device and cache it
996 * @dev: PCI device to handle.
997 * @state: State to cache in case the device doesn't have the PM capability
998 *
999 * The power state is read from the PMCSR register, which however is
1000 * inaccessible in D3cold. The platform firmware is therefore queried first
1001 * to detect accessibility of the register. In case the platform firmware
1002 * reports an incorrect state or the device isn't power manageable by the
1003 * platform at all, we try to detect D3cold by testing accessibility of the
1004 * vendor ID in config space.
1005 */
1006 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1007 {
1008 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1009 !pci_device_is_present(dev)) {
1010 dev->current_state = PCI_D3cold;
1011 } else if (dev->pm_cap) {
1012 u16 pmcsr;
1013
1014 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1015 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1016 } else {
1017 dev->current_state = state;
1018 }
1019 }
1020
1021 /**
1022 * pci_refresh_power_state - Refresh the given device's power state data
1023 * @dev: Target PCI device.
1024 *
1025 * Ask the platform to refresh the devices power state information and invoke
1026 * pci_update_current_state() to update its current PCI power state.
1027 */
1028 void pci_refresh_power_state(struct pci_dev *dev)
1029 {
1030 if (platform_pci_power_manageable(dev))
1031 platform_pci_refresh_power_state(dev);
1032
1033 pci_update_current_state(dev, dev->current_state);
1034 }
1035
1036 /**
1037 * pci_platform_power_transition - Use platform to change device power state
1038 * @dev: PCI device to handle.
1039 * @state: State to put the device into.
1040 */
1041 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1042 {
1043 int error;
1044
1045 if (platform_pci_power_manageable(dev)) {
1046 error = platform_pci_set_power_state(dev, state);
1047 if (!error)
1048 pci_update_current_state(dev, state);
1049 } else
1050 error = -ENODEV;
1051
1052 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1053 dev->current_state = PCI_D0;
1054
1055 return error;
1056 }
1057 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1058
1059 /**
1060 * pci_wakeup - Wake up a PCI device
1061 * @pci_dev: Device to handle.
1062 * @ign: ignored parameter
1063 */
1064 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1065 {
1066 pci_wakeup_event(pci_dev);
1067 pm_request_resume(&pci_dev->dev);
1068 return 0;
1069 }
1070
1071 /**
1072 * pci_wakeup_bus - Walk given bus and wake up devices on it
1073 * @bus: Top bus of the subtree to walk.
1074 */
1075 void pci_wakeup_bus(struct pci_bus *bus)
1076 {
1077 if (bus)
1078 pci_walk_bus(bus, pci_wakeup, NULL);
1079 }
1080
1081 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1082 {
1083 int delay = 1;
1084 u32 id;
1085
1086 /*
1087 * After reset, the device should not silently discard config
1088 * requests, but it may still indicate that it needs more time by
1089 * responding to them with CRS completions. The Root Port will
1090 * generally synthesize ~0 data to complete the read (except when
1091 * CRS SV is enabled and the read was for the Vendor ID; in that
1092 * case it synthesizes 0x0001 data).
1093 *
1094 * Wait for the device to return a non-CRS completion. Read the
1095 * Command register instead of Vendor ID so we don't have to
1096 * contend with the CRS SV value.
1097 */
1098 pci_read_config_dword(dev, PCI_COMMAND, &id);
1099 while (id == ~0) {
1100 if (delay > timeout) {
1101 pci_warn(dev, "not ready %dms after %s; giving up\n",
1102 delay - 1, reset_type);
1103 return -ENOTTY;
1104 }
1105
1106 if (delay > 1000)
1107 pci_info(dev, "not ready %dms after %s; waiting\n",
1108 delay - 1, reset_type);
1109
1110 msleep(delay);
1111 delay *= 2;
1112 pci_read_config_dword(dev, PCI_COMMAND, &id);
1113 }
1114
1115 if (delay > 1000)
1116 pci_info(dev, "ready %dms after %s\n", delay - 1,
1117 reset_type);
1118
1119 return 0;
1120 }
1121
1122 /**
1123 * pci_power_up - Put the given device into D0
1124 * @dev: PCI device to power up
1125 */
1126 int pci_power_up(struct pci_dev *dev)
1127 {
1128 pci_platform_power_transition(dev, PCI_D0);
1129
1130 /*
1131 * Mandatory power management transition delays are handled in
1132 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1133 * corresponding bridge.
1134 */
1135 if (dev->runtime_d3cold) {
1136 /*
1137 * When powering on a bridge from D3cold, the whole hierarchy
1138 * may be powered on into D0uninitialized state, resume them to
1139 * give them a chance to suspend again
1140 */
1141 pci_wakeup_bus(dev->subordinate);
1142 }
1143
1144 return pci_raw_set_power_state(dev, PCI_D0);
1145 }
1146
1147 /**
1148 * __pci_dev_set_current_state - Set current state of a PCI device
1149 * @dev: Device to handle
1150 * @data: pointer to state to be set
1151 */
1152 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1153 {
1154 pci_power_t state = *(pci_power_t *)data;
1155
1156 dev->current_state = state;
1157 return 0;
1158 }
1159
1160 /**
1161 * pci_bus_set_current_state - Walk given bus and set current state of devices
1162 * @bus: Top bus of the subtree to walk.
1163 * @state: state to be set
1164 */
1165 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1166 {
1167 if (bus)
1168 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1169 }
1170
1171 /**
1172 * pci_set_power_state - Set the power state of a PCI device
1173 * @dev: PCI device to handle.
1174 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1175 *
1176 * Transition a device to a new power state, using the platform firmware and/or
1177 * the device's PCI PM registers.
1178 *
1179 * RETURN VALUE:
1180 * -EINVAL if the requested state is invalid.
1181 * -EIO if device does not support PCI PM or its PM capabilities register has a
1182 * wrong version, or device doesn't support the requested state.
1183 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1184 * 0 if device already is in the requested state.
1185 * 0 if the transition is to D3 but D3 is not supported.
1186 * 0 if device's power state has been successfully changed.
1187 */
1188 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1189 {
1190 int error;
1191
1192 /* Bound the state we're entering */
1193 if (state > PCI_D3cold)
1194 state = PCI_D3cold;
1195 else if (state < PCI_D0)
1196 state = PCI_D0;
1197 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1198
1199 /*
1200 * If the device or the parent bridge do not support PCI
1201 * PM, ignore the request if we're doing anything other
1202 * than putting it into D0 (which would only happen on
1203 * boot).
1204 */
1205 return 0;
1206
1207 /* Check if we're already there */
1208 if (dev->current_state == state)
1209 return 0;
1210
1211 if (state == PCI_D0)
1212 return pci_power_up(dev);
1213
1214 /*
1215 * This device is quirked not to be put into D3, so don't put it in
1216 * D3
1217 */
1218 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1219 return 0;
1220
1221 /*
1222 * To put device in D3cold, we put device into D3hot in native
1223 * way, then put device into D3cold with platform ops
1224 */
1225 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1226 PCI_D3hot : state);
1227
1228 if (pci_platform_power_transition(dev, state))
1229 return error;
1230
1231 /* Powering off a bridge may power off the whole hierarchy */
1232 if (state == PCI_D3cold)
1233 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1234
1235 return 0;
1236 }
1237 EXPORT_SYMBOL(pci_set_power_state);
1238
1239 /**
1240 * pci_choose_state - Choose the power state of a PCI device
1241 * @dev: PCI device to be suspended
1242 * @state: target sleep state for the whole system. This is the value
1243 * that is passed to suspend() function.
1244 *
1245 * Returns PCI power state suitable for given device and given system
1246 * message.
1247 */
1248 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1249 {
1250 pci_power_t ret;
1251
1252 if (!dev->pm_cap)
1253 return PCI_D0;
1254
1255 ret = platform_pci_choose_state(dev);
1256 if (ret != PCI_POWER_ERROR)
1257 return ret;
1258
1259 switch (state.event) {
1260 case PM_EVENT_ON:
1261 return PCI_D0;
1262 case PM_EVENT_FREEZE:
1263 case PM_EVENT_PRETHAW:
1264 /* REVISIT both freeze and pre-thaw "should" use D0 */
1265 case PM_EVENT_SUSPEND:
1266 case PM_EVENT_HIBERNATE:
1267 return PCI_D3hot;
1268 default:
1269 pci_info(dev, "unrecognized suspend event %d\n",
1270 state.event);
1271 BUG();
1272 }
1273 return PCI_D0;
1274 }
1275 EXPORT_SYMBOL(pci_choose_state);
1276
1277 #define PCI_EXP_SAVE_REGS 7
1278
1279 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1280 u16 cap, bool extended)
1281 {
1282 struct pci_cap_saved_state *tmp;
1283
1284 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1285 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1286 return tmp;
1287 }
1288 return NULL;
1289 }
1290
1291 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1292 {
1293 return _pci_find_saved_cap(dev, cap, false);
1294 }
1295
1296 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1297 {
1298 return _pci_find_saved_cap(dev, cap, true);
1299 }
1300
1301 static int pci_save_pcie_state(struct pci_dev *dev)
1302 {
1303 int i = 0;
1304 struct pci_cap_saved_state *save_state;
1305 u16 *cap;
1306
1307 if (!pci_is_pcie(dev))
1308 return 0;
1309
1310 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1311 if (!save_state) {
1312 pci_err(dev, "buffer not found in %s\n", __func__);
1313 return -ENOMEM;
1314 }
1315
1316 cap = (u16 *)&save_state->cap.data[0];
1317 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1318 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1319 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1320 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1321 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1322 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1323 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1324
1325 return 0;
1326 }
1327
1328 static void pci_restore_pcie_state(struct pci_dev *dev)
1329 {
1330 int i = 0;
1331 struct pci_cap_saved_state *save_state;
1332 u16 *cap;
1333
1334 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1335 if (!save_state)
1336 return;
1337
1338 cap = (u16 *)&save_state->cap.data[0];
1339 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1340 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1341 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1342 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1343 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1344 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1345 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1346 }
1347
1348 static int pci_save_pcix_state(struct pci_dev *dev)
1349 {
1350 int pos;
1351 struct pci_cap_saved_state *save_state;
1352
1353 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1354 if (!pos)
1355 return 0;
1356
1357 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1358 if (!save_state) {
1359 pci_err(dev, "buffer not found in %s\n", __func__);
1360 return -ENOMEM;
1361 }
1362
1363 pci_read_config_word(dev, pos + PCI_X_CMD,
1364 (u16 *)save_state->cap.data);
1365
1366 return 0;
1367 }
1368
1369 static void pci_restore_pcix_state(struct pci_dev *dev)
1370 {
1371 int i = 0, pos;
1372 struct pci_cap_saved_state *save_state;
1373 u16 *cap;
1374
1375 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1376 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1377 if (!save_state || !pos)
1378 return;
1379 cap = (u16 *)&save_state->cap.data[0];
1380
1381 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1382 }
1383
1384 static void pci_save_ltr_state(struct pci_dev *dev)
1385 {
1386 int ltr;
1387 struct pci_cap_saved_state *save_state;
1388 u16 *cap;
1389
1390 if (!pci_is_pcie(dev))
1391 return;
1392
1393 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1394 if (!ltr)
1395 return;
1396
1397 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1398 if (!save_state) {
1399 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1400 return;
1401 }
1402
1403 cap = (u16 *)&save_state->cap.data[0];
1404 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1405 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1406 }
1407
1408 static void pci_restore_ltr_state(struct pci_dev *dev)
1409 {
1410 struct pci_cap_saved_state *save_state;
1411 int ltr;
1412 u16 *cap;
1413
1414 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1415 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1416 if (!save_state || !ltr)
1417 return;
1418
1419 cap = (u16 *)&save_state->cap.data[0];
1420 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1421 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1422 }
1423
1424 /**
1425 * pci_save_state - save the PCI configuration space of a device before
1426 * suspending
1427 * @dev: PCI device that we're dealing with
1428 */
1429 int pci_save_state(struct pci_dev *dev)
1430 {
1431 int i;
1432 /* XXX: 100% dword access ok here? */
1433 for (i = 0; i < 16; i++) {
1434 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1435 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1436 i * 4, dev->saved_config_space[i]);
1437 }
1438 dev->state_saved = true;
1439
1440 i = pci_save_pcie_state(dev);
1441 if (i != 0)
1442 return i;
1443
1444 i = pci_save_pcix_state(dev);
1445 if (i != 0)
1446 return i;
1447
1448 pci_save_ltr_state(dev);
1449 pci_save_dpc_state(dev);
1450 pci_save_aer_state(dev);
1451 return pci_save_vc_state(dev);
1452 }
1453 EXPORT_SYMBOL(pci_save_state);
1454
1455 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1456 u32 saved_val, int retry, bool force)
1457 {
1458 u32 val;
1459
1460 pci_read_config_dword(pdev, offset, &val);
1461 if (!force && val == saved_val)
1462 return;
1463
1464 for (;;) {
1465 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1466 offset, val, saved_val);
1467 pci_write_config_dword(pdev, offset, saved_val);
1468 if (retry-- <= 0)
1469 return;
1470
1471 pci_read_config_dword(pdev, offset, &val);
1472 if (val == saved_val)
1473 return;
1474
1475 mdelay(1);
1476 }
1477 }
1478
1479 static void pci_restore_config_space_range(struct pci_dev *pdev,
1480 int start, int end, int retry,
1481 bool force)
1482 {
1483 int index;
1484
1485 for (index = end; index >= start; index--)
1486 pci_restore_config_dword(pdev, 4 * index,
1487 pdev->saved_config_space[index],
1488 retry, force);
1489 }
1490
1491 static void pci_restore_config_space(struct pci_dev *pdev)
1492 {
1493 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1494 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1495 /* Restore BARs before the command register. */
1496 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1497 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1498 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1499 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1500
1501 /*
1502 * Force rewriting of prefetch registers to avoid S3 resume
1503 * issues on Intel PCI bridges that occur when these
1504 * registers are not explicitly written.
1505 */
1506 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1507 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1508 } else {
1509 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1510 }
1511 }
1512
1513 static void pci_restore_rebar_state(struct pci_dev *pdev)
1514 {
1515 unsigned int pos, nbars, i;
1516 u32 ctrl;
1517
1518 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1519 if (!pos)
1520 return;
1521
1522 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1523 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1524 PCI_REBAR_CTRL_NBAR_SHIFT;
1525
1526 for (i = 0; i < nbars; i++, pos += 8) {
1527 struct resource *res;
1528 int bar_idx, size;
1529
1530 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1531 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1532 res = pdev->resource + bar_idx;
1533 size = ilog2(resource_size(res)) - 20;
1534 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1535 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1536 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1537 }
1538 }
1539
1540 /**
1541 * pci_restore_state - Restore the saved state of a PCI device
1542 * @dev: PCI device that we're dealing with
1543 */
1544 void pci_restore_state(struct pci_dev *dev)
1545 {
1546 if (!dev->state_saved)
1547 return;
1548
1549 /*
1550 * Restore max latencies (in the LTR capability) before enabling
1551 * LTR itself (in the PCIe capability).
1552 */
1553 pci_restore_ltr_state(dev);
1554
1555 pci_restore_pcie_state(dev);
1556 pci_restore_pasid_state(dev);
1557 pci_restore_pri_state(dev);
1558 pci_restore_ats_state(dev);
1559 pci_restore_vc_state(dev);
1560 pci_restore_rebar_state(dev);
1561 pci_restore_dpc_state(dev);
1562
1563 pci_aer_clear_status(dev);
1564 pci_restore_aer_state(dev);
1565
1566 pci_restore_config_space(dev);
1567
1568 pci_restore_pcix_state(dev);
1569 pci_restore_msi_state(dev);
1570
1571 /* Restore ACS and IOV configuration state */
1572 pci_enable_acs(dev);
1573 pci_restore_iov_state(dev);
1574
1575 dev->state_saved = false;
1576 }
1577 EXPORT_SYMBOL(pci_restore_state);
1578
1579 struct pci_saved_state {
1580 u32 config_space[16];
1581 struct pci_cap_saved_data cap[0];
1582 };
1583
1584 /**
1585 * pci_store_saved_state - Allocate and return an opaque struct containing
1586 * the device saved state.
1587 * @dev: PCI device that we're dealing with
1588 *
1589 * Return NULL if no state or error.
1590 */
1591 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1592 {
1593 struct pci_saved_state *state;
1594 struct pci_cap_saved_state *tmp;
1595 struct pci_cap_saved_data *cap;
1596 size_t size;
1597
1598 if (!dev->state_saved)
1599 return NULL;
1600
1601 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1602
1603 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1604 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1605
1606 state = kzalloc(size, GFP_KERNEL);
1607 if (!state)
1608 return NULL;
1609
1610 memcpy(state->config_space, dev->saved_config_space,
1611 sizeof(state->config_space));
1612
1613 cap = state->cap;
1614 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1615 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1616 memcpy(cap, &tmp->cap, len);
1617 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1618 }
1619 /* Empty cap_save terminates list */
1620
1621 return state;
1622 }
1623 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1624
1625 /**
1626 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1627 * @dev: PCI device that we're dealing with
1628 * @state: Saved state returned from pci_store_saved_state()
1629 */
1630 int pci_load_saved_state(struct pci_dev *dev,
1631 struct pci_saved_state *state)
1632 {
1633 struct pci_cap_saved_data *cap;
1634
1635 dev->state_saved = false;
1636
1637 if (!state)
1638 return 0;
1639
1640 memcpy(dev->saved_config_space, state->config_space,
1641 sizeof(state->config_space));
1642
1643 cap = state->cap;
1644 while (cap->size) {
1645 struct pci_cap_saved_state *tmp;
1646
1647 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1648 if (!tmp || tmp->cap.size != cap->size)
1649 return -EINVAL;
1650
1651 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1652 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1653 sizeof(struct pci_cap_saved_data) + cap->size);
1654 }
1655
1656 dev->state_saved = true;
1657 return 0;
1658 }
1659 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1660
1661 /**
1662 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1663 * and free the memory allocated for it.
1664 * @dev: PCI device that we're dealing with
1665 * @state: Pointer to saved state returned from pci_store_saved_state()
1666 */
1667 int pci_load_and_free_saved_state(struct pci_dev *dev,
1668 struct pci_saved_state **state)
1669 {
1670 int ret = pci_load_saved_state(dev, *state);
1671 kfree(*state);
1672 *state = NULL;
1673 return ret;
1674 }
1675 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1676
1677 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1678 {
1679 return pci_enable_resources(dev, bars);
1680 }
1681
1682 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1683 {
1684 int err;
1685 struct pci_dev *bridge;
1686 u16 cmd;
1687 u8 pin;
1688
1689 err = pci_set_power_state(dev, PCI_D0);
1690 if (err < 0 && err != -EIO)
1691 return err;
1692
1693 bridge = pci_upstream_bridge(dev);
1694 if (bridge)
1695 pcie_aspm_powersave_config_link(bridge);
1696
1697 err = pcibios_enable_device(dev, bars);
1698 if (err < 0)
1699 return err;
1700 pci_fixup_device(pci_fixup_enable, dev);
1701
1702 if (dev->msi_enabled || dev->msix_enabled)
1703 return 0;
1704
1705 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1706 if (pin) {
1707 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1708 if (cmd & PCI_COMMAND_INTX_DISABLE)
1709 pci_write_config_word(dev, PCI_COMMAND,
1710 cmd & ~PCI_COMMAND_INTX_DISABLE);
1711 }
1712
1713 return 0;
1714 }
1715
1716 /**
1717 * pci_reenable_device - Resume abandoned device
1718 * @dev: PCI device to be resumed
1719 *
1720 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1721 * to be called by normal code, write proper resume handler and use it instead.
1722 */
1723 int pci_reenable_device(struct pci_dev *dev)
1724 {
1725 if (pci_is_enabled(dev))
1726 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1727 return 0;
1728 }
1729 EXPORT_SYMBOL(pci_reenable_device);
1730
1731 static void pci_enable_bridge(struct pci_dev *dev)
1732 {
1733 struct pci_dev *bridge;
1734 int retval;
1735
1736 bridge = pci_upstream_bridge(dev);
1737 if (bridge)
1738 pci_enable_bridge(bridge);
1739
1740 if (pci_is_enabled(dev)) {
1741 if (!dev->is_busmaster)
1742 pci_set_master(dev);
1743 return;
1744 }
1745
1746 retval = pci_enable_device(dev);
1747 if (retval)
1748 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1749 retval);
1750 pci_set_master(dev);
1751 }
1752
1753 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1754 {
1755 struct pci_dev *bridge;
1756 int err;
1757 int i, bars = 0;
1758
1759 /*
1760 * Power state could be unknown at this point, either due to a fresh
1761 * boot or a device removal call. So get the current power state
1762 * so that things like MSI message writing will behave as expected
1763 * (e.g. if the device really is in D0 at enable time).
1764 */
1765 if (dev->pm_cap) {
1766 u16 pmcsr;
1767 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1768 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1769 }
1770
1771 if (atomic_inc_return(&dev->enable_cnt) > 1)
1772 return 0; /* already enabled */
1773
1774 bridge = pci_upstream_bridge(dev);
1775 if (bridge)
1776 pci_enable_bridge(bridge);
1777
1778 /* only skip sriov related */
1779 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1780 if (dev->resource[i].flags & flags)
1781 bars |= (1 << i);
1782 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1783 if (dev->resource[i].flags & flags)
1784 bars |= (1 << i);
1785
1786 err = do_pci_enable_device(dev, bars);
1787 if (err < 0)
1788 atomic_dec(&dev->enable_cnt);
1789 return err;
1790 }
1791
1792 /**
1793 * pci_enable_device_io - Initialize a device for use with IO space
1794 * @dev: PCI device to be initialized
1795 *
1796 * Initialize device before it's used by a driver. Ask low-level code
1797 * to enable I/O resources. Wake up the device if it was suspended.
1798 * Beware, this function can fail.
1799 */
1800 int pci_enable_device_io(struct pci_dev *dev)
1801 {
1802 return pci_enable_device_flags(dev, IORESOURCE_IO);
1803 }
1804 EXPORT_SYMBOL(pci_enable_device_io);
1805
1806 /**
1807 * pci_enable_device_mem - Initialize a device for use with Memory space
1808 * @dev: PCI device to be initialized
1809 *
1810 * Initialize device before it's used by a driver. Ask low-level code
1811 * to enable Memory resources. Wake up the device if it was suspended.
1812 * Beware, this function can fail.
1813 */
1814 int pci_enable_device_mem(struct pci_dev *dev)
1815 {
1816 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1817 }
1818 EXPORT_SYMBOL(pci_enable_device_mem);
1819
1820 /**
1821 * pci_enable_device - Initialize device before it's used by a driver.
1822 * @dev: PCI device to be initialized
1823 *
1824 * Initialize device before it's used by a driver. Ask low-level code
1825 * to enable I/O and memory. Wake up the device if it was suspended.
1826 * Beware, this function can fail.
1827 *
1828 * Note we don't actually enable the device many times if we call
1829 * this function repeatedly (we just increment the count).
1830 */
1831 int pci_enable_device(struct pci_dev *dev)
1832 {
1833 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1834 }
1835 EXPORT_SYMBOL(pci_enable_device);
1836
1837 /*
1838 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
1839 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
1840 * there's no need to track it separately. pci_devres is initialized
1841 * when a device is enabled using managed PCI device enable interface.
1842 */
1843 struct pci_devres {
1844 unsigned int enabled:1;
1845 unsigned int pinned:1;
1846 unsigned int orig_intx:1;
1847 unsigned int restore_intx:1;
1848 unsigned int mwi:1;
1849 u32 region_mask;
1850 };
1851
1852 static void pcim_release(struct device *gendev, void *res)
1853 {
1854 struct pci_dev *dev = to_pci_dev(gendev);
1855 struct pci_devres *this = res;
1856 int i;
1857
1858 if (dev->msi_enabled)
1859 pci_disable_msi(dev);
1860 if (dev->msix_enabled)
1861 pci_disable_msix(dev);
1862
1863 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1864 if (this->region_mask & (1 << i))
1865 pci_release_region(dev, i);
1866
1867 if (this->mwi)
1868 pci_clear_mwi(dev);
1869
1870 if (this->restore_intx)
1871 pci_intx(dev, this->orig_intx);
1872
1873 if (this->enabled && !this->pinned)
1874 pci_disable_device(dev);
1875 }
1876
1877 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1878 {
1879 struct pci_devres *dr, *new_dr;
1880
1881 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1882 if (dr)
1883 return dr;
1884
1885 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1886 if (!new_dr)
1887 return NULL;
1888 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1889 }
1890
1891 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1892 {
1893 if (pci_is_managed(pdev))
1894 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1895 return NULL;
1896 }
1897
1898 /**
1899 * pcim_enable_device - Managed pci_enable_device()
1900 * @pdev: PCI device to be initialized
1901 *
1902 * Managed pci_enable_device().
1903 */
1904 int pcim_enable_device(struct pci_dev *pdev)
1905 {
1906 struct pci_devres *dr;
1907 int rc;
1908
1909 dr = get_pci_dr(pdev);
1910 if (unlikely(!dr))
1911 return -ENOMEM;
1912 if (dr->enabled)
1913 return 0;
1914
1915 rc = pci_enable_device(pdev);
1916 if (!rc) {
1917 pdev->is_managed = 1;
1918 dr->enabled = 1;
1919 }
1920 return rc;
1921 }
1922 EXPORT_SYMBOL(pcim_enable_device);
1923
1924 /**
1925 * pcim_pin_device - Pin managed PCI device
1926 * @pdev: PCI device to pin
1927 *
1928 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1929 * driver detach. @pdev must have been enabled with
1930 * pcim_enable_device().
1931 */
1932 void pcim_pin_device(struct pci_dev *pdev)
1933 {
1934 struct pci_devres *dr;
1935
1936 dr = find_pci_dr(pdev);
1937 WARN_ON(!dr || !dr->enabled);
1938 if (dr)
1939 dr->pinned = 1;
1940 }
1941 EXPORT_SYMBOL(pcim_pin_device);
1942
1943 /*
1944 * pcibios_add_device - provide arch specific hooks when adding device dev
1945 * @dev: the PCI device being added
1946 *
1947 * Permits the platform to provide architecture specific functionality when
1948 * devices are added. This is the default implementation. Architecture
1949 * implementations can override this.
1950 */
1951 int __weak pcibios_add_device(struct pci_dev *dev)
1952 {
1953 return 0;
1954 }
1955
1956 /**
1957 * pcibios_release_device - provide arch specific hooks when releasing
1958 * device dev
1959 * @dev: the PCI device being released
1960 *
1961 * Permits the platform to provide architecture specific functionality when
1962 * devices are released. This is the default implementation. Architecture
1963 * implementations can override this.
1964 */
1965 void __weak pcibios_release_device(struct pci_dev *dev) {}
1966
1967 /**
1968 * pcibios_disable_device - disable arch specific PCI resources for device dev
1969 * @dev: the PCI device to disable
1970 *
1971 * Disables architecture specific PCI resources for the device. This
1972 * is the default implementation. Architecture implementations can
1973 * override this.
1974 */
1975 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1976
1977 /**
1978 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1979 * @irq: ISA IRQ to penalize
1980 * @active: IRQ active or not
1981 *
1982 * Permits the platform to provide architecture-specific functionality when
1983 * penalizing ISA IRQs. This is the default implementation. Architecture
1984 * implementations can override this.
1985 */
1986 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1987
1988 static void do_pci_disable_device(struct pci_dev *dev)
1989 {
1990 u16 pci_command;
1991
1992 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1993 if (pci_command & PCI_COMMAND_MASTER) {
1994 pci_command &= ~PCI_COMMAND_MASTER;
1995 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1996 }
1997
1998 pcibios_disable_device(dev);
1999 }
2000
2001 /**
2002 * pci_disable_enabled_device - Disable device without updating enable_cnt
2003 * @dev: PCI device to disable
2004 *
2005 * NOTE: This function is a backend of PCI power management routines and is
2006 * not supposed to be called drivers.
2007 */
2008 void pci_disable_enabled_device(struct pci_dev *dev)
2009 {
2010 if (pci_is_enabled(dev))
2011 do_pci_disable_device(dev);
2012 }
2013
2014 /**
2015 * pci_disable_device - Disable PCI device after use
2016 * @dev: PCI device to be disabled
2017 *
2018 * Signal to the system that the PCI device is not in use by the system
2019 * anymore. This only involves disabling PCI bus-mastering, if active.
2020 *
2021 * Note we don't actually disable the device until all callers of
2022 * pci_enable_device() have called pci_disable_device().
2023 */
2024 void pci_disable_device(struct pci_dev *dev)
2025 {
2026 struct pci_devres *dr;
2027
2028 dr = find_pci_dr(dev);
2029 if (dr)
2030 dr->enabled = 0;
2031
2032 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2033 "disabling already-disabled device");
2034
2035 if (atomic_dec_return(&dev->enable_cnt) != 0)
2036 return;
2037
2038 do_pci_disable_device(dev);
2039
2040 dev->is_busmaster = 0;
2041 }
2042 EXPORT_SYMBOL(pci_disable_device);
2043
2044 /**
2045 * pcibios_set_pcie_reset_state - set reset state for device dev
2046 * @dev: the PCIe device reset
2047 * @state: Reset state to enter into
2048 *
2049 * Set the PCIe reset state for the device. This is the default
2050 * implementation. Architecture implementations can override this.
2051 */
2052 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2053 enum pcie_reset_state state)
2054 {
2055 return -EINVAL;
2056 }
2057
2058 /**
2059 * pci_set_pcie_reset_state - set reset state for device dev
2060 * @dev: the PCIe device reset
2061 * @state: Reset state to enter into
2062 *
2063 * Sets the PCI reset state for the device.
2064 */
2065 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2066 {
2067 return pcibios_set_pcie_reset_state(dev, state);
2068 }
2069 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2070
2071 /**
2072 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2073 * @dev: PCIe root port or event collector.
2074 */
2075 void pcie_clear_root_pme_status(struct pci_dev *dev)
2076 {
2077 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2078 }
2079
2080 /**
2081 * pci_check_pme_status - Check if given device has generated PME.
2082 * @dev: Device to check.
2083 *
2084 * Check the PME status of the device and if set, clear it and clear PME enable
2085 * (if set). Return 'true' if PME status and PME enable were both set or
2086 * 'false' otherwise.
2087 */
2088 bool pci_check_pme_status(struct pci_dev *dev)
2089 {
2090 int pmcsr_pos;
2091 u16 pmcsr;
2092 bool ret = false;
2093
2094 if (!dev->pm_cap)
2095 return false;
2096
2097 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2098 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2099 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2100 return false;
2101
2102 /* Clear PME status. */
2103 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2104 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2105 /* Disable PME to avoid interrupt flood. */
2106 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2107 ret = true;
2108 }
2109
2110 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2111
2112 return ret;
2113 }
2114
2115 /**
2116 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2117 * @dev: Device to handle.
2118 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2119 *
2120 * Check if @dev has generated PME and queue a resume request for it in that
2121 * case.
2122 */
2123 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2124 {
2125 if (pme_poll_reset && dev->pme_poll)
2126 dev->pme_poll = false;
2127
2128 if (pci_check_pme_status(dev)) {
2129 pci_wakeup_event(dev);
2130 pm_request_resume(&dev->dev);
2131 }
2132 return 0;
2133 }
2134
2135 /**
2136 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2137 * @bus: Top bus of the subtree to walk.
2138 */
2139 void pci_pme_wakeup_bus(struct pci_bus *bus)
2140 {
2141 if (bus)
2142 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2143 }
2144
2145
2146 /**
2147 * pci_pme_capable - check the capability of PCI device to generate PME#
2148 * @dev: PCI device to handle.
2149 * @state: PCI state from which device will issue PME#.
2150 */
2151 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2152 {
2153 if (!dev->pm_cap)
2154 return false;
2155
2156 return !!(dev->pme_support & (1 << state));
2157 }
2158 EXPORT_SYMBOL(pci_pme_capable);
2159
2160 static void pci_pme_list_scan(struct work_struct *work)
2161 {
2162 struct pci_pme_device *pme_dev, *n;
2163
2164 mutex_lock(&pci_pme_list_mutex);
2165 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2166 if (pme_dev->dev->pme_poll) {
2167 struct pci_dev *bridge;
2168
2169 bridge = pme_dev->dev->bus->self;
2170 /*
2171 * If bridge is in low power state, the
2172 * configuration space of subordinate devices
2173 * may be not accessible
2174 */
2175 if (bridge && bridge->current_state != PCI_D0)
2176 continue;
2177 /*
2178 * If the device is in D3cold it should not be
2179 * polled either.
2180 */
2181 if (pme_dev->dev->current_state == PCI_D3cold)
2182 continue;
2183
2184 pci_pme_wakeup(pme_dev->dev, NULL);
2185 } else {
2186 list_del(&pme_dev->list);
2187 kfree(pme_dev);
2188 }
2189 }
2190 if (!list_empty(&pci_pme_list))
2191 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2192 msecs_to_jiffies(PME_TIMEOUT));
2193 mutex_unlock(&pci_pme_list_mutex);
2194 }
2195
2196 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2197 {
2198 u16 pmcsr;
2199
2200 if (!dev->pme_support)
2201 return;
2202
2203 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2204 /* Clear PME_Status by writing 1 to it and enable PME# */
2205 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2206 if (!enable)
2207 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2208
2209 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2210 }
2211
2212 /**
2213 * pci_pme_restore - Restore PME configuration after config space restore.
2214 * @dev: PCI device to update.
2215 */
2216 void pci_pme_restore(struct pci_dev *dev)
2217 {
2218 u16 pmcsr;
2219
2220 if (!dev->pme_support)
2221 return;
2222
2223 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2224 if (dev->wakeup_prepared) {
2225 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2226 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2227 } else {
2228 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2229 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2230 }
2231 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2232 }
2233
2234 /**
2235 * pci_pme_active - enable or disable PCI device's PME# function
2236 * @dev: PCI device to handle.
2237 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2238 *
2239 * The caller must verify that the device is capable of generating PME# before
2240 * calling this function with @enable equal to 'true'.
2241 */
2242 void pci_pme_active(struct pci_dev *dev, bool enable)
2243 {
2244 __pci_pme_active(dev, enable);
2245
2246 /*
2247 * PCI (as opposed to PCIe) PME requires that the device have
2248 * its PME# line hooked up correctly. Not all hardware vendors
2249 * do this, so the PME never gets delivered and the device
2250 * remains asleep. The easiest way around this is to
2251 * periodically walk the list of suspended devices and check
2252 * whether any have their PME flag set. The assumption is that
2253 * we'll wake up often enough anyway that this won't be a huge
2254 * hit, and the power savings from the devices will still be a
2255 * win.
2256 *
2257 * Although PCIe uses in-band PME message instead of PME# line
2258 * to report PME, PME does not work for some PCIe devices in
2259 * reality. For example, there are devices that set their PME
2260 * status bits, but don't really bother to send a PME message;
2261 * there are PCI Express Root Ports that don't bother to
2262 * trigger interrupts when they receive PME messages from the
2263 * devices below. So PME poll is used for PCIe devices too.
2264 */
2265
2266 if (dev->pme_poll) {
2267 struct pci_pme_device *pme_dev;
2268 if (enable) {
2269 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2270 GFP_KERNEL);
2271 if (!pme_dev) {
2272 pci_warn(dev, "can't enable PME#\n");
2273 return;
2274 }
2275 pme_dev->dev = dev;
2276 mutex_lock(&pci_pme_list_mutex);
2277 list_add(&pme_dev->list, &pci_pme_list);
2278 if (list_is_singular(&pci_pme_list))
2279 queue_delayed_work(system_freezable_wq,
2280 &pci_pme_work,
2281 msecs_to_jiffies(PME_TIMEOUT));
2282 mutex_unlock(&pci_pme_list_mutex);
2283 } else {
2284 mutex_lock(&pci_pme_list_mutex);
2285 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2286 if (pme_dev->dev == dev) {
2287 list_del(&pme_dev->list);
2288 kfree(pme_dev);
2289 break;
2290 }
2291 }
2292 mutex_unlock(&pci_pme_list_mutex);
2293 }
2294 }
2295
2296 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2297 }
2298 EXPORT_SYMBOL(pci_pme_active);
2299
2300 /**
2301 * __pci_enable_wake - enable PCI device as wakeup event source
2302 * @dev: PCI device affected
2303 * @state: PCI state from which device will issue wakeup events
2304 * @enable: True to enable event generation; false to disable
2305 *
2306 * This enables the device as a wakeup event source, or disables it.
2307 * When such events involves platform-specific hooks, those hooks are
2308 * called automatically by this routine.
2309 *
2310 * Devices with legacy power management (no standard PCI PM capabilities)
2311 * always require such platform hooks.
2312 *
2313 * RETURN VALUE:
2314 * 0 is returned on success
2315 * -EINVAL is returned if device is not supposed to wake up the system
2316 * Error code depending on the platform is returned if both the platform and
2317 * the native mechanism fail to enable the generation of wake-up events
2318 */
2319 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2320 {
2321 int ret = 0;
2322
2323 /*
2324 * Bridges that are not power-manageable directly only signal
2325 * wakeup on behalf of subordinate devices which is set up
2326 * elsewhere, so skip them. However, bridges that are
2327 * power-manageable may signal wakeup for themselves (for example,
2328 * on a hotplug event) and they need to be covered here.
2329 */
2330 if (!pci_power_manageable(dev))
2331 return 0;
2332
2333 /* Don't do the same thing twice in a row for one device. */
2334 if (!!enable == !!dev->wakeup_prepared)
2335 return 0;
2336
2337 /*
2338 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2339 * Anderson we should be doing PME# wake enable followed by ACPI wake
2340 * enable. To disable wake-up we call the platform first, for symmetry.
2341 */
2342
2343 if (enable) {
2344 int error;
2345
2346 if (pci_pme_capable(dev, state))
2347 pci_pme_active(dev, true);
2348 else
2349 ret = 1;
2350 error = platform_pci_set_wakeup(dev, true);
2351 if (ret)
2352 ret = error;
2353 if (!ret)
2354 dev->wakeup_prepared = true;
2355 } else {
2356 platform_pci_set_wakeup(dev, false);
2357 pci_pme_active(dev, false);
2358 dev->wakeup_prepared = false;
2359 }
2360
2361 return ret;
2362 }
2363
2364 /**
2365 * pci_enable_wake - change wakeup settings for a PCI device
2366 * @pci_dev: Target device
2367 * @state: PCI state from which device will issue wakeup events
2368 * @enable: Whether or not to enable event generation
2369 *
2370 * If @enable is set, check device_may_wakeup() for the device before calling
2371 * __pci_enable_wake() for it.
2372 */
2373 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2374 {
2375 if (enable && !device_may_wakeup(&pci_dev->dev))
2376 return -EINVAL;
2377
2378 return __pci_enable_wake(pci_dev, state, enable);
2379 }
2380 EXPORT_SYMBOL(pci_enable_wake);
2381
2382 /**
2383 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2384 * @dev: PCI device to prepare
2385 * @enable: True to enable wake-up event generation; false to disable
2386 *
2387 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2388 * and this function allows them to set that up cleanly - pci_enable_wake()
2389 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2390 * ordering constraints.
2391 *
2392 * This function only returns error code if the device is not allowed to wake
2393 * up the system from sleep or it is not capable of generating PME# from both
2394 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2395 */
2396 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2397 {
2398 return pci_pme_capable(dev, PCI_D3cold) ?
2399 pci_enable_wake(dev, PCI_D3cold, enable) :
2400 pci_enable_wake(dev, PCI_D3hot, enable);
2401 }
2402 EXPORT_SYMBOL(pci_wake_from_d3);
2403
2404 /**
2405 * pci_target_state - find an appropriate low power state for a given PCI dev
2406 * @dev: PCI device
2407 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2408 *
2409 * Use underlying platform code to find a supported low power state for @dev.
2410 * If the platform can't manage @dev, return the deepest state from which it
2411 * can generate wake events, based on any available PME info.
2412 */
2413 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2414 {
2415 pci_power_t target_state = PCI_D3hot;
2416
2417 if (platform_pci_power_manageable(dev)) {
2418 /*
2419 * Call the platform to find the target state for the device.
2420 */
2421 pci_power_t state = platform_pci_choose_state(dev);
2422
2423 switch (state) {
2424 case PCI_POWER_ERROR:
2425 case PCI_UNKNOWN:
2426 break;
2427 case PCI_D1:
2428 case PCI_D2:
2429 if (pci_no_d1d2(dev))
2430 break;
2431 /* else, fall through */
2432 default:
2433 target_state = state;
2434 }
2435
2436 return target_state;
2437 }
2438
2439 if (!dev->pm_cap)
2440 target_state = PCI_D0;
2441
2442 /*
2443 * If the device is in D3cold even though it's not power-manageable by
2444 * the platform, it may have been powered down by non-standard means.
2445 * Best to let it slumber.
2446 */
2447 if (dev->current_state == PCI_D3cold)
2448 target_state = PCI_D3cold;
2449
2450 if (wakeup) {
2451 /*
2452 * Find the deepest state from which the device can generate
2453 * PME#.
2454 */
2455 if (dev->pme_support) {
2456 while (target_state
2457 && !(dev->pme_support & (1 << target_state)))
2458 target_state--;
2459 }
2460 }
2461
2462 return target_state;
2463 }
2464
2465 /**
2466 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2467 * into a sleep state
2468 * @dev: Device to handle.
2469 *
2470 * Choose the power state appropriate for the device depending on whether
2471 * it can wake up the system and/or is power manageable by the platform
2472 * (PCI_D3hot is the default) and put the device into that state.
2473 */
2474 int pci_prepare_to_sleep(struct pci_dev *dev)
2475 {
2476 bool wakeup = device_may_wakeup(&dev->dev);
2477 pci_power_t target_state = pci_target_state(dev, wakeup);
2478 int error;
2479
2480 if (target_state == PCI_POWER_ERROR)
2481 return -EIO;
2482
2483 pci_enable_wake(dev, target_state, wakeup);
2484
2485 error = pci_set_power_state(dev, target_state);
2486
2487 if (error)
2488 pci_enable_wake(dev, target_state, false);
2489
2490 return error;
2491 }
2492 EXPORT_SYMBOL(pci_prepare_to_sleep);
2493
2494 /**
2495 * pci_back_from_sleep - turn PCI device on during system-wide transition
2496 * into working state
2497 * @dev: Device to handle.
2498 *
2499 * Disable device's system wake-up capability and put it into D0.
2500 */
2501 int pci_back_from_sleep(struct pci_dev *dev)
2502 {
2503 pci_enable_wake(dev, PCI_D0, false);
2504 return pci_set_power_state(dev, PCI_D0);
2505 }
2506 EXPORT_SYMBOL(pci_back_from_sleep);
2507
2508 /**
2509 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2510 * @dev: PCI device being suspended.
2511 *
2512 * Prepare @dev to generate wake-up events at run time and put it into a low
2513 * power state.
2514 */
2515 int pci_finish_runtime_suspend(struct pci_dev *dev)
2516 {
2517 pci_power_t target_state;
2518 int error;
2519
2520 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2521 if (target_state == PCI_POWER_ERROR)
2522 return -EIO;
2523
2524 dev->runtime_d3cold = target_state == PCI_D3cold;
2525
2526 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2527
2528 error = pci_set_power_state(dev, target_state);
2529
2530 if (error) {
2531 pci_enable_wake(dev, target_state, false);
2532 dev->runtime_d3cold = false;
2533 }
2534
2535 return error;
2536 }
2537
2538 /**
2539 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2540 * @dev: Device to check.
2541 *
2542 * Return true if the device itself is capable of generating wake-up events
2543 * (through the platform or using the native PCIe PME) or if the device supports
2544 * PME and one of its upstream bridges can generate wake-up events.
2545 */
2546 bool pci_dev_run_wake(struct pci_dev *dev)
2547 {
2548 struct pci_bus *bus = dev->bus;
2549
2550 if (!dev->pme_support)
2551 return false;
2552
2553 /* PME-capable in principle, but not from the target power state */
2554 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2555 return false;
2556
2557 if (device_can_wakeup(&dev->dev))
2558 return true;
2559
2560 while (bus->parent) {
2561 struct pci_dev *bridge = bus->self;
2562
2563 if (device_can_wakeup(&bridge->dev))
2564 return true;
2565
2566 bus = bus->parent;
2567 }
2568
2569 /* We have reached the root bus. */
2570 if (bus->bridge)
2571 return device_can_wakeup(bus->bridge);
2572
2573 return false;
2574 }
2575 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2576
2577 /**
2578 * pci_dev_need_resume - Check if it is necessary to resume the device.
2579 * @pci_dev: Device to check.
2580 *
2581 * Return 'true' if the device is not runtime-suspended or it has to be
2582 * reconfigured due to wakeup settings difference between system and runtime
2583 * suspend, or the current power state of it is not suitable for the upcoming
2584 * (system-wide) transition.
2585 */
2586 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2587 {
2588 struct device *dev = &pci_dev->dev;
2589 pci_power_t target_state;
2590
2591 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2592 return true;
2593
2594 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2595
2596 /*
2597 * If the earlier platform check has not triggered, D3cold is just power
2598 * removal on top of D3hot, so no need to resume the device in that
2599 * case.
2600 */
2601 return target_state != pci_dev->current_state &&
2602 target_state != PCI_D3cold &&
2603 pci_dev->current_state != PCI_D3hot;
2604 }
2605
2606 /**
2607 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2608 * @pci_dev: Device to check.
2609 *
2610 * If the device is suspended and it is not configured for system wakeup,
2611 * disable PME for it to prevent it from waking up the system unnecessarily.
2612 *
2613 * Note that if the device's power state is D3cold and the platform check in
2614 * pci_dev_need_resume() has not triggered, the device's configuration need not
2615 * be changed.
2616 */
2617 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2618 {
2619 struct device *dev = &pci_dev->dev;
2620
2621 spin_lock_irq(&dev->power.lock);
2622
2623 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2624 pci_dev->current_state < PCI_D3cold)
2625 __pci_pme_active(pci_dev, false);
2626
2627 spin_unlock_irq(&dev->power.lock);
2628 }
2629
2630 /**
2631 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2632 * @pci_dev: Device to handle.
2633 *
2634 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2635 * it might have been disabled during the prepare phase of system suspend if
2636 * the device was not configured for system wakeup.
2637 */
2638 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2639 {
2640 struct device *dev = &pci_dev->dev;
2641
2642 if (!pci_dev_run_wake(pci_dev))
2643 return;
2644
2645 spin_lock_irq(&dev->power.lock);
2646
2647 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2648 __pci_pme_active(pci_dev, true);
2649
2650 spin_unlock_irq(&dev->power.lock);
2651 }
2652
2653 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2654 {
2655 struct device *dev = &pdev->dev;
2656 struct device *parent = dev->parent;
2657
2658 if (parent)
2659 pm_runtime_get_sync(parent);
2660 pm_runtime_get_noresume(dev);
2661 /*
2662 * pdev->current_state is set to PCI_D3cold during suspending,
2663 * so wait until suspending completes
2664 */
2665 pm_runtime_barrier(dev);
2666 /*
2667 * Only need to resume devices in D3cold, because config
2668 * registers are still accessible for devices suspended but
2669 * not in D3cold.
2670 */
2671 if (pdev->current_state == PCI_D3cold)
2672 pm_runtime_resume(dev);
2673 }
2674
2675 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2676 {
2677 struct device *dev = &pdev->dev;
2678 struct device *parent = dev->parent;
2679
2680 pm_runtime_put(dev);
2681 if (parent)
2682 pm_runtime_put_sync(parent);
2683 }
2684
2685 static const struct dmi_system_id bridge_d3_blacklist[] = {
2686 #ifdef CONFIG_X86
2687 {
2688 /*
2689 * Gigabyte X299 root port is not marked as hotplug capable
2690 * which allows Linux to power manage it. However, this
2691 * confuses the BIOS SMI handler so don't power manage root
2692 * ports on that system.
2693 */
2694 .ident = "X299 DESIGNARE EX-CF",
2695 .matches = {
2696 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2697 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2698 },
2699 },
2700 #endif
2701 { }
2702 };
2703
2704 /**
2705 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2706 * @bridge: Bridge to check
2707 *
2708 * This function checks if it is possible to move the bridge to D3.
2709 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2710 */
2711 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2712 {
2713 if (!pci_is_pcie(bridge))
2714 return false;
2715
2716 switch (pci_pcie_type(bridge)) {
2717 case PCI_EXP_TYPE_ROOT_PORT:
2718 case PCI_EXP_TYPE_UPSTREAM:
2719 case PCI_EXP_TYPE_DOWNSTREAM:
2720 if (pci_bridge_d3_disable)
2721 return false;
2722
2723 /*
2724 * Hotplug ports handled by firmware in System Management Mode
2725 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2726 */
2727 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2728 return false;
2729
2730 if (pci_bridge_d3_force)
2731 return true;
2732
2733 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2734 if (bridge->is_thunderbolt)
2735 return true;
2736
2737 /* Platform might know better if the bridge supports D3 */
2738 if (platform_pci_bridge_d3(bridge))
2739 return true;
2740
2741 /*
2742 * Hotplug ports handled natively by the OS were not validated
2743 * by vendors for runtime D3 at least until 2018 because there
2744 * was no OS support.
2745 */
2746 if (bridge->is_hotplug_bridge)
2747 return false;
2748
2749 if (dmi_check_system(bridge_d3_blacklist))
2750 return false;
2751
2752 /*
2753 * It should be safe to put PCIe ports from 2015 or newer
2754 * to D3.
2755 */
2756 if (dmi_get_bios_year() >= 2015)
2757 return true;
2758 break;
2759 }
2760
2761 return false;
2762 }
2763
2764 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2765 {
2766 bool *d3cold_ok = data;
2767
2768 if (/* The device needs to be allowed to go D3cold ... */
2769 dev->no_d3cold || !dev->d3cold_allowed ||
2770
2771 /* ... and if it is wakeup capable to do so from D3cold. */
2772 (device_may_wakeup(&dev->dev) &&
2773 !pci_pme_capable(dev, PCI_D3cold)) ||
2774
2775 /* If it is a bridge it must be allowed to go to D3. */
2776 !pci_power_manageable(dev))
2777
2778 *d3cold_ok = false;
2779
2780 return !*d3cold_ok;
2781 }
2782
2783 /*
2784 * pci_bridge_d3_update - Update bridge D3 capabilities
2785 * @dev: PCI device which is changed
2786 *
2787 * Update upstream bridge PM capabilities accordingly depending on if the
2788 * device PM configuration was changed or the device is being removed. The
2789 * change is also propagated upstream.
2790 */
2791 void pci_bridge_d3_update(struct pci_dev *dev)
2792 {
2793 bool remove = !device_is_registered(&dev->dev);
2794 struct pci_dev *bridge;
2795 bool d3cold_ok = true;
2796
2797 bridge = pci_upstream_bridge(dev);
2798 if (!bridge || !pci_bridge_d3_possible(bridge))
2799 return;
2800
2801 /*
2802 * If D3 is currently allowed for the bridge, removing one of its
2803 * children won't change that.
2804 */
2805 if (remove && bridge->bridge_d3)
2806 return;
2807
2808 /*
2809 * If D3 is currently allowed for the bridge and a child is added or
2810 * changed, disallowance of D3 can only be caused by that child, so
2811 * we only need to check that single device, not any of its siblings.
2812 *
2813 * If D3 is currently not allowed for the bridge, checking the device
2814 * first may allow us to skip checking its siblings.
2815 */
2816 if (!remove)
2817 pci_dev_check_d3cold(dev, &d3cold_ok);
2818
2819 /*
2820 * If D3 is currently not allowed for the bridge, this may be caused
2821 * either by the device being changed/removed or any of its siblings,
2822 * so we need to go through all children to find out if one of them
2823 * continues to block D3.
2824 */
2825 if (d3cold_ok && !bridge->bridge_d3)
2826 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2827 &d3cold_ok);
2828
2829 if (bridge->bridge_d3 != d3cold_ok) {
2830 bridge->bridge_d3 = d3cold_ok;
2831 /* Propagate change to upstream bridges */
2832 pci_bridge_d3_update(bridge);
2833 }
2834 }
2835
2836 /**
2837 * pci_d3cold_enable - Enable D3cold for device
2838 * @dev: PCI device to handle
2839 *
2840 * This function can be used in drivers to enable D3cold from the device
2841 * they handle. It also updates upstream PCI bridge PM capabilities
2842 * accordingly.
2843 */
2844 void pci_d3cold_enable(struct pci_dev *dev)
2845 {
2846 if (dev->no_d3cold) {
2847 dev->no_d3cold = false;
2848 pci_bridge_d3_update(dev);
2849 }
2850 }
2851 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2852
2853 /**
2854 * pci_d3cold_disable - Disable D3cold for device
2855 * @dev: PCI device to handle
2856 *
2857 * This function can be used in drivers to disable D3cold from the device
2858 * they handle. It also updates upstream PCI bridge PM capabilities
2859 * accordingly.
2860 */
2861 void pci_d3cold_disable(struct pci_dev *dev)
2862 {
2863 if (!dev->no_d3cold) {
2864 dev->no_d3cold = true;
2865 pci_bridge_d3_update(dev);
2866 }
2867 }
2868 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2869
2870 /**
2871 * pci_pm_init - Initialize PM functions of given PCI device
2872 * @dev: PCI device to handle.
2873 */
2874 void pci_pm_init(struct pci_dev *dev)
2875 {
2876 int pm;
2877 u16 status;
2878 u16 pmc;
2879
2880 pm_runtime_forbid(&dev->dev);
2881 pm_runtime_set_active(&dev->dev);
2882 pm_runtime_enable(&dev->dev);
2883 device_enable_async_suspend(&dev->dev);
2884 dev->wakeup_prepared = false;
2885
2886 dev->pm_cap = 0;
2887 dev->pme_support = 0;
2888
2889 /* find PCI PM capability in list */
2890 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2891 if (!pm)
2892 return;
2893 /* Check device's ability to generate PME# */
2894 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2895
2896 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2897 pci_err(dev, "unsupported PM cap regs version (%u)\n",
2898 pmc & PCI_PM_CAP_VER_MASK);
2899 return;
2900 }
2901
2902 dev->pm_cap = pm;
2903 dev->d3_delay = PCI_PM_D3_WAIT;
2904 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2905 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2906 dev->d3cold_allowed = true;
2907
2908 dev->d1_support = false;
2909 dev->d2_support = false;
2910 if (!pci_no_d1d2(dev)) {
2911 if (pmc & PCI_PM_CAP_D1)
2912 dev->d1_support = true;
2913 if (pmc & PCI_PM_CAP_D2)
2914 dev->d2_support = true;
2915
2916 if (dev->d1_support || dev->d2_support)
2917 pci_info(dev, "supports%s%s\n",
2918 dev->d1_support ? " D1" : "",
2919 dev->d2_support ? " D2" : "");
2920 }
2921
2922 pmc &= PCI_PM_CAP_PME_MASK;
2923 if (pmc) {
2924 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
2925 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2926 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2927 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2928 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2929 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2930 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2931 dev->pme_poll = true;
2932 /*
2933 * Make device's PM flags reflect the wake-up capability, but
2934 * let the user space enable it to wake up the system as needed.
2935 */
2936 device_set_wakeup_capable(&dev->dev, true);
2937 /* Disable the PME# generation functionality */
2938 pci_pme_active(dev, false);
2939 }
2940
2941 pci_read_config_word(dev, PCI_STATUS, &status);
2942 if (status & PCI_STATUS_IMM_READY)
2943 dev->imm_ready = 1;
2944 }
2945
2946 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2947 {
2948 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2949
2950 switch (prop) {
2951 case PCI_EA_P_MEM:
2952 case PCI_EA_P_VF_MEM:
2953 flags |= IORESOURCE_MEM;
2954 break;
2955 case PCI_EA_P_MEM_PREFETCH:
2956 case PCI_EA_P_VF_MEM_PREFETCH:
2957 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2958 break;
2959 case PCI_EA_P_IO:
2960 flags |= IORESOURCE_IO;
2961 break;
2962 default:
2963 return 0;
2964 }
2965
2966 return flags;
2967 }
2968
2969 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2970 u8 prop)
2971 {
2972 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2973 return &dev->resource[bei];
2974 #ifdef CONFIG_PCI_IOV
2975 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2976 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2977 return &dev->resource[PCI_IOV_RESOURCES +
2978 bei - PCI_EA_BEI_VF_BAR0];
2979 #endif
2980 else if (bei == PCI_EA_BEI_ROM)
2981 return &dev->resource[PCI_ROM_RESOURCE];
2982 else
2983 return NULL;
2984 }
2985
2986 /* Read an Enhanced Allocation (EA) entry */
2987 static int pci_ea_read(struct pci_dev *dev, int offset)
2988 {
2989 struct resource *res;
2990 int ent_size, ent_offset = offset;
2991 resource_size_t start, end;
2992 unsigned long flags;
2993 u32 dw0, bei, base, max_offset;
2994 u8 prop;
2995 bool support_64 = (sizeof(resource_size_t) >= 8);
2996
2997 pci_read_config_dword(dev, ent_offset, &dw0);
2998 ent_offset += 4;
2999
3000 /* Entry size field indicates DWORDs after 1st */
3001 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3002
3003 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3004 goto out;
3005
3006 bei = (dw0 & PCI_EA_BEI) >> 4;
3007 prop = (dw0 & PCI_EA_PP) >> 8;
3008
3009 /*
3010 * If the Property is in the reserved range, try the Secondary
3011 * Property instead.
3012 */
3013 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3014 prop = (dw0 & PCI_EA_SP) >> 16;
3015 if (prop > PCI_EA_P_BRIDGE_IO)
3016 goto out;
3017
3018 res = pci_ea_get_resource(dev, bei, prop);
3019 if (!res) {
3020 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3021 goto out;
3022 }
3023
3024 flags = pci_ea_flags(dev, prop);
3025 if (!flags) {
3026 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3027 goto out;
3028 }
3029
3030 /* Read Base */
3031 pci_read_config_dword(dev, ent_offset, &base);
3032 start = (base & PCI_EA_FIELD_MASK);
3033 ent_offset += 4;
3034
3035 /* Read MaxOffset */
3036 pci_read_config_dword(dev, ent_offset, &max_offset);
3037 ent_offset += 4;
3038
3039 /* Read Base MSBs (if 64-bit entry) */
3040 if (base & PCI_EA_IS_64) {
3041 u32 base_upper;
3042
3043 pci_read_config_dword(dev, ent_offset, &base_upper);
3044 ent_offset += 4;
3045
3046 flags |= IORESOURCE_MEM_64;
3047
3048 /* entry starts above 32-bit boundary, can't use */
3049 if (!support_64 && base_upper)
3050 goto out;
3051
3052 if (support_64)
3053 start |= ((u64)base_upper << 32);
3054 }
3055
3056 end = start + (max_offset | 0x03);
3057
3058 /* Read MaxOffset MSBs (if 64-bit entry) */
3059 if (max_offset & PCI_EA_IS_64) {
3060 u32 max_offset_upper;
3061
3062 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3063 ent_offset += 4;
3064
3065 flags |= IORESOURCE_MEM_64;
3066
3067 /* entry too big, can't use */
3068 if (!support_64 && max_offset_upper)
3069 goto out;
3070
3071 if (support_64)
3072 end += ((u64)max_offset_upper << 32);
3073 }
3074
3075 if (end < start) {
3076 pci_err(dev, "EA Entry crosses address boundary\n");
3077 goto out;
3078 }
3079
3080 if (ent_size != ent_offset - offset) {
3081 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3082 ent_size, ent_offset - offset);
3083 goto out;
3084 }
3085
3086 res->name = pci_name(dev);
3087 res->start = start;
3088 res->end = end;
3089 res->flags = flags;
3090
3091 if (bei <= PCI_EA_BEI_BAR5)
3092 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3093 bei, res, prop);
3094 else if (bei == PCI_EA_BEI_ROM)
3095 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3096 res, prop);
3097 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3098 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3099 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3100 else
3101 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3102 bei, res, prop);
3103
3104 out:
3105 return offset + ent_size;
3106 }
3107
3108 /* Enhanced Allocation Initialization */
3109 void pci_ea_init(struct pci_dev *dev)
3110 {
3111 int ea;
3112 u8 num_ent;
3113 int offset;
3114 int i;
3115
3116 /* find PCI EA capability in list */
3117 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3118 if (!ea)
3119 return;
3120
3121 /* determine the number of entries */
3122 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3123 &num_ent);
3124 num_ent &= PCI_EA_NUM_ENT_MASK;
3125
3126 offset = ea + PCI_EA_FIRST_ENT;
3127
3128 /* Skip DWORD 2 for type 1 functions */
3129 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3130 offset += 4;
3131
3132 /* parse each EA entry */
3133 for (i = 0; i < num_ent; ++i)
3134 offset = pci_ea_read(dev, offset);
3135 }
3136
3137 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3138 struct pci_cap_saved_state *new_cap)
3139 {
3140 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3141 }
3142
3143 /**
3144 * _pci_add_cap_save_buffer - allocate buffer for saving given
3145 * capability registers
3146 * @dev: the PCI device
3147 * @cap: the capability to allocate the buffer for
3148 * @extended: Standard or Extended capability ID
3149 * @size: requested size of the buffer
3150 */
3151 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3152 bool extended, unsigned int size)
3153 {
3154 int pos;
3155 struct pci_cap_saved_state *save_state;
3156
3157 if (extended)
3158 pos = pci_find_ext_capability(dev, cap);
3159 else
3160 pos = pci_find_capability(dev, cap);
3161
3162 if (!pos)
3163 return 0;
3164
3165 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3166 if (!save_state)
3167 return -ENOMEM;
3168
3169 save_state->cap.cap_nr = cap;
3170 save_state->cap.cap_extended = extended;
3171 save_state->cap.size = size;
3172 pci_add_saved_cap(dev, save_state);
3173
3174 return 0;
3175 }
3176
3177 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3178 {
3179 return _pci_add_cap_save_buffer(dev, cap, false, size);
3180 }
3181
3182 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3183 {
3184 return _pci_add_cap_save_buffer(dev, cap, true, size);
3185 }
3186
3187 /**
3188 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3189 * @dev: the PCI device
3190 */
3191 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3192 {
3193 int error;
3194
3195 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3196 PCI_EXP_SAVE_REGS * sizeof(u16));
3197 if (error)
3198 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3199
3200 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3201 if (error)
3202 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3203
3204 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3205 2 * sizeof(u16));
3206 if (error)
3207 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3208
3209 pci_allocate_vc_save_buffers(dev);
3210 }
3211
3212 void pci_free_cap_save_buffers(struct pci_dev *dev)
3213 {
3214 struct pci_cap_saved_state *tmp;
3215 struct hlist_node *n;
3216
3217 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3218 kfree(tmp);
3219 }
3220
3221 /**
3222 * pci_configure_ari - enable or disable ARI forwarding
3223 * @dev: the PCI device
3224 *
3225 * If @dev and its upstream bridge both support ARI, enable ARI in the
3226 * bridge. Otherwise, disable ARI in the bridge.
3227 */
3228 void pci_configure_ari(struct pci_dev *dev)
3229 {
3230 u32 cap;
3231 struct pci_dev *bridge;
3232
3233 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3234 return;
3235
3236 bridge = dev->bus->self;
3237 if (!bridge)
3238 return;
3239
3240 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3241 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3242 return;
3243
3244 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3245 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3246 PCI_EXP_DEVCTL2_ARI);
3247 bridge->ari_enabled = 1;
3248 } else {
3249 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3250 PCI_EXP_DEVCTL2_ARI);
3251 bridge->ari_enabled = 0;
3252 }
3253 }
3254
3255 static int pci_acs_enable;
3256
3257 /**
3258 * pci_request_acs - ask for ACS to be enabled if supported
3259 */
3260 void pci_request_acs(void)
3261 {
3262 pci_acs_enable = 1;
3263 }
3264
3265 static const char *disable_acs_redir_param;
3266
3267 /**
3268 * pci_disable_acs_redir - disable ACS redirect capabilities
3269 * @dev: the PCI device
3270 *
3271 * For only devices specified in the disable_acs_redir parameter.
3272 */
3273 static void pci_disable_acs_redir(struct pci_dev *dev)
3274 {
3275 int ret = 0;
3276 const char *p;
3277 int pos;
3278 u16 ctrl;
3279
3280 if (!disable_acs_redir_param)
3281 return;
3282
3283 p = disable_acs_redir_param;
3284 while (*p) {
3285 ret = pci_dev_str_match(dev, p, &p);
3286 if (ret < 0) {
3287 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3288 disable_acs_redir_param);
3289
3290 break;
3291 } else if (ret == 1) {
3292 /* Found a match */
3293 break;
3294 }
3295
3296 if (*p != ';' && *p != ',') {
3297 /* End of param or invalid format */
3298 break;
3299 }
3300 p++;
3301 }
3302
3303 if (ret != 1)
3304 return;
3305
3306 if (!pci_dev_specific_disable_acs_redir(dev))
3307 return;
3308
3309 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3310 if (!pos) {
3311 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3312 return;
3313 }
3314
3315 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3316
3317 /* P2P Request & Completion Redirect */
3318 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3319
3320 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3321
3322 pci_info(dev, "disabled ACS redirect\n");
3323 }
3324
3325 /**
3326 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
3327 * @dev: the PCI device
3328 */
3329 static void pci_std_enable_acs(struct pci_dev *dev)
3330 {
3331 int pos;
3332 u16 cap;
3333 u16 ctrl;
3334
3335 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3336 if (!pos)
3337 return;
3338
3339 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3340 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3341
3342 /* Source Validation */
3343 ctrl |= (cap & PCI_ACS_SV);
3344
3345 /* P2P Request Redirect */
3346 ctrl |= (cap & PCI_ACS_RR);
3347
3348 /* P2P Completion Redirect */
3349 ctrl |= (cap & PCI_ACS_CR);
3350
3351 /* Upstream Forwarding */
3352 ctrl |= (cap & PCI_ACS_UF);
3353
3354 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3355 }
3356
3357 /**
3358 * pci_enable_acs - enable ACS if hardware support it
3359 * @dev: the PCI device
3360 */
3361 void pci_enable_acs(struct pci_dev *dev)
3362 {
3363 if (!pci_acs_enable)
3364 goto disable_acs_redir;
3365
3366 if (!pci_dev_specific_enable_acs(dev))
3367 goto disable_acs_redir;
3368
3369 pci_std_enable_acs(dev);
3370
3371 disable_acs_redir:
3372 /*
3373 * Note: pci_disable_acs_redir() must be called even if ACS was not
3374 * enabled by the kernel because it may have been enabled by
3375 * platform firmware. So if we are told to disable it, we should
3376 * always disable it after setting the kernel's default
3377 * preferences.
3378 */
3379 pci_disable_acs_redir(dev);
3380 }
3381
3382 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3383 {
3384 int pos;
3385 u16 cap, ctrl;
3386
3387 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3388 if (!pos)
3389 return false;
3390
3391 /*
3392 * Except for egress control, capabilities are either required
3393 * or only required if controllable. Features missing from the
3394 * capability field can therefore be assumed as hard-wired enabled.
3395 */
3396 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3397 acs_flags &= (cap | PCI_ACS_EC);
3398
3399 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3400 return (ctrl & acs_flags) == acs_flags;
3401 }
3402
3403 /**
3404 * pci_acs_enabled - test ACS against required flags for a given device
3405 * @pdev: device to test
3406 * @acs_flags: required PCI ACS flags
3407 *
3408 * Return true if the device supports the provided flags. Automatically
3409 * filters out flags that are not implemented on multifunction devices.
3410 *
3411 * Note that this interface checks the effective ACS capabilities of the
3412 * device rather than the actual capabilities. For instance, most single
3413 * function endpoints are not required to support ACS because they have no
3414 * opportunity for peer-to-peer access. We therefore return 'true'
3415 * regardless of whether the device exposes an ACS capability. This makes
3416 * it much easier for callers of this function to ignore the actual type
3417 * or topology of the device when testing ACS support.
3418 */
3419 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3420 {
3421 int ret;
3422
3423 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3424 if (ret >= 0)
3425 return ret > 0;
3426
3427 /*
3428 * Conventional PCI and PCI-X devices never support ACS, either
3429 * effectively or actually. The shared bus topology implies that
3430 * any device on the bus can receive or snoop DMA.
3431 */
3432 if (!pci_is_pcie(pdev))
3433 return false;
3434
3435 switch (pci_pcie_type(pdev)) {
3436 /*
3437 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3438 * but since their primary interface is PCI/X, we conservatively
3439 * handle them as we would a non-PCIe device.
3440 */
3441 case PCI_EXP_TYPE_PCIE_BRIDGE:
3442 /*
3443 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3444 * applicable... must never implement an ACS Extended Capability...".
3445 * This seems arbitrary, but we take a conservative interpretation
3446 * of this statement.
3447 */
3448 case PCI_EXP_TYPE_PCI_BRIDGE:
3449 case PCI_EXP_TYPE_RC_EC:
3450 return false;
3451 /*
3452 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3453 * implement ACS in order to indicate their peer-to-peer capabilities,
3454 * regardless of whether they are single- or multi-function devices.
3455 */
3456 case PCI_EXP_TYPE_DOWNSTREAM:
3457 case PCI_EXP_TYPE_ROOT_PORT:
3458 return pci_acs_flags_enabled(pdev, acs_flags);
3459 /*
3460 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3461 * implemented by the remaining PCIe types to indicate peer-to-peer
3462 * capabilities, but only when they are part of a multifunction
3463 * device. The footnote for section 6.12 indicates the specific
3464 * PCIe types included here.
3465 */
3466 case PCI_EXP_TYPE_ENDPOINT:
3467 case PCI_EXP_TYPE_UPSTREAM:
3468 case PCI_EXP_TYPE_LEG_END:
3469 case PCI_EXP_TYPE_RC_END:
3470 if (!pdev->multifunction)
3471 break;
3472
3473 return pci_acs_flags_enabled(pdev, acs_flags);
3474 }
3475
3476 /*
3477 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3478 * to single function devices with the exception of downstream ports.
3479 */
3480 return true;
3481 }
3482
3483 /**
3484 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3485 * @start: starting downstream device
3486 * @end: ending upstream device or NULL to search to the root bus
3487 * @acs_flags: required flags
3488 *
3489 * Walk up a device tree from start to end testing PCI ACS support. If
3490 * any step along the way does not support the required flags, return false.
3491 */
3492 bool pci_acs_path_enabled(struct pci_dev *start,
3493 struct pci_dev *end, u16 acs_flags)
3494 {
3495 struct pci_dev *pdev, *parent = start;
3496
3497 do {
3498 pdev = parent;
3499
3500 if (!pci_acs_enabled(pdev, acs_flags))
3501 return false;
3502
3503 if (pci_is_root_bus(pdev->bus))
3504 return (end == NULL);
3505
3506 parent = pdev->bus->self;
3507 } while (pdev != end);
3508
3509 return true;
3510 }
3511
3512 /**
3513 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3514 * @pdev: PCI device
3515 * @bar: BAR to find
3516 *
3517 * Helper to find the position of the ctrl register for a BAR.
3518 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3519 * Returns -ENOENT if no ctrl register for the BAR could be found.
3520 */
3521 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3522 {
3523 unsigned int pos, nbars, i;
3524 u32 ctrl;
3525
3526 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3527 if (!pos)
3528 return -ENOTSUPP;
3529
3530 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3531 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3532 PCI_REBAR_CTRL_NBAR_SHIFT;
3533
3534 for (i = 0; i < nbars; i++, pos += 8) {
3535 int bar_idx;
3536
3537 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3538 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3539 if (bar_idx == bar)
3540 return pos;
3541 }
3542
3543 return -ENOENT;
3544 }
3545
3546 /**
3547 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3548 * @pdev: PCI device
3549 * @bar: BAR to query
3550 *
3551 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3552 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3553 */
3554 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3555 {
3556 int pos;
3557 u32 cap;
3558
3559 pos = pci_rebar_find_pos(pdev, bar);
3560 if (pos < 0)
3561 return 0;
3562
3563 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3564 return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3565 }
3566
3567 /**
3568 * pci_rebar_get_current_size - get the current size of a BAR
3569 * @pdev: PCI device
3570 * @bar: BAR to set size to
3571 *
3572 * Read the size of a BAR from the resizable BAR config.
3573 * Returns size if found or negative error code.
3574 */
3575 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3576 {
3577 int pos;
3578 u32 ctrl;
3579
3580 pos = pci_rebar_find_pos(pdev, bar);
3581 if (pos < 0)
3582 return pos;
3583
3584 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3585 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3586 }
3587
3588 /**
3589 * pci_rebar_set_size - set a new size for a BAR
3590 * @pdev: PCI device
3591 * @bar: BAR to set size to
3592 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3593 *
3594 * Set the new size of a BAR as defined in the spec.
3595 * Returns zero if resizing was successful, error code otherwise.
3596 */
3597 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3598 {
3599 int pos;
3600 u32 ctrl;
3601
3602 pos = pci_rebar_find_pos(pdev, bar);
3603 if (pos < 0)
3604 return pos;
3605
3606 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3607 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3608 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3609 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3610 return 0;
3611 }
3612
3613 /**
3614 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3615 * @dev: the PCI device
3616 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3617 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3618 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3619 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3620 *
3621 * Return 0 if all upstream bridges support AtomicOp routing, egress
3622 * blocking is disabled on all upstream ports, and the root port supports
3623 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3624 * AtomicOp completion), or negative otherwise.
3625 */
3626 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3627 {
3628 struct pci_bus *bus = dev->bus;
3629 struct pci_dev *bridge;
3630 u32 cap, ctl2;
3631
3632 if (!pci_is_pcie(dev))
3633 return -EINVAL;
3634
3635 /*
3636 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3637 * AtomicOp requesters. For now, we only support endpoints as
3638 * requesters and root ports as completers. No endpoints as
3639 * completers, and no peer-to-peer.
3640 */
3641
3642 switch (pci_pcie_type(dev)) {
3643 case PCI_EXP_TYPE_ENDPOINT:
3644 case PCI_EXP_TYPE_LEG_END:
3645 case PCI_EXP_TYPE_RC_END:
3646 break;
3647 default:
3648 return -EINVAL;
3649 }
3650
3651 while (bus->parent) {
3652 bridge = bus->self;
3653
3654 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3655
3656 switch (pci_pcie_type(bridge)) {
3657 /* Ensure switch ports support AtomicOp routing */
3658 case PCI_EXP_TYPE_UPSTREAM:
3659 case PCI_EXP_TYPE_DOWNSTREAM:
3660 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3661 return -EINVAL;
3662 break;
3663
3664 /* Ensure root port supports all the sizes we care about */
3665 case PCI_EXP_TYPE_ROOT_PORT:
3666 if ((cap & cap_mask) != cap_mask)
3667 return -EINVAL;
3668 break;
3669 }
3670
3671 /* Ensure upstream ports don't block AtomicOps on egress */
3672 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3673 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3674 &ctl2);
3675 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3676 return -EINVAL;
3677 }
3678
3679 bus = bus->parent;
3680 }
3681
3682 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3683 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3684 return 0;
3685 }
3686 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3687
3688 /**
3689 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3690 * @dev: the PCI device
3691 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3692 *
3693 * Perform INTx swizzling for a device behind one level of bridge. This is
3694 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3695 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3696 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3697 * the PCI Express Base Specification, Revision 2.1)
3698 */
3699 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3700 {
3701 int slot;
3702
3703 if (pci_ari_enabled(dev->bus))
3704 slot = 0;
3705 else
3706 slot = PCI_SLOT(dev->devfn);
3707
3708 return (((pin - 1) + slot) % 4) + 1;
3709 }
3710
3711 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3712 {
3713 u8 pin;
3714
3715 pin = dev->pin;
3716 if (!pin)
3717 return -1;
3718
3719 while (!pci_is_root_bus(dev->bus)) {
3720 pin = pci_swizzle_interrupt_pin(dev, pin);
3721 dev = dev->bus->self;
3722 }
3723 *bridge = dev;
3724 return pin;
3725 }
3726
3727 /**
3728 * pci_common_swizzle - swizzle INTx all the way to root bridge
3729 * @dev: the PCI device
3730 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3731 *
3732 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3733 * bridges all the way up to a PCI root bus.
3734 */
3735 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3736 {
3737 u8 pin = *pinp;
3738
3739 while (!pci_is_root_bus(dev->bus)) {
3740 pin = pci_swizzle_interrupt_pin(dev, pin);
3741 dev = dev->bus->self;
3742 }
3743 *pinp = pin;
3744 return PCI_SLOT(dev->devfn);
3745 }
3746 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3747
3748 /**
3749 * pci_release_region - Release a PCI bar
3750 * @pdev: PCI device whose resources were previously reserved by
3751 * pci_request_region()
3752 * @bar: BAR to release
3753 *
3754 * Releases the PCI I/O and memory resources previously reserved by a
3755 * successful call to pci_request_region(). Call this function only
3756 * after all use of the PCI regions has ceased.
3757 */
3758 void pci_release_region(struct pci_dev *pdev, int bar)
3759 {
3760 struct pci_devres *dr;
3761
3762 if (pci_resource_len(pdev, bar) == 0)
3763 return;
3764 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3765 release_region(pci_resource_start(pdev, bar),
3766 pci_resource_len(pdev, bar));
3767 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3768 release_mem_region(pci_resource_start(pdev, bar),
3769 pci_resource_len(pdev, bar));
3770
3771 dr = find_pci_dr(pdev);
3772 if (dr)
3773 dr->region_mask &= ~(1 << bar);
3774 }
3775 EXPORT_SYMBOL(pci_release_region);
3776
3777 /**
3778 * __pci_request_region - Reserved PCI I/O and memory resource
3779 * @pdev: PCI device whose resources are to be reserved
3780 * @bar: BAR to be reserved
3781 * @res_name: Name to be associated with resource.
3782 * @exclusive: whether the region access is exclusive or not
3783 *
3784 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3785 * being reserved by owner @res_name. Do not access any
3786 * address inside the PCI regions unless this call returns
3787 * successfully.
3788 *
3789 * If @exclusive is set, then the region is marked so that userspace
3790 * is explicitly not allowed to map the resource via /dev/mem or
3791 * sysfs MMIO access.
3792 *
3793 * Returns 0 on success, or %EBUSY on error. A warning
3794 * message is also printed on failure.
3795 */
3796 static int __pci_request_region(struct pci_dev *pdev, int bar,
3797 const char *res_name, int exclusive)
3798 {
3799 struct pci_devres *dr;
3800
3801 if (pci_resource_len(pdev, bar) == 0)
3802 return 0;
3803
3804 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3805 if (!request_region(pci_resource_start(pdev, bar),
3806 pci_resource_len(pdev, bar), res_name))
3807 goto err_out;
3808 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3809 if (!__request_mem_region(pci_resource_start(pdev, bar),
3810 pci_resource_len(pdev, bar), res_name,
3811 exclusive))
3812 goto err_out;
3813 }
3814
3815 dr = find_pci_dr(pdev);
3816 if (dr)
3817 dr->region_mask |= 1 << bar;
3818
3819 return 0;
3820
3821 err_out:
3822 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3823 &pdev->resource[bar]);
3824 return -EBUSY;
3825 }
3826
3827 /**
3828 * pci_request_region - Reserve PCI I/O and memory resource
3829 * @pdev: PCI device whose resources are to be reserved
3830 * @bar: BAR to be reserved
3831 * @res_name: Name to be associated with resource
3832 *
3833 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3834 * being reserved by owner @res_name. Do not access any
3835 * address inside the PCI regions unless this call returns
3836 * successfully.
3837 *
3838 * Returns 0 on success, or %EBUSY on error. A warning
3839 * message is also printed on failure.
3840 */
3841 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3842 {
3843 return __pci_request_region(pdev, bar, res_name, 0);
3844 }
3845 EXPORT_SYMBOL(pci_request_region);
3846
3847 /**
3848 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3849 * @pdev: PCI device whose resources were previously reserved
3850 * @bars: Bitmask of BARs to be released
3851 *
3852 * Release selected PCI I/O and memory resources previously reserved.
3853 * Call this function only after all use of the PCI regions has ceased.
3854 */
3855 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3856 {
3857 int i;
3858
3859 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3860 if (bars & (1 << i))
3861 pci_release_region(pdev, i);
3862 }
3863 EXPORT_SYMBOL(pci_release_selected_regions);
3864
3865 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3866 const char *res_name, int excl)
3867 {
3868 int i;
3869
3870 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3871 if (bars & (1 << i))
3872 if (__pci_request_region(pdev, i, res_name, excl))
3873 goto err_out;
3874 return 0;
3875
3876 err_out:
3877 while (--i >= 0)
3878 if (bars & (1 << i))
3879 pci_release_region(pdev, i);
3880
3881 return -EBUSY;
3882 }
3883
3884
3885 /**
3886 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3887 * @pdev: PCI device whose resources are to be reserved
3888 * @bars: Bitmask of BARs to be requested
3889 * @res_name: Name to be associated with resource
3890 */
3891 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3892 const char *res_name)
3893 {
3894 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3895 }
3896 EXPORT_SYMBOL(pci_request_selected_regions);
3897
3898 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3899 const char *res_name)
3900 {
3901 return __pci_request_selected_regions(pdev, bars, res_name,
3902 IORESOURCE_EXCLUSIVE);
3903 }
3904 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3905
3906 /**
3907 * pci_release_regions - Release reserved PCI I/O and memory resources
3908 * @pdev: PCI device whose resources were previously reserved by
3909 * pci_request_regions()
3910 *
3911 * Releases all PCI I/O and memory resources previously reserved by a
3912 * successful call to pci_request_regions(). Call this function only
3913 * after all use of the PCI regions has ceased.
3914 */
3915
3916 void pci_release_regions(struct pci_dev *pdev)
3917 {
3918 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3919 }
3920 EXPORT_SYMBOL(pci_release_regions);
3921
3922 /**
3923 * pci_request_regions - Reserve PCI I/O and memory resources
3924 * @pdev: PCI device whose resources are to be reserved
3925 * @res_name: Name to be associated with resource.
3926 *
3927 * Mark all PCI regions associated with PCI device @pdev as
3928 * being reserved by owner @res_name. Do not access any
3929 * address inside the PCI regions unless this call returns
3930 * successfully.
3931 *
3932 * Returns 0 on success, or %EBUSY on error. A warning
3933 * message is also printed on failure.
3934 */
3935 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3936 {
3937 return pci_request_selected_regions(pdev,
3938 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
3939 }
3940 EXPORT_SYMBOL(pci_request_regions);
3941
3942 /**
3943 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3944 * @pdev: PCI device whose resources are to be reserved
3945 * @res_name: Name to be associated with resource.
3946 *
3947 * Mark all PCI regions associated with PCI device @pdev as being reserved
3948 * by owner @res_name. Do not access any address inside the PCI regions
3949 * unless this call returns successfully.
3950 *
3951 * pci_request_regions_exclusive() will mark the region so that /dev/mem
3952 * and the sysfs MMIO access will not be allowed.
3953 *
3954 * Returns 0 on success, or %EBUSY on error. A warning message is also
3955 * printed on failure.
3956 */
3957 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3958 {
3959 return pci_request_selected_regions_exclusive(pdev,
3960 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
3961 }
3962 EXPORT_SYMBOL(pci_request_regions_exclusive);
3963
3964 /*
3965 * Record the PCI IO range (expressed as CPU physical address + size).
3966 * Return a negative value if an error has occurred, zero otherwise
3967 */
3968 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3969 resource_size_t size)
3970 {
3971 int ret = 0;
3972 #ifdef PCI_IOBASE
3973 struct logic_pio_hwaddr *range;
3974
3975 if (!size || addr + size < addr)
3976 return -EINVAL;
3977
3978 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3979 if (!range)
3980 return -ENOMEM;
3981
3982 range->fwnode = fwnode;
3983 range->size = size;
3984 range->hw_start = addr;
3985 range->flags = LOGIC_PIO_CPU_MMIO;
3986
3987 ret = logic_pio_register_range(range);
3988 if (ret)
3989 kfree(range);
3990 #endif
3991
3992 return ret;
3993 }
3994
3995 phys_addr_t pci_pio_to_address(unsigned long pio)
3996 {
3997 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3998
3999 #ifdef PCI_IOBASE
4000 if (pio >= MMIO_UPPER_LIMIT)
4001 return address;
4002
4003 address = logic_pio_to_hwaddr(pio);
4004 #endif
4005
4006 return address;
4007 }
4008
4009 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4010 {
4011 #ifdef PCI_IOBASE
4012 return logic_pio_trans_cpuaddr(address);
4013 #else
4014 if (address > IO_SPACE_LIMIT)
4015 return (unsigned long)-1;
4016
4017 return (unsigned long) address;
4018 #endif
4019 }
4020
4021 /**
4022 * pci_remap_iospace - Remap the memory mapped I/O space
4023 * @res: Resource describing the I/O space
4024 * @phys_addr: physical address of range to be mapped
4025 *
4026 * Remap the memory mapped I/O space described by the @res and the CPU
4027 * physical address @phys_addr into virtual address space. Only
4028 * architectures that have memory mapped IO functions defined (and the
4029 * PCI_IOBASE value defined) should call this function.
4030 */
4031 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4032 {
4033 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4034 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4035
4036 if (!(res->flags & IORESOURCE_IO))
4037 return -EINVAL;
4038
4039 if (res->end > IO_SPACE_LIMIT)
4040 return -EINVAL;
4041
4042 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4043 pgprot_device(PAGE_KERNEL));
4044 #else
4045 /*
4046 * This architecture does not have memory mapped I/O space,
4047 * so this function should never be called
4048 */
4049 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4050 return -ENODEV;
4051 #endif
4052 }
4053 EXPORT_SYMBOL(pci_remap_iospace);
4054
4055 /**
4056 * pci_unmap_iospace - Unmap the memory mapped I/O space
4057 * @res: resource to be unmapped
4058 *
4059 * Unmap the CPU virtual address @res from virtual address space. Only
4060 * architectures that have memory mapped IO functions defined (and the
4061 * PCI_IOBASE value defined) should call this function.
4062 */
4063 void pci_unmap_iospace(struct resource *res)
4064 {
4065 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4066 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4067
4068 unmap_kernel_range(vaddr, resource_size(res));
4069 #endif
4070 }
4071 EXPORT_SYMBOL(pci_unmap_iospace);
4072
4073 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4074 {
4075 struct resource **res = ptr;
4076
4077 pci_unmap_iospace(*res);
4078 }
4079
4080 /**
4081 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4082 * @dev: Generic device to remap IO address for
4083 * @res: Resource describing the I/O space
4084 * @phys_addr: physical address of range to be mapped
4085 *
4086 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4087 * detach.
4088 */
4089 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4090 phys_addr_t phys_addr)
4091 {
4092 const struct resource **ptr;
4093 int error;
4094
4095 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4096 if (!ptr)
4097 return -ENOMEM;
4098
4099 error = pci_remap_iospace(res, phys_addr);
4100 if (error) {
4101 devres_free(ptr);
4102 } else {
4103 *ptr = res;
4104 devres_add(dev, ptr);
4105 }
4106
4107 return error;
4108 }
4109 EXPORT_SYMBOL(devm_pci_remap_iospace);
4110
4111 /**
4112 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4113 * @dev: Generic device to remap IO address for
4114 * @offset: Resource address to map
4115 * @size: Size of map
4116 *
4117 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4118 * detach.
4119 */
4120 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4121 resource_size_t offset,
4122 resource_size_t size)
4123 {
4124 void __iomem **ptr, *addr;
4125
4126 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4127 if (!ptr)
4128 return NULL;
4129
4130 addr = pci_remap_cfgspace(offset, size);
4131 if (addr) {
4132 *ptr = addr;
4133 devres_add(dev, ptr);
4134 } else
4135 devres_free(ptr);
4136
4137 return addr;
4138 }
4139 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4140
4141 /**
4142 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4143 * @dev: generic device to handle the resource for
4144 * @res: configuration space resource to be handled
4145 *
4146 * Checks that a resource is a valid memory region, requests the memory
4147 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4148 * proper PCI configuration space memory attributes are guaranteed.
4149 *
4150 * All operations are managed and will be undone on driver detach.
4151 *
4152 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4153 * on failure. Usage example::
4154 *
4155 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4156 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4157 * if (IS_ERR(base))
4158 * return PTR_ERR(base);
4159 */
4160 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4161 struct resource *res)
4162 {
4163 resource_size_t size;
4164 const char *name;
4165 void __iomem *dest_ptr;
4166
4167 BUG_ON(!dev);
4168
4169 if (!res || resource_type(res) != IORESOURCE_MEM) {
4170 dev_err(dev, "invalid resource\n");
4171 return IOMEM_ERR_PTR(-EINVAL);
4172 }
4173
4174 size = resource_size(res);
4175 name = res->name ?: dev_name(dev);
4176
4177 if (!devm_request_mem_region(dev, res->start, size, name)) {
4178 dev_err(dev, "can't request region for resource %pR\n", res);
4179 return IOMEM_ERR_PTR(-EBUSY);
4180 }
4181
4182 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4183 if (!dest_ptr) {
4184 dev_err(dev, "ioremap failed for resource %pR\n", res);
4185 devm_release_mem_region(dev, res->start, size);
4186 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4187 }
4188
4189 return dest_ptr;
4190 }
4191 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4192
4193 static void __pci_set_master(struct pci_dev *dev, bool enable)
4194 {
4195 u16 old_cmd, cmd;
4196
4197 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4198 if (enable)
4199 cmd = old_cmd | PCI_COMMAND_MASTER;
4200 else
4201 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4202 if (cmd != old_cmd) {
4203 pci_dbg(dev, "%s bus mastering\n",
4204 enable ? "enabling" : "disabling");
4205 pci_write_config_word(dev, PCI_COMMAND, cmd);
4206 }
4207 dev->is_busmaster = enable;
4208 }
4209
4210 /**
4211 * pcibios_setup - process "pci=" kernel boot arguments
4212 * @str: string used to pass in "pci=" kernel boot arguments
4213 *
4214 * Process kernel boot arguments. This is the default implementation.
4215 * Architecture specific implementations can override this as necessary.
4216 */
4217 char * __weak __init pcibios_setup(char *str)
4218 {
4219 return str;
4220 }
4221
4222 /**
4223 * pcibios_set_master - enable PCI bus-mastering for device dev
4224 * @dev: the PCI device to enable
4225 *
4226 * Enables PCI bus-mastering for the device. This is the default
4227 * implementation. Architecture specific implementations can override
4228 * this if necessary.
4229 */
4230 void __weak pcibios_set_master(struct pci_dev *dev)
4231 {
4232 u8 lat;
4233
4234 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4235 if (pci_is_pcie(dev))
4236 return;
4237
4238 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4239 if (lat < 16)
4240 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4241 else if (lat > pcibios_max_latency)
4242 lat = pcibios_max_latency;
4243 else
4244 return;
4245
4246 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4247 }
4248
4249 /**
4250 * pci_set_master - enables bus-mastering for device dev
4251 * @dev: the PCI device to enable
4252 *
4253 * Enables bus-mastering on the device and calls pcibios_set_master()
4254 * to do the needed arch specific settings.
4255 */
4256 void pci_set_master(struct pci_dev *dev)
4257 {
4258 __pci_set_master(dev, true);
4259 pcibios_set_master(dev);
4260 }
4261 EXPORT_SYMBOL(pci_set_master);
4262
4263 /**
4264 * pci_clear_master - disables bus-mastering for device dev
4265 * @dev: the PCI device to disable
4266 */
4267 void pci_clear_master(struct pci_dev *dev)
4268 {
4269 __pci_set_master(dev, false);
4270 }
4271 EXPORT_SYMBOL(pci_clear_master);
4272
4273 /**
4274 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4275 * @dev: the PCI device for which MWI is to be enabled
4276 *
4277 * Helper function for pci_set_mwi.
4278 * Originally copied from drivers/net/acenic.c.
4279 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4280 *
4281 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4282 */
4283 int pci_set_cacheline_size(struct pci_dev *dev)
4284 {
4285 u8 cacheline_size;
4286
4287 if (!pci_cache_line_size)
4288 return -EINVAL;
4289
4290 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4291 equal to or multiple of the right value. */
4292 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4293 if (cacheline_size >= pci_cache_line_size &&
4294 (cacheline_size % pci_cache_line_size) == 0)
4295 return 0;
4296
4297 /* Write the correct value. */
4298 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4299 /* Read it back. */
4300 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4301 if (cacheline_size == pci_cache_line_size)
4302 return 0;
4303
4304 pci_info(dev, "cache line size of %d is not supported\n",
4305 pci_cache_line_size << 2);
4306
4307 return -EINVAL;
4308 }
4309 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4310
4311 /**
4312 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4313 * @dev: the PCI device for which MWI is enabled
4314 *
4315 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4316 *
4317 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4318 */
4319 int pci_set_mwi(struct pci_dev *dev)
4320 {
4321 #ifdef PCI_DISABLE_MWI
4322 return 0;
4323 #else
4324 int rc;
4325 u16 cmd;
4326
4327 rc = pci_set_cacheline_size(dev);
4328 if (rc)
4329 return rc;
4330
4331 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4332 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4333 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4334 cmd |= PCI_COMMAND_INVALIDATE;
4335 pci_write_config_word(dev, PCI_COMMAND, cmd);
4336 }
4337 return 0;
4338 #endif
4339 }
4340 EXPORT_SYMBOL(pci_set_mwi);
4341
4342 /**
4343 * pcim_set_mwi - a device-managed pci_set_mwi()
4344 * @dev: the PCI device for which MWI is enabled
4345 *
4346 * Managed pci_set_mwi().
4347 *
4348 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4349 */
4350 int pcim_set_mwi(struct pci_dev *dev)
4351 {
4352 struct pci_devres *dr;
4353
4354 dr = find_pci_dr(dev);
4355 if (!dr)
4356 return -ENOMEM;
4357
4358 dr->mwi = 1;
4359 return pci_set_mwi(dev);
4360 }
4361 EXPORT_SYMBOL(pcim_set_mwi);
4362
4363 /**
4364 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4365 * @dev: the PCI device for which MWI is enabled
4366 *
4367 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4368 * Callers are not required to check the return value.
4369 *
4370 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4371 */
4372 int pci_try_set_mwi(struct pci_dev *dev)
4373 {
4374 #ifdef PCI_DISABLE_MWI
4375 return 0;
4376 #else
4377 return pci_set_mwi(dev);
4378 #endif
4379 }
4380 EXPORT_SYMBOL(pci_try_set_mwi);
4381
4382 /**
4383 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4384 * @dev: the PCI device to disable
4385 *
4386 * Disables PCI Memory-Write-Invalidate transaction on the device
4387 */
4388 void pci_clear_mwi(struct pci_dev *dev)
4389 {
4390 #ifndef PCI_DISABLE_MWI
4391 u16 cmd;
4392
4393 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4394 if (cmd & PCI_COMMAND_INVALIDATE) {
4395 cmd &= ~PCI_COMMAND_INVALIDATE;
4396 pci_write_config_word(dev, PCI_COMMAND, cmd);
4397 }
4398 #endif
4399 }
4400 EXPORT_SYMBOL(pci_clear_mwi);
4401
4402 /**
4403 * pci_intx - enables/disables PCI INTx for device dev
4404 * @pdev: the PCI device to operate on
4405 * @enable: boolean: whether to enable or disable PCI INTx
4406 *
4407 * Enables/disables PCI INTx for device @pdev
4408 */
4409 void pci_intx(struct pci_dev *pdev, int enable)
4410 {
4411 u16 pci_command, new;
4412
4413 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4414
4415 if (enable)
4416 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4417 else
4418 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4419
4420 if (new != pci_command) {
4421 struct pci_devres *dr;
4422
4423 pci_write_config_word(pdev, PCI_COMMAND, new);
4424
4425 dr = find_pci_dr(pdev);
4426 if (dr && !dr->restore_intx) {
4427 dr->restore_intx = 1;
4428 dr->orig_intx = !enable;
4429 }
4430 }
4431 }
4432 EXPORT_SYMBOL_GPL(pci_intx);
4433
4434 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4435 {
4436 struct pci_bus *bus = dev->bus;
4437 bool mask_updated = true;
4438 u32 cmd_status_dword;
4439 u16 origcmd, newcmd;
4440 unsigned long flags;
4441 bool irq_pending;
4442
4443 /*
4444 * We do a single dword read to retrieve both command and status.
4445 * Document assumptions that make this possible.
4446 */
4447 BUILD_BUG_ON(PCI_COMMAND % 4);
4448 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4449
4450 raw_spin_lock_irqsave(&pci_lock, flags);
4451
4452 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4453
4454 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4455
4456 /*
4457 * Check interrupt status register to see whether our device
4458 * triggered the interrupt (when masking) or the next IRQ is
4459 * already pending (when unmasking).
4460 */
4461 if (mask != irq_pending) {
4462 mask_updated = false;
4463 goto done;
4464 }
4465
4466 origcmd = cmd_status_dword;
4467 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4468 if (mask)
4469 newcmd |= PCI_COMMAND_INTX_DISABLE;
4470 if (newcmd != origcmd)
4471 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4472
4473 done:
4474 raw_spin_unlock_irqrestore(&pci_lock, flags);
4475
4476 return mask_updated;
4477 }
4478
4479 /**
4480 * pci_check_and_mask_intx - mask INTx on pending interrupt
4481 * @dev: the PCI device to operate on
4482 *
4483 * Check if the device dev has its INTx line asserted, mask it and return
4484 * true in that case. False is returned if no interrupt was pending.
4485 */
4486 bool pci_check_and_mask_intx(struct pci_dev *dev)
4487 {
4488 return pci_check_and_set_intx_mask(dev, true);
4489 }
4490 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4491
4492 /**
4493 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4494 * @dev: the PCI device to operate on
4495 *
4496 * Check if the device dev has its INTx line asserted, unmask it if not and
4497 * return true. False is returned and the mask remains active if there was
4498 * still an interrupt pending.
4499 */
4500 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4501 {
4502 return pci_check_and_set_intx_mask(dev, false);
4503 }
4504 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4505
4506 /**
4507 * pci_wait_for_pending_transaction - wait for pending transaction
4508 * @dev: the PCI device to operate on
4509 *
4510 * Return 0 if transaction is pending 1 otherwise.
4511 */
4512 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4513 {
4514 if (!pci_is_pcie(dev))
4515 return 1;
4516
4517 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4518 PCI_EXP_DEVSTA_TRPND);
4519 }
4520 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4521
4522 /**
4523 * pcie_has_flr - check if a device supports function level resets
4524 * @dev: device to check
4525 *
4526 * Returns true if the device advertises support for PCIe function level
4527 * resets.
4528 */
4529 bool pcie_has_flr(struct pci_dev *dev)
4530 {
4531 u32 cap;
4532
4533 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4534 return false;
4535
4536 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4537 return cap & PCI_EXP_DEVCAP_FLR;
4538 }
4539 EXPORT_SYMBOL_GPL(pcie_has_flr);
4540
4541 /**
4542 * pcie_flr - initiate a PCIe function level reset
4543 * @dev: device to reset
4544 *
4545 * Initiate a function level reset on @dev. The caller should ensure the
4546 * device supports FLR before calling this function, e.g. by using the
4547 * pcie_has_flr() helper.
4548 */
4549 int pcie_flr(struct pci_dev *dev)
4550 {
4551 if (!pci_wait_for_pending_transaction(dev))
4552 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4553
4554 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4555
4556 if (dev->imm_ready)
4557 return 0;
4558
4559 /*
4560 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4561 * 100ms, but may silently discard requests while the FLR is in
4562 * progress. Wait 100ms before trying to access the device.
4563 */
4564 msleep(100);
4565
4566 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4567 }
4568 EXPORT_SYMBOL_GPL(pcie_flr);
4569
4570 static int pci_af_flr(struct pci_dev *dev, int probe)
4571 {
4572 int pos;
4573 u8 cap;
4574
4575 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4576 if (!pos)
4577 return -ENOTTY;
4578
4579 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4580 return -ENOTTY;
4581
4582 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4583 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4584 return -ENOTTY;
4585
4586 if (probe)
4587 return 0;
4588
4589 /*
4590 * Wait for Transaction Pending bit to clear. A word-aligned test
4591 * is used, so we use the control offset rather than status and shift
4592 * the test bit to match.
4593 */
4594 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4595 PCI_AF_STATUS_TP << 8))
4596 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4597
4598 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4599
4600 if (dev->imm_ready)
4601 return 0;
4602
4603 /*
4604 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4605 * updated 27 July 2006; a device must complete an FLR within
4606 * 100ms, but may silently discard requests while the FLR is in
4607 * progress. Wait 100ms before trying to access the device.
4608 */
4609 msleep(100);
4610
4611 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4612 }
4613
4614 /**
4615 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4616 * @dev: Device to reset.
4617 * @probe: If set, only check if the device can be reset this way.
4618 *
4619 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4620 * unset, it will be reinitialized internally when going from PCI_D3hot to
4621 * PCI_D0. If that's the case and the device is not in a low-power state
4622 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4623 *
4624 * NOTE: This causes the caller to sleep for twice the device power transition
4625 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4626 * by default (i.e. unless the @dev's d3_delay field has a different value).
4627 * Moreover, only devices in D0 can be reset by this function.
4628 */
4629 static int pci_pm_reset(struct pci_dev *dev, int probe)
4630 {
4631 u16 csr;
4632
4633 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4634 return -ENOTTY;
4635
4636 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4637 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4638 return -ENOTTY;
4639
4640 if (probe)
4641 return 0;
4642
4643 if (dev->current_state != PCI_D0)
4644 return -EINVAL;
4645
4646 csr &= ~PCI_PM_CTRL_STATE_MASK;
4647 csr |= PCI_D3hot;
4648 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4649 pci_dev_d3_sleep(dev);
4650
4651 csr &= ~PCI_PM_CTRL_STATE_MASK;
4652 csr |= PCI_D0;
4653 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4654 pci_dev_d3_sleep(dev);
4655
4656 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4657 }
4658
4659 /**
4660 * pcie_wait_for_link_delay - Wait until link is active or inactive
4661 * @pdev: Bridge device
4662 * @active: waiting for active or inactive?
4663 * @delay: Delay to wait after link has become active (in ms)
4664 *
4665 * Use this to wait till link becomes active or inactive.
4666 */
4667 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4668 int delay)
4669 {
4670 int timeout = 1000;
4671 bool ret;
4672 u16 lnk_status;
4673
4674 /*
4675 * Some controllers might not implement link active reporting. In this
4676 * case, we wait for 1000 + 100 ms.
4677 */
4678 if (!pdev->link_active_reporting) {
4679 msleep(1100);
4680 return true;
4681 }
4682
4683 /*
4684 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4685 * after which we should expect an link active if the reset was
4686 * successful. If so, software must wait a minimum 100ms before sending
4687 * configuration requests to devices downstream this port.
4688 *
4689 * If the link fails to activate, either the device was physically
4690 * removed or the link is permanently failed.
4691 */
4692 if (active)
4693 msleep(20);
4694 for (;;) {
4695 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4696 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4697 if (ret == active)
4698 break;
4699 if (timeout <= 0)
4700 break;
4701 msleep(10);
4702 timeout -= 10;
4703 }
4704 if (active && ret)
4705 msleep(delay);
4706 else if (ret != active)
4707 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4708 active ? "set" : "cleared");
4709 return ret == active;
4710 }
4711
4712 /**
4713 * pcie_wait_for_link - Wait until link is active or inactive
4714 * @pdev: Bridge device
4715 * @active: waiting for active or inactive?
4716 *
4717 * Use this to wait till link becomes active or inactive.
4718 */
4719 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4720 {
4721 return pcie_wait_for_link_delay(pdev, active, 100);
4722 }
4723
4724 /*
4725 * Find maximum D3cold delay required by all the devices on the bus. The
4726 * spec says 100 ms, but firmware can lower it and we allow drivers to
4727 * increase it as well.
4728 *
4729 * Called with @pci_bus_sem locked for reading.
4730 */
4731 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4732 {
4733 const struct pci_dev *pdev;
4734 int min_delay = 100;
4735 int max_delay = 0;
4736
4737 list_for_each_entry(pdev, &bus->devices, bus_list) {
4738 if (pdev->d3cold_delay < min_delay)
4739 min_delay = pdev->d3cold_delay;
4740 if (pdev->d3cold_delay > max_delay)
4741 max_delay = pdev->d3cold_delay;
4742 }
4743
4744 return max(min_delay, max_delay);
4745 }
4746
4747 /**
4748 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4749 * @dev: PCI bridge
4750 *
4751 * Handle necessary delays before access to the devices on the secondary
4752 * side of the bridge are permitted after D3cold to D0 transition.
4753 *
4754 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4755 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4756 * 4.3.2.
4757 */
4758 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4759 {
4760 struct pci_dev *child;
4761 int delay;
4762
4763 if (pci_dev_is_disconnected(dev))
4764 return;
4765
4766 if (!pci_is_bridge(dev) || !dev->bridge_d3)
4767 return;
4768
4769 down_read(&pci_bus_sem);
4770
4771 /*
4772 * We only deal with devices that are present currently on the bus.
4773 * For any hot-added devices the access delay is handled in pciehp
4774 * board_added(). In case of ACPI hotplug the firmware is expected
4775 * to configure the devices before OS is notified.
4776 */
4777 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4778 up_read(&pci_bus_sem);
4779 return;
4780 }
4781
4782 /* Take d3cold_delay requirements into account */
4783 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4784 if (!delay) {
4785 up_read(&pci_bus_sem);
4786 return;
4787 }
4788
4789 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4790 bus_list);
4791 up_read(&pci_bus_sem);
4792
4793 /*
4794 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4795 * accessing the device after reset (that is 1000 ms + 100 ms). In
4796 * practice this should not be needed because we don't do power
4797 * management for them (see pci_bridge_d3_possible()).
4798 */
4799 if (!pci_is_pcie(dev)) {
4800 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4801 msleep(1000 + delay);
4802 return;
4803 }
4804
4805 /*
4806 * For PCIe downstream and root ports that do not support speeds
4807 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4808 * speeds (gen3) we need to wait first for the data link layer to
4809 * become active.
4810 *
4811 * However, 100 ms is the minimum and the PCIe spec says the
4812 * software must allow at least 1s before it can determine that the
4813 * device that did not respond is a broken device. There is
4814 * evidence that 100 ms is not always enough, for example certain
4815 * Titan Ridge xHCI controller does not always respond to
4816 * configuration requests if we only wait for 100 ms (see
4817 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4818 *
4819 * Therefore we wait for 100 ms and check for the device presence.
4820 * If it is still not present give it an additional 100 ms.
4821 */
4822 if (!pcie_downstream_port(dev))
4823 return;
4824
4825 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4826 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4827 msleep(delay);
4828 } else {
4829 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4830 delay);
4831 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4832 /* Did not train, no need to wait any further */
4833 return;
4834 }
4835 }
4836
4837 if (!pci_device_is_present(child)) {
4838 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4839 msleep(delay);
4840 }
4841 }
4842
4843 void pci_reset_secondary_bus(struct pci_dev *dev)
4844 {
4845 u16 ctrl;
4846
4847 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4848 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4849 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4850
4851 /*
4852 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4853 * this to 2ms to ensure that we meet the minimum requirement.
4854 */
4855 msleep(2);
4856
4857 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4858 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4859
4860 /*
4861 * Trhfa for conventional PCI is 2^25 clock cycles.
4862 * Assuming a minimum 33MHz clock this results in a 1s
4863 * delay before we can consider subordinate devices to
4864 * be re-initialized. PCIe has some ways to shorten this,
4865 * but we don't make use of them yet.
4866 */
4867 ssleep(1);
4868 }
4869
4870 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4871 {
4872 pci_reset_secondary_bus(dev);
4873 }
4874
4875 /**
4876 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4877 * @dev: Bridge device
4878 *
4879 * Use the bridge control register to assert reset on the secondary bus.
4880 * Devices on the secondary bus are left in power-on state.
4881 */
4882 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4883 {
4884 pcibios_reset_secondary_bus(dev);
4885
4886 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4887 }
4888 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4889
4890 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4891 {
4892 struct pci_dev *pdev;
4893
4894 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4895 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4896 return -ENOTTY;
4897
4898 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4899 if (pdev != dev)
4900 return -ENOTTY;
4901
4902 if (probe)
4903 return 0;
4904
4905 return pci_bridge_secondary_bus_reset(dev->bus->self);
4906 }
4907
4908 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4909 {
4910 int rc = -ENOTTY;
4911
4912 if (!hotplug || !try_module_get(hotplug->owner))
4913 return rc;
4914
4915 if (hotplug->ops->reset_slot)
4916 rc = hotplug->ops->reset_slot(hotplug, probe);
4917
4918 module_put(hotplug->owner);
4919
4920 return rc;
4921 }
4922
4923 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4924 {
4925 struct pci_dev *pdev;
4926
4927 if (dev->subordinate || !dev->slot ||
4928 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4929 return -ENOTTY;
4930
4931 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4932 if (pdev != dev && pdev->slot == dev->slot)
4933 return -ENOTTY;
4934
4935 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4936 }
4937
4938 static void pci_dev_lock(struct pci_dev *dev)
4939 {
4940 pci_cfg_access_lock(dev);
4941 /* block PM suspend, driver probe, etc. */
4942 device_lock(&dev->dev);
4943 }
4944
4945 /* Return 1 on successful lock, 0 on contention */
4946 static int pci_dev_trylock(struct pci_dev *dev)
4947 {
4948 if (pci_cfg_access_trylock(dev)) {
4949 if (device_trylock(&dev->dev))
4950 return 1;
4951 pci_cfg_access_unlock(dev);
4952 }
4953
4954 return 0;
4955 }
4956
4957 static void pci_dev_unlock(struct pci_dev *dev)
4958 {
4959 device_unlock(&dev->dev);
4960 pci_cfg_access_unlock(dev);
4961 }
4962
4963 static void pci_dev_save_and_disable(struct pci_dev *dev)
4964 {
4965 const struct pci_error_handlers *err_handler =
4966 dev->driver ? dev->driver->err_handler : NULL;
4967
4968 /*
4969 * dev->driver->err_handler->reset_prepare() is protected against
4970 * races with ->remove() by the device lock, which must be held by
4971 * the caller.
4972 */
4973 if (err_handler && err_handler->reset_prepare)
4974 err_handler->reset_prepare(dev);
4975
4976 /*
4977 * Wake-up device prior to save. PM registers default to D0 after
4978 * reset and a simple register restore doesn't reliably return
4979 * to a non-D0 state anyway.
4980 */
4981 pci_set_power_state(dev, PCI_D0);
4982
4983 pci_save_state(dev);
4984 /*
4985 * Disable the device by clearing the Command register, except for
4986 * INTx-disable which is set. This not only disables MMIO and I/O port
4987 * BARs, but also prevents the device from being Bus Master, preventing
4988 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4989 * compliant devices, INTx-disable prevents legacy interrupts.
4990 */
4991 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4992 }
4993
4994 static void pci_dev_restore(struct pci_dev *dev)
4995 {
4996 const struct pci_error_handlers *err_handler =
4997 dev->driver ? dev->driver->err_handler : NULL;
4998
4999 pci_restore_state(dev);
5000
5001 /*
5002 * dev->driver->err_handler->reset_done() is protected against
5003 * races with ->remove() by the device lock, which must be held by
5004 * the caller.
5005 */
5006 if (err_handler && err_handler->reset_done)
5007 err_handler->reset_done(dev);
5008 }
5009
5010 /**
5011 * __pci_reset_function_locked - reset a PCI device function while holding
5012 * the @dev mutex lock.
5013 * @dev: PCI device to reset
5014 *
5015 * Some devices allow an individual function to be reset without affecting
5016 * other functions in the same device. The PCI device must be responsive
5017 * to PCI config space in order to use this function.
5018 *
5019 * The device function is presumed to be unused and the caller is holding
5020 * the device mutex lock when this function is called.
5021 *
5022 * Resetting the device will make the contents of PCI configuration space
5023 * random, so any caller of this must be prepared to reinitialise the
5024 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5025 * etc.
5026 *
5027 * Returns 0 if the device function was successfully reset or negative if the
5028 * device doesn't support resetting a single function.
5029 */
5030 int __pci_reset_function_locked(struct pci_dev *dev)
5031 {
5032 int rc;
5033
5034 might_sleep();
5035
5036 /*
5037 * A reset method returns -ENOTTY if it doesn't support this device
5038 * and we should try the next method.
5039 *
5040 * If it returns 0 (success), we're finished. If it returns any
5041 * other error, we're also finished: this indicates that further
5042 * reset mechanisms might be broken on the device.
5043 */
5044 rc = pci_dev_specific_reset(dev, 0);
5045 if (rc != -ENOTTY)
5046 return rc;
5047 if (pcie_has_flr(dev)) {
5048 rc = pcie_flr(dev);
5049 if (rc != -ENOTTY)
5050 return rc;
5051 }
5052 rc = pci_af_flr(dev, 0);
5053 if (rc != -ENOTTY)
5054 return rc;
5055 rc = pci_pm_reset(dev, 0);
5056 if (rc != -ENOTTY)
5057 return rc;
5058 rc = pci_dev_reset_slot_function(dev, 0);
5059 if (rc != -ENOTTY)
5060 return rc;
5061 return pci_parent_bus_reset(dev, 0);
5062 }
5063 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5064
5065 /**
5066 * pci_probe_reset_function - check whether the device can be safely reset
5067 * @dev: PCI device to reset
5068 *
5069 * Some devices allow an individual function to be reset without affecting
5070 * other functions in the same device. The PCI device must be responsive
5071 * to PCI config space in order to use this function.
5072 *
5073 * Returns 0 if the device function can be reset or negative if the
5074 * device doesn't support resetting a single function.
5075 */
5076 int pci_probe_reset_function(struct pci_dev *dev)
5077 {
5078 int rc;
5079
5080 might_sleep();
5081
5082 rc = pci_dev_specific_reset(dev, 1);
5083 if (rc != -ENOTTY)
5084 return rc;
5085 if (pcie_has_flr(dev))
5086 return 0;
5087 rc = pci_af_flr(dev, 1);
5088 if (rc != -ENOTTY)
5089 return rc;
5090 rc = pci_pm_reset(dev, 1);
5091 if (rc != -ENOTTY)
5092 return rc;
5093 rc = pci_dev_reset_slot_function(dev, 1);
5094 if (rc != -ENOTTY)
5095 return rc;
5096
5097 return pci_parent_bus_reset(dev, 1);
5098 }
5099
5100 /**
5101 * pci_reset_function - quiesce and reset a PCI device function
5102 * @dev: PCI device to reset
5103 *
5104 * Some devices allow an individual function to be reset without affecting
5105 * other functions in the same device. The PCI device must be responsive
5106 * to PCI config space in order to use this function.
5107 *
5108 * This function does not just reset the PCI portion of a device, but
5109 * clears all the state associated with the device. This function differs
5110 * from __pci_reset_function_locked() in that it saves and restores device state
5111 * over the reset and takes the PCI device lock.
5112 *
5113 * Returns 0 if the device function was successfully reset or negative if the
5114 * device doesn't support resetting a single function.
5115 */
5116 int pci_reset_function(struct pci_dev *dev)
5117 {
5118 int rc;
5119
5120 if (!dev->reset_fn)
5121 return -ENOTTY;
5122
5123 pci_dev_lock(dev);
5124 pci_dev_save_and_disable(dev);
5125
5126 rc = __pci_reset_function_locked(dev);
5127
5128 pci_dev_restore(dev);
5129 pci_dev_unlock(dev);
5130
5131 return rc;
5132 }
5133 EXPORT_SYMBOL_GPL(pci_reset_function);
5134
5135 /**
5136 * pci_reset_function_locked - quiesce and reset a PCI device function
5137 * @dev: PCI device to reset
5138 *
5139 * Some devices allow an individual function to be reset without affecting
5140 * other functions in the same device. The PCI device must be responsive
5141 * to PCI config space in order to use this function.
5142 *
5143 * This function does not just reset the PCI portion of a device, but
5144 * clears all the state associated with the device. This function differs
5145 * from __pci_reset_function_locked() in that it saves and restores device state
5146 * over the reset. It also differs from pci_reset_function() in that it
5147 * requires the PCI device lock to be held.
5148 *
5149 * Returns 0 if the device function was successfully reset or negative if the
5150 * device doesn't support resetting a single function.
5151 */
5152 int pci_reset_function_locked(struct pci_dev *dev)
5153 {
5154 int rc;
5155
5156 if (!dev->reset_fn)
5157 return -ENOTTY;
5158
5159 pci_dev_save_and_disable(dev);
5160
5161 rc = __pci_reset_function_locked(dev);
5162
5163 pci_dev_restore(dev);
5164
5165 return rc;
5166 }
5167 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5168
5169 /**
5170 * pci_try_reset_function - quiesce and reset a PCI device function
5171 * @dev: PCI device to reset
5172 *
5173 * Same as above, except return -EAGAIN if unable to lock device.
5174 */
5175 int pci_try_reset_function(struct pci_dev *dev)
5176 {
5177 int rc;
5178
5179 if (!dev->reset_fn)
5180 return -ENOTTY;
5181
5182 if (!pci_dev_trylock(dev))
5183 return -EAGAIN;
5184
5185 pci_dev_save_and_disable(dev);
5186 rc = __pci_reset_function_locked(dev);
5187 pci_dev_restore(dev);
5188 pci_dev_unlock(dev);
5189
5190 return rc;
5191 }
5192 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5193
5194 /* Do any devices on or below this bus prevent a bus reset? */
5195 static bool pci_bus_resetable(struct pci_bus *bus)
5196 {
5197 struct pci_dev *dev;
5198
5199
5200 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5201 return false;
5202
5203 list_for_each_entry(dev, &bus->devices, bus_list) {
5204 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5205 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5206 return false;
5207 }
5208
5209 return true;
5210 }
5211
5212 /* Lock devices from the top of the tree down */
5213 static void pci_bus_lock(struct pci_bus *bus)
5214 {
5215 struct pci_dev *dev;
5216
5217 list_for_each_entry(dev, &bus->devices, bus_list) {
5218 pci_dev_lock(dev);
5219 if (dev->subordinate)
5220 pci_bus_lock(dev->subordinate);
5221 }
5222 }
5223
5224 /* Unlock devices from the bottom of the tree up */
5225 static void pci_bus_unlock(struct pci_bus *bus)
5226 {
5227 struct pci_dev *dev;
5228
5229 list_for_each_entry(dev, &bus->devices, bus_list) {
5230 if (dev->subordinate)
5231 pci_bus_unlock(dev->subordinate);
5232 pci_dev_unlock(dev);
5233 }
5234 }
5235
5236 /* Return 1 on successful lock, 0 on contention */
5237 static int pci_bus_trylock(struct pci_bus *bus)
5238 {
5239 struct pci_dev *dev;
5240
5241 list_for_each_entry(dev, &bus->devices, bus_list) {
5242 if (!pci_dev_trylock(dev))
5243 goto unlock;
5244 if (dev->subordinate) {
5245 if (!pci_bus_trylock(dev->subordinate)) {
5246 pci_dev_unlock(dev);
5247 goto unlock;
5248 }
5249 }
5250 }
5251 return 1;
5252
5253 unlock:
5254 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5255 if (dev->subordinate)
5256 pci_bus_unlock(dev->subordinate);
5257 pci_dev_unlock(dev);
5258 }
5259 return 0;
5260 }
5261
5262 /* Do any devices on or below this slot prevent a bus reset? */
5263 static bool pci_slot_resetable(struct pci_slot *slot)
5264 {
5265 struct pci_dev *dev;
5266
5267 if (slot->bus->self &&
5268 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5269 return false;
5270
5271 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5272 if (!dev->slot || dev->slot != slot)
5273 continue;
5274 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5275 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5276 return false;
5277 }
5278
5279 return true;
5280 }
5281
5282 /* Lock devices from the top of the tree down */
5283 static void pci_slot_lock(struct pci_slot *slot)
5284 {
5285 struct pci_dev *dev;
5286
5287 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5288 if (!dev->slot || dev->slot != slot)
5289 continue;
5290 pci_dev_lock(dev);
5291 if (dev->subordinate)
5292 pci_bus_lock(dev->subordinate);
5293 }
5294 }
5295
5296 /* Unlock devices from the bottom of the tree up */
5297 static void pci_slot_unlock(struct pci_slot *slot)
5298 {
5299 struct pci_dev *dev;
5300
5301 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5302 if (!dev->slot || dev->slot != slot)
5303 continue;
5304 if (dev->subordinate)
5305 pci_bus_unlock(dev->subordinate);
5306 pci_dev_unlock(dev);
5307 }
5308 }
5309
5310 /* Return 1 on successful lock, 0 on contention */
5311 static int pci_slot_trylock(struct pci_slot *slot)
5312 {
5313 struct pci_dev *dev;
5314
5315 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5316 if (!dev->slot || dev->slot != slot)
5317 continue;
5318 if (!pci_dev_trylock(dev))
5319 goto unlock;
5320 if (dev->subordinate) {
5321 if (!pci_bus_trylock(dev->subordinate)) {
5322 pci_dev_unlock(dev);
5323 goto unlock;
5324 }
5325 }
5326 }
5327 return 1;
5328
5329 unlock:
5330 list_for_each_entry_continue_reverse(dev,
5331 &slot->bus->devices, bus_list) {
5332 if (!dev->slot || dev->slot != slot)
5333 continue;
5334 if (dev->subordinate)
5335 pci_bus_unlock(dev->subordinate);
5336 pci_dev_unlock(dev);
5337 }
5338 return 0;
5339 }
5340
5341 /*
5342 * Save and disable devices from the top of the tree down while holding
5343 * the @dev mutex lock for the entire tree.
5344 */
5345 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5346 {
5347 struct pci_dev *dev;
5348
5349 list_for_each_entry(dev, &bus->devices, bus_list) {
5350 pci_dev_save_and_disable(dev);
5351 if (dev->subordinate)
5352 pci_bus_save_and_disable_locked(dev->subordinate);
5353 }
5354 }
5355
5356 /*
5357 * Restore devices from top of the tree down while holding @dev mutex lock
5358 * for the entire tree. Parent bridges need to be restored before we can
5359 * get to subordinate devices.
5360 */
5361 static void pci_bus_restore_locked(struct pci_bus *bus)
5362 {
5363 struct pci_dev *dev;
5364
5365 list_for_each_entry(dev, &bus->devices, bus_list) {
5366 pci_dev_restore(dev);
5367 if (dev->subordinate)
5368 pci_bus_restore_locked(dev->subordinate);
5369 }
5370 }
5371
5372 /*
5373 * Save and disable devices from the top of the tree down while holding
5374 * the @dev mutex lock for the entire tree.
5375 */
5376 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5377 {
5378 struct pci_dev *dev;
5379
5380 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5381 if (!dev->slot || dev->slot != slot)
5382 continue;
5383 pci_dev_save_and_disable(dev);
5384 if (dev->subordinate)
5385 pci_bus_save_and_disable_locked(dev->subordinate);
5386 }
5387 }
5388
5389 /*
5390 * Restore devices from top of the tree down while holding @dev mutex lock
5391 * for the entire tree. Parent bridges need to be restored before we can
5392 * get to subordinate devices.
5393 */
5394 static void pci_slot_restore_locked(struct pci_slot *slot)
5395 {
5396 struct pci_dev *dev;
5397
5398 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5399 if (!dev->slot || dev->slot != slot)
5400 continue;
5401 pci_dev_restore(dev);
5402 if (dev->subordinate)
5403 pci_bus_restore_locked(dev->subordinate);
5404 }
5405 }
5406
5407 static int pci_slot_reset(struct pci_slot *slot, int probe)
5408 {
5409 int rc;
5410
5411 if (!slot || !pci_slot_resetable(slot))
5412 return -ENOTTY;
5413
5414 if (!probe)
5415 pci_slot_lock(slot);
5416
5417 might_sleep();
5418
5419 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5420
5421 if (!probe)
5422 pci_slot_unlock(slot);
5423
5424 return rc;
5425 }
5426
5427 /**
5428 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5429 * @slot: PCI slot to probe
5430 *
5431 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5432 */
5433 int pci_probe_reset_slot(struct pci_slot *slot)
5434 {
5435 return pci_slot_reset(slot, 1);
5436 }
5437 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5438
5439 /**
5440 * __pci_reset_slot - Try to reset a PCI slot
5441 * @slot: PCI slot to reset
5442 *
5443 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5444 * independent of other slots. For instance, some slots may support slot power
5445 * control. In the case of a 1:1 bus to slot architecture, this function may
5446 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5447 * Generally a slot reset should be attempted before a bus reset. All of the
5448 * function of the slot and any subordinate buses behind the slot are reset
5449 * through this function. PCI config space of all devices in the slot and
5450 * behind the slot is saved before and restored after reset.
5451 *
5452 * Same as above except return -EAGAIN if the slot cannot be locked
5453 */
5454 static int __pci_reset_slot(struct pci_slot *slot)
5455 {
5456 int rc;
5457
5458 rc = pci_slot_reset(slot, 1);
5459 if (rc)
5460 return rc;
5461
5462 if (pci_slot_trylock(slot)) {
5463 pci_slot_save_and_disable_locked(slot);
5464 might_sleep();
5465 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5466 pci_slot_restore_locked(slot);
5467 pci_slot_unlock(slot);
5468 } else
5469 rc = -EAGAIN;
5470
5471 return rc;
5472 }
5473
5474 static int pci_bus_reset(struct pci_bus *bus, int probe)
5475 {
5476 int ret;
5477
5478 if (!bus->self || !pci_bus_resetable(bus))
5479 return -ENOTTY;
5480
5481 if (probe)
5482 return 0;
5483
5484 pci_bus_lock(bus);
5485
5486 might_sleep();
5487
5488 ret = pci_bridge_secondary_bus_reset(bus->self);
5489
5490 pci_bus_unlock(bus);
5491
5492 return ret;
5493 }
5494
5495 /**
5496 * pci_bus_error_reset - reset the bridge's subordinate bus
5497 * @bridge: The parent device that connects to the bus to reset
5498 *
5499 * This function will first try to reset the slots on this bus if the method is
5500 * available. If slot reset fails or is not available, this will fall back to a
5501 * secondary bus reset.
5502 */
5503 int pci_bus_error_reset(struct pci_dev *bridge)
5504 {
5505 struct pci_bus *bus = bridge->subordinate;
5506 struct pci_slot *slot;
5507
5508 if (!bus)
5509 return -ENOTTY;
5510
5511 mutex_lock(&pci_slot_mutex);
5512 if (list_empty(&bus->slots))
5513 goto bus_reset;
5514
5515 list_for_each_entry(slot, &bus->slots, list)
5516 if (pci_probe_reset_slot(slot))
5517 goto bus_reset;
5518
5519 list_for_each_entry(slot, &bus->slots, list)
5520 if (pci_slot_reset(slot, 0))
5521 goto bus_reset;
5522
5523 mutex_unlock(&pci_slot_mutex);
5524 return 0;
5525 bus_reset:
5526 mutex_unlock(&pci_slot_mutex);
5527 return pci_bus_reset(bridge->subordinate, 0);
5528 }
5529
5530 /**
5531 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5532 * @bus: PCI bus to probe
5533 *
5534 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5535 */
5536 int pci_probe_reset_bus(struct pci_bus *bus)
5537 {
5538 return pci_bus_reset(bus, 1);
5539 }
5540 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5541
5542 /**
5543 * __pci_reset_bus - Try to reset a PCI bus
5544 * @bus: top level PCI bus to reset
5545 *
5546 * Same as above except return -EAGAIN if the bus cannot be locked
5547 */
5548 static int __pci_reset_bus(struct pci_bus *bus)
5549 {
5550 int rc;
5551
5552 rc = pci_bus_reset(bus, 1);
5553 if (rc)
5554 return rc;
5555
5556 if (pci_bus_trylock(bus)) {
5557 pci_bus_save_and_disable_locked(bus);
5558 might_sleep();
5559 rc = pci_bridge_secondary_bus_reset(bus->self);
5560 pci_bus_restore_locked(bus);
5561 pci_bus_unlock(bus);
5562 } else
5563 rc = -EAGAIN;
5564
5565 return rc;
5566 }
5567
5568 /**
5569 * pci_reset_bus - Try to reset a PCI bus
5570 * @pdev: top level PCI device to reset via slot/bus
5571 *
5572 * Same as above except return -EAGAIN if the bus cannot be locked
5573 */
5574 int pci_reset_bus(struct pci_dev *pdev)
5575 {
5576 return (!pci_probe_reset_slot(pdev->slot)) ?
5577 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5578 }
5579 EXPORT_SYMBOL_GPL(pci_reset_bus);
5580
5581 /**
5582 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5583 * @dev: PCI device to query
5584 *
5585 * Returns mmrbc: maximum designed memory read count in bytes or
5586 * appropriate error value.
5587 */
5588 int pcix_get_max_mmrbc(struct pci_dev *dev)
5589 {
5590 int cap;
5591 u32 stat;
5592
5593 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5594 if (!cap)
5595 return -EINVAL;
5596
5597 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5598 return -EINVAL;
5599
5600 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5601 }
5602 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5603
5604 /**
5605 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5606 * @dev: PCI device to query
5607 *
5608 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5609 * value.
5610 */
5611 int pcix_get_mmrbc(struct pci_dev *dev)
5612 {
5613 int cap;
5614 u16 cmd;
5615
5616 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5617 if (!cap)
5618 return -EINVAL;
5619
5620 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5621 return -EINVAL;
5622
5623 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5624 }
5625 EXPORT_SYMBOL(pcix_get_mmrbc);
5626
5627 /**
5628 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5629 * @dev: PCI device to query
5630 * @mmrbc: maximum memory read count in bytes
5631 * valid values are 512, 1024, 2048, 4096
5632 *
5633 * If possible sets maximum memory read byte count, some bridges have errata
5634 * that prevent this.
5635 */
5636 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5637 {
5638 int cap;
5639 u32 stat, v, o;
5640 u16 cmd;
5641
5642 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5643 return -EINVAL;
5644
5645 v = ffs(mmrbc) - 10;
5646
5647 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5648 if (!cap)
5649 return -EINVAL;
5650
5651 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5652 return -EINVAL;
5653
5654 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5655 return -E2BIG;
5656
5657 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5658 return -EINVAL;
5659
5660 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5661 if (o != v) {
5662 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5663 return -EIO;
5664
5665 cmd &= ~PCI_X_CMD_MAX_READ;
5666 cmd |= v << 2;
5667 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5668 return -EIO;
5669 }
5670 return 0;
5671 }
5672 EXPORT_SYMBOL(pcix_set_mmrbc);
5673
5674 /**
5675 * pcie_get_readrq - get PCI Express read request size
5676 * @dev: PCI device to query
5677 *
5678 * Returns maximum memory read request in bytes or appropriate error value.
5679 */
5680 int pcie_get_readrq(struct pci_dev *dev)
5681 {
5682 u16 ctl;
5683
5684 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5685
5686 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5687 }
5688 EXPORT_SYMBOL(pcie_get_readrq);
5689
5690 /**
5691 * pcie_set_readrq - set PCI Express maximum memory read request
5692 * @dev: PCI device to query
5693 * @rq: maximum memory read count in bytes
5694 * valid values are 128, 256, 512, 1024, 2048, 4096
5695 *
5696 * If possible sets maximum memory read request in bytes
5697 */
5698 int pcie_set_readrq(struct pci_dev *dev, int rq)
5699 {
5700 u16 v;
5701
5702 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5703 return -EINVAL;
5704
5705 /*
5706 * If using the "performance" PCIe config, we clamp the read rq
5707 * size to the max packet size to keep the host bridge from
5708 * generating requests larger than we can cope with.
5709 */
5710 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5711 int mps = pcie_get_mps(dev);
5712
5713 if (mps < rq)
5714 rq = mps;
5715 }
5716
5717 v = (ffs(rq) - 8) << 12;
5718
5719 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5720 PCI_EXP_DEVCTL_READRQ, v);
5721 }
5722 EXPORT_SYMBOL(pcie_set_readrq);
5723
5724 /**
5725 * pcie_get_mps - get PCI Express maximum payload size
5726 * @dev: PCI device to query
5727 *
5728 * Returns maximum payload size in bytes
5729 */
5730 int pcie_get_mps(struct pci_dev *dev)
5731 {
5732 u16 ctl;
5733
5734 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5735
5736 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5737 }
5738 EXPORT_SYMBOL(pcie_get_mps);
5739
5740 /**
5741 * pcie_set_mps - set PCI Express maximum payload size
5742 * @dev: PCI device to query
5743 * @mps: maximum payload size in bytes
5744 * valid values are 128, 256, 512, 1024, 2048, 4096
5745 *
5746 * If possible sets maximum payload size
5747 */
5748 int pcie_set_mps(struct pci_dev *dev, int mps)
5749 {
5750 u16 v;
5751
5752 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5753 return -EINVAL;
5754
5755 v = ffs(mps) - 8;
5756 if (v > dev->pcie_mpss)
5757 return -EINVAL;
5758 v <<= 5;
5759
5760 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5761 PCI_EXP_DEVCTL_PAYLOAD, v);
5762 }
5763 EXPORT_SYMBOL(pcie_set_mps);
5764
5765 /**
5766 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5767 * device and its bandwidth limitation
5768 * @dev: PCI device to query
5769 * @limiting_dev: storage for device causing the bandwidth limitation
5770 * @speed: storage for speed of limiting device
5771 * @width: storage for width of limiting device
5772 *
5773 * Walk up the PCI device chain and find the point where the minimum
5774 * bandwidth is available. Return the bandwidth available there and (if
5775 * limiting_dev, speed, and width pointers are supplied) information about
5776 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5777 * raw bandwidth.
5778 */
5779 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5780 enum pci_bus_speed *speed,
5781 enum pcie_link_width *width)
5782 {
5783 u16 lnksta;
5784 enum pci_bus_speed next_speed;
5785 enum pcie_link_width next_width;
5786 u32 bw, next_bw;
5787
5788 if (speed)
5789 *speed = PCI_SPEED_UNKNOWN;
5790 if (width)
5791 *width = PCIE_LNK_WIDTH_UNKNOWN;
5792
5793 bw = 0;
5794
5795 while (dev) {
5796 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5797
5798 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5799 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5800 PCI_EXP_LNKSTA_NLW_SHIFT;
5801
5802 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5803
5804 /* Check if current device limits the total bandwidth */
5805 if (!bw || next_bw <= bw) {
5806 bw = next_bw;
5807
5808 if (limiting_dev)
5809 *limiting_dev = dev;
5810 if (speed)
5811 *speed = next_speed;
5812 if (width)
5813 *width = next_width;
5814 }
5815
5816 dev = pci_upstream_bridge(dev);
5817 }
5818
5819 return bw;
5820 }
5821 EXPORT_SYMBOL(pcie_bandwidth_available);
5822
5823 /**
5824 * pcie_get_speed_cap - query for the PCI device's link speed capability
5825 * @dev: PCI device to query
5826 *
5827 * Query the PCI device speed capability. Return the maximum link speed
5828 * supported by the device.
5829 */
5830 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5831 {
5832 u32 lnkcap2, lnkcap;
5833
5834 /*
5835 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5836 * implementation note there recommends using the Supported Link
5837 * Speeds Vector in Link Capabilities 2 when supported.
5838 *
5839 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5840 * should use the Supported Link Speeds field in Link Capabilities,
5841 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5842 */
5843 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5844
5845 /* PCIe r3.0-compliant */
5846 if (lnkcap2)
5847 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5848
5849 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5850 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5851 return PCIE_SPEED_5_0GT;
5852 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5853 return PCIE_SPEED_2_5GT;
5854
5855 return PCI_SPEED_UNKNOWN;
5856 }
5857 EXPORT_SYMBOL(pcie_get_speed_cap);
5858
5859 /**
5860 * pcie_get_width_cap - query for the PCI device's link width capability
5861 * @dev: PCI device to query
5862 *
5863 * Query the PCI device width capability. Return the maximum link width
5864 * supported by the device.
5865 */
5866 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5867 {
5868 u32 lnkcap;
5869
5870 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5871 if (lnkcap)
5872 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5873
5874 return PCIE_LNK_WIDTH_UNKNOWN;
5875 }
5876 EXPORT_SYMBOL(pcie_get_width_cap);
5877
5878 /**
5879 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5880 * @dev: PCI device
5881 * @speed: storage for link speed
5882 * @width: storage for link width
5883 *
5884 * Calculate a PCI device's link bandwidth by querying for its link speed
5885 * and width, multiplying them, and applying encoding overhead. The result
5886 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5887 */
5888 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5889 enum pcie_link_width *width)
5890 {
5891 *speed = pcie_get_speed_cap(dev);
5892 *width = pcie_get_width_cap(dev);
5893
5894 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5895 return 0;
5896
5897 return *width * PCIE_SPEED2MBS_ENC(*speed);
5898 }
5899
5900 /**
5901 * __pcie_print_link_status - Report the PCI device's link speed and width
5902 * @dev: PCI device to query
5903 * @verbose: Print info even when enough bandwidth is available
5904 *
5905 * If the available bandwidth at the device is less than the device is
5906 * capable of, report the device's maximum possible bandwidth and the
5907 * upstream link that limits its performance. If @verbose, always print
5908 * the available bandwidth, even if the device isn't constrained.
5909 */
5910 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5911 {
5912 enum pcie_link_width width, width_cap;
5913 enum pci_bus_speed speed, speed_cap;
5914 struct pci_dev *limiting_dev = NULL;
5915 u32 bw_avail, bw_cap;
5916
5917 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5918 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5919
5920 if (bw_avail >= bw_cap && verbose)
5921 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5922 bw_cap / 1000, bw_cap % 1000,
5923 pci_speed_string(speed_cap), width_cap);
5924 else if (bw_avail < bw_cap)
5925 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5926 bw_avail / 1000, bw_avail % 1000,
5927 pci_speed_string(speed), width,
5928 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5929 bw_cap / 1000, bw_cap % 1000,
5930 pci_speed_string(speed_cap), width_cap);
5931 }
5932
5933 /**
5934 * pcie_print_link_status - Report the PCI device's link speed and width
5935 * @dev: PCI device to query
5936 *
5937 * Report the available bandwidth at the device.
5938 */
5939 void pcie_print_link_status(struct pci_dev *dev)
5940 {
5941 __pcie_print_link_status(dev, true);
5942 }
5943 EXPORT_SYMBOL(pcie_print_link_status);
5944
5945 /**
5946 * pci_select_bars - Make BAR mask from the type of resource
5947 * @dev: the PCI device for which BAR mask is made
5948 * @flags: resource type mask to be selected
5949 *
5950 * This helper routine makes bar mask from the type of resource.
5951 */
5952 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5953 {
5954 int i, bars = 0;
5955 for (i = 0; i < PCI_NUM_RESOURCES; i++)
5956 if (pci_resource_flags(dev, i) & flags)
5957 bars |= (1 << i);
5958 return bars;
5959 }
5960 EXPORT_SYMBOL(pci_select_bars);
5961
5962 /* Some architectures require additional programming to enable VGA */
5963 static arch_set_vga_state_t arch_set_vga_state;
5964
5965 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5966 {
5967 arch_set_vga_state = func; /* NULL disables */
5968 }
5969
5970 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5971 unsigned int command_bits, u32 flags)
5972 {
5973 if (arch_set_vga_state)
5974 return arch_set_vga_state(dev, decode, command_bits,
5975 flags);
5976 return 0;
5977 }
5978
5979 /**
5980 * pci_set_vga_state - set VGA decode state on device and parents if requested
5981 * @dev: the PCI device
5982 * @decode: true = enable decoding, false = disable decoding
5983 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5984 * @flags: traverse ancestors and change bridges
5985 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5986 */
5987 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5988 unsigned int command_bits, u32 flags)
5989 {
5990 struct pci_bus *bus;
5991 struct pci_dev *bridge;
5992 u16 cmd;
5993 int rc;
5994
5995 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5996
5997 /* ARCH specific VGA enables */
5998 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5999 if (rc)
6000 return rc;
6001
6002 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6003 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6004 if (decode == true)
6005 cmd |= command_bits;
6006 else
6007 cmd &= ~command_bits;
6008 pci_write_config_word(dev, PCI_COMMAND, cmd);
6009 }
6010
6011 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6012 return 0;
6013
6014 bus = dev->bus;
6015 while (bus) {
6016 bridge = bus->self;
6017 if (bridge) {
6018 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6019 &cmd);
6020 if (decode == true)
6021 cmd |= PCI_BRIDGE_CTL_VGA;
6022 else
6023 cmd &= ~PCI_BRIDGE_CTL_VGA;
6024 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6025 cmd);
6026 }
6027 bus = bus->parent;
6028 }
6029 return 0;
6030 }
6031
6032 #ifdef CONFIG_ACPI
6033 bool pci_pr3_present(struct pci_dev *pdev)
6034 {
6035 struct acpi_device *adev;
6036
6037 if (acpi_disabled)
6038 return false;
6039
6040 adev = ACPI_COMPANION(&pdev->dev);
6041 if (!adev)
6042 return false;
6043
6044 return adev->power.flags.power_resources &&
6045 acpi_has_method(adev->handle, "_PR3");
6046 }
6047 EXPORT_SYMBOL_GPL(pci_pr3_present);
6048 #endif
6049
6050 /**
6051 * pci_add_dma_alias - Add a DMA devfn alias for a device
6052 * @dev: the PCI device for which alias is added
6053 * @devfn_from: alias slot and function
6054 * @nr_devfns: number of subsequent devfns to alias
6055 *
6056 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6057 * which is used to program permissible bus-devfn source addresses for DMA
6058 * requests in an IOMMU. These aliases factor into IOMMU group creation
6059 * and are useful for devices generating DMA requests beyond or different
6060 * from their logical bus-devfn. Examples include device quirks where the
6061 * device simply uses the wrong devfn, as well as non-transparent bridges
6062 * where the alias may be a proxy for devices in another domain.
6063 *
6064 * IOMMU group creation is performed during device discovery or addition,
6065 * prior to any potential DMA mapping and therefore prior to driver probing
6066 * (especially for userspace assigned devices where IOMMU group definition
6067 * cannot be left as a userspace activity). DMA aliases should therefore
6068 * be configured via quirks, such as the PCI fixup header quirk.
6069 */
6070 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6071 {
6072 int devfn_to;
6073
6074 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6075 devfn_to = devfn_from + nr_devfns - 1;
6076
6077 if (!dev->dma_alias_mask)
6078 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6079 if (!dev->dma_alias_mask) {
6080 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6081 return;
6082 }
6083
6084 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6085
6086 if (nr_devfns == 1)
6087 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6088 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6089 else if (nr_devfns > 1)
6090 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6091 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6092 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6093 }
6094
6095 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6096 {
6097 return (dev1->dma_alias_mask &&
6098 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6099 (dev2->dma_alias_mask &&
6100 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6101 pci_real_dma_dev(dev1) == dev2 ||
6102 pci_real_dma_dev(dev2) == dev1;
6103 }
6104
6105 bool pci_device_is_present(struct pci_dev *pdev)
6106 {
6107 u32 v;
6108
6109 if (pci_dev_is_disconnected(pdev))
6110 return false;
6111 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6112 }
6113 EXPORT_SYMBOL_GPL(pci_device_is_present);
6114
6115 void pci_ignore_hotplug(struct pci_dev *dev)
6116 {
6117 struct pci_dev *bridge = dev->bus->self;
6118
6119 dev->ignore_hotplug = 1;
6120 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6121 if (bridge)
6122 bridge->ignore_hotplug = 1;
6123 }
6124 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6125
6126 /**
6127 * pci_real_dma_dev - Get PCI DMA device for PCI device
6128 * @dev: the PCI device that may have a PCI DMA alias
6129 *
6130 * Permits the platform to provide architecture-specific functionality to
6131 * devices needing to alias DMA to another PCI device on another PCI bus. If
6132 * the PCI device is on the same bus, it is recommended to use
6133 * pci_add_dma_alias(). This is the default implementation. Architecture
6134 * implementations can override this.
6135 */
6136 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6137 {
6138 return dev;
6139 }
6140
6141 resource_size_t __weak pcibios_default_alignment(void)
6142 {
6143 return 0;
6144 }
6145
6146 /*
6147 * Arches that don't want to expose struct resource to userland as-is in
6148 * sysfs and /proc can implement their own pci_resource_to_user().
6149 */
6150 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6151 const struct resource *rsrc,
6152 resource_size_t *start, resource_size_t *end)
6153 {
6154 *start = rsrc->start;
6155 *end = rsrc->end;
6156 }
6157
6158 static char *resource_alignment_param;
6159 static DEFINE_SPINLOCK(resource_alignment_lock);
6160
6161 /**
6162 * pci_specified_resource_alignment - get resource alignment specified by user.
6163 * @dev: the PCI device to get
6164 * @resize: whether or not to change resources' size when reassigning alignment
6165 *
6166 * RETURNS: Resource alignment if it is specified.
6167 * Zero if it is not specified.
6168 */
6169 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6170 bool *resize)
6171 {
6172 int align_order, count;
6173 resource_size_t align = pcibios_default_alignment();
6174 const char *p;
6175 int ret;
6176
6177 spin_lock(&resource_alignment_lock);
6178 p = resource_alignment_param;
6179 if (!p || !*p)
6180 goto out;
6181 if (pci_has_flag(PCI_PROBE_ONLY)) {
6182 align = 0;
6183 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6184 goto out;
6185 }
6186
6187 while (*p) {
6188 count = 0;
6189 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6190 p[count] == '@') {
6191 p += count + 1;
6192 } else {
6193 align_order = -1;
6194 }
6195
6196 ret = pci_dev_str_match(dev, p, &p);
6197 if (ret == 1) {
6198 *resize = true;
6199 if (align_order == -1)
6200 align = PAGE_SIZE;
6201 else
6202 align = 1 << align_order;
6203 break;
6204 } else if (ret < 0) {
6205 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6206 p);
6207 break;
6208 }
6209
6210 if (*p != ';' && *p != ',') {
6211 /* End of param or invalid format */
6212 break;
6213 }
6214 p++;
6215 }
6216 out:
6217 spin_unlock(&resource_alignment_lock);
6218 return align;
6219 }
6220
6221 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6222 resource_size_t align, bool resize)
6223 {
6224 struct resource *r = &dev->resource[bar];
6225 resource_size_t size;
6226
6227 if (!(r->flags & IORESOURCE_MEM))
6228 return;
6229
6230 if (r->flags & IORESOURCE_PCI_FIXED) {
6231 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6232 bar, r, (unsigned long long)align);
6233 return;
6234 }
6235
6236 size = resource_size(r);
6237 if (size >= align)
6238 return;
6239
6240 /*
6241 * Increase the alignment of the resource. There are two ways we
6242 * can do this:
6243 *
6244 * 1) Increase the size of the resource. BARs are aligned on their
6245 * size, so when we reallocate space for this resource, we'll
6246 * allocate it with the larger alignment. This also prevents
6247 * assignment of any other BARs inside the alignment region, so
6248 * if we're requesting page alignment, this means no other BARs
6249 * will share the page.
6250 *
6251 * The disadvantage is that this makes the resource larger than
6252 * the hardware BAR, which may break drivers that compute things
6253 * based on the resource size, e.g., to find registers at a
6254 * fixed offset before the end of the BAR.
6255 *
6256 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6257 * set r->start to the desired alignment. By itself this
6258 * doesn't prevent other BARs being put inside the alignment
6259 * region, but if we realign *every* resource of every device in
6260 * the system, none of them will share an alignment region.
6261 *
6262 * When the user has requested alignment for only some devices via
6263 * the "pci=resource_alignment" argument, "resize" is true and we
6264 * use the first method. Otherwise we assume we're aligning all
6265 * devices and we use the second.
6266 */
6267
6268 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6269 bar, r, (unsigned long long)align);
6270
6271 if (resize) {
6272 r->start = 0;
6273 r->end = align - 1;
6274 } else {
6275 r->flags &= ~IORESOURCE_SIZEALIGN;
6276 r->flags |= IORESOURCE_STARTALIGN;
6277 r->start = align;
6278 r->end = r->start + size - 1;
6279 }
6280 r->flags |= IORESOURCE_UNSET;
6281 }
6282
6283 /*
6284 * This function disables memory decoding and releases memory resources
6285 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6286 * It also rounds up size to specified alignment.
6287 * Later on, the kernel will assign page-aligned memory resource back
6288 * to the device.
6289 */
6290 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6291 {
6292 int i;
6293 struct resource *r;
6294 resource_size_t align;
6295 u16 command;
6296 bool resize = false;
6297
6298 /*
6299 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6300 * 3.4.1.11. Their resources are allocated from the space
6301 * described by the VF BARx register in the PF's SR-IOV capability.
6302 * We can't influence their alignment here.
6303 */
6304 if (dev->is_virtfn)
6305 return;
6306
6307 /* check if specified PCI is target device to reassign */
6308 align = pci_specified_resource_alignment(dev, &resize);
6309 if (!align)
6310 return;
6311
6312 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6313 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6314 pci_warn(dev, "Can't reassign resources to host bridge\n");
6315 return;
6316 }
6317
6318 pci_read_config_word(dev, PCI_COMMAND, &command);
6319 command &= ~PCI_COMMAND_MEMORY;
6320 pci_write_config_word(dev, PCI_COMMAND, command);
6321
6322 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6323 pci_request_resource_alignment(dev, i, align, resize);
6324
6325 /*
6326 * Need to disable bridge's resource window,
6327 * to enable the kernel to reassign new resource
6328 * window later on.
6329 */
6330 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6331 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6332 r = &dev->resource[i];
6333 if (!(r->flags & IORESOURCE_MEM))
6334 continue;
6335 r->flags |= IORESOURCE_UNSET;
6336 r->end = resource_size(r) - 1;
6337 r->start = 0;
6338 }
6339 pci_disable_bridge_window(dev);
6340 }
6341 }
6342
6343 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6344 {
6345 size_t count = 0;
6346
6347 spin_lock(&resource_alignment_lock);
6348 if (resource_alignment_param)
6349 count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6350 spin_unlock(&resource_alignment_lock);
6351
6352 /*
6353 * When set by the command line, resource_alignment_param will not
6354 * have a trailing line feed, which is ugly. So conditionally add
6355 * it here.
6356 */
6357 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6358 buf[count - 1] = '\n';
6359 buf[count++] = 0;
6360 }
6361
6362 return count;
6363 }
6364
6365 static ssize_t resource_alignment_store(struct bus_type *bus,
6366 const char *buf, size_t count)
6367 {
6368 char *param = kstrndup(buf, count, GFP_KERNEL);
6369
6370 if (!param)
6371 return -ENOMEM;
6372
6373 spin_lock(&resource_alignment_lock);
6374 kfree(resource_alignment_param);
6375 resource_alignment_param = param;
6376 spin_unlock(&resource_alignment_lock);
6377 return count;
6378 }
6379
6380 static BUS_ATTR_RW(resource_alignment);
6381
6382 static int __init pci_resource_alignment_sysfs_init(void)
6383 {
6384 return bus_create_file(&pci_bus_type,
6385 &bus_attr_resource_alignment);
6386 }
6387 late_initcall(pci_resource_alignment_sysfs_init);
6388
6389 static void pci_no_domains(void)
6390 {
6391 #ifdef CONFIG_PCI_DOMAINS
6392 pci_domains_supported = 0;
6393 #endif
6394 }
6395
6396 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6397 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6398
6399 static int pci_get_new_domain_nr(void)
6400 {
6401 return atomic_inc_return(&__domain_nr);
6402 }
6403
6404 static int of_pci_bus_find_domain_nr(struct device *parent)
6405 {
6406 static int use_dt_domains = -1;
6407 int domain = -1;
6408
6409 if (parent)
6410 domain = of_get_pci_domain_nr(parent->of_node);
6411
6412 /*
6413 * Check DT domain and use_dt_domains values.
6414 *
6415 * If DT domain property is valid (domain >= 0) and
6416 * use_dt_domains != 0, the DT assignment is valid since this means
6417 * we have not previously allocated a domain number by using
6418 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6419 * 1, to indicate that we have just assigned a domain number from
6420 * DT.
6421 *
6422 * If DT domain property value is not valid (ie domain < 0), and we
6423 * have not previously assigned a domain number from DT
6424 * (use_dt_domains != 1) we should assign a domain number by
6425 * using the:
6426 *
6427 * pci_get_new_domain_nr()
6428 *
6429 * API and update the use_dt_domains value to keep track of method we
6430 * are using to assign domain numbers (use_dt_domains = 0).
6431 *
6432 * All other combinations imply we have a platform that is trying
6433 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6434 * which is a recipe for domain mishandling and it is prevented by
6435 * invalidating the domain value (domain = -1) and printing a
6436 * corresponding error.
6437 */
6438 if (domain >= 0 && use_dt_domains) {
6439 use_dt_domains = 1;
6440 } else if (domain < 0 && use_dt_domains != 1) {
6441 use_dt_domains = 0;
6442 domain = pci_get_new_domain_nr();
6443 } else {
6444 if (parent)
6445 pr_err("Node %pOF has ", parent->of_node);
6446 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6447 domain = -1;
6448 }
6449
6450 return domain;
6451 }
6452
6453 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6454 {
6455 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6456 acpi_pci_bus_find_domain_nr(bus);
6457 }
6458 #endif
6459
6460 /**
6461 * pci_ext_cfg_avail - can we access extended PCI config space?
6462 *
6463 * Returns 1 if we can access PCI extended config space (offsets
6464 * greater than 0xff). This is the default implementation. Architecture
6465 * implementations can override this.
6466 */
6467 int __weak pci_ext_cfg_avail(void)
6468 {
6469 return 1;
6470 }
6471
6472 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6473 {
6474 }
6475 EXPORT_SYMBOL(pci_fixup_cardbus);
6476
6477 static int __init pci_setup(char *str)
6478 {
6479 while (str) {
6480 char *k = strchr(str, ',');
6481 if (k)
6482 *k++ = 0;
6483 if (*str && (str = pcibios_setup(str)) && *str) {
6484 if (!strcmp(str, "nomsi")) {
6485 pci_no_msi();
6486 } else if (!strncmp(str, "noats", 5)) {
6487 pr_info("PCIe: ATS is disabled\n");
6488 pcie_ats_disabled = true;
6489 } else if (!strcmp(str, "noaer")) {
6490 pci_no_aer();
6491 } else if (!strcmp(str, "earlydump")) {
6492 pci_early_dump = true;
6493 } else if (!strncmp(str, "realloc=", 8)) {
6494 pci_realloc_get_opt(str + 8);
6495 } else if (!strncmp(str, "realloc", 7)) {
6496 pci_realloc_get_opt("on");
6497 } else if (!strcmp(str, "nodomains")) {
6498 pci_no_domains();
6499 } else if (!strncmp(str, "noari", 5)) {
6500 pcie_ari_disabled = true;
6501 } else if (!strncmp(str, "cbiosize=", 9)) {
6502 pci_cardbus_io_size = memparse(str + 9, &str);
6503 } else if (!strncmp(str, "cbmemsize=", 10)) {
6504 pci_cardbus_mem_size = memparse(str + 10, &str);
6505 } else if (!strncmp(str, "resource_alignment=", 19)) {
6506 resource_alignment_param = str + 19;
6507 } else if (!strncmp(str, "ecrc=", 5)) {
6508 pcie_ecrc_get_policy(str + 5);
6509 } else if (!strncmp(str, "hpiosize=", 9)) {
6510 pci_hotplug_io_size = memparse(str + 9, &str);
6511 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6512 pci_hotplug_mmio_size = memparse(str + 11, &str);
6513 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6514 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6515 } else if (!strncmp(str, "hpmemsize=", 10)) {
6516 pci_hotplug_mmio_size = memparse(str + 10, &str);
6517 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6518 } else if (!strncmp(str, "hpbussize=", 10)) {
6519 pci_hotplug_bus_size =
6520 simple_strtoul(str + 10, &str, 0);
6521 if (pci_hotplug_bus_size > 0xff)
6522 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6523 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6524 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6525 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6526 pcie_bus_config = PCIE_BUS_SAFE;
6527 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6528 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6529 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6530 pcie_bus_config = PCIE_BUS_PEER2PEER;
6531 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6532 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6533 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6534 disable_acs_redir_param = str + 18;
6535 } else {
6536 pr_err("PCI: Unknown option `%s'\n", str);
6537 }
6538 }
6539 str = k;
6540 }
6541 return 0;
6542 }
6543 early_param("pci", pci_setup);
6544
6545 /*
6546 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6547 * in pci_setup(), above, to point to data in the __initdata section which
6548 * will be freed after the init sequence is complete. We can't allocate memory
6549 * in pci_setup() because some architectures do not have any memory allocation
6550 * service available during an early_param() call. So we allocate memory and
6551 * copy the variable here before the init section is freed.
6552 *
6553 */
6554 static int __init pci_realloc_setup_params(void)
6555 {
6556 resource_alignment_param = kstrdup(resource_alignment_param,
6557 GFP_KERNEL);
6558 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6559
6560 return 0;
6561 }
6562 pure_initcall(pci_realloc_setup_params);