]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/pci/pci.c
5c7ef86db60b8811f9ce9367d63d0beb25471316
[mirror_ubuntu-jammy-kernel.git] / drivers / pci / pci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
35 #include "pci.h"
36
37 DEFINE_MUTEX(pci_slot_mutex);
38
39 const char *pci_power_names[] = {
40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
46
47 int pci_pci_problems;
48 EXPORT_SYMBOL(pci_pci_problems);
49
50 unsigned int pci_pm_d3hot_delay;
51
52 static void pci_pme_list_scan(struct work_struct *work);
53
54 static LIST_HEAD(pci_pme_list);
55 static DEFINE_MUTEX(pci_pme_list_mutex);
56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
57
58 struct pci_pme_device {
59 struct list_head list;
60 struct pci_dev *dev;
61 };
62
63 #define PME_TIMEOUT 1000 /* How long between PME checks */
64
65 static void pci_dev_d3_sleep(struct pci_dev *dev)
66 {
67 unsigned int delay = dev->d3hot_delay;
68
69 if (delay < pci_pm_d3hot_delay)
70 delay = pci_pm_d3hot_delay;
71
72 if (delay)
73 msleep(delay);
74 }
75
76 bool pci_reset_supported(struct pci_dev *dev)
77 {
78 return dev->reset_methods[0] != 0;
79 }
80
81 #ifdef CONFIG_PCI_DOMAINS
82 int pci_domains_supported = 1;
83 #endif
84
85 #define DEFAULT_CARDBUS_IO_SIZE (256)
86 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
87 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
88 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
89 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
90
91 #define DEFAULT_HOTPLUG_IO_SIZE (256)
92 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
93 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
94 /* hpiosize=nn can override this */
95 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
96 /*
97 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
98 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
99 * pci=hpmemsize=nnM overrides both
100 */
101 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
102 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
103
104 #define DEFAULT_HOTPLUG_BUS_SIZE 1
105 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
106
107
108 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
109 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
111 #elif defined CONFIG_PCIE_BUS_SAFE
112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
113 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
114 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
115 #elif defined CONFIG_PCIE_BUS_PEER2PEER
116 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
117 #else
118 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
119 #endif
120
121 /*
122 * The default CLS is used if arch didn't set CLS explicitly and not
123 * all pci devices agree on the same value. Arch can override either
124 * the dfl or actual value as it sees fit. Don't forget this is
125 * measured in 32-bit words, not bytes.
126 */
127 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
128 u8 pci_cache_line_size;
129
130 /*
131 * If we set up a device for bus mastering, we need to check the latency
132 * timer as certain BIOSes forget to set it properly.
133 */
134 unsigned int pcibios_max_latency = 255;
135
136 /* If set, the PCIe ARI capability will not be used. */
137 static bool pcie_ari_disabled;
138
139 /* If set, the PCIe ATS capability will not be used. */
140 static bool pcie_ats_disabled;
141
142 /* If set, the PCI config space of each device is printed during boot. */
143 bool pci_early_dump;
144
145 bool pci_ats_disabled(void)
146 {
147 return pcie_ats_disabled;
148 }
149 EXPORT_SYMBOL_GPL(pci_ats_disabled);
150
151 /* Disable bridge_d3 for all PCIe ports */
152 static bool pci_bridge_d3_disable;
153 /* Force bridge_d3 for all PCIe ports */
154 static bool pci_bridge_d3_force;
155
156 static int __init pcie_port_pm_setup(char *str)
157 {
158 if (!strcmp(str, "off"))
159 pci_bridge_d3_disable = true;
160 else if (!strcmp(str, "force"))
161 pci_bridge_d3_force = true;
162 return 1;
163 }
164 __setup("pcie_port_pm=", pcie_port_pm_setup);
165
166 /* Time to wait after a reset for device to become responsive */
167 #define PCIE_RESET_READY_POLL_MS 60000
168
169 /**
170 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
171 * @bus: pointer to PCI bus structure to search
172 *
173 * Given a PCI bus, returns the highest PCI bus number present in the set
174 * including the given PCI bus and its list of child PCI buses.
175 */
176 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
177 {
178 struct pci_bus *tmp;
179 unsigned char max, n;
180
181 max = bus->busn_res.end;
182 list_for_each_entry(tmp, &bus->children, node) {
183 n = pci_bus_max_busnr(tmp);
184 if (n > max)
185 max = n;
186 }
187 return max;
188 }
189 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
190
191 /**
192 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
193 * @pdev: the PCI device
194 *
195 * Returns error bits set in PCI_STATUS and clears them.
196 */
197 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
198 {
199 u16 status;
200 int ret;
201
202 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
203 if (ret != PCIBIOS_SUCCESSFUL)
204 return -EIO;
205
206 status &= PCI_STATUS_ERROR_BITS;
207 if (status)
208 pci_write_config_word(pdev, PCI_STATUS, status);
209
210 return status;
211 }
212 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
213
214 #ifdef CONFIG_HAS_IOMEM
215 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
216 bool write_combine)
217 {
218 struct resource *res = &pdev->resource[bar];
219 resource_size_t start = res->start;
220 resource_size_t size = resource_size(res);
221
222 /*
223 * Make sure the BAR is actually a memory resource, not an IO resource
224 */
225 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
226 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
227 return NULL;
228 }
229
230 if (write_combine)
231 return ioremap_wc(start, size);
232
233 return ioremap(start, size);
234 }
235
236 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
237 {
238 return __pci_ioremap_resource(pdev, bar, false);
239 }
240 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
241
242 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
243 {
244 return __pci_ioremap_resource(pdev, bar, true);
245 }
246 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
247 #endif
248
249 /**
250 * pci_dev_str_match_path - test if a path string matches a device
251 * @dev: the PCI device to test
252 * @path: string to match the device against
253 * @endptr: pointer to the string after the match
254 *
255 * Test if a string (typically from a kernel parameter) formatted as a
256 * path of device/function addresses matches a PCI device. The string must
257 * be of the form:
258 *
259 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
260 *
261 * A path for a device can be obtained using 'lspci -t'. Using a path
262 * is more robust against bus renumbering than using only a single bus,
263 * device and function address.
264 *
265 * Returns 1 if the string matches the device, 0 if it does not and
266 * a negative error code if it fails to parse the string.
267 */
268 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
269 const char **endptr)
270 {
271 int ret;
272 int seg, bus, slot, func;
273 char *wpath, *p;
274 char end;
275
276 *endptr = strchrnul(path, ';');
277
278 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
279 if (!wpath)
280 return -ENOMEM;
281
282 while (1) {
283 p = strrchr(wpath, '/');
284 if (!p)
285 break;
286 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
287 if (ret != 2) {
288 ret = -EINVAL;
289 goto free_and_exit;
290 }
291
292 if (dev->devfn != PCI_DEVFN(slot, func)) {
293 ret = 0;
294 goto free_and_exit;
295 }
296
297 /*
298 * Note: we don't need to get a reference to the upstream
299 * bridge because we hold a reference to the top level
300 * device which should hold a reference to the bridge,
301 * and so on.
302 */
303 dev = pci_upstream_bridge(dev);
304 if (!dev) {
305 ret = 0;
306 goto free_and_exit;
307 }
308
309 *p = 0;
310 }
311
312 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
313 &func, &end);
314 if (ret != 4) {
315 seg = 0;
316 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
317 if (ret != 3) {
318 ret = -EINVAL;
319 goto free_and_exit;
320 }
321 }
322
323 ret = (seg == pci_domain_nr(dev->bus) &&
324 bus == dev->bus->number &&
325 dev->devfn == PCI_DEVFN(slot, func));
326
327 free_and_exit:
328 kfree(wpath);
329 return ret;
330 }
331
332 /**
333 * pci_dev_str_match - test if a string matches a device
334 * @dev: the PCI device to test
335 * @p: string to match the device against
336 * @endptr: pointer to the string after the match
337 *
338 * Test if a string (typically from a kernel parameter) matches a specified
339 * PCI device. The string may be of one of the following formats:
340 *
341 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
342 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
343 *
344 * The first format specifies a PCI bus/device/function address which
345 * may change if new hardware is inserted, if motherboard firmware changes,
346 * or due to changes caused in kernel parameters. If the domain is
347 * left unspecified, it is taken to be 0. In order to be robust against
348 * bus renumbering issues, a path of PCI device/function numbers may be used
349 * to address the specific device. The path for a device can be determined
350 * through the use of 'lspci -t'.
351 *
352 * The second format matches devices using IDs in the configuration
353 * space which may match multiple devices in the system. A value of 0
354 * for any field will match all devices. (Note: this differs from
355 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
356 * legacy reasons and convenience so users don't have to specify
357 * FFFFFFFFs on the command line.)
358 *
359 * Returns 1 if the string matches the device, 0 if it does not and
360 * a negative error code if the string cannot be parsed.
361 */
362 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
363 const char **endptr)
364 {
365 int ret;
366 int count;
367 unsigned short vendor, device, subsystem_vendor, subsystem_device;
368
369 if (strncmp(p, "pci:", 4) == 0) {
370 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
371 p += 4;
372 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
373 &subsystem_vendor, &subsystem_device, &count);
374 if (ret != 4) {
375 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
376 if (ret != 2)
377 return -EINVAL;
378
379 subsystem_vendor = 0;
380 subsystem_device = 0;
381 }
382
383 p += count;
384
385 if ((!vendor || vendor == dev->vendor) &&
386 (!device || device == dev->device) &&
387 (!subsystem_vendor ||
388 subsystem_vendor == dev->subsystem_vendor) &&
389 (!subsystem_device ||
390 subsystem_device == dev->subsystem_device))
391 goto found;
392 } else {
393 /*
394 * PCI Bus, Device, Function IDs are specified
395 * (optionally, may include a path of devfns following it)
396 */
397 ret = pci_dev_str_match_path(dev, p, &p);
398 if (ret < 0)
399 return ret;
400 else if (ret)
401 goto found;
402 }
403
404 *endptr = p;
405 return 0;
406
407 found:
408 *endptr = p;
409 return 1;
410 }
411
412 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
413 u8 pos, int cap, int *ttl)
414 {
415 u8 id;
416 u16 ent;
417
418 pci_bus_read_config_byte(bus, devfn, pos, &pos);
419
420 while ((*ttl)--) {
421 if (pos < 0x40)
422 break;
423 pos &= ~3;
424 pci_bus_read_config_word(bus, devfn, pos, &ent);
425
426 id = ent & 0xff;
427 if (id == 0xff)
428 break;
429 if (id == cap)
430 return pos;
431 pos = (ent >> 8);
432 }
433 return 0;
434 }
435
436 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
437 u8 pos, int cap)
438 {
439 int ttl = PCI_FIND_CAP_TTL;
440
441 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
442 }
443
444 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
445 {
446 return __pci_find_next_cap(dev->bus, dev->devfn,
447 pos + PCI_CAP_LIST_NEXT, cap);
448 }
449 EXPORT_SYMBOL_GPL(pci_find_next_capability);
450
451 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
452 unsigned int devfn, u8 hdr_type)
453 {
454 u16 status;
455
456 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
457 if (!(status & PCI_STATUS_CAP_LIST))
458 return 0;
459
460 switch (hdr_type) {
461 case PCI_HEADER_TYPE_NORMAL:
462 case PCI_HEADER_TYPE_BRIDGE:
463 return PCI_CAPABILITY_LIST;
464 case PCI_HEADER_TYPE_CARDBUS:
465 return PCI_CB_CAPABILITY_LIST;
466 }
467
468 return 0;
469 }
470
471 /**
472 * pci_find_capability - query for devices' capabilities
473 * @dev: PCI device to query
474 * @cap: capability code
475 *
476 * Tell if a device supports a given PCI capability.
477 * Returns the address of the requested capability structure within the
478 * device's PCI configuration space or 0 in case the device does not
479 * support it. Possible values for @cap include:
480 *
481 * %PCI_CAP_ID_PM Power Management
482 * %PCI_CAP_ID_AGP Accelerated Graphics Port
483 * %PCI_CAP_ID_VPD Vital Product Data
484 * %PCI_CAP_ID_SLOTID Slot Identification
485 * %PCI_CAP_ID_MSI Message Signalled Interrupts
486 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
487 * %PCI_CAP_ID_PCIX PCI-X
488 * %PCI_CAP_ID_EXP PCI Express
489 */
490 u8 pci_find_capability(struct pci_dev *dev, int cap)
491 {
492 u8 pos;
493
494 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
495 if (pos)
496 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
497
498 return pos;
499 }
500 EXPORT_SYMBOL(pci_find_capability);
501
502 /**
503 * pci_bus_find_capability - query for devices' capabilities
504 * @bus: the PCI bus to query
505 * @devfn: PCI device to query
506 * @cap: capability code
507 *
508 * Like pci_find_capability() but works for PCI devices that do not have a
509 * pci_dev structure set up yet.
510 *
511 * Returns the address of the requested capability structure within the
512 * device's PCI configuration space or 0 in case the device does not
513 * support it.
514 */
515 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
516 {
517 u8 hdr_type, pos;
518
519 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
520
521 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
522 if (pos)
523 pos = __pci_find_next_cap(bus, devfn, pos, cap);
524
525 return pos;
526 }
527 EXPORT_SYMBOL(pci_bus_find_capability);
528
529 /**
530 * pci_find_next_ext_capability - Find an extended capability
531 * @dev: PCI device to query
532 * @start: address at which to start looking (0 to start at beginning of list)
533 * @cap: capability code
534 *
535 * Returns the address of the next matching extended capability structure
536 * within the device's PCI configuration space or 0 if the device does
537 * not support it. Some capabilities can occur several times, e.g., the
538 * vendor-specific capability, and this provides a way to find them all.
539 */
540 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
541 {
542 u32 header;
543 int ttl;
544 u16 pos = PCI_CFG_SPACE_SIZE;
545
546 /* minimum 8 bytes per capability */
547 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
548
549 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
550 return 0;
551
552 if (start)
553 pos = start;
554
555 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
556 return 0;
557
558 /*
559 * If we have no capabilities, this is indicated by cap ID,
560 * cap version and next pointer all being 0.
561 */
562 if (header == 0)
563 return 0;
564
565 while (ttl-- > 0) {
566 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
567 return pos;
568
569 pos = PCI_EXT_CAP_NEXT(header);
570 if (pos < PCI_CFG_SPACE_SIZE)
571 break;
572
573 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
574 break;
575 }
576
577 return 0;
578 }
579 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
580
581 /**
582 * pci_find_ext_capability - Find an extended capability
583 * @dev: PCI device to query
584 * @cap: capability code
585 *
586 * Returns the address of the requested extended capability structure
587 * within the device's PCI configuration space or 0 if the device does
588 * not support it. Possible values for @cap include:
589 *
590 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
591 * %PCI_EXT_CAP_ID_VC Virtual Channel
592 * %PCI_EXT_CAP_ID_DSN Device Serial Number
593 * %PCI_EXT_CAP_ID_PWR Power Budgeting
594 */
595 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
596 {
597 return pci_find_next_ext_capability(dev, 0, cap);
598 }
599 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
600
601 /**
602 * pci_get_dsn - Read and return the 8-byte Device Serial Number
603 * @dev: PCI device to query
604 *
605 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
606 * Number.
607 *
608 * Returns the DSN, or zero if the capability does not exist.
609 */
610 u64 pci_get_dsn(struct pci_dev *dev)
611 {
612 u32 dword;
613 u64 dsn;
614 int pos;
615
616 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
617 if (!pos)
618 return 0;
619
620 /*
621 * The Device Serial Number is two dwords offset 4 bytes from the
622 * capability position. The specification says that the first dword is
623 * the lower half, and the second dword is the upper half.
624 */
625 pos += 4;
626 pci_read_config_dword(dev, pos, &dword);
627 dsn = (u64)dword;
628 pci_read_config_dword(dev, pos + 4, &dword);
629 dsn |= ((u64)dword) << 32;
630
631 return dsn;
632 }
633 EXPORT_SYMBOL_GPL(pci_get_dsn);
634
635 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
636 {
637 int rc, ttl = PCI_FIND_CAP_TTL;
638 u8 cap, mask;
639
640 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
641 mask = HT_3BIT_CAP_MASK;
642 else
643 mask = HT_5BIT_CAP_MASK;
644
645 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
646 PCI_CAP_ID_HT, &ttl);
647 while (pos) {
648 rc = pci_read_config_byte(dev, pos + 3, &cap);
649 if (rc != PCIBIOS_SUCCESSFUL)
650 return 0;
651
652 if ((cap & mask) == ht_cap)
653 return pos;
654
655 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
656 pos + PCI_CAP_LIST_NEXT,
657 PCI_CAP_ID_HT, &ttl);
658 }
659
660 return 0;
661 }
662
663 /**
664 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
665 * @dev: PCI device to query
666 * @pos: Position from which to continue searching
667 * @ht_cap: HyperTransport capability code
668 *
669 * To be used in conjunction with pci_find_ht_capability() to search for
670 * all capabilities matching @ht_cap. @pos should always be a value returned
671 * from pci_find_ht_capability().
672 *
673 * NB. To be 100% safe against broken PCI devices, the caller should take
674 * steps to avoid an infinite loop.
675 */
676 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
677 {
678 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
679 }
680 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
681
682 /**
683 * pci_find_ht_capability - query a device's HyperTransport capabilities
684 * @dev: PCI device to query
685 * @ht_cap: HyperTransport capability code
686 *
687 * Tell if a device supports a given HyperTransport capability.
688 * Returns an address within the device's PCI configuration space
689 * or 0 in case the device does not support the request capability.
690 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
691 * which has a HyperTransport capability matching @ht_cap.
692 */
693 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
694 {
695 u8 pos;
696
697 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
698 if (pos)
699 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
700
701 return pos;
702 }
703 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
704
705 /**
706 * pci_find_vsec_capability - Find a vendor-specific extended capability
707 * @dev: PCI device to query
708 * @vendor: Vendor ID for which capability is defined
709 * @cap: Vendor-specific capability ID
710 *
711 * If @dev has Vendor ID @vendor, search for a VSEC capability with
712 * VSEC ID @cap. If found, return the capability offset in
713 * config space; otherwise return 0.
714 */
715 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
716 {
717 u16 vsec = 0;
718 u32 header;
719
720 if (vendor != dev->vendor)
721 return 0;
722
723 while ((vsec = pci_find_next_ext_capability(dev, vsec,
724 PCI_EXT_CAP_ID_VNDR))) {
725 if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
726 &header) == PCIBIOS_SUCCESSFUL &&
727 PCI_VNDR_HEADER_ID(header) == cap)
728 return vsec;
729 }
730
731 return 0;
732 }
733 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
734
735 /**
736 * pci_find_parent_resource - return resource region of parent bus of given
737 * region
738 * @dev: PCI device structure contains resources to be searched
739 * @res: child resource record for which parent is sought
740 *
741 * For given resource region of given device, return the resource region of
742 * parent bus the given region is contained in.
743 */
744 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
745 struct resource *res)
746 {
747 const struct pci_bus *bus = dev->bus;
748 struct resource *r;
749 int i;
750
751 pci_bus_for_each_resource(bus, r, i) {
752 if (!r)
753 continue;
754 if (resource_contains(r, res)) {
755
756 /*
757 * If the window is prefetchable but the BAR is
758 * not, the allocator made a mistake.
759 */
760 if (r->flags & IORESOURCE_PREFETCH &&
761 !(res->flags & IORESOURCE_PREFETCH))
762 return NULL;
763
764 /*
765 * If we're below a transparent bridge, there may
766 * be both a positively-decoded aperture and a
767 * subtractively-decoded region that contain the BAR.
768 * We want the positively-decoded one, so this depends
769 * on pci_bus_for_each_resource() giving us those
770 * first.
771 */
772 return r;
773 }
774 }
775 return NULL;
776 }
777 EXPORT_SYMBOL(pci_find_parent_resource);
778
779 /**
780 * pci_find_resource - Return matching PCI device resource
781 * @dev: PCI device to query
782 * @res: Resource to look for
783 *
784 * Goes over standard PCI resources (BARs) and checks if the given resource
785 * is partially or fully contained in any of them. In that case the
786 * matching resource is returned, %NULL otherwise.
787 */
788 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
789 {
790 int i;
791
792 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
793 struct resource *r = &dev->resource[i];
794
795 if (r->start && resource_contains(r, res))
796 return r;
797 }
798
799 return NULL;
800 }
801 EXPORT_SYMBOL(pci_find_resource);
802
803 /**
804 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
805 * @dev: the PCI device to operate on
806 * @pos: config space offset of status word
807 * @mask: mask of bit(s) to care about in status word
808 *
809 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
810 */
811 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
812 {
813 int i;
814
815 /* Wait for Transaction Pending bit clean */
816 for (i = 0; i < 4; i++) {
817 u16 status;
818 if (i)
819 msleep((1 << (i - 1)) * 100);
820
821 pci_read_config_word(dev, pos, &status);
822 if (!(status & mask))
823 return 1;
824 }
825
826 return 0;
827 }
828
829 static int pci_acs_enable;
830
831 /**
832 * pci_request_acs - ask for ACS to be enabled if supported
833 */
834 void pci_request_acs(void)
835 {
836 pci_acs_enable = 1;
837 }
838
839 static const char *disable_acs_redir_param;
840
841 /**
842 * pci_disable_acs_redir - disable ACS redirect capabilities
843 * @dev: the PCI device
844 *
845 * For only devices specified in the disable_acs_redir parameter.
846 */
847 static void pci_disable_acs_redir(struct pci_dev *dev)
848 {
849 int ret = 0;
850 const char *p;
851 int pos;
852 u16 ctrl;
853
854 if (!disable_acs_redir_param)
855 return;
856
857 p = disable_acs_redir_param;
858 while (*p) {
859 ret = pci_dev_str_match(dev, p, &p);
860 if (ret < 0) {
861 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
862 disable_acs_redir_param);
863
864 break;
865 } else if (ret == 1) {
866 /* Found a match */
867 break;
868 }
869
870 if (*p != ';' && *p != ',') {
871 /* End of param or invalid format */
872 break;
873 }
874 p++;
875 }
876
877 if (ret != 1)
878 return;
879
880 if (!pci_dev_specific_disable_acs_redir(dev))
881 return;
882
883 pos = dev->acs_cap;
884 if (!pos) {
885 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
886 return;
887 }
888
889 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
890
891 /* P2P Request & Completion Redirect */
892 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
893
894 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
895
896 pci_info(dev, "disabled ACS redirect\n");
897 }
898
899 /**
900 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
901 * @dev: the PCI device
902 */
903 static void pci_std_enable_acs(struct pci_dev *dev)
904 {
905 int pos;
906 u16 cap;
907 u16 ctrl;
908
909 pos = dev->acs_cap;
910 if (!pos)
911 return;
912
913 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
914 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
915
916 /* Source Validation */
917 ctrl |= (cap & PCI_ACS_SV);
918
919 /* P2P Request Redirect */
920 ctrl |= (cap & PCI_ACS_RR);
921
922 /* P2P Completion Redirect */
923 ctrl |= (cap & PCI_ACS_CR);
924
925 /* Upstream Forwarding */
926 ctrl |= (cap & PCI_ACS_UF);
927
928 /* Enable Translation Blocking for external devices and noats */
929 if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
930 ctrl |= (cap & PCI_ACS_TB);
931
932 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
933 }
934
935 /**
936 * pci_enable_acs - enable ACS if hardware support it
937 * @dev: the PCI device
938 */
939 static void pci_enable_acs(struct pci_dev *dev)
940 {
941 if (!pci_acs_enable)
942 goto disable_acs_redir;
943
944 if (!pci_dev_specific_enable_acs(dev))
945 goto disable_acs_redir;
946
947 pci_std_enable_acs(dev);
948
949 disable_acs_redir:
950 /*
951 * Note: pci_disable_acs_redir() must be called even if ACS was not
952 * enabled by the kernel because it may have been enabled by
953 * platform firmware. So if we are told to disable it, we should
954 * always disable it after setting the kernel's default
955 * preferences.
956 */
957 pci_disable_acs_redir(dev);
958 }
959
960 /**
961 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
962 * @dev: PCI device to have its BARs restored
963 *
964 * Restore the BAR values for a given device, so as to make it
965 * accessible by its driver.
966 */
967 static void pci_restore_bars(struct pci_dev *dev)
968 {
969 int i;
970
971 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
972 pci_update_resource(dev, i);
973 }
974
975 static const struct pci_platform_pm_ops *pci_platform_pm;
976
977 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
978 {
979 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
980 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
981 return -EINVAL;
982 pci_platform_pm = ops;
983 return 0;
984 }
985
986 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
987 {
988 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
989 }
990
991 static inline int platform_pci_set_power_state(struct pci_dev *dev,
992 pci_power_t t)
993 {
994 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
995 }
996
997 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
998 {
999 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
1000 }
1001
1002 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1003 {
1004 if (pci_platform_pm && pci_platform_pm->refresh_state)
1005 pci_platform_pm->refresh_state(dev);
1006 }
1007
1008 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1009 {
1010 return pci_platform_pm ?
1011 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
1012 }
1013
1014 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1015 {
1016 return pci_platform_pm ?
1017 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
1018 }
1019
1020 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1021 {
1022 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
1023 }
1024
1025 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1026 {
1027 if (pci_platform_pm && pci_platform_pm->bridge_d3)
1028 return pci_platform_pm->bridge_d3(dev);
1029 return false;
1030 }
1031
1032 /**
1033 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
1034 * given PCI device
1035 * @dev: PCI device to handle.
1036 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1037 *
1038 * RETURN VALUE:
1039 * -EINVAL if the requested state is invalid.
1040 * -EIO if device does not support PCI PM or its PM capabilities register has a
1041 * wrong version, or device doesn't support the requested state.
1042 * 0 if device already is in the requested state.
1043 * 0 if device's power state has been successfully changed.
1044 */
1045 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1046 {
1047 u16 pmcsr;
1048 bool need_restore = false;
1049
1050 /* Check if we're already there */
1051 if (dev->current_state == state)
1052 return 0;
1053
1054 if (!dev->pm_cap)
1055 return -EIO;
1056
1057 if (state < PCI_D0 || state > PCI_D3hot)
1058 return -EINVAL;
1059
1060 /*
1061 * Validate transition: We can enter D0 from any state, but if
1062 * we're already in a low-power state, we can only go deeper. E.g.,
1063 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1064 * we'd have to go from D3 to D0, then to D1.
1065 */
1066 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1067 && dev->current_state > state) {
1068 pci_err(dev, "invalid power transition (from %s to %s)\n",
1069 pci_power_name(dev->current_state),
1070 pci_power_name(state));
1071 return -EINVAL;
1072 }
1073
1074 /* Check if this device supports the desired state */
1075 if ((state == PCI_D1 && !dev->d1_support)
1076 || (state == PCI_D2 && !dev->d2_support))
1077 return -EIO;
1078
1079 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1080 if (pmcsr == (u16) ~0) {
1081 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1082 pci_power_name(dev->current_state),
1083 pci_power_name(state));
1084 return -EIO;
1085 }
1086
1087 /*
1088 * If we're (effectively) in D3, force entire word to 0.
1089 * This doesn't affect PME_Status, disables PME_En, and
1090 * sets PowerState to 0.
1091 */
1092 switch (dev->current_state) {
1093 case PCI_D0:
1094 case PCI_D1:
1095 case PCI_D2:
1096 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1097 pmcsr |= state;
1098 break;
1099 case PCI_D3hot:
1100 case PCI_D3cold:
1101 case PCI_UNKNOWN: /* Boot-up */
1102 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1103 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1104 need_restore = true;
1105 fallthrough; /* force to D0 */
1106 default:
1107 pmcsr = 0;
1108 break;
1109 }
1110
1111 /* Enter specified state */
1112 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1113
1114 /*
1115 * Mandatory power management transition delays; see PCI PM 1.1
1116 * 5.6.1 table 18
1117 */
1118 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1119 pci_dev_d3_sleep(dev);
1120 else if (state == PCI_D2 || dev->current_state == PCI_D2)
1121 udelay(PCI_PM_D2_DELAY);
1122
1123 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1124 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1125 if (dev->current_state != state)
1126 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1127 pci_power_name(dev->current_state),
1128 pci_power_name(state));
1129
1130 /*
1131 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1132 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1133 * from D3hot to D0 _may_ perform an internal reset, thereby
1134 * going to "D0 Uninitialized" rather than "D0 Initialized".
1135 * For example, at least some versions of the 3c905B and the
1136 * 3c556B exhibit this behaviour.
1137 *
1138 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1139 * devices in a D3hot state at boot. Consequently, we need to
1140 * restore at least the BARs so that the device will be
1141 * accessible to its driver.
1142 */
1143 if (need_restore)
1144 pci_restore_bars(dev);
1145
1146 if (dev->bus->self)
1147 pcie_aspm_pm_state_change(dev->bus->self);
1148
1149 return 0;
1150 }
1151
1152 /**
1153 * pci_update_current_state - Read power state of given device and cache it
1154 * @dev: PCI device to handle.
1155 * @state: State to cache in case the device doesn't have the PM capability
1156 *
1157 * The power state is read from the PMCSR register, which however is
1158 * inaccessible in D3cold. The platform firmware is therefore queried first
1159 * to detect accessibility of the register. In case the platform firmware
1160 * reports an incorrect state or the device isn't power manageable by the
1161 * platform at all, we try to detect D3cold by testing accessibility of the
1162 * vendor ID in config space.
1163 */
1164 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1165 {
1166 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1167 !pci_device_is_present(dev)) {
1168 dev->current_state = PCI_D3cold;
1169 } else if (dev->pm_cap) {
1170 u16 pmcsr;
1171
1172 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1173 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1174 } else {
1175 dev->current_state = state;
1176 }
1177 }
1178
1179 /**
1180 * pci_refresh_power_state - Refresh the given device's power state data
1181 * @dev: Target PCI device.
1182 *
1183 * Ask the platform to refresh the devices power state information and invoke
1184 * pci_update_current_state() to update its current PCI power state.
1185 */
1186 void pci_refresh_power_state(struct pci_dev *dev)
1187 {
1188 if (platform_pci_power_manageable(dev))
1189 platform_pci_refresh_power_state(dev);
1190
1191 pci_update_current_state(dev, dev->current_state);
1192 }
1193
1194 /**
1195 * pci_platform_power_transition - Use platform to change device power state
1196 * @dev: PCI device to handle.
1197 * @state: State to put the device into.
1198 */
1199 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1200 {
1201 int error;
1202
1203 if (platform_pci_power_manageable(dev)) {
1204 error = platform_pci_set_power_state(dev, state);
1205 if (!error)
1206 pci_update_current_state(dev, state);
1207 } else
1208 error = -ENODEV;
1209
1210 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1211 dev->current_state = PCI_D0;
1212
1213 return error;
1214 }
1215 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1216
1217 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1218 {
1219 pm_request_resume(&pci_dev->dev);
1220 return 0;
1221 }
1222
1223 /**
1224 * pci_resume_bus - Walk given bus and runtime resume devices on it
1225 * @bus: Top bus of the subtree to walk.
1226 */
1227 void pci_resume_bus(struct pci_bus *bus)
1228 {
1229 if (bus)
1230 pci_walk_bus(bus, pci_resume_one, NULL);
1231 }
1232
1233 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1234 {
1235 int delay = 1;
1236 u32 id;
1237
1238 /*
1239 * After reset, the device should not silently discard config
1240 * requests, but it may still indicate that it needs more time by
1241 * responding to them with CRS completions. The Root Port will
1242 * generally synthesize ~0 data to complete the read (except when
1243 * CRS SV is enabled and the read was for the Vendor ID; in that
1244 * case it synthesizes 0x0001 data).
1245 *
1246 * Wait for the device to return a non-CRS completion. Read the
1247 * Command register instead of Vendor ID so we don't have to
1248 * contend with the CRS SV value.
1249 */
1250 pci_read_config_dword(dev, PCI_COMMAND, &id);
1251 while (id == ~0) {
1252 if (delay > timeout) {
1253 pci_warn(dev, "not ready %dms after %s; giving up\n",
1254 delay - 1, reset_type);
1255 return -ENOTTY;
1256 }
1257
1258 if (delay > 1000)
1259 pci_info(dev, "not ready %dms after %s; waiting\n",
1260 delay - 1, reset_type);
1261
1262 msleep(delay);
1263 delay *= 2;
1264 pci_read_config_dword(dev, PCI_COMMAND, &id);
1265 }
1266
1267 if (delay > 1000)
1268 pci_info(dev, "ready %dms after %s\n", delay - 1,
1269 reset_type);
1270
1271 return 0;
1272 }
1273
1274 /**
1275 * pci_power_up - Put the given device into D0
1276 * @dev: PCI device to power up
1277 */
1278 int pci_power_up(struct pci_dev *dev)
1279 {
1280 pci_platform_power_transition(dev, PCI_D0);
1281
1282 /*
1283 * Mandatory power management transition delays are handled in
1284 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1285 * corresponding bridge.
1286 */
1287 if (dev->runtime_d3cold) {
1288 /*
1289 * When powering on a bridge from D3cold, the whole hierarchy
1290 * may be powered on into D0uninitialized state, resume them to
1291 * give them a chance to suspend again
1292 */
1293 pci_resume_bus(dev->subordinate);
1294 }
1295
1296 return pci_raw_set_power_state(dev, PCI_D0);
1297 }
1298
1299 /**
1300 * __pci_dev_set_current_state - Set current state of a PCI device
1301 * @dev: Device to handle
1302 * @data: pointer to state to be set
1303 */
1304 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1305 {
1306 pci_power_t state = *(pci_power_t *)data;
1307
1308 dev->current_state = state;
1309 return 0;
1310 }
1311
1312 /**
1313 * pci_bus_set_current_state - Walk given bus and set current state of devices
1314 * @bus: Top bus of the subtree to walk.
1315 * @state: state to be set
1316 */
1317 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1318 {
1319 if (bus)
1320 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1321 }
1322
1323 /**
1324 * pci_set_power_state - Set the power state of a PCI device
1325 * @dev: PCI device to handle.
1326 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1327 *
1328 * Transition a device to a new power state, using the platform firmware and/or
1329 * the device's PCI PM registers.
1330 *
1331 * RETURN VALUE:
1332 * -EINVAL if the requested state is invalid.
1333 * -EIO if device does not support PCI PM or its PM capabilities register has a
1334 * wrong version, or device doesn't support the requested state.
1335 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1336 * 0 if device already is in the requested state.
1337 * 0 if the transition is to D3 but D3 is not supported.
1338 * 0 if device's power state has been successfully changed.
1339 */
1340 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1341 {
1342 int error;
1343
1344 /* Bound the state we're entering */
1345 if (state > PCI_D3cold)
1346 state = PCI_D3cold;
1347 else if (state < PCI_D0)
1348 state = PCI_D0;
1349 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1350
1351 /*
1352 * If the device or the parent bridge do not support PCI
1353 * PM, ignore the request if we're doing anything other
1354 * than putting it into D0 (which would only happen on
1355 * boot).
1356 */
1357 return 0;
1358
1359 /* Check if we're already there */
1360 if (dev->current_state == state)
1361 return 0;
1362
1363 if (state == PCI_D0)
1364 return pci_power_up(dev);
1365
1366 /*
1367 * This device is quirked not to be put into D3, so don't put it in
1368 * D3
1369 */
1370 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1371 return 0;
1372
1373 /*
1374 * To put device in D3cold, we put device into D3hot in native
1375 * way, then put device into D3cold with platform ops
1376 */
1377 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1378 PCI_D3hot : state);
1379
1380 if (pci_platform_power_transition(dev, state))
1381 return error;
1382
1383 /* Powering off a bridge may power off the whole hierarchy */
1384 if (state == PCI_D3cold)
1385 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1386
1387 return 0;
1388 }
1389 EXPORT_SYMBOL(pci_set_power_state);
1390
1391 /**
1392 * pci_choose_state - Choose the power state of a PCI device
1393 * @dev: PCI device to be suspended
1394 * @state: target sleep state for the whole system. This is the value
1395 * that is passed to suspend() function.
1396 *
1397 * Returns PCI power state suitable for given device and given system
1398 * message.
1399 */
1400 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1401 {
1402 pci_power_t ret;
1403
1404 if (!dev->pm_cap)
1405 return PCI_D0;
1406
1407 ret = platform_pci_choose_state(dev);
1408 if (ret != PCI_POWER_ERROR)
1409 return ret;
1410
1411 switch (state.event) {
1412 case PM_EVENT_ON:
1413 return PCI_D0;
1414 case PM_EVENT_FREEZE:
1415 case PM_EVENT_PRETHAW:
1416 /* REVISIT both freeze and pre-thaw "should" use D0 */
1417 case PM_EVENT_SUSPEND:
1418 case PM_EVENT_HIBERNATE:
1419 return PCI_D3hot;
1420 default:
1421 pci_info(dev, "unrecognized suspend event %d\n",
1422 state.event);
1423 BUG();
1424 }
1425 return PCI_D0;
1426 }
1427 EXPORT_SYMBOL(pci_choose_state);
1428
1429 #define PCI_EXP_SAVE_REGS 7
1430
1431 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1432 u16 cap, bool extended)
1433 {
1434 struct pci_cap_saved_state *tmp;
1435
1436 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1437 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1438 return tmp;
1439 }
1440 return NULL;
1441 }
1442
1443 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1444 {
1445 return _pci_find_saved_cap(dev, cap, false);
1446 }
1447
1448 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1449 {
1450 return _pci_find_saved_cap(dev, cap, true);
1451 }
1452
1453 static int pci_save_pcie_state(struct pci_dev *dev)
1454 {
1455 int i = 0;
1456 struct pci_cap_saved_state *save_state;
1457 u16 *cap;
1458
1459 if (!pci_is_pcie(dev))
1460 return 0;
1461
1462 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1463 if (!save_state) {
1464 pci_err(dev, "buffer not found in %s\n", __func__);
1465 return -ENOMEM;
1466 }
1467
1468 cap = (u16 *)&save_state->cap.data[0];
1469 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1470 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1471 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1472 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1473 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1474 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1475 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1476
1477 return 0;
1478 }
1479
1480 void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1481 {
1482 #ifdef CONFIG_PCIEASPM
1483 struct pci_dev *bridge;
1484 u32 ctl;
1485
1486 bridge = pci_upstream_bridge(dev);
1487 if (bridge && bridge->ltr_path) {
1488 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1489 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1490 pci_dbg(bridge, "re-enabling LTR\n");
1491 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1492 PCI_EXP_DEVCTL2_LTR_EN);
1493 }
1494 }
1495 #endif
1496 }
1497
1498 static void pci_restore_pcie_state(struct pci_dev *dev)
1499 {
1500 int i = 0;
1501 struct pci_cap_saved_state *save_state;
1502 u16 *cap;
1503
1504 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1505 if (!save_state)
1506 return;
1507
1508 /*
1509 * Downstream ports reset the LTR enable bit when link goes down.
1510 * Check and re-configure the bit here before restoring device.
1511 * PCIe r5.0, sec 7.5.3.16.
1512 */
1513 pci_bridge_reconfigure_ltr(dev);
1514
1515 cap = (u16 *)&save_state->cap.data[0];
1516 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1517 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1518 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1519 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1520 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1521 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1522 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1523 }
1524
1525 static int pci_save_pcix_state(struct pci_dev *dev)
1526 {
1527 int pos;
1528 struct pci_cap_saved_state *save_state;
1529
1530 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1531 if (!pos)
1532 return 0;
1533
1534 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1535 if (!save_state) {
1536 pci_err(dev, "buffer not found in %s\n", __func__);
1537 return -ENOMEM;
1538 }
1539
1540 pci_read_config_word(dev, pos + PCI_X_CMD,
1541 (u16 *)save_state->cap.data);
1542
1543 return 0;
1544 }
1545
1546 static void pci_restore_pcix_state(struct pci_dev *dev)
1547 {
1548 int i = 0, pos;
1549 struct pci_cap_saved_state *save_state;
1550 u16 *cap;
1551
1552 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1553 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1554 if (!save_state || !pos)
1555 return;
1556 cap = (u16 *)&save_state->cap.data[0];
1557
1558 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1559 }
1560
1561 static void pci_save_ltr_state(struct pci_dev *dev)
1562 {
1563 int ltr;
1564 struct pci_cap_saved_state *save_state;
1565 u16 *cap;
1566
1567 if (!pci_is_pcie(dev))
1568 return;
1569
1570 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1571 if (!ltr)
1572 return;
1573
1574 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1575 if (!save_state) {
1576 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1577 return;
1578 }
1579
1580 cap = (u16 *)&save_state->cap.data[0];
1581 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1582 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1583 }
1584
1585 static void pci_restore_ltr_state(struct pci_dev *dev)
1586 {
1587 struct pci_cap_saved_state *save_state;
1588 int ltr;
1589 u16 *cap;
1590
1591 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1592 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1593 if (!save_state || !ltr)
1594 return;
1595
1596 cap = (u16 *)&save_state->cap.data[0];
1597 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1598 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1599 }
1600
1601 /**
1602 * pci_save_state - save the PCI configuration space of a device before
1603 * suspending
1604 * @dev: PCI device that we're dealing with
1605 */
1606 int pci_save_state(struct pci_dev *dev)
1607 {
1608 int i;
1609 /* XXX: 100% dword access ok here? */
1610 for (i = 0; i < 16; i++) {
1611 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1612 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1613 i * 4, dev->saved_config_space[i]);
1614 }
1615 dev->state_saved = true;
1616
1617 i = pci_save_pcie_state(dev);
1618 if (i != 0)
1619 return i;
1620
1621 i = pci_save_pcix_state(dev);
1622 if (i != 0)
1623 return i;
1624
1625 pci_save_ltr_state(dev);
1626 pci_save_aspm_l1ss_state(dev);
1627 pci_save_dpc_state(dev);
1628 pci_save_aer_state(dev);
1629 pci_save_ptm_state(dev);
1630 return pci_save_vc_state(dev);
1631 }
1632 EXPORT_SYMBOL(pci_save_state);
1633
1634 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1635 u32 saved_val, int retry, bool force)
1636 {
1637 u32 val;
1638
1639 pci_read_config_dword(pdev, offset, &val);
1640 if (!force && val == saved_val)
1641 return;
1642
1643 for (;;) {
1644 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1645 offset, val, saved_val);
1646 pci_write_config_dword(pdev, offset, saved_val);
1647 if (retry-- <= 0)
1648 return;
1649
1650 pci_read_config_dword(pdev, offset, &val);
1651 if (val == saved_val)
1652 return;
1653
1654 mdelay(1);
1655 }
1656 }
1657
1658 static void pci_restore_config_space_range(struct pci_dev *pdev,
1659 int start, int end, int retry,
1660 bool force)
1661 {
1662 int index;
1663
1664 for (index = end; index >= start; index--)
1665 pci_restore_config_dword(pdev, 4 * index,
1666 pdev->saved_config_space[index],
1667 retry, force);
1668 }
1669
1670 static void pci_restore_config_space(struct pci_dev *pdev)
1671 {
1672 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1673 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1674 /* Restore BARs before the command register. */
1675 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1676 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1677 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1678 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1679
1680 /*
1681 * Force rewriting of prefetch registers to avoid S3 resume
1682 * issues on Intel PCI bridges that occur when these
1683 * registers are not explicitly written.
1684 */
1685 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1686 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1687 } else {
1688 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1689 }
1690 }
1691
1692 static void pci_restore_rebar_state(struct pci_dev *pdev)
1693 {
1694 unsigned int pos, nbars, i;
1695 u32 ctrl;
1696
1697 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1698 if (!pos)
1699 return;
1700
1701 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1702 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1703 PCI_REBAR_CTRL_NBAR_SHIFT;
1704
1705 for (i = 0; i < nbars; i++, pos += 8) {
1706 struct resource *res;
1707 int bar_idx, size;
1708
1709 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1710 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1711 res = pdev->resource + bar_idx;
1712 size = pci_rebar_bytes_to_size(resource_size(res));
1713 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1714 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1715 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1716 }
1717 }
1718
1719 /**
1720 * pci_restore_state - Restore the saved state of a PCI device
1721 * @dev: PCI device that we're dealing with
1722 */
1723 void pci_restore_state(struct pci_dev *dev)
1724 {
1725 if (!dev->state_saved)
1726 return;
1727
1728 /*
1729 * Restore max latencies (in the LTR capability) before enabling
1730 * LTR itself (in the PCIe capability).
1731 */
1732 pci_restore_ltr_state(dev);
1733 pci_restore_aspm_l1ss_state(dev);
1734
1735 pci_restore_pcie_state(dev);
1736 pci_restore_pasid_state(dev);
1737 pci_restore_pri_state(dev);
1738 pci_restore_ats_state(dev);
1739 pci_restore_vc_state(dev);
1740 pci_restore_rebar_state(dev);
1741 pci_restore_dpc_state(dev);
1742 pci_restore_ptm_state(dev);
1743
1744 pci_aer_clear_status(dev);
1745 pci_restore_aer_state(dev);
1746
1747 pci_restore_config_space(dev);
1748
1749 pci_restore_pcix_state(dev);
1750 pci_restore_msi_state(dev);
1751
1752 /* Restore ACS and IOV configuration state */
1753 pci_enable_acs(dev);
1754 pci_restore_iov_state(dev);
1755
1756 dev->state_saved = false;
1757 }
1758 EXPORT_SYMBOL(pci_restore_state);
1759
1760 struct pci_saved_state {
1761 u32 config_space[16];
1762 struct pci_cap_saved_data cap[];
1763 };
1764
1765 /**
1766 * pci_store_saved_state - Allocate and return an opaque struct containing
1767 * the device saved state.
1768 * @dev: PCI device that we're dealing with
1769 *
1770 * Return NULL if no state or error.
1771 */
1772 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1773 {
1774 struct pci_saved_state *state;
1775 struct pci_cap_saved_state *tmp;
1776 struct pci_cap_saved_data *cap;
1777 size_t size;
1778
1779 if (!dev->state_saved)
1780 return NULL;
1781
1782 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1783
1784 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1785 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1786
1787 state = kzalloc(size, GFP_KERNEL);
1788 if (!state)
1789 return NULL;
1790
1791 memcpy(state->config_space, dev->saved_config_space,
1792 sizeof(state->config_space));
1793
1794 cap = state->cap;
1795 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1796 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1797 memcpy(cap, &tmp->cap, len);
1798 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1799 }
1800 /* Empty cap_save terminates list */
1801
1802 return state;
1803 }
1804 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1805
1806 /**
1807 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1808 * @dev: PCI device that we're dealing with
1809 * @state: Saved state returned from pci_store_saved_state()
1810 */
1811 int pci_load_saved_state(struct pci_dev *dev,
1812 struct pci_saved_state *state)
1813 {
1814 struct pci_cap_saved_data *cap;
1815
1816 dev->state_saved = false;
1817
1818 if (!state)
1819 return 0;
1820
1821 memcpy(dev->saved_config_space, state->config_space,
1822 sizeof(state->config_space));
1823
1824 cap = state->cap;
1825 while (cap->size) {
1826 struct pci_cap_saved_state *tmp;
1827
1828 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1829 if (!tmp || tmp->cap.size != cap->size)
1830 return -EINVAL;
1831
1832 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1833 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1834 sizeof(struct pci_cap_saved_data) + cap->size);
1835 }
1836
1837 dev->state_saved = true;
1838 return 0;
1839 }
1840 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1841
1842 /**
1843 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1844 * and free the memory allocated for it.
1845 * @dev: PCI device that we're dealing with
1846 * @state: Pointer to saved state returned from pci_store_saved_state()
1847 */
1848 int pci_load_and_free_saved_state(struct pci_dev *dev,
1849 struct pci_saved_state **state)
1850 {
1851 int ret = pci_load_saved_state(dev, *state);
1852 kfree(*state);
1853 *state = NULL;
1854 return ret;
1855 }
1856 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1857
1858 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1859 {
1860 return pci_enable_resources(dev, bars);
1861 }
1862
1863 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1864 {
1865 int err;
1866 struct pci_dev *bridge;
1867 u16 cmd;
1868 u8 pin;
1869
1870 err = pci_set_power_state(dev, PCI_D0);
1871 if (err < 0 && err != -EIO)
1872 return err;
1873
1874 bridge = pci_upstream_bridge(dev);
1875 if (bridge)
1876 pcie_aspm_powersave_config_link(bridge);
1877
1878 err = pcibios_enable_device(dev, bars);
1879 if (err < 0)
1880 return err;
1881 pci_fixup_device(pci_fixup_enable, dev);
1882
1883 if (dev->msi_enabled || dev->msix_enabled)
1884 return 0;
1885
1886 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1887 if (pin) {
1888 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1889 if (cmd & PCI_COMMAND_INTX_DISABLE)
1890 pci_write_config_word(dev, PCI_COMMAND,
1891 cmd & ~PCI_COMMAND_INTX_DISABLE);
1892 }
1893
1894 return 0;
1895 }
1896
1897 /**
1898 * pci_reenable_device - Resume abandoned device
1899 * @dev: PCI device to be resumed
1900 *
1901 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1902 * to be called by normal code, write proper resume handler and use it instead.
1903 */
1904 int pci_reenable_device(struct pci_dev *dev)
1905 {
1906 if (pci_is_enabled(dev))
1907 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1908 return 0;
1909 }
1910 EXPORT_SYMBOL(pci_reenable_device);
1911
1912 static void pci_enable_bridge(struct pci_dev *dev)
1913 {
1914 struct pci_dev *bridge;
1915 int retval;
1916
1917 bridge = pci_upstream_bridge(dev);
1918 if (bridge)
1919 pci_enable_bridge(bridge);
1920
1921 if (pci_is_enabled(dev)) {
1922 if (!dev->is_busmaster)
1923 pci_set_master(dev);
1924 return;
1925 }
1926
1927 retval = pci_enable_device(dev);
1928 if (retval)
1929 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1930 retval);
1931 pci_set_master(dev);
1932 }
1933
1934 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1935 {
1936 struct pci_dev *bridge;
1937 int err;
1938 int i, bars = 0;
1939
1940 /*
1941 * Power state could be unknown at this point, either due to a fresh
1942 * boot or a device removal call. So get the current power state
1943 * so that things like MSI message writing will behave as expected
1944 * (e.g. if the device really is in D0 at enable time).
1945 */
1946 pci_update_current_state(dev, dev->current_state);
1947
1948 if (atomic_inc_return(&dev->enable_cnt) > 1)
1949 return 0; /* already enabled */
1950
1951 bridge = pci_upstream_bridge(dev);
1952 if (bridge)
1953 pci_enable_bridge(bridge);
1954
1955 /* only skip sriov related */
1956 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1957 if (dev->resource[i].flags & flags)
1958 bars |= (1 << i);
1959 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1960 if (dev->resource[i].flags & flags)
1961 bars |= (1 << i);
1962
1963 err = do_pci_enable_device(dev, bars);
1964 if (err < 0)
1965 atomic_dec(&dev->enable_cnt);
1966 return err;
1967 }
1968
1969 /**
1970 * pci_enable_device_io - Initialize a device for use with IO space
1971 * @dev: PCI device to be initialized
1972 *
1973 * Initialize device before it's used by a driver. Ask low-level code
1974 * to enable I/O resources. Wake up the device if it was suspended.
1975 * Beware, this function can fail.
1976 */
1977 int pci_enable_device_io(struct pci_dev *dev)
1978 {
1979 return pci_enable_device_flags(dev, IORESOURCE_IO);
1980 }
1981 EXPORT_SYMBOL(pci_enable_device_io);
1982
1983 /**
1984 * pci_enable_device_mem - Initialize a device for use with Memory space
1985 * @dev: PCI device to be initialized
1986 *
1987 * Initialize device before it's used by a driver. Ask low-level code
1988 * to enable Memory resources. Wake up the device if it was suspended.
1989 * Beware, this function can fail.
1990 */
1991 int pci_enable_device_mem(struct pci_dev *dev)
1992 {
1993 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1994 }
1995 EXPORT_SYMBOL(pci_enable_device_mem);
1996
1997 /**
1998 * pci_enable_device - Initialize device before it's used by a driver.
1999 * @dev: PCI device to be initialized
2000 *
2001 * Initialize device before it's used by a driver. Ask low-level code
2002 * to enable I/O and memory. Wake up the device if it was suspended.
2003 * Beware, this function can fail.
2004 *
2005 * Note we don't actually enable the device many times if we call
2006 * this function repeatedly (we just increment the count).
2007 */
2008 int pci_enable_device(struct pci_dev *dev)
2009 {
2010 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2011 }
2012 EXPORT_SYMBOL(pci_enable_device);
2013
2014 /*
2015 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
2016 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
2017 * there's no need to track it separately. pci_devres is initialized
2018 * when a device is enabled using managed PCI device enable interface.
2019 */
2020 struct pci_devres {
2021 unsigned int enabled:1;
2022 unsigned int pinned:1;
2023 unsigned int orig_intx:1;
2024 unsigned int restore_intx:1;
2025 unsigned int mwi:1;
2026 u32 region_mask;
2027 };
2028
2029 static void pcim_release(struct device *gendev, void *res)
2030 {
2031 struct pci_dev *dev = to_pci_dev(gendev);
2032 struct pci_devres *this = res;
2033 int i;
2034
2035 if (dev->msi_enabled)
2036 pci_disable_msi(dev);
2037 if (dev->msix_enabled)
2038 pci_disable_msix(dev);
2039
2040 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2041 if (this->region_mask & (1 << i))
2042 pci_release_region(dev, i);
2043
2044 if (this->mwi)
2045 pci_clear_mwi(dev);
2046
2047 if (this->restore_intx)
2048 pci_intx(dev, this->orig_intx);
2049
2050 if (this->enabled && !this->pinned)
2051 pci_disable_device(dev);
2052 }
2053
2054 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2055 {
2056 struct pci_devres *dr, *new_dr;
2057
2058 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2059 if (dr)
2060 return dr;
2061
2062 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2063 if (!new_dr)
2064 return NULL;
2065 return devres_get(&pdev->dev, new_dr, NULL, NULL);
2066 }
2067
2068 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2069 {
2070 if (pci_is_managed(pdev))
2071 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2072 return NULL;
2073 }
2074
2075 /**
2076 * pcim_enable_device - Managed pci_enable_device()
2077 * @pdev: PCI device to be initialized
2078 *
2079 * Managed pci_enable_device().
2080 */
2081 int pcim_enable_device(struct pci_dev *pdev)
2082 {
2083 struct pci_devres *dr;
2084 int rc;
2085
2086 dr = get_pci_dr(pdev);
2087 if (unlikely(!dr))
2088 return -ENOMEM;
2089 if (dr->enabled)
2090 return 0;
2091
2092 rc = pci_enable_device(pdev);
2093 if (!rc) {
2094 pdev->is_managed = 1;
2095 dr->enabled = 1;
2096 }
2097 return rc;
2098 }
2099 EXPORT_SYMBOL(pcim_enable_device);
2100
2101 /**
2102 * pcim_pin_device - Pin managed PCI device
2103 * @pdev: PCI device to pin
2104 *
2105 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2106 * driver detach. @pdev must have been enabled with
2107 * pcim_enable_device().
2108 */
2109 void pcim_pin_device(struct pci_dev *pdev)
2110 {
2111 struct pci_devres *dr;
2112
2113 dr = find_pci_dr(pdev);
2114 WARN_ON(!dr || !dr->enabled);
2115 if (dr)
2116 dr->pinned = 1;
2117 }
2118 EXPORT_SYMBOL(pcim_pin_device);
2119
2120 /*
2121 * pcibios_add_device - provide arch specific hooks when adding device dev
2122 * @dev: the PCI device being added
2123 *
2124 * Permits the platform to provide architecture specific functionality when
2125 * devices are added. This is the default implementation. Architecture
2126 * implementations can override this.
2127 */
2128 int __weak pcibios_add_device(struct pci_dev *dev)
2129 {
2130 return 0;
2131 }
2132
2133 /**
2134 * pcibios_release_device - provide arch specific hooks when releasing
2135 * device dev
2136 * @dev: the PCI device being released
2137 *
2138 * Permits the platform to provide architecture specific functionality when
2139 * devices are released. This is the default implementation. Architecture
2140 * implementations can override this.
2141 */
2142 void __weak pcibios_release_device(struct pci_dev *dev) {}
2143
2144 /**
2145 * pcibios_disable_device - disable arch specific PCI resources for device dev
2146 * @dev: the PCI device to disable
2147 *
2148 * Disables architecture specific PCI resources for the device. This
2149 * is the default implementation. Architecture implementations can
2150 * override this.
2151 */
2152 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2153
2154 /**
2155 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2156 * @irq: ISA IRQ to penalize
2157 * @active: IRQ active or not
2158 *
2159 * Permits the platform to provide architecture-specific functionality when
2160 * penalizing ISA IRQs. This is the default implementation. Architecture
2161 * implementations can override this.
2162 */
2163 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2164
2165 static void do_pci_disable_device(struct pci_dev *dev)
2166 {
2167 u16 pci_command;
2168
2169 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2170 if (pci_command & PCI_COMMAND_MASTER) {
2171 pci_command &= ~PCI_COMMAND_MASTER;
2172 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2173 }
2174
2175 pcibios_disable_device(dev);
2176 }
2177
2178 /**
2179 * pci_disable_enabled_device - Disable device without updating enable_cnt
2180 * @dev: PCI device to disable
2181 *
2182 * NOTE: This function is a backend of PCI power management routines and is
2183 * not supposed to be called drivers.
2184 */
2185 void pci_disable_enabled_device(struct pci_dev *dev)
2186 {
2187 if (pci_is_enabled(dev))
2188 do_pci_disable_device(dev);
2189 }
2190
2191 /**
2192 * pci_disable_device - Disable PCI device after use
2193 * @dev: PCI device to be disabled
2194 *
2195 * Signal to the system that the PCI device is not in use by the system
2196 * anymore. This only involves disabling PCI bus-mastering, if active.
2197 *
2198 * Note we don't actually disable the device until all callers of
2199 * pci_enable_device() have called pci_disable_device().
2200 */
2201 void pci_disable_device(struct pci_dev *dev)
2202 {
2203 struct pci_devres *dr;
2204
2205 dr = find_pci_dr(dev);
2206 if (dr)
2207 dr->enabled = 0;
2208
2209 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2210 "disabling already-disabled device");
2211
2212 if (atomic_dec_return(&dev->enable_cnt) != 0)
2213 return;
2214
2215 do_pci_disable_device(dev);
2216
2217 dev->is_busmaster = 0;
2218 }
2219 EXPORT_SYMBOL(pci_disable_device);
2220
2221 /**
2222 * pcibios_set_pcie_reset_state - set reset state for device dev
2223 * @dev: the PCIe device reset
2224 * @state: Reset state to enter into
2225 *
2226 * Set the PCIe reset state for the device. This is the default
2227 * implementation. Architecture implementations can override this.
2228 */
2229 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2230 enum pcie_reset_state state)
2231 {
2232 return -EINVAL;
2233 }
2234
2235 /**
2236 * pci_set_pcie_reset_state - set reset state for device dev
2237 * @dev: the PCIe device reset
2238 * @state: Reset state to enter into
2239 *
2240 * Sets the PCI reset state for the device.
2241 */
2242 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2243 {
2244 return pcibios_set_pcie_reset_state(dev, state);
2245 }
2246 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2247
2248 void pcie_clear_device_status(struct pci_dev *dev)
2249 {
2250 u16 sta;
2251
2252 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2253 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2254 }
2255
2256 /**
2257 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2258 * @dev: PCIe root port or event collector.
2259 */
2260 void pcie_clear_root_pme_status(struct pci_dev *dev)
2261 {
2262 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2263 }
2264
2265 /**
2266 * pci_check_pme_status - Check if given device has generated PME.
2267 * @dev: Device to check.
2268 *
2269 * Check the PME status of the device and if set, clear it and clear PME enable
2270 * (if set). Return 'true' if PME status and PME enable were both set or
2271 * 'false' otherwise.
2272 */
2273 bool pci_check_pme_status(struct pci_dev *dev)
2274 {
2275 int pmcsr_pos;
2276 u16 pmcsr;
2277 bool ret = false;
2278
2279 if (!dev->pm_cap)
2280 return false;
2281
2282 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2283 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2284 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2285 return false;
2286
2287 /* Clear PME status. */
2288 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2289 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2290 /* Disable PME to avoid interrupt flood. */
2291 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2292 ret = true;
2293 }
2294
2295 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2296
2297 return ret;
2298 }
2299
2300 /**
2301 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2302 * @dev: Device to handle.
2303 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2304 *
2305 * Check if @dev has generated PME and queue a resume request for it in that
2306 * case.
2307 */
2308 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2309 {
2310 if (pme_poll_reset && dev->pme_poll)
2311 dev->pme_poll = false;
2312
2313 if (pci_check_pme_status(dev)) {
2314 pci_wakeup_event(dev);
2315 pm_request_resume(&dev->dev);
2316 }
2317 return 0;
2318 }
2319
2320 /**
2321 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2322 * @bus: Top bus of the subtree to walk.
2323 */
2324 void pci_pme_wakeup_bus(struct pci_bus *bus)
2325 {
2326 if (bus)
2327 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2328 }
2329
2330
2331 /**
2332 * pci_pme_capable - check the capability of PCI device to generate PME#
2333 * @dev: PCI device to handle.
2334 * @state: PCI state from which device will issue PME#.
2335 */
2336 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2337 {
2338 if (!dev->pm_cap)
2339 return false;
2340
2341 return !!(dev->pme_support & (1 << state));
2342 }
2343 EXPORT_SYMBOL(pci_pme_capable);
2344
2345 static void pci_pme_list_scan(struct work_struct *work)
2346 {
2347 struct pci_pme_device *pme_dev, *n;
2348
2349 mutex_lock(&pci_pme_list_mutex);
2350 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2351 if (pme_dev->dev->pme_poll) {
2352 struct pci_dev *bridge;
2353
2354 bridge = pme_dev->dev->bus->self;
2355 /*
2356 * If bridge is in low power state, the
2357 * configuration space of subordinate devices
2358 * may be not accessible
2359 */
2360 if (bridge && bridge->current_state != PCI_D0)
2361 continue;
2362 /*
2363 * If the device is in D3cold it should not be
2364 * polled either.
2365 */
2366 if (pme_dev->dev->current_state == PCI_D3cold)
2367 continue;
2368
2369 pci_pme_wakeup(pme_dev->dev, NULL);
2370 } else {
2371 list_del(&pme_dev->list);
2372 kfree(pme_dev);
2373 }
2374 }
2375 if (!list_empty(&pci_pme_list))
2376 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2377 msecs_to_jiffies(PME_TIMEOUT));
2378 mutex_unlock(&pci_pme_list_mutex);
2379 }
2380
2381 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2382 {
2383 u16 pmcsr;
2384
2385 if (!dev->pme_support)
2386 return;
2387
2388 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2389 /* Clear PME_Status by writing 1 to it and enable PME# */
2390 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2391 if (!enable)
2392 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2393
2394 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2395 }
2396
2397 /**
2398 * pci_pme_restore - Restore PME configuration after config space restore.
2399 * @dev: PCI device to update.
2400 */
2401 void pci_pme_restore(struct pci_dev *dev)
2402 {
2403 u16 pmcsr;
2404
2405 if (!dev->pme_support)
2406 return;
2407
2408 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2409 if (dev->wakeup_prepared) {
2410 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2411 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2412 } else {
2413 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2414 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2415 }
2416 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2417 }
2418
2419 /**
2420 * pci_pme_active - enable or disable PCI device's PME# function
2421 * @dev: PCI device to handle.
2422 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2423 *
2424 * The caller must verify that the device is capable of generating PME# before
2425 * calling this function with @enable equal to 'true'.
2426 */
2427 void pci_pme_active(struct pci_dev *dev, bool enable)
2428 {
2429 __pci_pme_active(dev, enable);
2430
2431 /*
2432 * PCI (as opposed to PCIe) PME requires that the device have
2433 * its PME# line hooked up correctly. Not all hardware vendors
2434 * do this, so the PME never gets delivered and the device
2435 * remains asleep. The easiest way around this is to
2436 * periodically walk the list of suspended devices and check
2437 * whether any have their PME flag set. The assumption is that
2438 * we'll wake up often enough anyway that this won't be a huge
2439 * hit, and the power savings from the devices will still be a
2440 * win.
2441 *
2442 * Although PCIe uses in-band PME message instead of PME# line
2443 * to report PME, PME does not work for some PCIe devices in
2444 * reality. For example, there are devices that set their PME
2445 * status bits, but don't really bother to send a PME message;
2446 * there are PCI Express Root Ports that don't bother to
2447 * trigger interrupts when they receive PME messages from the
2448 * devices below. So PME poll is used for PCIe devices too.
2449 */
2450
2451 if (dev->pme_poll) {
2452 struct pci_pme_device *pme_dev;
2453 if (enable) {
2454 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2455 GFP_KERNEL);
2456 if (!pme_dev) {
2457 pci_warn(dev, "can't enable PME#\n");
2458 return;
2459 }
2460 pme_dev->dev = dev;
2461 mutex_lock(&pci_pme_list_mutex);
2462 list_add(&pme_dev->list, &pci_pme_list);
2463 if (list_is_singular(&pci_pme_list))
2464 queue_delayed_work(system_freezable_wq,
2465 &pci_pme_work,
2466 msecs_to_jiffies(PME_TIMEOUT));
2467 mutex_unlock(&pci_pme_list_mutex);
2468 } else {
2469 mutex_lock(&pci_pme_list_mutex);
2470 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2471 if (pme_dev->dev == dev) {
2472 list_del(&pme_dev->list);
2473 kfree(pme_dev);
2474 break;
2475 }
2476 }
2477 mutex_unlock(&pci_pme_list_mutex);
2478 }
2479 }
2480
2481 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2482 }
2483 EXPORT_SYMBOL(pci_pme_active);
2484
2485 /**
2486 * __pci_enable_wake - enable PCI device as wakeup event source
2487 * @dev: PCI device affected
2488 * @state: PCI state from which device will issue wakeup events
2489 * @enable: True to enable event generation; false to disable
2490 *
2491 * This enables the device as a wakeup event source, or disables it.
2492 * When such events involves platform-specific hooks, those hooks are
2493 * called automatically by this routine.
2494 *
2495 * Devices with legacy power management (no standard PCI PM capabilities)
2496 * always require such platform hooks.
2497 *
2498 * RETURN VALUE:
2499 * 0 is returned on success
2500 * -EINVAL is returned if device is not supposed to wake up the system
2501 * Error code depending on the platform is returned if both the platform and
2502 * the native mechanism fail to enable the generation of wake-up events
2503 */
2504 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2505 {
2506 int ret = 0;
2507
2508 /*
2509 * Bridges that are not power-manageable directly only signal
2510 * wakeup on behalf of subordinate devices which is set up
2511 * elsewhere, so skip them. However, bridges that are
2512 * power-manageable may signal wakeup for themselves (for example,
2513 * on a hotplug event) and they need to be covered here.
2514 */
2515 if (!pci_power_manageable(dev))
2516 return 0;
2517
2518 /* Don't do the same thing twice in a row for one device. */
2519 if (!!enable == !!dev->wakeup_prepared)
2520 return 0;
2521
2522 /*
2523 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2524 * Anderson we should be doing PME# wake enable followed by ACPI wake
2525 * enable. To disable wake-up we call the platform first, for symmetry.
2526 */
2527
2528 if (enable) {
2529 int error;
2530
2531 /*
2532 * Enable PME signaling if the device can signal PME from
2533 * D3cold regardless of whether or not it can signal PME from
2534 * the current target state, because that will allow it to
2535 * signal PME when the hierarchy above it goes into D3cold and
2536 * the device itself ends up in D3cold as a result of that.
2537 */
2538 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2539 pci_pme_active(dev, true);
2540 else
2541 ret = 1;
2542 error = platform_pci_set_wakeup(dev, true);
2543 if (ret)
2544 ret = error;
2545 if (!ret)
2546 dev->wakeup_prepared = true;
2547 } else {
2548 platform_pci_set_wakeup(dev, false);
2549 pci_pme_active(dev, false);
2550 dev->wakeup_prepared = false;
2551 }
2552
2553 return ret;
2554 }
2555
2556 /**
2557 * pci_enable_wake - change wakeup settings for a PCI device
2558 * @pci_dev: Target device
2559 * @state: PCI state from which device will issue wakeup events
2560 * @enable: Whether or not to enable event generation
2561 *
2562 * If @enable is set, check device_may_wakeup() for the device before calling
2563 * __pci_enable_wake() for it.
2564 */
2565 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2566 {
2567 if (enable && !device_may_wakeup(&pci_dev->dev))
2568 return -EINVAL;
2569
2570 return __pci_enable_wake(pci_dev, state, enable);
2571 }
2572 EXPORT_SYMBOL(pci_enable_wake);
2573
2574 /**
2575 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2576 * @dev: PCI device to prepare
2577 * @enable: True to enable wake-up event generation; false to disable
2578 *
2579 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2580 * and this function allows them to set that up cleanly - pci_enable_wake()
2581 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2582 * ordering constraints.
2583 *
2584 * This function only returns error code if the device is not allowed to wake
2585 * up the system from sleep or it is not capable of generating PME# from both
2586 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2587 */
2588 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2589 {
2590 return pci_pme_capable(dev, PCI_D3cold) ?
2591 pci_enable_wake(dev, PCI_D3cold, enable) :
2592 pci_enable_wake(dev, PCI_D3hot, enable);
2593 }
2594 EXPORT_SYMBOL(pci_wake_from_d3);
2595
2596 /**
2597 * pci_target_state - find an appropriate low power state for a given PCI dev
2598 * @dev: PCI device
2599 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2600 *
2601 * Use underlying platform code to find a supported low power state for @dev.
2602 * If the platform can't manage @dev, return the deepest state from which it
2603 * can generate wake events, based on any available PME info.
2604 */
2605 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2606 {
2607 pci_power_t target_state = PCI_D3hot;
2608
2609 if (platform_pci_power_manageable(dev)) {
2610 /*
2611 * Call the platform to find the target state for the device.
2612 */
2613 pci_power_t state = platform_pci_choose_state(dev);
2614
2615 switch (state) {
2616 case PCI_POWER_ERROR:
2617 case PCI_UNKNOWN:
2618 break;
2619 case PCI_D1:
2620 case PCI_D2:
2621 if (pci_no_d1d2(dev))
2622 break;
2623 fallthrough;
2624 default:
2625 target_state = state;
2626 }
2627
2628 return target_state;
2629 }
2630
2631 if (!dev->pm_cap)
2632 target_state = PCI_D0;
2633
2634 /*
2635 * If the device is in D3cold even though it's not power-manageable by
2636 * the platform, it may have been powered down by non-standard means.
2637 * Best to let it slumber.
2638 */
2639 if (dev->current_state == PCI_D3cold)
2640 target_state = PCI_D3cold;
2641
2642 if (wakeup && dev->pme_support) {
2643 pci_power_t state = target_state;
2644
2645 /*
2646 * Find the deepest state from which the device can generate
2647 * PME#.
2648 */
2649 while (state && !(dev->pme_support & (1 << state)))
2650 state--;
2651
2652 if (state)
2653 return state;
2654 else if (dev->pme_support & 1)
2655 return PCI_D0;
2656 }
2657
2658 return target_state;
2659 }
2660
2661 /**
2662 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2663 * into a sleep state
2664 * @dev: Device to handle.
2665 *
2666 * Choose the power state appropriate for the device depending on whether
2667 * it can wake up the system and/or is power manageable by the platform
2668 * (PCI_D3hot is the default) and put the device into that state.
2669 */
2670 int pci_prepare_to_sleep(struct pci_dev *dev)
2671 {
2672 bool wakeup = device_may_wakeup(&dev->dev);
2673 pci_power_t target_state = pci_target_state(dev, wakeup);
2674 int error;
2675
2676 if (target_state == PCI_POWER_ERROR)
2677 return -EIO;
2678
2679 /*
2680 * There are systems (for example, Intel mobile chips since Coffee
2681 * Lake) where the power drawn while suspended can be significantly
2682 * reduced by disabling PTM on PCIe root ports as this allows the
2683 * port to enter a lower-power PM state and the SoC to reach a
2684 * lower-power idle state as a whole.
2685 */
2686 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2687 pci_disable_ptm(dev);
2688
2689 pci_enable_wake(dev, target_state, wakeup);
2690
2691 error = pci_set_power_state(dev, target_state);
2692
2693 if (error) {
2694 pci_enable_wake(dev, target_state, false);
2695 pci_restore_ptm_state(dev);
2696 }
2697
2698 return error;
2699 }
2700 EXPORT_SYMBOL(pci_prepare_to_sleep);
2701
2702 /**
2703 * pci_back_from_sleep - turn PCI device on during system-wide transition
2704 * into working state
2705 * @dev: Device to handle.
2706 *
2707 * Disable device's system wake-up capability and put it into D0.
2708 */
2709 int pci_back_from_sleep(struct pci_dev *dev)
2710 {
2711 pci_enable_wake(dev, PCI_D0, false);
2712 return pci_set_power_state(dev, PCI_D0);
2713 }
2714 EXPORT_SYMBOL(pci_back_from_sleep);
2715
2716 /**
2717 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2718 * @dev: PCI device being suspended.
2719 *
2720 * Prepare @dev to generate wake-up events at run time and put it into a low
2721 * power state.
2722 */
2723 int pci_finish_runtime_suspend(struct pci_dev *dev)
2724 {
2725 pci_power_t target_state;
2726 int error;
2727
2728 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2729 if (target_state == PCI_POWER_ERROR)
2730 return -EIO;
2731
2732 dev->runtime_d3cold = target_state == PCI_D3cold;
2733
2734 /*
2735 * There are systems (for example, Intel mobile chips since Coffee
2736 * Lake) where the power drawn while suspended can be significantly
2737 * reduced by disabling PTM on PCIe root ports as this allows the
2738 * port to enter a lower-power PM state and the SoC to reach a
2739 * lower-power idle state as a whole.
2740 */
2741 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2742 pci_disable_ptm(dev);
2743
2744 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2745
2746 error = pci_set_power_state(dev, target_state);
2747
2748 if (error) {
2749 pci_enable_wake(dev, target_state, false);
2750 pci_restore_ptm_state(dev);
2751 dev->runtime_d3cold = false;
2752 }
2753
2754 return error;
2755 }
2756
2757 /**
2758 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2759 * @dev: Device to check.
2760 *
2761 * Return true if the device itself is capable of generating wake-up events
2762 * (through the platform or using the native PCIe PME) or if the device supports
2763 * PME and one of its upstream bridges can generate wake-up events.
2764 */
2765 bool pci_dev_run_wake(struct pci_dev *dev)
2766 {
2767 struct pci_bus *bus = dev->bus;
2768
2769 if (!dev->pme_support)
2770 return false;
2771
2772 /* PME-capable in principle, but not from the target power state */
2773 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2774 return false;
2775
2776 if (device_can_wakeup(&dev->dev))
2777 return true;
2778
2779 while (bus->parent) {
2780 struct pci_dev *bridge = bus->self;
2781
2782 if (device_can_wakeup(&bridge->dev))
2783 return true;
2784
2785 bus = bus->parent;
2786 }
2787
2788 /* We have reached the root bus. */
2789 if (bus->bridge)
2790 return device_can_wakeup(bus->bridge);
2791
2792 return false;
2793 }
2794 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2795
2796 /**
2797 * pci_dev_need_resume - Check if it is necessary to resume the device.
2798 * @pci_dev: Device to check.
2799 *
2800 * Return 'true' if the device is not runtime-suspended or it has to be
2801 * reconfigured due to wakeup settings difference between system and runtime
2802 * suspend, or the current power state of it is not suitable for the upcoming
2803 * (system-wide) transition.
2804 */
2805 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2806 {
2807 struct device *dev = &pci_dev->dev;
2808 pci_power_t target_state;
2809
2810 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2811 return true;
2812
2813 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2814
2815 /*
2816 * If the earlier platform check has not triggered, D3cold is just power
2817 * removal on top of D3hot, so no need to resume the device in that
2818 * case.
2819 */
2820 return target_state != pci_dev->current_state &&
2821 target_state != PCI_D3cold &&
2822 pci_dev->current_state != PCI_D3hot;
2823 }
2824
2825 /**
2826 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2827 * @pci_dev: Device to check.
2828 *
2829 * If the device is suspended and it is not configured for system wakeup,
2830 * disable PME for it to prevent it from waking up the system unnecessarily.
2831 *
2832 * Note that if the device's power state is D3cold and the platform check in
2833 * pci_dev_need_resume() has not triggered, the device's configuration need not
2834 * be changed.
2835 */
2836 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2837 {
2838 struct device *dev = &pci_dev->dev;
2839
2840 spin_lock_irq(&dev->power.lock);
2841
2842 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2843 pci_dev->current_state < PCI_D3cold)
2844 __pci_pme_active(pci_dev, false);
2845
2846 spin_unlock_irq(&dev->power.lock);
2847 }
2848
2849 /**
2850 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2851 * @pci_dev: Device to handle.
2852 *
2853 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2854 * it might have been disabled during the prepare phase of system suspend if
2855 * the device was not configured for system wakeup.
2856 */
2857 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2858 {
2859 struct device *dev = &pci_dev->dev;
2860
2861 if (!pci_dev_run_wake(pci_dev))
2862 return;
2863
2864 spin_lock_irq(&dev->power.lock);
2865
2866 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2867 __pci_pme_active(pci_dev, true);
2868
2869 spin_unlock_irq(&dev->power.lock);
2870 }
2871
2872 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2873 {
2874 struct device *dev = &pdev->dev;
2875 struct device *parent = dev->parent;
2876
2877 if (parent)
2878 pm_runtime_get_sync(parent);
2879 pm_runtime_get_noresume(dev);
2880 /*
2881 * pdev->current_state is set to PCI_D3cold during suspending,
2882 * so wait until suspending completes
2883 */
2884 pm_runtime_barrier(dev);
2885 /*
2886 * Only need to resume devices in D3cold, because config
2887 * registers are still accessible for devices suspended but
2888 * not in D3cold.
2889 */
2890 if (pdev->current_state == PCI_D3cold)
2891 pm_runtime_resume(dev);
2892 }
2893
2894 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2895 {
2896 struct device *dev = &pdev->dev;
2897 struct device *parent = dev->parent;
2898
2899 pm_runtime_put(dev);
2900 if (parent)
2901 pm_runtime_put_sync(parent);
2902 }
2903
2904 static const struct dmi_system_id bridge_d3_blacklist[] = {
2905 #ifdef CONFIG_X86
2906 {
2907 /*
2908 * Gigabyte X299 root port is not marked as hotplug capable
2909 * which allows Linux to power manage it. However, this
2910 * confuses the BIOS SMI handler so don't power manage root
2911 * ports on that system.
2912 */
2913 .ident = "X299 DESIGNARE EX-CF",
2914 .matches = {
2915 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2916 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2917 },
2918 },
2919 {
2920 /*
2921 * Downstream device is not accessible after putting a root port
2922 * into D3cold and back into D0 on Elo i2.
2923 */
2924 .ident = "Elo i2",
2925 .matches = {
2926 DMI_MATCH(DMI_SYS_VENDOR, "Elo Touch Solutions"),
2927 DMI_MATCH(DMI_PRODUCT_NAME, "Elo i2"),
2928 DMI_MATCH(DMI_PRODUCT_VERSION, "RevB"),
2929 },
2930 },
2931 #endif
2932 { }
2933 };
2934
2935 /**
2936 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2937 * @bridge: Bridge to check
2938 *
2939 * This function checks if it is possible to move the bridge to D3.
2940 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2941 */
2942 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2943 {
2944 if (!pci_is_pcie(bridge))
2945 return false;
2946
2947 switch (pci_pcie_type(bridge)) {
2948 case PCI_EXP_TYPE_ROOT_PORT:
2949 case PCI_EXP_TYPE_UPSTREAM:
2950 case PCI_EXP_TYPE_DOWNSTREAM:
2951 if (pci_bridge_d3_disable)
2952 return false;
2953
2954 /*
2955 * Hotplug ports handled by firmware in System Management Mode
2956 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2957 */
2958 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2959 return false;
2960
2961 if (pci_bridge_d3_force)
2962 return true;
2963
2964 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2965 if (bridge->is_thunderbolt)
2966 return true;
2967
2968 /* Platform might know better if the bridge supports D3 */
2969 if (platform_pci_bridge_d3(bridge))
2970 return true;
2971
2972 /*
2973 * Hotplug ports handled natively by the OS were not validated
2974 * by vendors for runtime D3 at least until 2018 because there
2975 * was no OS support.
2976 */
2977 if (bridge->is_hotplug_bridge)
2978 return false;
2979
2980 if (dmi_check_system(bridge_d3_blacklist))
2981 return false;
2982
2983 /*
2984 * It should be safe to put PCIe ports from 2015 or newer
2985 * to D3.
2986 */
2987 if (dmi_get_bios_year() >= 2015)
2988 return true;
2989 break;
2990 }
2991
2992 return false;
2993 }
2994
2995 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2996 {
2997 bool *d3cold_ok = data;
2998
2999 if (/* The device needs to be allowed to go D3cold ... */
3000 dev->no_d3cold || !dev->d3cold_allowed ||
3001
3002 /* ... and if it is wakeup capable to do so from D3cold. */
3003 (device_may_wakeup(&dev->dev) &&
3004 !pci_pme_capable(dev, PCI_D3cold)) ||
3005
3006 /* If it is a bridge it must be allowed to go to D3. */
3007 !pci_power_manageable(dev))
3008
3009 *d3cold_ok = false;
3010
3011 return !*d3cold_ok;
3012 }
3013
3014 /*
3015 * pci_bridge_d3_update - Update bridge D3 capabilities
3016 * @dev: PCI device which is changed
3017 *
3018 * Update upstream bridge PM capabilities accordingly depending on if the
3019 * device PM configuration was changed or the device is being removed. The
3020 * change is also propagated upstream.
3021 */
3022 void pci_bridge_d3_update(struct pci_dev *dev)
3023 {
3024 bool remove = !device_is_registered(&dev->dev);
3025 struct pci_dev *bridge;
3026 bool d3cold_ok = true;
3027
3028 bridge = pci_upstream_bridge(dev);
3029 if (!bridge || !pci_bridge_d3_possible(bridge))
3030 return;
3031
3032 /*
3033 * If D3 is currently allowed for the bridge, removing one of its
3034 * children won't change that.
3035 */
3036 if (remove && bridge->bridge_d3)
3037 return;
3038
3039 /*
3040 * If D3 is currently allowed for the bridge and a child is added or
3041 * changed, disallowance of D3 can only be caused by that child, so
3042 * we only need to check that single device, not any of its siblings.
3043 *
3044 * If D3 is currently not allowed for the bridge, checking the device
3045 * first may allow us to skip checking its siblings.
3046 */
3047 if (!remove)
3048 pci_dev_check_d3cold(dev, &d3cold_ok);
3049
3050 /*
3051 * If D3 is currently not allowed for the bridge, this may be caused
3052 * either by the device being changed/removed or any of its siblings,
3053 * so we need to go through all children to find out if one of them
3054 * continues to block D3.
3055 */
3056 if (d3cold_ok && !bridge->bridge_d3)
3057 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3058 &d3cold_ok);
3059
3060 if (bridge->bridge_d3 != d3cold_ok) {
3061 bridge->bridge_d3 = d3cold_ok;
3062 /* Propagate change to upstream bridges */
3063 pci_bridge_d3_update(bridge);
3064 }
3065 }
3066
3067 /**
3068 * pci_d3cold_enable - Enable D3cold for device
3069 * @dev: PCI device to handle
3070 *
3071 * This function can be used in drivers to enable D3cold from the device
3072 * they handle. It also updates upstream PCI bridge PM capabilities
3073 * accordingly.
3074 */
3075 void pci_d3cold_enable(struct pci_dev *dev)
3076 {
3077 if (dev->no_d3cold) {
3078 dev->no_d3cold = false;
3079 pci_bridge_d3_update(dev);
3080 }
3081 }
3082 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3083
3084 /**
3085 * pci_d3cold_disable - Disable D3cold for device
3086 * @dev: PCI device to handle
3087 *
3088 * This function can be used in drivers to disable D3cold from the device
3089 * they handle. It also updates upstream PCI bridge PM capabilities
3090 * accordingly.
3091 */
3092 void pci_d3cold_disable(struct pci_dev *dev)
3093 {
3094 if (!dev->no_d3cold) {
3095 dev->no_d3cold = true;
3096 pci_bridge_d3_update(dev);
3097 }
3098 }
3099 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3100
3101 /**
3102 * pci_pm_init - Initialize PM functions of given PCI device
3103 * @dev: PCI device to handle.
3104 */
3105 void pci_pm_init(struct pci_dev *dev)
3106 {
3107 int pm;
3108 u16 status;
3109 u16 pmc;
3110
3111 pm_runtime_forbid(&dev->dev);
3112 pm_runtime_set_active(&dev->dev);
3113 pm_runtime_enable(&dev->dev);
3114 device_enable_async_suspend(&dev->dev);
3115 dev->wakeup_prepared = false;
3116
3117 dev->pm_cap = 0;
3118 dev->pme_support = 0;
3119
3120 /* find PCI PM capability in list */
3121 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3122 if (!pm)
3123 return;
3124 /* Check device's ability to generate PME# */
3125 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3126
3127 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3128 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3129 pmc & PCI_PM_CAP_VER_MASK);
3130 return;
3131 }
3132
3133 dev->pm_cap = pm;
3134 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3135 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3136 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3137 dev->d3cold_allowed = true;
3138
3139 dev->d1_support = false;
3140 dev->d2_support = false;
3141 if (!pci_no_d1d2(dev)) {
3142 if (pmc & PCI_PM_CAP_D1)
3143 dev->d1_support = true;
3144 if (pmc & PCI_PM_CAP_D2)
3145 dev->d2_support = true;
3146
3147 if (dev->d1_support || dev->d2_support)
3148 pci_info(dev, "supports%s%s\n",
3149 dev->d1_support ? " D1" : "",
3150 dev->d2_support ? " D2" : "");
3151 }
3152
3153 pmc &= PCI_PM_CAP_PME_MASK;
3154 if (pmc) {
3155 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3156 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3157 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3158 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3159 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3160 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3161 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3162 dev->pme_poll = true;
3163 /*
3164 * Make device's PM flags reflect the wake-up capability, but
3165 * let the user space enable it to wake up the system as needed.
3166 */
3167 device_set_wakeup_capable(&dev->dev, true);
3168 /* Disable the PME# generation functionality */
3169 pci_pme_active(dev, false);
3170 }
3171
3172 pci_read_config_word(dev, PCI_STATUS, &status);
3173 if (status & PCI_STATUS_IMM_READY)
3174 dev->imm_ready = 1;
3175 }
3176
3177 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3178 {
3179 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3180
3181 switch (prop) {
3182 case PCI_EA_P_MEM:
3183 case PCI_EA_P_VF_MEM:
3184 flags |= IORESOURCE_MEM;
3185 break;
3186 case PCI_EA_P_MEM_PREFETCH:
3187 case PCI_EA_P_VF_MEM_PREFETCH:
3188 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3189 break;
3190 case PCI_EA_P_IO:
3191 flags |= IORESOURCE_IO;
3192 break;
3193 default:
3194 return 0;
3195 }
3196
3197 return flags;
3198 }
3199
3200 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3201 u8 prop)
3202 {
3203 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3204 return &dev->resource[bei];
3205 #ifdef CONFIG_PCI_IOV
3206 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3207 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3208 return &dev->resource[PCI_IOV_RESOURCES +
3209 bei - PCI_EA_BEI_VF_BAR0];
3210 #endif
3211 else if (bei == PCI_EA_BEI_ROM)
3212 return &dev->resource[PCI_ROM_RESOURCE];
3213 else
3214 return NULL;
3215 }
3216
3217 /* Read an Enhanced Allocation (EA) entry */
3218 static int pci_ea_read(struct pci_dev *dev, int offset)
3219 {
3220 struct resource *res;
3221 int ent_size, ent_offset = offset;
3222 resource_size_t start, end;
3223 unsigned long flags;
3224 u32 dw0, bei, base, max_offset;
3225 u8 prop;
3226 bool support_64 = (sizeof(resource_size_t) >= 8);
3227
3228 pci_read_config_dword(dev, ent_offset, &dw0);
3229 ent_offset += 4;
3230
3231 /* Entry size field indicates DWORDs after 1st */
3232 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3233
3234 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3235 goto out;
3236
3237 bei = (dw0 & PCI_EA_BEI) >> 4;
3238 prop = (dw0 & PCI_EA_PP) >> 8;
3239
3240 /*
3241 * If the Property is in the reserved range, try the Secondary
3242 * Property instead.
3243 */
3244 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3245 prop = (dw0 & PCI_EA_SP) >> 16;
3246 if (prop > PCI_EA_P_BRIDGE_IO)
3247 goto out;
3248
3249 res = pci_ea_get_resource(dev, bei, prop);
3250 if (!res) {
3251 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3252 goto out;
3253 }
3254
3255 flags = pci_ea_flags(dev, prop);
3256 if (!flags) {
3257 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3258 goto out;
3259 }
3260
3261 /* Read Base */
3262 pci_read_config_dword(dev, ent_offset, &base);
3263 start = (base & PCI_EA_FIELD_MASK);
3264 ent_offset += 4;
3265
3266 /* Read MaxOffset */
3267 pci_read_config_dword(dev, ent_offset, &max_offset);
3268 ent_offset += 4;
3269
3270 /* Read Base MSBs (if 64-bit entry) */
3271 if (base & PCI_EA_IS_64) {
3272 u32 base_upper;
3273
3274 pci_read_config_dword(dev, ent_offset, &base_upper);
3275 ent_offset += 4;
3276
3277 flags |= IORESOURCE_MEM_64;
3278
3279 /* entry starts above 32-bit boundary, can't use */
3280 if (!support_64 && base_upper)
3281 goto out;
3282
3283 if (support_64)
3284 start |= ((u64)base_upper << 32);
3285 }
3286
3287 end = start + (max_offset | 0x03);
3288
3289 /* Read MaxOffset MSBs (if 64-bit entry) */
3290 if (max_offset & PCI_EA_IS_64) {
3291 u32 max_offset_upper;
3292
3293 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3294 ent_offset += 4;
3295
3296 flags |= IORESOURCE_MEM_64;
3297
3298 /* entry too big, can't use */
3299 if (!support_64 && max_offset_upper)
3300 goto out;
3301
3302 if (support_64)
3303 end += ((u64)max_offset_upper << 32);
3304 }
3305
3306 if (end < start) {
3307 pci_err(dev, "EA Entry crosses address boundary\n");
3308 goto out;
3309 }
3310
3311 if (ent_size != ent_offset - offset) {
3312 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3313 ent_size, ent_offset - offset);
3314 goto out;
3315 }
3316
3317 res->name = pci_name(dev);
3318 res->start = start;
3319 res->end = end;
3320 res->flags = flags;
3321
3322 if (bei <= PCI_EA_BEI_BAR5)
3323 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3324 bei, res, prop);
3325 else if (bei == PCI_EA_BEI_ROM)
3326 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3327 res, prop);
3328 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3329 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3330 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3331 else
3332 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3333 bei, res, prop);
3334
3335 out:
3336 return offset + ent_size;
3337 }
3338
3339 /* Enhanced Allocation Initialization */
3340 void pci_ea_init(struct pci_dev *dev)
3341 {
3342 int ea;
3343 u8 num_ent;
3344 int offset;
3345 int i;
3346
3347 /* find PCI EA capability in list */
3348 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3349 if (!ea)
3350 return;
3351
3352 /* determine the number of entries */
3353 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3354 &num_ent);
3355 num_ent &= PCI_EA_NUM_ENT_MASK;
3356
3357 offset = ea + PCI_EA_FIRST_ENT;
3358
3359 /* Skip DWORD 2 for type 1 functions */
3360 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3361 offset += 4;
3362
3363 /* parse each EA entry */
3364 for (i = 0; i < num_ent; ++i)
3365 offset = pci_ea_read(dev, offset);
3366 }
3367
3368 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3369 struct pci_cap_saved_state *new_cap)
3370 {
3371 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3372 }
3373
3374 /**
3375 * _pci_add_cap_save_buffer - allocate buffer for saving given
3376 * capability registers
3377 * @dev: the PCI device
3378 * @cap: the capability to allocate the buffer for
3379 * @extended: Standard or Extended capability ID
3380 * @size: requested size of the buffer
3381 */
3382 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3383 bool extended, unsigned int size)
3384 {
3385 int pos;
3386 struct pci_cap_saved_state *save_state;
3387
3388 if (extended)
3389 pos = pci_find_ext_capability(dev, cap);
3390 else
3391 pos = pci_find_capability(dev, cap);
3392
3393 if (!pos)
3394 return 0;
3395
3396 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3397 if (!save_state)
3398 return -ENOMEM;
3399
3400 save_state->cap.cap_nr = cap;
3401 save_state->cap.cap_extended = extended;
3402 save_state->cap.size = size;
3403 pci_add_saved_cap(dev, save_state);
3404
3405 return 0;
3406 }
3407
3408 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3409 {
3410 return _pci_add_cap_save_buffer(dev, cap, false, size);
3411 }
3412
3413 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3414 {
3415 return _pci_add_cap_save_buffer(dev, cap, true, size);
3416 }
3417
3418 /**
3419 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3420 * @dev: the PCI device
3421 */
3422 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3423 {
3424 int error;
3425
3426 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3427 PCI_EXP_SAVE_REGS * sizeof(u16));
3428 if (error)
3429 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3430
3431 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3432 if (error)
3433 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3434
3435 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3436 2 * sizeof(u16));
3437 if (error)
3438 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3439
3440 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_L1SS,
3441 2 * sizeof(u32));
3442 if (error)
3443 pci_err(dev, "unable to allocate suspend buffer for ASPM-L1SS\n");
3444
3445 pci_allocate_vc_save_buffers(dev);
3446 }
3447
3448 void pci_free_cap_save_buffers(struct pci_dev *dev)
3449 {
3450 struct pci_cap_saved_state *tmp;
3451 struct hlist_node *n;
3452
3453 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3454 kfree(tmp);
3455 }
3456
3457 /**
3458 * pci_configure_ari - enable or disable ARI forwarding
3459 * @dev: the PCI device
3460 *
3461 * If @dev and its upstream bridge both support ARI, enable ARI in the
3462 * bridge. Otherwise, disable ARI in the bridge.
3463 */
3464 void pci_configure_ari(struct pci_dev *dev)
3465 {
3466 u32 cap;
3467 struct pci_dev *bridge;
3468
3469 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3470 return;
3471
3472 bridge = dev->bus->self;
3473 if (!bridge)
3474 return;
3475
3476 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3477 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3478 return;
3479
3480 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3481 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3482 PCI_EXP_DEVCTL2_ARI);
3483 bridge->ari_enabled = 1;
3484 } else {
3485 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3486 PCI_EXP_DEVCTL2_ARI);
3487 bridge->ari_enabled = 0;
3488 }
3489 }
3490
3491 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3492 {
3493 int pos;
3494 u16 cap, ctrl;
3495
3496 pos = pdev->acs_cap;
3497 if (!pos)
3498 return false;
3499
3500 /*
3501 * Except for egress control, capabilities are either required
3502 * or only required if controllable. Features missing from the
3503 * capability field can therefore be assumed as hard-wired enabled.
3504 */
3505 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3506 acs_flags &= (cap | PCI_ACS_EC);
3507
3508 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3509 return (ctrl & acs_flags) == acs_flags;
3510 }
3511
3512 /**
3513 * pci_acs_enabled - test ACS against required flags for a given device
3514 * @pdev: device to test
3515 * @acs_flags: required PCI ACS flags
3516 *
3517 * Return true if the device supports the provided flags. Automatically
3518 * filters out flags that are not implemented on multifunction devices.
3519 *
3520 * Note that this interface checks the effective ACS capabilities of the
3521 * device rather than the actual capabilities. For instance, most single
3522 * function endpoints are not required to support ACS because they have no
3523 * opportunity for peer-to-peer access. We therefore return 'true'
3524 * regardless of whether the device exposes an ACS capability. This makes
3525 * it much easier for callers of this function to ignore the actual type
3526 * or topology of the device when testing ACS support.
3527 */
3528 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3529 {
3530 int ret;
3531
3532 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3533 if (ret >= 0)
3534 return ret > 0;
3535
3536 /*
3537 * Conventional PCI and PCI-X devices never support ACS, either
3538 * effectively or actually. The shared bus topology implies that
3539 * any device on the bus can receive or snoop DMA.
3540 */
3541 if (!pci_is_pcie(pdev))
3542 return false;
3543
3544 switch (pci_pcie_type(pdev)) {
3545 /*
3546 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3547 * but since their primary interface is PCI/X, we conservatively
3548 * handle them as we would a non-PCIe device.
3549 */
3550 case PCI_EXP_TYPE_PCIE_BRIDGE:
3551 /*
3552 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3553 * applicable... must never implement an ACS Extended Capability...".
3554 * This seems arbitrary, but we take a conservative interpretation
3555 * of this statement.
3556 */
3557 case PCI_EXP_TYPE_PCI_BRIDGE:
3558 case PCI_EXP_TYPE_RC_EC:
3559 return false;
3560 /*
3561 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3562 * implement ACS in order to indicate their peer-to-peer capabilities,
3563 * regardless of whether they are single- or multi-function devices.
3564 */
3565 case PCI_EXP_TYPE_DOWNSTREAM:
3566 case PCI_EXP_TYPE_ROOT_PORT:
3567 return pci_acs_flags_enabled(pdev, acs_flags);
3568 /*
3569 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3570 * implemented by the remaining PCIe types to indicate peer-to-peer
3571 * capabilities, but only when they are part of a multifunction
3572 * device. The footnote for section 6.12 indicates the specific
3573 * PCIe types included here.
3574 */
3575 case PCI_EXP_TYPE_ENDPOINT:
3576 case PCI_EXP_TYPE_UPSTREAM:
3577 case PCI_EXP_TYPE_LEG_END:
3578 case PCI_EXP_TYPE_RC_END:
3579 if (!pdev->multifunction)
3580 break;
3581
3582 return pci_acs_flags_enabled(pdev, acs_flags);
3583 }
3584
3585 /*
3586 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3587 * to single function devices with the exception of downstream ports.
3588 */
3589 return true;
3590 }
3591
3592 /**
3593 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3594 * @start: starting downstream device
3595 * @end: ending upstream device or NULL to search to the root bus
3596 * @acs_flags: required flags
3597 *
3598 * Walk up a device tree from start to end testing PCI ACS support. If
3599 * any step along the way does not support the required flags, return false.
3600 */
3601 bool pci_acs_path_enabled(struct pci_dev *start,
3602 struct pci_dev *end, u16 acs_flags)
3603 {
3604 struct pci_dev *pdev, *parent = start;
3605
3606 do {
3607 pdev = parent;
3608
3609 if (!pci_acs_enabled(pdev, acs_flags))
3610 return false;
3611
3612 if (pci_is_root_bus(pdev->bus))
3613 return (end == NULL);
3614
3615 parent = pdev->bus->self;
3616 } while (pdev != end);
3617
3618 return true;
3619 }
3620
3621 /**
3622 * pci_acs_init - Initialize ACS if hardware supports it
3623 * @dev: the PCI device
3624 */
3625 void pci_acs_init(struct pci_dev *dev)
3626 {
3627 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3628
3629 /*
3630 * Attempt to enable ACS regardless of capability because some Root
3631 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3632 * the standard ACS capability but still support ACS via those
3633 * quirks.
3634 */
3635 pci_enable_acs(dev);
3636 }
3637
3638 /**
3639 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3640 * @pdev: PCI device
3641 * @bar: BAR to find
3642 *
3643 * Helper to find the position of the ctrl register for a BAR.
3644 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3645 * Returns -ENOENT if no ctrl register for the BAR could be found.
3646 */
3647 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3648 {
3649 unsigned int pos, nbars, i;
3650 u32 ctrl;
3651
3652 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3653 if (!pos)
3654 return -ENOTSUPP;
3655
3656 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3657 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3658 PCI_REBAR_CTRL_NBAR_SHIFT;
3659
3660 for (i = 0; i < nbars; i++, pos += 8) {
3661 int bar_idx;
3662
3663 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3664 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3665 if (bar_idx == bar)
3666 return pos;
3667 }
3668
3669 return -ENOENT;
3670 }
3671
3672 /**
3673 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3674 * @pdev: PCI device
3675 * @bar: BAR to query
3676 *
3677 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3678 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3679 */
3680 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3681 {
3682 int pos;
3683 u32 cap;
3684
3685 pos = pci_rebar_find_pos(pdev, bar);
3686 if (pos < 0)
3687 return 0;
3688
3689 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3690 cap &= PCI_REBAR_CAP_SIZES;
3691
3692 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3693 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3694 bar == 0 && cap == 0x7000)
3695 cap = 0x3f000;
3696
3697 return cap >> 4;
3698 }
3699 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3700
3701 /**
3702 * pci_rebar_get_current_size - get the current size of a BAR
3703 * @pdev: PCI device
3704 * @bar: BAR to set size to
3705 *
3706 * Read the size of a BAR from the resizable BAR config.
3707 * Returns size if found or negative error code.
3708 */
3709 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3710 {
3711 int pos;
3712 u32 ctrl;
3713
3714 pos = pci_rebar_find_pos(pdev, bar);
3715 if (pos < 0)
3716 return pos;
3717
3718 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3719 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3720 }
3721
3722 /**
3723 * pci_rebar_set_size - set a new size for a BAR
3724 * @pdev: PCI device
3725 * @bar: BAR to set size to
3726 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3727 *
3728 * Set the new size of a BAR as defined in the spec.
3729 * Returns zero if resizing was successful, error code otherwise.
3730 */
3731 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3732 {
3733 int pos;
3734 u32 ctrl;
3735
3736 pos = pci_rebar_find_pos(pdev, bar);
3737 if (pos < 0)
3738 return pos;
3739
3740 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3741 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3742 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3743 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3744 return 0;
3745 }
3746
3747 /**
3748 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3749 * @dev: the PCI device
3750 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3751 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3752 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3753 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3754 *
3755 * Return 0 if all upstream bridges support AtomicOp routing, egress
3756 * blocking is disabled on all upstream ports, and the root port supports
3757 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3758 * AtomicOp completion), or negative otherwise.
3759 */
3760 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3761 {
3762 struct pci_bus *bus = dev->bus;
3763 struct pci_dev *bridge;
3764 u32 cap, ctl2;
3765
3766 /*
3767 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3768 * in Device Control 2 is reserved in VFs and the PF value applies
3769 * to all associated VFs.
3770 */
3771 if (dev->is_virtfn)
3772 return -EINVAL;
3773
3774 if (!pci_is_pcie(dev))
3775 return -EINVAL;
3776
3777 /*
3778 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3779 * AtomicOp requesters. For now, we only support endpoints as
3780 * requesters and root ports as completers. No endpoints as
3781 * completers, and no peer-to-peer.
3782 */
3783
3784 switch (pci_pcie_type(dev)) {
3785 case PCI_EXP_TYPE_ENDPOINT:
3786 case PCI_EXP_TYPE_LEG_END:
3787 case PCI_EXP_TYPE_RC_END:
3788 break;
3789 default:
3790 return -EINVAL;
3791 }
3792
3793 while (bus->parent) {
3794 bridge = bus->self;
3795
3796 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3797
3798 switch (pci_pcie_type(bridge)) {
3799 /* Ensure switch ports support AtomicOp routing */
3800 case PCI_EXP_TYPE_UPSTREAM:
3801 case PCI_EXP_TYPE_DOWNSTREAM:
3802 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3803 return -EINVAL;
3804 break;
3805
3806 /* Ensure root port supports all the sizes we care about */
3807 case PCI_EXP_TYPE_ROOT_PORT:
3808 if ((cap & cap_mask) != cap_mask)
3809 return -EINVAL;
3810 break;
3811 }
3812
3813 /* Ensure upstream ports don't block AtomicOps on egress */
3814 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3815 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3816 &ctl2);
3817 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3818 return -EINVAL;
3819 }
3820
3821 bus = bus->parent;
3822 }
3823
3824 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3825 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3826 return 0;
3827 }
3828 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3829
3830 /**
3831 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3832 * @dev: the PCI device
3833 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3834 *
3835 * Perform INTx swizzling for a device behind one level of bridge. This is
3836 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3837 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3838 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3839 * the PCI Express Base Specification, Revision 2.1)
3840 */
3841 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3842 {
3843 int slot;
3844
3845 if (pci_ari_enabled(dev->bus))
3846 slot = 0;
3847 else
3848 slot = PCI_SLOT(dev->devfn);
3849
3850 return (((pin - 1) + slot) % 4) + 1;
3851 }
3852
3853 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3854 {
3855 u8 pin;
3856
3857 pin = dev->pin;
3858 if (!pin)
3859 return -1;
3860
3861 while (!pci_is_root_bus(dev->bus)) {
3862 pin = pci_swizzle_interrupt_pin(dev, pin);
3863 dev = dev->bus->self;
3864 }
3865 *bridge = dev;
3866 return pin;
3867 }
3868
3869 /**
3870 * pci_common_swizzle - swizzle INTx all the way to root bridge
3871 * @dev: the PCI device
3872 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3873 *
3874 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3875 * bridges all the way up to a PCI root bus.
3876 */
3877 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3878 {
3879 u8 pin = *pinp;
3880
3881 while (!pci_is_root_bus(dev->bus)) {
3882 pin = pci_swizzle_interrupt_pin(dev, pin);
3883 dev = dev->bus->self;
3884 }
3885 *pinp = pin;
3886 return PCI_SLOT(dev->devfn);
3887 }
3888 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3889
3890 /**
3891 * pci_release_region - Release a PCI bar
3892 * @pdev: PCI device whose resources were previously reserved by
3893 * pci_request_region()
3894 * @bar: BAR to release
3895 *
3896 * Releases the PCI I/O and memory resources previously reserved by a
3897 * successful call to pci_request_region(). Call this function only
3898 * after all use of the PCI regions has ceased.
3899 */
3900 void pci_release_region(struct pci_dev *pdev, int bar)
3901 {
3902 struct pci_devres *dr;
3903
3904 if (pci_resource_len(pdev, bar) == 0)
3905 return;
3906 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3907 release_region(pci_resource_start(pdev, bar),
3908 pci_resource_len(pdev, bar));
3909 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3910 release_mem_region(pci_resource_start(pdev, bar),
3911 pci_resource_len(pdev, bar));
3912
3913 dr = find_pci_dr(pdev);
3914 if (dr)
3915 dr->region_mask &= ~(1 << bar);
3916 }
3917 EXPORT_SYMBOL(pci_release_region);
3918
3919 /**
3920 * __pci_request_region - Reserved PCI I/O and memory resource
3921 * @pdev: PCI device whose resources are to be reserved
3922 * @bar: BAR to be reserved
3923 * @res_name: Name to be associated with resource.
3924 * @exclusive: whether the region access is exclusive or not
3925 *
3926 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3927 * being reserved by owner @res_name. Do not access any
3928 * address inside the PCI regions unless this call returns
3929 * successfully.
3930 *
3931 * If @exclusive is set, then the region is marked so that userspace
3932 * is explicitly not allowed to map the resource via /dev/mem or
3933 * sysfs MMIO access.
3934 *
3935 * Returns 0 on success, or %EBUSY on error. A warning
3936 * message is also printed on failure.
3937 */
3938 static int __pci_request_region(struct pci_dev *pdev, int bar,
3939 const char *res_name, int exclusive)
3940 {
3941 struct pci_devres *dr;
3942
3943 if (pci_resource_len(pdev, bar) == 0)
3944 return 0;
3945
3946 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3947 if (!request_region(pci_resource_start(pdev, bar),
3948 pci_resource_len(pdev, bar), res_name))
3949 goto err_out;
3950 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3951 if (!__request_mem_region(pci_resource_start(pdev, bar),
3952 pci_resource_len(pdev, bar), res_name,
3953 exclusive))
3954 goto err_out;
3955 }
3956
3957 dr = find_pci_dr(pdev);
3958 if (dr)
3959 dr->region_mask |= 1 << bar;
3960
3961 return 0;
3962
3963 err_out:
3964 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3965 &pdev->resource[bar]);
3966 return -EBUSY;
3967 }
3968
3969 /**
3970 * pci_request_region - Reserve PCI I/O and memory resource
3971 * @pdev: PCI device whose resources are to be reserved
3972 * @bar: BAR to be reserved
3973 * @res_name: Name to be associated with resource
3974 *
3975 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3976 * being reserved by owner @res_name. Do not access any
3977 * address inside the PCI regions unless this call returns
3978 * successfully.
3979 *
3980 * Returns 0 on success, or %EBUSY on error. A warning
3981 * message is also printed on failure.
3982 */
3983 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3984 {
3985 return __pci_request_region(pdev, bar, res_name, 0);
3986 }
3987 EXPORT_SYMBOL(pci_request_region);
3988
3989 /**
3990 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3991 * @pdev: PCI device whose resources were previously reserved
3992 * @bars: Bitmask of BARs to be released
3993 *
3994 * Release selected PCI I/O and memory resources previously reserved.
3995 * Call this function only after all use of the PCI regions has ceased.
3996 */
3997 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3998 {
3999 int i;
4000
4001 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4002 if (bars & (1 << i))
4003 pci_release_region(pdev, i);
4004 }
4005 EXPORT_SYMBOL(pci_release_selected_regions);
4006
4007 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4008 const char *res_name, int excl)
4009 {
4010 int i;
4011
4012 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4013 if (bars & (1 << i))
4014 if (__pci_request_region(pdev, i, res_name, excl))
4015 goto err_out;
4016 return 0;
4017
4018 err_out:
4019 while (--i >= 0)
4020 if (bars & (1 << i))
4021 pci_release_region(pdev, i);
4022
4023 return -EBUSY;
4024 }
4025
4026
4027 /**
4028 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4029 * @pdev: PCI device whose resources are to be reserved
4030 * @bars: Bitmask of BARs to be requested
4031 * @res_name: Name to be associated with resource
4032 */
4033 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4034 const char *res_name)
4035 {
4036 return __pci_request_selected_regions(pdev, bars, res_name, 0);
4037 }
4038 EXPORT_SYMBOL(pci_request_selected_regions);
4039
4040 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4041 const char *res_name)
4042 {
4043 return __pci_request_selected_regions(pdev, bars, res_name,
4044 IORESOURCE_EXCLUSIVE);
4045 }
4046 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4047
4048 /**
4049 * pci_release_regions - Release reserved PCI I/O and memory resources
4050 * @pdev: PCI device whose resources were previously reserved by
4051 * pci_request_regions()
4052 *
4053 * Releases all PCI I/O and memory resources previously reserved by a
4054 * successful call to pci_request_regions(). Call this function only
4055 * after all use of the PCI regions has ceased.
4056 */
4057
4058 void pci_release_regions(struct pci_dev *pdev)
4059 {
4060 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4061 }
4062 EXPORT_SYMBOL(pci_release_regions);
4063
4064 /**
4065 * pci_request_regions - Reserve PCI I/O and memory resources
4066 * @pdev: PCI device whose resources are to be reserved
4067 * @res_name: Name to be associated with resource.
4068 *
4069 * Mark all PCI regions associated with PCI device @pdev as
4070 * being reserved by owner @res_name. Do not access any
4071 * address inside the PCI regions unless this call returns
4072 * successfully.
4073 *
4074 * Returns 0 on success, or %EBUSY on error. A warning
4075 * message is also printed on failure.
4076 */
4077 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4078 {
4079 return pci_request_selected_regions(pdev,
4080 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4081 }
4082 EXPORT_SYMBOL(pci_request_regions);
4083
4084 /**
4085 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4086 * @pdev: PCI device whose resources are to be reserved
4087 * @res_name: Name to be associated with resource.
4088 *
4089 * Mark all PCI regions associated with PCI device @pdev as being reserved
4090 * by owner @res_name. Do not access any address inside the PCI regions
4091 * unless this call returns successfully.
4092 *
4093 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4094 * and the sysfs MMIO access will not be allowed.
4095 *
4096 * Returns 0 on success, or %EBUSY on error. A warning message is also
4097 * printed on failure.
4098 */
4099 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4100 {
4101 return pci_request_selected_regions_exclusive(pdev,
4102 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4103 }
4104 EXPORT_SYMBOL(pci_request_regions_exclusive);
4105
4106 /*
4107 * Record the PCI IO range (expressed as CPU physical address + size).
4108 * Return a negative value if an error has occurred, zero otherwise
4109 */
4110 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4111 resource_size_t size)
4112 {
4113 int ret = 0;
4114 #ifdef PCI_IOBASE
4115 struct logic_pio_hwaddr *range;
4116
4117 if (!size || addr + size < addr)
4118 return -EINVAL;
4119
4120 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4121 if (!range)
4122 return -ENOMEM;
4123
4124 range->fwnode = fwnode;
4125 range->size = size;
4126 range->hw_start = addr;
4127 range->flags = LOGIC_PIO_CPU_MMIO;
4128
4129 ret = logic_pio_register_range(range);
4130 if (ret)
4131 kfree(range);
4132
4133 /* Ignore duplicates due to deferred probing */
4134 if (ret == -EEXIST)
4135 ret = 0;
4136 #endif
4137
4138 return ret;
4139 }
4140
4141 phys_addr_t pci_pio_to_address(unsigned long pio)
4142 {
4143 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4144
4145 #ifdef PCI_IOBASE
4146 if (pio >= MMIO_UPPER_LIMIT)
4147 return address;
4148
4149 address = logic_pio_to_hwaddr(pio);
4150 #endif
4151
4152 return address;
4153 }
4154 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4155
4156 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4157 {
4158 #ifdef PCI_IOBASE
4159 return logic_pio_trans_cpuaddr(address);
4160 #else
4161 if (address > IO_SPACE_LIMIT)
4162 return (unsigned long)-1;
4163
4164 return (unsigned long) address;
4165 #endif
4166 }
4167
4168 /**
4169 * pci_remap_iospace - Remap the memory mapped I/O space
4170 * @res: Resource describing the I/O space
4171 * @phys_addr: physical address of range to be mapped
4172 *
4173 * Remap the memory mapped I/O space described by the @res and the CPU
4174 * physical address @phys_addr into virtual address space. Only
4175 * architectures that have memory mapped IO functions defined (and the
4176 * PCI_IOBASE value defined) should call this function.
4177 */
4178 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4179 {
4180 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4181 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4182
4183 if (!(res->flags & IORESOURCE_IO))
4184 return -EINVAL;
4185
4186 if (res->end > IO_SPACE_LIMIT)
4187 return -EINVAL;
4188
4189 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4190 pgprot_device(PAGE_KERNEL));
4191 #else
4192 /*
4193 * This architecture does not have memory mapped I/O space,
4194 * so this function should never be called
4195 */
4196 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4197 return -ENODEV;
4198 #endif
4199 }
4200 EXPORT_SYMBOL(pci_remap_iospace);
4201
4202 /**
4203 * pci_unmap_iospace - Unmap the memory mapped I/O space
4204 * @res: resource to be unmapped
4205 *
4206 * Unmap the CPU virtual address @res from virtual address space. Only
4207 * architectures that have memory mapped IO functions defined (and the
4208 * PCI_IOBASE value defined) should call this function.
4209 */
4210 void pci_unmap_iospace(struct resource *res)
4211 {
4212 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4213 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4214
4215 vunmap_range(vaddr, vaddr + resource_size(res));
4216 #endif
4217 }
4218 EXPORT_SYMBOL(pci_unmap_iospace);
4219
4220 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4221 {
4222 struct resource **res = ptr;
4223
4224 pci_unmap_iospace(*res);
4225 }
4226
4227 /**
4228 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4229 * @dev: Generic device to remap IO address for
4230 * @res: Resource describing the I/O space
4231 * @phys_addr: physical address of range to be mapped
4232 *
4233 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4234 * detach.
4235 */
4236 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4237 phys_addr_t phys_addr)
4238 {
4239 const struct resource **ptr;
4240 int error;
4241
4242 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4243 if (!ptr)
4244 return -ENOMEM;
4245
4246 error = pci_remap_iospace(res, phys_addr);
4247 if (error) {
4248 devres_free(ptr);
4249 } else {
4250 *ptr = res;
4251 devres_add(dev, ptr);
4252 }
4253
4254 return error;
4255 }
4256 EXPORT_SYMBOL(devm_pci_remap_iospace);
4257
4258 /**
4259 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4260 * @dev: Generic device to remap IO address for
4261 * @offset: Resource address to map
4262 * @size: Size of map
4263 *
4264 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4265 * detach.
4266 */
4267 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4268 resource_size_t offset,
4269 resource_size_t size)
4270 {
4271 void __iomem **ptr, *addr;
4272
4273 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4274 if (!ptr)
4275 return NULL;
4276
4277 addr = pci_remap_cfgspace(offset, size);
4278 if (addr) {
4279 *ptr = addr;
4280 devres_add(dev, ptr);
4281 } else
4282 devres_free(ptr);
4283
4284 return addr;
4285 }
4286 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4287
4288 /**
4289 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4290 * @dev: generic device to handle the resource for
4291 * @res: configuration space resource to be handled
4292 *
4293 * Checks that a resource is a valid memory region, requests the memory
4294 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4295 * proper PCI configuration space memory attributes are guaranteed.
4296 *
4297 * All operations are managed and will be undone on driver detach.
4298 *
4299 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4300 * on failure. Usage example::
4301 *
4302 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4303 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4304 * if (IS_ERR(base))
4305 * return PTR_ERR(base);
4306 */
4307 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4308 struct resource *res)
4309 {
4310 resource_size_t size;
4311 const char *name;
4312 void __iomem *dest_ptr;
4313
4314 BUG_ON(!dev);
4315
4316 if (!res || resource_type(res) != IORESOURCE_MEM) {
4317 dev_err(dev, "invalid resource\n");
4318 return IOMEM_ERR_PTR(-EINVAL);
4319 }
4320
4321 size = resource_size(res);
4322
4323 if (res->name)
4324 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4325 res->name);
4326 else
4327 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4328 if (!name)
4329 return IOMEM_ERR_PTR(-ENOMEM);
4330
4331 if (!devm_request_mem_region(dev, res->start, size, name)) {
4332 dev_err(dev, "can't request region for resource %pR\n", res);
4333 return IOMEM_ERR_PTR(-EBUSY);
4334 }
4335
4336 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4337 if (!dest_ptr) {
4338 dev_err(dev, "ioremap failed for resource %pR\n", res);
4339 devm_release_mem_region(dev, res->start, size);
4340 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4341 }
4342
4343 return dest_ptr;
4344 }
4345 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4346
4347 static void __pci_set_master(struct pci_dev *dev, bool enable)
4348 {
4349 u16 old_cmd, cmd;
4350
4351 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4352 if (enable)
4353 cmd = old_cmd | PCI_COMMAND_MASTER;
4354 else
4355 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4356 if (cmd != old_cmd) {
4357 pci_dbg(dev, "%s bus mastering\n",
4358 enable ? "enabling" : "disabling");
4359 pci_write_config_word(dev, PCI_COMMAND, cmd);
4360 }
4361 dev->is_busmaster = enable;
4362 }
4363
4364 /**
4365 * pcibios_setup - process "pci=" kernel boot arguments
4366 * @str: string used to pass in "pci=" kernel boot arguments
4367 *
4368 * Process kernel boot arguments. This is the default implementation.
4369 * Architecture specific implementations can override this as necessary.
4370 */
4371 char * __weak __init pcibios_setup(char *str)
4372 {
4373 return str;
4374 }
4375
4376 /**
4377 * pcibios_set_master - enable PCI bus-mastering for device dev
4378 * @dev: the PCI device to enable
4379 *
4380 * Enables PCI bus-mastering for the device. This is the default
4381 * implementation. Architecture specific implementations can override
4382 * this if necessary.
4383 */
4384 void __weak pcibios_set_master(struct pci_dev *dev)
4385 {
4386 u8 lat;
4387
4388 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4389 if (pci_is_pcie(dev))
4390 return;
4391
4392 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4393 if (lat < 16)
4394 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4395 else if (lat > pcibios_max_latency)
4396 lat = pcibios_max_latency;
4397 else
4398 return;
4399
4400 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4401 }
4402
4403 /**
4404 * pci_set_master - enables bus-mastering for device dev
4405 * @dev: the PCI device to enable
4406 *
4407 * Enables bus-mastering on the device and calls pcibios_set_master()
4408 * to do the needed arch specific settings.
4409 */
4410 void pci_set_master(struct pci_dev *dev)
4411 {
4412 __pci_set_master(dev, true);
4413 pcibios_set_master(dev);
4414 }
4415 EXPORT_SYMBOL(pci_set_master);
4416
4417 /**
4418 * pci_clear_master - disables bus-mastering for device dev
4419 * @dev: the PCI device to disable
4420 */
4421 void pci_clear_master(struct pci_dev *dev)
4422 {
4423 __pci_set_master(dev, false);
4424 }
4425 EXPORT_SYMBOL(pci_clear_master);
4426
4427 /**
4428 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4429 * @dev: the PCI device for which MWI is to be enabled
4430 *
4431 * Helper function for pci_set_mwi.
4432 * Originally copied from drivers/net/acenic.c.
4433 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4434 *
4435 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4436 */
4437 int pci_set_cacheline_size(struct pci_dev *dev)
4438 {
4439 u8 cacheline_size;
4440
4441 if (!pci_cache_line_size)
4442 return -EINVAL;
4443
4444 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4445 equal to or multiple of the right value. */
4446 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4447 if (cacheline_size >= pci_cache_line_size &&
4448 (cacheline_size % pci_cache_line_size) == 0)
4449 return 0;
4450
4451 /* Write the correct value. */
4452 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4453 /* Read it back. */
4454 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4455 if (cacheline_size == pci_cache_line_size)
4456 return 0;
4457
4458 pci_dbg(dev, "cache line size of %d is not supported\n",
4459 pci_cache_line_size << 2);
4460
4461 return -EINVAL;
4462 }
4463 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4464
4465 /**
4466 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4467 * @dev: the PCI device for which MWI is enabled
4468 *
4469 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4470 *
4471 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4472 */
4473 int pci_set_mwi(struct pci_dev *dev)
4474 {
4475 #ifdef PCI_DISABLE_MWI
4476 return 0;
4477 #else
4478 int rc;
4479 u16 cmd;
4480
4481 rc = pci_set_cacheline_size(dev);
4482 if (rc)
4483 return rc;
4484
4485 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4486 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4487 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4488 cmd |= PCI_COMMAND_INVALIDATE;
4489 pci_write_config_word(dev, PCI_COMMAND, cmd);
4490 }
4491 return 0;
4492 #endif
4493 }
4494 EXPORT_SYMBOL(pci_set_mwi);
4495
4496 /**
4497 * pcim_set_mwi - a device-managed pci_set_mwi()
4498 * @dev: the PCI device for which MWI is enabled
4499 *
4500 * Managed pci_set_mwi().
4501 *
4502 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4503 */
4504 int pcim_set_mwi(struct pci_dev *dev)
4505 {
4506 struct pci_devres *dr;
4507
4508 dr = find_pci_dr(dev);
4509 if (!dr)
4510 return -ENOMEM;
4511
4512 dr->mwi = 1;
4513 return pci_set_mwi(dev);
4514 }
4515 EXPORT_SYMBOL(pcim_set_mwi);
4516
4517 /**
4518 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4519 * @dev: the PCI device for which MWI is enabled
4520 *
4521 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4522 * Callers are not required to check the return value.
4523 *
4524 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4525 */
4526 int pci_try_set_mwi(struct pci_dev *dev)
4527 {
4528 #ifdef PCI_DISABLE_MWI
4529 return 0;
4530 #else
4531 return pci_set_mwi(dev);
4532 #endif
4533 }
4534 EXPORT_SYMBOL(pci_try_set_mwi);
4535
4536 /**
4537 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4538 * @dev: the PCI device to disable
4539 *
4540 * Disables PCI Memory-Write-Invalidate transaction on the device
4541 */
4542 void pci_clear_mwi(struct pci_dev *dev)
4543 {
4544 #ifndef PCI_DISABLE_MWI
4545 u16 cmd;
4546
4547 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4548 if (cmd & PCI_COMMAND_INVALIDATE) {
4549 cmd &= ~PCI_COMMAND_INVALIDATE;
4550 pci_write_config_word(dev, PCI_COMMAND, cmd);
4551 }
4552 #endif
4553 }
4554 EXPORT_SYMBOL(pci_clear_mwi);
4555
4556 /**
4557 * pci_disable_parity - disable parity checking for device
4558 * @dev: the PCI device to operate on
4559 *
4560 * Disable parity checking for device @dev
4561 */
4562 void pci_disable_parity(struct pci_dev *dev)
4563 {
4564 u16 cmd;
4565
4566 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4567 if (cmd & PCI_COMMAND_PARITY) {
4568 cmd &= ~PCI_COMMAND_PARITY;
4569 pci_write_config_word(dev, PCI_COMMAND, cmd);
4570 }
4571 }
4572
4573 /**
4574 * pci_intx - enables/disables PCI INTx for device dev
4575 * @pdev: the PCI device to operate on
4576 * @enable: boolean: whether to enable or disable PCI INTx
4577 *
4578 * Enables/disables PCI INTx for device @pdev
4579 */
4580 void pci_intx(struct pci_dev *pdev, int enable)
4581 {
4582 u16 pci_command, new;
4583
4584 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4585
4586 if (enable)
4587 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4588 else
4589 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4590
4591 if (new != pci_command) {
4592 struct pci_devres *dr;
4593
4594 pci_write_config_word(pdev, PCI_COMMAND, new);
4595
4596 dr = find_pci_dr(pdev);
4597 if (dr && !dr->restore_intx) {
4598 dr->restore_intx = 1;
4599 dr->orig_intx = !enable;
4600 }
4601 }
4602 }
4603 EXPORT_SYMBOL_GPL(pci_intx);
4604
4605 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4606 {
4607 struct pci_bus *bus = dev->bus;
4608 bool mask_updated = true;
4609 u32 cmd_status_dword;
4610 u16 origcmd, newcmd;
4611 unsigned long flags;
4612 bool irq_pending;
4613
4614 /*
4615 * We do a single dword read to retrieve both command and status.
4616 * Document assumptions that make this possible.
4617 */
4618 BUILD_BUG_ON(PCI_COMMAND % 4);
4619 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4620
4621 raw_spin_lock_irqsave(&pci_lock, flags);
4622
4623 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4624
4625 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4626
4627 /*
4628 * Check interrupt status register to see whether our device
4629 * triggered the interrupt (when masking) or the next IRQ is
4630 * already pending (when unmasking).
4631 */
4632 if (mask != irq_pending) {
4633 mask_updated = false;
4634 goto done;
4635 }
4636
4637 origcmd = cmd_status_dword;
4638 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4639 if (mask)
4640 newcmd |= PCI_COMMAND_INTX_DISABLE;
4641 if (newcmd != origcmd)
4642 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4643
4644 done:
4645 raw_spin_unlock_irqrestore(&pci_lock, flags);
4646
4647 return mask_updated;
4648 }
4649
4650 /**
4651 * pci_check_and_mask_intx - mask INTx on pending interrupt
4652 * @dev: the PCI device to operate on
4653 *
4654 * Check if the device dev has its INTx line asserted, mask it and return
4655 * true in that case. False is returned if no interrupt was pending.
4656 */
4657 bool pci_check_and_mask_intx(struct pci_dev *dev)
4658 {
4659 return pci_check_and_set_intx_mask(dev, true);
4660 }
4661 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4662
4663 /**
4664 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4665 * @dev: the PCI device to operate on
4666 *
4667 * Check if the device dev has its INTx line asserted, unmask it if not and
4668 * return true. False is returned and the mask remains active if there was
4669 * still an interrupt pending.
4670 */
4671 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4672 {
4673 return pci_check_and_set_intx_mask(dev, false);
4674 }
4675 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4676
4677 /**
4678 * pci_wait_for_pending_transaction - wait for pending transaction
4679 * @dev: the PCI device to operate on
4680 *
4681 * Return 0 if transaction is pending 1 otherwise.
4682 */
4683 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4684 {
4685 if (!pci_is_pcie(dev))
4686 return 1;
4687
4688 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4689 PCI_EXP_DEVSTA_TRPND);
4690 }
4691 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4692
4693 /**
4694 * pcie_flr - initiate a PCIe function level reset
4695 * @dev: device to reset
4696 *
4697 * Initiate a function level reset unconditionally on @dev without
4698 * checking any flags and DEVCAP
4699 */
4700 int pcie_flr(struct pci_dev *dev)
4701 {
4702 if (!pci_wait_for_pending_transaction(dev))
4703 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4704
4705 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4706
4707 if (dev->imm_ready)
4708 return 0;
4709
4710 /*
4711 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4712 * 100ms, but may silently discard requests while the FLR is in
4713 * progress. Wait 100ms before trying to access the device.
4714 */
4715 msleep(100);
4716
4717 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4718 }
4719 EXPORT_SYMBOL_GPL(pcie_flr);
4720
4721 /**
4722 * pcie_reset_flr - initiate a PCIe function level reset
4723 * @dev: device to reset
4724 * @probe: if true, return 0 if device can be reset this way
4725 *
4726 * Initiate a function level reset on @dev.
4727 */
4728 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4729 {
4730 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4731 return -ENOTTY;
4732
4733 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4734 return -ENOTTY;
4735
4736 if (probe)
4737 return 0;
4738
4739 return pcie_flr(dev);
4740 }
4741 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4742
4743 static int pci_af_flr(struct pci_dev *dev, bool probe)
4744 {
4745 int pos;
4746 u8 cap;
4747
4748 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4749 if (!pos)
4750 return -ENOTTY;
4751
4752 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4753 return -ENOTTY;
4754
4755 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4756 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4757 return -ENOTTY;
4758
4759 if (probe)
4760 return 0;
4761
4762 /*
4763 * Wait for Transaction Pending bit to clear. A word-aligned test
4764 * is used, so we use the control offset rather than status and shift
4765 * the test bit to match.
4766 */
4767 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4768 PCI_AF_STATUS_TP << 8))
4769 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4770
4771 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4772
4773 if (dev->imm_ready)
4774 return 0;
4775
4776 /*
4777 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4778 * updated 27 July 2006; a device must complete an FLR within
4779 * 100ms, but may silently discard requests while the FLR is in
4780 * progress. Wait 100ms before trying to access the device.
4781 */
4782 msleep(100);
4783
4784 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4785 }
4786
4787 /**
4788 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4789 * @dev: Device to reset.
4790 * @probe: if true, return 0 if the device can be reset this way.
4791 *
4792 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4793 * unset, it will be reinitialized internally when going from PCI_D3hot to
4794 * PCI_D0. If that's the case and the device is not in a low-power state
4795 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4796 *
4797 * NOTE: This causes the caller to sleep for twice the device power transition
4798 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4799 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4800 * Moreover, only devices in D0 can be reset by this function.
4801 */
4802 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4803 {
4804 u16 csr;
4805
4806 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4807 return -ENOTTY;
4808
4809 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4810 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4811 return -ENOTTY;
4812
4813 if (probe)
4814 return 0;
4815
4816 if (dev->current_state != PCI_D0)
4817 return -EINVAL;
4818
4819 csr &= ~PCI_PM_CTRL_STATE_MASK;
4820 csr |= PCI_D3hot;
4821 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4822 pci_dev_d3_sleep(dev);
4823
4824 csr &= ~PCI_PM_CTRL_STATE_MASK;
4825 csr |= PCI_D0;
4826 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4827 pci_dev_d3_sleep(dev);
4828
4829 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4830 }
4831
4832 /**
4833 * pcie_wait_for_link_delay - Wait until link is active or inactive
4834 * @pdev: Bridge device
4835 * @active: waiting for active or inactive?
4836 * @delay: Delay to wait after link has become active (in ms)
4837 *
4838 * Use this to wait till link becomes active or inactive.
4839 */
4840 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4841 int delay)
4842 {
4843 int timeout = 1000;
4844 bool ret;
4845 u16 lnk_status;
4846
4847 /*
4848 * Some controllers might not implement link active reporting. In this
4849 * case, we wait for 1000 ms + any delay requested by the caller.
4850 */
4851 if (!pdev->link_active_reporting) {
4852 msleep(timeout + delay);
4853 return true;
4854 }
4855
4856 /*
4857 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4858 * after which we should expect an link active if the reset was
4859 * successful. If so, software must wait a minimum 100ms before sending
4860 * configuration requests to devices downstream this port.
4861 *
4862 * If the link fails to activate, either the device was physically
4863 * removed or the link is permanently failed.
4864 */
4865 if (active)
4866 msleep(20);
4867 for (;;) {
4868 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4869 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4870 if (ret == active)
4871 break;
4872 if (timeout <= 0)
4873 break;
4874 msleep(10);
4875 timeout -= 10;
4876 }
4877 if (active && ret)
4878 msleep(delay);
4879
4880 return ret == active;
4881 }
4882
4883 /**
4884 * pcie_wait_for_link - Wait until link is active or inactive
4885 * @pdev: Bridge device
4886 * @active: waiting for active or inactive?
4887 *
4888 * Use this to wait till link becomes active or inactive.
4889 */
4890 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4891 {
4892 return pcie_wait_for_link_delay(pdev, active, 100);
4893 }
4894
4895 /*
4896 * Find maximum D3cold delay required by all the devices on the bus. The
4897 * spec says 100 ms, but firmware can lower it and we allow drivers to
4898 * increase it as well.
4899 *
4900 * Called with @pci_bus_sem locked for reading.
4901 */
4902 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4903 {
4904 const struct pci_dev *pdev;
4905 int min_delay = 100;
4906 int max_delay = 0;
4907
4908 list_for_each_entry(pdev, &bus->devices, bus_list) {
4909 if (pdev->d3cold_delay < min_delay)
4910 min_delay = pdev->d3cold_delay;
4911 if (pdev->d3cold_delay > max_delay)
4912 max_delay = pdev->d3cold_delay;
4913 }
4914
4915 return max(min_delay, max_delay);
4916 }
4917
4918 /**
4919 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4920 * @dev: PCI bridge
4921 *
4922 * Handle necessary delays before access to the devices on the secondary
4923 * side of the bridge are permitted after D3cold to D0 transition.
4924 *
4925 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4926 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4927 * 4.3.2.
4928 */
4929 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4930 {
4931 struct pci_dev *child;
4932 int delay;
4933
4934 if (pci_dev_is_disconnected(dev))
4935 return;
4936
4937 if (!pci_is_bridge(dev) || !dev->bridge_d3)
4938 return;
4939
4940 down_read(&pci_bus_sem);
4941
4942 /*
4943 * We only deal with devices that are present currently on the bus.
4944 * For any hot-added devices the access delay is handled in pciehp
4945 * board_added(). In case of ACPI hotplug the firmware is expected
4946 * to configure the devices before OS is notified.
4947 */
4948 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4949 up_read(&pci_bus_sem);
4950 return;
4951 }
4952
4953 /* Take d3cold_delay requirements into account */
4954 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4955 if (!delay) {
4956 up_read(&pci_bus_sem);
4957 return;
4958 }
4959
4960 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4961 bus_list);
4962 up_read(&pci_bus_sem);
4963
4964 /*
4965 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4966 * accessing the device after reset (that is 1000 ms + 100 ms). In
4967 * practice this should not be needed because we don't do power
4968 * management for them (see pci_bridge_d3_possible()).
4969 */
4970 if (!pci_is_pcie(dev)) {
4971 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4972 msleep(1000 + delay);
4973 return;
4974 }
4975
4976 /*
4977 * For PCIe downstream and root ports that do not support speeds
4978 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4979 * speeds (gen3) we need to wait first for the data link layer to
4980 * become active.
4981 *
4982 * However, 100 ms is the minimum and the PCIe spec says the
4983 * software must allow at least 1s before it can determine that the
4984 * device that did not respond is a broken device. There is
4985 * evidence that 100 ms is not always enough, for example certain
4986 * Titan Ridge xHCI controller does not always respond to
4987 * configuration requests if we only wait for 100 ms (see
4988 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4989 *
4990 * Therefore we wait for 100 ms and check for the device presence.
4991 * If it is still not present give it an additional 100 ms.
4992 */
4993 if (!pcie_downstream_port(dev))
4994 return;
4995
4996 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4997 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4998 msleep(delay);
4999 } else {
5000 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5001 delay);
5002 if (!pcie_wait_for_link_delay(dev, true, delay)) {
5003 /* Did not train, no need to wait any further */
5004 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5005 return;
5006 }
5007 }
5008
5009 if (!pci_device_is_present(child)) {
5010 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
5011 msleep(delay);
5012 }
5013 }
5014
5015 void pci_reset_secondary_bus(struct pci_dev *dev)
5016 {
5017 u16 ctrl;
5018
5019 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5020 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5021 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5022
5023 /*
5024 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
5025 * this to 2ms to ensure that we meet the minimum requirement.
5026 */
5027 msleep(2);
5028
5029 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5030 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5031
5032 /*
5033 * Trhfa for conventional PCI is 2^25 clock cycles.
5034 * Assuming a minimum 33MHz clock this results in a 1s
5035 * delay before we can consider subordinate devices to
5036 * be re-initialized. PCIe has some ways to shorten this,
5037 * but we don't make use of them yet.
5038 */
5039 ssleep(1);
5040 }
5041
5042 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5043 {
5044 pci_reset_secondary_bus(dev);
5045 }
5046
5047 /**
5048 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5049 * @dev: Bridge device
5050 *
5051 * Use the bridge control register to assert reset on the secondary bus.
5052 * Devices on the secondary bus are left in power-on state.
5053 */
5054 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5055 {
5056 pcibios_reset_secondary_bus(dev);
5057
5058 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
5059 }
5060 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5061
5062 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5063 {
5064 struct pci_dev *pdev;
5065
5066 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5067 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5068 return -ENOTTY;
5069
5070 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5071 if (pdev != dev)
5072 return -ENOTTY;
5073
5074 if (probe)
5075 return 0;
5076
5077 return pci_bridge_secondary_bus_reset(dev->bus->self);
5078 }
5079
5080 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5081 {
5082 int rc = -ENOTTY;
5083
5084 if (!hotplug || !try_module_get(hotplug->owner))
5085 return rc;
5086
5087 if (hotplug->ops->reset_slot)
5088 rc = hotplug->ops->reset_slot(hotplug, probe);
5089
5090 module_put(hotplug->owner);
5091
5092 return rc;
5093 }
5094
5095 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5096 {
5097 if (dev->multifunction || dev->subordinate || !dev->slot ||
5098 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5099 return -ENOTTY;
5100
5101 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5102 }
5103
5104 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5105 {
5106 int rc;
5107
5108 rc = pci_dev_reset_slot_function(dev, probe);
5109 if (rc != -ENOTTY)
5110 return rc;
5111 return pci_parent_bus_reset(dev, probe);
5112 }
5113
5114 void pci_dev_lock(struct pci_dev *dev)
5115 {
5116 /* block PM suspend, driver probe, etc. */
5117 device_lock(&dev->dev);
5118 pci_cfg_access_lock(dev);
5119 }
5120 EXPORT_SYMBOL_GPL(pci_dev_lock);
5121
5122 /* Return 1 on successful lock, 0 on contention */
5123 int pci_dev_trylock(struct pci_dev *dev)
5124 {
5125 if (device_trylock(&dev->dev)) {
5126 if (pci_cfg_access_trylock(dev))
5127 return 1;
5128 device_unlock(&dev->dev);
5129 }
5130
5131 return 0;
5132 }
5133 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5134
5135 void pci_dev_unlock(struct pci_dev *dev)
5136 {
5137 pci_cfg_access_unlock(dev);
5138 device_unlock(&dev->dev);
5139 }
5140 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5141
5142 static void pci_dev_save_and_disable(struct pci_dev *dev)
5143 {
5144 const struct pci_error_handlers *err_handler =
5145 dev->driver ? dev->driver->err_handler : NULL;
5146
5147 /*
5148 * dev->driver->err_handler->reset_prepare() is protected against
5149 * races with ->remove() by the device lock, which must be held by
5150 * the caller.
5151 */
5152 if (err_handler && err_handler->reset_prepare)
5153 err_handler->reset_prepare(dev);
5154
5155 /*
5156 * Wake-up device prior to save. PM registers default to D0 after
5157 * reset and a simple register restore doesn't reliably return
5158 * to a non-D0 state anyway.
5159 */
5160 pci_set_power_state(dev, PCI_D0);
5161
5162 pci_save_state(dev);
5163 /*
5164 * Disable the device by clearing the Command register, except for
5165 * INTx-disable which is set. This not only disables MMIO and I/O port
5166 * BARs, but also prevents the device from being Bus Master, preventing
5167 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5168 * compliant devices, INTx-disable prevents legacy interrupts.
5169 */
5170 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5171 }
5172
5173 static void pci_dev_restore(struct pci_dev *dev)
5174 {
5175 const struct pci_error_handlers *err_handler =
5176 dev->driver ? dev->driver->err_handler : NULL;
5177
5178 pci_restore_state(dev);
5179
5180 /*
5181 * dev->driver->err_handler->reset_done() is protected against
5182 * races with ->remove() by the device lock, which must be held by
5183 * the caller.
5184 */
5185 if (err_handler && err_handler->reset_done)
5186 err_handler->reset_done(dev);
5187 }
5188
5189 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5190 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5191 { },
5192 { pci_dev_specific_reset, .name = "device_specific" },
5193 { pci_dev_acpi_reset, .name = "acpi" },
5194 { pcie_reset_flr, .name = "flr" },
5195 { pci_af_flr, .name = "af_flr" },
5196 { pci_pm_reset, .name = "pm" },
5197 { pci_reset_bus_function, .name = "bus" },
5198 };
5199
5200 static ssize_t reset_method_show(struct device *dev,
5201 struct device_attribute *attr, char *buf)
5202 {
5203 struct pci_dev *pdev = to_pci_dev(dev);
5204 ssize_t len = 0;
5205 int i, m;
5206
5207 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5208 m = pdev->reset_methods[i];
5209 if (!m)
5210 break;
5211
5212 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5213 pci_reset_fn_methods[m].name);
5214 }
5215
5216 if (len)
5217 len += sysfs_emit_at(buf, len, "\n");
5218
5219 return len;
5220 }
5221
5222 static int reset_method_lookup(const char *name)
5223 {
5224 int m;
5225
5226 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5227 if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5228 return m;
5229 }
5230
5231 return 0; /* not found */
5232 }
5233
5234 static ssize_t reset_method_store(struct device *dev,
5235 struct device_attribute *attr,
5236 const char *buf, size_t count)
5237 {
5238 struct pci_dev *pdev = to_pci_dev(dev);
5239 char *options, *name;
5240 int m, n;
5241 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5242
5243 if (sysfs_streq(buf, "")) {
5244 pdev->reset_methods[0] = 0;
5245 pci_warn(pdev, "All device reset methods disabled by user");
5246 return count;
5247 }
5248
5249 if (sysfs_streq(buf, "default")) {
5250 pci_init_reset_methods(pdev);
5251 return count;
5252 }
5253
5254 options = kstrndup(buf, count, GFP_KERNEL);
5255 if (!options)
5256 return -ENOMEM;
5257
5258 n = 0;
5259 while ((name = strsep(&options, " ")) != NULL) {
5260 if (sysfs_streq(name, ""))
5261 continue;
5262
5263 name = strim(name);
5264
5265 m = reset_method_lookup(name);
5266 if (!m) {
5267 pci_err(pdev, "Invalid reset method '%s'", name);
5268 goto error;
5269 }
5270
5271 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5272 pci_err(pdev, "Unsupported reset method '%s'", name);
5273 goto error;
5274 }
5275
5276 if (n == PCI_NUM_RESET_METHODS - 1) {
5277 pci_err(pdev, "Too many reset methods\n");
5278 goto error;
5279 }
5280
5281 reset_methods[n++] = m;
5282 }
5283
5284 reset_methods[n] = 0;
5285
5286 /* Warn if dev-specific supported but not highest priority */
5287 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5288 reset_methods[0] != 1)
5289 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5290 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5291 kfree(options);
5292 return count;
5293
5294 error:
5295 /* Leave previous methods unchanged */
5296 kfree(options);
5297 return -EINVAL;
5298 }
5299 static DEVICE_ATTR_RW(reset_method);
5300
5301 static struct attribute *pci_dev_reset_method_attrs[] = {
5302 &dev_attr_reset_method.attr,
5303 NULL,
5304 };
5305
5306 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5307 struct attribute *a, int n)
5308 {
5309 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5310
5311 if (!pci_reset_supported(pdev))
5312 return 0;
5313
5314 return a->mode;
5315 }
5316
5317 const struct attribute_group pci_dev_reset_method_attr_group = {
5318 .attrs = pci_dev_reset_method_attrs,
5319 .is_visible = pci_dev_reset_method_attr_is_visible,
5320 };
5321
5322 /**
5323 * __pci_reset_function_locked - reset a PCI device function while holding
5324 * the @dev mutex lock.
5325 * @dev: PCI device to reset
5326 *
5327 * Some devices allow an individual function to be reset without affecting
5328 * other functions in the same device. The PCI device must be responsive
5329 * to PCI config space in order to use this function.
5330 *
5331 * The device function is presumed to be unused and the caller is holding
5332 * the device mutex lock when this function is called.
5333 *
5334 * Resetting the device will make the contents of PCI configuration space
5335 * random, so any caller of this must be prepared to reinitialise the
5336 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5337 * etc.
5338 *
5339 * Returns 0 if the device function was successfully reset or negative if the
5340 * device doesn't support resetting a single function.
5341 */
5342 int __pci_reset_function_locked(struct pci_dev *dev)
5343 {
5344 int i, m, rc = -ENOTTY;
5345
5346 might_sleep();
5347
5348 /*
5349 * A reset method returns -ENOTTY if it doesn't support this device and
5350 * we should try the next method.
5351 *
5352 * If it returns 0 (success), we're finished. If it returns any other
5353 * error, we're also finished: this indicates that further reset
5354 * mechanisms might be broken on the device.
5355 */
5356 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5357 m = dev->reset_methods[i];
5358 if (!m)
5359 return -ENOTTY;
5360
5361 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5362 if (!rc)
5363 return 0;
5364 if (rc != -ENOTTY)
5365 return rc;
5366 }
5367
5368 return -ENOTTY;
5369 }
5370 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5371
5372 /**
5373 * pci_init_reset_methods - check whether device can be safely reset
5374 * and store supported reset mechanisms.
5375 * @dev: PCI device to check for reset mechanisms
5376 *
5377 * Some devices allow an individual function to be reset without affecting
5378 * other functions in the same device. The PCI device must be in D0-D3hot
5379 * state.
5380 *
5381 * Stores reset mechanisms supported by device in reset_methods byte array
5382 * which is a member of struct pci_dev.
5383 */
5384 void pci_init_reset_methods(struct pci_dev *dev)
5385 {
5386 int m, i, rc;
5387
5388 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5389
5390 might_sleep();
5391
5392 i = 0;
5393 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5394 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5395 if (!rc)
5396 dev->reset_methods[i++] = m;
5397 else if (rc != -ENOTTY)
5398 break;
5399 }
5400
5401 dev->reset_methods[i] = 0;
5402 }
5403
5404 /**
5405 * pci_reset_function - quiesce and reset a PCI device function
5406 * @dev: PCI device to reset
5407 *
5408 * Some devices allow an individual function to be reset without affecting
5409 * other functions in the same device. The PCI device must be responsive
5410 * to PCI config space in order to use this function.
5411 *
5412 * This function does not just reset the PCI portion of a device, but
5413 * clears all the state associated with the device. This function differs
5414 * from __pci_reset_function_locked() in that it saves and restores device state
5415 * over the reset and takes the PCI device lock.
5416 *
5417 * Returns 0 if the device function was successfully reset or negative if the
5418 * device doesn't support resetting a single function.
5419 */
5420 int pci_reset_function(struct pci_dev *dev)
5421 {
5422 int rc;
5423
5424 if (!pci_reset_supported(dev))
5425 return -ENOTTY;
5426
5427 pci_dev_lock(dev);
5428 pci_dev_save_and_disable(dev);
5429
5430 rc = __pci_reset_function_locked(dev);
5431
5432 pci_dev_restore(dev);
5433 pci_dev_unlock(dev);
5434
5435 return rc;
5436 }
5437 EXPORT_SYMBOL_GPL(pci_reset_function);
5438
5439 /**
5440 * pci_reset_function_locked - quiesce and reset a PCI device function
5441 * @dev: PCI device to reset
5442 *
5443 * Some devices allow an individual function to be reset without affecting
5444 * other functions in the same device. The PCI device must be responsive
5445 * to PCI config space in order to use this function.
5446 *
5447 * This function does not just reset the PCI portion of a device, but
5448 * clears all the state associated with the device. This function differs
5449 * from __pci_reset_function_locked() in that it saves and restores device state
5450 * over the reset. It also differs from pci_reset_function() in that it
5451 * requires the PCI device lock to be held.
5452 *
5453 * Returns 0 if the device function was successfully reset or negative if the
5454 * device doesn't support resetting a single function.
5455 */
5456 int pci_reset_function_locked(struct pci_dev *dev)
5457 {
5458 int rc;
5459
5460 if (!pci_reset_supported(dev))
5461 return -ENOTTY;
5462
5463 pci_dev_save_and_disable(dev);
5464
5465 rc = __pci_reset_function_locked(dev);
5466
5467 pci_dev_restore(dev);
5468
5469 return rc;
5470 }
5471 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5472
5473 /**
5474 * pci_try_reset_function - quiesce and reset a PCI device function
5475 * @dev: PCI device to reset
5476 *
5477 * Same as above, except return -EAGAIN if unable to lock device.
5478 */
5479 int pci_try_reset_function(struct pci_dev *dev)
5480 {
5481 int rc;
5482
5483 if (!pci_reset_supported(dev))
5484 return -ENOTTY;
5485
5486 if (!pci_dev_trylock(dev))
5487 return -EAGAIN;
5488
5489 pci_dev_save_and_disable(dev);
5490 rc = __pci_reset_function_locked(dev);
5491 pci_dev_restore(dev);
5492 pci_dev_unlock(dev);
5493
5494 return rc;
5495 }
5496 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5497
5498 /* Do any devices on or below this bus prevent a bus reset? */
5499 static bool pci_bus_resetable(struct pci_bus *bus)
5500 {
5501 struct pci_dev *dev;
5502
5503
5504 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5505 return false;
5506
5507 list_for_each_entry(dev, &bus->devices, bus_list) {
5508 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5509 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5510 return false;
5511 }
5512
5513 return true;
5514 }
5515
5516 /* Lock devices from the top of the tree down */
5517 static void pci_bus_lock(struct pci_bus *bus)
5518 {
5519 struct pci_dev *dev;
5520
5521 list_for_each_entry(dev, &bus->devices, bus_list) {
5522 pci_dev_lock(dev);
5523 if (dev->subordinate)
5524 pci_bus_lock(dev->subordinate);
5525 }
5526 }
5527
5528 /* Unlock devices from the bottom of the tree up */
5529 static void pci_bus_unlock(struct pci_bus *bus)
5530 {
5531 struct pci_dev *dev;
5532
5533 list_for_each_entry(dev, &bus->devices, bus_list) {
5534 if (dev->subordinate)
5535 pci_bus_unlock(dev->subordinate);
5536 pci_dev_unlock(dev);
5537 }
5538 }
5539
5540 /* Return 1 on successful lock, 0 on contention */
5541 static int pci_bus_trylock(struct pci_bus *bus)
5542 {
5543 struct pci_dev *dev;
5544
5545 list_for_each_entry(dev, &bus->devices, bus_list) {
5546 if (!pci_dev_trylock(dev))
5547 goto unlock;
5548 if (dev->subordinate) {
5549 if (!pci_bus_trylock(dev->subordinate)) {
5550 pci_dev_unlock(dev);
5551 goto unlock;
5552 }
5553 }
5554 }
5555 return 1;
5556
5557 unlock:
5558 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5559 if (dev->subordinate)
5560 pci_bus_unlock(dev->subordinate);
5561 pci_dev_unlock(dev);
5562 }
5563 return 0;
5564 }
5565
5566 /* Do any devices on or below this slot prevent a bus reset? */
5567 static bool pci_slot_resetable(struct pci_slot *slot)
5568 {
5569 struct pci_dev *dev;
5570
5571 if (slot->bus->self &&
5572 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5573 return false;
5574
5575 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5576 if (!dev->slot || dev->slot != slot)
5577 continue;
5578 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5579 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5580 return false;
5581 }
5582
5583 return true;
5584 }
5585
5586 /* Lock devices from the top of the tree down */
5587 static void pci_slot_lock(struct pci_slot *slot)
5588 {
5589 struct pci_dev *dev;
5590
5591 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5592 if (!dev->slot || dev->slot != slot)
5593 continue;
5594 pci_dev_lock(dev);
5595 if (dev->subordinate)
5596 pci_bus_lock(dev->subordinate);
5597 }
5598 }
5599
5600 /* Unlock devices from the bottom of the tree up */
5601 static void pci_slot_unlock(struct pci_slot *slot)
5602 {
5603 struct pci_dev *dev;
5604
5605 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5606 if (!dev->slot || dev->slot != slot)
5607 continue;
5608 if (dev->subordinate)
5609 pci_bus_unlock(dev->subordinate);
5610 pci_dev_unlock(dev);
5611 }
5612 }
5613
5614 /* Return 1 on successful lock, 0 on contention */
5615 static int pci_slot_trylock(struct pci_slot *slot)
5616 {
5617 struct pci_dev *dev;
5618
5619 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5620 if (!dev->slot || dev->slot != slot)
5621 continue;
5622 if (!pci_dev_trylock(dev))
5623 goto unlock;
5624 if (dev->subordinate) {
5625 if (!pci_bus_trylock(dev->subordinate)) {
5626 pci_dev_unlock(dev);
5627 goto unlock;
5628 }
5629 }
5630 }
5631 return 1;
5632
5633 unlock:
5634 list_for_each_entry_continue_reverse(dev,
5635 &slot->bus->devices, bus_list) {
5636 if (!dev->slot || dev->slot != slot)
5637 continue;
5638 if (dev->subordinate)
5639 pci_bus_unlock(dev->subordinate);
5640 pci_dev_unlock(dev);
5641 }
5642 return 0;
5643 }
5644
5645 /*
5646 * Save and disable devices from the top of the tree down while holding
5647 * the @dev mutex lock for the entire tree.
5648 */
5649 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5650 {
5651 struct pci_dev *dev;
5652
5653 list_for_each_entry(dev, &bus->devices, bus_list) {
5654 pci_dev_save_and_disable(dev);
5655 if (dev->subordinate)
5656 pci_bus_save_and_disable_locked(dev->subordinate);
5657 }
5658 }
5659
5660 /*
5661 * Restore devices from top of the tree down while holding @dev mutex lock
5662 * for the entire tree. Parent bridges need to be restored before we can
5663 * get to subordinate devices.
5664 */
5665 static void pci_bus_restore_locked(struct pci_bus *bus)
5666 {
5667 struct pci_dev *dev;
5668
5669 list_for_each_entry(dev, &bus->devices, bus_list) {
5670 pci_dev_restore(dev);
5671 if (dev->subordinate)
5672 pci_bus_restore_locked(dev->subordinate);
5673 }
5674 }
5675
5676 /*
5677 * Save and disable devices from the top of the tree down while holding
5678 * the @dev mutex lock for the entire tree.
5679 */
5680 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5681 {
5682 struct pci_dev *dev;
5683
5684 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5685 if (!dev->slot || dev->slot != slot)
5686 continue;
5687 pci_dev_save_and_disable(dev);
5688 if (dev->subordinate)
5689 pci_bus_save_and_disable_locked(dev->subordinate);
5690 }
5691 }
5692
5693 /*
5694 * Restore devices from top of the tree down while holding @dev mutex lock
5695 * for the entire tree. Parent bridges need to be restored before we can
5696 * get to subordinate devices.
5697 */
5698 static void pci_slot_restore_locked(struct pci_slot *slot)
5699 {
5700 struct pci_dev *dev;
5701
5702 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5703 if (!dev->slot || dev->slot != slot)
5704 continue;
5705 pci_dev_restore(dev);
5706 if (dev->subordinate)
5707 pci_bus_restore_locked(dev->subordinate);
5708 }
5709 }
5710
5711 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5712 {
5713 int rc;
5714
5715 if (!slot || !pci_slot_resetable(slot))
5716 return -ENOTTY;
5717
5718 if (!probe)
5719 pci_slot_lock(slot);
5720
5721 might_sleep();
5722
5723 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5724
5725 if (!probe)
5726 pci_slot_unlock(slot);
5727
5728 return rc;
5729 }
5730
5731 /**
5732 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5733 * @slot: PCI slot to probe
5734 *
5735 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5736 */
5737 int pci_probe_reset_slot(struct pci_slot *slot)
5738 {
5739 return pci_slot_reset(slot, PCI_RESET_PROBE);
5740 }
5741 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5742
5743 /**
5744 * __pci_reset_slot - Try to reset a PCI slot
5745 * @slot: PCI slot to reset
5746 *
5747 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5748 * independent of other slots. For instance, some slots may support slot power
5749 * control. In the case of a 1:1 bus to slot architecture, this function may
5750 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5751 * Generally a slot reset should be attempted before a bus reset. All of the
5752 * function of the slot and any subordinate buses behind the slot are reset
5753 * through this function. PCI config space of all devices in the slot and
5754 * behind the slot is saved before and restored after reset.
5755 *
5756 * Same as above except return -EAGAIN if the slot cannot be locked
5757 */
5758 static int __pci_reset_slot(struct pci_slot *slot)
5759 {
5760 int rc;
5761
5762 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5763 if (rc)
5764 return rc;
5765
5766 if (pci_slot_trylock(slot)) {
5767 pci_slot_save_and_disable_locked(slot);
5768 might_sleep();
5769 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5770 pci_slot_restore_locked(slot);
5771 pci_slot_unlock(slot);
5772 } else
5773 rc = -EAGAIN;
5774
5775 return rc;
5776 }
5777
5778 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5779 {
5780 int ret;
5781
5782 if (!bus->self || !pci_bus_resetable(bus))
5783 return -ENOTTY;
5784
5785 if (probe)
5786 return 0;
5787
5788 pci_bus_lock(bus);
5789
5790 might_sleep();
5791
5792 ret = pci_bridge_secondary_bus_reset(bus->self);
5793
5794 pci_bus_unlock(bus);
5795
5796 return ret;
5797 }
5798
5799 /**
5800 * pci_bus_error_reset - reset the bridge's subordinate bus
5801 * @bridge: The parent device that connects to the bus to reset
5802 *
5803 * This function will first try to reset the slots on this bus if the method is
5804 * available. If slot reset fails or is not available, this will fall back to a
5805 * secondary bus reset.
5806 */
5807 int pci_bus_error_reset(struct pci_dev *bridge)
5808 {
5809 struct pci_bus *bus = bridge->subordinate;
5810 struct pci_slot *slot;
5811
5812 if (!bus)
5813 return -ENOTTY;
5814
5815 mutex_lock(&pci_slot_mutex);
5816 if (list_empty(&bus->slots))
5817 goto bus_reset;
5818
5819 list_for_each_entry(slot, &bus->slots, list)
5820 if (pci_probe_reset_slot(slot))
5821 goto bus_reset;
5822
5823 list_for_each_entry(slot, &bus->slots, list)
5824 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5825 goto bus_reset;
5826
5827 mutex_unlock(&pci_slot_mutex);
5828 return 0;
5829 bus_reset:
5830 mutex_unlock(&pci_slot_mutex);
5831 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5832 }
5833
5834 /**
5835 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5836 * @bus: PCI bus to probe
5837 *
5838 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5839 */
5840 int pci_probe_reset_bus(struct pci_bus *bus)
5841 {
5842 return pci_bus_reset(bus, PCI_RESET_PROBE);
5843 }
5844 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5845
5846 /**
5847 * __pci_reset_bus - Try to reset a PCI bus
5848 * @bus: top level PCI bus to reset
5849 *
5850 * Same as above except return -EAGAIN if the bus cannot be locked
5851 */
5852 static int __pci_reset_bus(struct pci_bus *bus)
5853 {
5854 int rc;
5855
5856 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5857 if (rc)
5858 return rc;
5859
5860 if (pci_bus_trylock(bus)) {
5861 pci_bus_save_and_disable_locked(bus);
5862 might_sleep();
5863 rc = pci_bridge_secondary_bus_reset(bus->self);
5864 pci_bus_restore_locked(bus);
5865 pci_bus_unlock(bus);
5866 } else
5867 rc = -EAGAIN;
5868
5869 return rc;
5870 }
5871
5872 /**
5873 * pci_reset_bus - Try to reset a PCI bus
5874 * @pdev: top level PCI device to reset via slot/bus
5875 *
5876 * Same as above except return -EAGAIN if the bus cannot be locked
5877 */
5878 int pci_reset_bus(struct pci_dev *pdev)
5879 {
5880 return (!pci_probe_reset_slot(pdev->slot)) ?
5881 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5882 }
5883 EXPORT_SYMBOL_GPL(pci_reset_bus);
5884
5885 /**
5886 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5887 * @dev: PCI device to query
5888 *
5889 * Returns mmrbc: maximum designed memory read count in bytes or
5890 * appropriate error value.
5891 */
5892 int pcix_get_max_mmrbc(struct pci_dev *dev)
5893 {
5894 int cap;
5895 u32 stat;
5896
5897 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5898 if (!cap)
5899 return -EINVAL;
5900
5901 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5902 return -EINVAL;
5903
5904 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5905 }
5906 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5907
5908 /**
5909 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5910 * @dev: PCI device to query
5911 *
5912 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5913 * value.
5914 */
5915 int pcix_get_mmrbc(struct pci_dev *dev)
5916 {
5917 int cap;
5918 u16 cmd;
5919
5920 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5921 if (!cap)
5922 return -EINVAL;
5923
5924 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5925 return -EINVAL;
5926
5927 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5928 }
5929 EXPORT_SYMBOL(pcix_get_mmrbc);
5930
5931 /**
5932 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5933 * @dev: PCI device to query
5934 * @mmrbc: maximum memory read count in bytes
5935 * valid values are 512, 1024, 2048, 4096
5936 *
5937 * If possible sets maximum memory read byte count, some bridges have errata
5938 * that prevent this.
5939 */
5940 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5941 {
5942 int cap;
5943 u32 stat, v, o;
5944 u16 cmd;
5945
5946 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5947 return -EINVAL;
5948
5949 v = ffs(mmrbc) - 10;
5950
5951 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5952 if (!cap)
5953 return -EINVAL;
5954
5955 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5956 return -EINVAL;
5957
5958 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5959 return -E2BIG;
5960
5961 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5962 return -EINVAL;
5963
5964 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5965 if (o != v) {
5966 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5967 return -EIO;
5968
5969 cmd &= ~PCI_X_CMD_MAX_READ;
5970 cmd |= v << 2;
5971 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5972 return -EIO;
5973 }
5974 return 0;
5975 }
5976 EXPORT_SYMBOL(pcix_set_mmrbc);
5977
5978 /**
5979 * pcie_get_readrq - get PCI Express read request size
5980 * @dev: PCI device to query
5981 *
5982 * Returns maximum memory read request in bytes or appropriate error value.
5983 */
5984 int pcie_get_readrq(struct pci_dev *dev)
5985 {
5986 u16 ctl;
5987
5988 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5989
5990 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5991 }
5992 EXPORT_SYMBOL(pcie_get_readrq);
5993
5994 /**
5995 * pcie_set_readrq - set PCI Express maximum memory read request
5996 * @dev: PCI device to query
5997 * @rq: maximum memory read count in bytes
5998 * valid values are 128, 256, 512, 1024, 2048, 4096
5999 *
6000 * If possible sets maximum memory read request in bytes
6001 */
6002 int pcie_set_readrq(struct pci_dev *dev, int rq)
6003 {
6004 u16 v;
6005 int ret;
6006
6007 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6008 return -EINVAL;
6009
6010 /*
6011 * If using the "performance" PCIe config, we clamp the read rq
6012 * size to the max packet size to keep the host bridge from
6013 * generating requests larger than we can cope with.
6014 */
6015 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6016 int mps = pcie_get_mps(dev);
6017
6018 if (mps < rq)
6019 rq = mps;
6020 }
6021
6022 v = (ffs(rq) - 8) << 12;
6023
6024 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6025 PCI_EXP_DEVCTL_READRQ, v);
6026
6027 return pcibios_err_to_errno(ret);
6028 }
6029 EXPORT_SYMBOL(pcie_set_readrq);
6030
6031 /**
6032 * pcie_get_mps - get PCI Express maximum payload size
6033 * @dev: PCI device to query
6034 *
6035 * Returns maximum payload size in bytes
6036 */
6037 int pcie_get_mps(struct pci_dev *dev)
6038 {
6039 u16 ctl;
6040
6041 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6042
6043 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6044 }
6045 EXPORT_SYMBOL(pcie_get_mps);
6046
6047 /**
6048 * pcie_set_mps - set PCI Express maximum payload size
6049 * @dev: PCI device to query
6050 * @mps: maximum payload size in bytes
6051 * valid values are 128, 256, 512, 1024, 2048, 4096
6052 *
6053 * If possible sets maximum payload size
6054 */
6055 int pcie_set_mps(struct pci_dev *dev, int mps)
6056 {
6057 u16 v;
6058 int ret;
6059
6060 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6061 return -EINVAL;
6062
6063 v = ffs(mps) - 8;
6064 if (v > dev->pcie_mpss)
6065 return -EINVAL;
6066 v <<= 5;
6067
6068 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6069 PCI_EXP_DEVCTL_PAYLOAD, v);
6070
6071 return pcibios_err_to_errno(ret);
6072 }
6073 EXPORT_SYMBOL(pcie_set_mps);
6074
6075 /**
6076 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6077 * device and its bandwidth limitation
6078 * @dev: PCI device to query
6079 * @limiting_dev: storage for device causing the bandwidth limitation
6080 * @speed: storage for speed of limiting device
6081 * @width: storage for width of limiting device
6082 *
6083 * Walk up the PCI device chain and find the point where the minimum
6084 * bandwidth is available. Return the bandwidth available there and (if
6085 * limiting_dev, speed, and width pointers are supplied) information about
6086 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6087 * raw bandwidth.
6088 */
6089 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6090 enum pci_bus_speed *speed,
6091 enum pcie_link_width *width)
6092 {
6093 u16 lnksta;
6094 enum pci_bus_speed next_speed;
6095 enum pcie_link_width next_width;
6096 u32 bw, next_bw;
6097
6098 if (speed)
6099 *speed = PCI_SPEED_UNKNOWN;
6100 if (width)
6101 *width = PCIE_LNK_WIDTH_UNKNOWN;
6102
6103 bw = 0;
6104
6105 while (dev) {
6106 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6107
6108 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6109 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6110 PCI_EXP_LNKSTA_NLW_SHIFT;
6111
6112 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6113
6114 /* Check if current device limits the total bandwidth */
6115 if (!bw || next_bw <= bw) {
6116 bw = next_bw;
6117
6118 if (limiting_dev)
6119 *limiting_dev = dev;
6120 if (speed)
6121 *speed = next_speed;
6122 if (width)
6123 *width = next_width;
6124 }
6125
6126 dev = pci_upstream_bridge(dev);
6127 }
6128
6129 return bw;
6130 }
6131 EXPORT_SYMBOL(pcie_bandwidth_available);
6132
6133 /**
6134 * pcie_get_speed_cap - query for the PCI device's link speed capability
6135 * @dev: PCI device to query
6136 *
6137 * Query the PCI device speed capability. Return the maximum link speed
6138 * supported by the device.
6139 */
6140 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6141 {
6142 u32 lnkcap2, lnkcap;
6143
6144 /*
6145 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
6146 * implementation note there recommends using the Supported Link
6147 * Speeds Vector in Link Capabilities 2 when supported.
6148 *
6149 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6150 * should use the Supported Link Speeds field in Link Capabilities,
6151 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6152 */
6153 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6154
6155 /* PCIe r3.0-compliant */
6156 if (lnkcap2)
6157 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6158
6159 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6160 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6161 return PCIE_SPEED_5_0GT;
6162 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6163 return PCIE_SPEED_2_5GT;
6164
6165 return PCI_SPEED_UNKNOWN;
6166 }
6167 EXPORT_SYMBOL(pcie_get_speed_cap);
6168
6169 /**
6170 * pcie_get_width_cap - query for the PCI device's link width capability
6171 * @dev: PCI device to query
6172 *
6173 * Query the PCI device width capability. Return the maximum link width
6174 * supported by the device.
6175 */
6176 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6177 {
6178 u32 lnkcap;
6179
6180 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6181 if (lnkcap)
6182 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6183
6184 return PCIE_LNK_WIDTH_UNKNOWN;
6185 }
6186 EXPORT_SYMBOL(pcie_get_width_cap);
6187
6188 /**
6189 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6190 * @dev: PCI device
6191 * @speed: storage for link speed
6192 * @width: storage for link width
6193 *
6194 * Calculate a PCI device's link bandwidth by querying for its link speed
6195 * and width, multiplying them, and applying encoding overhead. The result
6196 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6197 */
6198 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6199 enum pcie_link_width *width)
6200 {
6201 *speed = pcie_get_speed_cap(dev);
6202 *width = pcie_get_width_cap(dev);
6203
6204 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6205 return 0;
6206
6207 return *width * PCIE_SPEED2MBS_ENC(*speed);
6208 }
6209
6210 /**
6211 * __pcie_print_link_status - Report the PCI device's link speed and width
6212 * @dev: PCI device to query
6213 * @verbose: Print info even when enough bandwidth is available
6214 *
6215 * If the available bandwidth at the device is less than the device is
6216 * capable of, report the device's maximum possible bandwidth and the
6217 * upstream link that limits its performance. If @verbose, always print
6218 * the available bandwidth, even if the device isn't constrained.
6219 */
6220 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6221 {
6222 enum pcie_link_width width, width_cap;
6223 enum pci_bus_speed speed, speed_cap;
6224 struct pci_dev *limiting_dev = NULL;
6225 u32 bw_avail, bw_cap;
6226
6227 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6228 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6229
6230 if (bw_avail >= bw_cap && verbose)
6231 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6232 bw_cap / 1000, bw_cap % 1000,
6233 pci_speed_string(speed_cap), width_cap);
6234 else if (bw_avail < bw_cap)
6235 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6236 bw_avail / 1000, bw_avail % 1000,
6237 pci_speed_string(speed), width,
6238 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6239 bw_cap / 1000, bw_cap % 1000,
6240 pci_speed_string(speed_cap), width_cap);
6241 }
6242
6243 /**
6244 * pcie_print_link_status - Report the PCI device's link speed and width
6245 * @dev: PCI device to query
6246 *
6247 * Report the available bandwidth at the device.
6248 */
6249 void pcie_print_link_status(struct pci_dev *dev)
6250 {
6251 __pcie_print_link_status(dev, true);
6252 }
6253 EXPORT_SYMBOL(pcie_print_link_status);
6254
6255 /**
6256 * pci_select_bars - Make BAR mask from the type of resource
6257 * @dev: the PCI device for which BAR mask is made
6258 * @flags: resource type mask to be selected
6259 *
6260 * This helper routine makes bar mask from the type of resource.
6261 */
6262 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6263 {
6264 int i, bars = 0;
6265 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6266 if (pci_resource_flags(dev, i) & flags)
6267 bars |= (1 << i);
6268 return bars;
6269 }
6270 EXPORT_SYMBOL(pci_select_bars);
6271
6272 /* Some architectures require additional programming to enable VGA */
6273 static arch_set_vga_state_t arch_set_vga_state;
6274
6275 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6276 {
6277 arch_set_vga_state = func; /* NULL disables */
6278 }
6279
6280 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6281 unsigned int command_bits, u32 flags)
6282 {
6283 if (arch_set_vga_state)
6284 return arch_set_vga_state(dev, decode, command_bits,
6285 flags);
6286 return 0;
6287 }
6288
6289 /**
6290 * pci_set_vga_state - set VGA decode state on device and parents if requested
6291 * @dev: the PCI device
6292 * @decode: true = enable decoding, false = disable decoding
6293 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6294 * @flags: traverse ancestors and change bridges
6295 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6296 */
6297 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6298 unsigned int command_bits, u32 flags)
6299 {
6300 struct pci_bus *bus;
6301 struct pci_dev *bridge;
6302 u16 cmd;
6303 int rc;
6304
6305 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6306
6307 /* ARCH specific VGA enables */
6308 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6309 if (rc)
6310 return rc;
6311
6312 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6313 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6314 if (decode)
6315 cmd |= command_bits;
6316 else
6317 cmd &= ~command_bits;
6318 pci_write_config_word(dev, PCI_COMMAND, cmd);
6319 }
6320
6321 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6322 return 0;
6323
6324 bus = dev->bus;
6325 while (bus) {
6326 bridge = bus->self;
6327 if (bridge) {
6328 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6329 &cmd);
6330 if (decode)
6331 cmd |= PCI_BRIDGE_CTL_VGA;
6332 else
6333 cmd &= ~PCI_BRIDGE_CTL_VGA;
6334 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6335 cmd);
6336 }
6337 bus = bus->parent;
6338 }
6339 return 0;
6340 }
6341
6342 #ifdef CONFIG_ACPI
6343 bool pci_pr3_present(struct pci_dev *pdev)
6344 {
6345 struct acpi_device *adev;
6346
6347 if (acpi_disabled)
6348 return false;
6349
6350 adev = ACPI_COMPANION(&pdev->dev);
6351 if (!adev)
6352 return false;
6353
6354 return adev->power.flags.power_resources &&
6355 acpi_has_method(adev->handle, "_PR3");
6356 }
6357 EXPORT_SYMBOL_GPL(pci_pr3_present);
6358 #endif
6359
6360 /**
6361 * pci_add_dma_alias - Add a DMA devfn alias for a device
6362 * @dev: the PCI device for which alias is added
6363 * @devfn_from: alias slot and function
6364 * @nr_devfns: number of subsequent devfns to alias
6365 *
6366 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6367 * which is used to program permissible bus-devfn source addresses for DMA
6368 * requests in an IOMMU. These aliases factor into IOMMU group creation
6369 * and are useful for devices generating DMA requests beyond or different
6370 * from their logical bus-devfn. Examples include device quirks where the
6371 * device simply uses the wrong devfn, as well as non-transparent bridges
6372 * where the alias may be a proxy for devices in another domain.
6373 *
6374 * IOMMU group creation is performed during device discovery or addition,
6375 * prior to any potential DMA mapping and therefore prior to driver probing
6376 * (especially for userspace assigned devices where IOMMU group definition
6377 * cannot be left as a userspace activity). DMA aliases should therefore
6378 * be configured via quirks, such as the PCI fixup header quirk.
6379 */
6380 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6381 {
6382 int devfn_to;
6383
6384 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6385 devfn_to = devfn_from + nr_devfns - 1;
6386
6387 if (!dev->dma_alias_mask)
6388 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6389 if (!dev->dma_alias_mask) {
6390 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6391 return;
6392 }
6393
6394 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6395
6396 if (nr_devfns == 1)
6397 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6398 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6399 else if (nr_devfns > 1)
6400 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6401 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6402 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6403 }
6404
6405 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6406 {
6407 return (dev1->dma_alias_mask &&
6408 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6409 (dev2->dma_alias_mask &&
6410 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6411 pci_real_dma_dev(dev1) == dev2 ||
6412 pci_real_dma_dev(dev2) == dev1;
6413 }
6414
6415 bool pci_device_is_present(struct pci_dev *pdev)
6416 {
6417 u32 v;
6418
6419 if (pci_dev_is_disconnected(pdev))
6420 return false;
6421 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6422 }
6423 EXPORT_SYMBOL_GPL(pci_device_is_present);
6424
6425 void pci_ignore_hotplug(struct pci_dev *dev)
6426 {
6427 struct pci_dev *bridge = dev->bus->self;
6428
6429 dev->ignore_hotplug = 1;
6430 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6431 if (bridge)
6432 bridge->ignore_hotplug = 1;
6433 }
6434 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6435
6436 /**
6437 * pci_real_dma_dev - Get PCI DMA device for PCI device
6438 * @dev: the PCI device that may have a PCI DMA alias
6439 *
6440 * Permits the platform to provide architecture-specific functionality to
6441 * devices needing to alias DMA to another PCI device on another PCI bus. If
6442 * the PCI device is on the same bus, it is recommended to use
6443 * pci_add_dma_alias(). This is the default implementation. Architecture
6444 * implementations can override this.
6445 */
6446 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6447 {
6448 return dev;
6449 }
6450
6451 resource_size_t __weak pcibios_default_alignment(void)
6452 {
6453 return 0;
6454 }
6455
6456 /*
6457 * Arches that don't want to expose struct resource to userland as-is in
6458 * sysfs and /proc can implement their own pci_resource_to_user().
6459 */
6460 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6461 const struct resource *rsrc,
6462 resource_size_t *start, resource_size_t *end)
6463 {
6464 *start = rsrc->start;
6465 *end = rsrc->end;
6466 }
6467
6468 static char *resource_alignment_param;
6469 static DEFINE_SPINLOCK(resource_alignment_lock);
6470
6471 /**
6472 * pci_specified_resource_alignment - get resource alignment specified by user.
6473 * @dev: the PCI device to get
6474 * @resize: whether or not to change resources' size when reassigning alignment
6475 *
6476 * RETURNS: Resource alignment if it is specified.
6477 * Zero if it is not specified.
6478 */
6479 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6480 bool *resize)
6481 {
6482 int align_order, count;
6483 resource_size_t align = pcibios_default_alignment();
6484 const char *p;
6485 int ret;
6486
6487 spin_lock(&resource_alignment_lock);
6488 p = resource_alignment_param;
6489 if (!p || !*p)
6490 goto out;
6491 if (pci_has_flag(PCI_PROBE_ONLY)) {
6492 align = 0;
6493 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6494 goto out;
6495 }
6496
6497 while (*p) {
6498 count = 0;
6499 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6500 p[count] == '@') {
6501 p += count + 1;
6502 if (align_order > 63) {
6503 pr_err("PCI: Invalid requested alignment (order %d)\n",
6504 align_order);
6505 align_order = PAGE_SHIFT;
6506 }
6507 } else {
6508 align_order = PAGE_SHIFT;
6509 }
6510
6511 ret = pci_dev_str_match(dev, p, &p);
6512 if (ret == 1) {
6513 *resize = true;
6514 align = 1ULL << align_order;
6515 break;
6516 } else if (ret < 0) {
6517 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6518 p);
6519 break;
6520 }
6521
6522 if (*p != ';' && *p != ',') {
6523 /* End of param or invalid format */
6524 break;
6525 }
6526 p++;
6527 }
6528 out:
6529 spin_unlock(&resource_alignment_lock);
6530 return align;
6531 }
6532
6533 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6534 resource_size_t align, bool resize)
6535 {
6536 struct resource *r = &dev->resource[bar];
6537 resource_size_t size;
6538
6539 if (!(r->flags & IORESOURCE_MEM))
6540 return;
6541
6542 if (r->flags & IORESOURCE_PCI_FIXED) {
6543 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6544 bar, r, (unsigned long long)align);
6545 return;
6546 }
6547
6548 size = resource_size(r);
6549 if (size >= align)
6550 return;
6551
6552 /*
6553 * Increase the alignment of the resource. There are two ways we
6554 * can do this:
6555 *
6556 * 1) Increase the size of the resource. BARs are aligned on their
6557 * size, so when we reallocate space for this resource, we'll
6558 * allocate it with the larger alignment. This also prevents
6559 * assignment of any other BARs inside the alignment region, so
6560 * if we're requesting page alignment, this means no other BARs
6561 * will share the page.
6562 *
6563 * The disadvantage is that this makes the resource larger than
6564 * the hardware BAR, which may break drivers that compute things
6565 * based on the resource size, e.g., to find registers at a
6566 * fixed offset before the end of the BAR.
6567 *
6568 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6569 * set r->start to the desired alignment. By itself this
6570 * doesn't prevent other BARs being put inside the alignment
6571 * region, but if we realign *every* resource of every device in
6572 * the system, none of them will share an alignment region.
6573 *
6574 * When the user has requested alignment for only some devices via
6575 * the "pci=resource_alignment" argument, "resize" is true and we
6576 * use the first method. Otherwise we assume we're aligning all
6577 * devices and we use the second.
6578 */
6579
6580 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6581 bar, r, (unsigned long long)align);
6582
6583 if (resize) {
6584 r->start = 0;
6585 r->end = align - 1;
6586 } else {
6587 r->flags &= ~IORESOURCE_SIZEALIGN;
6588 r->flags |= IORESOURCE_STARTALIGN;
6589 r->start = align;
6590 r->end = r->start + size - 1;
6591 }
6592 r->flags |= IORESOURCE_UNSET;
6593 }
6594
6595 /*
6596 * This function disables memory decoding and releases memory resources
6597 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6598 * It also rounds up size to specified alignment.
6599 * Later on, the kernel will assign page-aligned memory resource back
6600 * to the device.
6601 */
6602 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6603 {
6604 int i;
6605 struct resource *r;
6606 resource_size_t align;
6607 u16 command;
6608 bool resize = false;
6609
6610 /*
6611 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6612 * 3.4.1.11. Their resources are allocated from the space
6613 * described by the VF BARx register in the PF's SR-IOV capability.
6614 * We can't influence their alignment here.
6615 */
6616 if (dev->is_virtfn)
6617 return;
6618
6619 /* check if specified PCI is target device to reassign */
6620 align = pci_specified_resource_alignment(dev, &resize);
6621 if (!align)
6622 return;
6623
6624 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6625 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6626 pci_warn(dev, "Can't reassign resources to host bridge\n");
6627 return;
6628 }
6629
6630 pci_read_config_word(dev, PCI_COMMAND, &command);
6631 command &= ~PCI_COMMAND_MEMORY;
6632 pci_write_config_word(dev, PCI_COMMAND, command);
6633
6634 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6635 pci_request_resource_alignment(dev, i, align, resize);
6636
6637 /*
6638 * Need to disable bridge's resource window,
6639 * to enable the kernel to reassign new resource
6640 * window later on.
6641 */
6642 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6643 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6644 r = &dev->resource[i];
6645 if (!(r->flags & IORESOURCE_MEM))
6646 continue;
6647 r->flags |= IORESOURCE_UNSET;
6648 r->end = resource_size(r) - 1;
6649 r->start = 0;
6650 }
6651 pci_disable_bridge_window(dev);
6652 }
6653 }
6654
6655 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6656 {
6657 size_t count = 0;
6658
6659 spin_lock(&resource_alignment_lock);
6660 if (resource_alignment_param)
6661 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6662 spin_unlock(&resource_alignment_lock);
6663
6664 return count;
6665 }
6666
6667 static ssize_t resource_alignment_store(struct bus_type *bus,
6668 const char *buf, size_t count)
6669 {
6670 char *param, *old, *end;
6671
6672 if (count >= (PAGE_SIZE - 1))
6673 return -EINVAL;
6674
6675 param = kstrndup(buf, count, GFP_KERNEL);
6676 if (!param)
6677 return -ENOMEM;
6678
6679 end = strchr(param, '\n');
6680 if (end)
6681 *end = '\0';
6682
6683 spin_lock(&resource_alignment_lock);
6684 old = resource_alignment_param;
6685 if (strlen(param)) {
6686 resource_alignment_param = param;
6687 } else {
6688 kfree(param);
6689 resource_alignment_param = NULL;
6690 }
6691 spin_unlock(&resource_alignment_lock);
6692
6693 kfree(old);
6694
6695 return count;
6696 }
6697
6698 static BUS_ATTR_RW(resource_alignment);
6699
6700 static int __init pci_resource_alignment_sysfs_init(void)
6701 {
6702 return bus_create_file(&pci_bus_type,
6703 &bus_attr_resource_alignment);
6704 }
6705 late_initcall(pci_resource_alignment_sysfs_init);
6706
6707 static void pci_no_domains(void)
6708 {
6709 #ifdef CONFIG_PCI_DOMAINS
6710 pci_domains_supported = 0;
6711 #endif
6712 }
6713
6714 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6715 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6716
6717 static int pci_get_new_domain_nr(void)
6718 {
6719 return atomic_inc_return(&__domain_nr);
6720 }
6721
6722 static int of_pci_bus_find_domain_nr(struct device *parent)
6723 {
6724 static int use_dt_domains = -1;
6725 int domain = -1;
6726
6727 if (parent)
6728 domain = of_get_pci_domain_nr(parent->of_node);
6729
6730 /*
6731 * Check DT domain and use_dt_domains values.
6732 *
6733 * If DT domain property is valid (domain >= 0) and
6734 * use_dt_domains != 0, the DT assignment is valid since this means
6735 * we have not previously allocated a domain number by using
6736 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6737 * 1, to indicate that we have just assigned a domain number from
6738 * DT.
6739 *
6740 * If DT domain property value is not valid (ie domain < 0), and we
6741 * have not previously assigned a domain number from DT
6742 * (use_dt_domains != 1) we should assign a domain number by
6743 * using the:
6744 *
6745 * pci_get_new_domain_nr()
6746 *
6747 * API and update the use_dt_domains value to keep track of method we
6748 * are using to assign domain numbers (use_dt_domains = 0).
6749 *
6750 * All other combinations imply we have a platform that is trying
6751 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6752 * which is a recipe for domain mishandling and it is prevented by
6753 * invalidating the domain value (domain = -1) and printing a
6754 * corresponding error.
6755 */
6756 if (domain >= 0 && use_dt_domains) {
6757 use_dt_domains = 1;
6758 } else if (domain < 0 && use_dt_domains != 1) {
6759 use_dt_domains = 0;
6760 domain = pci_get_new_domain_nr();
6761 } else {
6762 if (parent)
6763 pr_err("Node %pOF has ", parent->of_node);
6764 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6765 domain = -1;
6766 }
6767
6768 return domain;
6769 }
6770
6771 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6772 {
6773 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6774 acpi_pci_bus_find_domain_nr(bus);
6775 }
6776 #endif
6777
6778 /**
6779 * pci_ext_cfg_avail - can we access extended PCI config space?
6780 *
6781 * Returns 1 if we can access PCI extended config space (offsets
6782 * greater than 0xff). This is the default implementation. Architecture
6783 * implementations can override this.
6784 */
6785 int __weak pci_ext_cfg_avail(void)
6786 {
6787 return 1;
6788 }
6789
6790 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6791 {
6792 }
6793 EXPORT_SYMBOL(pci_fixup_cardbus);
6794
6795 static int __init pci_setup(char *str)
6796 {
6797 while (str) {
6798 char *k = strchr(str, ',');
6799 if (k)
6800 *k++ = 0;
6801 if (*str && (str = pcibios_setup(str)) && *str) {
6802 if (!strcmp(str, "nomsi")) {
6803 pci_no_msi();
6804 } else if (!strncmp(str, "noats", 5)) {
6805 pr_info("PCIe: ATS is disabled\n");
6806 pcie_ats_disabled = true;
6807 } else if (!strcmp(str, "noaer")) {
6808 pci_no_aer();
6809 } else if (!strcmp(str, "earlydump")) {
6810 pci_early_dump = true;
6811 } else if (!strncmp(str, "realloc=", 8)) {
6812 pci_realloc_get_opt(str + 8);
6813 } else if (!strncmp(str, "realloc", 7)) {
6814 pci_realloc_get_opt("on");
6815 } else if (!strcmp(str, "nodomains")) {
6816 pci_no_domains();
6817 } else if (!strncmp(str, "noari", 5)) {
6818 pcie_ari_disabled = true;
6819 } else if (!strncmp(str, "cbiosize=", 9)) {
6820 pci_cardbus_io_size = memparse(str + 9, &str);
6821 } else if (!strncmp(str, "cbmemsize=", 10)) {
6822 pci_cardbus_mem_size = memparse(str + 10, &str);
6823 } else if (!strncmp(str, "resource_alignment=", 19)) {
6824 resource_alignment_param = str + 19;
6825 } else if (!strncmp(str, "ecrc=", 5)) {
6826 pcie_ecrc_get_policy(str + 5);
6827 } else if (!strncmp(str, "hpiosize=", 9)) {
6828 pci_hotplug_io_size = memparse(str + 9, &str);
6829 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6830 pci_hotplug_mmio_size = memparse(str + 11, &str);
6831 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6832 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6833 } else if (!strncmp(str, "hpmemsize=", 10)) {
6834 pci_hotplug_mmio_size = memparse(str + 10, &str);
6835 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6836 } else if (!strncmp(str, "hpbussize=", 10)) {
6837 pci_hotplug_bus_size =
6838 simple_strtoul(str + 10, &str, 0);
6839 if (pci_hotplug_bus_size > 0xff)
6840 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6841 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6842 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6843 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6844 pcie_bus_config = PCIE_BUS_SAFE;
6845 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6846 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6847 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6848 pcie_bus_config = PCIE_BUS_PEER2PEER;
6849 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6850 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6851 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6852 disable_acs_redir_param = str + 18;
6853 } else {
6854 pr_err("PCI: Unknown option `%s'\n", str);
6855 }
6856 }
6857 str = k;
6858 }
6859 return 0;
6860 }
6861 early_param("pci", pci_setup);
6862
6863 /*
6864 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6865 * in pci_setup(), above, to point to data in the __initdata section which
6866 * will be freed after the init sequence is complete. We can't allocate memory
6867 * in pci_setup() because some architectures do not have any memory allocation
6868 * service available during an early_param() call. So we allocate memory and
6869 * copy the variable here before the init section is freed.
6870 *
6871 */
6872 static int __init pci_realloc_setup_params(void)
6873 {
6874 resource_alignment_param = kstrdup(resource_alignment_param,
6875 GFP_KERNEL);
6876 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6877
6878 return 0;
6879 }
6880 pure_initcall(pci_realloc_setup_params);