]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/pci/pci.c
PCI: Don't acquire ref on parent in pci_bridge_d3_update()
[mirror_ubuntu-bionic-kernel.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/delay.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/of.h>
16 #include <linux/of_pci.h>
17 #include <linux/pci.h>
18 #include <linux/pm.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/spinlock.h>
22 #include <linux/string.h>
23 #include <linux/log2.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/pm_wakeup.h>
26 #include <linux/interrupt.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
31 #include <asm/setup.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include "pci.h"
35
36 const char *pci_power_names[] = {
37 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
38 };
39 EXPORT_SYMBOL_GPL(pci_power_names);
40
41 int isa_dma_bridge_buggy;
42 EXPORT_SYMBOL(isa_dma_bridge_buggy);
43
44 int pci_pci_problems;
45 EXPORT_SYMBOL(pci_pci_problems);
46
47 unsigned int pci_pm_d3_delay;
48
49 static void pci_pme_list_scan(struct work_struct *work);
50
51 static LIST_HEAD(pci_pme_list);
52 static DEFINE_MUTEX(pci_pme_list_mutex);
53 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
54
55 struct pci_pme_device {
56 struct list_head list;
57 struct pci_dev *dev;
58 };
59
60 #define PME_TIMEOUT 1000 /* How long between PME checks */
61
62 static void pci_dev_d3_sleep(struct pci_dev *dev)
63 {
64 unsigned int delay = dev->d3_delay;
65
66 if (delay < pci_pm_d3_delay)
67 delay = pci_pm_d3_delay;
68
69 msleep(delay);
70 }
71
72 #ifdef CONFIG_PCI_DOMAINS
73 int pci_domains_supported = 1;
74 #endif
75
76 #define DEFAULT_CARDBUS_IO_SIZE (256)
77 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
78 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
79 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
80 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
81
82 #define DEFAULT_HOTPLUG_IO_SIZE (256)
83 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
84 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
85 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
86 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
87
88 #define DEFAULT_HOTPLUG_BUS_SIZE 1
89 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
90
91 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
92
93 /*
94 * The default CLS is used if arch didn't set CLS explicitly and not
95 * all pci devices agree on the same value. Arch can override either
96 * the dfl or actual value as it sees fit. Don't forget this is
97 * measured in 32-bit words, not bytes.
98 */
99 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
100 u8 pci_cache_line_size;
101
102 /*
103 * If we set up a device for bus mastering, we need to check the latency
104 * timer as certain BIOSes forget to set it properly.
105 */
106 unsigned int pcibios_max_latency = 255;
107
108 /* If set, the PCIe ARI capability will not be used. */
109 static bool pcie_ari_disabled;
110
111 /* Disable bridge_d3 for all PCIe ports */
112 static bool pci_bridge_d3_disable;
113 /* Force bridge_d3 for all PCIe ports */
114 static bool pci_bridge_d3_force;
115
116 static int __init pcie_port_pm_setup(char *str)
117 {
118 if (!strcmp(str, "off"))
119 pci_bridge_d3_disable = true;
120 else if (!strcmp(str, "force"))
121 pci_bridge_d3_force = true;
122 return 1;
123 }
124 __setup("pcie_port_pm=", pcie_port_pm_setup);
125
126 /**
127 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
128 * @bus: pointer to PCI bus structure to search
129 *
130 * Given a PCI bus, returns the highest PCI bus number present in the set
131 * including the given PCI bus and its list of child PCI buses.
132 */
133 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
134 {
135 struct pci_bus *tmp;
136 unsigned char max, n;
137
138 max = bus->busn_res.end;
139 list_for_each_entry(tmp, &bus->children, node) {
140 n = pci_bus_max_busnr(tmp);
141 if (n > max)
142 max = n;
143 }
144 return max;
145 }
146 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
147
148 #ifdef CONFIG_HAS_IOMEM
149 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
150 {
151 struct resource *res = &pdev->resource[bar];
152
153 /*
154 * Make sure the BAR is actually a memory resource, not an IO resource
155 */
156 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
157 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
158 return NULL;
159 }
160 return ioremap_nocache(res->start, resource_size(res));
161 }
162 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
163
164 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
165 {
166 /*
167 * Make sure the BAR is actually a memory resource, not an IO resource
168 */
169 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
170 WARN_ON(1);
171 return NULL;
172 }
173 return ioremap_wc(pci_resource_start(pdev, bar),
174 pci_resource_len(pdev, bar));
175 }
176 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
177 #endif
178
179
180 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
181 u8 pos, int cap, int *ttl)
182 {
183 u8 id;
184 u16 ent;
185
186 pci_bus_read_config_byte(bus, devfn, pos, &pos);
187
188 while ((*ttl)--) {
189 if (pos < 0x40)
190 break;
191 pos &= ~3;
192 pci_bus_read_config_word(bus, devfn, pos, &ent);
193
194 id = ent & 0xff;
195 if (id == 0xff)
196 break;
197 if (id == cap)
198 return pos;
199 pos = (ent >> 8);
200 }
201 return 0;
202 }
203
204 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
205 u8 pos, int cap)
206 {
207 int ttl = PCI_FIND_CAP_TTL;
208
209 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
210 }
211
212 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
213 {
214 return __pci_find_next_cap(dev->bus, dev->devfn,
215 pos + PCI_CAP_LIST_NEXT, cap);
216 }
217 EXPORT_SYMBOL_GPL(pci_find_next_capability);
218
219 static int __pci_bus_find_cap_start(struct pci_bus *bus,
220 unsigned int devfn, u8 hdr_type)
221 {
222 u16 status;
223
224 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
225 if (!(status & PCI_STATUS_CAP_LIST))
226 return 0;
227
228 switch (hdr_type) {
229 case PCI_HEADER_TYPE_NORMAL:
230 case PCI_HEADER_TYPE_BRIDGE:
231 return PCI_CAPABILITY_LIST;
232 case PCI_HEADER_TYPE_CARDBUS:
233 return PCI_CB_CAPABILITY_LIST;
234 }
235
236 return 0;
237 }
238
239 /**
240 * pci_find_capability - query for devices' capabilities
241 * @dev: PCI device to query
242 * @cap: capability code
243 *
244 * Tell if a device supports a given PCI capability.
245 * Returns the address of the requested capability structure within the
246 * device's PCI configuration space or 0 in case the device does not
247 * support it. Possible values for @cap:
248 *
249 * %PCI_CAP_ID_PM Power Management
250 * %PCI_CAP_ID_AGP Accelerated Graphics Port
251 * %PCI_CAP_ID_VPD Vital Product Data
252 * %PCI_CAP_ID_SLOTID Slot Identification
253 * %PCI_CAP_ID_MSI Message Signalled Interrupts
254 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
255 * %PCI_CAP_ID_PCIX PCI-X
256 * %PCI_CAP_ID_EXP PCI Express
257 */
258 int pci_find_capability(struct pci_dev *dev, int cap)
259 {
260 int pos;
261
262 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
263 if (pos)
264 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
265
266 return pos;
267 }
268 EXPORT_SYMBOL(pci_find_capability);
269
270 /**
271 * pci_bus_find_capability - query for devices' capabilities
272 * @bus: the PCI bus to query
273 * @devfn: PCI device to query
274 * @cap: capability code
275 *
276 * Like pci_find_capability() but works for pci devices that do not have a
277 * pci_dev structure set up yet.
278 *
279 * Returns the address of the requested capability structure within the
280 * device's PCI configuration space or 0 in case the device does not
281 * support it.
282 */
283 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
284 {
285 int pos;
286 u8 hdr_type;
287
288 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
289
290 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
291 if (pos)
292 pos = __pci_find_next_cap(bus, devfn, pos, cap);
293
294 return pos;
295 }
296 EXPORT_SYMBOL(pci_bus_find_capability);
297
298 /**
299 * pci_find_next_ext_capability - Find an extended capability
300 * @dev: PCI device to query
301 * @start: address at which to start looking (0 to start at beginning of list)
302 * @cap: capability code
303 *
304 * Returns the address of the next matching extended capability structure
305 * within the device's PCI configuration space or 0 if the device does
306 * not support it. Some capabilities can occur several times, e.g., the
307 * vendor-specific capability, and this provides a way to find them all.
308 */
309 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
310 {
311 u32 header;
312 int ttl;
313 int pos = PCI_CFG_SPACE_SIZE;
314
315 /* minimum 8 bytes per capability */
316 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
317
318 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
319 return 0;
320
321 if (start)
322 pos = start;
323
324 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
325 return 0;
326
327 /*
328 * If we have no capabilities, this is indicated by cap ID,
329 * cap version and next pointer all being 0.
330 */
331 if (header == 0)
332 return 0;
333
334 while (ttl-- > 0) {
335 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
336 return pos;
337
338 pos = PCI_EXT_CAP_NEXT(header);
339 if (pos < PCI_CFG_SPACE_SIZE)
340 break;
341
342 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
343 break;
344 }
345
346 return 0;
347 }
348 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
349
350 /**
351 * pci_find_ext_capability - Find an extended capability
352 * @dev: PCI device to query
353 * @cap: capability code
354 *
355 * Returns the address of the requested extended capability structure
356 * within the device's PCI configuration space or 0 if the device does
357 * not support it. Possible values for @cap:
358 *
359 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
360 * %PCI_EXT_CAP_ID_VC Virtual Channel
361 * %PCI_EXT_CAP_ID_DSN Device Serial Number
362 * %PCI_EXT_CAP_ID_PWR Power Budgeting
363 */
364 int pci_find_ext_capability(struct pci_dev *dev, int cap)
365 {
366 return pci_find_next_ext_capability(dev, 0, cap);
367 }
368 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
369
370 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
371 {
372 int rc, ttl = PCI_FIND_CAP_TTL;
373 u8 cap, mask;
374
375 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
376 mask = HT_3BIT_CAP_MASK;
377 else
378 mask = HT_5BIT_CAP_MASK;
379
380 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
381 PCI_CAP_ID_HT, &ttl);
382 while (pos) {
383 rc = pci_read_config_byte(dev, pos + 3, &cap);
384 if (rc != PCIBIOS_SUCCESSFUL)
385 return 0;
386
387 if ((cap & mask) == ht_cap)
388 return pos;
389
390 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
391 pos + PCI_CAP_LIST_NEXT,
392 PCI_CAP_ID_HT, &ttl);
393 }
394
395 return 0;
396 }
397 /**
398 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
399 * @dev: PCI device to query
400 * @pos: Position from which to continue searching
401 * @ht_cap: Hypertransport capability code
402 *
403 * To be used in conjunction with pci_find_ht_capability() to search for
404 * all capabilities matching @ht_cap. @pos should always be a value returned
405 * from pci_find_ht_capability().
406 *
407 * NB. To be 100% safe against broken PCI devices, the caller should take
408 * steps to avoid an infinite loop.
409 */
410 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
411 {
412 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
413 }
414 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
415
416 /**
417 * pci_find_ht_capability - query a device's Hypertransport capabilities
418 * @dev: PCI device to query
419 * @ht_cap: Hypertransport capability code
420 *
421 * Tell if a device supports a given Hypertransport capability.
422 * Returns an address within the device's PCI configuration space
423 * or 0 in case the device does not support the request capability.
424 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
425 * which has a Hypertransport capability matching @ht_cap.
426 */
427 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
428 {
429 int pos;
430
431 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
432 if (pos)
433 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
434
435 return pos;
436 }
437 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
438
439 /**
440 * pci_find_parent_resource - return resource region of parent bus of given region
441 * @dev: PCI device structure contains resources to be searched
442 * @res: child resource record for which parent is sought
443 *
444 * For given resource region of given device, return the resource
445 * region of parent bus the given region is contained in.
446 */
447 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
448 struct resource *res)
449 {
450 const struct pci_bus *bus = dev->bus;
451 struct resource *r;
452 int i;
453
454 pci_bus_for_each_resource(bus, r, i) {
455 if (!r)
456 continue;
457 if (res->start && resource_contains(r, res)) {
458
459 /*
460 * If the window is prefetchable but the BAR is
461 * not, the allocator made a mistake.
462 */
463 if (r->flags & IORESOURCE_PREFETCH &&
464 !(res->flags & IORESOURCE_PREFETCH))
465 return NULL;
466
467 /*
468 * If we're below a transparent bridge, there may
469 * be both a positively-decoded aperture and a
470 * subtractively-decoded region that contain the BAR.
471 * We want the positively-decoded one, so this depends
472 * on pci_bus_for_each_resource() giving us those
473 * first.
474 */
475 return r;
476 }
477 }
478 return NULL;
479 }
480 EXPORT_SYMBOL(pci_find_parent_resource);
481
482 /**
483 * pci_find_resource - Return matching PCI device resource
484 * @dev: PCI device to query
485 * @res: Resource to look for
486 *
487 * Goes over standard PCI resources (BARs) and checks if the given resource
488 * is partially or fully contained in any of them. In that case the
489 * matching resource is returned, %NULL otherwise.
490 */
491 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
492 {
493 int i;
494
495 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
496 struct resource *r = &dev->resource[i];
497
498 if (r->start && resource_contains(r, res))
499 return r;
500 }
501
502 return NULL;
503 }
504 EXPORT_SYMBOL(pci_find_resource);
505
506 /**
507 * pci_find_pcie_root_port - return PCIe Root Port
508 * @dev: PCI device to query
509 *
510 * Traverse up the parent chain and return the PCIe Root Port PCI Device
511 * for a given PCI Device.
512 */
513 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
514 {
515 struct pci_dev *bridge, *highest_pcie_bridge = NULL;
516
517 bridge = pci_upstream_bridge(dev);
518 while (bridge && pci_is_pcie(bridge)) {
519 highest_pcie_bridge = bridge;
520 bridge = pci_upstream_bridge(bridge);
521 }
522
523 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
524 return NULL;
525
526 return highest_pcie_bridge;
527 }
528 EXPORT_SYMBOL(pci_find_pcie_root_port);
529
530 /**
531 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
532 * @dev: the PCI device to operate on
533 * @pos: config space offset of status word
534 * @mask: mask of bit(s) to care about in status word
535 *
536 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
537 */
538 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
539 {
540 int i;
541
542 /* Wait for Transaction Pending bit clean */
543 for (i = 0; i < 4; i++) {
544 u16 status;
545 if (i)
546 msleep((1 << (i - 1)) * 100);
547
548 pci_read_config_word(dev, pos, &status);
549 if (!(status & mask))
550 return 1;
551 }
552
553 return 0;
554 }
555
556 /**
557 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
558 * @dev: PCI device to have its BARs restored
559 *
560 * Restore the BAR values for a given device, so as to make it
561 * accessible by its driver.
562 */
563 static void pci_restore_bars(struct pci_dev *dev)
564 {
565 int i;
566
567 /* Per SR-IOV spec 3.4.1.11, VF BARs are RO zero */
568 if (dev->is_virtfn)
569 return;
570
571 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
572 pci_update_resource(dev, i);
573 }
574
575 static const struct pci_platform_pm_ops *pci_platform_pm;
576
577 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
578 {
579 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
580 !ops->choose_state || !ops->sleep_wake || !ops->run_wake ||
581 !ops->need_resume)
582 return -EINVAL;
583 pci_platform_pm = ops;
584 return 0;
585 }
586
587 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
588 {
589 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
590 }
591
592 static inline int platform_pci_set_power_state(struct pci_dev *dev,
593 pci_power_t t)
594 {
595 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
596 }
597
598 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
599 {
600 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
601 }
602
603 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
604 {
605 return pci_platform_pm ?
606 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
607 }
608
609 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
610 {
611 return pci_platform_pm ?
612 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
613 }
614
615 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
616 {
617 return pci_platform_pm ?
618 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
619 }
620
621 static inline bool platform_pci_need_resume(struct pci_dev *dev)
622 {
623 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
624 }
625
626 /**
627 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
628 * given PCI device
629 * @dev: PCI device to handle.
630 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
631 *
632 * RETURN VALUE:
633 * -EINVAL if the requested state is invalid.
634 * -EIO if device does not support PCI PM or its PM capabilities register has a
635 * wrong version, or device doesn't support the requested state.
636 * 0 if device already is in the requested state.
637 * 0 if device's power state has been successfully changed.
638 */
639 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
640 {
641 u16 pmcsr;
642 bool need_restore = false;
643
644 /* Check if we're already there */
645 if (dev->current_state == state)
646 return 0;
647
648 if (!dev->pm_cap)
649 return -EIO;
650
651 if (state < PCI_D0 || state > PCI_D3hot)
652 return -EINVAL;
653
654 /* Validate current state:
655 * Can enter D0 from any state, but if we can only go deeper
656 * to sleep if we're already in a low power state
657 */
658 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
659 && dev->current_state > state) {
660 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
661 dev->current_state, state);
662 return -EINVAL;
663 }
664
665 /* check if this device supports the desired state */
666 if ((state == PCI_D1 && !dev->d1_support)
667 || (state == PCI_D2 && !dev->d2_support))
668 return -EIO;
669
670 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
671
672 /* If we're (effectively) in D3, force entire word to 0.
673 * This doesn't affect PME_Status, disables PME_En, and
674 * sets PowerState to 0.
675 */
676 switch (dev->current_state) {
677 case PCI_D0:
678 case PCI_D1:
679 case PCI_D2:
680 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
681 pmcsr |= state;
682 break;
683 case PCI_D3hot:
684 case PCI_D3cold:
685 case PCI_UNKNOWN: /* Boot-up */
686 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
687 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
688 need_restore = true;
689 /* Fall-through: force to D0 */
690 default:
691 pmcsr = 0;
692 break;
693 }
694
695 /* enter specified state */
696 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
697
698 /* Mandatory power management transition delays */
699 /* see PCI PM 1.1 5.6.1 table 18 */
700 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
701 pci_dev_d3_sleep(dev);
702 else if (state == PCI_D2 || dev->current_state == PCI_D2)
703 udelay(PCI_PM_D2_DELAY);
704
705 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
706 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
707 if (dev->current_state != state && printk_ratelimit())
708 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
709 dev->current_state);
710
711 /*
712 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
713 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
714 * from D3hot to D0 _may_ perform an internal reset, thereby
715 * going to "D0 Uninitialized" rather than "D0 Initialized".
716 * For example, at least some versions of the 3c905B and the
717 * 3c556B exhibit this behaviour.
718 *
719 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
720 * devices in a D3hot state at boot. Consequently, we need to
721 * restore at least the BARs so that the device will be
722 * accessible to its driver.
723 */
724 if (need_restore)
725 pci_restore_bars(dev);
726
727 if (dev->bus->self)
728 pcie_aspm_pm_state_change(dev->bus->self);
729
730 return 0;
731 }
732
733 /**
734 * pci_update_current_state - Read power state of given device and cache it
735 * @dev: PCI device to handle.
736 * @state: State to cache in case the device doesn't have the PM capability
737 *
738 * The power state is read from the PMCSR register, which however is
739 * inaccessible in D3cold. The platform firmware is therefore queried first
740 * to detect accessibility of the register. In case the platform firmware
741 * reports an incorrect state or the device isn't power manageable by the
742 * platform at all, we try to detect D3cold by testing accessibility of the
743 * vendor ID in config space.
744 */
745 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
746 {
747 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
748 !pci_device_is_present(dev)) {
749 dev->current_state = PCI_D3cold;
750 } else if (dev->pm_cap) {
751 u16 pmcsr;
752
753 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
754 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
755 } else {
756 dev->current_state = state;
757 }
758 }
759
760 /**
761 * pci_power_up - Put the given device into D0 forcibly
762 * @dev: PCI device to power up
763 */
764 void pci_power_up(struct pci_dev *dev)
765 {
766 if (platform_pci_power_manageable(dev))
767 platform_pci_set_power_state(dev, PCI_D0);
768
769 pci_raw_set_power_state(dev, PCI_D0);
770 pci_update_current_state(dev, PCI_D0);
771 }
772
773 /**
774 * pci_platform_power_transition - Use platform to change device power state
775 * @dev: PCI device to handle.
776 * @state: State to put the device into.
777 */
778 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
779 {
780 int error;
781
782 if (platform_pci_power_manageable(dev)) {
783 error = platform_pci_set_power_state(dev, state);
784 if (!error)
785 pci_update_current_state(dev, state);
786 } else
787 error = -ENODEV;
788
789 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
790 dev->current_state = PCI_D0;
791
792 return error;
793 }
794
795 /**
796 * pci_wakeup - Wake up a PCI device
797 * @pci_dev: Device to handle.
798 * @ign: ignored parameter
799 */
800 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
801 {
802 pci_wakeup_event(pci_dev);
803 pm_request_resume(&pci_dev->dev);
804 return 0;
805 }
806
807 /**
808 * pci_wakeup_bus - Walk given bus and wake up devices on it
809 * @bus: Top bus of the subtree to walk.
810 */
811 static void pci_wakeup_bus(struct pci_bus *bus)
812 {
813 if (bus)
814 pci_walk_bus(bus, pci_wakeup, NULL);
815 }
816
817 /**
818 * __pci_start_power_transition - Start power transition of a PCI device
819 * @dev: PCI device to handle.
820 * @state: State to put the device into.
821 */
822 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
823 {
824 if (state == PCI_D0) {
825 pci_platform_power_transition(dev, PCI_D0);
826 /*
827 * Mandatory power management transition delays, see
828 * PCI Express Base Specification Revision 2.0 Section
829 * 6.6.1: Conventional Reset. Do not delay for
830 * devices powered on/off by corresponding bridge,
831 * because have already delayed for the bridge.
832 */
833 if (dev->runtime_d3cold) {
834 msleep(dev->d3cold_delay);
835 /*
836 * When powering on a bridge from D3cold, the
837 * whole hierarchy may be powered on into
838 * D0uninitialized state, resume them to give
839 * them a chance to suspend again
840 */
841 pci_wakeup_bus(dev->subordinate);
842 }
843 }
844 }
845
846 /**
847 * __pci_dev_set_current_state - Set current state of a PCI device
848 * @dev: Device to handle
849 * @data: pointer to state to be set
850 */
851 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
852 {
853 pci_power_t state = *(pci_power_t *)data;
854
855 dev->current_state = state;
856 return 0;
857 }
858
859 /**
860 * __pci_bus_set_current_state - Walk given bus and set current state of devices
861 * @bus: Top bus of the subtree to walk.
862 * @state: state to be set
863 */
864 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
865 {
866 if (bus)
867 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
868 }
869
870 /**
871 * __pci_complete_power_transition - Complete power transition of a PCI device
872 * @dev: PCI device to handle.
873 * @state: State to put the device into.
874 *
875 * This function should not be called directly by device drivers.
876 */
877 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
878 {
879 int ret;
880
881 if (state <= PCI_D0)
882 return -EINVAL;
883 ret = pci_platform_power_transition(dev, state);
884 /* Power off the bridge may power off the whole hierarchy */
885 if (!ret && state == PCI_D3cold)
886 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
887 return ret;
888 }
889 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
890
891 /**
892 * pci_set_power_state - Set the power state of a PCI device
893 * @dev: PCI device to handle.
894 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
895 *
896 * Transition a device to a new power state, using the platform firmware and/or
897 * the device's PCI PM registers.
898 *
899 * RETURN VALUE:
900 * -EINVAL if the requested state is invalid.
901 * -EIO if device does not support PCI PM or its PM capabilities register has a
902 * wrong version, or device doesn't support the requested state.
903 * 0 if device already is in the requested state.
904 * 0 if device's power state has been successfully changed.
905 */
906 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
907 {
908 int error;
909
910 /* bound the state we're entering */
911 if (state > PCI_D3cold)
912 state = PCI_D3cold;
913 else if (state < PCI_D0)
914 state = PCI_D0;
915 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
916 /*
917 * If the device or the parent bridge do not support PCI PM,
918 * ignore the request if we're doing anything other than putting
919 * it into D0 (which would only happen on boot).
920 */
921 return 0;
922
923 /* Check if we're already there */
924 if (dev->current_state == state)
925 return 0;
926
927 __pci_start_power_transition(dev, state);
928
929 /* This device is quirked not to be put into D3, so
930 don't put it in D3 */
931 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
932 return 0;
933
934 /*
935 * To put device in D3cold, we put device into D3hot in native
936 * way, then put device into D3cold with platform ops
937 */
938 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
939 PCI_D3hot : state);
940
941 if (!__pci_complete_power_transition(dev, state))
942 error = 0;
943
944 return error;
945 }
946 EXPORT_SYMBOL(pci_set_power_state);
947
948 /**
949 * pci_choose_state - Choose the power state of a PCI device
950 * @dev: PCI device to be suspended
951 * @state: target sleep state for the whole system. This is the value
952 * that is passed to suspend() function.
953 *
954 * Returns PCI power state suitable for given device and given system
955 * message.
956 */
957
958 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
959 {
960 pci_power_t ret;
961
962 if (!dev->pm_cap)
963 return PCI_D0;
964
965 ret = platform_pci_choose_state(dev);
966 if (ret != PCI_POWER_ERROR)
967 return ret;
968
969 switch (state.event) {
970 case PM_EVENT_ON:
971 return PCI_D0;
972 case PM_EVENT_FREEZE:
973 case PM_EVENT_PRETHAW:
974 /* REVISIT both freeze and pre-thaw "should" use D0 */
975 case PM_EVENT_SUSPEND:
976 case PM_EVENT_HIBERNATE:
977 return PCI_D3hot;
978 default:
979 dev_info(&dev->dev, "unrecognized suspend event %d\n",
980 state.event);
981 BUG();
982 }
983 return PCI_D0;
984 }
985 EXPORT_SYMBOL(pci_choose_state);
986
987 #define PCI_EXP_SAVE_REGS 7
988
989 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
990 u16 cap, bool extended)
991 {
992 struct pci_cap_saved_state *tmp;
993
994 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
995 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
996 return tmp;
997 }
998 return NULL;
999 }
1000
1001 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1002 {
1003 return _pci_find_saved_cap(dev, cap, false);
1004 }
1005
1006 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1007 {
1008 return _pci_find_saved_cap(dev, cap, true);
1009 }
1010
1011 static int pci_save_pcie_state(struct pci_dev *dev)
1012 {
1013 int i = 0;
1014 struct pci_cap_saved_state *save_state;
1015 u16 *cap;
1016
1017 if (!pci_is_pcie(dev))
1018 return 0;
1019
1020 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1021 if (!save_state) {
1022 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1023 return -ENOMEM;
1024 }
1025
1026 cap = (u16 *)&save_state->cap.data[0];
1027 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1028 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1029 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1030 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1031 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1032 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1033 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1034
1035 return 0;
1036 }
1037
1038 static void pci_restore_pcie_state(struct pci_dev *dev)
1039 {
1040 int i = 0;
1041 struct pci_cap_saved_state *save_state;
1042 u16 *cap;
1043
1044 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1045 if (!save_state)
1046 return;
1047
1048 cap = (u16 *)&save_state->cap.data[0];
1049 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1050 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1051 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1052 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1053 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1054 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1055 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1056 }
1057
1058
1059 static int pci_save_pcix_state(struct pci_dev *dev)
1060 {
1061 int pos;
1062 struct pci_cap_saved_state *save_state;
1063
1064 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1065 if (!pos)
1066 return 0;
1067
1068 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1069 if (!save_state) {
1070 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1071 return -ENOMEM;
1072 }
1073
1074 pci_read_config_word(dev, pos + PCI_X_CMD,
1075 (u16 *)save_state->cap.data);
1076
1077 return 0;
1078 }
1079
1080 static void pci_restore_pcix_state(struct pci_dev *dev)
1081 {
1082 int i = 0, pos;
1083 struct pci_cap_saved_state *save_state;
1084 u16 *cap;
1085
1086 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1087 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1088 if (!save_state || !pos)
1089 return;
1090 cap = (u16 *)&save_state->cap.data[0];
1091
1092 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1093 }
1094
1095
1096 /**
1097 * pci_save_state - save the PCI configuration space of a device before suspending
1098 * @dev: - PCI device that we're dealing with
1099 */
1100 int pci_save_state(struct pci_dev *dev)
1101 {
1102 int i;
1103 /* XXX: 100% dword access ok here? */
1104 for (i = 0; i < 16; i++)
1105 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1106 dev->state_saved = true;
1107
1108 i = pci_save_pcie_state(dev);
1109 if (i != 0)
1110 return i;
1111
1112 i = pci_save_pcix_state(dev);
1113 if (i != 0)
1114 return i;
1115
1116 return pci_save_vc_state(dev);
1117 }
1118 EXPORT_SYMBOL(pci_save_state);
1119
1120 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1121 u32 saved_val, int retry)
1122 {
1123 u32 val;
1124
1125 pci_read_config_dword(pdev, offset, &val);
1126 if (val == saved_val)
1127 return;
1128
1129 for (;;) {
1130 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1131 offset, val, saved_val);
1132 pci_write_config_dword(pdev, offset, saved_val);
1133 if (retry-- <= 0)
1134 return;
1135
1136 pci_read_config_dword(pdev, offset, &val);
1137 if (val == saved_val)
1138 return;
1139
1140 mdelay(1);
1141 }
1142 }
1143
1144 static void pci_restore_config_space_range(struct pci_dev *pdev,
1145 int start, int end, int retry)
1146 {
1147 int index;
1148
1149 for (index = end; index >= start; index--)
1150 pci_restore_config_dword(pdev, 4 * index,
1151 pdev->saved_config_space[index],
1152 retry);
1153 }
1154
1155 static void pci_restore_config_space(struct pci_dev *pdev)
1156 {
1157 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1158 pci_restore_config_space_range(pdev, 10, 15, 0);
1159 /* Restore BARs before the command register. */
1160 pci_restore_config_space_range(pdev, 4, 9, 10);
1161 pci_restore_config_space_range(pdev, 0, 3, 0);
1162 } else {
1163 pci_restore_config_space_range(pdev, 0, 15, 0);
1164 }
1165 }
1166
1167 /**
1168 * pci_restore_state - Restore the saved state of a PCI device
1169 * @dev: - PCI device that we're dealing with
1170 */
1171 void pci_restore_state(struct pci_dev *dev)
1172 {
1173 if (!dev->state_saved)
1174 return;
1175
1176 /* PCI Express register must be restored first */
1177 pci_restore_pcie_state(dev);
1178 pci_restore_ats_state(dev);
1179 pci_restore_vc_state(dev);
1180
1181 pci_cleanup_aer_error_status_regs(dev);
1182
1183 pci_restore_config_space(dev);
1184
1185 pci_restore_pcix_state(dev);
1186 pci_restore_msi_state(dev);
1187
1188 /* Restore ACS and IOV configuration state */
1189 pci_enable_acs(dev);
1190 pci_restore_iov_state(dev);
1191
1192 dev->state_saved = false;
1193 }
1194 EXPORT_SYMBOL(pci_restore_state);
1195
1196 struct pci_saved_state {
1197 u32 config_space[16];
1198 struct pci_cap_saved_data cap[0];
1199 };
1200
1201 /**
1202 * pci_store_saved_state - Allocate and return an opaque struct containing
1203 * the device saved state.
1204 * @dev: PCI device that we're dealing with
1205 *
1206 * Return NULL if no state or error.
1207 */
1208 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1209 {
1210 struct pci_saved_state *state;
1211 struct pci_cap_saved_state *tmp;
1212 struct pci_cap_saved_data *cap;
1213 size_t size;
1214
1215 if (!dev->state_saved)
1216 return NULL;
1217
1218 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1219
1220 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1221 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1222
1223 state = kzalloc(size, GFP_KERNEL);
1224 if (!state)
1225 return NULL;
1226
1227 memcpy(state->config_space, dev->saved_config_space,
1228 sizeof(state->config_space));
1229
1230 cap = state->cap;
1231 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1232 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1233 memcpy(cap, &tmp->cap, len);
1234 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1235 }
1236 /* Empty cap_save terminates list */
1237
1238 return state;
1239 }
1240 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1241
1242 /**
1243 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1244 * @dev: PCI device that we're dealing with
1245 * @state: Saved state returned from pci_store_saved_state()
1246 */
1247 int pci_load_saved_state(struct pci_dev *dev,
1248 struct pci_saved_state *state)
1249 {
1250 struct pci_cap_saved_data *cap;
1251
1252 dev->state_saved = false;
1253
1254 if (!state)
1255 return 0;
1256
1257 memcpy(dev->saved_config_space, state->config_space,
1258 sizeof(state->config_space));
1259
1260 cap = state->cap;
1261 while (cap->size) {
1262 struct pci_cap_saved_state *tmp;
1263
1264 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1265 if (!tmp || tmp->cap.size != cap->size)
1266 return -EINVAL;
1267
1268 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1269 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1270 sizeof(struct pci_cap_saved_data) + cap->size);
1271 }
1272
1273 dev->state_saved = true;
1274 return 0;
1275 }
1276 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1277
1278 /**
1279 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1280 * and free the memory allocated for it.
1281 * @dev: PCI device that we're dealing with
1282 * @state: Pointer to saved state returned from pci_store_saved_state()
1283 */
1284 int pci_load_and_free_saved_state(struct pci_dev *dev,
1285 struct pci_saved_state **state)
1286 {
1287 int ret = pci_load_saved_state(dev, *state);
1288 kfree(*state);
1289 *state = NULL;
1290 return ret;
1291 }
1292 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1293
1294 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1295 {
1296 return pci_enable_resources(dev, bars);
1297 }
1298
1299 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1300 {
1301 int err;
1302 struct pci_dev *bridge;
1303 u16 cmd;
1304 u8 pin;
1305
1306 err = pci_set_power_state(dev, PCI_D0);
1307 if (err < 0 && err != -EIO)
1308 return err;
1309
1310 bridge = pci_upstream_bridge(dev);
1311 if (bridge)
1312 pcie_aspm_powersave_config_link(bridge);
1313
1314 err = pcibios_enable_device(dev, bars);
1315 if (err < 0)
1316 return err;
1317 pci_fixup_device(pci_fixup_enable, dev);
1318
1319 if (dev->msi_enabled || dev->msix_enabled)
1320 return 0;
1321
1322 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1323 if (pin) {
1324 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1325 if (cmd & PCI_COMMAND_INTX_DISABLE)
1326 pci_write_config_word(dev, PCI_COMMAND,
1327 cmd & ~PCI_COMMAND_INTX_DISABLE);
1328 }
1329
1330 return 0;
1331 }
1332
1333 /**
1334 * pci_reenable_device - Resume abandoned device
1335 * @dev: PCI device to be resumed
1336 *
1337 * Note this function is a backend of pci_default_resume and is not supposed
1338 * to be called by normal code, write proper resume handler and use it instead.
1339 */
1340 int pci_reenable_device(struct pci_dev *dev)
1341 {
1342 if (pci_is_enabled(dev))
1343 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1344 return 0;
1345 }
1346 EXPORT_SYMBOL(pci_reenable_device);
1347
1348 static void pci_enable_bridge(struct pci_dev *dev)
1349 {
1350 struct pci_dev *bridge;
1351 int retval;
1352
1353 bridge = pci_upstream_bridge(dev);
1354 if (bridge)
1355 pci_enable_bridge(bridge);
1356
1357 if (pci_is_enabled(dev)) {
1358 if (!dev->is_busmaster)
1359 pci_set_master(dev);
1360 return;
1361 }
1362
1363 retval = pci_enable_device(dev);
1364 if (retval)
1365 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1366 retval);
1367 pci_set_master(dev);
1368 }
1369
1370 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1371 {
1372 struct pci_dev *bridge;
1373 int err;
1374 int i, bars = 0;
1375
1376 /*
1377 * Power state could be unknown at this point, either due to a fresh
1378 * boot or a device removal call. So get the current power state
1379 * so that things like MSI message writing will behave as expected
1380 * (e.g. if the device really is in D0 at enable time).
1381 */
1382 if (dev->pm_cap) {
1383 u16 pmcsr;
1384 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1385 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1386 }
1387
1388 if (atomic_inc_return(&dev->enable_cnt) > 1)
1389 return 0; /* already enabled */
1390
1391 bridge = pci_upstream_bridge(dev);
1392 if (bridge)
1393 pci_enable_bridge(bridge);
1394
1395 /* only skip sriov related */
1396 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1397 if (dev->resource[i].flags & flags)
1398 bars |= (1 << i);
1399 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1400 if (dev->resource[i].flags & flags)
1401 bars |= (1 << i);
1402
1403 err = do_pci_enable_device(dev, bars);
1404 if (err < 0)
1405 atomic_dec(&dev->enable_cnt);
1406 return err;
1407 }
1408
1409 /**
1410 * pci_enable_device_io - Initialize a device for use with IO space
1411 * @dev: PCI device to be initialized
1412 *
1413 * Initialize device before it's used by a driver. Ask low-level code
1414 * to enable I/O resources. Wake up the device if it was suspended.
1415 * Beware, this function can fail.
1416 */
1417 int pci_enable_device_io(struct pci_dev *dev)
1418 {
1419 return pci_enable_device_flags(dev, IORESOURCE_IO);
1420 }
1421 EXPORT_SYMBOL(pci_enable_device_io);
1422
1423 /**
1424 * pci_enable_device_mem - Initialize a device for use with Memory space
1425 * @dev: PCI device to be initialized
1426 *
1427 * Initialize device before it's used by a driver. Ask low-level code
1428 * to enable Memory resources. Wake up the device if it was suspended.
1429 * Beware, this function can fail.
1430 */
1431 int pci_enable_device_mem(struct pci_dev *dev)
1432 {
1433 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1434 }
1435 EXPORT_SYMBOL(pci_enable_device_mem);
1436
1437 /**
1438 * pci_enable_device - Initialize device before it's used by a driver.
1439 * @dev: PCI device to be initialized
1440 *
1441 * Initialize device before it's used by a driver. Ask low-level code
1442 * to enable I/O and memory. Wake up the device if it was suspended.
1443 * Beware, this function can fail.
1444 *
1445 * Note we don't actually enable the device many times if we call
1446 * this function repeatedly (we just increment the count).
1447 */
1448 int pci_enable_device(struct pci_dev *dev)
1449 {
1450 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1451 }
1452 EXPORT_SYMBOL(pci_enable_device);
1453
1454 /*
1455 * Managed PCI resources. This manages device on/off, intx/msi/msix
1456 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1457 * there's no need to track it separately. pci_devres is initialized
1458 * when a device is enabled using managed PCI device enable interface.
1459 */
1460 struct pci_devres {
1461 unsigned int enabled:1;
1462 unsigned int pinned:1;
1463 unsigned int orig_intx:1;
1464 unsigned int restore_intx:1;
1465 u32 region_mask;
1466 };
1467
1468 static void pcim_release(struct device *gendev, void *res)
1469 {
1470 struct pci_dev *dev = to_pci_dev(gendev);
1471 struct pci_devres *this = res;
1472 int i;
1473
1474 if (dev->msi_enabled)
1475 pci_disable_msi(dev);
1476 if (dev->msix_enabled)
1477 pci_disable_msix(dev);
1478
1479 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1480 if (this->region_mask & (1 << i))
1481 pci_release_region(dev, i);
1482
1483 if (this->restore_intx)
1484 pci_intx(dev, this->orig_intx);
1485
1486 if (this->enabled && !this->pinned)
1487 pci_disable_device(dev);
1488 }
1489
1490 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1491 {
1492 struct pci_devres *dr, *new_dr;
1493
1494 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1495 if (dr)
1496 return dr;
1497
1498 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1499 if (!new_dr)
1500 return NULL;
1501 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1502 }
1503
1504 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1505 {
1506 if (pci_is_managed(pdev))
1507 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1508 return NULL;
1509 }
1510
1511 /**
1512 * pcim_enable_device - Managed pci_enable_device()
1513 * @pdev: PCI device to be initialized
1514 *
1515 * Managed pci_enable_device().
1516 */
1517 int pcim_enable_device(struct pci_dev *pdev)
1518 {
1519 struct pci_devres *dr;
1520 int rc;
1521
1522 dr = get_pci_dr(pdev);
1523 if (unlikely(!dr))
1524 return -ENOMEM;
1525 if (dr->enabled)
1526 return 0;
1527
1528 rc = pci_enable_device(pdev);
1529 if (!rc) {
1530 pdev->is_managed = 1;
1531 dr->enabled = 1;
1532 }
1533 return rc;
1534 }
1535 EXPORT_SYMBOL(pcim_enable_device);
1536
1537 /**
1538 * pcim_pin_device - Pin managed PCI device
1539 * @pdev: PCI device to pin
1540 *
1541 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1542 * driver detach. @pdev must have been enabled with
1543 * pcim_enable_device().
1544 */
1545 void pcim_pin_device(struct pci_dev *pdev)
1546 {
1547 struct pci_devres *dr;
1548
1549 dr = find_pci_dr(pdev);
1550 WARN_ON(!dr || !dr->enabled);
1551 if (dr)
1552 dr->pinned = 1;
1553 }
1554 EXPORT_SYMBOL(pcim_pin_device);
1555
1556 /*
1557 * pcibios_add_device - provide arch specific hooks when adding device dev
1558 * @dev: the PCI device being added
1559 *
1560 * Permits the platform to provide architecture specific functionality when
1561 * devices are added. This is the default implementation. Architecture
1562 * implementations can override this.
1563 */
1564 int __weak pcibios_add_device(struct pci_dev *dev)
1565 {
1566 return 0;
1567 }
1568
1569 /**
1570 * pcibios_release_device - provide arch specific hooks when releasing device dev
1571 * @dev: the PCI device being released
1572 *
1573 * Permits the platform to provide architecture specific functionality when
1574 * devices are released. This is the default implementation. Architecture
1575 * implementations can override this.
1576 */
1577 void __weak pcibios_release_device(struct pci_dev *dev) {}
1578
1579 /**
1580 * pcibios_disable_device - disable arch specific PCI resources for device dev
1581 * @dev: the PCI device to disable
1582 *
1583 * Disables architecture specific PCI resources for the device. This
1584 * is the default implementation. Architecture implementations can
1585 * override this.
1586 */
1587 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1588
1589 /**
1590 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1591 * @irq: ISA IRQ to penalize
1592 * @active: IRQ active or not
1593 *
1594 * Permits the platform to provide architecture-specific functionality when
1595 * penalizing ISA IRQs. This is the default implementation. Architecture
1596 * implementations can override this.
1597 */
1598 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1599
1600 static void do_pci_disable_device(struct pci_dev *dev)
1601 {
1602 u16 pci_command;
1603
1604 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1605 if (pci_command & PCI_COMMAND_MASTER) {
1606 pci_command &= ~PCI_COMMAND_MASTER;
1607 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1608 }
1609
1610 pcibios_disable_device(dev);
1611 }
1612
1613 /**
1614 * pci_disable_enabled_device - Disable device without updating enable_cnt
1615 * @dev: PCI device to disable
1616 *
1617 * NOTE: This function is a backend of PCI power management routines and is
1618 * not supposed to be called drivers.
1619 */
1620 void pci_disable_enabled_device(struct pci_dev *dev)
1621 {
1622 if (pci_is_enabled(dev))
1623 do_pci_disable_device(dev);
1624 }
1625
1626 /**
1627 * pci_disable_device - Disable PCI device after use
1628 * @dev: PCI device to be disabled
1629 *
1630 * Signal to the system that the PCI device is not in use by the system
1631 * anymore. This only involves disabling PCI bus-mastering, if active.
1632 *
1633 * Note we don't actually disable the device until all callers of
1634 * pci_enable_device() have called pci_disable_device().
1635 */
1636 void pci_disable_device(struct pci_dev *dev)
1637 {
1638 struct pci_devres *dr;
1639
1640 dr = find_pci_dr(dev);
1641 if (dr)
1642 dr->enabled = 0;
1643
1644 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1645 "disabling already-disabled device");
1646
1647 if (atomic_dec_return(&dev->enable_cnt) != 0)
1648 return;
1649
1650 do_pci_disable_device(dev);
1651
1652 dev->is_busmaster = 0;
1653 }
1654 EXPORT_SYMBOL(pci_disable_device);
1655
1656 /**
1657 * pcibios_set_pcie_reset_state - set reset state for device dev
1658 * @dev: the PCIe device reset
1659 * @state: Reset state to enter into
1660 *
1661 *
1662 * Sets the PCIe reset state for the device. This is the default
1663 * implementation. Architecture implementations can override this.
1664 */
1665 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1666 enum pcie_reset_state state)
1667 {
1668 return -EINVAL;
1669 }
1670
1671 /**
1672 * pci_set_pcie_reset_state - set reset state for device dev
1673 * @dev: the PCIe device reset
1674 * @state: Reset state to enter into
1675 *
1676 *
1677 * Sets the PCI reset state for the device.
1678 */
1679 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1680 {
1681 return pcibios_set_pcie_reset_state(dev, state);
1682 }
1683 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1684
1685 /**
1686 * pci_check_pme_status - Check if given device has generated PME.
1687 * @dev: Device to check.
1688 *
1689 * Check the PME status of the device and if set, clear it and clear PME enable
1690 * (if set). Return 'true' if PME status and PME enable were both set or
1691 * 'false' otherwise.
1692 */
1693 bool pci_check_pme_status(struct pci_dev *dev)
1694 {
1695 int pmcsr_pos;
1696 u16 pmcsr;
1697 bool ret = false;
1698
1699 if (!dev->pm_cap)
1700 return false;
1701
1702 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1703 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1704 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1705 return false;
1706
1707 /* Clear PME status. */
1708 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1709 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1710 /* Disable PME to avoid interrupt flood. */
1711 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1712 ret = true;
1713 }
1714
1715 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1716
1717 return ret;
1718 }
1719
1720 /**
1721 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1722 * @dev: Device to handle.
1723 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1724 *
1725 * Check if @dev has generated PME and queue a resume request for it in that
1726 * case.
1727 */
1728 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1729 {
1730 if (pme_poll_reset && dev->pme_poll)
1731 dev->pme_poll = false;
1732
1733 if (pci_check_pme_status(dev)) {
1734 pci_wakeup_event(dev);
1735 pm_request_resume(&dev->dev);
1736 }
1737 return 0;
1738 }
1739
1740 /**
1741 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1742 * @bus: Top bus of the subtree to walk.
1743 */
1744 void pci_pme_wakeup_bus(struct pci_bus *bus)
1745 {
1746 if (bus)
1747 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1748 }
1749
1750
1751 /**
1752 * pci_pme_capable - check the capability of PCI device to generate PME#
1753 * @dev: PCI device to handle.
1754 * @state: PCI state from which device will issue PME#.
1755 */
1756 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1757 {
1758 if (!dev->pm_cap)
1759 return false;
1760
1761 return !!(dev->pme_support & (1 << state));
1762 }
1763 EXPORT_SYMBOL(pci_pme_capable);
1764
1765 static void pci_pme_list_scan(struct work_struct *work)
1766 {
1767 struct pci_pme_device *pme_dev, *n;
1768
1769 mutex_lock(&pci_pme_list_mutex);
1770 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1771 if (pme_dev->dev->pme_poll) {
1772 struct pci_dev *bridge;
1773
1774 bridge = pme_dev->dev->bus->self;
1775 /*
1776 * If bridge is in low power state, the
1777 * configuration space of subordinate devices
1778 * may be not accessible
1779 */
1780 if (bridge && bridge->current_state != PCI_D0)
1781 continue;
1782 pci_pme_wakeup(pme_dev->dev, NULL);
1783 } else {
1784 list_del(&pme_dev->list);
1785 kfree(pme_dev);
1786 }
1787 }
1788 if (!list_empty(&pci_pme_list))
1789 schedule_delayed_work(&pci_pme_work,
1790 msecs_to_jiffies(PME_TIMEOUT));
1791 mutex_unlock(&pci_pme_list_mutex);
1792 }
1793
1794 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1795 {
1796 u16 pmcsr;
1797
1798 if (!dev->pme_support)
1799 return;
1800
1801 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1802 /* Clear PME_Status by writing 1 to it and enable PME# */
1803 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1804 if (!enable)
1805 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1806
1807 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1808 }
1809
1810 /**
1811 * pci_pme_active - enable or disable PCI device's PME# function
1812 * @dev: PCI device to handle.
1813 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1814 *
1815 * The caller must verify that the device is capable of generating PME# before
1816 * calling this function with @enable equal to 'true'.
1817 */
1818 void pci_pme_active(struct pci_dev *dev, bool enable)
1819 {
1820 __pci_pme_active(dev, enable);
1821
1822 /*
1823 * PCI (as opposed to PCIe) PME requires that the device have
1824 * its PME# line hooked up correctly. Not all hardware vendors
1825 * do this, so the PME never gets delivered and the device
1826 * remains asleep. The easiest way around this is to
1827 * periodically walk the list of suspended devices and check
1828 * whether any have their PME flag set. The assumption is that
1829 * we'll wake up often enough anyway that this won't be a huge
1830 * hit, and the power savings from the devices will still be a
1831 * win.
1832 *
1833 * Although PCIe uses in-band PME message instead of PME# line
1834 * to report PME, PME does not work for some PCIe devices in
1835 * reality. For example, there are devices that set their PME
1836 * status bits, but don't really bother to send a PME message;
1837 * there are PCI Express Root Ports that don't bother to
1838 * trigger interrupts when they receive PME messages from the
1839 * devices below. So PME poll is used for PCIe devices too.
1840 */
1841
1842 if (dev->pme_poll) {
1843 struct pci_pme_device *pme_dev;
1844 if (enable) {
1845 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1846 GFP_KERNEL);
1847 if (!pme_dev) {
1848 dev_warn(&dev->dev, "can't enable PME#\n");
1849 return;
1850 }
1851 pme_dev->dev = dev;
1852 mutex_lock(&pci_pme_list_mutex);
1853 list_add(&pme_dev->list, &pci_pme_list);
1854 if (list_is_singular(&pci_pme_list))
1855 schedule_delayed_work(&pci_pme_work,
1856 msecs_to_jiffies(PME_TIMEOUT));
1857 mutex_unlock(&pci_pme_list_mutex);
1858 } else {
1859 mutex_lock(&pci_pme_list_mutex);
1860 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1861 if (pme_dev->dev == dev) {
1862 list_del(&pme_dev->list);
1863 kfree(pme_dev);
1864 break;
1865 }
1866 }
1867 mutex_unlock(&pci_pme_list_mutex);
1868 }
1869 }
1870
1871 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1872 }
1873 EXPORT_SYMBOL(pci_pme_active);
1874
1875 /**
1876 * __pci_enable_wake - enable PCI device as wakeup event source
1877 * @dev: PCI device affected
1878 * @state: PCI state from which device will issue wakeup events
1879 * @runtime: True if the events are to be generated at run time
1880 * @enable: True to enable event generation; false to disable
1881 *
1882 * This enables the device as a wakeup event source, or disables it.
1883 * When such events involves platform-specific hooks, those hooks are
1884 * called automatically by this routine.
1885 *
1886 * Devices with legacy power management (no standard PCI PM capabilities)
1887 * always require such platform hooks.
1888 *
1889 * RETURN VALUE:
1890 * 0 is returned on success
1891 * -EINVAL is returned if device is not supposed to wake up the system
1892 * Error code depending on the platform is returned if both the platform and
1893 * the native mechanism fail to enable the generation of wake-up events
1894 */
1895 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1896 bool runtime, bool enable)
1897 {
1898 int ret = 0;
1899
1900 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1901 return -EINVAL;
1902
1903 /* Don't do the same thing twice in a row for one device. */
1904 if (!!enable == !!dev->wakeup_prepared)
1905 return 0;
1906
1907 /*
1908 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1909 * Anderson we should be doing PME# wake enable followed by ACPI wake
1910 * enable. To disable wake-up we call the platform first, for symmetry.
1911 */
1912
1913 if (enable) {
1914 int error;
1915
1916 if (pci_pme_capable(dev, state))
1917 pci_pme_active(dev, true);
1918 else
1919 ret = 1;
1920 error = runtime ? platform_pci_run_wake(dev, true) :
1921 platform_pci_sleep_wake(dev, true);
1922 if (ret)
1923 ret = error;
1924 if (!ret)
1925 dev->wakeup_prepared = true;
1926 } else {
1927 if (runtime)
1928 platform_pci_run_wake(dev, false);
1929 else
1930 platform_pci_sleep_wake(dev, false);
1931 pci_pme_active(dev, false);
1932 dev->wakeup_prepared = false;
1933 }
1934
1935 return ret;
1936 }
1937 EXPORT_SYMBOL(__pci_enable_wake);
1938
1939 /**
1940 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1941 * @dev: PCI device to prepare
1942 * @enable: True to enable wake-up event generation; false to disable
1943 *
1944 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1945 * and this function allows them to set that up cleanly - pci_enable_wake()
1946 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1947 * ordering constraints.
1948 *
1949 * This function only returns error code if the device is not capable of
1950 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1951 * enable wake-up power for it.
1952 */
1953 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1954 {
1955 return pci_pme_capable(dev, PCI_D3cold) ?
1956 pci_enable_wake(dev, PCI_D3cold, enable) :
1957 pci_enable_wake(dev, PCI_D3hot, enable);
1958 }
1959 EXPORT_SYMBOL(pci_wake_from_d3);
1960
1961 /**
1962 * pci_target_state - find an appropriate low power state for a given PCI dev
1963 * @dev: PCI device
1964 *
1965 * Use underlying platform code to find a supported low power state for @dev.
1966 * If the platform can't manage @dev, return the deepest state from which it
1967 * can generate wake events, based on any available PME info.
1968 */
1969 static pci_power_t pci_target_state(struct pci_dev *dev)
1970 {
1971 pci_power_t target_state = PCI_D3hot;
1972
1973 if (platform_pci_power_manageable(dev)) {
1974 /*
1975 * Call the platform to choose the target state of the device
1976 * and enable wake-up from this state if supported.
1977 */
1978 pci_power_t state = platform_pci_choose_state(dev);
1979
1980 switch (state) {
1981 case PCI_POWER_ERROR:
1982 case PCI_UNKNOWN:
1983 break;
1984 case PCI_D1:
1985 case PCI_D2:
1986 if (pci_no_d1d2(dev))
1987 break;
1988 default:
1989 target_state = state;
1990 }
1991
1992 return target_state;
1993 }
1994
1995 if (!dev->pm_cap)
1996 target_state = PCI_D0;
1997
1998 /*
1999 * If the device is in D3cold even though it's not power-manageable by
2000 * the platform, it may have been powered down by non-standard means.
2001 * Best to let it slumber.
2002 */
2003 if (dev->current_state == PCI_D3cold)
2004 target_state = PCI_D3cold;
2005
2006 if (device_may_wakeup(&dev->dev)) {
2007 /*
2008 * Find the deepest state from which the device can generate
2009 * wake-up events, make it the target state and enable device
2010 * to generate PME#.
2011 */
2012 if (dev->pme_support) {
2013 while (target_state
2014 && !(dev->pme_support & (1 << target_state)))
2015 target_state--;
2016 }
2017 }
2018
2019 return target_state;
2020 }
2021
2022 /**
2023 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2024 * @dev: Device to handle.
2025 *
2026 * Choose the power state appropriate for the device depending on whether
2027 * it can wake up the system and/or is power manageable by the platform
2028 * (PCI_D3hot is the default) and put the device into that state.
2029 */
2030 int pci_prepare_to_sleep(struct pci_dev *dev)
2031 {
2032 pci_power_t target_state = pci_target_state(dev);
2033 int error;
2034
2035 if (target_state == PCI_POWER_ERROR)
2036 return -EIO;
2037
2038 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
2039
2040 error = pci_set_power_state(dev, target_state);
2041
2042 if (error)
2043 pci_enable_wake(dev, target_state, false);
2044
2045 return error;
2046 }
2047 EXPORT_SYMBOL(pci_prepare_to_sleep);
2048
2049 /**
2050 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2051 * @dev: Device to handle.
2052 *
2053 * Disable device's system wake-up capability and put it into D0.
2054 */
2055 int pci_back_from_sleep(struct pci_dev *dev)
2056 {
2057 pci_enable_wake(dev, PCI_D0, false);
2058 return pci_set_power_state(dev, PCI_D0);
2059 }
2060 EXPORT_SYMBOL(pci_back_from_sleep);
2061
2062 /**
2063 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2064 * @dev: PCI device being suspended.
2065 *
2066 * Prepare @dev to generate wake-up events at run time and put it into a low
2067 * power state.
2068 */
2069 int pci_finish_runtime_suspend(struct pci_dev *dev)
2070 {
2071 pci_power_t target_state = pci_target_state(dev);
2072 int error;
2073
2074 if (target_state == PCI_POWER_ERROR)
2075 return -EIO;
2076
2077 dev->runtime_d3cold = target_state == PCI_D3cold;
2078
2079 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
2080
2081 error = pci_set_power_state(dev, target_state);
2082
2083 if (error) {
2084 __pci_enable_wake(dev, target_state, true, false);
2085 dev->runtime_d3cold = false;
2086 }
2087
2088 return error;
2089 }
2090
2091 /**
2092 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2093 * @dev: Device to check.
2094 *
2095 * Return true if the device itself is capable of generating wake-up events
2096 * (through the platform or using the native PCIe PME) or if the device supports
2097 * PME and one of its upstream bridges can generate wake-up events.
2098 */
2099 bool pci_dev_run_wake(struct pci_dev *dev)
2100 {
2101 struct pci_bus *bus = dev->bus;
2102
2103 if (device_run_wake(&dev->dev))
2104 return true;
2105
2106 if (!dev->pme_support)
2107 return false;
2108
2109 /* PME-capable in principle, but not from the intended sleep state */
2110 if (!pci_pme_capable(dev, pci_target_state(dev)))
2111 return false;
2112
2113 while (bus->parent) {
2114 struct pci_dev *bridge = bus->self;
2115
2116 if (device_run_wake(&bridge->dev))
2117 return true;
2118
2119 bus = bus->parent;
2120 }
2121
2122 /* We have reached the root bus. */
2123 if (bus->bridge)
2124 return device_run_wake(bus->bridge);
2125
2126 return false;
2127 }
2128 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2129
2130 /**
2131 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2132 * @pci_dev: Device to check.
2133 *
2134 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2135 * reconfigured due to wakeup settings difference between system and runtime
2136 * suspend and the current power state of it is suitable for the upcoming
2137 * (system) transition.
2138 *
2139 * If the device is not configured for system wakeup, disable PME for it before
2140 * returning 'true' to prevent it from waking up the system unnecessarily.
2141 */
2142 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2143 {
2144 struct device *dev = &pci_dev->dev;
2145
2146 if (!pm_runtime_suspended(dev)
2147 || pci_target_state(pci_dev) != pci_dev->current_state
2148 || platform_pci_need_resume(pci_dev))
2149 return false;
2150
2151 /*
2152 * At this point the device is good to go unless it's been configured
2153 * to generate PME at the runtime suspend time, but it is not supposed
2154 * to wake up the system. In that case, simply disable PME for it
2155 * (it will have to be re-enabled on exit from system resume).
2156 *
2157 * If the device's power state is D3cold and the platform check above
2158 * hasn't triggered, the device's configuration is suitable and we don't
2159 * need to manipulate it at all.
2160 */
2161 spin_lock_irq(&dev->power.lock);
2162
2163 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2164 !device_may_wakeup(dev))
2165 __pci_pme_active(pci_dev, false);
2166
2167 spin_unlock_irq(&dev->power.lock);
2168 return true;
2169 }
2170
2171 /**
2172 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2173 * @pci_dev: Device to handle.
2174 *
2175 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2176 * it might have been disabled during the prepare phase of system suspend if
2177 * the device was not configured for system wakeup.
2178 */
2179 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2180 {
2181 struct device *dev = &pci_dev->dev;
2182
2183 if (!pci_dev_run_wake(pci_dev))
2184 return;
2185
2186 spin_lock_irq(&dev->power.lock);
2187
2188 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2189 __pci_pme_active(pci_dev, true);
2190
2191 spin_unlock_irq(&dev->power.lock);
2192 }
2193
2194 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2195 {
2196 struct device *dev = &pdev->dev;
2197 struct device *parent = dev->parent;
2198
2199 if (parent)
2200 pm_runtime_get_sync(parent);
2201 pm_runtime_get_noresume(dev);
2202 /*
2203 * pdev->current_state is set to PCI_D3cold during suspending,
2204 * so wait until suspending completes
2205 */
2206 pm_runtime_barrier(dev);
2207 /*
2208 * Only need to resume devices in D3cold, because config
2209 * registers are still accessible for devices suspended but
2210 * not in D3cold.
2211 */
2212 if (pdev->current_state == PCI_D3cold)
2213 pm_runtime_resume(dev);
2214 }
2215
2216 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2217 {
2218 struct device *dev = &pdev->dev;
2219 struct device *parent = dev->parent;
2220
2221 pm_runtime_put(dev);
2222 if (parent)
2223 pm_runtime_put_sync(parent);
2224 }
2225
2226 /**
2227 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2228 * @bridge: Bridge to check
2229 *
2230 * This function checks if it is possible to move the bridge to D3.
2231 * Currently we only allow D3 for recent enough PCIe ports.
2232 */
2233 static bool pci_bridge_d3_possible(struct pci_dev *bridge)
2234 {
2235 unsigned int year;
2236
2237 if (!pci_is_pcie(bridge))
2238 return false;
2239
2240 switch (pci_pcie_type(bridge)) {
2241 case PCI_EXP_TYPE_ROOT_PORT:
2242 case PCI_EXP_TYPE_UPSTREAM:
2243 case PCI_EXP_TYPE_DOWNSTREAM:
2244 if (pci_bridge_d3_disable)
2245 return false;
2246 if (pci_bridge_d3_force)
2247 return true;
2248
2249 /*
2250 * It should be safe to put PCIe ports from 2015 or newer
2251 * to D3.
2252 */
2253 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2254 year >= 2015) {
2255 return true;
2256 }
2257 break;
2258 }
2259
2260 return false;
2261 }
2262
2263 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2264 {
2265 bool *d3cold_ok = data;
2266 bool no_d3cold;
2267
2268 /*
2269 * The device needs to be allowed to go D3cold and if it is wake
2270 * capable to do so from D3cold.
2271 */
2272 no_d3cold = dev->no_d3cold || !dev->d3cold_allowed ||
2273 (device_may_wakeup(&dev->dev) && !pci_pme_capable(dev, PCI_D3cold)) ||
2274 !pci_power_manageable(dev);
2275
2276 *d3cold_ok = !no_d3cold;
2277
2278 return no_d3cold;
2279 }
2280
2281 /*
2282 * pci_bridge_d3_update - Update bridge D3 capabilities
2283 * @dev: PCI device which is changed
2284 * @remove: Is the device being removed
2285 *
2286 * Update upstream bridge PM capabilities accordingly depending on if the
2287 * device PM configuration was changed or the device is being removed. The
2288 * change is also propagated upstream.
2289 */
2290 static void pci_bridge_d3_update(struct pci_dev *dev, bool remove)
2291 {
2292 struct pci_dev *bridge;
2293 bool d3cold_ok = true;
2294
2295 bridge = pci_upstream_bridge(dev);
2296 if (!bridge || !pci_bridge_d3_possible(bridge))
2297 return;
2298
2299 /*
2300 * If the device is removed we do not care about its D3cold
2301 * capabilities.
2302 */
2303 if (!remove)
2304 pci_dev_check_d3cold(dev, &d3cold_ok);
2305
2306 if (d3cold_ok) {
2307 /*
2308 * We need to go through all children to find out if all of
2309 * them can still go to D3cold.
2310 */
2311 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2312 &d3cold_ok);
2313 }
2314
2315 if (bridge->bridge_d3 != d3cold_ok) {
2316 bridge->bridge_d3 = d3cold_ok;
2317 /* Propagate change to upstream bridges */
2318 pci_bridge_d3_update(bridge, false);
2319 }
2320 }
2321
2322 /**
2323 * pci_bridge_d3_device_changed - Update bridge D3 capabilities on change
2324 * @dev: PCI device that was changed
2325 *
2326 * If a device is added or its PM configuration, such as is it allowed to
2327 * enter D3cold, is changed this function updates upstream bridge PM
2328 * capabilities accordingly.
2329 */
2330 void pci_bridge_d3_device_changed(struct pci_dev *dev)
2331 {
2332 pci_bridge_d3_update(dev, false);
2333 }
2334
2335 /**
2336 * pci_bridge_d3_device_removed - Update bridge D3 capabilities on remove
2337 * @dev: PCI device being removed
2338 *
2339 * Function updates upstream bridge PM capabilities based on other devices
2340 * still left on the bus.
2341 */
2342 void pci_bridge_d3_device_removed(struct pci_dev *dev)
2343 {
2344 pci_bridge_d3_update(dev, true);
2345 }
2346
2347 /**
2348 * pci_d3cold_enable - Enable D3cold for device
2349 * @dev: PCI device to handle
2350 *
2351 * This function can be used in drivers to enable D3cold from the device
2352 * they handle. It also updates upstream PCI bridge PM capabilities
2353 * accordingly.
2354 */
2355 void pci_d3cold_enable(struct pci_dev *dev)
2356 {
2357 if (dev->no_d3cold) {
2358 dev->no_d3cold = false;
2359 pci_bridge_d3_device_changed(dev);
2360 }
2361 }
2362 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2363
2364 /**
2365 * pci_d3cold_disable - Disable D3cold for device
2366 * @dev: PCI device to handle
2367 *
2368 * This function can be used in drivers to disable D3cold from the device
2369 * they handle. It also updates upstream PCI bridge PM capabilities
2370 * accordingly.
2371 */
2372 void pci_d3cold_disable(struct pci_dev *dev)
2373 {
2374 if (!dev->no_d3cold) {
2375 dev->no_d3cold = true;
2376 pci_bridge_d3_device_changed(dev);
2377 }
2378 }
2379 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2380
2381 /**
2382 * pci_pm_init - Initialize PM functions of given PCI device
2383 * @dev: PCI device to handle.
2384 */
2385 void pci_pm_init(struct pci_dev *dev)
2386 {
2387 int pm;
2388 u16 pmc;
2389
2390 pm_runtime_forbid(&dev->dev);
2391 pm_runtime_set_active(&dev->dev);
2392 pm_runtime_enable(&dev->dev);
2393 device_enable_async_suspend(&dev->dev);
2394 dev->wakeup_prepared = false;
2395
2396 dev->pm_cap = 0;
2397 dev->pme_support = 0;
2398
2399 /* find PCI PM capability in list */
2400 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2401 if (!pm)
2402 return;
2403 /* Check device's ability to generate PME# */
2404 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2405
2406 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2407 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2408 pmc & PCI_PM_CAP_VER_MASK);
2409 return;
2410 }
2411
2412 dev->pm_cap = pm;
2413 dev->d3_delay = PCI_PM_D3_WAIT;
2414 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2415 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2416 dev->d3cold_allowed = true;
2417
2418 dev->d1_support = false;
2419 dev->d2_support = false;
2420 if (!pci_no_d1d2(dev)) {
2421 if (pmc & PCI_PM_CAP_D1)
2422 dev->d1_support = true;
2423 if (pmc & PCI_PM_CAP_D2)
2424 dev->d2_support = true;
2425
2426 if (dev->d1_support || dev->d2_support)
2427 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2428 dev->d1_support ? " D1" : "",
2429 dev->d2_support ? " D2" : "");
2430 }
2431
2432 pmc &= PCI_PM_CAP_PME_MASK;
2433 if (pmc) {
2434 dev_printk(KERN_DEBUG, &dev->dev,
2435 "PME# supported from%s%s%s%s%s\n",
2436 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2437 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2438 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2439 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2440 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2441 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2442 dev->pme_poll = true;
2443 /*
2444 * Make device's PM flags reflect the wake-up capability, but
2445 * let the user space enable it to wake up the system as needed.
2446 */
2447 device_set_wakeup_capable(&dev->dev, true);
2448 /* Disable the PME# generation functionality */
2449 pci_pme_active(dev, false);
2450 }
2451 }
2452
2453 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2454 {
2455 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2456
2457 switch (prop) {
2458 case PCI_EA_P_MEM:
2459 case PCI_EA_P_VF_MEM:
2460 flags |= IORESOURCE_MEM;
2461 break;
2462 case PCI_EA_P_MEM_PREFETCH:
2463 case PCI_EA_P_VF_MEM_PREFETCH:
2464 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2465 break;
2466 case PCI_EA_P_IO:
2467 flags |= IORESOURCE_IO;
2468 break;
2469 default:
2470 return 0;
2471 }
2472
2473 return flags;
2474 }
2475
2476 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2477 u8 prop)
2478 {
2479 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2480 return &dev->resource[bei];
2481 #ifdef CONFIG_PCI_IOV
2482 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2483 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2484 return &dev->resource[PCI_IOV_RESOURCES +
2485 bei - PCI_EA_BEI_VF_BAR0];
2486 #endif
2487 else if (bei == PCI_EA_BEI_ROM)
2488 return &dev->resource[PCI_ROM_RESOURCE];
2489 else
2490 return NULL;
2491 }
2492
2493 /* Read an Enhanced Allocation (EA) entry */
2494 static int pci_ea_read(struct pci_dev *dev, int offset)
2495 {
2496 struct resource *res;
2497 int ent_size, ent_offset = offset;
2498 resource_size_t start, end;
2499 unsigned long flags;
2500 u32 dw0, bei, base, max_offset;
2501 u8 prop;
2502 bool support_64 = (sizeof(resource_size_t) >= 8);
2503
2504 pci_read_config_dword(dev, ent_offset, &dw0);
2505 ent_offset += 4;
2506
2507 /* Entry size field indicates DWORDs after 1st */
2508 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2509
2510 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2511 goto out;
2512
2513 bei = (dw0 & PCI_EA_BEI) >> 4;
2514 prop = (dw0 & PCI_EA_PP) >> 8;
2515
2516 /*
2517 * If the Property is in the reserved range, try the Secondary
2518 * Property instead.
2519 */
2520 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2521 prop = (dw0 & PCI_EA_SP) >> 16;
2522 if (prop > PCI_EA_P_BRIDGE_IO)
2523 goto out;
2524
2525 res = pci_ea_get_resource(dev, bei, prop);
2526 if (!res) {
2527 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2528 goto out;
2529 }
2530
2531 flags = pci_ea_flags(dev, prop);
2532 if (!flags) {
2533 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2534 goto out;
2535 }
2536
2537 /* Read Base */
2538 pci_read_config_dword(dev, ent_offset, &base);
2539 start = (base & PCI_EA_FIELD_MASK);
2540 ent_offset += 4;
2541
2542 /* Read MaxOffset */
2543 pci_read_config_dword(dev, ent_offset, &max_offset);
2544 ent_offset += 4;
2545
2546 /* Read Base MSBs (if 64-bit entry) */
2547 if (base & PCI_EA_IS_64) {
2548 u32 base_upper;
2549
2550 pci_read_config_dword(dev, ent_offset, &base_upper);
2551 ent_offset += 4;
2552
2553 flags |= IORESOURCE_MEM_64;
2554
2555 /* entry starts above 32-bit boundary, can't use */
2556 if (!support_64 && base_upper)
2557 goto out;
2558
2559 if (support_64)
2560 start |= ((u64)base_upper << 32);
2561 }
2562
2563 end = start + (max_offset | 0x03);
2564
2565 /* Read MaxOffset MSBs (if 64-bit entry) */
2566 if (max_offset & PCI_EA_IS_64) {
2567 u32 max_offset_upper;
2568
2569 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2570 ent_offset += 4;
2571
2572 flags |= IORESOURCE_MEM_64;
2573
2574 /* entry too big, can't use */
2575 if (!support_64 && max_offset_upper)
2576 goto out;
2577
2578 if (support_64)
2579 end += ((u64)max_offset_upper << 32);
2580 }
2581
2582 if (end < start) {
2583 dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2584 goto out;
2585 }
2586
2587 if (ent_size != ent_offset - offset) {
2588 dev_err(&dev->dev,
2589 "EA Entry Size (%d) does not match length read (%d)\n",
2590 ent_size, ent_offset - offset);
2591 goto out;
2592 }
2593
2594 res->name = pci_name(dev);
2595 res->start = start;
2596 res->end = end;
2597 res->flags = flags;
2598
2599 if (bei <= PCI_EA_BEI_BAR5)
2600 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2601 bei, res, prop);
2602 else if (bei == PCI_EA_BEI_ROM)
2603 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2604 res, prop);
2605 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2606 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2607 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2608 else
2609 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2610 bei, res, prop);
2611
2612 out:
2613 return offset + ent_size;
2614 }
2615
2616 /* Enhanced Allocation Initialization */
2617 void pci_ea_init(struct pci_dev *dev)
2618 {
2619 int ea;
2620 u8 num_ent;
2621 int offset;
2622 int i;
2623
2624 /* find PCI EA capability in list */
2625 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2626 if (!ea)
2627 return;
2628
2629 /* determine the number of entries */
2630 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2631 &num_ent);
2632 num_ent &= PCI_EA_NUM_ENT_MASK;
2633
2634 offset = ea + PCI_EA_FIRST_ENT;
2635
2636 /* Skip DWORD 2 for type 1 functions */
2637 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2638 offset += 4;
2639
2640 /* parse each EA entry */
2641 for (i = 0; i < num_ent; ++i)
2642 offset = pci_ea_read(dev, offset);
2643 }
2644
2645 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2646 struct pci_cap_saved_state *new_cap)
2647 {
2648 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2649 }
2650
2651 /**
2652 * _pci_add_cap_save_buffer - allocate buffer for saving given
2653 * capability registers
2654 * @dev: the PCI device
2655 * @cap: the capability to allocate the buffer for
2656 * @extended: Standard or Extended capability ID
2657 * @size: requested size of the buffer
2658 */
2659 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2660 bool extended, unsigned int size)
2661 {
2662 int pos;
2663 struct pci_cap_saved_state *save_state;
2664
2665 if (extended)
2666 pos = pci_find_ext_capability(dev, cap);
2667 else
2668 pos = pci_find_capability(dev, cap);
2669
2670 if (!pos)
2671 return 0;
2672
2673 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2674 if (!save_state)
2675 return -ENOMEM;
2676
2677 save_state->cap.cap_nr = cap;
2678 save_state->cap.cap_extended = extended;
2679 save_state->cap.size = size;
2680 pci_add_saved_cap(dev, save_state);
2681
2682 return 0;
2683 }
2684
2685 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2686 {
2687 return _pci_add_cap_save_buffer(dev, cap, false, size);
2688 }
2689
2690 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2691 {
2692 return _pci_add_cap_save_buffer(dev, cap, true, size);
2693 }
2694
2695 /**
2696 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2697 * @dev: the PCI device
2698 */
2699 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2700 {
2701 int error;
2702
2703 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2704 PCI_EXP_SAVE_REGS * sizeof(u16));
2705 if (error)
2706 dev_err(&dev->dev,
2707 "unable to preallocate PCI Express save buffer\n");
2708
2709 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2710 if (error)
2711 dev_err(&dev->dev,
2712 "unable to preallocate PCI-X save buffer\n");
2713
2714 pci_allocate_vc_save_buffers(dev);
2715 }
2716
2717 void pci_free_cap_save_buffers(struct pci_dev *dev)
2718 {
2719 struct pci_cap_saved_state *tmp;
2720 struct hlist_node *n;
2721
2722 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2723 kfree(tmp);
2724 }
2725
2726 /**
2727 * pci_configure_ari - enable or disable ARI forwarding
2728 * @dev: the PCI device
2729 *
2730 * If @dev and its upstream bridge both support ARI, enable ARI in the
2731 * bridge. Otherwise, disable ARI in the bridge.
2732 */
2733 void pci_configure_ari(struct pci_dev *dev)
2734 {
2735 u32 cap;
2736 struct pci_dev *bridge;
2737
2738 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2739 return;
2740
2741 bridge = dev->bus->self;
2742 if (!bridge)
2743 return;
2744
2745 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2746 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2747 return;
2748
2749 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2750 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2751 PCI_EXP_DEVCTL2_ARI);
2752 bridge->ari_enabled = 1;
2753 } else {
2754 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2755 PCI_EXP_DEVCTL2_ARI);
2756 bridge->ari_enabled = 0;
2757 }
2758 }
2759
2760 static int pci_acs_enable;
2761
2762 /**
2763 * pci_request_acs - ask for ACS to be enabled if supported
2764 */
2765 void pci_request_acs(void)
2766 {
2767 pci_acs_enable = 1;
2768 }
2769
2770 /**
2771 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2772 * @dev: the PCI device
2773 */
2774 static void pci_std_enable_acs(struct pci_dev *dev)
2775 {
2776 int pos;
2777 u16 cap;
2778 u16 ctrl;
2779
2780 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2781 if (!pos)
2782 return;
2783
2784 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2785 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2786
2787 /* Source Validation */
2788 ctrl |= (cap & PCI_ACS_SV);
2789
2790 /* P2P Request Redirect */
2791 ctrl |= (cap & PCI_ACS_RR);
2792
2793 /* P2P Completion Redirect */
2794 ctrl |= (cap & PCI_ACS_CR);
2795
2796 /* Upstream Forwarding */
2797 ctrl |= (cap & PCI_ACS_UF);
2798
2799 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2800 }
2801
2802 /**
2803 * pci_enable_acs - enable ACS if hardware support it
2804 * @dev: the PCI device
2805 */
2806 void pci_enable_acs(struct pci_dev *dev)
2807 {
2808 if (!pci_acs_enable)
2809 return;
2810
2811 if (!pci_dev_specific_enable_acs(dev))
2812 return;
2813
2814 pci_std_enable_acs(dev);
2815 }
2816
2817 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2818 {
2819 int pos;
2820 u16 cap, ctrl;
2821
2822 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2823 if (!pos)
2824 return false;
2825
2826 /*
2827 * Except for egress control, capabilities are either required
2828 * or only required if controllable. Features missing from the
2829 * capability field can therefore be assumed as hard-wired enabled.
2830 */
2831 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2832 acs_flags &= (cap | PCI_ACS_EC);
2833
2834 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2835 return (ctrl & acs_flags) == acs_flags;
2836 }
2837
2838 /**
2839 * pci_acs_enabled - test ACS against required flags for a given device
2840 * @pdev: device to test
2841 * @acs_flags: required PCI ACS flags
2842 *
2843 * Return true if the device supports the provided flags. Automatically
2844 * filters out flags that are not implemented on multifunction devices.
2845 *
2846 * Note that this interface checks the effective ACS capabilities of the
2847 * device rather than the actual capabilities. For instance, most single
2848 * function endpoints are not required to support ACS because they have no
2849 * opportunity for peer-to-peer access. We therefore return 'true'
2850 * regardless of whether the device exposes an ACS capability. This makes
2851 * it much easier for callers of this function to ignore the actual type
2852 * or topology of the device when testing ACS support.
2853 */
2854 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2855 {
2856 int ret;
2857
2858 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2859 if (ret >= 0)
2860 return ret > 0;
2861
2862 /*
2863 * Conventional PCI and PCI-X devices never support ACS, either
2864 * effectively or actually. The shared bus topology implies that
2865 * any device on the bus can receive or snoop DMA.
2866 */
2867 if (!pci_is_pcie(pdev))
2868 return false;
2869
2870 switch (pci_pcie_type(pdev)) {
2871 /*
2872 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2873 * but since their primary interface is PCI/X, we conservatively
2874 * handle them as we would a non-PCIe device.
2875 */
2876 case PCI_EXP_TYPE_PCIE_BRIDGE:
2877 /*
2878 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2879 * applicable... must never implement an ACS Extended Capability...".
2880 * This seems arbitrary, but we take a conservative interpretation
2881 * of this statement.
2882 */
2883 case PCI_EXP_TYPE_PCI_BRIDGE:
2884 case PCI_EXP_TYPE_RC_EC:
2885 return false;
2886 /*
2887 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2888 * implement ACS in order to indicate their peer-to-peer capabilities,
2889 * regardless of whether they are single- or multi-function devices.
2890 */
2891 case PCI_EXP_TYPE_DOWNSTREAM:
2892 case PCI_EXP_TYPE_ROOT_PORT:
2893 return pci_acs_flags_enabled(pdev, acs_flags);
2894 /*
2895 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2896 * implemented by the remaining PCIe types to indicate peer-to-peer
2897 * capabilities, but only when they are part of a multifunction
2898 * device. The footnote for section 6.12 indicates the specific
2899 * PCIe types included here.
2900 */
2901 case PCI_EXP_TYPE_ENDPOINT:
2902 case PCI_EXP_TYPE_UPSTREAM:
2903 case PCI_EXP_TYPE_LEG_END:
2904 case PCI_EXP_TYPE_RC_END:
2905 if (!pdev->multifunction)
2906 break;
2907
2908 return pci_acs_flags_enabled(pdev, acs_flags);
2909 }
2910
2911 /*
2912 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2913 * to single function devices with the exception of downstream ports.
2914 */
2915 return true;
2916 }
2917
2918 /**
2919 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2920 * @start: starting downstream device
2921 * @end: ending upstream device or NULL to search to the root bus
2922 * @acs_flags: required flags
2923 *
2924 * Walk up a device tree from start to end testing PCI ACS support. If
2925 * any step along the way does not support the required flags, return false.
2926 */
2927 bool pci_acs_path_enabled(struct pci_dev *start,
2928 struct pci_dev *end, u16 acs_flags)
2929 {
2930 struct pci_dev *pdev, *parent = start;
2931
2932 do {
2933 pdev = parent;
2934
2935 if (!pci_acs_enabled(pdev, acs_flags))
2936 return false;
2937
2938 if (pci_is_root_bus(pdev->bus))
2939 return (end == NULL);
2940
2941 parent = pdev->bus->self;
2942 } while (pdev != end);
2943
2944 return true;
2945 }
2946
2947 /**
2948 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2949 * @dev: the PCI device
2950 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2951 *
2952 * Perform INTx swizzling for a device behind one level of bridge. This is
2953 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2954 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2955 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2956 * the PCI Express Base Specification, Revision 2.1)
2957 */
2958 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2959 {
2960 int slot;
2961
2962 if (pci_ari_enabled(dev->bus))
2963 slot = 0;
2964 else
2965 slot = PCI_SLOT(dev->devfn);
2966
2967 return (((pin - 1) + slot) % 4) + 1;
2968 }
2969
2970 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2971 {
2972 u8 pin;
2973
2974 pin = dev->pin;
2975 if (!pin)
2976 return -1;
2977
2978 while (!pci_is_root_bus(dev->bus)) {
2979 pin = pci_swizzle_interrupt_pin(dev, pin);
2980 dev = dev->bus->self;
2981 }
2982 *bridge = dev;
2983 return pin;
2984 }
2985
2986 /**
2987 * pci_common_swizzle - swizzle INTx all the way to root bridge
2988 * @dev: the PCI device
2989 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2990 *
2991 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2992 * bridges all the way up to a PCI root bus.
2993 */
2994 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2995 {
2996 u8 pin = *pinp;
2997
2998 while (!pci_is_root_bus(dev->bus)) {
2999 pin = pci_swizzle_interrupt_pin(dev, pin);
3000 dev = dev->bus->self;
3001 }
3002 *pinp = pin;
3003 return PCI_SLOT(dev->devfn);
3004 }
3005 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3006
3007 /**
3008 * pci_release_region - Release a PCI bar
3009 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3010 * @bar: BAR to release
3011 *
3012 * Releases the PCI I/O and memory resources previously reserved by a
3013 * successful call to pci_request_region. Call this function only
3014 * after all use of the PCI regions has ceased.
3015 */
3016 void pci_release_region(struct pci_dev *pdev, int bar)
3017 {
3018 struct pci_devres *dr;
3019
3020 if (pci_resource_len(pdev, bar) == 0)
3021 return;
3022 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3023 release_region(pci_resource_start(pdev, bar),
3024 pci_resource_len(pdev, bar));
3025 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3026 release_mem_region(pci_resource_start(pdev, bar),
3027 pci_resource_len(pdev, bar));
3028
3029 dr = find_pci_dr(pdev);
3030 if (dr)
3031 dr->region_mask &= ~(1 << bar);
3032 }
3033 EXPORT_SYMBOL(pci_release_region);
3034
3035 /**
3036 * __pci_request_region - Reserved PCI I/O and memory resource
3037 * @pdev: PCI device whose resources are to be reserved
3038 * @bar: BAR to be reserved
3039 * @res_name: Name to be associated with resource.
3040 * @exclusive: whether the region access is exclusive or not
3041 *
3042 * Mark the PCI region associated with PCI device @pdev BR @bar as
3043 * being reserved by owner @res_name. Do not access any
3044 * address inside the PCI regions unless this call returns
3045 * successfully.
3046 *
3047 * If @exclusive is set, then the region is marked so that userspace
3048 * is explicitly not allowed to map the resource via /dev/mem or
3049 * sysfs MMIO access.
3050 *
3051 * Returns 0 on success, or %EBUSY on error. A warning
3052 * message is also printed on failure.
3053 */
3054 static int __pci_request_region(struct pci_dev *pdev, int bar,
3055 const char *res_name, int exclusive)
3056 {
3057 struct pci_devres *dr;
3058
3059 if (pci_resource_len(pdev, bar) == 0)
3060 return 0;
3061
3062 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3063 if (!request_region(pci_resource_start(pdev, bar),
3064 pci_resource_len(pdev, bar), res_name))
3065 goto err_out;
3066 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3067 if (!__request_mem_region(pci_resource_start(pdev, bar),
3068 pci_resource_len(pdev, bar), res_name,
3069 exclusive))
3070 goto err_out;
3071 }
3072
3073 dr = find_pci_dr(pdev);
3074 if (dr)
3075 dr->region_mask |= 1 << bar;
3076
3077 return 0;
3078
3079 err_out:
3080 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
3081 &pdev->resource[bar]);
3082 return -EBUSY;
3083 }
3084
3085 /**
3086 * pci_request_region - Reserve PCI I/O and memory resource
3087 * @pdev: PCI device whose resources are to be reserved
3088 * @bar: BAR to be reserved
3089 * @res_name: Name to be associated with resource
3090 *
3091 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3092 * being reserved by owner @res_name. Do not access any
3093 * address inside the PCI regions unless this call returns
3094 * successfully.
3095 *
3096 * Returns 0 on success, or %EBUSY on error. A warning
3097 * message is also printed on failure.
3098 */
3099 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3100 {
3101 return __pci_request_region(pdev, bar, res_name, 0);
3102 }
3103 EXPORT_SYMBOL(pci_request_region);
3104
3105 /**
3106 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3107 * @pdev: PCI device whose resources are to be reserved
3108 * @bar: BAR to be reserved
3109 * @res_name: Name to be associated with resource.
3110 *
3111 * Mark the PCI region associated with PCI device @pdev BR @bar as
3112 * being reserved by owner @res_name. Do not access any
3113 * address inside the PCI regions unless this call returns
3114 * successfully.
3115 *
3116 * Returns 0 on success, or %EBUSY on error. A warning
3117 * message is also printed on failure.
3118 *
3119 * The key difference that _exclusive makes it that userspace is
3120 * explicitly not allowed to map the resource via /dev/mem or
3121 * sysfs.
3122 */
3123 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3124 const char *res_name)
3125 {
3126 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3127 }
3128 EXPORT_SYMBOL(pci_request_region_exclusive);
3129
3130 /**
3131 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3132 * @pdev: PCI device whose resources were previously reserved
3133 * @bars: Bitmask of BARs to be released
3134 *
3135 * Release selected PCI I/O and memory resources previously reserved.
3136 * Call this function only after all use of the PCI regions has ceased.
3137 */
3138 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3139 {
3140 int i;
3141
3142 for (i = 0; i < 6; i++)
3143 if (bars & (1 << i))
3144 pci_release_region(pdev, i);
3145 }
3146 EXPORT_SYMBOL(pci_release_selected_regions);
3147
3148 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3149 const char *res_name, int excl)
3150 {
3151 int i;
3152
3153 for (i = 0; i < 6; i++)
3154 if (bars & (1 << i))
3155 if (__pci_request_region(pdev, i, res_name, excl))
3156 goto err_out;
3157 return 0;
3158
3159 err_out:
3160 while (--i >= 0)
3161 if (bars & (1 << i))
3162 pci_release_region(pdev, i);
3163
3164 return -EBUSY;
3165 }
3166
3167
3168 /**
3169 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3170 * @pdev: PCI device whose resources are to be reserved
3171 * @bars: Bitmask of BARs to be requested
3172 * @res_name: Name to be associated with resource
3173 */
3174 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3175 const char *res_name)
3176 {
3177 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3178 }
3179 EXPORT_SYMBOL(pci_request_selected_regions);
3180
3181 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3182 const char *res_name)
3183 {
3184 return __pci_request_selected_regions(pdev, bars, res_name,
3185 IORESOURCE_EXCLUSIVE);
3186 }
3187 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3188
3189 /**
3190 * pci_release_regions - Release reserved PCI I/O and memory resources
3191 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3192 *
3193 * Releases all PCI I/O and memory resources previously reserved by a
3194 * successful call to pci_request_regions. Call this function only
3195 * after all use of the PCI regions has ceased.
3196 */
3197
3198 void pci_release_regions(struct pci_dev *pdev)
3199 {
3200 pci_release_selected_regions(pdev, (1 << 6) - 1);
3201 }
3202 EXPORT_SYMBOL(pci_release_regions);
3203
3204 /**
3205 * pci_request_regions - Reserved PCI I/O and memory resources
3206 * @pdev: PCI device whose resources are to be reserved
3207 * @res_name: Name to be associated with resource.
3208 *
3209 * Mark all PCI regions associated with PCI device @pdev as
3210 * being reserved by owner @res_name. Do not access any
3211 * address inside the PCI regions unless this call returns
3212 * successfully.
3213 *
3214 * Returns 0 on success, or %EBUSY on error. A warning
3215 * message is also printed on failure.
3216 */
3217 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3218 {
3219 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3220 }
3221 EXPORT_SYMBOL(pci_request_regions);
3222
3223 /**
3224 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3225 * @pdev: PCI device whose resources are to be reserved
3226 * @res_name: Name to be associated with resource.
3227 *
3228 * Mark all PCI regions associated with PCI device @pdev as
3229 * being reserved by owner @res_name. Do not access any
3230 * address inside the PCI regions unless this call returns
3231 * successfully.
3232 *
3233 * pci_request_regions_exclusive() will mark the region so that
3234 * /dev/mem and the sysfs MMIO access will not be allowed.
3235 *
3236 * Returns 0 on success, or %EBUSY on error. A warning
3237 * message is also printed on failure.
3238 */
3239 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3240 {
3241 return pci_request_selected_regions_exclusive(pdev,
3242 ((1 << 6) - 1), res_name);
3243 }
3244 EXPORT_SYMBOL(pci_request_regions_exclusive);
3245
3246 #ifdef PCI_IOBASE
3247 struct io_range {
3248 struct list_head list;
3249 phys_addr_t start;
3250 resource_size_t size;
3251 };
3252
3253 static LIST_HEAD(io_range_list);
3254 static DEFINE_SPINLOCK(io_range_lock);
3255 #endif
3256
3257 /*
3258 * Record the PCI IO range (expressed as CPU physical address + size).
3259 * Return a negative value if an error has occured, zero otherwise
3260 */
3261 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
3262 {
3263 int err = 0;
3264
3265 #ifdef PCI_IOBASE
3266 struct io_range *range;
3267 resource_size_t allocated_size = 0;
3268
3269 /* check if the range hasn't been previously recorded */
3270 spin_lock(&io_range_lock);
3271 list_for_each_entry(range, &io_range_list, list) {
3272 if (addr >= range->start && addr + size <= range->start + size) {
3273 /* range already registered, bail out */
3274 goto end_register;
3275 }
3276 allocated_size += range->size;
3277 }
3278
3279 /* range not registed yet, check for available space */
3280 if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
3281 /* if it's too big check if 64K space can be reserved */
3282 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
3283 err = -E2BIG;
3284 goto end_register;
3285 }
3286
3287 size = SZ_64K;
3288 pr_warn("Requested IO range too big, new size set to 64K\n");
3289 }
3290
3291 /* add the range to the list */
3292 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3293 if (!range) {
3294 err = -ENOMEM;
3295 goto end_register;
3296 }
3297
3298 range->start = addr;
3299 range->size = size;
3300
3301 list_add_tail(&range->list, &io_range_list);
3302
3303 end_register:
3304 spin_unlock(&io_range_lock);
3305 #endif
3306
3307 return err;
3308 }
3309
3310 phys_addr_t pci_pio_to_address(unsigned long pio)
3311 {
3312 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3313
3314 #ifdef PCI_IOBASE
3315 struct io_range *range;
3316 resource_size_t allocated_size = 0;
3317
3318 if (pio > IO_SPACE_LIMIT)
3319 return address;
3320
3321 spin_lock(&io_range_lock);
3322 list_for_each_entry(range, &io_range_list, list) {
3323 if (pio >= allocated_size && pio < allocated_size + range->size) {
3324 address = range->start + pio - allocated_size;
3325 break;
3326 }
3327 allocated_size += range->size;
3328 }
3329 spin_unlock(&io_range_lock);
3330 #endif
3331
3332 return address;
3333 }
3334
3335 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3336 {
3337 #ifdef PCI_IOBASE
3338 struct io_range *res;
3339 resource_size_t offset = 0;
3340 unsigned long addr = -1;
3341
3342 spin_lock(&io_range_lock);
3343 list_for_each_entry(res, &io_range_list, list) {
3344 if (address >= res->start && address < res->start + res->size) {
3345 addr = address - res->start + offset;
3346 break;
3347 }
3348 offset += res->size;
3349 }
3350 spin_unlock(&io_range_lock);
3351
3352 return addr;
3353 #else
3354 if (address > IO_SPACE_LIMIT)
3355 return (unsigned long)-1;
3356
3357 return (unsigned long) address;
3358 #endif
3359 }
3360
3361 /**
3362 * pci_remap_iospace - Remap the memory mapped I/O space
3363 * @res: Resource describing the I/O space
3364 * @phys_addr: physical address of range to be mapped
3365 *
3366 * Remap the memory mapped I/O space described by the @res
3367 * and the CPU physical address @phys_addr into virtual address space.
3368 * Only architectures that have memory mapped IO functions defined
3369 * (and the PCI_IOBASE value defined) should call this function.
3370 */
3371 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3372 {
3373 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3374 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3375
3376 if (!(res->flags & IORESOURCE_IO))
3377 return -EINVAL;
3378
3379 if (res->end > IO_SPACE_LIMIT)
3380 return -EINVAL;
3381
3382 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3383 pgprot_device(PAGE_KERNEL));
3384 #else
3385 /* this architecture does not have memory mapped I/O space,
3386 so this function should never be called */
3387 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3388 return -ENODEV;
3389 #endif
3390 }
3391
3392 /**
3393 * pci_unmap_iospace - Unmap the memory mapped I/O space
3394 * @res: resource to be unmapped
3395 *
3396 * Unmap the CPU virtual address @res from virtual address space.
3397 * Only architectures that have memory mapped IO functions defined
3398 * (and the PCI_IOBASE value defined) should call this function.
3399 */
3400 void pci_unmap_iospace(struct resource *res)
3401 {
3402 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3403 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3404
3405 unmap_kernel_range(vaddr, resource_size(res));
3406 #endif
3407 }
3408
3409 static void __pci_set_master(struct pci_dev *dev, bool enable)
3410 {
3411 u16 old_cmd, cmd;
3412
3413 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3414 if (enable)
3415 cmd = old_cmd | PCI_COMMAND_MASTER;
3416 else
3417 cmd = old_cmd & ~PCI_COMMAND_MASTER;
3418 if (cmd != old_cmd) {
3419 dev_dbg(&dev->dev, "%s bus mastering\n",
3420 enable ? "enabling" : "disabling");
3421 pci_write_config_word(dev, PCI_COMMAND, cmd);
3422 }
3423 dev->is_busmaster = enable;
3424 }
3425
3426 /**
3427 * pcibios_setup - process "pci=" kernel boot arguments
3428 * @str: string used to pass in "pci=" kernel boot arguments
3429 *
3430 * Process kernel boot arguments. This is the default implementation.
3431 * Architecture specific implementations can override this as necessary.
3432 */
3433 char * __weak __init pcibios_setup(char *str)
3434 {
3435 return str;
3436 }
3437
3438 /**
3439 * pcibios_set_master - enable PCI bus-mastering for device dev
3440 * @dev: the PCI device to enable
3441 *
3442 * Enables PCI bus-mastering for the device. This is the default
3443 * implementation. Architecture specific implementations can override
3444 * this if necessary.
3445 */
3446 void __weak pcibios_set_master(struct pci_dev *dev)
3447 {
3448 u8 lat;
3449
3450 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3451 if (pci_is_pcie(dev))
3452 return;
3453
3454 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3455 if (lat < 16)
3456 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3457 else if (lat > pcibios_max_latency)
3458 lat = pcibios_max_latency;
3459 else
3460 return;
3461
3462 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3463 }
3464
3465 /**
3466 * pci_set_master - enables bus-mastering for device dev
3467 * @dev: the PCI device to enable
3468 *
3469 * Enables bus-mastering on the device and calls pcibios_set_master()
3470 * to do the needed arch specific settings.
3471 */
3472 void pci_set_master(struct pci_dev *dev)
3473 {
3474 __pci_set_master(dev, true);
3475 pcibios_set_master(dev);
3476 }
3477 EXPORT_SYMBOL(pci_set_master);
3478
3479 /**
3480 * pci_clear_master - disables bus-mastering for device dev
3481 * @dev: the PCI device to disable
3482 */
3483 void pci_clear_master(struct pci_dev *dev)
3484 {
3485 __pci_set_master(dev, false);
3486 }
3487 EXPORT_SYMBOL(pci_clear_master);
3488
3489 /**
3490 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3491 * @dev: the PCI device for which MWI is to be enabled
3492 *
3493 * Helper function for pci_set_mwi.
3494 * Originally copied from drivers/net/acenic.c.
3495 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3496 *
3497 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3498 */
3499 int pci_set_cacheline_size(struct pci_dev *dev)
3500 {
3501 u8 cacheline_size;
3502
3503 if (!pci_cache_line_size)
3504 return -EINVAL;
3505
3506 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3507 equal to or multiple of the right value. */
3508 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3509 if (cacheline_size >= pci_cache_line_size &&
3510 (cacheline_size % pci_cache_line_size) == 0)
3511 return 0;
3512
3513 /* Write the correct value. */
3514 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3515 /* Read it back. */
3516 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3517 if (cacheline_size == pci_cache_line_size)
3518 return 0;
3519
3520 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3521 pci_cache_line_size << 2);
3522
3523 return -EINVAL;
3524 }
3525 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3526
3527 /**
3528 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3529 * @dev: the PCI device for which MWI is enabled
3530 *
3531 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3532 *
3533 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3534 */
3535 int pci_set_mwi(struct pci_dev *dev)
3536 {
3537 #ifdef PCI_DISABLE_MWI
3538 return 0;
3539 #else
3540 int rc;
3541 u16 cmd;
3542
3543 rc = pci_set_cacheline_size(dev);
3544 if (rc)
3545 return rc;
3546
3547 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3548 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3549 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3550 cmd |= PCI_COMMAND_INVALIDATE;
3551 pci_write_config_word(dev, PCI_COMMAND, cmd);
3552 }
3553 return 0;
3554 #endif
3555 }
3556 EXPORT_SYMBOL(pci_set_mwi);
3557
3558 /**
3559 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3560 * @dev: the PCI device for which MWI is enabled
3561 *
3562 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3563 * Callers are not required to check the return value.
3564 *
3565 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3566 */
3567 int pci_try_set_mwi(struct pci_dev *dev)
3568 {
3569 #ifdef PCI_DISABLE_MWI
3570 return 0;
3571 #else
3572 return pci_set_mwi(dev);
3573 #endif
3574 }
3575 EXPORT_SYMBOL(pci_try_set_mwi);
3576
3577 /**
3578 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3579 * @dev: the PCI device to disable
3580 *
3581 * Disables PCI Memory-Write-Invalidate transaction on the device
3582 */
3583 void pci_clear_mwi(struct pci_dev *dev)
3584 {
3585 #ifndef PCI_DISABLE_MWI
3586 u16 cmd;
3587
3588 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3589 if (cmd & PCI_COMMAND_INVALIDATE) {
3590 cmd &= ~PCI_COMMAND_INVALIDATE;
3591 pci_write_config_word(dev, PCI_COMMAND, cmd);
3592 }
3593 #endif
3594 }
3595 EXPORT_SYMBOL(pci_clear_mwi);
3596
3597 /**
3598 * pci_intx - enables/disables PCI INTx for device dev
3599 * @pdev: the PCI device to operate on
3600 * @enable: boolean: whether to enable or disable PCI INTx
3601 *
3602 * Enables/disables PCI INTx for device dev
3603 */
3604 void pci_intx(struct pci_dev *pdev, int enable)
3605 {
3606 u16 pci_command, new;
3607
3608 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3609
3610 if (enable)
3611 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3612 else
3613 new = pci_command | PCI_COMMAND_INTX_DISABLE;
3614
3615 if (new != pci_command) {
3616 struct pci_devres *dr;
3617
3618 pci_write_config_word(pdev, PCI_COMMAND, new);
3619
3620 dr = find_pci_dr(pdev);
3621 if (dr && !dr->restore_intx) {
3622 dr->restore_intx = 1;
3623 dr->orig_intx = !enable;
3624 }
3625 }
3626 }
3627 EXPORT_SYMBOL_GPL(pci_intx);
3628
3629 /**
3630 * pci_intx_mask_supported - probe for INTx masking support
3631 * @dev: the PCI device to operate on
3632 *
3633 * Check if the device dev support INTx masking via the config space
3634 * command word.
3635 */
3636 bool pci_intx_mask_supported(struct pci_dev *dev)
3637 {
3638 bool mask_supported = false;
3639 u16 orig, new;
3640
3641 if (dev->broken_intx_masking)
3642 return false;
3643
3644 pci_cfg_access_lock(dev);
3645
3646 pci_read_config_word(dev, PCI_COMMAND, &orig);
3647 pci_write_config_word(dev, PCI_COMMAND,
3648 orig ^ PCI_COMMAND_INTX_DISABLE);
3649 pci_read_config_word(dev, PCI_COMMAND, &new);
3650
3651 /*
3652 * There's no way to protect against hardware bugs or detect them
3653 * reliably, but as long as we know what the value should be, let's
3654 * go ahead and check it.
3655 */
3656 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3657 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3658 orig, new);
3659 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3660 mask_supported = true;
3661 pci_write_config_word(dev, PCI_COMMAND, orig);
3662 }
3663
3664 pci_cfg_access_unlock(dev);
3665 return mask_supported;
3666 }
3667 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3668
3669 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3670 {
3671 struct pci_bus *bus = dev->bus;
3672 bool mask_updated = true;
3673 u32 cmd_status_dword;
3674 u16 origcmd, newcmd;
3675 unsigned long flags;
3676 bool irq_pending;
3677
3678 /*
3679 * We do a single dword read to retrieve both command and status.
3680 * Document assumptions that make this possible.
3681 */
3682 BUILD_BUG_ON(PCI_COMMAND % 4);
3683 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3684
3685 raw_spin_lock_irqsave(&pci_lock, flags);
3686
3687 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3688
3689 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3690
3691 /*
3692 * Check interrupt status register to see whether our device
3693 * triggered the interrupt (when masking) or the next IRQ is
3694 * already pending (when unmasking).
3695 */
3696 if (mask != irq_pending) {
3697 mask_updated = false;
3698 goto done;
3699 }
3700
3701 origcmd = cmd_status_dword;
3702 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3703 if (mask)
3704 newcmd |= PCI_COMMAND_INTX_DISABLE;
3705 if (newcmd != origcmd)
3706 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3707
3708 done:
3709 raw_spin_unlock_irqrestore(&pci_lock, flags);
3710
3711 return mask_updated;
3712 }
3713
3714 /**
3715 * pci_check_and_mask_intx - mask INTx on pending interrupt
3716 * @dev: the PCI device to operate on
3717 *
3718 * Check if the device dev has its INTx line asserted, mask it and
3719 * return true in that case. False is returned if not interrupt was
3720 * pending.
3721 */
3722 bool pci_check_and_mask_intx(struct pci_dev *dev)
3723 {
3724 return pci_check_and_set_intx_mask(dev, true);
3725 }
3726 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3727
3728 /**
3729 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3730 * @dev: the PCI device to operate on
3731 *
3732 * Check if the device dev has its INTx line asserted, unmask it if not
3733 * and return true. False is returned and the mask remains active if
3734 * there was still an interrupt pending.
3735 */
3736 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3737 {
3738 return pci_check_and_set_intx_mask(dev, false);
3739 }
3740 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3741
3742 /**
3743 * pci_wait_for_pending_transaction - waits for pending transaction
3744 * @dev: the PCI device to operate on
3745 *
3746 * Return 0 if transaction is pending 1 otherwise.
3747 */
3748 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3749 {
3750 if (!pci_is_pcie(dev))
3751 return 1;
3752
3753 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3754 PCI_EXP_DEVSTA_TRPND);
3755 }
3756 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3757
3758 /*
3759 * We should only need to wait 100ms after FLR, but some devices take longer.
3760 * Wait for up to 1000ms for config space to return something other than -1.
3761 * Intel IGD requires this when an LCD panel is attached. We read the 2nd
3762 * dword because VFs don't implement the 1st dword.
3763 */
3764 static void pci_flr_wait(struct pci_dev *dev)
3765 {
3766 int i = 0;
3767 u32 id;
3768
3769 do {
3770 msleep(100);
3771 pci_read_config_dword(dev, PCI_COMMAND, &id);
3772 } while (i++ < 10 && id == ~0);
3773
3774 if (id == ~0)
3775 dev_warn(&dev->dev, "Failed to return from FLR\n");
3776 else if (i > 1)
3777 dev_info(&dev->dev, "Required additional %dms to return from FLR\n",
3778 (i - 1) * 100);
3779 }
3780
3781 static int pcie_flr(struct pci_dev *dev, int probe)
3782 {
3783 u32 cap;
3784
3785 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3786 if (!(cap & PCI_EXP_DEVCAP_FLR))
3787 return -ENOTTY;
3788
3789 if (probe)
3790 return 0;
3791
3792 if (!pci_wait_for_pending_transaction(dev))
3793 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3794
3795 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3796 pci_flr_wait(dev);
3797 return 0;
3798 }
3799
3800 static int pci_af_flr(struct pci_dev *dev, int probe)
3801 {
3802 int pos;
3803 u8 cap;
3804
3805 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3806 if (!pos)
3807 return -ENOTTY;
3808
3809 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3810 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3811 return -ENOTTY;
3812
3813 if (probe)
3814 return 0;
3815
3816 /*
3817 * Wait for Transaction Pending bit to clear. A word-aligned test
3818 * is used, so we use the conrol offset rather than status and shift
3819 * the test bit to match.
3820 */
3821 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3822 PCI_AF_STATUS_TP << 8))
3823 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3824
3825 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3826 pci_flr_wait(dev);
3827 return 0;
3828 }
3829
3830 /**
3831 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3832 * @dev: Device to reset.
3833 * @probe: If set, only check if the device can be reset this way.
3834 *
3835 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3836 * unset, it will be reinitialized internally when going from PCI_D3hot to
3837 * PCI_D0. If that's the case and the device is not in a low-power state
3838 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3839 *
3840 * NOTE: This causes the caller to sleep for twice the device power transition
3841 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3842 * by default (i.e. unless the @dev's d3_delay field has a different value).
3843 * Moreover, only devices in D0 can be reset by this function.
3844 */
3845 static int pci_pm_reset(struct pci_dev *dev, int probe)
3846 {
3847 u16 csr;
3848
3849 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3850 return -ENOTTY;
3851
3852 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3853 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3854 return -ENOTTY;
3855
3856 if (probe)
3857 return 0;
3858
3859 if (dev->current_state != PCI_D0)
3860 return -EINVAL;
3861
3862 csr &= ~PCI_PM_CTRL_STATE_MASK;
3863 csr |= PCI_D3hot;
3864 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3865 pci_dev_d3_sleep(dev);
3866
3867 csr &= ~PCI_PM_CTRL_STATE_MASK;
3868 csr |= PCI_D0;
3869 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3870 pci_dev_d3_sleep(dev);
3871
3872 return 0;
3873 }
3874
3875 void pci_reset_secondary_bus(struct pci_dev *dev)
3876 {
3877 u16 ctrl;
3878
3879 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3880 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3881 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3882 /*
3883 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3884 * this to 2ms to ensure that we meet the minimum requirement.
3885 */
3886 msleep(2);
3887
3888 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3889 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3890
3891 /*
3892 * Trhfa for conventional PCI is 2^25 clock cycles.
3893 * Assuming a minimum 33MHz clock this results in a 1s
3894 * delay before we can consider subordinate devices to
3895 * be re-initialized. PCIe has some ways to shorten this,
3896 * but we don't make use of them yet.
3897 */
3898 ssleep(1);
3899 }
3900
3901 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3902 {
3903 pci_reset_secondary_bus(dev);
3904 }
3905
3906 /**
3907 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3908 * @dev: Bridge device
3909 *
3910 * Use the bridge control register to assert reset on the secondary bus.
3911 * Devices on the secondary bus are left in power-on state.
3912 */
3913 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3914 {
3915 pcibios_reset_secondary_bus(dev);
3916 }
3917 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3918
3919 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3920 {
3921 struct pci_dev *pdev;
3922
3923 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
3924 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3925 return -ENOTTY;
3926
3927 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3928 if (pdev != dev)
3929 return -ENOTTY;
3930
3931 if (probe)
3932 return 0;
3933
3934 pci_reset_bridge_secondary_bus(dev->bus->self);
3935
3936 return 0;
3937 }
3938
3939 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3940 {
3941 int rc = -ENOTTY;
3942
3943 if (!hotplug || !try_module_get(hotplug->ops->owner))
3944 return rc;
3945
3946 if (hotplug->ops->reset_slot)
3947 rc = hotplug->ops->reset_slot(hotplug, probe);
3948
3949 module_put(hotplug->ops->owner);
3950
3951 return rc;
3952 }
3953
3954 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3955 {
3956 struct pci_dev *pdev;
3957
3958 if (dev->subordinate || !dev->slot ||
3959 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3960 return -ENOTTY;
3961
3962 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3963 if (pdev != dev && pdev->slot == dev->slot)
3964 return -ENOTTY;
3965
3966 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3967 }
3968
3969 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3970 {
3971 int rc;
3972
3973 might_sleep();
3974
3975 rc = pci_dev_specific_reset(dev, probe);
3976 if (rc != -ENOTTY)
3977 goto done;
3978
3979 rc = pcie_flr(dev, probe);
3980 if (rc != -ENOTTY)
3981 goto done;
3982
3983 rc = pci_af_flr(dev, probe);
3984 if (rc != -ENOTTY)
3985 goto done;
3986
3987 rc = pci_pm_reset(dev, probe);
3988 if (rc != -ENOTTY)
3989 goto done;
3990
3991 rc = pci_dev_reset_slot_function(dev, probe);
3992 if (rc != -ENOTTY)
3993 goto done;
3994
3995 rc = pci_parent_bus_reset(dev, probe);
3996 done:
3997 return rc;
3998 }
3999
4000 static void pci_dev_lock(struct pci_dev *dev)
4001 {
4002 pci_cfg_access_lock(dev);
4003 /* block PM suspend, driver probe, etc. */
4004 device_lock(&dev->dev);
4005 }
4006
4007 /* Return 1 on successful lock, 0 on contention */
4008 static int pci_dev_trylock(struct pci_dev *dev)
4009 {
4010 if (pci_cfg_access_trylock(dev)) {
4011 if (device_trylock(&dev->dev))
4012 return 1;
4013 pci_cfg_access_unlock(dev);
4014 }
4015
4016 return 0;
4017 }
4018
4019 static void pci_dev_unlock(struct pci_dev *dev)
4020 {
4021 device_unlock(&dev->dev);
4022 pci_cfg_access_unlock(dev);
4023 }
4024
4025 /**
4026 * pci_reset_notify - notify device driver of reset
4027 * @dev: device to be notified of reset
4028 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
4029 * completed
4030 *
4031 * Must be called prior to device access being disabled and after device
4032 * access is restored.
4033 */
4034 static void pci_reset_notify(struct pci_dev *dev, bool prepare)
4035 {
4036 const struct pci_error_handlers *err_handler =
4037 dev->driver ? dev->driver->err_handler : NULL;
4038 if (err_handler && err_handler->reset_notify)
4039 err_handler->reset_notify(dev, prepare);
4040 }
4041
4042 static void pci_dev_save_and_disable(struct pci_dev *dev)
4043 {
4044 pci_reset_notify(dev, true);
4045
4046 /*
4047 * Wake-up device prior to save. PM registers default to D0 after
4048 * reset and a simple register restore doesn't reliably return
4049 * to a non-D0 state anyway.
4050 */
4051 pci_set_power_state(dev, PCI_D0);
4052
4053 pci_save_state(dev);
4054 /*
4055 * Disable the device by clearing the Command register, except for
4056 * INTx-disable which is set. This not only disables MMIO and I/O port
4057 * BARs, but also prevents the device from being Bus Master, preventing
4058 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4059 * compliant devices, INTx-disable prevents legacy interrupts.
4060 */
4061 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4062 }
4063
4064 static void pci_dev_restore(struct pci_dev *dev)
4065 {
4066 pci_restore_state(dev);
4067 pci_reset_notify(dev, false);
4068 }
4069
4070 static int pci_dev_reset(struct pci_dev *dev, int probe)
4071 {
4072 int rc;
4073
4074 if (!probe)
4075 pci_dev_lock(dev);
4076
4077 rc = __pci_dev_reset(dev, probe);
4078
4079 if (!probe)
4080 pci_dev_unlock(dev);
4081
4082 return rc;
4083 }
4084
4085 /**
4086 * __pci_reset_function - reset a PCI device function
4087 * @dev: PCI device to reset
4088 *
4089 * Some devices allow an individual function to be reset without affecting
4090 * other functions in the same device. The PCI device must be responsive
4091 * to PCI config space in order to use this function.
4092 *
4093 * The device function is presumed to be unused when this function is called.
4094 * Resetting the device will make the contents of PCI configuration space
4095 * random, so any caller of this must be prepared to reinitialise the
4096 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4097 * etc.
4098 *
4099 * Returns 0 if the device function was successfully reset or negative if the
4100 * device doesn't support resetting a single function.
4101 */
4102 int __pci_reset_function(struct pci_dev *dev)
4103 {
4104 return pci_dev_reset(dev, 0);
4105 }
4106 EXPORT_SYMBOL_GPL(__pci_reset_function);
4107
4108 /**
4109 * __pci_reset_function_locked - reset a PCI device function while holding
4110 * the @dev mutex lock.
4111 * @dev: PCI device to reset
4112 *
4113 * Some devices allow an individual function to be reset without affecting
4114 * other functions in the same device. The PCI device must be responsive
4115 * to PCI config space in order to use this function.
4116 *
4117 * The device function is presumed to be unused and the caller is holding
4118 * the device mutex lock when this function is called.
4119 * Resetting the device will make the contents of PCI configuration space
4120 * random, so any caller of this must be prepared to reinitialise the
4121 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4122 * etc.
4123 *
4124 * Returns 0 if the device function was successfully reset or negative if the
4125 * device doesn't support resetting a single function.
4126 */
4127 int __pci_reset_function_locked(struct pci_dev *dev)
4128 {
4129 return __pci_dev_reset(dev, 0);
4130 }
4131 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4132
4133 /**
4134 * pci_probe_reset_function - check whether the device can be safely reset
4135 * @dev: PCI device to reset
4136 *
4137 * Some devices allow an individual function to be reset without affecting
4138 * other functions in the same device. The PCI device must be responsive
4139 * to PCI config space in order to use this function.
4140 *
4141 * Returns 0 if the device function can be reset or negative if the
4142 * device doesn't support resetting a single function.
4143 */
4144 int pci_probe_reset_function(struct pci_dev *dev)
4145 {
4146 return pci_dev_reset(dev, 1);
4147 }
4148
4149 /**
4150 * pci_reset_function - quiesce and reset a PCI device function
4151 * @dev: PCI device to reset
4152 *
4153 * Some devices allow an individual function to be reset without affecting
4154 * other functions in the same device. The PCI device must be responsive
4155 * to PCI config space in order to use this function.
4156 *
4157 * This function does not just reset the PCI portion of a device, but
4158 * clears all the state associated with the device. This function differs
4159 * from __pci_reset_function in that it saves and restores device state
4160 * over the reset.
4161 *
4162 * Returns 0 if the device function was successfully reset or negative if the
4163 * device doesn't support resetting a single function.
4164 */
4165 int pci_reset_function(struct pci_dev *dev)
4166 {
4167 int rc;
4168
4169 rc = pci_dev_reset(dev, 1);
4170 if (rc)
4171 return rc;
4172
4173 pci_dev_save_and_disable(dev);
4174
4175 rc = pci_dev_reset(dev, 0);
4176
4177 pci_dev_restore(dev);
4178
4179 return rc;
4180 }
4181 EXPORT_SYMBOL_GPL(pci_reset_function);
4182
4183 /**
4184 * pci_try_reset_function - quiesce and reset a PCI device function
4185 * @dev: PCI device to reset
4186 *
4187 * Same as above, except return -EAGAIN if unable to lock device.
4188 */
4189 int pci_try_reset_function(struct pci_dev *dev)
4190 {
4191 int rc;
4192
4193 rc = pci_dev_reset(dev, 1);
4194 if (rc)
4195 return rc;
4196
4197 pci_dev_save_and_disable(dev);
4198
4199 if (pci_dev_trylock(dev)) {
4200 rc = __pci_dev_reset(dev, 0);
4201 pci_dev_unlock(dev);
4202 } else
4203 rc = -EAGAIN;
4204
4205 pci_dev_restore(dev);
4206
4207 return rc;
4208 }
4209 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4210
4211 /* Do any devices on or below this bus prevent a bus reset? */
4212 static bool pci_bus_resetable(struct pci_bus *bus)
4213 {
4214 struct pci_dev *dev;
4215
4216 list_for_each_entry(dev, &bus->devices, bus_list) {
4217 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4218 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4219 return false;
4220 }
4221
4222 return true;
4223 }
4224
4225 /* Lock devices from the top of the tree down */
4226 static void pci_bus_lock(struct pci_bus *bus)
4227 {
4228 struct pci_dev *dev;
4229
4230 list_for_each_entry(dev, &bus->devices, bus_list) {
4231 pci_dev_lock(dev);
4232 if (dev->subordinate)
4233 pci_bus_lock(dev->subordinate);
4234 }
4235 }
4236
4237 /* Unlock devices from the bottom of the tree up */
4238 static void pci_bus_unlock(struct pci_bus *bus)
4239 {
4240 struct pci_dev *dev;
4241
4242 list_for_each_entry(dev, &bus->devices, bus_list) {
4243 if (dev->subordinate)
4244 pci_bus_unlock(dev->subordinate);
4245 pci_dev_unlock(dev);
4246 }
4247 }
4248
4249 /* Return 1 on successful lock, 0 on contention */
4250 static int pci_bus_trylock(struct pci_bus *bus)
4251 {
4252 struct pci_dev *dev;
4253
4254 list_for_each_entry(dev, &bus->devices, bus_list) {
4255 if (!pci_dev_trylock(dev))
4256 goto unlock;
4257 if (dev->subordinate) {
4258 if (!pci_bus_trylock(dev->subordinate)) {
4259 pci_dev_unlock(dev);
4260 goto unlock;
4261 }
4262 }
4263 }
4264 return 1;
4265
4266 unlock:
4267 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4268 if (dev->subordinate)
4269 pci_bus_unlock(dev->subordinate);
4270 pci_dev_unlock(dev);
4271 }
4272 return 0;
4273 }
4274
4275 /* Do any devices on or below this slot prevent a bus reset? */
4276 static bool pci_slot_resetable(struct pci_slot *slot)
4277 {
4278 struct pci_dev *dev;
4279
4280 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4281 if (!dev->slot || dev->slot != slot)
4282 continue;
4283 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4284 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4285 return false;
4286 }
4287
4288 return true;
4289 }
4290
4291 /* Lock devices from the top of the tree down */
4292 static void pci_slot_lock(struct pci_slot *slot)
4293 {
4294 struct pci_dev *dev;
4295
4296 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4297 if (!dev->slot || dev->slot != slot)
4298 continue;
4299 pci_dev_lock(dev);
4300 if (dev->subordinate)
4301 pci_bus_lock(dev->subordinate);
4302 }
4303 }
4304
4305 /* Unlock devices from the bottom of the tree up */
4306 static void pci_slot_unlock(struct pci_slot *slot)
4307 {
4308 struct pci_dev *dev;
4309
4310 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4311 if (!dev->slot || dev->slot != slot)
4312 continue;
4313 if (dev->subordinate)
4314 pci_bus_unlock(dev->subordinate);
4315 pci_dev_unlock(dev);
4316 }
4317 }
4318
4319 /* Return 1 on successful lock, 0 on contention */
4320 static int pci_slot_trylock(struct pci_slot *slot)
4321 {
4322 struct pci_dev *dev;
4323
4324 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4325 if (!dev->slot || dev->slot != slot)
4326 continue;
4327 if (!pci_dev_trylock(dev))
4328 goto unlock;
4329 if (dev->subordinate) {
4330 if (!pci_bus_trylock(dev->subordinate)) {
4331 pci_dev_unlock(dev);
4332 goto unlock;
4333 }
4334 }
4335 }
4336 return 1;
4337
4338 unlock:
4339 list_for_each_entry_continue_reverse(dev,
4340 &slot->bus->devices, bus_list) {
4341 if (!dev->slot || dev->slot != slot)
4342 continue;
4343 if (dev->subordinate)
4344 pci_bus_unlock(dev->subordinate);
4345 pci_dev_unlock(dev);
4346 }
4347 return 0;
4348 }
4349
4350 /* Save and disable devices from the top of the tree down */
4351 static void pci_bus_save_and_disable(struct pci_bus *bus)
4352 {
4353 struct pci_dev *dev;
4354
4355 list_for_each_entry(dev, &bus->devices, bus_list) {
4356 pci_dev_save_and_disable(dev);
4357 if (dev->subordinate)
4358 pci_bus_save_and_disable(dev->subordinate);
4359 }
4360 }
4361
4362 /*
4363 * Restore devices from top of the tree down - parent bridges need to be
4364 * restored before we can get to subordinate devices.
4365 */
4366 static void pci_bus_restore(struct pci_bus *bus)
4367 {
4368 struct pci_dev *dev;
4369
4370 list_for_each_entry(dev, &bus->devices, bus_list) {
4371 pci_dev_restore(dev);
4372 if (dev->subordinate)
4373 pci_bus_restore(dev->subordinate);
4374 }
4375 }
4376
4377 /* Save and disable devices from the top of the tree down */
4378 static void pci_slot_save_and_disable(struct pci_slot *slot)
4379 {
4380 struct pci_dev *dev;
4381
4382 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4383 if (!dev->slot || dev->slot != slot)
4384 continue;
4385 pci_dev_save_and_disable(dev);
4386 if (dev->subordinate)
4387 pci_bus_save_and_disable(dev->subordinate);
4388 }
4389 }
4390
4391 /*
4392 * Restore devices from top of the tree down - parent bridges need to be
4393 * restored before we can get to subordinate devices.
4394 */
4395 static void pci_slot_restore(struct pci_slot *slot)
4396 {
4397 struct pci_dev *dev;
4398
4399 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4400 if (!dev->slot || dev->slot != slot)
4401 continue;
4402 pci_dev_restore(dev);
4403 if (dev->subordinate)
4404 pci_bus_restore(dev->subordinate);
4405 }
4406 }
4407
4408 static int pci_slot_reset(struct pci_slot *slot, int probe)
4409 {
4410 int rc;
4411
4412 if (!slot || !pci_slot_resetable(slot))
4413 return -ENOTTY;
4414
4415 if (!probe)
4416 pci_slot_lock(slot);
4417
4418 might_sleep();
4419
4420 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4421
4422 if (!probe)
4423 pci_slot_unlock(slot);
4424
4425 return rc;
4426 }
4427
4428 /**
4429 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4430 * @slot: PCI slot to probe
4431 *
4432 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4433 */
4434 int pci_probe_reset_slot(struct pci_slot *slot)
4435 {
4436 return pci_slot_reset(slot, 1);
4437 }
4438 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4439
4440 /**
4441 * pci_reset_slot - reset a PCI slot
4442 * @slot: PCI slot to reset
4443 *
4444 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4445 * independent of other slots. For instance, some slots may support slot power
4446 * control. In the case of a 1:1 bus to slot architecture, this function may
4447 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4448 * Generally a slot reset should be attempted before a bus reset. All of the
4449 * function of the slot and any subordinate buses behind the slot are reset
4450 * through this function. PCI config space of all devices in the slot and
4451 * behind the slot is saved before and restored after reset.
4452 *
4453 * Return 0 on success, non-zero on error.
4454 */
4455 int pci_reset_slot(struct pci_slot *slot)
4456 {
4457 int rc;
4458
4459 rc = pci_slot_reset(slot, 1);
4460 if (rc)
4461 return rc;
4462
4463 pci_slot_save_and_disable(slot);
4464
4465 rc = pci_slot_reset(slot, 0);
4466
4467 pci_slot_restore(slot);
4468
4469 return rc;
4470 }
4471 EXPORT_SYMBOL_GPL(pci_reset_slot);
4472
4473 /**
4474 * pci_try_reset_slot - Try to reset a PCI slot
4475 * @slot: PCI slot to reset
4476 *
4477 * Same as above except return -EAGAIN if the slot cannot be locked
4478 */
4479 int pci_try_reset_slot(struct pci_slot *slot)
4480 {
4481 int rc;
4482
4483 rc = pci_slot_reset(slot, 1);
4484 if (rc)
4485 return rc;
4486
4487 pci_slot_save_and_disable(slot);
4488
4489 if (pci_slot_trylock(slot)) {
4490 might_sleep();
4491 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4492 pci_slot_unlock(slot);
4493 } else
4494 rc = -EAGAIN;
4495
4496 pci_slot_restore(slot);
4497
4498 return rc;
4499 }
4500 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4501
4502 static int pci_bus_reset(struct pci_bus *bus, int probe)
4503 {
4504 if (!bus->self || !pci_bus_resetable(bus))
4505 return -ENOTTY;
4506
4507 if (probe)
4508 return 0;
4509
4510 pci_bus_lock(bus);
4511
4512 might_sleep();
4513
4514 pci_reset_bridge_secondary_bus(bus->self);
4515
4516 pci_bus_unlock(bus);
4517
4518 return 0;
4519 }
4520
4521 /**
4522 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4523 * @bus: PCI bus to probe
4524 *
4525 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4526 */
4527 int pci_probe_reset_bus(struct pci_bus *bus)
4528 {
4529 return pci_bus_reset(bus, 1);
4530 }
4531 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4532
4533 /**
4534 * pci_reset_bus - reset a PCI bus
4535 * @bus: top level PCI bus to reset
4536 *
4537 * Do a bus reset on the given bus and any subordinate buses, saving
4538 * and restoring state of all devices.
4539 *
4540 * Return 0 on success, non-zero on error.
4541 */
4542 int pci_reset_bus(struct pci_bus *bus)
4543 {
4544 int rc;
4545
4546 rc = pci_bus_reset(bus, 1);
4547 if (rc)
4548 return rc;
4549
4550 pci_bus_save_and_disable(bus);
4551
4552 rc = pci_bus_reset(bus, 0);
4553
4554 pci_bus_restore(bus);
4555
4556 return rc;
4557 }
4558 EXPORT_SYMBOL_GPL(pci_reset_bus);
4559
4560 /**
4561 * pci_try_reset_bus - Try to reset a PCI bus
4562 * @bus: top level PCI bus to reset
4563 *
4564 * Same as above except return -EAGAIN if the bus cannot be locked
4565 */
4566 int pci_try_reset_bus(struct pci_bus *bus)
4567 {
4568 int rc;
4569
4570 rc = pci_bus_reset(bus, 1);
4571 if (rc)
4572 return rc;
4573
4574 pci_bus_save_and_disable(bus);
4575
4576 if (pci_bus_trylock(bus)) {
4577 might_sleep();
4578 pci_reset_bridge_secondary_bus(bus->self);
4579 pci_bus_unlock(bus);
4580 } else
4581 rc = -EAGAIN;
4582
4583 pci_bus_restore(bus);
4584
4585 return rc;
4586 }
4587 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4588
4589 /**
4590 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4591 * @dev: PCI device to query
4592 *
4593 * Returns mmrbc: maximum designed memory read count in bytes
4594 * or appropriate error value.
4595 */
4596 int pcix_get_max_mmrbc(struct pci_dev *dev)
4597 {
4598 int cap;
4599 u32 stat;
4600
4601 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4602 if (!cap)
4603 return -EINVAL;
4604
4605 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4606 return -EINVAL;
4607
4608 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4609 }
4610 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4611
4612 /**
4613 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4614 * @dev: PCI device to query
4615 *
4616 * Returns mmrbc: maximum memory read count in bytes
4617 * or appropriate error value.
4618 */
4619 int pcix_get_mmrbc(struct pci_dev *dev)
4620 {
4621 int cap;
4622 u16 cmd;
4623
4624 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4625 if (!cap)
4626 return -EINVAL;
4627
4628 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4629 return -EINVAL;
4630
4631 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4632 }
4633 EXPORT_SYMBOL(pcix_get_mmrbc);
4634
4635 /**
4636 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4637 * @dev: PCI device to query
4638 * @mmrbc: maximum memory read count in bytes
4639 * valid values are 512, 1024, 2048, 4096
4640 *
4641 * If possible sets maximum memory read byte count, some bridges have erratas
4642 * that prevent this.
4643 */
4644 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4645 {
4646 int cap;
4647 u32 stat, v, o;
4648 u16 cmd;
4649
4650 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4651 return -EINVAL;
4652
4653 v = ffs(mmrbc) - 10;
4654
4655 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4656 if (!cap)
4657 return -EINVAL;
4658
4659 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4660 return -EINVAL;
4661
4662 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4663 return -E2BIG;
4664
4665 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4666 return -EINVAL;
4667
4668 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4669 if (o != v) {
4670 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4671 return -EIO;
4672
4673 cmd &= ~PCI_X_CMD_MAX_READ;
4674 cmd |= v << 2;
4675 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4676 return -EIO;
4677 }
4678 return 0;
4679 }
4680 EXPORT_SYMBOL(pcix_set_mmrbc);
4681
4682 /**
4683 * pcie_get_readrq - get PCI Express read request size
4684 * @dev: PCI device to query
4685 *
4686 * Returns maximum memory read request in bytes
4687 * or appropriate error value.
4688 */
4689 int pcie_get_readrq(struct pci_dev *dev)
4690 {
4691 u16 ctl;
4692
4693 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4694
4695 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4696 }
4697 EXPORT_SYMBOL(pcie_get_readrq);
4698
4699 /**
4700 * pcie_set_readrq - set PCI Express maximum memory read request
4701 * @dev: PCI device to query
4702 * @rq: maximum memory read count in bytes
4703 * valid values are 128, 256, 512, 1024, 2048, 4096
4704 *
4705 * If possible sets maximum memory read request in bytes
4706 */
4707 int pcie_set_readrq(struct pci_dev *dev, int rq)
4708 {
4709 u16 v;
4710
4711 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4712 return -EINVAL;
4713
4714 /*
4715 * If using the "performance" PCIe config, we clamp the
4716 * read rq size to the max packet size to prevent the
4717 * host bridge generating requests larger than we can
4718 * cope with
4719 */
4720 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4721 int mps = pcie_get_mps(dev);
4722
4723 if (mps < rq)
4724 rq = mps;
4725 }
4726
4727 v = (ffs(rq) - 8) << 12;
4728
4729 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4730 PCI_EXP_DEVCTL_READRQ, v);
4731 }
4732 EXPORT_SYMBOL(pcie_set_readrq);
4733
4734 /**
4735 * pcie_get_mps - get PCI Express maximum payload size
4736 * @dev: PCI device to query
4737 *
4738 * Returns maximum payload size in bytes
4739 */
4740 int pcie_get_mps(struct pci_dev *dev)
4741 {
4742 u16 ctl;
4743
4744 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4745
4746 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4747 }
4748 EXPORT_SYMBOL(pcie_get_mps);
4749
4750 /**
4751 * pcie_set_mps - set PCI Express maximum payload size
4752 * @dev: PCI device to query
4753 * @mps: maximum payload size in bytes
4754 * valid values are 128, 256, 512, 1024, 2048, 4096
4755 *
4756 * If possible sets maximum payload size
4757 */
4758 int pcie_set_mps(struct pci_dev *dev, int mps)
4759 {
4760 u16 v;
4761
4762 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4763 return -EINVAL;
4764
4765 v = ffs(mps) - 8;
4766 if (v > dev->pcie_mpss)
4767 return -EINVAL;
4768 v <<= 5;
4769
4770 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4771 PCI_EXP_DEVCTL_PAYLOAD, v);
4772 }
4773 EXPORT_SYMBOL(pcie_set_mps);
4774
4775 /**
4776 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4777 * @dev: PCI device to query
4778 * @speed: storage for minimum speed
4779 * @width: storage for minimum width
4780 *
4781 * This function will walk up the PCI device chain and determine the minimum
4782 * link width and speed of the device.
4783 */
4784 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4785 enum pcie_link_width *width)
4786 {
4787 int ret;
4788
4789 *speed = PCI_SPEED_UNKNOWN;
4790 *width = PCIE_LNK_WIDTH_UNKNOWN;
4791
4792 while (dev) {
4793 u16 lnksta;
4794 enum pci_bus_speed next_speed;
4795 enum pcie_link_width next_width;
4796
4797 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4798 if (ret)
4799 return ret;
4800
4801 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4802 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4803 PCI_EXP_LNKSTA_NLW_SHIFT;
4804
4805 if (next_speed < *speed)
4806 *speed = next_speed;
4807
4808 if (next_width < *width)
4809 *width = next_width;
4810
4811 dev = dev->bus->self;
4812 }
4813
4814 return 0;
4815 }
4816 EXPORT_SYMBOL(pcie_get_minimum_link);
4817
4818 /**
4819 * pci_select_bars - Make BAR mask from the type of resource
4820 * @dev: the PCI device for which BAR mask is made
4821 * @flags: resource type mask to be selected
4822 *
4823 * This helper routine makes bar mask from the type of resource.
4824 */
4825 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4826 {
4827 int i, bars = 0;
4828 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4829 if (pci_resource_flags(dev, i) & flags)
4830 bars |= (1 << i);
4831 return bars;
4832 }
4833 EXPORT_SYMBOL(pci_select_bars);
4834
4835 /**
4836 * pci_resource_bar - get position of the BAR associated with a resource
4837 * @dev: the PCI device
4838 * @resno: the resource number
4839 * @type: the BAR type to be filled in
4840 *
4841 * Returns BAR position in config space, or 0 if the BAR is invalid.
4842 */
4843 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4844 {
4845 int reg;
4846
4847 if (resno < PCI_ROM_RESOURCE) {
4848 *type = pci_bar_unknown;
4849 return PCI_BASE_ADDRESS_0 + 4 * resno;
4850 } else if (resno == PCI_ROM_RESOURCE) {
4851 *type = pci_bar_mem32;
4852 return dev->rom_base_reg;
4853 } else if (resno < PCI_BRIDGE_RESOURCES) {
4854 /* device specific resource */
4855 *type = pci_bar_unknown;
4856 reg = pci_iov_resource_bar(dev, resno);
4857 if (reg)
4858 return reg;
4859 }
4860
4861 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4862 return 0;
4863 }
4864
4865 /* Some architectures require additional programming to enable VGA */
4866 static arch_set_vga_state_t arch_set_vga_state;
4867
4868 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4869 {
4870 arch_set_vga_state = func; /* NULL disables */
4871 }
4872
4873 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4874 unsigned int command_bits, u32 flags)
4875 {
4876 if (arch_set_vga_state)
4877 return arch_set_vga_state(dev, decode, command_bits,
4878 flags);
4879 return 0;
4880 }
4881
4882 /**
4883 * pci_set_vga_state - set VGA decode state on device and parents if requested
4884 * @dev: the PCI device
4885 * @decode: true = enable decoding, false = disable decoding
4886 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4887 * @flags: traverse ancestors and change bridges
4888 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4889 */
4890 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4891 unsigned int command_bits, u32 flags)
4892 {
4893 struct pci_bus *bus;
4894 struct pci_dev *bridge;
4895 u16 cmd;
4896 int rc;
4897
4898 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4899
4900 /* ARCH specific VGA enables */
4901 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4902 if (rc)
4903 return rc;
4904
4905 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4906 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4907 if (decode == true)
4908 cmd |= command_bits;
4909 else
4910 cmd &= ~command_bits;
4911 pci_write_config_word(dev, PCI_COMMAND, cmd);
4912 }
4913
4914 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4915 return 0;
4916
4917 bus = dev->bus;
4918 while (bus) {
4919 bridge = bus->self;
4920 if (bridge) {
4921 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4922 &cmd);
4923 if (decode == true)
4924 cmd |= PCI_BRIDGE_CTL_VGA;
4925 else
4926 cmd &= ~PCI_BRIDGE_CTL_VGA;
4927 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4928 cmd);
4929 }
4930 bus = bus->parent;
4931 }
4932 return 0;
4933 }
4934
4935 /**
4936 * pci_add_dma_alias - Add a DMA devfn alias for a device
4937 * @dev: the PCI device for which alias is added
4938 * @devfn: alias slot and function
4939 *
4940 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
4941 * It should be called early, preferably as PCI fixup header quirk.
4942 */
4943 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
4944 {
4945 if (!dev->dma_alias_mask)
4946 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
4947 sizeof(long), GFP_KERNEL);
4948 if (!dev->dma_alias_mask) {
4949 dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n");
4950 return;
4951 }
4952
4953 set_bit(devfn, dev->dma_alias_mask);
4954 dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n",
4955 PCI_SLOT(devfn), PCI_FUNC(devfn));
4956 }
4957
4958 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
4959 {
4960 return (dev1->dma_alias_mask &&
4961 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
4962 (dev2->dma_alias_mask &&
4963 test_bit(dev1->devfn, dev2->dma_alias_mask));
4964 }
4965
4966 bool pci_device_is_present(struct pci_dev *pdev)
4967 {
4968 u32 v;
4969
4970 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4971 }
4972 EXPORT_SYMBOL_GPL(pci_device_is_present);
4973
4974 void pci_ignore_hotplug(struct pci_dev *dev)
4975 {
4976 struct pci_dev *bridge = dev->bus->self;
4977
4978 dev->ignore_hotplug = 1;
4979 /* Propagate the "ignore hotplug" setting to the parent bridge. */
4980 if (bridge)
4981 bridge->ignore_hotplug = 1;
4982 }
4983 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
4984
4985 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4986 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4987 static DEFINE_SPINLOCK(resource_alignment_lock);
4988
4989 /**
4990 * pci_specified_resource_alignment - get resource alignment specified by user.
4991 * @dev: the PCI device to get
4992 *
4993 * RETURNS: Resource alignment if it is specified.
4994 * Zero if it is not specified.
4995 */
4996 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4997 {
4998 int seg, bus, slot, func, align_order, count;
4999 unsigned short vendor, device, subsystem_vendor, subsystem_device;
5000 resource_size_t align = 0;
5001 char *p;
5002
5003 spin_lock(&resource_alignment_lock);
5004 p = resource_alignment_param;
5005 if (!*p)
5006 goto out;
5007 if (pci_has_flag(PCI_PROBE_ONLY)) {
5008 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5009 goto out;
5010 }
5011
5012 while (*p) {
5013 count = 0;
5014 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5015 p[count] == '@') {
5016 p += count + 1;
5017 } else {
5018 align_order = -1;
5019 }
5020 if (strncmp(p, "pci:", 4) == 0) {
5021 /* PCI vendor/device (subvendor/subdevice) ids are specified */
5022 p += 4;
5023 if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5024 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5025 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5026 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5027 p);
5028 break;
5029 }
5030 subsystem_vendor = subsystem_device = 0;
5031 }
5032 p += count;
5033 if ((!vendor || (vendor == dev->vendor)) &&
5034 (!device || (device == dev->device)) &&
5035 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5036 (!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5037 if (align_order == -1)
5038 align = PAGE_SIZE;
5039 else
5040 align = 1 << align_order;
5041 /* Found */
5042 break;
5043 }
5044 }
5045 else {
5046 if (sscanf(p, "%x:%x:%x.%x%n",
5047 &seg, &bus, &slot, &func, &count) != 4) {
5048 seg = 0;
5049 if (sscanf(p, "%x:%x.%x%n",
5050 &bus, &slot, &func, &count) != 3) {
5051 /* Invalid format */
5052 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5053 p);
5054 break;
5055 }
5056 }
5057 p += count;
5058 if (seg == pci_domain_nr(dev->bus) &&
5059 bus == dev->bus->number &&
5060 slot == PCI_SLOT(dev->devfn) &&
5061 func == PCI_FUNC(dev->devfn)) {
5062 if (align_order == -1)
5063 align = PAGE_SIZE;
5064 else
5065 align = 1 << align_order;
5066 /* Found */
5067 break;
5068 }
5069 }
5070 if (*p != ';' && *p != ',') {
5071 /* End of param or invalid format */
5072 break;
5073 }
5074 p++;
5075 }
5076 out:
5077 spin_unlock(&resource_alignment_lock);
5078 return align;
5079 }
5080
5081 /*
5082 * This function disables memory decoding and releases memory resources
5083 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5084 * It also rounds up size to specified alignment.
5085 * Later on, the kernel will assign page-aligned memory resource back
5086 * to the device.
5087 */
5088 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5089 {
5090 int i;
5091 struct resource *r;
5092 resource_size_t align, size;
5093 u16 command;
5094
5095 /*
5096 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5097 * 3.4.1.11. Their resources are allocated from the space
5098 * described by the VF BARx register in the PF's SR-IOV capability.
5099 * We can't influence their alignment here.
5100 */
5101 if (dev->is_virtfn)
5102 return;
5103
5104 /* check if specified PCI is target device to reassign */
5105 align = pci_specified_resource_alignment(dev);
5106 if (!align)
5107 return;
5108
5109 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5110 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5111 dev_warn(&dev->dev,
5112 "Can't reassign resources to host bridge.\n");
5113 return;
5114 }
5115
5116 dev_info(&dev->dev,
5117 "Disabling memory decoding and releasing memory resources.\n");
5118 pci_read_config_word(dev, PCI_COMMAND, &command);
5119 command &= ~PCI_COMMAND_MEMORY;
5120 pci_write_config_word(dev, PCI_COMMAND, command);
5121
5122 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
5123 r = &dev->resource[i];
5124 if (!(r->flags & IORESOURCE_MEM))
5125 continue;
5126 if (r->flags & IORESOURCE_PCI_FIXED) {
5127 dev_info(&dev->dev, "Ignoring requested alignment for BAR%d: %pR\n",
5128 i, r);
5129 continue;
5130 }
5131
5132 size = resource_size(r);
5133 if (size < align) {
5134 size = align;
5135 dev_info(&dev->dev,
5136 "Rounding up size of resource #%d to %#llx.\n",
5137 i, (unsigned long long)size);
5138 }
5139 r->flags |= IORESOURCE_UNSET;
5140 r->end = size - 1;
5141 r->start = 0;
5142 }
5143 /* Need to disable bridge's resource window,
5144 * to enable the kernel to reassign new resource
5145 * window later on.
5146 */
5147 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5148 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5149 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5150 r = &dev->resource[i];
5151 if (!(r->flags & IORESOURCE_MEM))
5152 continue;
5153 r->flags |= IORESOURCE_UNSET;
5154 r->end = resource_size(r) - 1;
5155 r->start = 0;
5156 }
5157 pci_disable_bridge_window(dev);
5158 }
5159 }
5160
5161 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5162 {
5163 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5164 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5165 spin_lock(&resource_alignment_lock);
5166 strncpy(resource_alignment_param, buf, count);
5167 resource_alignment_param[count] = '\0';
5168 spin_unlock(&resource_alignment_lock);
5169 return count;
5170 }
5171
5172 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5173 {
5174 size_t count;
5175 spin_lock(&resource_alignment_lock);
5176 count = snprintf(buf, size, "%s", resource_alignment_param);
5177 spin_unlock(&resource_alignment_lock);
5178 return count;
5179 }
5180
5181 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5182 {
5183 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5184 }
5185
5186 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5187 const char *buf, size_t count)
5188 {
5189 return pci_set_resource_alignment_param(buf, count);
5190 }
5191
5192 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5193 pci_resource_alignment_store);
5194
5195 static int __init pci_resource_alignment_sysfs_init(void)
5196 {
5197 return bus_create_file(&pci_bus_type,
5198 &bus_attr_resource_alignment);
5199 }
5200 late_initcall(pci_resource_alignment_sysfs_init);
5201
5202 static void pci_no_domains(void)
5203 {
5204 #ifdef CONFIG_PCI_DOMAINS
5205 pci_domains_supported = 0;
5206 #endif
5207 }
5208
5209 #ifdef CONFIG_PCI_DOMAINS
5210 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5211
5212 int pci_get_new_domain_nr(void)
5213 {
5214 return atomic_inc_return(&__domain_nr);
5215 }
5216
5217 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5218 static int of_pci_bus_find_domain_nr(struct device *parent)
5219 {
5220 static int use_dt_domains = -1;
5221 int domain = -1;
5222
5223 if (parent)
5224 domain = of_get_pci_domain_nr(parent->of_node);
5225 /*
5226 * Check DT domain and use_dt_domains values.
5227 *
5228 * If DT domain property is valid (domain >= 0) and
5229 * use_dt_domains != 0, the DT assignment is valid since this means
5230 * we have not previously allocated a domain number by using
5231 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5232 * 1, to indicate that we have just assigned a domain number from
5233 * DT.
5234 *
5235 * If DT domain property value is not valid (ie domain < 0), and we
5236 * have not previously assigned a domain number from DT
5237 * (use_dt_domains != 1) we should assign a domain number by
5238 * using the:
5239 *
5240 * pci_get_new_domain_nr()
5241 *
5242 * API and update the use_dt_domains value to keep track of method we
5243 * are using to assign domain numbers (use_dt_domains = 0).
5244 *
5245 * All other combinations imply we have a platform that is trying
5246 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5247 * which is a recipe for domain mishandling and it is prevented by
5248 * invalidating the domain value (domain = -1) and printing a
5249 * corresponding error.
5250 */
5251 if (domain >= 0 && use_dt_domains) {
5252 use_dt_domains = 1;
5253 } else if (domain < 0 && use_dt_domains != 1) {
5254 use_dt_domains = 0;
5255 domain = pci_get_new_domain_nr();
5256 } else {
5257 dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
5258 parent->of_node->full_name);
5259 domain = -1;
5260 }
5261
5262 return domain;
5263 }
5264
5265 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5266 {
5267 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5268 acpi_pci_bus_find_domain_nr(bus);
5269 }
5270 #endif
5271 #endif
5272
5273 /**
5274 * pci_ext_cfg_avail - can we access extended PCI config space?
5275 *
5276 * Returns 1 if we can access PCI extended config space (offsets
5277 * greater than 0xff). This is the default implementation. Architecture
5278 * implementations can override this.
5279 */
5280 int __weak pci_ext_cfg_avail(void)
5281 {
5282 return 1;
5283 }
5284
5285 void __weak pci_fixup_cardbus(struct pci_bus *bus)
5286 {
5287 }
5288 EXPORT_SYMBOL(pci_fixup_cardbus);
5289
5290 static int __init pci_setup(char *str)
5291 {
5292 while (str) {
5293 char *k = strchr(str, ',');
5294 if (k)
5295 *k++ = 0;
5296 if (*str && (str = pcibios_setup(str)) && *str) {
5297 if (!strcmp(str, "nomsi")) {
5298 pci_no_msi();
5299 } else if (!strcmp(str, "noaer")) {
5300 pci_no_aer();
5301 } else if (!strncmp(str, "realloc=", 8)) {
5302 pci_realloc_get_opt(str + 8);
5303 } else if (!strncmp(str, "realloc", 7)) {
5304 pci_realloc_get_opt("on");
5305 } else if (!strcmp(str, "nodomains")) {
5306 pci_no_domains();
5307 } else if (!strncmp(str, "noari", 5)) {
5308 pcie_ari_disabled = true;
5309 } else if (!strncmp(str, "cbiosize=", 9)) {
5310 pci_cardbus_io_size = memparse(str + 9, &str);
5311 } else if (!strncmp(str, "cbmemsize=", 10)) {
5312 pci_cardbus_mem_size = memparse(str + 10, &str);
5313 } else if (!strncmp(str, "resource_alignment=", 19)) {
5314 pci_set_resource_alignment_param(str + 19,
5315 strlen(str + 19));
5316 } else if (!strncmp(str, "ecrc=", 5)) {
5317 pcie_ecrc_get_policy(str + 5);
5318 } else if (!strncmp(str, "hpiosize=", 9)) {
5319 pci_hotplug_io_size = memparse(str + 9, &str);
5320 } else if (!strncmp(str, "hpmemsize=", 10)) {
5321 pci_hotplug_mem_size = memparse(str + 10, &str);
5322 } else if (!strncmp(str, "hpbussize=", 10)) {
5323 pci_hotplug_bus_size =
5324 simple_strtoul(str + 10, &str, 0);
5325 if (pci_hotplug_bus_size > 0xff)
5326 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5327 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5328 pcie_bus_config = PCIE_BUS_TUNE_OFF;
5329 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
5330 pcie_bus_config = PCIE_BUS_SAFE;
5331 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
5332 pcie_bus_config = PCIE_BUS_PERFORMANCE;
5333 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5334 pcie_bus_config = PCIE_BUS_PEER2PEER;
5335 } else if (!strncmp(str, "pcie_scan_all", 13)) {
5336 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5337 } else {
5338 printk(KERN_ERR "PCI: Unknown option `%s'\n",
5339 str);
5340 }
5341 }
5342 str = k;
5343 }
5344 return 0;
5345 }
5346 early_param("pci", pci_setup);