]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/pci/pci.c
PCI: Freeze PME scan before suspending devices
[mirror_ubuntu-bionic-kernel.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/delay.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/of.h>
16 #include <linux/of_pci.h>
17 #include <linux/pci.h>
18 #include <linux/pm.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/spinlock.h>
22 #include <linux/string.h>
23 #include <linux/log2.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/pm_wakeup.h>
26 #include <linux/interrupt.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
31 #include <asm/setup.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include "pci.h"
35
36 const char *pci_power_names[] = {
37 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
38 };
39 EXPORT_SYMBOL_GPL(pci_power_names);
40
41 int isa_dma_bridge_buggy;
42 EXPORT_SYMBOL(isa_dma_bridge_buggy);
43
44 int pci_pci_problems;
45 EXPORT_SYMBOL(pci_pci_problems);
46
47 unsigned int pci_pm_d3_delay;
48
49 static void pci_pme_list_scan(struct work_struct *work);
50
51 static LIST_HEAD(pci_pme_list);
52 static DEFINE_MUTEX(pci_pme_list_mutex);
53 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
54
55 struct pci_pme_device {
56 struct list_head list;
57 struct pci_dev *dev;
58 };
59
60 #define PME_TIMEOUT 1000 /* How long between PME checks */
61
62 static void pci_dev_d3_sleep(struct pci_dev *dev)
63 {
64 unsigned int delay = dev->d3_delay;
65
66 if (delay < pci_pm_d3_delay)
67 delay = pci_pm_d3_delay;
68
69 if (delay)
70 msleep(delay);
71 }
72
73 #ifdef CONFIG_PCI_DOMAINS
74 int pci_domains_supported = 1;
75 #endif
76
77 #define DEFAULT_CARDBUS_IO_SIZE (256)
78 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
79 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
80 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
81 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
82
83 #define DEFAULT_HOTPLUG_IO_SIZE (256)
84 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
85 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
86 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
87 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
88
89 #define DEFAULT_HOTPLUG_BUS_SIZE 1
90 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
91
92 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
93
94 /*
95 * The default CLS is used if arch didn't set CLS explicitly and not
96 * all pci devices agree on the same value. Arch can override either
97 * the dfl or actual value as it sees fit. Don't forget this is
98 * measured in 32-bit words, not bytes.
99 */
100 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
101 u8 pci_cache_line_size;
102
103 /*
104 * If we set up a device for bus mastering, we need to check the latency
105 * timer as certain BIOSes forget to set it properly.
106 */
107 unsigned int pcibios_max_latency = 255;
108
109 /* If set, the PCIe ARI capability will not be used. */
110 static bool pcie_ari_disabled;
111
112 /* Disable bridge_d3 for all PCIe ports */
113 static bool pci_bridge_d3_disable;
114 /* Force bridge_d3 for all PCIe ports */
115 static bool pci_bridge_d3_force;
116
117 static int __init pcie_port_pm_setup(char *str)
118 {
119 if (!strcmp(str, "off"))
120 pci_bridge_d3_disable = true;
121 else if (!strcmp(str, "force"))
122 pci_bridge_d3_force = true;
123 return 1;
124 }
125 __setup("pcie_port_pm=", pcie_port_pm_setup);
126
127 /**
128 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
129 * @bus: pointer to PCI bus structure to search
130 *
131 * Given a PCI bus, returns the highest PCI bus number present in the set
132 * including the given PCI bus and its list of child PCI buses.
133 */
134 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
135 {
136 struct pci_bus *tmp;
137 unsigned char max, n;
138
139 max = bus->busn_res.end;
140 list_for_each_entry(tmp, &bus->children, node) {
141 n = pci_bus_max_busnr(tmp);
142 if (n > max)
143 max = n;
144 }
145 return max;
146 }
147 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
148
149 #ifdef CONFIG_HAS_IOMEM
150 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
151 {
152 struct resource *res = &pdev->resource[bar];
153
154 /*
155 * Make sure the BAR is actually a memory resource, not an IO resource
156 */
157 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
158 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
159 return NULL;
160 }
161 return ioremap_nocache(res->start, resource_size(res));
162 }
163 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
164
165 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
166 {
167 /*
168 * Make sure the BAR is actually a memory resource, not an IO resource
169 */
170 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
171 WARN_ON(1);
172 return NULL;
173 }
174 return ioremap_wc(pci_resource_start(pdev, bar),
175 pci_resource_len(pdev, bar));
176 }
177 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
178 #endif
179
180
181 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
182 u8 pos, int cap, int *ttl)
183 {
184 u8 id;
185 u16 ent;
186
187 pci_bus_read_config_byte(bus, devfn, pos, &pos);
188
189 while ((*ttl)--) {
190 if (pos < 0x40)
191 break;
192 pos &= ~3;
193 pci_bus_read_config_word(bus, devfn, pos, &ent);
194
195 id = ent & 0xff;
196 if (id == 0xff)
197 break;
198 if (id == cap)
199 return pos;
200 pos = (ent >> 8);
201 }
202 return 0;
203 }
204
205 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
206 u8 pos, int cap)
207 {
208 int ttl = PCI_FIND_CAP_TTL;
209
210 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
211 }
212
213 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
214 {
215 return __pci_find_next_cap(dev->bus, dev->devfn,
216 pos + PCI_CAP_LIST_NEXT, cap);
217 }
218 EXPORT_SYMBOL_GPL(pci_find_next_capability);
219
220 static int __pci_bus_find_cap_start(struct pci_bus *bus,
221 unsigned int devfn, u8 hdr_type)
222 {
223 u16 status;
224
225 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
226 if (!(status & PCI_STATUS_CAP_LIST))
227 return 0;
228
229 switch (hdr_type) {
230 case PCI_HEADER_TYPE_NORMAL:
231 case PCI_HEADER_TYPE_BRIDGE:
232 return PCI_CAPABILITY_LIST;
233 case PCI_HEADER_TYPE_CARDBUS:
234 return PCI_CB_CAPABILITY_LIST;
235 }
236
237 return 0;
238 }
239
240 /**
241 * pci_find_capability - query for devices' capabilities
242 * @dev: PCI device to query
243 * @cap: capability code
244 *
245 * Tell if a device supports a given PCI capability.
246 * Returns the address of the requested capability structure within the
247 * device's PCI configuration space or 0 in case the device does not
248 * support it. Possible values for @cap:
249 *
250 * %PCI_CAP_ID_PM Power Management
251 * %PCI_CAP_ID_AGP Accelerated Graphics Port
252 * %PCI_CAP_ID_VPD Vital Product Data
253 * %PCI_CAP_ID_SLOTID Slot Identification
254 * %PCI_CAP_ID_MSI Message Signalled Interrupts
255 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
256 * %PCI_CAP_ID_PCIX PCI-X
257 * %PCI_CAP_ID_EXP PCI Express
258 */
259 int pci_find_capability(struct pci_dev *dev, int cap)
260 {
261 int pos;
262
263 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
264 if (pos)
265 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
266
267 return pos;
268 }
269 EXPORT_SYMBOL(pci_find_capability);
270
271 /**
272 * pci_bus_find_capability - query for devices' capabilities
273 * @bus: the PCI bus to query
274 * @devfn: PCI device to query
275 * @cap: capability code
276 *
277 * Like pci_find_capability() but works for pci devices that do not have a
278 * pci_dev structure set up yet.
279 *
280 * Returns the address of the requested capability structure within the
281 * device's PCI configuration space or 0 in case the device does not
282 * support it.
283 */
284 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
285 {
286 int pos;
287 u8 hdr_type;
288
289 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
290
291 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
292 if (pos)
293 pos = __pci_find_next_cap(bus, devfn, pos, cap);
294
295 return pos;
296 }
297 EXPORT_SYMBOL(pci_bus_find_capability);
298
299 /**
300 * pci_find_next_ext_capability - Find an extended capability
301 * @dev: PCI device to query
302 * @start: address at which to start looking (0 to start at beginning of list)
303 * @cap: capability code
304 *
305 * Returns the address of the next matching extended capability structure
306 * within the device's PCI configuration space or 0 if the device does
307 * not support it. Some capabilities can occur several times, e.g., the
308 * vendor-specific capability, and this provides a way to find them all.
309 */
310 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
311 {
312 u32 header;
313 int ttl;
314 int pos = PCI_CFG_SPACE_SIZE;
315
316 /* minimum 8 bytes per capability */
317 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
318
319 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
320 return 0;
321
322 if (start)
323 pos = start;
324
325 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
326 return 0;
327
328 /*
329 * If we have no capabilities, this is indicated by cap ID,
330 * cap version and next pointer all being 0.
331 */
332 if (header == 0)
333 return 0;
334
335 while (ttl-- > 0) {
336 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
337 return pos;
338
339 pos = PCI_EXT_CAP_NEXT(header);
340 if (pos < PCI_CFG_SPACE_SIZE)
341 break;
342
343 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
344 break;
345 }
346
347 return 0;
348 }
349 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
350
351 /**
352 * pci_find_ext_capability - Find an extended capability
353 * @dev: PCI device to query
354 * @cap: capability code
355 *
356 * Returns the address of the requested extended capability structure
357 * within the device's PCI configuration space or 0 if the device does
358 * not support it. Possible values for @cap:
359 *
360 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
361 * %PCI_EXT_CAP_ID_VC Virtual Channel
362 * %PCI_EXT_CAP_ID_DSN Device Serial Number
363 * %PCI_EXT_CAP_ID_PWR Power Budgeting
364 */
365 int pci_find_ext_capability(struct pci_dev *dev, int cap)
366 {
367 return pci_find_next_ext_capability(dev, 0, cap);
368 }
369 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
370
371 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
372 {
373 int rc, ttl = PCI_FIND_CAP_TTL;
374 u8 cap, mask;
375
376 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
377 mask = HT_3BIT_CAP_MASK;
378 else
379 mask = HT_5BIT_CAP_MASK;
380
381 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
382 PCI_CAP_ID_HT, &ttl);
383 while (pos) {
384 rc = pci_read_config_byte(dev, pos + 3, &cap);
385 if (rc != PCIBIOS_SUCCESSFUL)
386 return 0;
387
388 if ((cap & mask) == ht_cap)
389 return pos;
390
391 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
392 pos + PCI_CAP_LIST_NEXT,
393 PCI_CAP_ID_HT, &ttl);
394 }
395
396 return 0;
397 }
398 /**
399 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
400 * @dev: PCI device to query
401 * @pos: Position from which to continue searching
402 * @ht_cap: Hypertransport capability code
403 *
404 * To be used in conjunction with pci_find_ht_capability() to search for
405 * all capabilities matching @ht_cap. @pos should always be a value returned
406 * from pci_find_ht_capability().
407 *
408 * NB. To be 100% safe against broken PCI devices, the caller should take
409 * steps to avoid an infinite loop.
410 */
411 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
412 {
413 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
414 }
415 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
416
417 /**
418 * pci_find_ht_capability - query a device's Hypertransport capabilities
419 * @dev: PCI device to query
420 * @ht_cap: Hypertransport capability code
421 *
422 * Tell if a device supports a given Hypertransport capability.
423 * Returns an address within the device's PCI configuration space
424 * or 0 in case the device does not support the request capability.
425 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
426 * which has a Hypertransport capability matching @ht_cap.
427 */
428 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
429 {
430 int pos;
431
432 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
433 if (pos)
434 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
435
436 return pos;
437 }
438 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
439
440 /**
441 * pci_find_parent_resource - return resource region of parent bus of given region
442 * @dev: PCI device structure contains resources to be searched
443 * @res: child resource record for which parent is sought
444 *
445 * For given resource region of given device, return the resource
446 * region of parent bus the given region is contained in.
447 */
448 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
449 struct resource *res)
450 {
451 const struct pci_bus *bus = dev->bus;
452 struct resource *r;
453 int i;
454
455 pci_bus_for_each_resource(bus, r, i) {
456 if (!r)
457 continue;
458 if (res->start && resource_contains(r, res)) {
459
460 /*
461 * If the window is prefetchable but the BAR is
462 * not, the allocator made a mistake.
463 */
464 if (r->flags & IORESOURCE_PREFETCH &&
465 !(res->flags & IORESOURCE_PREFETCH))
466 return NULL;
467
468 /*
469 * If we're below a transparent bridge, there may
470 * be both a positively-decoded aperture and a
471 * subtractively-decoded region that contain the BAR.
472 * We want the positively-decoded one, so this depends
473 * on pci_bus_for_each_resource() giving us those
474 * first.
475 */
476 return r;
477 }
478 }
479 return NULL;
480 }
481 EXPORT_SYMBOL(pci_find_parent_resource);
482
483 /**
484 * pci_find_resource - Return matching PCI device resource
485 * @dev: PCI device to query
486 * @res: Resource to look for
487 *
488 * Goes over standard PCI resources (BARs) and checks if the given resource
489 * is partially or fully contained in any of them. In that case the
490 * matching resource is returned, %NULL otherwise.
491 */
492 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
493 {
494 int i;
495
496 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
497 struct resource *r = &dev->resource[i];
498
499 if (r->start && resource_contains(r, res))
500 return r;
501 }
502
503 return NULL;
504 }
505 EXPORT_SYMBOL(pci_find_resource);
506
507 /**
508 * pci_find_pcie_root_port - return PCIe Root Port
509 * @dev: PCI device to query
510 *
511 * Traverse up the parent chain and return the PCIe Root Port PCI Device
512 * for a given PCI Device.
513 */
514 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
515 {
516 struct pci_dev *bridge, *highest_pcie_bridge = NULL;
517
518 bridge = pci_upstream_bridge(dev);
519 while (bridge && pci_is_pcie(bridge)) {
520 highest_pcie_bridge = bridge;
521 bridge = pci_upstream_bridge(bridge);
522 }
523
524 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
525 return NULL;
526
527 return highest_pcie_bridge;
528 }
529 EXPORT_SYMBOL(pci_find_pcie_root_port);
530
531 /**
532 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
533 * @dev: the PCI device to operate on
534 * @pos: config space offset of status word
535 * @mask: mask of bit(s) to care about in status word
536 *
537 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
538 */
539 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
540 {
541 int i;
542
543 /* Wait for Transaction Pending bit clean */
544 for (i = 0; i < 4; i++) {
545 u16 status;
546 if (i)
547 msleep((1 << (i - 1)) * 100);
548
549 pci_read_config_word(dev, pos, &status);
550 if (!(status & mask))
551 return 1;
552 }
553
554 return 0;
555 }
556
557 /**
558 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
559 * @dev: PCI device to have its BARs restored
560 *
561 * Restore the BAR values for a given device, so as to make it
562 * accessible by its driver.
563 */
564 static void pci_restore_bars(struct pci_dev *dev)
565 {
566 int i;
567
568 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
569 pci_update_resource(dev, i);
570 }
571
572 static const struct pci_platform_pm_ops *pci_platform_pm;
573
574 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
575 {
576 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
577 !ops->choose_state || !ops->sleep_wake || !ops->run_wake ||
578 !ops->need_resume)
579 return -EINVAL;
580 pci_platform_pm = ops;
581 return 0;
582 }
583
584 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
585 {
586 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
587 }
588
589 static inline int platform_pci_set_power_state(struct pci_dev *dev,
590 pci_power_t t)
591 {
592 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
593 }
594
595 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
596 {
597 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
598 }
599
600 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
601 {
602 return pci_platform_pm ?
603 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
604 }
605
606 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
607 {
608 return pci_platform_pm ?
609 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
610 }
611
612 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
613 {
614 return pci_platform_pm ?
615 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
616 }
617
618 static inline bool platform_pci_need_resume(struct pci_dev *dev)
619 {
620 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
621 }
622
623 /**
624 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
625 * given PCI device
626 * @dev: PCI device to handle.
627 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
628 *
629 * RETURN VALUE:
630 * -EINVAL if the requested state is invalid.
631 * -EIO if device does not support PCI PM or its PM capabilities register has a
632 * wrong version, or device doesn't support the requested state.
633 * 0 if device already is in the requested state.
634 * 0 if device's power state has been successfully changed.
635 */
636 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
637 {
638 u16 pmcsr;
639 bool need_restore = false;
640
641 /* Check if we're already there */
642 if (dev->current_state == state)
643 return 0;
644
645 if (!dev->pm_cap)
646 return -EIO;
647
648 if (state < PCI_D0 || state > PCI_D3hot)
649 return -EINVAL;
650
651 /* Validate current state:
652 * Can enter D0 from any state, but if we can only go deeper
653 * to sleep if we're already in a low power state
654 */
655 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
656 && dev->current_state > state) {
657 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
658 dev->current_state, state);
659 return -EINVAL;
660 }
661
662 /* check if this device supports the desired state */
663 if ((state == PCI_D1 && !dev->d1_support)
664 || (state == PCI_D2 && !dev->d2_support))
665 return -EIO;
666
667 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
668
669 /* If we're (effectively) in D3, force entire word to 0.
670 * This doesn't affect PME_Status, disables PME_En, and
671 * sets PowerState to 0.
672 */
673 switch (dev->current_state) {
674 case PCI_D0:
675 case PCI_D1:
676 case PCI_D2:
677 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
678 pmcsr |= state;
679 break;
680 case PCI_D3hot:
681 case PCI_D3cold:
682 case PCI_UNKNOWN: /* Boot-up */
683 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
684 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
685 need_restore = true;
686 /* Fall-through: force to D0 */
687 default:
688 pmcsr = 0;
689 break;
690 }
691
692 /* enter specified state */
693 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
694
695 /* Mandatory power management transition delays */
696 /* see PCI PM 1.1 5.6.1 table 18 */
697 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
698 pci_dev_d3_sleep(dev);
699 else if (state == PCI_D2 || dev->current_state == PCI_D2)
700 udelay(PCI_PM_D2_DELAY);
701
702 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
703 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
704 if (dev->current_state != state && printk_ratelimit())
705 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
706 dev->current_state);
707
708 /*
709 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
710 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
711 * from D3hot to D0 _may_ perform an internal reset, thereby
712 * going to "D0 Uninitialized" rather than "D0 Initialized".
713 * For example, at least some versions of the 3c905B and the
714 * 3c556B exhibit this behaviour.
715 *
716 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
717 * devices in a D3hot state at boot. Consequently, we need to
718 * restore at least the BARs so that the device will be
719 * accessible to its driver.
720 */
721 if (need_restore)
722 pci_restore_bars(dev);
723
724 if (dev->bus->self)
725 pcie_aspm_pm_state_change(dev->bus->self);
726
727 return 0;
728 }
729
730 /**
731 * pci_update_current_state - Read power state of given device and cache it
732 * @dev: PCI device to handle.
733 * @state: State to cache in case the device doesn't have the PM capability
734 *
735 * The power state is read from the PMCSR register, which however is
736 * inaccessible in D3cold. The platform firmware is therefore queried first
737 * to detect accessibility of the register. In case the platform firmware
738 * reports an incorrect state or the device isn't power manageable by the
739 * platform at all, we try to detect D3cold by testing accessibility of the
740 * vendor ID in config space.
741 */
742 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
743 {
744 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
745 !pci_device_is_present(dev)) {
746 dev->current_state = PCI_D3cold;
747 } else if (dev->pm_cap) {
748 u16 pmcsr;
749
750 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
751 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
752 } else {
753 dev->current_state = state;
754 }
755 }
756
757 /**
758 * pci_power_up - Put the given device into D0 forcibly
759 * @dev: PCI device to power up
760 */
761 void pci_power_up(struct pci_dev *dev)
762 {
763 if (platform_pci_power_manageable(dev))
764 platform_pci_set_power_state(dev, PCI_D0);
765
766 pci_raw_set_power_state(dev, PCI_D0);
767 pci_update_current_state(dev, PCI_D0);
768 }
769
770 /**
771 * pci_platform_power_transition - Use platform to change device power state
772 * @dev: PCI device to handle.
773 * @state: State to put the device into.
774 */
775 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
776 {
777 int error;
778
779 if (platform_pci_power_manageable(dev)) {
780 error = platform_pci_set_power_state(dev, state);
781 if (!error)
782 pci_update_current_state(dev, state);
783 } else
784 error = -ENODEV;
785
786 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
787 dev->current_state = PCI_D0;
788
789 return error;
790 }
791
792 /**
793 * pci_wakeup - Wake up a PCI device
794 * @pci_dev: Device to handle.
795 * @ign: ignored parameter
796 */
797 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
798 {
799 pci_wakeup_event(pci_dev);
800 pm_request_resume(&pci_dev->dev);
801 return 0;
802 }
803
804 /**
805 * pci_wakeup_bus - Walk given bus and wake up devices on it
806 * @bus: Top bus of the subtree to walk.
807 */
808 static void pci_wakeup_bus(struct pci_bus *bus)
809 {
810 if (bus)
811 pci_walk_bus(bus, pci_wakeup, NULL);
812 }
813
814 /**
815 * __pci_start_power_transition - Start power transition of a PCI device
816 * @dev: PCI device to handle.
817 * @state: State to put the device into.
818 */
819 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
820 {
821 if (state == PCI_D0) {
822 pci_platform_power_transition(dev, PCI_D0);
823 /*
824 * Mandatory power management transition delays, see
825 * PCI Express Base Specification Revision 2.0 Section
826 * 6.6.1: Conventional Reset. Do not delay for
827 * devices powered on/off by corresponding bridge,
828 * because have already delayed for the bridge.
829 */
830 if (dev->runtime_d3cold) {
831 if (dev->d3cold_delay)
832 msleep(dev->d3cold_delay);
833 /*
834 * When powering on a bridge from D3cold, the
835 * whole hierarchy may be powered on into
836 * D0uninitialized state, resume them to give
837 * them a chance to suspend again
838 */
839 pci_wakeup_bus(dev->subordinate);
840 }
841 }
842 }
843
844 /**
845 * __pci_dev_set_current_state - Set current state of a PCI device
846 * @dev: Device to handle
847 * @data: pointer to state to be set
848 */
849 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
850 {
851 pci_power_t state = *(pci_power_t *)data;
852
853 dev->current_state = state;
854 return 0;
855 }
856
857 /**
858 * __pci_bus_set_current_state - Walk given bus and set current state of devices
859 * @bus: Top bus of the subtree to walk.
860 * @state: state to be set
861 */
862 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
863 {
864 if (bus)
865 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
866 }
867
868 /**
869 * __pci_complete_power_transition - Complete power transition of a PCI device
870 * @dev: PCI device to handle.
871 * @state: State to put the device into.
872 *
873 * This function should not be called directly by device drivers.
874 */
875 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
876 {
877 int ret;
878
879 if (state <= PCI_D0)
880 return -EINVAL;
881 ret = pci_platform_power_transition(dev, state);
882 /* Power off the bridge may power off the whole hierarchy */
883 if (!ret && state == PCI_D3cold)
884 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
885 return ret;
886 }
887 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
888
889 /**
890 * pci_set_power_state - Set the power state of a PCI device
891 * @dev: PCI device to handle.
892 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
893 *
894 * Transition a device to a new power state, using the platform firmware and/or
895 * the device's PCI PM registers.
896 *
897 * RETURN VALUE:
898 * -EINVAL if the requested state is invalid.
899 * -EIO if device does not support PCI PM or its PM capabilities register has a
900 * wrong version, or device doesn't support the requested state.
901 * 0 if device already is in the requested state.
902 * 0 if device's power state has been successfully changed.
903 */
904 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
905 {
906 int error;
907
908 /* bound the state we're entering */
909 if (state > PCI_D3cold)
910 state = PCI_D3cold;
911 else if (state < PCI_D0)
912 state = PCI_D0;
913 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
914 /*
915 * If the device or the parent bridge do not support PCI PM,
916 * ignore the request if we're doing anything other than putting
917 * it into D0 (which would only happen on boot).
918 */
919 return 0;
920
921 /* Check if we're already there */
922 if (dev->current_state == state)
923 return 0;
924
925 __pci_start_power_transition(dev, state);
926
927 /* This device is quirked not to be put into D3, so
928 don't put it in D3 */
929 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
930 return 0;
931
932 /*
933 * To put device in D3cold, we put device into D3hot in native
934 * way, then put device into D3cold with platform ops
935 */
936 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
937 PCI_D3hot : state);
938
939 if (!__pci_complete_power_transition(dev, state))
940 error = 0;
941
942 return error;
943 }
944 EXPORT_SYMBOL(pci_set_power_state);
945
946 /**
947 * pci_choose_state - Choose the power state of a PCI device
948 * @dev: PCI device to be suspended
949 * @state: target sleep state for the whole system. This is the value
950 * that is passed to suspend() function.
951 *
952 * Returns PCI power state suitable for given device and given system
953 * message.
954 */
955
956 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
957 {
958 pci_power_t ret;
959
960 if (!dev->pm_cap)
961 return PCI_D0;
962
963 ret = platform_pci_choose_state(dev);
964 if (ret != PCI_POWER_ERROR)
965 return ret;
966
967 switch (state.event) {
968 case PM_EVENT_ON:
969 return PCI_D0;
970 case PM_EVENT_FREEZE:
971 case PM_EVENT_PRETHAW:
972 /* REVISIT both freeze and pre-thaw "should" use D0 */
973 case PM_EVENT_SUSPEND:
974 case PM_EVENT_HIBERNATE:
975 return PCI_D3hot;
976 default:
977 dev_info(&dev->dev, "unrecognized suspend event %d\n",
978 state.event);
979 BUG();
980 }
981 return PCI_D0;
982 }
983 EXPORT_SYMBOL(pci_choose_state);
984
985 #define PCI_EXP_SAVE_REGS 7
986
987 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
988 u16 cap, bool extended)
989 {
990 struct pci_cap_saved_state *tmp;
991
992 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
993 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
994 return tmp;
995 }
996 return NULL;
997 }
998
999 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1000 {
1001 return _pci_find_saved_cap(dev, cap, false);
1002 }
1003
1004 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1005 {
1006 return _pci_find_saved_cap(dev, cap, true);
1007 }
1008
1009 static int pci_save_pcie_state(struct pci_dev *dev)
1010 {
1011 int i = 0;
1012 struct pci_cap_saved_state *save_state;
1013 u16 *cap;
1014
1015 if (!pci_is_pcie(dev))
1016 return 0;
1017
1018 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1019 if (!save_state) {
1020 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1021 return -ENOMEM;
1022 }
1023
1024 cap = (u16 *)&save_state->cap.data[0];
1025 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1026 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1027 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1028 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1029 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1030 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1031 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1032
1033 return 0;
1034 }
1035
1036 static void pci_restore_pcie_state(struct pci_dev *dev)
1037 {
1038 int i = 0;
1039 struct pci_cap_saved_state *save_state;
1040 u16 *cap;
1041
1042 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1043 if (!save_state)
1044 return;
1045
1046 cap = (u16 *)&save_state->cap.data[0];
1047 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1048 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1049 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1050 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1051 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1052 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1053 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1054 }
1055
1056
1057 static int pci_save_pcix_state(struct pci_dev *dev)
1058 {
1059 int pos;
1060 struct pci_cap_saved_state *save_state;
1061
1062 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1063 if (!pos)
1064 return 0;
1065
1066 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1067 if (!save_state) {
1068 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1069 return -ENOMEM;
1070 }
1071
1072 pci_read_config_word(dev, pos + PCI_X_CMD,
1073 (u16 *)save_state->cap.data);
1074
1075 return 0;
1076 }
1077
1078 static void pci_restore_pcix_state(struct pci_dev *dev)
1079 {
1080 int i = 0, pos;
1081 struct pci_cap_saved_state *save_state;
1082 u16 *cap;
1083
1084 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1085 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1086 if (!save_state || !pos)
1087 return;
1088 cap = (u16 *)&save_state->cap.data[0];
1089
1090 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1091 }
1092
1093
1094 /**
1095 * pci_save_state - save the PCI configuration space of a device before suspending
1096 * @dev: - PCI device that we're dealing with
1097 */
1098 int pci_save_state(struct pci_dev *dev)
1099 {
1100 int i;
1101 /* XXX: 100% dword access ok here? */
1102 for (i = 0; i < 16; i++)
1103 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1104 dev->state_saved = true;
1105
1106 i = pci_save_pcie_state(dev);
1107 if (i != 0)
1108 return i;
1109
1110 i = pci_save_pcix_state(dev);
1111 if (i != 0)
1112 return i;
1113
1114 return pci_save_vc_state(dev);
1115 }
1116 EXPORT_SYMBOL(pci_save_state);
1117
1118 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1119 u32 saved_val, int retry)
1120 {
1121 u32 val;
1122
1123 pci_read_config_dword(pdev, offset, &val);
1124 if (val == saved_val)
1125 return;
1126
1127 for (;;) {
1128 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1129 offset, val, saved_val);
1130 pci_write_config_dword(pdev, offset, saved_val);
1131 if (retry-- <= 0)
1132 return;
1133
1134 pci_read_config_dword(pdev, offset, &val);
1135 if (val == saved_val)
1136 return;
1137
1138 mdelay(1);
1139 }
1140 }
1141
1142 static void pci_restore_config_space_range(struct pci_dev *pdev,
1143 int start, int end, int retry)
1144 {
1145 int index;
1146
1147 for (index = end; index >= start; index--)
1148 pci_restore_config_dword(pdev, 4 * index,
1149 pdev->saved_config_space[index],
1150 retry);
1151 }
1152
1153 static void pci_restore_config_space(struct pci_dev *pdev)
1154 {
1155 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1156 pci_restore_config_space_range(pdev, 10, 15, 0);
1157 /* Restore BARs before the command register. */
1158 pci_restore_config_space_range(pdev, 4, 9, 10);
1159 pci_restore_config_space_range(pdev, 0, 3, 0);
1160 } else {
1161 pci_restore_config_space_range(pdev, 0, 15, 0);
1162 }
1163 }
1164
1165 /**
1166 * pci_restore_state - Restore the saved state of a PCI device
1167 * @dev: - PCI device that we're dealing with
1168 */
1169 void pci_restore_state(struct pci_dev *dev)
1170 {
1171 if (!dev->state_saved)
1172 return;
1173
1174 /* PCI Express register must be restored first */
1175 pci_restore_pcie_state(dev);
1176 pci_restore_ats_state(dev);
1177 pci_restore_vc_state(dev);
1178
1179 pci_cleanup_aer_error_status_regs(dev);
1180
1181 pci_restore_config_space(dev);
1182
1183 pci_restore_pcix_state(dev);
1184 pci_restore_msi_state(dev);
1185
1186 /* Restore ACS and IOV configuration state */
1187 pci_enable_acs(dev);
1188 pci_restore_iov_state(dev);
1189
1190 dev->state_saved = false;
1191 }
1192 EXPORT_SYMBOL(pci_restore_state);
1193
1194 struct pci_saved_state {
1195 u32 config_space[16];
1196 struct pci_cap_saved_data cap[0];
1197 };
1198
1199 /**
1200 * pci_store_saved_state - Allocate and return an opaque struct containing
1201 * the device saved state.
1202 * @dev: PCI device that we're dealing with
1203 *
1204 * Return NULL if no state or error.
1205 */
1206 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1207 {
1208 struct pci_saved_state *state;
1209 struct pci_cap_saved_state *tmp;
1210 struct pci_cap_saved_data *cap;
1211 size_t size;
1212
1213 if (!dev->state_saved)
1214 return NULL;
1215
1216 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1217
1218 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1219 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1220
1221 state = kzalloc(size, GFP_KERNEL);
1222 if (!state)
1223 return NULL;
1224
1225 memcpy(state->config_space, dev->saved_config_space,
1226 sizeof(state->config_space));
1227
1228 cap = state->cap;
1229 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1230 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1231 memcpy(cap, &tmp->cap, len);
1232 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1233 }
1234 /* Empty cap_save terminates list */
1235
1236 return state;
1237 }
1238 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1239
1240 /**
1241 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1242 * @dev: PCI device that we're dealing with
1243 * @state: Saved state returned from pci_store_saved_state()
1244 */
1245 int pci_load_saved_state(struct pci_dev *dev,
1246 struct pci_saved_state *state)
1247 {
1248 struct pci_cap_saved_data *cap;
1249
1250 dev->state_saved = false;
1251
1252 if (!state)
1253 return 0;
1254
1255 memcpy(dev->saved_config_space, state->config_space,
1256 sizeof(state->config_space));
1257
1258 cap = state->cap;
1259 while (cap->size) {
1260 struct pci_cap_saved_state *tmp;
1261
1262 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1263 if (!tmp || tmp->cap.size != cap->size)
1264 return -EINVAL;
1265
1266 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1267 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1268 sizeof(struct pci_cap_saved_data) + cap->size);
1269 }
1270
1271 dev->state_saved = true;
1272 return 0;
1273 }
1274 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1275
1276 /**
1277 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1278 * and free the memory allocated for it.
1279 * @dev: PCI device that we're dealing with
1280 * @state: Pointer to saved state returned from pci_store_saved_state()
1281 */
1282 int pci_load_and_free_saved_state(struct pci_dev *dev,
1283 struct pci_saved_state **state)
1284 {
1285 int ret = pci_load_saved_state(dev, *state);
1286 kfree(*state);
1287 *state = NULL;
1288 return ret;
1289 }
1290 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1291
1292 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1293 {
1294 return pci_enable_resources(dev, bars);
1295 }
1296
1297 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1298 {
1299 int err;
1300 struct pci_dev *bridge;
1301 u16 cmd;
1302 u8 pin;
1303
1304 err = pci_set_power_state(dev, PCI_D0);
1305 if (err < 0 && err != -EIO)
1306 return err;
1307
1308 bridge = pci_upstream_bridge(dev);
1309 if (bridge)
1310 pcie_aspm_powersave_config_link(bridge);
1311
1312 err = pcibios_enable_device(dev, bars);
1313 if (err < 0)
1314 return err;
1315 pci_fixup_device(pci_fixup_enable, dev);
1316
1317 if (dev->msi_enabled || dev->msix_enabled)
1318 return 0;
1319
1320 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1321 if (pin) {
1322 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1323 if (cmd & PCI_COMMAND_INTX_DISABLE)
1324 pci_write_config_word(dev, PCI_COMMAND,
1325 cmd & ~PCI_COMMAND_INTX_DISABLE);
1326 }
1327
1328 return 0;
1329 }
1330
1331 /**
1332 * pci_reenable_device - Resume abandoned device
1333 * @dev: PCI device to be resumed
1334 *
1335 * Note this function is a backend of pci_default_resume and is not supposed
1336 * to be called by normal code, write proper resume handler and use it instead.
1337 */
1338 int pci_reenable_device(struct pci_dev *dev)
1339 {
1340 if (pci_is_enabled(dev))
1341 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1342 return 0;
1343 }
1344 EXPORT_SYMBOL(pci_reenable_device);
1345
1346 static void pci_enable_bridge(struct pci_dev *dev)
1347 {
1348 struct pci_dev *bridge;
1349 int retval;
1350
1351 bridge = pci_upstream_bridge(dev);
1352 if (bridge)
1353 pci_enable_bridge(bridge);
1354
1355 if (pci_is_enabled(dev)) {
1356 if (!dev->is_busmaster)
1357 pci_set_master(dev);
1358 return;
1359 }
1360
1361 retval = pci_enable_device(dev);
1362 if (retval)
1363 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1364 retval);
1365 pci_set_master(dev);
1366 }
1367
1368 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1369 {
1370 struct pci_dev *bridge;
1371 int err;
1372 int i, bars = 0;
1373
1374 /*
1375 * Power state could be unknown at this point, either due to a fresh
1376 * boot or a device removal call. So get the current power state
1377 * so that things like MSI message writing will behave as expected
1378 * (e.g. if the device really is in D0 at enable time).
1379 */
1380 if (dev->pm_cap) {
1381 u16 pmcsr;
1382 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1383 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1384 }
1385
1386 if (atomic_inc_return(&dev->enable_cnt) > 1)
1387 return 0; /* already enabled */
1388
1389 bridge = pci_upstream_bridge(dev);
1390 if (bridge)
1391 pci_enable_bridge(bridge);
1392
1393 /* only skip sriov related */
1394 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1395 if (dev->resource[i].flags & flags)
1396 bars |= (1 << i);
1397 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1398 if (dev->resource[i].flags & flags)
1399 bars |= (1 << i);
1400
1401 err = do_pci_enable_device(dev, bars);
1402 if (err < 0)
1403 atomic_dec(&dev->enable_cnt);
1404 return err;
1405 }
1406
1407 /**
1408 * pci_enable_device_io - Initialize a device for use with IO space
1409 * @dev: PCI device to be initialized
1410 *
1411 * Initialize device before it's used by a driver. Ask low-level code
1412 * to enable I/O resources. Wake up the device if it was suspended.
1413 * Beware, this function can fail.
1414 */
1415 int pci_enable_device_io(struct pci_dev *dev)
1416 {
1417 return pci_enable_device_flags(dev, IORESOURCE_IO);
1418 }
1419 EXPORT_SYMBOL(pci_enable_device_io);
1420
1421 /**
1422 * pci_enable_device_mem - Initialize a device for use with Memory space
1423 * @dev: PCI device to be initialized
1424 *
1425 * Initialize device before it's used by a driver. Ask low-level code
1426 * to enable Memory resources. Wake up the device if it was suspended.
1427 * Beware, this function can fail.
1428 */
1429 int pci_enable_device_mem(struct pci_dev *dev)
1430 {
1431 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1432 }
1433 EXPORT_SYMBOL(pci_enable_device_mem);
1434
1435 /**
1436 * pci_enable_device - Initialize device before it's used by a driver.
1437 * @dev: PCI device to be initialized
1438 *
1439 * Initialize device before it's used by a driver. Ask low-level code
1440 * to enable I/O and memory. Wake up the device if it was suspended.
1441 * Beware, this function can fail.
1442 *
1443 * Note we don't actually enable the device many times if we call
1444 * this function repeatedly (we just increment the count).
1445 */
1446 int pci_enable_device(struct pci_dev *dev)
1447 {
1448 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1449 }
1450 EXPORT_SYMBOL(pci_enable_device);
1451
1452 /*
1453 * Managed PCI resources. This manages device on/off, intx/msi/msix
1454 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1455 * there's no need to track it separately. pci_devres is initialized
1456 * when a device is enabled using managed PCI device enable interface.
1457 */
1458 struct pci_devres {
1459 unsigned int enabled:1;
1460 unsigned int pinned:1;
1461 unsigned int orig_intx:1;
1462 unsigned int restore_intx:1;
1463 u32 region_mask;
1464 };
1465
1466 static void pcim_release(struct device *gendev, void *res)
1467 {
1468 struct pci_dev *dev = to_pci_dev(gendev);
1469 struct pci_devres *this = res;
1470 int i;
1471
1472 if (dev->msi_enabled)
1473 pci_disable_msi(dev);
1474 if (dev->msix_enabled)
1475 pci_disable_msix(dev);
1476
1477 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1478 if (this->region_mask & (1 << i))
1479 pci_release_region(dev, i);
1480
1481 if (this->restore_intx)
1482 pci_intx(dev, this->orig_intx);
1483
1484 if (this->enabled && !this->pinned)
1485 pci_disable_device(dev);
1486 }
1487
1488 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1489 {
1490 struct pci_devres *dr, *new_dr;
1491
1492 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1493 if (dr)
1494 return dr;
1495
1496 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1497 if (!new_dr)
1498 return NULL;
1499 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1500 }
1501
1502 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1503 {
1504 if (pci_is_managed(pdev))
1505 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1506 return NULL;
1507 }
1508
1509 /**
1510 * pcim_enable_device - Managed pci_enable_device()
1511 * @pdev: PCI device to be initialized
1512 *
1513 * Managed pci_enable_device().
1514 */
1515 int pcim_enable_device(struct pci_dev *pdev)
1516 {
1517 struct pci_devres *dr;
1518 int rc;
1519
1520 dr = get_pci_dr(pdev);
1521 if (unlikely(!dr))
1522 return -ENOMEM;
1523 if (dr->enabled)
1524 return 0;
1525
1526 rc = pci_enable_device(pdev);
1527 if (!rc) {
1528 pdev->is_managed = 1;
1529 dr->enabled = 1;
1530 }
1531 return rc;
1532 }
1533 EXPORT_SYMBOL(pcim_enable_device);
1534
1535 /**
1536 * pcim_pin_device - Pin managed PCI device
1537 * @pdev: PCI device to pin
1538 *
1539 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1540 * driver detach. @pdev must have been enabled with
1541 * pcim_enable_device().
1542 */
1543 void pcim_pin_device(struct pci_dev *pdev)
1544 {
1545 struct pci_devres *dr;
1546
1547 dr = find_pci_dr(pdev);
1548 WARN_ON(!dr || !dr->enabled);
1549 if (dr)
1550 dr->pinned = 1;
1551 }
1552 EXPORT_SYMBOL(pcim_pin_device);
1553
1554 /*
1555 * pcibios_add_device - provide arch specific hooks when adding device dev
1556 * @dev: the PCI device being added
1557 *
1558 * Permits the platform to provide architecture specific functionality when
1559 * devices are added. This is the default implementation. Architecture
1560 * implementations can override this.
1561 */
1562 int __weak pcibios_add_device(struct pci_dev *dev)
1563 {
1564 return 0;
1565 }
1566
1567 /**
1568 * pcibios_release_device - provide arch specific hooks when releasing device dev
1569 * @dev: the PCI device being released
1570 *
1571 * Permits the platform to provide architecture specific functionality when
1572 * devices are released. This is the default implementation. Architecture
1573 * implementations can override this.
1574 */
1575 void __weak pcibios_release_device(struct pci_dev *dev) {}
1576
1577 /**
1578 * pcibios_disable_device - disable arch specific PCI resources for device dev
1579 * @dev: the PCI device to disable
1580 *
1581 * Disables architecture specific PCI resources for the device. This
1582 * is the default implementation. Architecture implementations can
1583 * override this.
1584 */
1585 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1586
1587 /**
1588 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1589 * @irq: ISA IRQ to penalize
1590 * @active: IRQ active or not
1591 *
1592 * Permits the platform to provide architecture-specific functionality when
1593 * penalizing ISA IRQs. This is the default implementation. Architecture
1594 * implementations can override this.
1595 */
1596 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1597
1598 static void do_pci_disable_device(struct pci_dev *dev)
1599 {
1600 u16 pci_command;
1601
1602 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1603 if (pci_command & PCI_COMMAND_MASTER) {
1604 pci_command &= ~PCI_COMMAND_MASTER;
1605 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1606 }
1607
1608 pcibios_disable_device(dev);
1609 }
1610
1611 /**
1612 * pci_disable_enabled_device - Disable device without updating enable_cnt
1613 * @dev: PCI device to disable
1614 *
1615 * NOTE: This function is a backend of PCI power management routines and is
1616 * not supposed to be called drivers.
1617 */
1618 void pci_disable_enabled_device(struct pci_dev *dev)
1619 {
1620 if (pci_is_enabled(dev))
1621 do_pci_disable_device(dev);
1622 }
1623
1624 /**
1625 * pci_disable_device - Disable PCI device after use
1626 * @dev: PCI device to be disabled
1627 *
1628 * Signal to the system that the PCI device is not in use by the system
1629 * anymore. This only involves disabling PCI bus-mastering, if active.
1630 *
1631 * Note we don't actually disable the device until all callers of
1632 * pci_enable_device() have called pci_disable_device().
1633 */
1634 void pci_disable_device(struct pci_dev *dev)
1635 {
1636 struct pci_devres *dr;
1637
1638 dr = find_pci_dr(dev);
1639 if (dr)
1640 dr->enabled = 0;
1641
1642 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1643 "disabling already-disabled device");
1644
1645 if (atomic_dec_return(&dev->enable_cnt) != 0)
1646 return;
1647
1648 do_pci_disable_device(dev);
1649
1650 dev->is_busmaster = 0;
1651 }
1652 EXPORT_SYMBOL(pci_disable_device);
1653
1654 /**
1655 * pcibios_set_pcie_reset_state - set reset state for device dev
1656 * @dev: the PCIe device reset
1657 * @state: Reset state to enter into
1658 *
1659 *
1660 * Sets the PCIe reset state for the device. This is the default
1661 * implementation. Architecture implementations can override this.
1662 */
1663 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1664 enum pcie_reset_state state)
1665 {
1666 return -EINVAL;
1667 }
1668
1669 /**
1670 * pci_set_pcie_reset_state - set reset state for device dev
1671 * @dev: the PCIe device reset
1672 * @state: Reset state to enter into
1673 *
1674 *
1675 * Sets the PCI reset state for the device.
1676 */
1677 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1678 {
1679 return pcibios_set_pcie_reset_state(dev, state);
1680 }
1681 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1682
1683 /**
1684 * pci_check_pme_status - Check if given device has generated PME.
1685 * @dev: Device to check.
1686 *
1687 * Check the PME status of the device and if set, clear it and clear PME enable
1688 * (if set). Return 'true' if PME status and PME enable were both set or
1689 * 'false' otherwise.
1690 */
1691 bool pci_check_pme_status(struct pci_dev *dev)
1692 {
1693 int pmcsr_pos;
1694 u16 pmcsr;
1695 bool ret = false;
1696
1697 if (!dev->pm_cap)
1698 return false;
1699
1700 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1701 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1702 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1703 return false;
1704
1705 /* Clear PME status. */
1706 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1707 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1708 /* Disable PME to avoid interrupt flood. */
1709 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1710 ret = true;
1711 }
1712
1713 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1714
1715 return ret;
1716 }
1717
1718 /**
1719 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1720 * @dev: Device to handle.
1721 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1722 *
1723 * Check if @dev has generated PME and queue a resume request for it in that
1724 * case.
1725 */
1726 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1727 {
1728 if (pme_poll_reset && dev->pme_poll)
1729 dev->pme_poll = false;
1730
1731 if (pci_check_pme_status(dev)) {
1732 pci_wakeup_event(dev);
1733 pm_request_resume(&dev->dev);
1734 }
1735 return 0;
1736 }
1737
1738 /**
1739 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1740 * @bus: Top bus of the subtree to walk.
1741 */
1742 void pci_pme_wakeup_bus(struct pci_bus *bus)
1743 {
1744 if (bus)
1745 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1746 }
1747
1748
1749 /**
1750 * pci_pme_capable - check the capability of PCI device to generate PME#
1751 * @dev: PCI device to handle.
1752 * @state: PCI state from which device will issue PME#.
1753 */
1754 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1755 {
1756 if (!dev->pm_cap)
1757 return false;
1758
1759 return !!(dev->pme_support & (1 << state));
1760 }
1761 EXPORT_SYMBOL(pci_pme_capable);
1762
1763 static void pci_pme_list_scan(struct work_struct *work)
1764 {
1765 struct pci_pme_device *pme_dev, *n;
1766
1767 mutex_lock(&pci_pme_list_mutex);
1768 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1769 if (pme_dev->dev->pme_poll) {
1770 struct pci_dev *bridge;
1771
1772 bridge = pme_dev->dev->bus->self;
1773 /*
1774 * If bridge is in low power state, the
1775 * configuration space of subordinate devices
1776 * may be not accessible
1777 */
1778 if (bridge && bridge->current_state != PCI_D0)
1779 continue;
1780 pci_pme_wakeup(pme_dev->dev, NULL);
1781 } else {
1782 list_del(&pme_dev->list);
1783 kfree(pme_dev);
1784 }
1785 }
1786 if (!list_empty(&pci_pme_list))
1787 queue_delayed_work(system_freezable_wq, &pci_pme_work,
1788 msecs_to_jiffies(PME_TIMEOUT));
1789 mutex_unlock(&pci_pme_list_mutex);
1790 }
1791
1792 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1793 {
1794 u16 pmcsr;
1795
1796 if (!dev->pme_support)
1797 return;
1798
1799 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1800 /* Clear PME_Status by writing 1 to it and enable PME# */
1801 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1802 if (!enable)
1803 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1804
1805 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1806 }
1807
1808 /**
1809 * pci_pme_active - enable or disable PCI device's PME# function
1810 * @dev: PCI device to handle.
1811 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1812 *
1813 * The caller must verify that the device is capable of generating PME# before
1814 * calling this function with @enable equal to 'true'.
1815 */
1816 void pci_pme_active(struct pci_dev *dev, bool enable)
1817 {
1818 __pci_pme_active(dev, enable);
1819
1820 /*
1821 * PCI (as opposed to PCIe) PME requires that the device have
1822 * its PME# line hooked up correctly. Not all hardware vendors
1823 * do this, so the PME never gets delivered and the device
1824 * remains asleep. The easiest way around this is to
1825 * periodically walk the list of suspended devices and check
1826 * whether any have their PME flag set. The assumption is that
1827 * we'll wake up often enough anyway that this won't be a huge
1828 * hit, and the power savings from the devices will still be a
1829 * win.
1830 *
1831 * Although PCIe uses in-band PME message instead of PME# line
1832 * to report PME, PME does not work for some PCIe devices in
1833 * reality. For example, there are devices that set their PME
1834 * status bits, but don't really bother to send a PME message;
1835 * there are PCI Express Root Ports that don't bother to
1836 * trigger interrupts when they receive PME messages from the
1837 * devices below. So PME poll is used for PCIe devices too.
1838 */
1839
1840 if (dev->pme_poll) {
1841 struct pci_pme_device *pme_dev;
1842 if (enable) {
1843 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1844 GFP_KERNEL);
1845 if (!pme_dev) {
1846 dev_warn(&dev->dev, "can't enable PME#\n");
1847 return;
1848 }
1849 pme_dev->dev = dev;
1850 mutex_lock(&pci_pme_list_mutex);
1851 list_add(&pme_dev->list, &pci_pme_list);
1852 if (list_is_singular(&pci_pme_list))
1853 queue_delayed_work(system_freezable_wq,
1854 &pci_pme_work,
1855 msecs_to_jiffies(PME_TIMEOUT));
1856 mutex_unlock(&pci_pme_list_mutex);
1857 } else {
1858 mutex_lock(&pci_pme_list_mutex);
1859 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1860 if (pme_dev->dev == dev) {
1861 list_del(&pme_dev->list);
1862 kfree(pme_dev);
1863 break;
1864 }
1865 }
1866 mutex_unlock(&pci_pme_list_mutex);
1867 }
1868 }
1869
1870 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1871 }
1872 EXPORT_SYMBOL(pci_pme_active);
1873
1874 /**
1875 * __pci_enable_wake - enable PCI device as wakeup event source
1876 * @dev: PCI device affected
1877 * @state: PCI state from which device will issue wakeup events
1878 * @runtime: True if the events are to be generated at run time
1879 * @enable: True to enable event generation; false to disable
1880 *
1881 * This enables the device as a wakeup event source, or disables it.
1882 * When such events involves platform-specific hooks, those hooks are
1883 * called automatically by this routine.
1884 *
1885 * Devices with legacy power management (no standard PCI PM capabilities)
1886 * always require such platform hooks.
1887 *
1888 * RETURN VALUE:
1889 * 0 is returned on success
1890 * -EINVAL is returned if device is not supposed to wake up the system
1891 * Error code depending on the platform is returned if both the platform and
1892 * the native mechanism fail to enable the generation of wake-up events
1893 */
1894 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1895 bool runtime, bool enable)
1896 {
1897 int ret = 0;
1898
1899 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1900 return -EINVAL;
1901
1902 /* Don't do the same thing twice in a row for one device. */
1903 if (!!enable == !!dev->wakeup_prepared)
1904 return 0;
1905
1906 /*
1907 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1908 * Anderson we should be doing PME# wake enable followed by ACPI wake
1909 * enable. To disable wake-up we call the platform first, for symmetry.
1910 */
1911
1912 if (enable) {
1913 int error;
1914
1915 if (pci_pme_capable(dev, state))
1916 pci_pme_active(dev, true);
1917 else
1918 ret = 1;
1919 error = runtime ? platform_pci_run_wake(dev, true) :
1920 platform_pci_sleep_wake(dev, true);
1921 if (ret)
1922 ret = error;
1923 if (!ret)
1924 dev->wakeup_prepared = true;
1925 } else {
1926 if (runtime)
1927 platform_pci_run_wake(dev, false);
1928 else
1929 platform_pci_sleep_wake(dev, false);
1930 pci_pme_active(dev, false);
1931 dev->wakeup_prepared = false;
1932 }
1933
1934 return ret;
1935 }
1936 EXPORT_SYMBOL(__pci_enable_wake);
1937
1938 /**
1939 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1940 * @dev: PCI device to prepare
1941 * @enable: True to enable wake-up event generation; false to disable
1942 *
1943 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1944 * and this function allows them to set that up cleanly - pci_enable_wake()
1945 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1946 * ordering constraints.
1947 *
1948 * This function only returns error code if the device is not capable of
1949 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1950 * enable wake-up power for it.
1951 */
1952 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1953 {
1954 return pci_pme_capable(dev, PCI_D3cold) ?
1955 pci_enable_wake(dev, PCI_D3cold, enable) :
1956 pci_enable_wake(dev, PCI_D3hot, enable);
1957 }
1958 EXPORT_SYMBOL(pci_wake_from_d3);
1959
1960 /**
1961 * pci_target_state - find an appropriate low power state for a given PCI dev
1962 * @dev: PCI device
1963 *
1964 * Use underlying platform code to find a supported low power state for @dev.
1965 * If the platform can't manage @dev, return the deepest state from which it
1966 * can generate wake events, based on any available PME info.
1967 */
1968 static pci_power_t pci_target_state(struct pci_dev *dev)
1969 {
1970 pci_power_t target_state = PCI_D3hot;
1971
1972 if (platform_pci_power_manageable(dev)) {
1973 /*
1974 * Call the platform to choose the target state of the device
1975 * and enable wake-up from this state if supported.
1976 */
1977 pci_power_t state = platform_pci_choose_state(dev);
1978
1979 switch (state) {
1980 case PCI_POWER_ERROR:
1981 case PCI_UNKNOWN:
1982 break;
1983 case PCI_D1:
1984 case PCI_D2:
1985 if (pci_no_d1d2(dev))
1986 break;
1987 default:
1988 target_state = state;
1989 }
1990
1991 return target_state;
1992 }
1993
1994 if (!dev->pm_cap)
1995 target_state = PCI_D0;
1996
1997 /*
1998 * If the device is in D3cold even though it's not power-manageable by
1999 * the platform, it may have been powered down by non-standard means.
2000 * Best to let it slumber.
2001 */
2002 if (dev->current_state == PCI_D3cold)
2003 target_state = PCI_D3cold;
2004
2005 if (device_may_wakeup(&dev->dev)) {
2006 /*
2007 * Find the deepest state from which the device can generate
2008 * wake-up events, make it the target state and enable device
2009 * to generate PME#.
2010 */
2011 if (dev->pme_support) {
2012 while (target_state
2013 && !(dev->pme_support & (1 << target_state)))
2014 target_state--;
2015 }
2016 }
2017
2018 return target_state;
2019 }
2020
2021 /**
2022 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2023 * @dev: Device to handle.
2024 *
2025 * Choose the power state appropriate for the device depending on whether
2026 * it can wake up the system and/or is power manageable by the platform
2027 * (PCI_D3hot is the default) and put the device into that state.
2028 */
2029 int pci_prepare_to_sleep(struct pci_dev *dev)
2030 {
2031 pci_power_t target_state = pci_target_state(dev);
2032 int error;
2033
2034 if (target_state == PCI_POWER_ERROR)
2035 return -EIO;
2036
2037 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
2038
2039 error = pci_set_power_state(dev, target_state);
2040
2041 if (error)
2042 pci_enable_wake(dev, target_state, false);
2043
2044 return error;
2045 }
2046 EXPORT_SYMBOL(pci_prepare_to_sleep);
2047
2048 /**
2049 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2050 * @dev: Device to handle.
2051 *
2052 * Disable device's system wake-up capability and put it into D0.
2053 */
2054 int pci_back_from_sleep(struct pci_dev *dev)
2055 {
2056 pci_enable_wake(dev, PCI_D0, false);
2057 return pci_set_power_state(dev, PCI_D0);
2058 }
2059 EXPORT_SYMBOL(pci_back_from_sleep);
2060
2061 /**
2062 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2063 * @dev: PCI device being suspended.
2064 *
2065 * Prepare @dev to generate wake-up events at run time and put it into a low
2066 * power state.
2067 */
2068 int pci_finish_runtime_suspend(struct pci_dev *dev)
2069 {
2070 pci_power_t target_state = pci_target_state(dev);
2071 int error;
2072
2073 if (target_state == PCI_POWER_ERROR)
2074 return -EIO;
2075
2076 dev->runtime_d3cold = target_state == PCI_D3cold;
2077
2078 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
2079
2080 error = pci_set_power_state(dev, target_state);
2081
2082 if (error) {
2083 __pci_enable_wake(dev, target_state, true, false);
2084 dev->runtime_d3cold = false;
2085 }
2086
2087 return error;
2088 }
2089
2090 /**
2091 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2092 * @dev: Device to check.
2093 *
2094 * Return true if the device itself is capable of generating wake-up events
2095 * (through the platform or using the native PCIe PME) or if the device supports
2096 * PME and one of its upstream bridges can generate wake-up events.
2097 */
2098 bool pci_dev_run_wake(struct pci_dev *dev)
2099 {
2100 struct pci_bus *bus = dev->bus;
2101
2102 if (device_run_wake(&dev->dev))
2103 return true;
2104
2105 if (!dev->pme_support)
2106 return false;
2107
2108 /* PME-capable in principle, but not from the intended sleep state */
2109 if (!pci_pme_capable(dev, pci_target_state(dev)))
2110 return false;
2111
2112 while (bus->parent) {
2113 struct pci_dev *bridge = bus->self;
2114
2115 if (device_run_wake(&bridge->dev))
2116 return true;
2117
2118 bus = bus->parent;
2119 }
2120
2121 /* We have reached the root bus. */
2122 if (bus->bridge)
2123 return device_run_wake(bus->bridge);
2124
2125 return false;
2126 }
2127 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2128
2129 /**
2130 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2131 * @pci_dev: Device to check.
2132 *
2133 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2134 * reconfigured due to wakeup settings difference between system and runtime
2135 * suspend and the current power state of it is suitable for the upcoming
2136 * (system) transition.
2137 *
2138 * If the device is not configured for system wakeup, disable PME for it before
2139 * returning 'true' to prevent it from waking up the system unnecessarily.
2140 */
2141 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2142 {
2143 struct device *dev = &pci_dev->dev;
2144
2145 if (!pm_runtime_suspended(dev)
2146 || pci_target_state(pci_dev) != pci_dev->current_state
2147 || platform_pci_need_resume(pci_dev))
2148 return false;
2149
2150 /*
2151 * At this point the device is good to go unless it's been configured
2152 * to generate PME at the runtime suspend time, but it is not supposed
2153 * to wake up the system. In that case, simply disable PME for it
2154 * (it will have to be re-enabled on exit from system resume).
2155 *
2156 * If the device's power state is D3cold and the platform check above
2157 * hasn't triggered, the device's configuration is suitable and we don't
2158 * need to manipulate it at all.
2159 */
2160 spin_lock_irq(&dev->power.lock);
2161
2162 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2163 !device_may_wakeup(dev))
2164 __pci_pme_active(pci_dev, false);
2165
2166 spin_unlock_irq(&dev->power.lock);
2167 return true;
2168 }
2169
2170 /**
2171 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2172 * @pci_dev: Device to handle.
2173 *
2174 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2175 * it might have been disabled during the prepare phase of system suspend if
2176 * the device was not configured for system wakeup.
2177 */
2178 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2179 {
2180 struct device *dev = &pci_dev->dev;
2181
2182 if (!pci_dev_run_wake(pci_dev))
2183 return;
2184
2185 spin_lock_irq(&dev->power.lock);
2186
2187 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2188 __pci_pme_active(pci_dev, true);
2189
2190 spin_unlock_irq(&dev->power.lock);
2191 }
2192
2193 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2194 {
2195 struct device *dev = &pdev->dev;
2196 struct device *parent = dev->parent;
2197
2198 if (parent)
2199 pm_runtime_get_sync(parent);
2200 pm_runtime_get_noresume(dev);
2201 /*
2202 * pdev->current_state is set to PCI_D3cold during suspending,
2203 * so wait until suspending completes
2204 */
2205 pm_runtime_barrier(dev);
2206 /*
2207 * Only need to resume devices in D3cold, because config
2208 * registers are still accessible for devices suspended but
2209 * not in D3cold.
2210 */
2211 if (pdev->current_state == PCI_D3cold)
2212 pm_runtime_resume(dev);
2213 }
2214
2215 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2216 {
2217 struct device *dev = &pdev->dev;
2218 struct device *parent = dev->parent;
2219
2220 pm_runtime_put(dev);
2221 if (parent)
2222 pm_runtime_put_sync(parent);
2223 }
2224
2225 /**
2226 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2227 * @bridge: Bridge to check
2228 *
2229 * This function checks if it is possible to move the bridge to D3.
2230 * Currently we only allow D3 for recent enough PCIe ports.
2231 */
2232 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2233 {
2234 unsigned int year;
2235
2236 if (!pci_is_pcie(bridge))
2237 return false;
2238
2239 switch (pci_pcie_type(bridge)) {
2240 case PCI_EXP_TYPE_ROOT_PORT:
2241 case PCI_EXP_TYPE_UPSTREAM:
2242 case PCI_EXP_TYPE_DOWNSTREAM:
2243 if (pci_bridge_d3_disable)
2244 return false;
2245
2246 /*
2247 * Hotplug interrupts cannot be delivered if the link is down,
2248 * so parents of a hotplug port must stay awake. In addition,
2249 * hotplug ports handled by firmware in System Management Mode
2250 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2251 * For simplicity, disallow in general for now.
2252 */
2253 if (bridge->is_hotplug_bridge)
2254 return false;
2255
2256 if (pci_bridge_d3_force)
2257 return true;
2258
2259 /*
2260 * It should be safe to put PCIe ports from 2015 or newer
2261 * to D3.
2262 */
2263 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2264 year >= 2015) {
2265 return true;
2266 }
2267 break;
2268 }
2269
2270 return false;
2271 }
2272
2273 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2274 {
2275 bool *d3cold_ok = data;
2276
2277 if (/* The device needs to be allowed to go D3cold ... */
2278 dev->no_d3cold || !dev->d3cold_allowed ||
2279
2280 /* ... and if it is wakeup capable to do so from D3cold. */
2281 (device_may_wakeup(&dev->dev) &&
2282 !pci_pme_capable(dev, PCI_D3cold)) ||
2283
2284 /* If it is a bridge it must be allowed to go to D3. */
2285 !pci_power_manageable(dev))
2286
2287 *d3cold_ok = false;
2288
2289 return !*d3cold_ok;
2290 }
2291
2292 /*
2293 * pci_bridge_d3_update - Update bridge D3 capabilities
2294 * @dev: PCI device which is changed
2295 *
2296 * Update upstream bridge PM capabilities accordingly depending on if the
2297 * device PM configuration was changed or the device is being removed. The
2298 * change is also propagated upstream.
2299 */
2300 void pci_bridge_d3_update(struct pci_dev *dev)
2301 {
2302 bool remove = !device_is_registered(&dev->dev);
2303 struct pci_dev *bridge;
2304 bool d3cold_ok = true;
2305
2306 bridge = pci_upstream_bridge(dev);
2307 if (!bridge || !pci_bridge_d3_possible(bridge))
2308 return;
2309
2310 /*
2311 * If D3 is currently allowed for the bridge, removing one of its
2312 * children won't change that.
2313 */
2314 if (remove && bridge->bridge_d3)
2315 return;
2316
2317 /*
2318 * If D3 is currently allowed for the bridge and a child is added or
2319 * changed, disallowance of D3 can only be caused by that child, so
2320 * we only need to check that single device, not any of its siblings.
2321 *
2322 * If D3 is currently not allowed for the bridge, checking the device
2323 * first may allow us to skip checking its siblings.
2324 */
2325 if (!remove)
2326 pci_dev_check_d3cold(dev, &d3cold_ok);
2327
2328 /*
2329 * If D3 is currently not allowed for the bridge, this may be caused
2330 * either by the device being changed/removed or any of its siblings,
2331 * so we need to go through all children to find out if one of them
2332 * continues to block D3.
2333 */
2334 if (d3cold_ok && !bridge->bridge_d3)
2335 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2336 &d3cold_ok);
2337
2338 if (bridge->bridge_d3 != d3cold_ok) {
2339 bridge->bridge_d3 = d3cold_ok;
2340 /* Propagate change to upstream bridges */
2341 pci_bridge_d3_update(bridge);
2342 }
2343 }
2344
2345 /**
2346 * pci_d3cold_enable - Enable D3cold for device
2347 * @dev: PCI device to handle
2348 *
2349 * This function can be used in drivers to enable D3cold from the device
2350 * they handle. It also updates upstream PCI bridge PM capabilities
2351 * accordingly.
2352 */
2353 void pci_d3cold_enable(struct pci_dev *dev)
2354 {
2355 if (dev->no_d3cold) {
2356 dev->no_d3cold = false;
2357 pci_bridge_d3_update(dev);
2358 }
2359 }
2360 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2361
2362 /**
2363 * pci_d3cold_disable - Disable D3cold for device
2364 * @dev: PCI device to handle
2365 *
2366 * This function can be used in drivers to disable D3cold from the device
2367 * they handle. It also updates upstream PCI bridge PM capabilities
2368 * accordingly.
2369 */
2370 void pci_d3cold_disable(struct pci_dev *dev)
2371 {
2372 if (!dev->no_d3cold) {
2373 dev->no_d3cold = true;
2374 pci_bridge_d3_update(dev);
2375 }
2376 }
2377 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2378
2379 /**
2380 * pci_pm_init - Initialize PM functions of given PCI device
2381 * @dev: PCI device to handle.
2382 */
2383 void pci_pm_init(struct pci_dev *dev)
2384 {
2385 int pm;
2386 u16 pmc;
2387
2388 pm_runtime_forbid(&dev->dev);
2389 pm_runtime_set_active(&dev->dev);
2390 pm_runtime_enable(&dev->dev);
2391 device_enable_async_suspend(&dev->dev);
2392 dev->wakeup_prepared = false;
2393
2394 dev->pm_cap = 0;
2395 dev->pme_support = 0;
2396
2397 /* find PCI PM capability in list */
2398 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2399 if (!pm)
2400 return;
2401 /* Check device's ability to generate PME# */
2402 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2403
2404 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2405 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2406 pmc & PCI_PM_CAP_VER_MASK);
2407 return;
2408 }
2409
2410 dev->pm_cap = pm;
2411 dev->d3_delay = PCI_PM_D3_WAIT;
2412 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2413 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2414 dev->d3cold_allowed = true;
2415
2416 dev->d1_support = false;
2417 dev->d2_support = false;
2418 if (!pci_no_d1d2(dev)) {
2419 if (pmc & PCI_PM_CAP_D1)
2420 dev->d1_support = true;
2421 if (pmc & PCI_PM_CAP_D2)
2422 dev->d2_support = true;
2423
2424 if (dev->d1_support || dev->d2_support)
2425 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2426 dev->d1_support ? " D1" : "",
2427 dev->d2_support ? " D2" : "");
2428 }
2429
2430 pmc &= PCI_PM_CAP_PME_MASK;
2431 if (pmc) {
2432 dev_printk(KERN_DEBUG, &dev->dev,
2433 "PME# supported from%s%s%s%s%s\n",
2434 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2435 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2436 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2437 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2438 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2439 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2440 dev->pme_poll = true;
2441 /*
2442 * Make device's PM flags reflect the wake-up capability, but
2443 * let the user space enable it to wake up the system as needed.
2444 */
2445 device_set_wakeup_capable(&dev->dev, true);
2446 /* Disable the PME# generation functionality */
2447 pci_pme_active(dev, false);
2448 }
2449 }
2450
2451 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2452 {
2453 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2454
2455 switch (prop) {
2456 case PCI_EA_P_MEM:
2457 case PCI_EA_P_VF_MEM:
2458 flags |= IORESOURCE_MEM;
2459 break;
2460 case PCI_EA_P_MEM_PREFETCH:
2461 case PCI_EA_P_VF_MEM_PREFETCH:
2462 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2463 break;
2464 case PCI_EA_P_IO:
2465 flags |= IORESOURCE_IO;
2466 break;
2467 default:
2468 return 0;
2469 }
2470
2471 return flags;
2472 }
2473
2474 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2475 u8 prop)
2476 {
2477 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2478 return &dev->resource[bei];
2479 #ifdef CONFIG_PCI_IOV
2480 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2481 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2482 return &dev->resource[PCI_IOV_RESOURCES +
2483 bei - PCI_EA_BEI_VF_BAR0];
2484 #endif
2485 else if (bei == PCI_EA_BEI_ROM)
2486 return &dev->resource[PCI_ROM_RESOURCE];
2487 else
2488 return NULL;
2489 }
2490
2491 /* Read an Enhanced Allocation (EA) entry */
2492 static int pci_ea_read(struct pci_dev *dev, int offset)
2493 {
2494 struct resource *res;
2495 int ent_size, ent_offset = offset;
2496 resource_size_t start, end;
2497 unsigned long flags;
2498 u32 dw0, bei, base, max_offset;
2499 u8 prop;
2500 bool support_64 = (sizeof(resource_size_t) >= 8);
2501
2502 pci_read_config_dword(dev, ent_offset, &dw0);
2503 ent_offset += 4;
2504
2505 /* Entry size field indicates DWORDs after 1st */
2506 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2507
2508 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2509 goto out;
2510
2511 bei = (dw0 & PCI_EA_BEI) >> 4;
2512 prop = (dw0 & PCI_EA_PP) >> 8;
2513
2514 /*
2515 * If the Property is in the reserved range, try the Secondary
2516 * Property instead.
2517 */
2518 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2519 prop = (dw0 & PCI_EA_SP) >> 16;
2520 if (prop > PCI_EA_P_BRIDGE_IO)
2521 goto out;
2522
2523 res = pci_ea_get_resource(dev, bei, prop);
2524 if (!res) {
2525 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2526 goto out;
2527 }
2528
2529 flags = pci_ea_flags(dev, prop);
2530 if (!flags) {
2531 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2532 goto out;
2533 }
2534
2535 /* Read Base */
2536 pci_read_config_dword(dev, ent_offset, &base);
2537 start = (base & PCI_EA_FIELD_MASK);
2538 ent_offset += 4;
2539
2540 /* Read MaxOffset */
2541 pci_read_config_dword(dev, ent_offset, &max_offset);
2542 ent_offset += 4;
2543
2544 /* Read Base MSBs (if 64-bit entry) */
2545 if (base & PCI_EA_IS_64) {
2546 u32 base_upper;
2547
2548 pci_read_config_dword(dev, ent_offset, &base_upper);
2549 ent_offset += 4;
2550
2551 flags |= IORESOURCE_MEM_64;
2552
2553 /* entry starts above 32-bit boundary, can't use */
2554 if (!support_64 && base_upper)
2555 goto out;
2556
2557 if (support_64)
2558 start |= ((u64)base_upper << 32);
2559 }
2560
2561 end = start + (max_offset | 0x03);
2562
2563 /* Read MaxOffset MSBs (if 64-bit entry) */
2564 if (max_offset & PCI_EA_IS_64) {
2565 u32 max_offset_upper;
2566
2567 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2568 ent_offset += 4;
2569
2570 flags |= IORESOURCE_MEM_64;
2571
2572 /* entry too big, can't use */
2573 if (!support_64 && max_offset_upper)
2574 goto out;
2575
2576 if (support_64)
2577 end += ((u64)max_offset_upper << 32);
2578 }
2579
2580 if (end < start) {
2581 dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2582 goto out;
2583 }
2584
2585 if (ent_size != ent_offset - offset) {
2586 dev_err(&dev->dev,
2587 "EA Entry Size (%d) does not match length read (%d)\n",
2588 ent_size, ent_offset - offset);
2589 goto out;
2590 }
2591
2592 res->name = pci_name(dev);
2593 res->start = start;
2594 res->end = end;
2595 res->flags = flags;
2596
2597 if (bei <= PCI_EA_BEI_BAR5)
2598 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2599 bei, res, prop);
2600 else if (bei == PCI_EA_BEI_ROM)
2601 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2602 res, prop);
2603 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2604 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2605 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2606 else
2607 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2608 bei, res, prop);
2609
2610 out:
2611 return offset + ent_size;
2612 }
2613
2614 /* Enhanced Allocation Initialization */
2615 void pci_ea_init(struct pci_dev *dev)
2616 {
2617 int ea;
2618 u8 num_ent;
2619 int offset;
2620 int i;
2621
2622 /* find PCI EA capability in list */
2623 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2624 if (!ea)
2625 return;
2626
2627 /* determine the number of entries */
2628 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2629 &num_ent);
2630 num_ent &= PCI_EA_NUM_ENT_MASK;
2631
2632 offset = ea + PCI_EA_FIRST_ENT;
2633
2634 /* Skip DWORD 2 for type 1 functions */
2635 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2636 offset += 4;
2637
2638 /* parse each EA entry */
2639 for (i = 0; i < num_ent; ++i)
2640 offset = pci_ea_read(dev, offset);
2641 }
2642
2643 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2644 struct pci_cap_saved_state *new_cap)
2645 {
2646 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2647 }
2648
2649 /**
2650 * _pci_add_cap_save_buffer - allocate buffer for saving given
2651 * capability registers
2652 * @dev: the PCI device
2653 * @cap: the capability to allocate the buffer for
2654 * @extended: Standard or Extended capability ID
2655 * @size: requested size of the buffer
2656 */
2657 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2658 bool extended, unsigned int size)
2659 {
2660 int pos;
2661 struct pci_cap_saved_state *save_state;
2662
2663 if (extended)
2664 pos = pci_find_ext_capability(dev, cap);
2665 else
2666 pos = pci_find_capability(dev, cap);
2667
2668 if (!pos)
2669 return 0;
2670
2671 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2672 if (!save_state)
2673 return -ENOMEM;
2674
2675 save_state->cap.cap_nr = cap;
2676 save_state->cap.cap_extended = extended;
2677 save_state->cap.size = size;
2678 pci_add_saved_cap(dev, save_state);
2679
2680 return 0;
2681 }
2682
2683 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2684 {
2685 return _pci_add_cap_save_buffer(dev, cap, false, size);
2686 }
2687
2688 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2689 {
2690 return _pci_add_cap_save_buffer(dev, cap, true, size);
2691 }
2692
2693 /**
2694 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2695 * @dev: the PCI device
2696 */
2697 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2698 {
2699 int error;
2700
2701 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2702 PCI_EXP_SAVE_REGS * sizeof(u16));
2703 if (error)
2704 dev_err(&dev->dev,
2705 "unable to preallocate PCI Express save buffer\n");
2706
2707 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2708 if (error)
2709 dev_err(&dev->dev,
2710 "unable to preallocate PCI-X save buffer\n");
2711
2712 pci_allocate_vc_save_buffers(dev);
2713 }
2714
2715 void pci_free_cap_save_buffers(struct pci_dev *dev)
2716 {
2717 struct pci_cap_saved_state *tmp;
2718 struct hlist_node *n;
2719
2720 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2721 kfree(tmp);
2722 }
2723
2724 /**
2725 * pci_configure_ari - enable or disable ARI forwarding
2726 * @dev: the PCI device
2727 *
2728 * If @dev and its upstream bridge both support ARI, enable ARI in the
2729 * bridge. Otherwise, disable ARI in the bridge.
2730 */
2731 void pci_configure_ari(struct pci_dev *dev)
2732 {
2733 u32 cap;
2734 struct pci_dev *bridge;
2735
2736 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2737 return;
2738
2739 bridge = dev->bus->self;
2740 if (!bridge)
2741 return;
2742
2743 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2744 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2745 return;
2746
2747 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2748 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2749 PCI_EXP_DEVCTL2_ARI);
2750 bridge->ari_enabled = 1;
2751 } else {
2752 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2753 PCI_EXP_DEVCTL2_ARI);
2754 bridge->ari_enabled = 0;
2755 }
2756 }
2757
2758 static int pci_acs_enable;
2759
2760 /**
2761 * pci_request_acs - ask for ACS to be enabled if supported
2762 */
2763 void pci_request_acs(void)
2764 {
2765 pci_acs_enable = 1;
2766 }
2767
2768 /**
2769 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2770 * @dev: the PCI device
2771 */
2772 static void pci_std_enable_acs(struct pci_dev *dev)
2773 {
2774 int pos;
2775 u16 cap;
2776 u16 ctrl;
2777
2778 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2779 if (!pos)
2780 return;
2781
2782 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2783 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2784
2785 /* Source Validation */
2786 ctrl |= (cap & PCI_ACS_SV);
2787
2788 /* P2P Request Redirect */
2789 ctrl |= (cap & PCI_ACS_RR);
2790
2791 /* P2P Completion Redirect */
2792 ctrl |= (cap & PCI_ACS_CR);
2793
2794 /* Upstream Forwarding */
2795 ctrl |= (cap & PCI_ACS_UF);
2796
2797 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2798 }
2799
2800 /**
2801 * pci_enable_acs - enable ACS if hardware support it
2802 * @dev: the PCI device
2803 */
2804 void pci_enable_acs(struct pci_dev *dev)
2805 {
2806 if (!pci_acs_enable)
2807 return;
2808
2809 if (!pci_dev_specific_enable_acs(dev))
2810 return;
2811
2812 pci_std_enable_acs(dev);
2813 }
2814
2815 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2816 {
2817 int pos;
2818 u16 cap, ctrl;
2819
2820 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2821 if (!pos)
2822 return false;
2823
2824 /*
2825 * Except for egress control, capabilities are either required
2826 * or only required if controllable. Features missing from the
2827 * capability field can therefore be assumed as hard-wired enabled.
2828 */
2829 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2830 acs_flags &= (cap | PCI_ACS_EC);
2831
2832 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2833 return (ctrl & acs_flags) == acs_flags;
2834 }
2835
2836 /**
2837 * pci_acs_enabled - test ACS against required flags for a given device
2838 * @pdev: device to test
2839 * @acs_flags: required PCI ACS flags
2840 *
2841 * Return true if the device supports the provided flags. Automatically
2842 * filters out flags that are not implemented on multifunction devices.
2843 *
2844 * Note that this interface checks the effective ACS capabilities of the
2845 * device rather than the actual capabilities. For instance, most single
2846 * function endpoints are not required to support ACS because they have no
2847 * opportunity for peer-to-peer access. We therefore return 'true'
2848 * regardless of whether the device exposes an ACS capability. This makes
2849 * it much easier for callers of this function to ignore the actual type
2850 * or topology of the device when testing ACS support.
2851 */
2852 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2853 {
2854 int ret;
2855
2856 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2857 if (ret >= 0)
2858 return ret > 0;
2859
2860 /*
2861 * Conventional PCI and PCI-X devices never support ACS, either
2862 * effectively or actually. The shared bus topology implies that
2863 * any device on the bus can receive or snoop DMA.
2864 */
2865 if (!pci_is_pcie(pdev))
2866 return false;
2867
2868 switch (pci_pcie_type(pdev)) {
2869 /*
2870 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2871 * but since their primary interface is PCI/X, we conservatively
2872 * handle them as we would a non-PCIe device.
2873 */
2874 case PCI_EXP_TYPE_PCIE_BRIDGE:
2875 /*
2876 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2877 * applicable... must never implement an ACS Extended Capability...".
2878 * This seems arbitrary, but we take a conservative interpretation
2879 * of this statement.
2880 */
2881 case PCI_EXP_TYPE_PCI_BRIDGE:
2882 case PCI_EXP_TYPE_RC_EC:
2883 return false;
2884 /*
2885 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2886 * implement ACS in order to indicate their peer-to-peer capabilities,
2887 * regardless of whether they are single- or multi-function devices.
2888 */
2889 case PCI_EXP_TYPE_DOWNSTREAM:
2890 case PCI_EXP_TYPE_ROOT_PORT:
2891 return pci_acs_flags_enabled(pdev, acs_flags);
2892 /*
2893 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2894 * implemented by the remaining PCIe types to indicate peer-to-peer
2895 * capabilities, but only when they are part of a multifunction
2896 * device. The footnote for section 6.12 indicates the specific
2897 * PCIe types included here.
2898 */
2899 case PCI_EXP_TYPE_ENDPOINT:
2900 case PCI_EXP_TYPE_UPSTREAM:
2901 case PCI_EXP_TYPE_LEG_END:
2902 case PCI_EXP_TYPE_RC_END:
2903 if (!pdev->multifunction)
2904 break;
2905
2906 return pci_acs_flags_enabled(pdev, acs_flags);
2907 }
2908
2909 /*
2910 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2911 * to single function devices with the exception of downstream ports.
2912 */
2913 return true;
2914 }
2915
2916 /**
2917 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2918 * @start: starting downstream device
2919 * @end: ending upstream device or NULL to search to the root bus
2920 * @acs_flags: required flags
2921 *
2922 * Walk up a device tree from start to end testing PCI ACS support. If
2923 * any step along the way does not support the required flags, return false.
2924 */
2925 bool pci_acs_path_enabled(struct pci_dev *start,
2926 struct pci_dev *end, u16 acs_flags)
2927 {
2928 struct pci_dev *pdev, *parent = start;
2929
2930 do {
2931 pdev = parent;
2932
2933 if (!pci_acs_enabled(pdev, acs_flags))
2934 return false;
2935
2936 if (pci_is_root_bus(pdev->bus))
2937 return (end == NULL);
2938
2939 parent = pdev->bus->self;
2940 } while (pdev != end);
2941
2942 return true;
2943 }
2944
2945 /**
2946 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2947 * @dev: the PCI device
2948 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2949 *
2950 * Perform INTx swizzling for a device behind one level of bridge. This is
2951 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2952 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2953 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2954 * the PCI Express Base Specification, Revision 2.1)
2955 */
2956 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2957 {
2958 int slot;
2959
2960 if (pci_ari_enabled(dev->bus))
2961 slot = 0;
2962 else
2963 slot = PCI_SLOT(dev->devfn);
2964
2965 return (((pin - 1) + slot) % 4) + 1;
2966 }
2967
2968 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2969 {
2970 u8 pin;
2971
2972 pin = dev->pin;
2973 if (!pin)
2974 return -1;
2975
2976 while (!pci_is_root_bus(dev->bus)) {
2977 pin = pci_swizzle_interrupt_pin(dev, pin);
2978 dev = dev->bus->self;
2979 }
2980 *bridge = dev;
2981 return pin;
2982 }
2983
2984 /**
2985 * pci_common_swizzle - swizzle INTx all the way to root bridge
2986 * @dev: the PCI device
2987 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2988 *
2989 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2990 * bridges all the way up to a PCI root bus.
2991 */
2992 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2993 {
2994 u8 pin = *pinp;
2995
2996 while (!pci_is_root_bus(dev->bus)) {
2997 pin = pci_swizzle_interrupt_pin(dev, pin);
2998 dev = dev->bus->self;
2999 }
3000 *pinp = pin;
3001 return PCI_SLOT(dev->devfn);
3002 }
3003 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3004
3005 /**
3006 * pci_release_region - Release a PCI bar
3007 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3008 * @bar: BAR to release
3009 *
3010 * Releases the PCI I/O and memory resources previously reserved by a
3011 * successful call to pci_request_region. Call this function only
3012 * after all use of the PCI regions has ceased.
3013 */
3014 void pci_release_region(struct pci_dev *pdev, int bar)
3015 {
3016 struct pci_devres *dr;
3017
3018 if (pci_resource_len(pdev, bar) == 0)
3019 return;
3020 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3021 release_region(pci_resource_start(pdev, bar),
3022 pci_resource_len(pdev, bar));
3023 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3024 release_mem_region(pci_resource_start(pdev, bar),
3025 pci_resource_len(pdev, bar));
3026
3027 dr = find_pci_dr(pdev);
3028 if (dr)
3029 dr->region_mask &= ~(1 << bar);
3030 }
3031 EXPORT_SYMBOL(pci_release_region);
3032
3033 /**
3034 * __pci_request_region - Reserved PCI I/O and memory resource
3035 * @pdev: PCI device whose resources are to be reserved
3036 * @bar: BAR to be reserved
3037 * @res_name: Name to be associated with resource.
3038 * @exclusive: whether the region access is exclusive or not
3039 *
3040 * Mark the PCI region associated with PCI device @pdev BR @bar as
3041 * being reserved by owner @res_name. Do not access any
3042 * address inside the PCI regions unless this call returns
3043 * successfully.
3044 *
3045 * If @exclusive is set, then the region is marked so that userspace
3046 * is explicitly not allowed to map the resource via /dev/mem or
3047 * sysfs MMIO access.
3048 *
3049 * Returns 0 on success, or %EBUSY on error. A warning
3050 * message is also printed on failure.
3051 */
3052 static int __pci_request_region(struct pci_dev *pdev, int bar,
3053 const char *res_name, int exclusive)
3054 {
3055 struct pci_devres *dr;
3056
3057 if (pci_resource_len(pdev, bar) == 0)
3058 return 0;
3059
3060 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3061 if (!request_region(pci_resource_start(pdev, bar),
3062 pci_resource_len(pdev, bar), res_name))
3063 goto err_out;
3064 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3065 if (!__request_mem_region(pci_resource_start(pdev, bar),
3066 pci_resource_len(pdev, bar), res_name,
3067 exclusive))
3068 goto err_out;
3069 }
3070
3071 dr = find_pci_dr(pdev);
3072 if (dr)
3073 dr->region_mask |= 1 << bar;
3074
3075 return 0;
3076
3077 err_out:
3078 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
3079 &pdev->resource[bar]);
3080 return -EBUSY;
3081 }
3082
3083 /**
3084 * pci_request_region - Reserve PCI I/O and memory resource
3085 * @pdev: PCI device whose resources are to be reserved
3086 * @bar: BAR to be reserved
3087 * @res_name: Name to be associated with resource
3088 *
3089 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3090 * being reserved by owner @res_name. Do not access any
3091 * address inside the PCI regions unless this call returns
3092 * successfully.
3093 *
3094 * Returns 0 on success, or %EBUSY on error. A warning
3095 * message is also printed on failure.
3096 */
3097 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3098 {
3099 return __pci_request_region(pdev, bar, res_name, 0);
3100 }
3101 EXPORT_SYMBOL(pci_request_region);
3102
3103 /**
3104 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3105 * @pdev: PCI device whose resources are to be reserved
3106 * @bar: BAR to be reserved
3107 * @res_name: Name to be associated with resource.
3108 *
3109 * Mark the PCI region associated with PCI device @pdev BR @bar as
3110 * being reserved by owner @res_name. Do not access any
3111 * address inside the PCI regions unless this call returns
3112 * successfully.
3113 *
3114 * Returns 0 on success, or %EBUSY on error. A warning
3115 * message is also printed on failure.
3116 *
3117 * The key difference that _exclusive makes it that userspace is
3118 * explicitly not allowed to map the resource via /dev/mem or
3119 * sysfs.
3120 */
3121 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3122 const char *res_name)
3123 {
3124 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3125 }
3126 EXPORT_SYMBOL(pci_request_region_exclusive);
3127
3128 /**
3129 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3130 * @pdev: PCI device whose resources were previously reserved
3131 * @bars: Bitmask of BARs to be released
3132 *
3133 * Release selected PCI I/O and memory resources previously reserved.
3134 * Call this function only after all use of the PCI regions has ceased.
3135 */
3136 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3137 {
3138 int i;
3139
3140 for (i = 0; i < 6; i++)
3141 if (bars & (1 << i))
3142 pci_release_region(pdev, i);
3143 }
3144 EXPORT_SYMBOL(pci_release_selected_regions);
3145
3146 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3147 const char *res_name, int excl)
3148 {
3149 int i;
3150
3151 for (i = 0; i < 6; i++)
3152 if (bars & (1 << i))
3153 if (__pci_request_region(pdev, i, res_name, excl))
3154 goto err_out;
3155 return 0;
3156
3157 err_out:
3158 while (--i >= 0)
3159 if (bars & (1 << i))
3160 pci_release_region(pdev, i);
3161
3162 return -EBUSY;
3163 }
3164
3165
3166 /**
3167 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3168 * @pdev: PCI device whose resources are to be reserved
3169 * @bars: Bitmask of BARs to be requested
3170 * @res_name: Name to be associated with resource
3171 */
3172 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3173 const char *res_name)
3174 {
3175 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3176 }
3177 EXPORT_SYMBOL(pci_request_selected_regions);
3178
3179 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3180 const char *res_name)
3181 {
3182 return __pci_request_selected_regions(pdev, bars, res_name,
3183 IORESOURCE_EXCLUSIVE);
3184 }
3185 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3186
3187 /**
3188 * pci_release_regions - Release reserved PCI I/O and memory resources
3189 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3190 *
3191 * Releases all PCI I/O and memory resources previously reserved by a
3192 * successful call to pci_request_regions. Call this function only
3193 * after all use of the PCI regions has ceased.
3194 */
3195
3196 void pci_release_regions(struct pci_dev *pdev)
3197 {
3198 pci_release_selected_regions(pdev, (1 << 6) - 1);
3199 }
3200 EXPORT_SYMBOL(pci_release_regions);
3201
3202 /**
3203 * pci_request_regions - Reserved PCI I/O and memory resources
3204 * @pdev: PCI device whose resources are to be reserved
3205 * @res_name: Name to be associated with resource.
3206 *
3207 * Mark all PCI regions associated with PCI device @pdev as
3208 * being reserved by owner @res_name. Do not access any
3209 * address inside the PCI regions unless this call returns
3210 * successfully.
3211 *
3212 * Returns 0 on success, or %EBUSY on error. A warning
3213 * message is also printed on failure.
3214 */
3215 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3216 {
3217 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3218 }
3219 EXPORT_SYMBOL(pci_request_regions);
3220
3221 /**
3222 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3223 * @pdev: PCI device whose resources are to be reserved
3224 * @res_name: Name to be associated with resource.
3225 *
3226 * Mark all PCI regions associated with PCI device @pdev as
3227 * being reserved by owner @res_name. Do not access any
3228 * address inside the PCI regions unless this call returns
3229 * successfully.
3230 *
3231 * pci_request_regions_exclusive() will mark the region so that
3232 * /dev/mem and the sysfs MMIO access will not be allowed.
3233 *
3234 * Returns 0 on success, or %EBUSY on error. A warning
3235 * message is also printed on failure.
3236 */
3237 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3238 {
3239 return pci_request_selected_regions_exclusive(pdev,
3240 ((1 << 6) - 1), res_name);
3241 }
3242 EXPORT_SYMBOL(pci_request_regions_exclusive);
3243
3244 #ifdef PCI_IOBASE
3245 struct io_range {
3246 struct list_head list;
3247 phys_addr_t start;
3248 resource_size_t size;
3249 };
3250
3251 static LIST_HEAD(io_range_list);
3252 static DEFINE_SPINLOCK(io_range_lock);
3253 #endif
3254
3255 /*
3256 * Record the PCI IO range (expressed as CPU physical address + size).
3257 * Return a negative value if an error has occured, zero otherwise
3258 */
3259 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
3260 {
3261 int err = 0;
3262
3263 #ifdef PCI_IOBASE
3264 struct io_range *range;
3265 resource_size_t allocated_size = 0;
3266
3267 /* check if the range hasn't been previously recorded */
3268 spin_lock(&io_range_lock);
3269 list_for_each_entry(range, &io_range_list, list) {
3270 if (addr >= range->start && addr + size <= range->start + size) {
3271 /* range already registered, bail out */
3272 goto end_register;
3273 }
3274 allocated_size += range->size;
3275 }
3276
3277 /* range not registed yet, check for available space */
3278 if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
3279 /* if it's too big check if 64K space can be reserved */
3280 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
3281 err = -E2BIG;
3282 goto end_register;
3283 }
3284
3285 size = SZ_64K;
3286 pr_warn("Requested IO range too big, new size set to 64K\n");
3287 }
3288
3289 /* add the range to the list */
3290 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3291 if (!range) {
3292 err = -ENOMEM;
3293 goto end_register;
3294 }
3295
3296 range->start = addr;
3297 range->size = size;
3298
3299 list_add_tail(&range->list, &io_range_list);
3300
3301 end_register:
3302 spin_unlock(&io_range_lock);
3303 #endif
3304
3305 return err;
3306 }
3307
3308 phys_addr_t pci_pio_to_address(unsigned long pio)
3309 {
3310 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3311
3312 #ifdef PCI_IOBASE
3313 struct io_range *range;
3314 resource_size_t allocated_size = 0;
3315
3316 if (pio > IO_SPACE_LIMIT)
3317 return address;
3318
3319 spin_lock(&io_range_lock);
3320 list_for_each_entry(range, &io_range_list, list) {
3321 if (pio >= allocated_size && pio < allocated_size + range->size) {
3322 address = range->start + pio - allocated_size;
3323 break;
3324 }
3325 allocated_size += range->size;
3326 }
3327 spin_unlock(&io_range_lock);
3328 #endif
3329
3330 return address;
3331 }
3332
3333 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3334 {
3335 #ifdef PCI_IOBASE
3336 struct io_range *res;
3337 resource_size_t offset = 0;
3338 unsigned long addr = -1;
3339
3340 spin_lock(&io_range_lock);
3341 list_for_each_entry(res, &io_range_list, list) {
3342 if (address >= res->start && address < res->start + res->size) {
3343 addr = address - res->start + offset;
3344 break;
3345 }
3346 offset += res->size;
3347 }
3348 spin_unlock(&io_range_lock);
3349
3350 return addr;
3351 #else
3352 if (address > IO_SPACE_LIMIT)
3353 return (unsigned long)-1;
3354
3355 return (unsigned long) address;
3356 #endif
3357 }
3358
3359 /**
3360 * pci_remap_iospace - Remap the memory mapped I/O space
3361 * @res: Resource describing the I/O space
3362 * @phys_addr: physical address of range to be mapped
3363 *
3364 * Remap the memory mapped I/O space described by the @res
3365 * and the CPU physical address @phys_addr into virtual address space.
3366 * Only architectures that have memory mapped IO functions defined
3367 * (and the PCI_IOBASE value defined) should call this function.
3368 */
3369 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3370 {
3371 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3372 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3373
3374 if (!(res->flags & IORESOURCE_IO))
3375 return -EINVAL;
3376
3377 if (res->end > IO_SPACE_LIMIT)
3378 return -EINVAL;
3379
3380 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3381 pgprot_device(PAGE_KERNEL));
3382 #else
3383 /* this architecture does not have memory mapped I/O space,
3384 so this function should never be called */
3385 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3386 return -ENODEV;
3387 #endif
3388 }
3389
3390 /**
3391 * pci_unmap_iospace - Unmap the memory mapped I/O space
3392 * @res: resource to be unmapped
3393 *
3394 * Unmap the CPU virtual address @res from virtual address space.
3395 * Only architectures that have memory mapped IO functions defined
3396 * (and the PCI_IOBASE value defined) should call this function.
3397 */
3398 void pci_unmap_iospace(struct resource *res)
3399 {
3400 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3401 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3402
3403 unmap_kernel_range(vaddr, resource_size(res));
3404 #endif
3405 }
3406
3407 static void __pci_set_master(struct pci_dev *dev, bool enable)
3408 {
3409 u16 old_cmd, cmd;
3410
3411 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3412 if (enable)
3413 cmd = old_cmd | PCI_COMMAND_MASTER;
3414 else
3415 cmd = old_cmd & ~PCI_COMMAND_MASTER;
3416 if (cmd != old_cmd) {
3417 dev_dbg(&dev->dev, "%s bus mastering\n",
3418 enable ? "enabling" : "disabling");
3419 pci_write_config_word(dev, PCI_COMMAND, cmd);
3420 }
3421 dev->is_busmaster = enable;
3422 }
3423
3424 /**
3425 * pcibios_setup - process "pci=" kernel boot arguments
3426 * @str: string used to pass in "pci=" kernel boot arguments
3427 *
3428 * Process kernel boot arguments. This is the default implementation.
3429 * Architecture specific implementations can override this as necessary.
3430 */
3431 char * __weak __init pcibios_setup(char *str)
3432 {
3433 return str;
3434 }
3435
3436 /**
3437 * pcibios_set_master - enable PCI bus-mastering for device dev
3438 * @dev: the PCI device to enable
3439 *
3440 * Enables PCI bus-mastering for the device. This is the default
3441 * implementation. Architecture specific implementations can override
3442 * this if necessary.
3443 */
3444 void __weak pcibios_set_master(struct pci_dev *dev)
3445 {
3446 u8 lat;
3447
3448 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3449 if (pci_is_pcie(dev))
3450 return;
3451
3452 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3453 if (lat < 16)
3454 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3455 else if (lat > pcibios_max_latency)
3456 lat = pcibios_max_latency;
3457 else
3458 return;
3459
3460 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3461 }
3462
3463 /**
3464 * pci_set_master - enables bus-mastering for device dev
3465 * @dev: the PCI device to enable
3466 *
3467 * Enables bus-mastering on the device and calls pcibios_set_master()
3468 * to do the needed arch specific settings.
3469 */
3470 void pci_set_master(struct pci_dev *dev)
3471 {
3472 __pci_set_master(dev, true);
3473 pcibios_set_master(dev);
3474 }
3475 EXPORT_SYMBOL(pci_set_master);
3476
3477 /**
3478 * pci_clear_master - disables bus-mastering for device dev
3479 * @dev: the PCI device to disable
3480 */
3481 void pci_clear_master(struct pci_dev *dev)
3482 {
3483 __pci_set_master(dev, false);
3484 }
3485 EXPORT_SYMBOL(pci_clear_master);
3486
3487 /**
3488 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3489 * @dev: the PCI device for which MWI is to be enabled
3490 *
3491 * Helper function for pci_set_mwi.
3492 * Originally copied from drivers/net/acenic.c.
3493 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3494 *
3495 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3496 */
3497 int pci_set_cacheline_size(struct pci_dev *dev)
3498 {
3499 u8 cacheline_size;
3500
3501 if (!pci_cache_line_size)
3502 return -EINVAL;
3503
3504 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3505 equal to or multiple of the right value. */
3506 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3507 if (cacheline_size >= pci_cache_line_size &&
3508 (cacheline_size % pci_cache_line_size) == 0)
3509 return 0;
3510
3511 /* Write the correct value. */
3512 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3513 /* Read it back. */
3514 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3515 if (cacheline_size == pci_cache_line_size)
3516 return 0;
3517
3518 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3519 pci_cache_line_size << 2);
3520
3521 return -EINVAL;
3522 }
3523 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3524
3525 /**
3526 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3527 * @dev: the PCI device for which MWI is enabled
3528 *
3529 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3530 *
3531 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3532 */
3533 int pci_set_mwi(struct pci_dev *dev)
3534 {
3535 #ifdef PCI_DISABLE_MWI
3536 return 0;
3537 #else
3538 int rc;
3539 u16 cmd;
3540
3541 rc = pci_set_cacheline_size(dev);
3542 if (rc)
3543 return rc;
3544
3545 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3546 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3547 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3548 cmd |= PCI_COMMAND_INVALIDATE;
3549 pci_write_config_word(dev, PCI_COMMAND, cmd);
3550 }
3551 return 0;
3552 #endif
3553 }
3554 EXPORT_SYMBOL(pci_set_mwi);
3555
3556 /**
3557 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3558 * @dev: the PCI device for which MWI is enabled
3559 *
3560 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3561 * Callers are not required to check the return value.
3562 *
3563 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3564 */
3565 int pci_try_set_mwi(struct pci_dev *dev)
3566 {
3567 #ifdef PCI_DISABLE_MWI
3568 return 0;
3569 #else
3570 return pci_set_mwi(dev);
3571 #endif
3572 }
3573 EXPORT_SYMBOL(pci_try_set_mwi);
3574
3575 /**
3576 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3577 * @dev: the PCI device to disable
3578 *
3579 * Disables PCI Memory-Write-Invalidate transaction on the device
3580 */
3581 void pci_clear_mwi(struct pci_dev *dev)
3582 {
3583 #ifndef PCI_DISABLE_MWI
3584 u16 cmd;
3585
3586 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3587 if (cmd & PCI_COMMAND_INVALIDATE) {
3588 cmd &= ~PCI_COMMAND_INVALIDATE;
3589 pci_write_config_word(dev, PCI_COMMAND, cmd);
3590 }
3591 #endif
3592 }
3593 EXPORT_SYMBOL(pci_clear_mwi);
3594
3595 /**
3596 * pci_intx - enables/disables PCI INTx for device dev
3597 * @pdev: the PCI device to operate on
3598 * @enable: boolean: whether to enable or disable PCI INTx
3599 *
3600 * Enables/disables PCI INTx for device dev
3601 */
3602 void pci_intx(struct pci_dev *pdev, int enable)
3603 {
3604 u16 pci_command, new;
3605
3606 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3607
3608 if (enable)
3609 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3610 else
3611 new = pci_command | PCI_COMMAND_INTX_DISABLE;
3612
3613 if (new != pci_command) {
3614 struct pci_devres *dr;
3615
3616 pci_write_config_word(pdev, PCI_COMMAND, new);
3617
3618 dr = find_pci_dr(pdev);
3619 if (dr && !dr->restore_intx) {
3620 dr->restore_intx = 1;
3621 dr->orig_intx = !enable;
3622 }
3623 }
3624 }
3625 EXPORT_SYMBOL_GPL(pci_intx);
3626
3627 /**
3628 * pci_intx_mask_supported - probe for INTx masking support
3629 * @dev: the PCI device to operate on
3630 *
3631 * Check if the device dev support INTx masking via the config space
3632 * command word.
3633 */
3634 bool pci_intx_mask_supported(struct pci_dev *dev)
3635 {
3636 bool mask_supported = false;
3637 u16 orig, new;
3638
3639 if (dev->broken_intx_masking)
3640 return false;
3641
3642 pci_cfg_access_lock(dev);
3643
3644 pci_read_config_word(dev, PCI_COMMAND, &orig);
3645 pci_write_config_word(dev, PCI_COMMAND,
3646 orig ^ PCI_COMMAND_INTX_DISABLE);
3647 pci_read_config_word(dev, PCI_COMMAND, &new);
3648
3649 /*
3650 * There's no way to protect against hardware bugs or detect them
3651 * reliably, but as long as we know what the value should be, let's
3652 * go ahead and check it.
3653 */
3654 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3655 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3656 orig, new);
3657 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3658 mask_supported = true;
3659 pci_write_config_word(dev, PCI_COMMAND, orig);
3660 }
3661
3662 pci_cfg_access_unlock(dev);
3663 return mask_supported;
3664 }
3665 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3666
3667 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3668 {
3669 struct pci_bus *bus = dev->bus;
3670 bool mask_updated = true;
3671 u32 cmd_status_dword;
3672 u16 origcmd, newcmd;
3673 unsigned long flags;
3674 bool irq_pending;
3675
3676 /*
3677 * We do a single dword read to retrieve both command and status.
3678 * Document assumptions that make this possible.
3679 */
3680 BUILD_BUG_ON(PCI_COMMAND % 4);
3681 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3682
3683 raw_spin_lock_irqsave(&pci_lock, flags);
3684
3685 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3686
3687 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3688
3689 /*
3690 * Check interrupt status register to see whether our device
3691 * triggered the interrupt (when masking) or the next IRQ is
3692 * already pending (when unmasking).
3693 */
3694 if (mask != irq_pending) {
3695 mask_updated = false;
3696 goto done;
3697 }
3698
3699 origcmd = cmd_status_dword;
3700 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3701 if (mask)
3702 newcmd |= PCI_COMMAND_INTX_DISABLE;
3703 if (newcmd != origcmd)
3704 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3705
3706 done:
3707 raw_spin_unlock_irqrestore(&pci_lock, flags);
3708
3709 return mask_updated;
3710 }
3711
3712 /**
3713 * pci_check_and_mask_intx - mask INTx on pending interrupt
3714 * @dev: the PCI device to operate on
3715 *
3716 * Check if the device dev has its INTx line asserted, mask it and
3717 * return true in that case. False is returned if not interrupt was
3718 * pending.
3719 */
3720 bool pci_check_and_mask_intx(struct pci_dev *dev)
3721 {
3722 return pci_check_and_set_intx_mask(dev, true);
3723 }
3724 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3725
3726 /**
3727 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3728 * @dev: the PCI device to operate on
3729 *
3730 * Check if the device dev has its INTx line asserted, unmask it if not
3731 * and return true. False is returned and the mask remains active if
3732 * there was still an interrupt pending.
3733 */
3734 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3735 {
3736 return pci_check_and_set_intx_mask(dev, false);
3737 }
3738 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3739
3740 /**
3741 * pci_wait_for_pending_transaction - waits for pending transaction
3742 * @dev: the PCI device to operate on
3743 *
3744 * Return 0 if transaction is pending 1 otherwise.
3745 */
3746 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3747 {
3748 if (!pci_is_pcie(dev))
3749 return 1;
3750
3751 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3752 PCI_EXP_DEVSTA_TRPND);
3753 }
3754 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3755
3756 /*
3757 * We should only need to wait 100ms after FLR, but some devices take longer.
3758 * Wait for up to 1000ms for config space to return something other than -1.
3759 * Intel IGD requires this when an LCD panel is attached. We read the 2nd
3760 * dword because VFs don't implement the 1st dword.
3761 */
3762 static void pci_flr_wait(struct pci_dev *dev)
3763 {
3764 int i = 0;
3765 u32 id;
3766
3767 do {
3768 msleep(100);
3769 pci_read_config_dword(dev, PCI_COMMAND, &id);
3770 } while (i++ < 10 && id == ~0);
3771
3772 if (id == ~0)
3773 dev_warn(&dev->dev, "Failed to return from FLR\n");
3774 else if (i > 1)
3775 dev_info(&dev->dev, "Required additional %dms to return from FLR\n",
3776 (i - 1) * 100);
3777 }
3778
3779 static int pcie_flr(struct pci_dev *dev, int probe)
3780 {
3781 u32 cap;
3782
3783 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3784 if (!(cap & PCI_EXP_DEVCAP_FLR))
3785 return -ENOTTY;
3786
3787 if (probe)
3788 return 0;
3789
3790 if (!pci_wait_for_pending_transaction(dev))
3791 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3792
3793 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3794 pci_flr_wait(dev);
3795 return 0;
3796 }
3797
3798 static int pci_af_flr(struct pci_dev *dev, int probe)
3799 {
3800 int pos;
3801 u8 cap;
3802
3803 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3804 if (!pos)
3805 return -ENOTTY;
3806
3807 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3808 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3809 return -ENOTTY;
3810
3811 if (probe)
3812 return 0;
3813
3814 /*
3815 * Wait for Transaction Pending bit to clear. A word-aligned test
3816 * is used, so we use the conrol offset rather than status and shift
3817 * the test bit to match.
3818 */
3819 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3820 PCI_AF_STATUS_TP << 8))
3821 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3822
3823 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3824 pci_flr_wait(dev);
3825 return 0;
3826 }
3827
3828 /**
3829 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3830 * @dev: Device to reset.
3831 * @probe: If set, only check if the device can be reset this way.
3832 *
3833 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3834 * unset, it will be reinitialized internally when going from PCI_D3hot to
3835 * PCI_D0. If that's the case and the device is not in a low-power state
3836 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3837 *
3838 * NOTE: This causes the caller to sleep for twice the device power transition
3839 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3840 * by default (i.e. unless the @dev's d3_delay field has a different value).
3841 * Moreover, only devices in D0 can be reset by this function.
3842 */
3843 static int pci_pm_reset(struct pci_dev *dev, int probe)
3844 {
3845 u16 csr;
3846
3847 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3848 return -ENOTTY;
3849
3850 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3851 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3852 return -ENOTTY;
3853
3854 if (probe)
3855 return 0;
3856
3857 if (dev->current_state != PCI_D0)
3858 return -EINVAL;
3859
3860 csr &= ~PCI_PM_CTRL_STATE_MASK;
3861 csr |= PCI_D3hot;
3862 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3863 pci_dev_d3_sleep(dev);
3864
3865 csr &= ~PCI_PM_CTRL_STATE_MASK;
3866 csr |= PCI_D0;
3867 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3868 pci_dev_d3_sleep(dev);
3869
3870 return 0;
3871 }
3872
3873 void pci_reset_secondary_bus(struct pci_dev *dev)
3874 {
3875 u16 ctrl;
3876
3877 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3878 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3879 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3880 /*
3881 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3882 * this to 2ms to ensure that we meet the minimum requirement.
3883 */
3884 msleep(2);
3885
3886 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3887 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3888
3889 /*
3890 * Trhfa for conventional PCI is 2^25 clock cycles.
3891 * Assuming a minimum 33MHz clock this results in a 1s
3892 * delay before we can consider subordinate devices to
3893 * be re-initialized. PCIe has some ways to shorten this,
3894 * but we don't make use of them yet.
3895 */
3896 ssleep(1);
3897 }
3898
3899 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3900 {
3901 pci_reset_secondary_bus(dev);
3902 }
3903
3904 /**
3905 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3906 * @dev: Bridge device
3907 *
3908 * Use the bridge control register to assert reset on the secondary bus.
3909 * Devices on the secondary bus are left in power-on state.
3910 */
3911 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3912 {
3913 pcibios_reset_secondary_bus(dev);
3914 }
3915 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3916
3917 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3918 {
3919 struct pci_dev *pdev;
3920
3921 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
3922 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3923 return -ENOTTY;
3924
3925 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3926 if (pdev != dev)
3927 return -ENOTTY;
3928
3929 if (probe)
3930 return 0;
3931
3932 pci_reset_bridge_secondary_bus(dev->bus->self);
3933
3934 return 0;
3935 }
3936
3937 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3938 {
3939 int rc = -ENOTTY;
3940
3941 if (!hotplug || !try_module_get(hotplug->ops->owner))
3942 return rc;
3943
3944 if (hotplug->ops->reset_slot)
3945 rc = hotplug->ops->reset_slot(hotplug, probe);
3946
3947 module_put(hotplug->ops->owner);
3948
3949 return rc;
3950 }
3951
3952 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3953 {
3954 struct pci_dev *pdev;
3955
3956 if (dev->subordinate || !dev->slot ||
3957 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3958 return -ENOTTY;
3959
3960 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3961 if (pdev != dev && pdev->slot == dev->slot)
3962 return -ENOTTY;
3963
3964 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3965 }
3966
3967 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3968 {
3969 int rc;
3970
3971 might_sleep();
3972
3973 rc = pci_dev_specific_reset(dev, probe);
3974 if (rc != -ENOTTY)
3975 goto done;
3976
3977 rc = pcie_flr(dev, probe);
3978 if (rc != -ENOTTY)
3979 goto done;
3980
3981 rc = pci_af_flr(dev, probe);
3982 if (rc != -ENOTTY)
3983 goto done;
3984
3985 rc = pci_pm_reset(dev, probe);
3986 if (rc != -ENOTTY)
3987 goto done;
3988
3989 rc = pci_dev_reset_slot_function(dev, probe);
3990 if (rc != -ENOTTY)
3991 goto done;
3992
3993 rc = pci_parent_bus_reset(dev, probe);
3994 done:
3995 return rc;
3996 }
3997
3998 static void pci_dev_lock(struct pci_dev *dev)
3999 {
4000 pci_cfg_access_lock(dev);
4001 /* block PM suspend, driver probe, etc. */
4002 device_lock(&dev->dev);
4003 }
4004
4005 /* Return 1 on successful lock, 0 on contention */
4006 static int pci_dev_trylock(struct pci_dev *dev)
4007 {
4008 if (pci_cfg_access_trylock(dev)) {
4009 if (device_trylock(&dev->dev))
4010 return 1;
4011 pci_cfg_access_unlock(dev);
4012 }
4013
4014 return 0;
4015 }
4016
4017 static void pci_dev_unlock(struct pci_dev *dev)
4018 {
4019 device_unlock(&dev->dev);
4020 pci_cfg_access_unlock(dev);
4021 }
4022
4023 /**
4024 * pci_reset_notify - notify device driver of reset
4025 * @dev: device to be notified of reset
4026 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
4027 * completed
4028 *
4029 * Must be called prior to device access being disabled and after device
4030 * access is restored.
4031 */
4032 static void pci_reset_notify(struct pci_dev *dev, bool prepare)
4033 {
4034 const struct pci_error_handlers *err_handler =
4035 dev->driver ? dev->driver->err_handler : NULL;
4036 if (err_handler && err_handler->reset_notify)
4037 err_handler->reset_notify(dev, prepare);
4038 }
4039
4040 static void pci_dev_save_and_disable(struct pci_dev *dev)
4041 {
4042 pci_reset_notify(dev, true);
4043
4044 /*
4045 * Wake-up device prior to save. PM registers default to D0 after
4046 * reset and a simple register restore doesn't reliably return
4047 * to a non-D0 state anyway.
4048 */
4049 pci_set_power_state(dev, PCI_D0);
4050
4051 pci_save_state(dev);
4052 /*
4053 * Disable the device by clearing the Command register, except for
4054 * INTx-disable which is set. This not only disables MMIO and I/O port
4055 * BARs, but also prevents the device from being Bus Master, preventing
4056 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4057 * compliant devices, INTx-disable prevents legacy interrupts.
4058 */
4059 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4060 }
4061
4062 static void pci_dev_restore(struct pci_dev *dev)
4063 {
4064 pci_restore_state(dev);
4065 pci_reset_notify(dev, false);
4066 }
4067
4068 static int pci_dev_reset(struct pci_dev *dev, int probe)
4069 {
4070 int rc;
4071
4072 if (!probe)
4073 pci_dev_lock(dev);
4074
4075 rc = __pci_dev_reset(dev, probe);
4076
4077 if (!probe)
4078 pci_dev_unlock(dev);
4079
4080 return rc;
4081 }
4082
4083 /**
4084 * __pci_reset_function - reset a PCI device function
4085 * @dev: PCI device to reset
4086 *
4087 * Some devices allow an individual function to be reset without affecting
4088 * other functions in the same device. The PCI device must be responsive
4089 * to PCI config space in order to use this function.
4090 *
4091 * The device function is presumed to be unused when this function is called.
4092 * Resetting the device will make the contents of PCI configuration space
4093 * random, so any caller of this must be prepared to reinitialise the
4094 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4095 * etc.
4096 *
4097 * Returns 0 if the device function was successfully reset or negative if the
4098 * device doesn't support resetting a single function.
4099 */
4100 int __pci_reset_function(struct pci_dev *dev)
4101 {
4102 return pci_dev_reset(dev, 0);
4103 }
4104 EXPORT_SYMBOL_GPL(__pci_reset_function);
4105
4106 /**
4107 * __pci_reset_function_locked - reset a PCI device function while holding
4108 * the @dev mutex lock.
4109 * @dev: PCI device to reset
4110 *
4111 * Some devices allow an individual function to be reset without affecting
4112 * other functions in the same device. The PCI device must be responsive
4113 * to PCI config space in order to use this function.
4114 *
4115 * The device function is presumed to be unused and the caller is holding
4116 * the device mutex lock when this function is called.
4117 * Resetting the device will make the contents of PCI configuration space
4118 * random, so any caller of this must be prepared to reinitialise the
4119 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4120 * etc.
4121 *
4122 * Returns 0 if the device function was successfully reset or negative if the
4123 * device doesn't support resetting a single function.
4124 */
4125 int __pci_reset_function_locked(struct pci_dev *dev)
4126 {
4127 return __pci_dev_reset(dev, 0);
4128 }
4129 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4130
4131 /**
4132 * pci_probe_reset_function - check whether the device can be safely reset
4133 * @dev: PCI device to reset
4134 *
4135 * Some devices allow an individual function to be reset without affecting
4136 * other functions in the same device. The PCI device must be responsive
4137 * to PCI config space in order to use this function.
4138 *
4139 * Returns 0 if the device function can be reset or negative if the
4140 * device doesn't support resetting a single function.
4141 */
4142 int pci_probe_reset_function(struct pci_dev *dev)
4143 {
4144 return pci_dev_reset(dev, 1);
4145 }
4146
4147 /**
4148 * pci_reset_function - quiesce and reset a PCI device function
4149 * @dev: PCI device to reset
4150 *
4151 * Some devices allow an individual function to be reset without affecting
4152 * other functions in the same device. The PCI device must be responsive
4153 * to PCI config space in order to use this function.
4154 *
4155 * This function does not just reset the PCI portion of a device, but
4156 * clears all the state associated with the device. This function differs
4157 * from __pci_reset_function in that it saves and restores device state
4158 * over the reset.
4159 *
4160 * Returns 0 if the device function was successfully reset or negative if the
4161 * device doesn't support resetting a single function.
4162 */
4163 int pci_reset_function(struct pci_dev *dev)
4164 {
4165 int rc;
4166
4167 rc = pci_dev_reset(dev, 1);
4168 if (rc)
4169 return rc;
4170
4171 pci_dev_save_and_disable(dev);
4172
4173 rc = pci_dev_reset(dev, 0);
4174
4175 pci_dev_restore(dev);
4176
4177 return rc;
4178 }
4179 EXPORT_SYMBOL_GPL(pci_reset_function);
4180
4181 /**
4182 * pci_try_reset_function - quiesce and reset a PCI device function
4183 * @dev: PCI device to reset
4184 *
4185 * Same as above, except return -EAGAIN if unable to lock device.
4186 */
4187 int pci_try_reset_function(struct pci_dev *dev)
4188 {
4189 int rc;
4190
4191 rc = pci_dev_reset(dev, 1);
4192 if (rc)
4193 return rc;
4194
4195 pci_dev_save_and_disable(dev);
4196
4197 if (pci_dev_trylock(dev)) {
4198 rc = __pci_dev_reset(dev, 0);
4199 pci_dev_unlock(dev);
4200 } else
4201 rc = -EAGAIN;
4202
4203 pci_dev_restore(dev);
4204
4205 return rc;
4206 }
4207 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4208
4209 /* Do any devices on or below this bus prevent a bus reset? */
4210 static bool pci_bus_resetable(struct pci_bus *bus)
4211 {
4212 struct pci_dev *dev;
4213
4214 list_for_each_entry(dev, &bus->devices, bus_list) {
4215 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4216 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4217 return false;
4218 }
4219
4220 return true;
4221 }
4222
4223 /* Lock devices from the top of the tree down */
4224 static void pci_bus_lock(struct pci_bus *bus)
4225 {
4226 struct pci_dev *dev;
4227
4228 list_for_each_entry(dev, &bus->devices, bus_list) {
4229 pci_dev_lock(dev);
4230 if (dev->subordinate)
4231 pci_bus_lock(dev->subordinate);
4232 }
4233 }
4234
4235 /* Unlock devices from the bottom of the tree up */
4236 static void pci_bus_unlock(struct pci_bus *bus)
4237 {
4238 struct pci_dev *dev;
4239
4240 list_for_each_entry(dev, &bus->devices, bus_list) {
4241 if (dev->subordinate)
4242 pci_bus_unlock(dev->subordinate);
4243 pci_dev_unlock(dev);
4244 }
4245 }
4246
4247 /* Return 1 on successful lock, 0 on contention */
4248 static int pci_bus_trylock(struct pci_bus *bus)
4249 {
4250 struct pci_dev *dev;
4251
4252 list_for_each_entry(dev, &bus->devices, bus_list) {
4253 if (!pci_dev_trylock(dev))
4254 goto unlock;
4255 if (dev->subordinate) {
4256 if (!pci_bus_trylock(dev->subordinate)) {
4257 pci_dev_unlock(dev);
4258 goto unlock;
4259 }
4260 }
4261 }
4262 return 1;
4263
4264 unlock:
4265 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4266 if (dev->subordinate)
4267 pci_bus_unlock(dev->subordinate);
4268 pci_dev_unlock(dev);
4269 }
4270 return 0;
4271 }
4272
4273 /* Do any devices on or below this slot prevent a bus reset? */
4274 static bool pci_slot_resetable(struct pci_slot *slot)
4275 {
4276 struct pci_dev *dev;
4277
4278 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4279 if (!dev->slot || dev->slot != slot)
4280 continue;
4281 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4282 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4283 return false;
4284 }
4285
4286 return true;
4287 }
4288
4289 /* Lock devices from the top of the tree down */
4290 static void pci_slot_lock(struct pci_slot *slot)
4291 {
4292 struct pci_dev *dev;
4293
4294 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4295 if (!dev->slot || dev->slot != slot)
4296 continue;
4297 pci_dev_lock(dev);
4298 if (dev->subordinate)
4299 pci_bus_lock(dev->subordinate);
4300 }
4301 }
4302
4303 /* Unlock devices from the bottom of the tree up */
4304 static void pci_slot_unlock(struct pci_slot *slot)
4305 {
4306 struct pci_dev *dev;
4307
4308 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4309 if (!dev->slot || dev->slot != slot)
4310 continue;
4311 if (dev->subordinate)
4312 pci_bus_unlock(dev->subordinate);
4313 pci_dev_unlock(dev);
4314 }
4315 }
4316
4317 /* Return 1 on successful lock, 0 on contention */
4318 static int pci_slot_trylock(struct pci_slot *slot)
4319 {
4320 struct pci_dev *dev;
4321
4322 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4323 if (!dev->slot || dev->slot != slot)
4324 continue;
4325 if (!pci_dev_trylock(dev))
4326 goto unlock;
4327 if (dev->subordinate) {
4328 if (!pci_bus_trylock(dev->subordinate)) {
4329 pci_dev_unlock(dev);
4330 goto unlock;
4331 }
4332 }
4333 }
4334 return 1;
4335
4336 unlock:
4337 list_for_each_entry_continue_reverse(dev,
4338 &slot->bus->devices, bus_list) {
4339 if (!dev->slot || dev->slot != slot)
4340 continue;
4341 if (dev->subordinate)
4342 pci_bus_unlock(dev->subordinate);
4343 pci_dev_unlock(dev);
4344 }
4345 return 0;
4346 }
4347
4348 /* Save and disable devices from the top of the tree down */
4349 static void pci_bus_save_and_disable(struct pci_bus *bus)
4350 {
4351 struct pci_dev *dev;
4352
4353 list_for_each_entry(dev, &bus->devices, bus_list) {
4354 pci_dev_save_and_disable(dev);
4355 if (dev->subordinate)
4356 pci_bus_save_and_disable(dev->subordinate);
4357 }
4358 }
4359
4360 /*
4361 * Restore devices from top of the tree down - parent bridges need to be
4362 * restored before we can get to subordinate devices.
4363 */
4364 static void pci_bus_restore(struct pci_bus *bus)
4365 {
4366 struct pci_dev *dev;
4367
4368 list_for_each_entry(dev, &bus->devices, bus_list) {
4369 pci_dev_restore(dev);
4370 if (dev->subordinate)
4371 pci_bus_restore(dev->subordinate);
4372 }
4373 }
4374
4375 /* Save and disable devices from the top of the tree down */
4376 static void pci_slot_save_and_disable(struct pci_slot *slot)
4377 {
4378 struct pci_dev *dev;
4379
4380 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4381 if (!dev->slot || dev->slot != slot)
4382 continue;
4383 pci_dev_save_and_disable(dev);
4384 if (dev->subordinate)
4385 pci_bus_save_and_disable(dev->subordinate);
4386 }
4387 }
4388
4389 /*
4390 * Restore devices from top of the tree down - parent bridges need to be
4391 * restored before we can get to subordinate devices.
4392 */
4393 static void pci_slot_restore(struct pci_slot *slot)
4394 {
4395 struct pci_dev *dev;
4396
4397 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4398 if (!dev->slot || dev->slot != slot)
4399 continue;
4400 pci_dev_restore(dev);
4401 if (dev->subordinate)
4402 pci_bus_restore(dev->subordinate);
4403 }
4404 }
4405
4406 static int pci_slot_reset(struct pci_slot *slot, int probe)
4407 {
4408 int rc;
4409
4410 if (!slot || !pci_slot_resetable(slot))
4411 return -ENOTTY;
4412
4413 if (!probe)
4414 pci_slot_lock(slot);
4415
4416 might_sleep();
4417
4418 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4419
4420 if (!probe)
4421 pci_slot_unlock(slot);
4422
4423 return rc;
4424 }
4425
4426 /**
4427 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4428 * @slot: PCI slot to probe
4429 *
4430 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4431 */
4432 int pci_probe_reset_slot(struct pci_slot *slot)
4433 {
4434 return pci_slot_reset(slot, 1);
4435 }
4436 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4437
4438 /**
4439 * pci_reset_slot - reset a PCI slot
4440 * @slot: PCI slot to reset
4441 *
4442 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4443 * independent of other slots. For instance, some slots may support slot power
4444 * control. In the case of a 1:1 bus to slot architecture, this function may
4445 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4446 * Generally a slot reset should be attempted before a bus reset. All of the
4447 * function of the slot and any subordinate buses behind the slot are reset
4448 * through this function. PCI config space of all devices in the slot and
4449 * behind the slot is saved before and restored after reset.
4450 *
4451 * Return 0 on success, non-zero on error.
4452 */
4453 int pci_reset_slot(struct pci_slot *slot)
4454 {
4455 int rc;
4456
4457 rc = pci_slot_reset(slot, 1);
4458 if (rc)
4459 return rc;
4460
4461 pci_slot_save_and_disable(slot);
4462
4463 rc = pci_slot_reset(slot, 0);
4464
4465 pci_slot_restore(slot);
4466
4467 return rc;
4468 }
4469 EXPORT_SYMBOL_GPL(pci_reset_slot);
4470
4471 /**
4472 * pci_try_reset_slot - Try to reset a PCI slot
4473 * @slot: PCI slot to reset
4474 *
4475 * Same as above except return -EAGAIN if the slot cannot be locked
4476 */
4477 int pci_try_reset_slot(struct pci_slot *slot)
4478 {
4479 int rc;
4480
4481 rc = pci_slot_reset(slot, 1);
4482 if (rc)
4483 return rc;
4484
4485 pci_slot_save_and_disable(slot);
4486
4487 if (pci_slot_trylock(slot)) {
4488 might_sleep();
4489 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4490 pci_slot_unlock(slot);
4491 } else
4492 rc = -EAGAIN;
4493
4494 pci_slot_restore(slot);
4495
4496 return rc;
4497 }
4498 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4499
4500 static int pci_bus_reset(struct pci_bus *bus, int probe)
4501 {
4502 if (!bus->self || !pci_bus_resetable(bus))
4503 return -ENOTTY;
4504
4505 if (probe)
4506 return 0;
4507
4508 pci_bus_lock(bus);
4509
4510 might_sleep();
4511
4512 pci_reset_bridge_secondary_bus(bus->self);
4513
4514 pci_bus_unlock(bus);
4515
4516 return 0;
4517 }
4518
4519 /**
4520 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4521 * @bus: PCI bus to probe
4522 *
4523 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4524 */
4525 int pci_probe_reset_bus(struct pci_bus *bus)
4526 {
4527 return pci_bus_reset(bus, 1);
4528 }
4529 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4530
4531 /**
4532 * pci_reset_bus - reset a PCI bus
4533 * @bus: top level PCI bus to reset
4534 *
4535 * Do a bus reset on the given bus and any subordinate buses, saving
4536 * and restoring state of all devices.
4537 *
4538 * Return 0 on success, non-zero on error.
4539 */
4540 int pci_reset_bus(struct pci_bus *bus)
4541 {
4542 int rc;
4543
4544 rc = pci_bus_reset(bus, 1);
4545 if (rc)
4546 return rc;
4547
4548 pci_bus_save_and_disable(bus);
4549
4550 rc = pci_bus_reset(bus, 0);
4551
4552 pci_bus_restore(bus);
4553
4554 return rc;
4555 }
4556 EXPORT_SYMBOL_GPL(pci_reset_bus);
4557
4558 /**
4559 * pci_try_reset_bus - Try to reset a PCI bus
4560 * @bus: top level PCI bus to reset
4561 *
4562 * Same as above except return -EAGAIN if the bus cannot be locked
4563 */
4564 int pci_try_reset_bus(struct pci_bus *bus)
4565 {
4566 int rc;
4567
4568 rc = pci_bus_reset(bus, 1);
4569 if (rc)
4570 return rc;
4571
4572 pci_bus_save_and_disable(bus);
4573
4574 if (pci_bus_trylock(bus)) {
4575 might_sleep();
4576 pci_reset_bridge_secondary_bus(bus->self);
4577 pci_bus_unlock(bus);
4578 } else
4579 rc = -EAGAIN;
4580
4581 pci_bus_restore(bus);
4582
4583 return rc;
4584 }
4585 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4586
4587 /**
4588 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4589 * @dev: PCI device to query
4590 *
4591 * Returns mmrbc: maximum designed memory read count in bytes
4592 * or appropriate error value.
4593 */
4594 int pcix_get_max_mmrbc(struct pci_dev *dev)
4595 {
4596 int cap;
4597 u32 stat;
4598
4599 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4600 if (!cap)
4601 return -EINVAL;
4602
4603 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4604 return -EINVAL;
4605
4606 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4607 }
4608 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4609
4610 /**
4611 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4612 * @dev: PCI device to query
4613 *
4614 * Returns mmrbc: maximum memory read count in bytes
4615 * or appropriate error value.
4616 */
4617 int pcix_get_mmrbc(struct pci_dev *dev)
4618 {
4619 int cap;
4620 u16 cmd;
4621
4622 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4623 if (!cap)
4624 return -EINVAL;
4625
4626 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4627 return -EINVAL;
4628
4629 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4630 }
4631 EXPORT_SYMBOL(pcix_get_mmrbc);
4632
4633 /**
4634 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4635 * @dev: PCI device to query
4636 * @mmrbc: maximum memory read count in bytes
4637 * valid values are 512, 1024, 2048, 4096
4638 *
4639 * If possible sets maximum memory read byte count, some bridges have erratas
4640 * that prevent this.
4641 */
4642 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4643 {
4644 int cap;
4645 u32 stat, v, o;
4646 u16 cmd;
4647
4648 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4649 return -EINVAL;
4650
4651 v = ffs(mmrbc) - 10;
4652
4653 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4654 if (!cap)
4655 return -EINVAL;
4656
4657 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4658 return -EINVAL;
4659
4660 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4661 return -E2BIG;
4662
4663 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4664 return -EINVAL;
4665
4666 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4667 if (o != v) {
4668 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4669 return -EIO;
4670
4671 cmd &= ~PCI_X_CMD_MAX_READ;
4672 cmd |= v << 2;
4673 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4674 return -EIO;
4675 }
4676 return 0;
4677 }
4678 EXPORT_SYMBOL(pcix_set_mmrbc);
4679
4680 /**
4681 * pcie_get_readrq - get PCI Express read request size
4682 * @dev: PCI device to query
4683 *
4684 * Returns maximum memory read request in bytes
4685 * or appropriate error value.
4686 */
4687 int pcie_get_readrq(struct pci_dev *dev)
4688 {
4689 u16 ctl;
4690
4691 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4692
4693 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4694 }
4695 EXPORT_SYMBOL(pcie_get_readrq);
4696
4697 /**
4698 * pcie_set_readrq - set PCI Express maximum memory read request
4699 * @dev: PCI device to query
4700 * @rq: maximum memory read count in bytes
4701 * valid values are 128, 256, 512, 1024, 2048, 4096
4702 *
4703 * If possible sets maximum memory read request in bytes
4704 */
4705 int pcie_set_readrq(struct pci_dev *dev, int rq)
4706 {
4707 u16 v;
4708
4709 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4710 return -EINVAL;
4711
4712 /*
4713 * If using the "performance" PCIe config, we clamp the
4714 * read rq size to the max packet size to prevent the
4715 * host bridge generating requests larger than we can
4716 * cope with
4717 */
4718 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4719 int mps = pcie_get_mps(dev);
4720
4721 if (mps < rq)
4722 rq = mps;
4723 }
4724
4725 v = (ffs(rq) - 8) << 12;
4726
4727 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4728 PCI_EXP_DEVCTL_READRQ, v);
4729 }
4730 EXPORT_SYMBOL(pcie_set_readrq);
4731
4732 /**
4733 * pcie_get_mps - get PCI Express maximum payload size
4734 * @dev: PCI device to query
4735 *
4736 * Returns maximum payload size in bytes
4737 */
4738 int pcie_get_mps(struct pci_dev *dev)
4739 {
4740 u16 ctl;
4741
4742 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4743
4744 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4745 }
4746 EXPORT_SYMBOL(pcie_get_mps);
4747
4748 /**
4749 * pcie_set_mps - set PCI Express maximum payload size
4750 * @dev: PCI device to query
4751 * @mps: maximum payload size in bytes
4752 * valid values are 128, 256, 512, 1024, 2048, 4096
4753 *
4754 * If possible sets maximum payload size
4755 */
4756 int pcie_set_mps(struct pci_dev *dev, int mps)
4757 {
4758 u16 v;
4759
4760 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4761 return -EINVAL;
4762
4763 v = ffs(mps) - 8;
4764 if (v > dev->pcie_mpss)
4765 return -EINVAL;
4766 v <<= 5;
4767
4768 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4769 PCI_EXP_DEVCTL_PAYLOAD, v);
4770 }
4771 EXPORT_SYMBOL(pcie_set_mps);
4772
4773 /**
4774 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4775 * @dev: PCI device to query
4776 * @speed: storage for minimum speed
4777 * @width: storage for minimum width
4778 *
4779 * This function will walk up the PCI device chain and determine the minimum
4780 * link width and speed of the device.
4781 */
4782 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4783 enum pcie_link_width *width)
4784 {
4785 int ret;
4786
4787 *speed = PCI_SPEED_UNKNOWN;
4788 *width = PCIE_LNK_WIDTH_UNKNOWN;
4789
4790 while (dev) {
4791 u16 lnksta;
4792 enum pci_bus_speed next_speed;
4793 enum pcie_link_width next_width;
4794
4795 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4796 if (ret)
4797 return ret;
4798
4799 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4800 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4801 PCI_EXP_LNKSTA_NLW_SHIFT;
4802
4803 if (next_speed < *speed)
4804 *speed = next_speed;
4805
4806 if (next_width < *width)
4807 *width = next_width;
4808
4809 dev = dev->bus->self;
4810 }
4811
4812 return 0;
4813 }
4814 EXPORT_SYMBOL(pcie_get_minimum_link);
4815
4816 /**
4817 * pci_select_bars - Make BAR mask from the type of resource
4818 * @dev: the PCI device for which BAR mask is made
4819 * @flags: resource type mask to be selected
4820 *
4821 * This helper routine makes bar mask from the type of resource.
4822 */
4823 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4824 {
4825 int i, bars = 0;
4826 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4827 if (pci_resource_flags(dev, i) & flags)
4828 bars |= (1 << i);
4829 return bars;
4830 }
4831 EXPORT_SYMBOL(pci_select_bars);
4832
4833 /* Some architectures require additional programming to enable VGA */
4834 static arch_set_vga_state_t arch_set_vga_state;
4835
4836 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4837 {
4838 arch_set_vga_state = func; /* NULL disables */
4839 }
4840
4841 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4842 unsigned int command_bits, u32 flags)
4843 {
4844 if (arch_set_vga_state)
4845 return arch_set_vga_state(dev, decode, command_bits,
4846 flags);
4847 return 0;
4848 }
4849
4850 /**
4851 * pci_set_vga_state - set VGA decode state on device and parents if requested
4852 * @dev: the PCI device
4853 * @decode: true = enable decoding, false = disable decoding
4854 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4855 * @flags: traverse ancestors and change bridges
4856 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4857 */
4858 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4859 unsigned int command_bits, u32 flags)
4860 {
4861 struct pci_bus *bus;
4862 struct pci_dev *bridge;
4863 u16 cmd;
4864 int rc;
4865
4866 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4867
4868 /* ARCH specific VGA enables */
4869 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4870 if (rc)
4871 return rc;
4872
4873 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4874 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4875 if (decode == true)
4876 cmd |= command_bits;
4877 else
4878 cmd &= ~command_bits;
4879 pci_write_config_word(dev, PCI_COMMAND, cmd);
4880 }
4881
4882 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4883 return 0;
4884
4885 bus = dev->bus;
4886 while (bus) {
4887 bridge = bus->self;
4888 if (bridge) {
4889 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4890 &cmd);
4891 if (decode == true)
4892 cmd |= PCI_BRIDGE_CTL_VGA;
4893 else
4894 cmd &= ~PCI_BRIDGE_CTL_VGA;
4895 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4896 cmd);
4897 }
4898 bus = bus->parent;
4899 }
4900 return 0;
4901 }
4902
4903 /**
4904 * pci_add_dma_alias - Add a DMA devfn alias for a device
4905 * @dev: the PCI device for which alias is added
4906 * @devfn: alias slot and function
4907 *
4908 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
4909 * It should be called early, preferably as PCI fixup header quirk.
4910 */
4911 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
4912 {
4913 if (!dev->dma_alias_mask)
4914 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
4915 sizeof(long), GFP_KERNEL);
4916 if (!dev->dma_alias_mask) {
4917 dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n");
4918 return;
4919 }
4920
4921 set_bit(devfn, dev->dma_alias_mask);
4922 dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n",
4923 PCI_SLOT(devfn), PCI_FUNC(devfn));
4924 }
4925
4926 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
4927 {
4928 return (dev1->dma_alias_mask &&
4929 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
4930 (dev2->dma_alias_mask &&
4931 test_bit(dev1->devfn, dev2->dma_alias_mask));
4932 }
4933
4934 bool pci_device_is_present(struct pci_dev *pdev)
4935 {
4936 u32 v;
4937
4938 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4939 }
4940 EXPORT_SYMBOL_GPL(pci_device_is_present);
4941
4942 void pci_ignore_hotplug(struct pci_dev *dev)
4943 {
4944 struct pci_dev *bridge = dev->bus->self;
4945
4946 dev->ignore_hotplug = 1;
4947 /* Propagate the "ignore hotplug" setting to the parent bridge. */
4948 if (bridge)
4949 bridge->ignore_hotplug = 1;
4950 }
4951 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
4952
4953 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4954 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4955 static DEFINE_SPINLOCK(resource_alignment_lock);
4956
4957 /**
4958 * pci_specified_resource_alignment - get resource alignment specified by user.
4959 * @dev: the PCI device to get
4960 *
4961 * RETURNS: Resource alignment if it is specified.
4962 * Zero if it is not specified.
4963 */
4964 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4965 {
4966 int seg, bus, slot, func, align_order, count;
4967 unsigned short vendor, device, subsystem_vendor, subsystem_device;
4968 resource_size_t align = 0;
4969 char *p;
4970
4971 spin_lock(&resource_alignment_lock);
4972 p = resource_alignment_param;
4973 if (!*p)
4974 goto out;
4975 if (pci_has_flag(PCI_PROBE_ONLY)) {
4976 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
4977 goto out;
4978 }
4979
4980 while (*p) {
4981 count = 0;
4982 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4983 p[count] == '@') {
4984 p += count + 1;
4985 } else {
4986 align_order = -1;
4987 }
4988 if (strncmp(p, "pci:", 4) == 0) {
4989 /* PCI vendor/device (subvendor/subdevice) ids are specified */
4990 p += 4;
4991 if (sscanf(p, "%hx:%hx:%hx:%hx%n",
4992 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
4993 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
4994 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
4995 p);
4996 break;
4997 }
4998 subsystem_vendor = subsystem_device = 0;
4999 }
5000 p += count;
5001 if ((!vendor || (vendor == dev->vendor)) &&
5002 (!device || (device == dev->device)) &&
5003 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5004 (!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5005 if (align_order == -1)
5006 align = PAGE_SIZE;
5007 else
5008 align = 1 << align_order;
5009 /* Found */
5010 break;
5011 }
5012 }
5013 else {
5014 if (sscanf(p, "%x:%x:%x.%x%n",
5015 &seg, &bus, &slot, &func, &count) != 4) {
5016 seg = 0;
5017 if (sscanf(p, "%x:%x.%x%n",
5018 &bus, &slot, &func, &count) != 3) {
5019 /* Invalid format */
5020 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5021 p);
5022 break;
5023 }
5024 }
5025 p += count;
5026 if (seg == pci_domain_nr(dev->bus) &&
5027 bus == dev->bus->number &&
5028 slot == PCI_SLOT(dev->devfn) &&
5029 func == PCI_FUNC(dev->devfn)) {
5030 if (align_order == -1)
5031 align = PAGE_SIZE;
5032 else
5033 align = 1 << align_order;
5034 /* Found */
5035 break;
5036 }
5037 }
5038 if (*p != ';' && *p != ',') {
5039 /* End of param or invalid format */
5040 break;
5041 }
5042 p++;
5043 }
5044 out:
5045 spin_unlock(&resource_alignment_lock);
5046 return align;
5047 }
5048
5049 /*
5050 * This function disables memory decoding and releases memory resources
5051 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5052 * It also rounds up size to specified alignment.
5053 * Later on, the kernel will assign page-aligned memory resource back
5054 * to the device.
5055 */
5056 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5057 {
5058 int i;
5059 struct resource *r;
5060 resource_size_t align, size;
5061 u16 command;
5062
5063 /*
5064 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5065 * 3.4.1.11. Their resources are allocated from the space
5066 * described by the VF BARx register in the PF's SR-IOV capability.
5067 * We can't influence their alignment here.
5068 */
5069 if (dev->is_virtfn)
5070 return;
5071
5072 /* check if specified PCI is target device to reassign */
5073 align = pci_specified_resource_alignment(dev);
5074 if (!align)
5075 return;
5076
5077 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5078 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5079 dev_warn(&dev->dev,
5080 "Can't reassign resources to host bridge.\n");
5081 return;
5082 }
5083
5084 dev_info(&dev->dev,
5085 "Disabling memory decoding and releasing memory resources.\n");
5086 pci_read_config_word(dev, PCI_COMMAND, &command);
5087 command &= ~PCI_COMMAND_MEMORY;
5088 pci_write_config_word(dev, PCI_COMMAND, command);
5089
5090 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
5091 r = &dev->resource[i];
5092 if (!(r->flags & IORESOURCE_MEM))
5093 continue;
5094 if (r->flags & IORESOURCE_PCI_FIXED) {
5095 dev_info(&dev->dev, "Ignoring requested alignment for BAR%d: %pR\n",
5096 i, r);
5097 continue;
5098 }
5099
5100 size = resource_size(r);
5101 if (size < align) {
5102 size = align;
5103 dev_info(&dev->dev,
5104 "Rounding up size of resource #%d to %#llx.\n",
5105 i, (unsigned long long)size);
5106 }
5107 r->flags |= IORESOURCE_UNSET;
5108 r->end = size - 1;
5109 r->start = 0;
5110 }
5111 /* Need to disable bridge's resource window,
5112 * to enable the kernel to reassign new resource
5113 * window later on.
5114 */
5115 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5116 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5117 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5118 r = &dev->resource[i];
5119 if (!(r->flags & IORESOURCE_MEM))
5120 continue;
5121 r->flags |= IORESOURCE_UNSET;
5122 r->end = resource_size(r) - 1;
5123 r->start = 0;
5124 }
5125 pci_disable_bridge_window(dev);
5126 }
5127 }
5128
5129 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5130 {
5131 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5132 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5133 spin_lock(&resource_alignment_lock);
5134 strncpy(resource_alignment_param, buf, count);
5135 resource_alignment_param[count] = '\0';
5136 spin_unlock(&resource_alignment_lock);
5137 return count;
5138 }
5139
5140 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5141 {
5142 size_t count;
5143 spin_lock(&resource_alignment_lock);
5144 count = snprintf(buf, size, "%s", resource_alignment_param);
5145 spin_unlock(&resource_alignment_lock);
5146 return count;
5147 }
5148
5149 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5150 {
5151 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5152 }
5153
5154 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5155 const char *buf, size_t count)
5156 {
5157 return pci_set_resource_alignment_param(buf, count);
5158 }
5159
5160 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5161 pci_resource_alignment_store);
5162
5163 static int __init pci_resource_alignment_sysfs_init(void)
5164 {
5165 return bus_create_file(&pci_bus_type,
5166 &bus_attr_resource_alignment);
5167 }
5168 late_initcall(pci_resource_alignment_sysfs_init);
5169
5170 static void pci_no_domains(void)
5171 {
5172 #ifdef CONFIG_PCI_DOMAINS
5173 pci_domains_supported = 0;
5174 #endif
5175 }
5176
5177 #ifdef CONFIG_PCI_DOMAINS
5178 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5179
5180 int pci_get_new_domain_nr(void)
5181 {
5182 return atomic_inc_return(&__domain_nr);
5183 }
5184
5185 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5186 static int of_pci_bus_find_domain_nr(struct device *parent)
5187 {
5188 static int use_dt_domains = -1;
5189 int domain = -1;
5190
5191 if (parent)
5192 domain = of_get_pci_domain_nr(parent->of_node);
5193 /*
5194 * Check DT domain and use_dt_domains values.
5195 *
5196 * If DT domain property is valid (domain >= 0) and
5197 * use_dt_domains != 0, the DT assignment is valid since this means
5198 * we have not previously allocated a domain number by using
5199 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5200 * 1, to indicate that we have just assigned a domain number from
5201 * DT.
5202 *
5203 * If DT domain property value is not valid (ie domain < 0), and we
5204 * have not previously assigned a domain number from DT
5205 * (use_dt_domains != 1) we should assign a domain number by
5206 * using the:
5207 *
5208 * pci_get_new_domain_nr()
5209 *
5210 * API and update the use_dt_domains value to keep track of method we
5211 * are using to assign domain numbers (use_dt_domains = 0).
5212 *
5213 * All other combinations imply we have a platform that is trying
5214 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5215 * which is a recipe for domain mishandling and it is prevented by
5216 * invalidating the domain value (domain = -1) and printing a
5217 * corresponding error.
5218 */
5219 if (domain >= 0 && use_dt_domains) {
5220 use_dt_domains = 1;
5221 } else if (domain < 0 && use_dt_domains != 1) {
5222 use_dt_domains = 0;
5223 domain = pci_get_new_domain_nr();
5224 } else {
5225 dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
5226 parent->of_node->full_name);
5227 domain = -1;
5228 }
5229
5230 return domain;
5231 }
5232
5233 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5234 {
5235 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5236 acpi_pci_bus_find_domain_nr(bus);
5237 }
5238 #endif
5239 #endif
5240
5241 /**
5242 * pci_ext_cfg_avail - can we access extended PCI config space?
5243 *
5244 * Returns 1 if we can access PCI extended config space (offsets
5245 * greater than 0xff). This is the default implementation. Architecture
5246 * implementations can override this.
5247 */
5248 int __weak pci_ext_cfg_avail(void)
5249 {
5250 return 1;
5251 }
5252
5253 void __weak pci_fixup_cardbus(struct pci_bus *bus)
5254 {
5255 }
5256 EXPORT_SYMBOL(pci_fixup_cardbus);
5257
5258 static int __init pci_setup(char *str)
5259 {
5260 while (str) {
5261 char *k = strchr(str, ',');
5262 if (k)
5263 *k++ = 0;
5264 if (*str && (str = pcibios_setup(str)) && *str) {
5265 if (!strcmp(str, "nomsi")) {
5266 pci_no_msi();
5267 } else if (!strcmp(str, "noaer")) {
5268 pci_no_aer();
5269 } else if (!strncmp(str, "realloc=", 8)) {
5270 pci_realloc_get_opt(str + 8);
5271 } else if (!strncmp(str, "realloc", 7)) {
5272 pci_realloc_get_opt("on");
5273 } else if (!strcmp(str, "nodomains")) {
5274 pci_no_domains();
5275 } else if (!strncmp(str, "noari", 5)) {
5276 pcie_ari_disabled = true;
5277 } else if (!strncmp(str, "cbiosize=", 9)) {
5278 pci_cardbus_io_size = memparse(str + 9, &str);
5279 } else if (!strncmp(str, "cbmemsize=", 10)) {
5280 pci_cardbus_mem_size = memparse(str + 10, &str);
5281 } else if (!strncmp(str, "resource_alignment=", 19)) {
5282 pci_set_resource_alignment_param(str + 19,
5283 strlen(str + 19));
5284 } else if (!strncmp(str, "ecrc=", 5)) {
5285 pcie_ecrc_get_policy(str + 5);
5286 } else if (!strncmp(str, "hpiosize=", 9)) {
5287 pci_hotplug_io_size = memparse(str + 9, &str);
5288 } else if (!strncmp(str, "hpmemsize=", 10)) {
5289 pci_hotplug_mem_size = memparse(str + 10, &str);
5290 } else if (!strncmp(str, "hpbussize=", 10)) {
5291 pci_hotplug_bus_size =
5292 simple_strtoul(str + 10, &str, 0);
5293 if (pci_hotplug_bus_size > 0xff)
5294 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5295 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5296 pcie_bus_config = PCIE_BUS_TUNE_OFF;
5297 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
5298 pcie_bus_config = PCIE_BUS_SAFE;
5299 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
5300 pcie_bus_config = PCIE_BUS_PERFORMANCE;
5301 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5302 pcie_bus_config = PCIE_BUS_PEER2PEER;
5303 } else if (!strncmp(str, "pcie_scan_all", 13)) {
5304 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5305 } else {
5306 printk(KERN_ERR "PCI: Unknown option `%s'\n",
5307 str);
5308 }
5309 }
5310 str = k;
5311 }
5312 return 0;
5313 }
5314 early_param("pci", pci_setup);