]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/pci/pci.c
Merge branch 'parisc-3.15' of git://git.kernel.org/pub/scm/linux/kernel/git/deller...
[mirror_ubuntu-zesty-kernel.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/pci_hotplug.h>
26 #include <asm-generic/pci-bridge.h>
27 #include <asm/setup.h>
28 #include "pci.h"
29
30 const char *pci_power_names[] = {
31 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
32 };
33 EXPORT_SYMBOL_GPL(pci_power_names);
34
35 int isa_dma_bridge_buggy;
36 EXPORT_SYMBOL(isa_dma_bridge_buggy);
37
38 int pci_pci_problems;
39 EXPORT_SYMBOL(pci_pci_problems);
40
41 unsigned int pci_pm_d3_delay;
42
43 static void pci_pme_list_scan(struct work_struct *work);
44
45 static LIST_HEAD(pci_pme_list);
46 static DEFINE_MUTEX(pci_pme_list_mutex);
47 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
48
49 struct pci_pme_device {
50 struct list_head list;
51 struct pci_dev *dev;
52 };
53
54 #define PME_TIMEOUT 1000 /* How long between PME checks */
55
56 static void pci_dev_d3_sleep(struct pci_dev *dev)
57 {
58 unsigned int delay = dev->d3_delay;
59
60 if (delay < pci_pm_d3_delay)
61 delay = pci_pm_d3_delay;
62
63 msleep(delay);
64 }
65
66 #ifdef CONFIG_PCI_DOMAINS
67 int pci_domains_supported = 1;
68 #endif
69
70 #define DEFAULT_CARDBUS_IO_SIZE (256)
71 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
72 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
73 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
74 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
75
76 #define DEFAULT_HOTPLUG_IO_SIZE (256)
77 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
78 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
79 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
80 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
81
82 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
83
84 /*
85 * The default CLS is used if arch didn't set CLS explicitly and not
86 * all pci devices agree on the same value. Arch can override either
87 * the dfl or actual value as it sees fit. Don't forget this is
88 * measured in 32-bit words, not bytes.
89 */
90 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
91 u8 pci_cache_line_size;
92
93 /*
94 * If we set up a device for bus mastering, we need to check the latency
95 * timer as certain BIOSes forget to set it properly.
96 */
97 unsigned int pcibios_max_latency = 255;
98
99 /* If set, the PCIe ARI capability will not be used. */
100 static bool pcie_ari_disabled;
101
102 /**
103 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
104 * @bus: pointer to PCI bus structure to search
105 *
106 * Given a PCI bus, returns the highest PCI bus number present in the set
107 * including the given PCI bus and its list of child PCI buses.
108 */
109 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
110 {
111 struct pci_bus *tmp;
112 unsigned char max, n;
113
114 max = bus->busn_res.end;
115 list_for_each_entry(tmp, &bus->children, node) {
116 n = pci_bus_max_busnr(tmp);
117 if(n > max)
118 max = n;
119 }
120 return max;
121 }
122 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
123
124 #ifdef CONFIG_HAS_IOMEM
125 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
126 {
127 /*
128 * Make sure the BAR is actually a memory resource, not an IO resource
129 */
130 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
131 WARN_ON(1);
132 return NULL;
133 }
134 return ioremap_nocache(pci_resource_start(pdev, bar),
135 pci_resource_len(pdev, bar));
136 }
137 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
138 #endif
139
140 #define PCI_FIND_CAP_TTL 48
141
142 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
143 u8 pos, int cap, int *ttl)
144 {
145 u8 id;
146
147 while ((*ttl)--) {
148 pci_bus_read_config_byte(bus, devfn, pos, &pos);
149 if (pos < 0x40)
150 break;
151 pos &= ~3;
152 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
153 &id);
154 if (id == 0xff)
155 break;
156 if (id == cap)
157 return pos;
158 pos += PCI_CAP_LIST_NEXT;
159 }
160 return 0;
161 }
162
163 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
164 u8 pos, int cap)
165 {
166 int ttl = PCI_FIND_CAP_TTL;
167
168 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
169 }
170
171 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
172 {
173 return __pci_find_next_cap(dev->bus, dev->devfn,
174 pos + PCI_CAP_LIST_NEXT, cap);
175 }
176 EXPORT_SYMBOL_GPL(pci_find_next_capability);
177
178 static int __pci_bus_find_cap_start(struct pci_bus *bus,
179 unsigned int devfn, u8 hdr_type)
180 {
181 u16 status;
182
183 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
184 if (!(status & PCI_STATUS_CAP_LIST))
185 return 0;
186
187 switch (hdr_type) {
188 case PCI_HEADER_TYPE_NORMAL:
189 case PCI_HEADER_TYPE_BRIDGE:
190 return PCI_CAPABILITY_LIST;
191 case PCI_HEADER_TYPE_CARDBUS:
192 return PCI_CB_CAPABILITY_LIST;
193 default:
194 return 0;
195 }
196
197 return 0;
198 }
199
200 /**
201 * pci_find_capability - query for devices' capabilities
202 * @dev: PCI device to query
203 * @cap: capability code
204 *
205 * Tell if a device supports a given PCI capability.
206 * Returns the address of the requested capability structure within the
207 * device's PCI configuration space or 0 in case the device does not
208 * support it. Possible values for @cap:
209 *
210 * %PCI_CAP_ID_PM Power Management
211 * %PCI_CAP_ID_AGP Accelerated Graphics Port
212 * %PCI_CAP_ID_VPD Vital Product Data
213 * %PCI_CAP_ID_SLOTID Slot Identification
214 * %PCI_CAP_ID_MSI Message Signalled Interrupts
215 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
216 * %PCI_CAP_ID_PCIX PCI-X
217 * %PCI_CAP_ID_EXP PCI Express
218 */
219 int pci_find_capability(struct pci_dev *dev, int cap)
220 {
221 int pos;
222
223 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
224 if (pos)
225 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
226
227 return pos;
228 }
229
230 /**
231 * pci_bus_find_capability - query for devices' capabilities
232 * @bus: the PCI bus to query
233 * @devfn: PCI device to query
234 * @cap: capability code
235 *
236 * Like pci_find_capability() but works for pci devices that do not have a
237 * pci_dev structure set up yet.
238 *
239 * Returns the address of the requested capability structure within the
240 * device's PCI configuration space or 0 in case the device does not
241 * support it.
242 */
243 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
244 {
245 int pos;
246 u8 hdr_type;
247
248 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
249
250 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
251 if (pos)
252 pos = __pci_find_next_cap(bus, devfn, pos, cap);
253
254 return pos;
255 }
256
257 /**
258 * pci_find_next_ext_capability - Find an extended capability
259 * @dev: PCI device to query
260 * @start: address at which to start looking (0 to start at beginning of list)
261 * @cap: capability code
262 *
263 * Returns the address of the next matching extended capability structure
264 * within the device's PCI configuration space or 0 if the device does
265 * not support it. Some capabilities can occur several times, e.g., the
266 * vendor-specific capability, and this provides a way to find them all.
267 */
268 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
269 {
270 u32 header;
271 int ttl;
272 int pos = PCI_CFG_SPACE_SIZE;
273
274 /* minimum 8 bytes per capability */
275 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
276
277 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
278 return 0;
279
280 if (start)
281 pos = start;
282
283 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
284 return 0;
285
286 /*
287 * If we have no capabilities, this is indicated by cap ID,
288 * cap version and next pointer all being 0.
289 */
290 if (header == 0)
291 return 0;
292
293 while (ttl-- > 0) {
294 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
295 return pos;
296
297 pos = PCI_EXT_CAP_NEXT(header);
298 if (pos < PCI_CFG_SPACE_SIZE)
299 break;
300
301 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
302 break;
303 }
304
305 return 0;
306 }
307 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
308
309 /**
310 * pci_find_ext_capability - Find an extended capability
311 * @dev: PCI device to query
312 * @cap: capability code
313 *
314 * Returns the address of the requested extended capability structure
315 * within the device's PCI configuration space or 0 if the device does
316 * not support it. Possible values for @cap:
317 *
318 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
319 * %PCI_EXT_CAP_ID_VC Virtual Channel
320 * %PCI_EXT_CAP_ID_DSN Device Serial Number
321 * %PCI_EXT_CAP_ID_PWR Power Budgeting
322 */
323 int pci_find_ext_capability(struct pci_dev *dev, int cap)
324 {
325 return pci_find_next_ext_capability(dev, 0, cap);
326 }
327 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
328
329 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
330 {
331 int rc, ttl = PCI_FIND_CAP_TTL;
332 u8 cap, mask;
333
334 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
335 mask = HT_3BIT_CAP_MASK;
336 else
337 mask = HT_5BIT_CAP_MASK;
338
339 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
340 PCI_CAP_ID_HT, &ttl);
341 while (pos) {
342 rc = pci_read_config_byte(dev, pos + 3, &cap);
343 if (rc != PCIBIOS_SUCCESSFUL)
344 return 0;
345
346 if ((cap & mask) == ht_cap)
347 return pos;
348
349 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
350 pos + PCI_CAP_LIST_NEXT,
351 PCI_CAP_ID_HT, &ttl);
352 }
353
354 return 0;
355 }
356 /**
357 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
358 * @dev: PCI device to query
359 * @pos: Position from which to continue searching
360 * @ht_cap: Hypertransport capability code
361 *
362 * To be used in conjunction with pci_find_ht_capability() to search for
363 * all capabilities matching @ht_cap. @pos should always be a value returned
364 * from pci_find_ht_capability().
365 *
366 * NB. To be 100% safe against broken PCI devices, the caller should take
367 * steps to avoid an infinite loop.
368 */
369 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
370 {
371 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
372 }
373 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
374
375 /**
376 * pci_find_ht_capability - query a device's Hypertransport capabilities
377 * @dev: PCI device to query
378 * @ht_cap: Hypertransport capability code
379 *
380 * Tell if a device supports a given Hypertransport capability.
381 * Returns an address within the device's PCI configuration space
382 * or 0 in case the device does not support the request capability.
383 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
384 * which has a Hypertransport capability matching @ht_cap.
385 */
386 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
387 {
388 int pos;
389
390 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
391 if (pos)
392 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
393
394 return pos;
395 }
396 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
397
398 /**
399 * pci_find_parent_resource - return resource region of parent bus of given region
400 * @dev: PCI device structure contains resources to be searched
401 * @res: child resource record for which parent is sought
402 *
403 * For given resource region of given device, return the resource
404 * region of parent bus the given region is contained in.
405 */
406 struct resource *
407 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
408 {
409 const struct pci_bus *bus = dev->bus;
410 struct resource *r;
411 int i;
412
413 pci_bus_for_each_resource(bus, r, i) {
414 if (!r)
415 continue;
416 if (res->start && resource_contains(r, res)) {
417
418 /*
419 * If the window is prefetchable but the BAR is
420 * not, the allocator made a mistake.
421 */
422 if (r->flags & IORESOURCE_PREFETCH &&
423 !(res->flags & IORESOURCE_PREFETCH))
424 return NULL;
425
426 /*
427 * If we're below a transparent bridge, there may
428 * be both a positively-decoded aperture and a
429 * subtractively-decoded region that contain the BAR.
430 * We want the positively-decoded one, so this depends
431 * on pci_bus_for_each_resource() giving us those
432 * first.
433 */
434 return r;
435 }
436 }
437 return NULL;
438 }
439
440 /**
441 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
442 * @dev: the PCI device to operate on
443 * @pos: config space offset of status word
444 * @mask: mask of bit(s) to care about in status word
445 *
446 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
447 */
448 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
449 {
450 int i;
451
452 /* Wait for Transaction Pending bit clean */
453 for (i = 0; i < 4; i++) {
454 u16 status;
455 if (i)
456 msleep((1 << (i - 1)) * 100);
457
458 pci_read_config_word(dev, pos, &status);
459 if (!(status & mask))
460 return 1;
461 }
462
463 return 0;
464 }
465
466 /**
467 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
468 * @dev: PCI device to have its BARs restored
469 *
470 * Restore the BAR values for a given device, so as to make it
471 * accessible by its driver.
472 */
473 static void
474 pci_restore_bars(struct pci_dev *dev)
475 {
476 int i;
477
478 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
479 pci_update_resource(dev, i);
480 }
481
482 static struct pci_platform_pm_ops *pci_platform_pm;
483
484 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
485 {
486 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
487 || !ops->sleep_wake)
488 return -EINVAL;
489 pci_platform_pm = ops;
490 return 0;
491 }
492
493 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
494 {
495 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
496 }
497
498 static inline int platform_pci_set_power_state(struct pci_dev *dev,
499 pci_power_t t)
500 {
501 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
502 }
503
504 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
505 {
506 return pci_platform_pm ?
507 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
508 }
509
510 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
511 {
512 return pci_platform_pm ?
513 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
514 }
515
516 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
517 {
518 return pci_platform_pm ?
519 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
520 }
521
522 /**
523 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
524 * given PCI device
525 * @dev: PCI device to handle.
526 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
527 *
528 * RETURN VALUE:
529 * -EINVAL if the requested state is invalid.
530 * -EIO if device does not support PCI PM or its PM capabilities register has a
531 * wrong version, or device doesn't support the requested state.
532 * 0 if device already is in the requested state.
533 * 0 if device's power state has been successfully changed.
534 */
535 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
536 {
537 u16 pmcsr;
538 bool need_restore = false;
539
540 /* Check if we're already there */
541 if (dev->current_state == state)
542 return 0;
543
544 if (!dev->pm_cap)
545 return -EIO;
546
547 if (state < PCI_D0 || state > PCI_D3hot)
548 return -EINVAL;
549
550 /* Validate current state:
551 * Can enter D0 from any state, but if we can only go deeper
552 * to sleep if we're already in a low power state
553 */
554 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
555 && dev->current_state > state) {
556 dev_err(&dev->dev, "invalid power transition "
557 "(from state %d to %d)\n", dev->current_state, state);
558 return -EINVAL;
559 }
560
561 /* check if this device supports the desired state */
562 if ((state == PCI_D1 && !dev->d1_support)
563 || (state == PCI_D2 && !dev->d2_support))
564 return -EIO;
565
566 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
567
568 /* If we're (effectively) in D3, force entire word to 0.
569 * This doesn't affect PME_Status, disables PME_En, and
570 * sets PowerState to 0.
571 */
572 switch (dev->current_state) {
573 case PCI_D0:
574 case PCI_D1:
575 case PCI_D2:
576 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
577 pmcsr |= state;
578 break;
579 case PCI_D3hot:
580 case PCI_D3cold:
581 case PCI_UNKNOWN: /* Boot-up */
582 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
583 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
584 need_restore = true;
585 /* Fall-through: force to D0 */
586 default:
587 pmcsr = 0;
588 break;
589 }
590
591 /* enter specified state */
592 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
593
594 /* Mandatory power management transition delays */
595 /* see PCI PM 1.1 5.6.1 table 18 */
596 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
597 pci_dev_d3_sleep(dev);
598 else if (state == PCI_D2 || dev->current_state == PCI_D2)
599 udelay(PCI_PM_D2_DELAY);
600
601 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
602 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
603 if (dev->current_state != state && printk_ratelimit())
604 dev_info(&dev->dev, "Refused to change power state, "
605 "currently in D%d\n", dev->current_state);
606
607 /*
608 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
609 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
610 * from D3hot to D0 _may_ perform an internal reset, thereby
611 * going to "D0 Uninitialized" rather than "D0 Initialized".
612 * For example, at least some versions of the 3c905B and the
613 * 3c556B exhibit this behaviour.
614 *
615 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
616 * devices in a D3hot state at boot. Consequently, we need to
617 * restore at least the BARs so that the device will be
618 * accessible to its driver.
619 */
620 if (need_restore)
621 pci_restore_bars(dev);
622
623 if (dev->bus->self)
624 pcie_aspm_pm_state_change(dev->bus->self);
625
626 return 0;
627 }
628
629 /**
630 * pci_update_current_state - Read PCI power state of given device from its
631 * PCI PM registers and cache it
632 * @dev: PCI device to handle.
633 * @state: State to cache in case the device doesn't have the PM capability
634 */
635 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
636 {
637 if (dev->pm_cap) {
638 u16 pmcsr;
639
640 /*
641 * Configuration space is not accessible for device in
642 * D3cold, so just keep or set D3cold for safety
643 */
644 if (dev->current_state == PCI_D3cold)
645 return;
646 if (state == PCI_D3cold) {
647 dev->current_state = PCI_D3cold;
648 return;
649 }
650 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
651 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
652 } else {
653 dev->current_state = state;
654 }
655 }
656
657 /**
658 * pci_power_up - Put the given device into D0 forcibly
659 * @dev: PCI device to power up
660 */
661 void pci_power_up(struct pci_dev *dev)
662 {
663 if (platform_pci_power_manageable(dev))
664 platform_pci_set_power_state(dev, PCI_D0);
665
666 pci_raw_set_power_state(dev, PCI_D0);
667 pci_update_current_state(dev, PCI_D0);
668 }
669
670 /**
671 * pci_platform_power_transition - Use platform to change device power state
672 * @dev: PCI device to handle.
673 * @state: State to put the device into.
674 */
675 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
676 {
677 int error;
678
679 if (platform_pci_power_manageable(dev)) {
680 error = platform_pci_set_power_state(dev, state);
681 if (!error)
682 pci_update_current_state(dev, state);
683 } else
684 error = -ENODEV;
685
686 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
687 dev->current_state = PCI_D0;
688
689 return error;
690 }
691
692 /**
693 * pci_wakeup - Wake up a PCI device
694 * @pci_dev: Device to handle.
695 * @ign: ignored parameter
696 */
697 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
698 {
699 pci_wakeup_event(pci_dev);
700 pm_request_resume(&pci_dev->dev);
701 return 0;
702 }
703
704 /**
705 * pci_wakeup_bus - Walk given bus and wake up devices on it
706 * @bus: Top bus of the subtree to walk.
707 */
708 static void pci_wakeup_bus(struct pci_bus *bus)
709 {
710 if (bus)
711 pci_walk_bus(bus, pci_wakeup, NULL);
712 }
713
714 /**
715 * __pci_start_power_transition - Start power transition of a PCI device
716 * @dev: PCI device to handle.
717 * @state: State to put the device into.
718 */
719 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
720 {
721 if (state == PCI_D0) {
722 pci_platform_power_transition(dev, PCI_D0);
723 /*
724 * Mandatory power management transition delays, see
725 * PCI Express Base Specification Revision 2.0 Section
726 * 6.6.1: Conventional Reset. Do not delay for
727 * devices powered on/off by corresponding bridge,
728 * because have already delayed for the bridge.
729 */
730 if (dev->runtime_d3cold) {
731 msleep(dev->d3cold_delay);
732 /*
733 * When powering on a bridge from D3cold, the
734 * whole hierarchy may be powered on into
735 * D0uninitialized state, resume them to give
736 * them a chance to suspend again
737 */
738 pci_wakeup_bus(dev->subordinate);
739 }
740 }
741 }
742
743 /**
744 * __pci_dev_set_current_state - Set current state of a PCI device
745 * @dev: Device to handle
746 * @data: pointer to state to be set
747 */
748 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
749 {
750 pci_power_t state = *(pci_power_t *)data;
751
752 dev->current_state = state;
753 return 0;
754 }
755
756 /**
757 * __pci_bus_set_current_state - Walk given bus and set current state of devices
758 * @bus: Top bus of the subtree to walk.
759 * @state: state to be set
760 */
761 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
762 {
763 if (bus)
764 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
765 }
766
767 /**
768 * __pci_complete_power_transition - Complete power transition of a PCI device
769 * @dev: PCI device to handle.
770 * @state: State to put the device into.
771 *
772 * This function should not be called directly by device drivers.
773 */
774 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
775 {
776 int ret;
777
778 if (state <= PCI_D0)
779 return -EINVAL;
780 ret = pci_platform_power_transition(dev, state);
781 /* Power off the bridge may power off the whole hierarchy */
782 if (!ret && state == PCI_D3cold)
783 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
784 return ret;
785 }
786 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
787
788 /**
789 * pci_set_power_state - Set the power state of a PCI device
790 * @dev: PCI device to handle.
791 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
792 *
793 * Transition a device to a new power state, using the platform firmware and/or
794 * the device's PCI PM registers.
795 *
796 * RETURN VALUE:
797 * -EINVAL if the requested state is invalid.
798 * -EIO if device does not support PCI PM or its PM capabilities register has a
799 * wrong version, or device doesn't support the requested state.
800 * 0 if device already is in the requested state.
801 * 0 if device's power state has been successfully changed.
802 */
803 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
804 {
805 int error;
806
807 /* bound the state we're entering */
808 if (state > PCI_D3cold)
809 state = PCI_D3cold;
810 else if (state < PCI_D0)
811 state = PCI_D0;
812 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
813 /*
814 * If the device or the parent bridge do not support PCI PM,
815 * ignore the request if we're doing anything other than putting
816 * it into D0 (which would only happen on boot).
817 */
818 return 0;
819
820 /* Check if we're already there */
821 if (dev->current_state == state)
822 return 0;
823
824 __pci_start_power_transition(dev, state);
825
826 /* This device is quirked not to be put into D3, so
827 don't put it in D3 */
828 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
829 return 0;
830
831 /*
832 * To put device in D3cold, we put device into D3hot in native
833 * way, then put device into D3cold with platform ops
834 */
835 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
836 PCI_D3hot : state);
837
838 if (!__pci_complete_power_transition(dev, state))
839 error = 0;
840 /*
841 * When aspm_policy is "powersave" this call ensures
842 * that ASPM is configured.
843 */
844 if (!error && dev->bus->self)
845 pcie_aspm_powersave_config_link(dev->bus->self);
846
847 return error;
848 }
849
850 /**
851 * pci_choose_state - Choose the power state of a PCI device
852 * @dev: PCI device to be suspended
853 * @state: target sleep state for the whole system. This is the value
854 * that is passed to suspend() function.
855 *
856 * Returns PCI power state suitable for given device and given system
857 * message.
858 */
859
860 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
861 {
862 pci_power_t ret;
863
864 if (!dev->pm_cap)
865 return PCI_D0;
866
867 ret = platform_pci_choose_state(dev);
868 if (ret != PCI_POWER_ERROR)
869 return ret;
870
871 switch (state.event) {
872 case PM_EVENT_ON:
873 return PCI_D0;
874 case PM_EVENT_FREEZE:
875 case PM_EVENT_PRETHAW:
876 /* REVISIT both freeze and pre-thaw "should" use D0 */
877 case PM_EVENT_SUSPEND:
878 case PM_EVENT_HIBERNATE:
879 return PCI_D3hot;
880 default:
881 dev_info(&dev->dev, "unrecognized suspend event %d\n",
882 state.event);
883 BUG();
884 }
885 return PCI_D0;
886 }
887
888 EXPORT_SYMBOL(pci_choose_state);
889
890 #define PCI_EXP_SAVE_REGS 7
891
892
893 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
894 u16 cap, bool extended)
895 {
896 struct pci_cap_saved_state *tmp;
897
898 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
899 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
900 return tmp;
901 }
902 return NULL;
903 }
904
905 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
906 {
907 return _pci_find_saved_cap(dev, cap, false);
908 }
909
910 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
911 {
912 return _pci_find_saved_cap(dev, cap, true);
913 }
914
915 static int pci_save_pcie_state(struct pci_dev *dev)
916 {
917 int i = 0;
918 struct pci_cap_saved_state *save_state;
919 u16 *cap;
920
921 if (!pci_is_pcie(dev))
922 return 0;
923
924 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
925 if (!save_state) {
926 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
927 return -ENOMEM;
928 }
929
930 cap = (u16 *)&save_state->cap.data[0];
931 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
932 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
933 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
934 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
935 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
936 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
937 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
938
939 return 0;
940 }
941
942 static void pci_restore_pcie_state(struct pci_dev *dev)
943 {
944 int i = 0;
945 struct pci_cap_saved_state *save_state;
946 u16 *cap;
947
948 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
949 if (!save_state)
950 return;
951
952 cap = (u16 *)&save_state->cap.data[0];
953 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
954 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
955 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
956 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
957 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
958 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
959 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
960 }
961
962
963 static int pci_save_pcix_state(struct pci_dev *dev)
964 {
965 int pos;
966 struct pci_cap_saved_state *save_state;
967
968 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
969 if (pos <= 0)
970 return 0;
971
972 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
973 if (!save_state) {
974 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
975 return -ENOMEM;
976 }
977
978 pci_read_config_word(dev, pos + PCI_X_CMD,
979 (u16 *)save_state->cap.data);
980
981 return 0;
982 }
983
984 static void pci_restore_pcix_state(struct pci_dev *dev)
985 {
986 int i = 0, pos;
987 struct pci_cap_saved_state *save_state;
988 u16 *cap;
989
990 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
991 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
992 if (!save_state || pos <= 0)
993 return;
994 cap = (u16 *)&save_state->cap.data[0];
995
996 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
997 }
998
999
1000 /**
1001 * pci_save_state - save the PCI configuration space of a device before suspending
1002 * @dev: - PCI device that we're dealing with
1003 */
1004 int
1005 pci_save_state(struct pci_dev *dev)
1006 {
1007 int i;
1008 /* XXX: 100% dword access ok here? */
1009 for (i = 0; i < 16; i++)
1010 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1011 dev->state_saved = true;
1012 if ((i = pci_save_pcie_state(dev)) != 0)
1013 return i;
1014 if ((i = pci_save_pcix_state(dev)) != 0)
1015 return i;
1016 if ((i = pci_save_vc_state(dev)) != 0)
1017 return i;
1018 return 0;
1019 }
1020
1021 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1022 u32 saved_val, int retry)
1023 {
1024 u32 val;
1025
1026 pci_read_config_dword(pdev, offset, &val);
1027 if (val == saved_val)
1028 return;
1029
1030 for (;;) {
1031 dev_dbg(&pdev->dev, "restoring config space at offset "
1032 "%#x (was %#x, writing %#x)\n", offset, val, saved_val);
1033 pci_write_config_dword(pdev, offset, saved_val);
1034 if (retry-- <= 0)
1035 return;
1036
1037 pci_read_config_dword(pdev, offset, &val);
1038 if (val == saved_val)
1039 return;
1040
1041 mdelay(1);
1042 }
1043 }
1044
1045 static void pci_restore_config_space_range(struct pci_dev *pdev,
1046 int start, int end, int retry)
1047 {
1048 int index;
1049
1050 for (index = end; index >= start; index--)
1051 pci_restore_config_dword(pdev, 4 * index,
1052 pdev->saved_config_space[index],
1053 retry);
1054 }
1055
1056 static void pci_restore_config_space(struct pci_dev *pdev)
1057 {
1058 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1059 pci_restore_config_space_range(pdev, 10, 15, 0);
1060 /* Restore BARs before the command register. */
1061 pci_restore_config_space_range(pdev, 4, 9, 10);
1062 pci_restore_config_space_range(pdev, 0, 3, 0);
1063 } else {
1064 pci_restore_config_space_range(pdev, 0, 15, 0);
1065 }
1066 }
1067
1068 /**
1069 * pci_restore_state - Restore the saved state of a PCI device
1070 * @dev: - PCI device that we're dealing with
1071 */
1072 void pci_restore_state(struct pci_dev *dev)
1073 {
1074 if (!dev->state_saved)
1075 return;
1076
1077 /* PCI Express register must be restored first */
1078 pci_restore_pcie_state(dev);
1079 pci_restore_ats_state(dev);
1080 pci_restore_vc_state(dev);
1081
1082 pci_restore_config_space(dev);
1083
1084 pci_restore_pcix_state(dev);
1085 pci_restore_msi_state(dev);
1086 pci_restore_iov_state(dev);
1087
1088 dev->state_saved = false;
1089 }
1090
1091 struct pci_saved_state {
1092 u32 config_space[16];
1093 struct pci_cap_saved_data cap[0];
1094 };
1095
1096 /**
1097 * pci_store_saved_state - Allocate and return an opaque struct containing
1098 * the device saved state.
1099 * @dev: PCI device that we're dealing with
1100 *
1101 * Return NULL if no state or error.
1102 */
1103 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1104 {
1105 struct pci_saved_state *state;
1106 struct pci_cap_saved_state *tmp;
1107 struct pci_cap_saved_data *cap;
1108 size_t size;
1109
1110 if (!dev->state_saved)
1111 return NULL;
1112
1113 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1114
1115 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1116 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1117
1118 state = kzalloc(size, GFP_KERNEL);
1119 if (!state)
1120 return NULL;
1121
1122 memcpy(state->config_space, dev->saved_config_space,
1123 sizeof(state->config_space));
1124
1125 cap = state->cap;
1126 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1127 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1128 memcpy(cap, &tmp->cap, len);
1129 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1130 }
1131 /* Empty cap_save terminates list */
1132
1133 return state;
1134 }
1135 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1136
1137 /**
1138 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1139 * @dev: PCI device that we're dealing with
1140 * @state: Saved state returned from pci_store_saved_state()
1141 */
1142 static int pci_load_saved_state(struct pci_dev *dev,
1143 struct pci_saved_state *state)
1144 {
1145 struct pci_cap_saved_data *cap;
1146
1147 dev->state_saved = false;
1148
1149 if (!state)
1150 return 0;
1151
1152 memcpy(dev->saved_config_space, state->config_space,
1153 sizeof(state->config_space));
1154
1155 cap = state->cap;
1156 while (cap->size) {
1157 struct pci_cap_saved_state *tmp;
1158
1159 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1160 if (!tmp || tmp->cap.size != cap->size)
1161 return -EINVAL;
1162
1163 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1164 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1165 sizeof(struct pci_cap_saved_data) + cap->size);
1166 }
1167
1168 dev->state_saved = true;
1169 return 0;
1170 }
1171
1172 /**
1173 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1174 * and free the memory allocated for it.
1175 * @dev: PCI device that we're dealing with
1176 * @state: Pointer to saved state returned from pci_store_saved_state()
1177 */
1178 int pci_load_and_free_saved_state(struct pci_dev *dev,
1179 struct pci_saved_state **state)
1180 {
1181 int ret = pci_load_saved_state(dev, *state);
1182 kfree(*state);
1183 *state = NULL;
1184 return ret;
1185 }
1186 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1187
1188 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1189 {
1190 return pci_enable_resources(dev, bars);
1191 }
1192
1193 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1194 {
1195 int err;
1196 u16 cmd;
1197 u8 pin;
1198
1199 err = pci_set_power_state(dev, PCI_D0);
1200 if (err < 0 && err != -EIO)
1201 return err;
1202 err = pcibios_enable_device(dev, bars);
1203 if (err < 0)
1204 return err;
1205 pci_fixup_device(pci_fixup_enable, dev);
1206
1207 if (dev->msi_enabled || dev->msix_enabled)
1208 return 0;
1209
1210 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1211 if (pin) {
1212 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1213 if (cmd & PCI_COMMAND_INTX_DISABLE)
1214 pci_write_config_word(dev, PCI_COMMAND,
1215 cmd & ~PCI_COMMAND_INTX_DISABLE);
1216 }
1217
1218 return 0;
1219 }
1220
1221 /**
1222 * pci_reenable_device - Resume abandoned device
1223 * @dev: PCI device to be resumed
1224 *
1225 * Note this function is a backend of pci_default_resume and is not supposed
1226 * to be called by normal code, write proper resume handler and use it instead.
1227 */
1228 int pci_reenable_device(struct pci_dev *dev)
1229 {
1230 if (pci_is_enabled(dev))
1231 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1232 return 0;
1233 }
1234
1235 static void pci_enable_bridge(struct pci_dev *dev)
1236 {
1237 struct pci_dev *bridge;
1238 int retval;
1239
1240 bridge = pci_upstream_bridge(dev);
1241 if (bridge)
1242 pci_enable_bridge(bridge);
1243
1244 if (pci_is_enabled(dev)) {
1245 if (!dev->is_busmaster)
1246 pci_set_master(dev);
1247 return;
1248 }
1249
1250 retval = pci_enable_device(dev);
1251 if (retval)
1252 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1253 retval);
1254 pci_set_master(dev);
1255 }
1256
1257 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1258 {
1259 struct pci_dev *bridge;
1260 int err;
1261 int i, bars = 0;
1262
1263 /*
1264 * Power state could be unknown at this point, either due to a fresh
1265 * boot or a device removal call. So get the current power state
1266 * so that things like MSI message writing will behave as expected
1267 * (e.g. if the device really is in D0 at enable time).
1268 */
1269 if (dev->pm_cap) {
1270 u16 pmcsr;
1271 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1272 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1273 }
1274
1275 if (atomic_inc_return(&dev->enable_cnt) > 1)
1276 return 0; /* already enabled */
1277
1278 bridge = pci_upstream_bridge(dev);
1279 if (bridge)
1280 pci_enable_bridge(bridge);
1281
1282 /* only skip sriov related */
1283 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1284 if (dev->resource[i].flags & flags)
1285 bars |= (1 << i);
1286 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1287 if (dev->resource[i].flags & flags)
1288 bars |= (1 << i);
1289
1290 err = do_pci_enable_device(dev, bars);
1291 if (err < 0)
1292 atomic_dec(&dev->enable_cnt);
1293 return err;
1294 }
1295
1296 /**
1297 * pci_enable_device_io - Initialize a device for use with IO space
1298 * @dev: PCI device to be initialized
1299 *
1300 * Initialize device before it's used by a driver. Ask low-level code
1301 * to enable I/O resources. Wake up the device if it was suspended.
1302 * Beware, this function can fail.
1303 */
1304 int pci_enable_device_io(struct pci_dev *dev)
1305 {
1306 return pci_enable_device_flags(dev, IORESOURCE_IO);
1307 }
1308
1309 /**
1310 * pci_enable_device_mem - Initialize a device for use with Memory space
1311 * @dev: PCI device to be initialized
1312 *
1313 * Initialize device before it's used by a driver. Ask low-level code
1314 * to enable Memory resources. Wake up the device if it was suspended.
1315 * Beware, this function can fail.
1316 */
1317 int pci_enable_device_mem(struct pci_dev *dev)
1318 {
1319 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1320 }
1321
1322 /**
1323 * pci_enable_device - Initialize device before it's used by a driver.
1324 * @dev: PCI device to be initialized
1325 *
1326 * Initialize device before it's used by a driver. Ask low-level code
1327 * to enable I/O and memory. Wake up the device if it was suspended.
1328 * Beware, this function can fail.
1329 *
1330 * Note we don't actually enable the device many times if we call
1331 * this function repeatedly (we just increment the count).
1332 */
1333 int pci_enable_device(struct pci_dev *dev)
1334 {
1335 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1336 }
1337
1338 /*
1339 * Managed PCI resources. This manages device on/off, intx/msi/msix
1340 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1341 * there's no need to track it separately. pci_devres is initialized
1342 * when a device is enabled using managed PCI device enable interface.
1343 */
1344 struct pci_devres {
1345 unsigned int enabled:1;
1346 unsigned int pinned:1;
1347 unsigned int orig_intx:1;
1348 unsigned int restore_intx:1;
1349 u32 region_mask;
1350 };
1351
1352 static void pcim_release(struct device *gendev, void *res)
1353 {
1354 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1355 struct pci_devres *this = res;
1356 int i;
1357
1358 if (dev->msi_enabled)
1359 pci_disable_msi(dev);
1360 if (dev->msix_enabled)
1361 pci_disable_msix(dev);
1362
1363 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1364 if (this->region_mask & (1 << i))
1365 pci_release_region(dev, i);
1366
1367 if (this->restore_intx)
1368 pci_intx(dev, this->orig_intx);
1369
1370 if (this->enabled && !this->pinned)
1371 pci_disable_device(dev);
1372 }
1373
1374 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1375 {
1376 struct pci_devres *dr, *new_dr;
1377
1378 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1379 if (dr)
1380 return dr;
1381
1382 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1383 if (!new_dr)
1384 return NULL;
1385 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1386 }
1387
1388 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1389 {
1390 if (pci_is_managed(pdev))
1391 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1392 return NULL;
1393 }
1394
1395 /**
1396 * pcim_enable_device - Managed pci_enable_device()
1397 * @pdev: PCI device to be initialized
1398 *
1399 * Managed pci_enable_device().
1400 */
1401 int pcim_enable_device(struct pci_dev *pdev)
1402 {
1403 struct pci_devres *dr;
1404 int rc;
1405
1406 dr = get_pci_dr(pdev);
1407 if (unlikely(!dr))
1408 return -ENOMEM;
1409 if (dr->enabled)
1410 return 0;
1411
1412 rc = pci_enable_device(pdev);
1413 if (!rc) {
1414 pdev->is_managed = 1;
1415 dr->enabled = 1;
1416 }
1417 return rc;
1418 }
1419
1420 /**
1421 * pcim_pin_device - Pin managed PCI device
1422 * @pdev: PCI device to pin
1423 *
1424 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1425 * driver detach. @pdev must have been enabled with
1426 * pcim_enable_device().
1427 */
1428 void pcim_pin_device(struct pci_dev *pdev)
1429 {
1430 struct pci_devres *dr;
1431
1432 dr = find_pci_dr(pdev);
1433 WARN_ON(!dr || !dr->enabled);
1434 if (dr)
1435 dr->pinned = 1;
1436 }
1437
1438 /*
1439 * pcibios_add_device - provide arch specific hooks when adding device dev
1440 * @dev: the PCI device being added
1441 *
1442 * Permits the platform to provide architecture specific functionality when
1443 * devices are added. This is the default implementation. Architecture
1444 * implementations can override this.
1445 */
1446 int __weak pcibios_add_device (struct pci_dev *dev)
1447 {
1448 return 0;
1449 }
1450
1451 /**
1452 * pcibios_release_device - provide arch specific hooks when releasing device dev
1453 * @dev: the PCI device being released
1454 *
1455 * Permits the platform to provide architecture specific functionality when
1456 * devices are released. This is the default implementation. Architecture
1457 * implementations can override this.
1458 */
1459 void __weak pcibios_release_device(struct pci_dev *dev) {}
1460
1461 /**
1462 * pcibios_disable_device - disable arch specific PCI resources for device dev
1463 * @dev: the PCI device to disable
1464 *
1465 * Disables architecture specific PCI resources for the device. This
1466 * is the default implementation. Architecture implementations can
1467 * override this.
1468 */
1469 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1470
1471 static void do_pci_disable_device(struct pci_dev *dev)
1472 {
1473 u16 pci_command;
1474
1475 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1476 if (pci_command & PCI_COMMAND_MASTER) {
1477 pci_command &= ~PCI_COMMAND_MASTER;
1478 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1479 }
1480
1481 pcibios_disable_device(dev);
1482 }
1483
1484 /**
1485 * pci_disable_enabled_device - Disable device without updating enable_cnt
1486 * @dev: PCI device to disable
1487 *
1488 * NOTE: This function is a backend of PCI power management routines and is
1489 * not supposed to be called drivers.
1490 */
1491 void pci_disable_enabled_device(struct pci_dev *dev)
1492 {
1493 if (pci_is_enabled(dev))
1494 do_pci_disable_device(dev);
1495 }
1496
1497 /**
1498 * pci_disable_device - Disable PCI device after use
1499 * @dev: PCI device to be disabled
1500 *
1501 * Signal to the system that the PCI device is not in use by the system
1502 * anymore. This only involves disabling PCI bus-mastering, if active.
1503 *
1504 * Note we don't actually disable the device until all callers of
1505 * pci_enable_device() have called pci_disable_device().
1506 */
1507 void
1508 pci_disable_device(struct pci_dev *dev)
1509 {
1510 struct pci_devres *dr;
1511
1512 dr = find_pci_dr(dev);
1513 if (dr)
1514 dr->enabled = 0;
1515
1516 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1517 "disabling already-disabled device");
1518
1519 if (atomic_dec_return(&dev->enable_cnt) != 0)
1520 return;
1521
1522 do_pci_disable_device(dev);
1523
1524 dev->is_busmaster = 0;
1525 }
1526
1527 /**
1528 * pcibios_set_pcie_reset_state - set reset state for device dev
1529 * @dev: the PCIe device reset
1530 * @state: Reset state to enter into
1531 *
1532 *
1533 * Sets the PCIe reset state for the device. This is the default
1534 * implementation. Architecture implementations can override this.
1535 */
1536 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1537 enum pcie_reset_state state)
1538 {
1539 return -EINVAL;
1540 }
1541
1542 /**
1543 * pci_set_pcie_reset_state - set reset state for device dev
1544 * @dev: the PCIe device reset
1545 * @state: Reset state to enter into
1546 *
1547 *
1548 * Sets the PCI reset state for the device.
1549 */
1550 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1551 {
1552 return pcibios_set_pcie_reset_state(dev, state);
1553 }
1554
1555 /**
1556 * pci_check_pme_status - Check if given device has generated PME.
1557 * @dev: Device to check.
1558 *
1559 * Check the PME status of the device and if set, clear it and clear PME enable
1560 * (if set). Return 'true' if PME status and PME enable were both set or
1561 * 'false' otherwise.
1562 */
1563 bool pci_check_pme_status(struct pci_dev *dev)
1564 {
1565 int pmcsr_pos;
1566 u16 pmcsr;
1567 bool ret = false;
1568
1569 if (!dev->pm_cap)
1570 return false;
1571
1572 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1573 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1574 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1575 return false;
1576
1577 /* Clear PME status. */
1578 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1579 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1580 /* Disable PME to avoid interrupt flood. */
1581 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1582 ret = true;
1583 }
1584
1585 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1586
1587 return ret;
1588 }
1589
1590 /**
1591 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1592 * @dev: Device to handle.
1593 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1594 *
1595 * Check if @dev has generated PME and queue a resume request for it in that
1596 * case.
1597 */
1598 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1599 {
1600 if (pme_poll_reset && dev->pme_poll)
1601 dev->pme_poll = false;
1602
1603 if (pci_check_pme_status(dev)) {
1604 pci_wakeup_event(dev);
1605 pm_request_resume(&dev->dev);
1606 }
1607 return 0;
1608 }
1609
1610 /**
1611 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1612 * @bus: Top bus of the subtree to walk.
1613 */
1614 void pci_pme_wakeup_bus(struct pci_bus *bus)
1615 {
1616 if (bus)
1617 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1618 }
1619
1620
1621 /**
1622 * pci_pme_capable - check the capability of PCI device to generate PME#
1623 * @dev: PCI device to handle.
1624 * @state: PCI state from which device will issue PME#.
1625 */
1626 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1627 {
1628 if (!dev->pm_cap)
1629 return false;
1630
1631 return !!(dev->pme_support & (1 << state));
1632 }
1633
1634 static void pci_pme_list_scan(struct work_struct *work)
1635 {
1636 struct pci_pme_device *pme_dev, *n;
1637
1638 mutex_lock(&pci_pme_list_mutex);
1639 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1640 if (pme_dev->dev->pme_poll) {
1641 struct pci_dev *bridge;
1642
1643 bridge = pme_dev->dev->bus->self;
1644 /*
1645 * If bridge is in low power state, the
1646 * configuration space of subordinate devices
1647 * may be not accessible
1648 */
1649 if (bridge && bridge->current_state != PCI_D0)
1650 continue;
1651 pci_pme_wakeup(pme_dev->dev, NULL);
1652 } else {
1653 list_del(&pme_dev->list);
1654 kfree(pme_dev);
1655 }
1656 }
1657 if (!list_empty(&pci_pme_list))
1658 schedule_delayed_work(&pci_pme_work,
1659 msecs_to_jiffies(PME_TIMEOUT));
1660 mutex_unlock(&pci_pme_list_mutex);
1661 }
1662
1663 /**
1664 * pci_pme_active - enable or disable PCI device's PME# function
1665 * @dev: PCI device to handle.
1666 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1667 *
1668 * The caller must verify that the device is capable of generating PME# before
1669 * calling this function with @enable equal to 'true'.
1670 */
1671 void pci_pme_active(struct pci_dev *dev, bool enable)
1672 {
1673 u16 pmcsr;
1674
1675 if (!dev->pme_support)
1676 return;
1677
1678 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1679 /* Clear PME_Status by writing 1 to it and enable PME# */
1680 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1681 if (!enable)
1682 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1683
1684 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1685
1686 /*
1687 * PCI (as opposed to PCIe) PME requires that the device have
1688 * its PME# line hooked up correctly. Not all hardware vendors
1689 * do this, so the PME never gets delivered and the device
1690 * remains asleep. The easiest way around this is to
1691 * periodically walk the list of suspended devices and check
1692 * whether any have their PME flag set. The assumption is that
1693 * we'll wake up often enough anyway that this won't be a huge
1694 * hit, and the power savings from the devices will still be a
1695 * win.
1696 *
1697 * Although PCIe uses in-band PME message instead of PME# line
1698 * to report PME, PME does not work for some PCIe devices in
1699 * reality. For example, there are devices that set their PME
1700 * status bits, but don't really bother to send a PME message;
1701 * there are PCI Express Root Ports that don't bother to
1702 * trigger interrupts when they receive PME messages from the
1703 * devices below. So PME poll is used for PCIe devices too.
1704 */
1705
1706 if (dev->pme_poll) {
1707 struct pci_pme_device *pme_dev;
1708 if (enable) {
1709 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1710 GFP_KERNEL);
1711 if (!pme_dev) {
1712 dev_warn(&dev->dev, "can't enable PME#\n");
1713 return;
1714 }
1715 pme_dev->dev = dev;
1716 mutex_lock(&pci_pme_list_mutex);
1717 list_add(&pme_dev->list, &pci_pme_list);
1718 if (list_is_singular(&pci_pme_list))
1719 schedule_delayed_work(&pci_pme_work,
1720 msecs_to_jiffies(PME_TIMEOUT));
1721 mutex_unlock(&pci_pme_list_mutex);
1722 } else {
1723 mutex_lock(&pci_pme_list_mutex);
1724 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1725 if (pme_dev->dev == dev) {
1726 list_del(&pme_dev->list);
1727 kfree(pme_dev);
1728 break;
1729 }
1730 }
1731 mutex_unlock(&pci_pme_list_mutex);
1732 }
1733 }
1734
1735 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1736 }
1737
1738 /**
1739 * __pci_enable_wake - enable PCI device as wakeup event source
1740 * @dev: PCI device affected
1741 * @state: PCI state from which device will issue wakeup events
1742 * @runtime: True if the events are to be generated at run time
1743 * @enable: True to enable event generation; false to disable
1744 *
1745 * This enables the device as a wakeup event source, or disables it.
1746 * When such events involves platform-specific hooks, those hooks are
1747 * called automatically by this routine.
1748 *
1749 * Devices with legacy power management (no standard PCI PM capabilities)
1750 * always require such platform hooks.
1751 *
1752 * RETURN VALUE:
1753 * 0 is returned on success
1754 * -EINVAL is returned if device is not supposed to wake up the system
1755 * Error code depending on the platform is returned if both the platform and
1756 * the native mechanism fail to enable the generation of wake-up events
1757 */
1758 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1759 bool runtime, bool enable)
1760 {
1761 int ret = 0;
1762
1763 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1764 return -EINVAL;
1765
1766 /* Don't do the same thing twice in a row for one device. */
1767 if (!!enable == !!dev->wakeup_prepared)
1768 return 0;
1769
1770 /*
1771 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1772 * Anderson we should be doing PME# wake enable followed by ACPI wake
1773 * enable. To disable wake-up we call the platform first, for symmetry.
1774 */
1775
1776 if (enable) {
1777 int error;
1778
1779 if (pci_pme_capable(dev, state))
1780 pci_pme_active(dev, true);
1781 else
1782 ret = 1;
1783 error = runtime ? platform_pci_run_wake(dev, true) :
1784 platform_pci_sleep_wake(dev, true);
1785 if (ret)
1786 ret = error;
1787 if (!ret)
1788 dev->wakeup_prepared = true;
1789 } else {
1790 if (runtime)
1791 platform_pci_run_wake(dev, false);
1792 else
1793 platform_pci_sleep_wake(dev, false);
1794 pci_pme_active(dev, false);
1795 dev->wakeup_prepared = false;
1796 }
1797
1798 return ret;
1799 }
1800 EXPORT_SYMBOL(__pci_enable_wake);
1801
1802 /**
1803 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1804 * @dev: PCI device to prepare
1805 * @enable: True to enable wake-up event generation; false to disable
1806 *
1807 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1808 * and this function allows them to set that up cleanly - pci_enable_wake()
1809 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1810 * ordering constraints.
1811 *
1812 * This function only returns error code if the device is not capable of
1813 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1814 * enable wake-up power for it.
1815 */
1816 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1817 {
1818 return pci_pme_capable(dev, PCI_D3cold) ?
1819 pci_enable_wake(dev, PCI_D3cold, enable) :
1820 pci_enable_wake(dev, PCI_D3hot, enable);
1821 }
1822
1823 /**
1824 * pci_target_state - find an appropriate low power state for a given PCI dev
1825 * @dev: PCI device
1826 *
1827 * Use underlying platform code to find a supported low power state for @dev.
1828 * If the platform can't manage @dev, return the deepest state from which it
1829 * can generate wake events, based on any available PME info.
1830 */
1831 static pci_power_t pci_target_state(struct pci_dev *dev)
1832 {
1833 pci_power_t target_state = PCI_D3hot;
1834
1835 if (platform_pci_power_manageable(dev)) {
1836 /*
1837 * Call the platform to choose the target state of the device
1838 * and enable wake-up from this state if supported.
1839 */
1840 pci_power_t state = platform_pci_choose_state(dev);
1841
1842 switch (state) {
1843 case PCI_POWER_ERROR:
1844 case PCI_UNKNOWN:
1845 break;
1846 case PCI_D1:
1847 case PCI_D2:
1848 if (pci_no_d1d2(dev))
1849 break;
1850 default:
1851 target_state = state;
1852 }
1853 } else if (!dev->pm_cap) {
1854 target_state = PCI_D0;
1855 } else if (device_may_wakeup(&dev->dev)) {
1856 /*
1857 * Find the deepest state from which the device can generate
1858 * wake-up events, make it the target state and enable device
1859 * to generate PME#.
1860 */
1861 if (dev->pme_support) {
1862 while (target_state
1863 && !(dev->pme_support & (1 << target_state)))
1864 target_state--;
1865 }
1866 }
1867
1868 return target_state;
1869 }
1870
1871 /**
1872 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1873 * @dev: Device to handle.
1874 *
1875 * Choose the power state appropriate for the device depending on whether
1876 * it can wake up the system and/or is power manageable by the platform
1877 * (PCI_D3hot is the default) and put the device into that state.
1878 */
1879 int pci_prepare_to_sleep(struct pci_dev *dev)
1880 {
1881 pci_power_t target_state = pci_target_state(dev);
1882 int error;
1883
1884 if (target_state == PCI_POWER_ERROR)
1885 return -EIO;
1886
1887 /* D3cold during system suspend/hibernate is not supported */
1888 if (target_state > PCI_D3hot)
1889 target_state = PCI_D3hot;
1890
1891 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1892
1893 error = pci_set_power_state(dev, target_state);
1894
1895 if (error)
1896 pci_enable_wake(dev, target_state, false);
1897
1898 return error;
1899 }
1900
1901 /**
1902 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1903 * @dev: Device to handle.
1904 *
1905 * Disable device's system wake-up capability and put it into D0.
1906 */
1907 int pci_back_from_sleep(struct pci_dev *dev)
1908 {
1909 pci_enable_wake(dev, PCI_D0, false);
1910 return pci_set_power_state(dev, PCI_D0);
1911 }
1912
1913 /**
1914 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1915 * @dev: PCI device being suspended.
1916 *
1917 * Prepare @dev to generate wake-up events at run time and put it into a low
1918 * power state.
1919 */
1920 int pci_finish_runtime_suspend(struct pci_dev *dev)
1921 {
1922 pci_power_t target_state = pci_target_state(dev);
1923 int error;
1924
1925 if (target_state == PCI_POWER_ERROR)
1926 return -EIO;
1927
1928 dev->runtime_d3cold = target_state == PCI_D3cold;
1929
1930 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1931
1932 error = pci_set_power_state(dev, target_state);
1933
1934 if (error) {
1935 __pci_enable_wake(dev, target_state, true, false);
1936 dev->runtime_d3cold = false;
1937 }
1938
1939 return error;
1940 }
1941
1942 /**
1943 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1944 * @dev: Device to check.
1945 *
1946 * Return true if the device itself is capable of generating wake-up events
1947 * (through the platform or using the native PCIe PME) or if the device supports
1948 * PME and one of its upstream bridges can generate wake-up events.
1949 */
1950 bool pci_dev_run_wake(struct pci_dev *dev)
1951 {
1952 struct pci_bus *bus = dev->bus;
1953
1954 if (device_run_wake(&dev->dev))
1955 return true;
1956
1957 if (!dev->pme_support)
1958 return false;
1959
1960 while (bus->parent) {
1961 struct pci_dev *bridge = bus->self;
1962
1963 if (device_run_wake(&bridge->dev))
1964 return true;
1965
1966 bus = bus->parent;
1967 }
1968
1969 /* We have reached the root bus. */
1970 if (bus->bridge)
1971 return device_run_wake(bus->bridge);
1972
1973 return false;
1974 }
1975 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1976
1977 void pci_config_pm_runtime_get(struct pci_dev *pdev)
1978 {
1979 struct device *dev = &pdev->dev;
1980 struct device *parent = dev->parent;
1981
1982 if (parent)
1983 pm_runtime_get_sync(parent);
1984 pm_runtime_get_noresume(dev);
1985 /*
1986 * pdev->current_state is set to PCI_D3cold during suspending,
1987 * so wait until suspending completes
1988 */
1989 pm_runtime_barrier(dev);
1990 /*
1991 * Only need to resume devices in D3cold, because config
1992 * registers are still accessible for devices suspended but
1993 * not in D3cold.
1994 */
1995 if (pdev->current_state == PCI_D3cold)
1996 pm_runtime_resume(dev);
1997 }
1998
1999 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2000 {
2001 struct device *dev = &pdev->dev;
2002 struct device *parent = dev->parent;
2003
2004 pm_runtime_put(dev);
2005 if (parent)
2006 pm_runtime_put_sync(parent);
2007 }
2008
2009 /**
2010 * pci_pm_init - Initialize PM functions of given PCI device
2011 * @dev: PCI device to handle.
2012 */
2013 void pci_pm_init(struct pci_dev *dev)
2014 {
2015 int pm;
2016 u16 pmc;
2017
2018 pm_runtime_forbid(&dev->dev);
2019 pm_runtime_set_active(&dev->dev);
2020 pm_runtime_enable(&dev->dev);
2021 device_enable_async_suspend(&dev->dev);
2022 dev->wakeup_prepared = false;
2023
2024 dev->pm_cap = 0;
2025 dev->pme_support = 0;
2026
2027 /* find PCI PM capability in list */
2028 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2029 if (!pm)
2030 return;
2031 /* Check device's ability to generate PME# */
2032 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2033
2034 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2035 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2036 pmc & PCI_PM_CAP_VER_MASK);
2037 return;
2038 }
2039
2040 dev->pm_cap = pm;
2041 dev->d3_delay = PCI_PM_D3_WAIT;
2042 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2043 dev->d3cold_allowed = true;
2044
2045 dev->d1_support = false;
2046 dev->d2_support = false;
2047 if (!pci_no_d1d2(dev)) {
2048 if (pmc & PCI_PM_CAP_D1)
2049 dev->d1_support = true;
2050 if (pmc & PCI_PM_CAP_D2)
2051 dev->d2_support = true;
2052
2053 if (dev->d1_support || dev->d2_support)
2054 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2055 dev->d1_support ? " D1" : "",
2056 dev->d2_support ? " D2" : "");
2057 }
2058
2059 pmc &= PCI_PM_CAP_PME_MASK;
2060 if (pmc) {
2061 dev_printk(KERN_DEBUG, &dev->dev,
2062 "PME# supported from%s%s%s%s%s\n",
2063 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2064 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2065 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2066 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2067 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2068 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2069 dev->pme_poll = true;
2070 /*
2071 * Make device's PM flags reflect the wake-up capability, but
2072 * let the user space enable it to wake up the system as needed.
2073 */
2074 device_set_wakeup_capable(&dev->dev, true);
2075 /* Disable the PME# generation functionality */
2076 pci_pme_active(dev, false);
2077 }
2078 }
2079
2080 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2081 struct pci_cap_saved_state *new_cap)
2082 {
2083 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2084 }
2085
2086 /**
2087 * _pci_add_cap_save_buffer - allocate buffer for saving given
2088 * capability registers
2089 * @dev: the PCI device
2090 * @cap: the capability to allocate the buffer for
2091 * @extended: Standard or Extended capability ID
2092 * @size: requested size of the buffer
2093 */
2094 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2095 bool extended, unsigned int size)
2096 {
2097 int pos;
2098 struct pci_cap_saved_state *save_state;
2099
2100 if (extended)
2101 pos = pci_find_ext_capability(dev, cap);
2102 else
2103 pos = pci_find_capability(dev, cap);
2104
2105 if (pos <= 0)
2106 return 0;
2107
2108 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2109 if (!save_state)
2110 return -ENOMEM;
2111
2112 save_state->cap.cap_nr = cap;
2113 save_state->cap.cap_extended = extended;
2114 save_state->cap.size = size;
2115 pci_add_saved_cap(dev, save_state);
2116
2117 return 0;
2118 }
2119
2120 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2121 {
2122 return _pci_add_cap_save_buffer(dev, cap, false, size);
2123 }
2124
2125 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2126 {
2127 return _pci_add_cap_save_buffer(dev, cap, true, size);
2128 }
2129
2130 /**
2131 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2132 * @dev: the PCI device
2133 */
2134 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2135 {
2136 int error;
2137
2138 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2139 PCI_EXP_SAVE_REGS * sizeof(u16));
2140 if (error)
2141 dev_err(&dev->dev,
2142 "unable to preallocate PCI Express save buffer\n");
2143
2144 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2145 if (error)
2146 dev_err(&dev->dev,
2147 "unable to preallocate PCI-X save buffer\n");
2148
2149 pci_allocate_vc_save_buffers(dev);
2150 }
2151
2152 void pci_free_cap_save_buffers(struct pci_dev *dev)
2153 {
2154 struct pci_cap_saved_state *tmp;
2155 struct hlist_node *n;
2156
2157 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2158 kfree(tmp);
2159 }
2160
2161 /**
2162 * pci_configure_ari - enable or disable ARI forwarding
2163 * @dev: the PCI device
2164 *
2165 * If @dev and its upstream bridge both support ARI, enable ARI in the
2166 * bridge. Otherwise, disable ARI in the bridge.
2167 */
2168 void pci_configure_ari(struct pci_dev *dev)
2169 {
2170 u32 cap;
2171 struct pci_dev *bridge;
2172
2173 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2174 return;
2175
2176 bridge = dev->bus->self;
2177 if (!bridge)
2178 return;
2179
2180 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2181 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2182 return;
2183
2184 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2185 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2186 PCI_EXP_DEVCTL2_ARI);
2187 bridge->ari_enabled = 1;
2188 } else {
2189 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2190 PCI_EXP_DEVCTL2_ARI);
2191 bridge->ari_enabled = 0;
2192 }
2193 }
2194
2195 static int pci_acs_enable;
2196
2197 /**
2198 * pci_request_acs - ask for ACS to be enabled if supported
2199 */
2200 void pci_request_acs(void)
2201 {
2202 pci_acs_enable = 1;
2203 }
2204
2205 /**
2206 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2207 * @dev: the PCI device
2208 */
2209 static int pci_std_enable_acs(struct pci_dev *dev)
2210 {
2211 int pos;
2212 u16 cap;
2213 u16 ctrl;
2214
2215 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2216 if (!pos)
2217 return -ENODEV;
2218
2219 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2220 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2221
2222 /* Source Validation */
2223 ctrl |= (cap & PCI_ACS_SV);
2224
2225 /* P2P Request Redirect */
2226 ctrl |= (cap & PCI_ACS_RR);
2227
2228 /* P2P Completion Redirect */
2229 ctrl |= (cap & PCI_ACS_CR);
2230
2231 /* Upstream Forwarding */
2232 ctrl |= (cap & PCI_ACS_UF);
2233
2234 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2235
2236 return 0;
2237 }
2238
2239 /**
2240 * pci_enable_acs - enable ACS if hardware support it
2241 * @dev: the PCI device
2242 */
2243 void pci_enable_acs(struct pci_dev *dev)
2244 {
2245 if (!pci_acs_enable)
2246 return;
2247
2248 if (!pci_std_enable_acs(dev))
2249 return;
2250
2251 pci_dev_specific_enable_acs(dev);
2252 }
2253
2254 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2255 {
2256 int pos;
2257 u16 cap, ctrl;
2258
2259 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2260 if (!pos)
2261 return false;
2262
2263 /*
2264 * Except for egress control, capabilities are either required
2265 * or only required if controllable. Features missing from the
2266 * capability field can therefore be assumed as hard-wired enabled.
2267 */
2268 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2269 acs_flags &= (cap | PCI_ACS_EC);
2270
2271 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2272 return (ctrl & acs_flags) == acs_flags;
2273 }
2274
2275 /**
2276 * pci_acs_enabled - test ACS against required flags for a given device
2277 * @pdev: device to test
2278 * @acs_flags: required PCI ACS flags
2279 *
2280 * Return true if the device supports the provided flags. Automatically
2281 * filters out flags that are not implemented on multifunction devices.
2282 *
2283 * Note that this interface checks the effective ACS capabilities of the
2284 * device rather than the actual capabilities. For instance, most single
2285 * function endpoints are not required to support ACS because they have no
2286 * opportunity for peer-to-peer access. We therefore return 'true'
2287 * regardless of whether the device exposes an ACS capability. This makes
2288 * it much easier for callers of this function to ignore the actual type
2289 * or topology of the device when testing ACS support.
2290 */
2291 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2292 {
2293 int ret;
2294
2295 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2296 if (ret >= 0)
2297 return ret > 0;
2298
2299 /*
2300 * Conventional PCI and PCI-X devices never support ACS, either
2301 * effectively or actually. The shared bus topology implies that
2302 * any device on the bus can receive or snoop DMA.
2303 */
2304 if (!pci_is_pcie(pdev))
2305 return false;
2306
2307 switch (pci_pcie_type(pdev)) {
2308 /*
2309 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2310 * but since their primary interface is PCI/X, we conservatively
2311 * handle them as we would a non-PCIe device.
2312 */
2313 case PCI_EXP_TYPE_PCIE_BRIDGE:
2314 /*
2315 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2316 * applicable... must never implement an ACS Extended Capability...".
2317 * This seems arbitrary, but we take a conservative interpretation
2318 * of this statement.
2319 */
2320 case PCI_EXP_TYPE_PCI_BRIDGE:
2321 case PCI_EXP_TYPE_RC_EC:
2322 return false;
2323 /*
2324 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2325 * implement ACS in order to indicate their peer-to-peer capabilities,
2326 * regardless of whether they are single- or multi-function devices.
2327 */
2328 case PCI_EXP_TYPE_DOWNSTREAM:
2329 case PCI_EXP_TYPE_ROOT_PORT:
2330 return pci_acs_flags_enabled(pdev, acs_flags);
2331 /*
2332 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2333 * implemented by the remaining PCIe types to indicate peer-to-peer
2334 * capabilities, but only when they are part of a multifunction
2335 * device. The footnote for section 6.12 indicates the specific
2336 * PCIe types included here.
2337 */
2338 case PCI_EXP_TYPE_ENDPOINT:
2339 case PCI_EXP_TYPE_UPSTREAM:
2340 case PCI_EXP_TYPE_LEG_END:
2341 case PCI_EXP_TYPE_RC_END:
2342 if (!pdev->multifunction)
2343 break;
2344
2345 return pci_acs_flags_enabled(pdev, acs_flags);
2346 }
2347
2348 /*
2349 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2350 * to single function devices with the exception of downstream ports.
2351 */
2352 return true;
2353 }
2354
2355 /**
2356 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2357 * @start: starting downstream device
2358 * @end: ending upstream device or NULL to search to the root bus
2359 * @acs_flags: required flags
2360 *
2361 * Walk up a device tree from start to end testing PCI ACS support. If
2362 * any step along the way does not support the required flags, return false.
2363 */
2364 bool pci_acs_path_enabled(struct pci_dev *start,
2365 struct pci_dev *end, u16 acs_flags)
2366 {
2367 struct pci_dev *pdev, *parent = start;
2368
2369 do {
2370 pdev = parent;
2371
2372 if (!pci_acs_enabled(pdev, acs_flags))
2373 return false;
2374
2375 if (pci_is_root_bus(pdev->bus))
2376 return (end == NULL);
2377
2378 parent = pdev->bus->self;
2379 } while (pdev != end);
2380
2381 return true;
2382 }
2383
2384 /**
2385 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2386 * @dev: the PCI device
2387 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2388 *
2389 * Perform INTx swizzling for a device behind one level of bridge. This is
2390 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2391 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2392 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2393 * the PCI Express Base Specification, Revision 2.1)
2394 */
2395 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2396 {
2397 int slot;
2398
2399 if (pci_ari_enabled(dev->bus))
2400 slot = 0;
2401 else
2402 slot = PCI_SLOT(dev->devfn);
2403
2404 return (((pin - 1) + slot) % 4) + 1;
2405 }
2406
2407 int
2408 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2409 {
2410 u8 pin;
2411
2412 pin = dev->pin;
2413 if (!pin)
2414 return -1;
2415
2416 while (!pci_is_root_bus(dev->bus)) {
2417 pin = pci_swizzle_interrupt_pin(dev, pin);
2418 dev = dev->bus->self;
2419 }
2420 *bridge = dev;
2421 return pin;
2422 }
2423
2424 /**
2425 * pci_common_swizzle - swizzle INTx all the way to root bridge
2426 * @dev: the PCI device
2427 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2428 *
2429 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2430 * bridges all the way up to a PCI root bus.
2431 */
2432 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2433 {
2434 u8 pin = *pinp;
2435
2436 while (!pci_is_root_bus(dev->bus)) {
2437 pin = pci_swizzle_interrupt_pin(dev, pin);
2438 dev = dev->bus->self;
2439 }
2440 *pinp = pin;
2441 return PCI_SLOT(dev->devfn);
2442 }
2443
2444 /**
2445 * pci_release_region - Release a PCI bar
2446 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2447 * @bar: BAR to release
2448 *
2449 * Releases the PCI I/O and memory resources previously reserved by a
2450 * successful call to pci_request_region. Call this function only
2451 * after all use of the PCI regions has ceased.
2452 */
2453 void pci_release_region(struct pci_dev *pdev, int bar)
2454 {
2455 struct pci_devres *dr;
2456
2457 if (pci_resource_len(pdev, bar) == 0)
2458 return;
2459 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2460 release_region(pci_resource_start(pdev, bar),
2461 pci_resource_len(pdev, bar));
2462 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2463 release_mem_region(pci_resource_start(pdev, bar),
2464 pci_resource_len(pdev, bar));
2465
2466 dr = find_pci_dr(pdev);
2467 if (dr)
2468 dr->region_mask &= ~(1 << bar);
2469 }
2470
2471 /**
2472 * __pci_request_region - Reserved PCI I/O and memory resource
2473 * @pdev: PCI device whose resources are to be reserved
2474 * @bar: BAR to be reserved
2475 * @res_name: Name to be associated with resource.
2476 * @exclusive: whether the region access is exclusive or not
2477 *
2478 * Mark the PCI region associated with PCI device @pdev BR @bar as
2479 * being reserved by owner @res_name. Do not access any
2480 * address inside the PCI regions unless this call returns
2481 * successfully.
2482 *
2483 * If @exclusive is set, then the region is marked so that userspace
2484 * is explicitly not allowed to map the resource via /dev/mem or
2485 * sysfs MMIO access.
2486 *
2487 * Returns 0 on success, or %EBUSY on error. A warning
2488 * message is also printed on failure.
2489 */
2490 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2491 int exclusive)
2492 {
2493 struct pci_devres *dr;
2494
2495 if (pci_resource_len(pdev, bar) == 0)
2496 return 0;
2497
2498 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2499 if (!request_region(pci_resource_start(pdev, bar),
2500 pci_resource_len(pdev, bar), res_name))
2501 goto err_out;
2502 }
2503 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2504 if (!__request_mem_region(pci_resource_start(pdev, bar),
2505 pci_resource_len(pdev, bar), res_name,
2506 exclusive))
2507 goto err_out;
2508 }
2509
2510 dr = find_pci_dr(pdev);
2511 if (dr)
2512 dr->region_mask |= 1 << bar;
2513
2514 return 0;
2515
2516 err_out:
2517 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2518 &pdev->resource[bar]);
2519 return -EBUSY;
2520 }
2521
2522 /**
2523 * pci_request_region - Reserve PCI I/O and memory resource
2524 * @pdev: PCI device whose resources are to be reserved
2525 * @bar: BAR to be reserved
2526 * @res_name: Name to be associated with resource
2527 *
2528 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2529 * being reserved by owner @res_name. Do not access any
2530 * address inside the PCI regions unless this call returns
2531 * successfully.
2532 *
2533 * Returns 0 on success, or %EBUSY on error. A warning
2534 * message is also printed on failure.
2535 */
2536 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2537 {
2538 return __pci_request_region(pdev, bar, res_name, 0);
2539 }
2540
2541 /**
2542 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2543 * @pdev: PCI device whose resources are to be reserved
2544 * @bar: BAR to be reserved
2545 * @res_name: Name to be associated with resource.
2546 *
2547 * Mark the PCI region associated with PCI device @pdev BR @bar as
2548 * being reserved by owner @res_name. Do not access any
2549 * address inside the PCI regions unless this call returns
2550 * successfully.
2551 *
2552 * Returns 0 on success, or %EBUSY on error. A warning
2553 * message is also printed on failure.
2554 *
2555 * The key difference that _exclusive makes it that userspace is
2556 * explicitly not allowed to map the resource via /dev/mem or
2557 * sysfs.
2558 */
2559 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2560 {
2561 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2562 }
2563 /**
2564 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2565 * @pdev: PCI device whose resources were previously reserved
2566 * @bars: Bitmask of BARs to be released
2567 *
2568 * Release selected PCI I/O and memory resources previously reserved.
2569 * Call this function only after all use of the PCI regions has ceased.
2570 */
2571 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2572 {
2573 int i;
2574
2575 for (i = 0; i < 6; i++)
2576 if (bars & (1 << i))
2577 pci_release_region(pdev, i);
2578 }
2579
2580 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2581 const char *res_name, int excl)
2582 {
2583 int i;
2584
2585 for (i = 0; i < 6; i++)
2586 if (bars & (1 << i))
2587 if (__pci_request_region(pdev, i, res_name, excl))
2588 goto err_out;
2589 return 0;
2590
2591 err_out:
2592 while(--i >= 0)
2593 if (bars & (1 << i))
2594 pci_release_region(pdev, i);
2595
2596 return -EBUSY;
2597 }
2598
2599
2600 /**
2601 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2602 * @pdev: PCI device whose resources are to be reserved
2603 * @bars: Bitmask of BARs to be requested
2604 * @res_name: Name to be associated with resource
2605 */
2606 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2607 const char *res_name)
2608 {
2609 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2610 }
2611
2612 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2613 int bars, const char *res_name)
2614 {
2615 return __pci_request_selected_regions(pdev, bars, res_name,
2616 IORESOURCE_EXCLUSIVE);
2617 }
2618
2619 /**
2620 * pci_release_regions - Release reserved PCI I/O and memory resources
2621 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2622 *
2623 * Releases all PCI I/O and memory resources previously reserved by a
2624 * successful call to pci_request_regions. Call this function only
2625 * after all use of the PCI regions has ceased.
2626 */
2627
2628 void pci_release_regions(struct pci_dev *pdev)
2629 {
2630 pci_release_selected_regions(pdev, (1 << 6) - 1);
2631 }
2632
2633 /**
2634 * pci_request_regions - Reserved PCI I/O and memory resources
2635 * @pdev: PCI device whose resources are to be reserved
2636 * @res_name: Name to be associated with resource.
2637 *
2638 * Mark all PCI regions associated with PCI device @pdev as
2639 * being reserved by owner @res_name. Do not access any
2640 * address inside the PCI regions unless this call returns
2641 * successfully.
2642 *
2643 * Returns 0 on success, or %EBUSY on error. A warning
2644 * message is also printed on failure.
2645 */
2646 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2647 {
2648 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2649 }
2650
2651 /**
2652 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2653 * @pdev: PCI device whose resources are to be reserved
2654 * @res_name: Name to be associated with resource.
2655 *
2656 * Mark all PCI regions associated with PCI device @pdev as
2657 * being reserved by owner @res_name. Do not access any
2658 * address inside the PCI regions unless this call returns
2659 * successfully.
2660 *
2661 * pci_request_regions_exclusive() will mark the region so that
2662 * /dev/mem and the sysfs MMIO access will not be allowed.
2663 *
2664 * Returns 0 on success, or %EBUSY on error. A warning
2665 * message is also printed on failure.
2666 */
2667 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2668 {
2669 return pci_request_selected_regions_exclusive(pdev,
2670 ((1 << 6) - 1), res_name);
2671 }
2672
2673 static void __pci_set_master(struct pci_dev *dev, bool enable)
2674 {
2675 u16 old_cmd, cmd;
2676
2677 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2678 if (enable)
2679 cmd = old_cmd | PCI_COMMAND_MASTER;
2680 else
2681 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2682 if (cmd != old_cmd) {
2683 dev_dbg(&dev->dev, "%s bus mastering\n",
2684 enable ? "enabling" : "disabling");
2685 pci_write_config_word(dev, PCI_COMMAND, cmd);
2686 }
2687 dev->is_busmaster = enable;
2688 }
2689
2690 /**
2691 * pcibios_setup - process "pci=" kernel boot arguments
2692 * @str: string used to pass in "pci=" kernel boot arguments
2693 *
2694 * Process kernel boot arguments. This is the default implementation.
2695 * Architecture specific implementations can override this as necessary.
2696 */
2697 char * __weak __init pcibios_setup(char *str)
2698 {
2699 return str;
2700 }
2701
2702 /**
2703 * pcibios_set_master - enable PCI bus-mastering for device dev
2704 * @dev: the PCI device to enable
2705 *
2706 * Enables PCI bus-mastering for the device. This is the default
2707 * implementation. Architecture specific implementations can override
2708 * this if necessary.
2709 */
2710 void __weak pcibios_set_master(struct pci_dev *dev)
2711 {
2712 u8 lat;
2713
2714 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2715 if (pci_is_pcie(dev))
2716 return;
2717
2718 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2719 if (lat < 16)
2720 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2721 else if (lat > pcibios_max_latency)
2722 lat = pcibios_max_latency;
2723 else
2724 return;
2725
2726 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2727 }
2728
2729 /**
2730 * pci_set_master - enables bus-mastering for device dev
2731 * @dev: the PCI device to enable
2732 *
2733 * Enables bus-mastering on the device and calls pcibios_set_master()
2734 * to do the needed arch specific settings.
2735 */
2736 void pci_set_master(struct pci_dev *dev)
2737 {
2738 __pci_set_master(dev, true);
2739 pcibios_set_master(dev);
2740 }
2741
2742 /**
2743 * pci_clear_master - disables bus-mastering for device dev
2744 * @dev: the PCI device to disable
2745 */
2746 void pci_clear_master(struct pci_dev *dev)
2747 {
2748 __pci_set_master(dev, false);
2749 }
2750
2751 /**
2752 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2753 * @dev: the PCI device for which MWI is to be enabled
2754 *
2755 * Helper function for pci_set_mwi.
2756 * Originally copied from drivers/net/acenic.c.
2757 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2758 *
2759 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2760 */
2761 int pci_set_cacheline_size(struct pci_dev *dev)
2762 {
2763 u8 cacheline_size;
2764
2765 if (!pci_cache_line_size)
2766 return -EINVAL;
2767
2768 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2769 equal to or multiple of the right value. */
2770 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2771 if (cacheline_size >= pci_cache_line_size &&
2772 (cacheline_size % pci_cache_line_size) == 0)
2773 return 0;
2774
2775 /* Write the correct value. */
2776 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2777 /* Read it back. */
2778 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2779 if (cacheline_size == pci_cache_line_size)
2780 return 0;
2781
2782 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2783 "supported\n", pci_cache_line_size << 2);
2784
2785 return -EINVAL;
2786 }
2787 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2788
2789 #ifdef PCI_DISABLE_MWI
2790 int pci_set_mwi(struct pci_dev *dev)
2791 {
2792 return 0;
2793 }
2794
2795 int pci_try_set_mwi(struct pci_dev *dev)
2796 {
2797 return 0;
2798 }
2799
2800 void pci_clear_mwi(struct pci_dev *dev)
2801 {
2802 }
2803
2804 #else
2805
2806 /**
2807 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2808 * @dev: the PCI device for which MWI is enabled
2809 *
2810 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2811 *
2812 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2813 */
2814 int
2815 pci_set_mwi(struct pci_dev *dev)
2816 {
2817 int rc;
2818 u16 cmd;
2819
2820 rc = pci_set_cacheline_size(dev);
2821 if (rc)
2822 return rc;
2823
2824 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2825 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2826 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2827 cmd |= PCI_COMMAND_INVALIDATE;
2828 pci_write_config_word(dev, PCI_COMMAND, cmd);
2829 }
2830
2831 return 0;
2832 }
2833
2834 /**
2835 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2836 * @dev: the PCI device for which MWI is enabled
2837 *
2838 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2839 * Callers are not required to check the return value.
2840 *
2841 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2842 */
2843 int pci_try_set_mwi(struct pci_dev *dev)
2844 {
2845 int rc = pci_set_mwi(dev);
2846 return rc;
2847 }
2848
2849 /**
2850 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2851 * @dev: the PCI device to disable
2852 *
2853 * Disables PCI Memory-Write-Invalidate transaction on the device
2854 */
2855 void
2856 pci_clear_mwi(struct pci_dev *dev)
2857 {
2858 u16 cmd;
2859
2860 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2861 if (cmd & PCI_COMMAND_INVALIDATE) {
2862 cmd &= ~PCI_COMMAND_INVALIDATE;
2863 pci_write_config_word(dev, PCI_COMMAND, cmd);
2864 }
2865 }
2866 #endif /* ! PCI_DISABLE_MWI */
2867
2868 /**
2869 * pci_intx - enables/disables PCI INTx for device dev
2870 * @pdev: the PCI device to operate on
2871 * @enable: boolean: whether to enable or disable PCI INTx
2872 *
2873 * Enables/disables PCI INTx for device dev
2874 */
2875 void
2876 pci_intx(struct pci_dev *pdev, int enable)
2877 {
2878 u16 pci_command, new;
2879
2880 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2881
2882 if (enable) {
2883 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2884 } else {
2885 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2886 }
2887
2888 if (new != pci_command) {
2889 struct pci_devres *dr;
2890
2891 pci_write_config_word(pdev, PCI_COMMAND, new);
2892
2893 dr = find_pci_dr(pdev);
2894 if (dr && !dr->restore_intx) {
2895 dr->restore_intx = 1;
2896 dr->orig_intx = !enable;
2897 }
2898 }
2899 }
2900
2901 /**
2902 * pci_intx_mask_supported - probe for INTx masking support
2903 * @dev: the PCI device to operate on
2904 *
2905 * Check if the device dev support INTx masking via the config space
2906 * command word.
2907 */
2908 bool pci_intx_mask_supported(struct pci_dev *dev)
2909 {
2910 bool mask_supported = false;
2911 u16 orig, new;
2912
2913 if (dev->broken_intx_masking)
2914 return false;
2915
2916 pci_cfg_access_lock(dev);
2917
2918 pci_read_config_word(dev, PCI_COMMAND, &orig);
2919 pci_write_config_word(dev, PCI_COMMAND,
2920 orig ^ PCI_COMMAND_INTX_DISABLE);
2921 pci_read_config_word(dev, PCI_COMMAND, &new);
2922
2923 /*
2924 * There's no way to protect against hardware bugs or detect them
2925 * reliably, but as long as we know what the value should be, let's
2926 * go ahead and check it.
2927 */
2928 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2929 dev_err(&dev->dev, "Command register changed from "
2930 "0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2931 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2932 mask_supported = true;
2933 pci_write_config_word(dev, PCI_COMMAND, orig);
2934 }
2935
2936 pci_cfg_access_unlock(dev);
2937 return mask_supported;
2938 }
2939 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2940
2941 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2942 {
2943 struct pci_bus *bus = dev->bus;
2944 bool mask_updated = true;
2945 u32 cmd_status_dword;
2946 u16 origcmd, newcmd;
2947 unsigned long flags;
2948 bool irq_pending;
2949
2950 /*
2951 * We do a single dword read to retrieve both command and status.
2952 * Document assumptions that make this possible.
2953 */
2954 BUILD_BUG_ON(PCI_COMMAND % 4);
2955 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
2956
2957 raw_spin_lock_irqsave(&pci_lock, flags);
2958
2959 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
2960
2961 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
2962
2963 /*
2964 * Check interrupt status register to see whether our device
2965 * triggered the interrupt (when masking) or the next IRQ is
2966 * already pending (when unmasking).
2967 */
2968 if (mask != irq_pending) {
2969 mask_updated = false;
2970 goto done;
2971 }
2972
2973 origcmd = cmd_status_dword;
2974 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
2975 if (mask)
2976 newcmd |= PCI_COMMAND_INTX_DISABLE;
2977 if (newcmd != origcmd)
2978 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
2979
2980 done:
2981 raw_spin_unlock_irqrestore(&pci_lock, flags);
2982
2983 return mask_updated;
2984 }
2985
2986 /**
2987 * pci_check_and_mask_intx - mask INTx on pending interrupt
2988 * @dev: the PCI device to operate on
2989 *
2990 * Check if the device dev has its INTx line asserted, mask it and
2991 * return true in that case. False is returned if not interrupt was
2992 * pending.
2993 */
2994 bool pci_check_and_mask_intx(struct pci_dev *dev)
2995 {
2996 return pci_check_and_set_intx_mask(dev, true);
2997 }
2998 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
2999
3000 /**
3001 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3002 * @dev: the PCI device to operate on
3003 *
3004 * Check if the device dev has its INTx line asserted, unmask it if not
3005 * and return true. False is returned and the mask remains active if
3006 * there was still an interrupt pending.
3007 */
3008 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3009 {
3010 return pci_check_and_set_intx_mask(dev, false);
3011 }
3012 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3013
3014 /**
3015 * pci_msi_off - disables any MSI or MSI-X capabilities
3016 * @dev: the PCI device to operate on
3017 *
3018 * If you want to use MSI, see pci_enable_msi() and friends.
3019 * This is a lower-level primitive that allows us to disable
3020 * MSI operation at the device level.
3021 */
3022 void pci_msi_off(struct pci_dev *dev)
3023 {
3024 int pos;
3025 u16 control;
3026
3027 /*
3028 * This looks like it could go in msi.c, but we need it even when
3029 * CONFIG_PCI_MSI=n. For the same reason, we can't use
3030 * dev->msi_cap or dev->msix_cap here.
3031 */
3032 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3033 if (pos) {
3034 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3035 control &= ~PCI_MSI_FLAGS_ENABLE;
3036 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3037 }
3038 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3039 if (pos) {
3040 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3041 control &= ~PCI_MSIX_FLAGS_ENABLE;
3042 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3043 }
3044 }
3045 EXPORT_SYMBOL_GPL(pci_msi_off);
3046
3047 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3048 {
3049 return dma_set_max_seg_size(&dev->dev, size);
3050 }
3051 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3052
3053 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3054 {
3055 return dma_set_seg_boundary(&dev->dev, mask);
3056 }
3057 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3058
3059 /**
3060 * pci_wait_for_pending_transaction - waits for pending transaction
3061 * @dev: the PCI device to operate on
3062 *
3063 * Return 0 if transaction is pending 1 otherwise.
3064 */
3065 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3066 {
3067 if (!pci_is_pcie(dev))
3068 return 1;
3069
3070 return pci_wait_for_pending(dev, PCI_EXP_DEVSTA, PCI_EXP_DEVSTA_TRPND);
3071 }
3072 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3073
3074 static int pcie_flr(struct pci_dev *dev, int probe)
3075 {
3076 u32 cap;
3077
3078 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3079 if (!(cap & PCI_EXP_DEVCAP_FLR))
3080 return -ENOTTY;
3081
3082 if (probe)
3083 return 0;
3084
3085 if (!pci_wait_for_pending_transaction(dev))
3086 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
3087
3088 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3089
3090 msleep(100);
3091
3092 return 0;
3093 }
3094
3095 static int pci_af_flr(struct pci_dev *dev, int probe)
3096 {
3097 int pos;
3098 u8 cap;
3099
3100 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3101 if (!pos)
3102 return -ENOTTY;
3103
3104 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3105 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3106 return -ENOTTY;
3107
3108 if (probe)
3109 return 0;
3110
3111 /* Wait for Transaction Pending bit clean */
3112 if (pci_wait_for_pending(dev, PCI_AF_STATUS, PCI_AF_STATUS_TP))
3113 goto clear;
3114
3115 dev_err(&dev->dev, "transaction is not cleared; "
3116 "proceeding with reset anyway\n");
3117
3118 clear:
3119 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3120 msleep(100);
3121
3122 return 0;
3123 }
3124
3125 /**
3126 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3127 * @dev: Device to reset.
3128 * @probe: If set, only check if the device can be reset this way.
3129 *
3130 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3131 * unset, it will be reinitialized internally when going from PCI_D3hot to
3132 * PCI_D0. If that's the case and the device is not in a low-power state
3133 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3134 *
3135 * NOTE: This causes the caller to sleep for twice the device power transition
3136 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3137 * by default (i.e. unless the @dev's d3_delay field has a different value).
3138 * Moreover, only devices in D0 can be reset by this function.
3139 */
3140 static int pci_pm_reset(struct pci_dev *dev, int probe)
3141 {
3142 u16 csr;
3143
3144 if (!dev->pm_cap)
3145 return -ENOTTY;
3146
3147 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3148 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3149 return -ENOTTY;
3150
3151 if (probe)
3152 return 0;
3153
3154 if (dev->current_state != PCI_D0)
3155 return -EINVAL;
3156
3157 csr &= ~PCI_PM_CTRL_STATE_MASK;
3158 csr |= PCI_D3hot;
3159 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3160 pci_dev_d3_sleep(dev);
3161
3162 csr &= ~PCI_PM_CTRL_STATE_MASK;
3163 csr |= PCI_D0;
3164 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3165 pci_dev_d3_sleep(dev);
3166
3167 return 0;
3168 }
3169
3170 /**
3171 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3172 * @dev: Bridge device
3173 *
3174 * Use the bridge control register to assert reset on the secondary bus.
3175 * Devices on the secondary bus are left in power-on state.
3176 */
3177 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3178 {
3179 u16 ctrl;
3180
3181 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3182 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3183 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3184 /*
3185 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3186 * this to 2ms to ensure that we meet the minimum requirement.
3187 */
3188 msleep(2);
3189
3190 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3191 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3192
3193 /*
3194 * Trhfa for conventional PCI is 2^25 clock cycles.
3195 * Assuming a minimum 33MHz clock this results in a 1s
3196 * delay before we can consider subordinate devices to
3197 * be re-initialized. PCIe has some ways to shorten this,
3198 * but we don't make use of them yet.
3199 */
3200 ssleep(1);
3201 }
3202 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3203
3204 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3205 {
3206 struct pci_dev *pdev;
3207
3208 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3209 return -ENOTTY;
3210
3211 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3212 if (pdev != dev)
3213 return -ENOTTY;
3214
3215 if (probe)
3216 return 0;
3217
3218 pci_reset_bridge_secondary_bus(dev->bus->self);
3219
3220 return 0;
3221 }
3222
3223 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3224 {
3225 int rc = -ENOTTY;
3226
3227 if (!hotplug || !try_module_get(hotplug->ops->owner))
3228 return rc;
3229
3230 if (hotplug->ops->reset_slot)
3231 rc = hotplug->ops->reset_slot(hotplug, probe);
3232
3233 module_put(hotplug->ops->owner);
3234
3235 return rc;
3236 }
3237
3238 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3239 {
3240 struct pci_dev *pdev;
3241
3242 if (dev->subordinate || !dev->slot)
3243 return -ENOTTY;
3244
3245 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3246 if (pdev != dev && pdev->slot == dev->slot)
3247 return -ENOTTY;
3248
3249 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3250 }
3251
3252 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3253 {
3254 int rc;
3255
3256 might_sleep();
3257
3258 rc = pci_dev_specific_reset(dev, probe);
3259 if (rc != -ENOTTY)
3260 goto done;
3261
3262 rc = pcie_flr(dev, probe);
3263 if (rc != -ENOTTY)
3264 goto done;
3265
3266 rc = pci_af_flr(dev, probe);
3267 if (rc != -ENOTTY)
3268 goto done;
3269
3270 rc = pci_pm_reset(dev, probe);
3271 if (rc != -ENOTTY)
3272 goto done;
3273
3274 rc = pci_dev_reset_slot_function(dev, probe);
3275 if (rc != -ENOTTY)
3276 goto done;
3277
3278 rc = pci_parent_bus_reset(dev, probe);
3279 done:
3280 return rc;
3281 }
3282
3283 static void pci_dev_lock(struct pci_dev *dev)
3284 {
3285 pci_cfg_access_lock(dev);
3286 /* block PM suspend, driver probe, etc. */
3287 device_lock(&dev->dev);
3288 }
3289
3290 /* Return 1 on successful lock, 0 on contention */
3291 static int pci_dev_trylock(struct pci_dev *dev)
3292 {
3293 if (pci_cfg_access_trylock(dev)) {
3294 if (device_trylock(&dev->dev))
3295 return 1;
3296 pci_cfg_access_unlock(dev);
3297 }
3298
3299 return 0;
3300 }
3301
3302 static void pci_dev_unlock(struct pci_dev *dev)
3303 {
3304 device_unlock(&dev->dev);
3305 pci_cfg_access_unlock(dev);
3306 }
3307
3308 static void pci_dev_save_and_disable(struct pci_dev *dev)
3309 {
3310 /*
3311 * Wake-up device prior to save. PM registers default to D0 after
3312 * reset and a simple register restore doesn't reliably return
3313 * to a non-D0 state anyway.
3314 */
3315 pci_set_power_state(dev, PCI_D0);
3316
3317 pci_save_state(dev);
3318 /*
3319 * Disable the device by clearing the Command register, except for
3320 * INTx-disable which is set. This not only disables MMIO and I/O port
3321 * BARs, but also prevents the device from being Bus Master, preventing
3322 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
3323 * compliant devices, INTx-disable prevents legacy interrupts.
3324 */
3325 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3326 }
3327
3328 static void pci_dev_restore(struct pci_dev *dev)
3329 {
3330 pci_restore_state(dev);
3331 }
3332
3333 static int pci_dev_reset(struct pci_dev *dev, int probe)
3334 {
3335 int rc;
3336
3337 if (!probe)
3338 pci_dev_lock(dev);
3339
3340 rc = __pci_dev_reset(dev, probe);
3341
3342 if (!probe)
3343 pci_dev_unlock(dev);
3344
3345 return rc;
3346 }
3347 /**
3348 * __pci_reset_function - reset a PCI device function
3349 * @dev: PCI device to reset
3350 *
3351 * Some devices allow an individual function to be reset without affecting
3352 * other functions in the same device. The PCI device must be responsive
3353 * to PCI config space in order to use this function.
3354 *
3355 * The device function is presumed to be unused when this function is called.
3356 * Resetting the device will make the contents of PCI configuration space
3357 * random, so any caller of this must be prepared to reinitialise the
3358 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3359 * etc.
3360 *
3361 * Returns 0 if the device function was successfully reset or negative if the
3362 * device doesn't support resetting a single function.
3363 */
3364 int __pci_reset_function(struct pci_dev *dev)
3365 {
3366 return pci_dev_reset(dev, 0);
3367 }
3368 EXPORT_SYMBOL_GPL(__pci_reset_function);
3369
3370 /**
3371 * __pci_reset_function_locked - reset a PCI device function while holding
3372 * the @dev mutex lock.
3373 * @dev: PCI device to reset
3374 *
3375 * Some devices allow an individual function to be reset without affecting
3376 * other functions in the same device. The PCI device must be responsive
3377 * to PCI config space in order to use this function.
3378 *
3379 * The device function is presumed to be unused and the caller is holding
3380 * the device mutex lock when this function is called.
3381 * Resetting the device will make the contents of PCI configuration space
3382 * random, so any caller of this must be prepared to reinitialise the
3383 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3384 * etc.
3385 *
3386 * Returns 0 if the device function was successfully reset or negative if the
3387 * device doesn't support resetting a single function.
3388 */
3389 int __pci_reset_function_locked(struct pci_dev *dev)
3390 {
3391 return __pci_dev_reset(dev, 0);
3392 }
3393 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3394
3395 /**
3396 * pci_probe_reset_function - check whether the device can be safely reset
3397 * @dev: PCI device to reset
3398 *
3399 * Some devices allow an individual function to be reset without affecting
3400 * other functions in the same device. The PCI device must be responsive
3401 * to PCI config space in order to use this function.
3402 *
3403 * Returns 0 if the device function can be reset or negative if the
3404 * device doesn't support resetting a single function.
3405 */
3406 int pci_probe_reset_function(struct pci_dev *dev)
3407 {
3408 return pci_dev_reset(dev, 1);
3409 }
3410
3411 /**
3412 * pci_reset_function - quiesce and reset a PCI device function
3413 * @dev: PCI device to reset
3414 *
3415 * Some devices allow an individual function to be reset without affecting
3416 * other functions in the same device. The PCI device must be responsive
3417 * to PCI config space in order to use this function.
3418 *
3419 * This function does not just reset the PCI portion of a device, but
3420 * clears all the state associated with the device. This function differs
3421 * from __pci_reset_function in that it saves and restores device state
3422 * over the reset.
3423 *
3424 * Returns 0 if the device function was successfully reset or negative if the
3425 * device doesn't support resetting a single function.
3426 */
3427 int pci_reset_function(struct pci_dev *dev)
3428 {
3429 int rc;
3430
3431 rc = pci_dev_reset(dev, 1);
3432 if (rc)
3433 return rc;
3434
3435 pci_dev_save_and_disable(dev);
3436
3437 rc = pci_dev_reset(dev, 0);
3438
3439 pci_dev_restore(dev);
3440
3441 return rc;
3442 }
3443 EXPORT_SYMBOL_GPL(pci_reset_function);
3444
3445 /**
3446 * pci_try_reset_function - quiesce and reset a PCI device function
3447 * @dev: PCI device to reset
3448 *
3449 * Same as above, except return -EAGAIN if unable to lock device.
3450 */
3451 int pci_try_reset_function(struct pci_dev *dev)
3452 {
3453 int rc;
3454
3455 rc = pci_dev_reset(dev, 1);
3456 if (rc)
3457 return rc;
3458
3459 pci_dev_save_and_disable(dev);
3460
3461 if (pci_dev_trylock(dev)) {
3462 rc = __pci_dev_reset(dev, 0);
3463 pci_dev_unlock(dev);
3464 } else
3465 rc = -EAGAIN;
3466
3467 pci_dev_restore(dev);
3468
3469 return rc;
3470 }
3471 EXPORT_SYMBOL_GPL(pci_try_reset_function);
3472
3473 /* Lock devices from the top of the tree down */
3474 static void pci_bus_lock(struct pci_bus *bus)
3475 {
3476 struct pci_dev *dev;
3477
3478 list_for_each_entry(dev, &bus->devices, bus_list) {
3479 pci_dev_lock(dev);
3480 if (dev->subordinate)
3481 pci_bus_lock(dev->subordinate);
3482 }
3483 }
3484
3485 /* Unlock devices from the bottom of the tree up */
3486 static void pci_bus_unlock(struct pci_bus *bus)
3487 {
3488 struct pci_dev *dev;
3489
3490 list_for_each_entry(dev, &bus->devices, bus_list) {
3491 if (dev->subordinate)
3492 pci_bus_unlock(dev->subordinate);
3493 pci_dev_unlock(dev);
3494 }
3495 }
3496
3497 /* Return 1 on successful lock, 0 on contention */
3498 static int pci_bus_trylock(struct pci_bus *bus)
3499 {
3500 struct pci_dev *dev;
3501
3502 list_for_each_entry(dev, &bus->devices, bus_list) {
3503 if (!pci_dev_trylock(dev))
3504 goto unlock;
3505 if (dev->subordinate) {
3506 if (!pci_bus_trylock(dev->subordinate)) {
3507 pci_dev_unlock(dev);
3508 goto unlock;
3509 }
3510 }
3511 }
3512 return 1;
3513
3514 unlock:
3515 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3516 if (dev->subordinate)
3517 pci_bus_unlock(dev->subordinate);
3518 pci_dev_unlock(dev);
3519 }
3520 return 0;
3521 }
3522
3523 /* Lock devices from the top of the tree down */
3524 static void pci_slot_lock(struct pci_slot *slot)
3525 {
3526 struct pci_dev *dev;
3527
3528 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3529 if (!dev->slot || dev->slot != slot)
3530 continue;
3531 pci_dev_lock(dev);
3532 if (dev->subordinate)
3533 pci_bus_lock(dev->subordinate);
3534 }
3535 }
3536
3537 /* Unlock devices from the bottom of the tree up */
3538 static void pci_slot_unlock(struct pci_slot *slot)
3539 {
3540 struct pci_dev *dev;
3541
3542 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3543 if (!dev->slot || dev->slot != slot)
3544 continue;
3545 if (dev->subordinate)
3546 pci_bus_unlock(dev->subordinate);
3547 pci_dev_unlock(dev);
3548 }
3549 }
3550
3551 /* Return 1 on successful lock, 0 on contention */
3552 static int pci_slot_trylock(struct pci_slot *slot)
3553 {
3554 struct pci_dev *dev;
3555
3556 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3557 if (!dev->slot || dev->slot != slot)
3558 continue;
3559 if (!pci_dev_trylock(dev))
3560 goto unlock;
3561 if (dev->subordinate) {
3562 if (!pci_bus_trylock(dev->subordinate)) {
3563 pci_dev_unlock(dev);
3564 goto unlock;
3565 }
3566 }
3567 }
3568 return 1;
3569
3570 unlock:
3571 list_for_each_entry_continue_reverse(dev,
3572 &slot->bus->devices, bus_list) {
3573 if (!dev->slot || dev->slot != slot)
3574 continue;
3575 if (dev->subordinate)
3576 pci_bus_unlock(dev->subordinate);
3577 pci_dev_unlock(dev);
3578 }
3579 return 0;
3580 }
3581
3582 /* Save and disable devices from the top of the tree down */
3583 static void pci_bus_save_and_disable(struct pci_bus *bus)
3584 {
3585 struct pci_dev *dev;
3586
3587 list_for_each_entry(dev, &bus->devices, bus_list) {
3588 pci_dev_save_and_disable(dev);
3589 if (dev->subordinate)
3590 pci_bus_save_and_disable(dev->subordinate);
3591 }
3592 }
3593
3594 /*
3595 * Restore devices from top of the tree down - parent bridges need to be
3596 * restored before we can get to subordinate devices.
3597 */
3598 static void pci_bus_restore(struct pci_bus *bus)
3599 {
3600 struct pci_dev *dev;
3601
3602 list_for_each_entry(dev, &bus->devices, bus_list) {
3603 pci_dev_restore(dev);
3604 if (dev->subordinate)
3605 pci_bus_restore(dev->subordinate);
3606 }
3607 }
3608
3609 /* Save and disable devices from the top of the tree down */
3610 static void pci_slot_save_and_disable(struct pci_slot *slot)
3611 {
3612 struct pci_dev *dev;
3613
3614 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3615 if (!dev->slot || dev->slot != slot)
3616 continue;
3617 pci_dev_save_and_disable(dev);
3618 if (dev->subordinate)
3619 pci_bus_save_and_disable(dev->subordinate);
3620 }
3621 }
3622
3623 /*
3624 * Restore devices from top of the tree down - parent bridges need to be
3625 * restored before we can get to subordinate devices.
3626 */
3627 static void pci_slot_restore(struct pci_slot *slot)
3628 {
3629 struct pci_dev *dev;
3630
3631 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3632 if (!dev->slot || dev->slot != slot)
3633 continue;
3634 pci_dev_restore(dev);
3635 if (dev->subordinate)
3636 pci_bus_restore(dev->subordinate);
3637 }
3638 }
3639
3640 static int pci_slot_reset(struct pci_slot *slot, int probe)
3641 {
3642 int rc;
3643
3644 if (!slot)
3645 return -ENOTTY;
3646
3647 if (!probe)
3648 pci_slot_lock(slot);
3649
3650 might_sleep();
3651
3652 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3653
3654 if (!probe)
3655 pci_slot_unlock(slot);
3656
3657 return rc;
3658 }
3659
3660 /**
3661 * pci_probe_reset_slot - probe whether a PCI slot can be reset
3662 * @slot: PCI slot to probe
3663 *
3664 * Return 0 if slot can be reset, negative if a slot reset is not supported.
3665 */
3666 int pci_probe_reset_slot(struct pci_slot *slot)
3667 {
3668 return pci_slot_reset(slot, 1);
3669 }
3670 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3671
3672 /**
3673 * pci_reset_slot - reset a PCI slot
3674 * @slot: PCI slot to reset
3675 *
3676 * A PCI bus may host multiple slots, each slot may support a reset mechanism
3677 * independent of other slots. For instance, some slots may support slot power
3678 * control. In the case of a 1:1 bus to slot architecture, this function may
3679 * wrap the bus reset to avoid spurious slot related events such as hotplug.
3680 * Generally a slot reset should be attempted before a bus reset. All of the
3681 * function of the slot and any subordinate buses behind the slot are reset
3682 * through this function. PCI config space of all devices in the slot and
3683 * behind the slot is saved before and restored after reset.
3684 *
3685 * Return 0 on success, non-zero on error.
3686 */
3687 int pci_reset_slot(struct pci_slot *slot)
3688 {
3689 int rc;
3690
3691 rc = pci_slot_reset(slot, 1);
3692 if (rc)
3693 return rc;
3694
3695 pci_slot_save_and_disable(slot);
3696
3697 rc = pci_slot_reset(slot, 0);
3698
3699 pci_slot_restore(slot);
3700
3701 return rc;
3702 }
3703 EXPORT_SYMBOL_GPL(pci_reset_slot);
3704
3705 /**
3706 * pci_try_reset_slot - Try to reset a PCI slot
3707 * @slot: PCI slot to reset
3708 *
3709 * Same as above except return -EAGAIN if the slot cannot be locked
3710 */
3711 int pci_try_reset_slot(struct pci_slot *slot)
3712 {
3713 int rc;
3714
3715 rc = pci_slot_reset(slot, 1);
3716 if (rc)
3717 return rc;
3718
3719 pci_slot_save_and_disable(slot);
3720
3721 if (pci_slot_trylock(slot)) {
3722 might_sleep();
3723 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
3724 pci_slot_unlock(slot);
3725 } else
3726 rc = -EAGAIN;
3727
3728 pci_slot_restore(slot);
3729
3730 return rc;
3731 }
3732 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
3733
3734 static int pci_bus_reset(struct pci_bus *bus, int probe)
3735 {
3736 if (!bus->self)
3737 return -ENOTTY;
3738
3739 if (probe)
3740 return 0;
3741
3742 pci_bus_lock(bus);
3743
3744 might_sleep();
3745
3746 pci_reset_bridge_secondary_bus(bus->self);
3747
3748 pci_bus_unlock(bus);
3749
3750 return 0;
3751 }
3752
3753 /**
3754 * pci_probe_reset_bus - probe whether a PCI bus can be reset
3755 * @bus: PCI bus to probe
3756 *
3757 * Return 0 if bus can be reset, negative if a bus reset is not supported.
3758 */
3759 int pci_probe_reset_bus(struct pci_bus *bus)
3760 {
3761 return pci_bus_reset(bus, 1);
3762 }
3763 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3764
3765 /**
3766 * pci_reset_bus - reset a PCI bus
3767 * @bus: top level PCI bus to reset
3768 *
3769 * Do a bus reset on the given bus and any subordinate buses, saving
3770 * and restoring state of all devices.
3771 *
3772 * Return 0 on success, non-zero on error.
3773 */
3774 int pci_reset_bus(struct pci_bus *bus)
3775 {
3776 int rc;
3777
3778 rc = pci_bus_reset(bus, 1);
3779 if (rc)
3780 return rc;
3781
3782 pci_bus_save_and_disable(bus);
3783
3784 rc = pci_bus_reset(bus, 0);
3785
3786 pci_bus_restore(bus);
3787
3788 return rc;
3789 }
3790 EXPORT_SYMBOL_GPL(pci_reset_bus);
3791
3792 /**
3793 * pci_try_reset_bus - Try to reset a PCI bus
3794 * @bus: top level PCI bus to reset
3795 *
3796 * Same as above except return -EAGAIN if the bus cannot be locked
3797 */
3798 int pci_try_reset_bus(struct pci_bus *bus)
3799 {
3800 int rc;
3801
3802 rc = pci_bus_reset(bus, 1);
3803 if (rc)
3804 return rc;
3805
3806 pci_bus_save_and_disable(bus);
3807
3808 if (pci_bus_trylock(bus)) {
3809 might_sleep();
3810 pci_reset_bridge_secondary_bus(bus->self);
3811 pci_bus_unlock(bus);
3812 } else
3813 rc = -EAGAIN;
3814
3815 pci_bus_restore(bus);
3816
3817 return rc;
3818 }
3819 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
3820
3821 /**
3822 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3823 * @dev: PCI device to query
3824 *
3825 * Returns mmrbc: maximum designed memory read count in bytes
3826 * or appropriate error value.
3827 */
3828 int pcix_get_max_mmrbc(struct pci_dev *dev)
3829 {
3830 int cap;
3831 u32 stat;
3832
3833 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3834 if (!cap)
3835 return -EINVAL;
3836
3837 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3838 return -EINVAL;
3839
3840 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3841 }
3842 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3843
3844 /**
3845 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3846 * @dev: PCI device to query
3847 *
3848 * Returns mmrbc: maximum memory read count in bytes
3849 * or appropriate error value.
3850 */
3851 int pcix_get_mmrbc(struct pci_dev *dev)
3852 {
3853 int cap;
3854 u16 cmd;
3855
3856 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3857 if (!cap)
3858 return -EINVAL;
3859
3860 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3861 return -EINVAL;
3862
3863 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3864 }
3865 EXPORT_SYMBOL(pcix_get_mmrbc);
3866
3867 /**
3868 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3869 * @dev: PCI device to query
3870 * @mmrbc: maximum memory read count in bytes
3871 * valid values are 512, 1024, 2048, 4096
3872 *
3873 * If possible sets maximum memory read byte count, some bridges have erratas
3874 * that prevent this.
3875 */
3876 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3877 {
3878 int cap;
3879 u32 stat, v, o;
3880 u16 cmd;
3881
3882 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3883 return -EINVAL;
3884
3885 v = ffs(mmrbc) - 10;
3886
3887 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3888 if (!cap)
3889 return -EINVAL;
3890
3891 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3892 return -EINVAL;
3893
3894 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3895 return -E2BIG;
3896
3897 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3898 return -EINVAL;
3899
3900 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3901 if (o != v) {
3902 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3903 return -EIO;
3904
3905 cmd &= ~PCI_X_CMD_MAX_READ;
3906 cmd |= v << 2;
3907 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3908 return -EIO;
3909 }
3910 return 0;
3911 }
3912 EXPORT_SYMBOL(pcix_set_mmrbc);
3913
3914 /**
3915 * pcie_get_readrq - get PCI Express read request size
3916 * @dev: PCI device to query
3917 *
3918 * Returns maximum memory read request in bytes
3919 * or appropriate error value.
3920 */
3921 int pcie_get_readrq(struct pci_dev *dev)
3922 {
3923 u16 ctl;
3924
3925 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3926
3927 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3928 }
3929 EXPORT_SYMBOL(pcie_get_readrq);
3930
3931 /**
3932 * pcie_set_readrq - set PCI Express maximum memory read request
3933 * @dev: PCI device to query
3934 * @rq: maximum memory read count in bytes
3935 * valid values are 128, 256, 512, 1024, 2048, 4096
3936 *
3937 * If possible sets maximum memory read request in bytes
3938 */
3939 int pcie_set_readrq(struct pci_dev *dev, int rq)
3940 {
3941 u16 v;
3942
3943 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3944 return -EINVAL;
3945
3946 /*
3947 * If using the "performance" PCIe config, we clamp the
3948 * read rq size to the max packet size to prevent the
3949 * host bridge generating requests larger than we can
3950 * cope with
3951 */
3952 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3953 int mps = pcie_get_mps(dev);
3954
3955 if (mps < rq)
3956 rq = mps;
3957 }
3958
3959 v = (ffs(rq) - 8) << 12;
3960
3961 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3962 PCI_EXP_DEVCTL_READRQ, v);
3963 }
3964 EXPORT_SYMBOL(pcie_set_readrq);
3965
3966 /**
3967 * pcie_get_mps - get PCI Express maximum payload size
3968 * @dev: PCI device to query
3969 *
3970 * Returns maximum payload size in bytes
3971 */
3972 int pcie_get_mps(struct pci_dev *dev)
3973 {
3974 u16 ctl;
3975
3976 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3977
3978 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3979 }
3980 EXPORT_SYMBOL(pcie_get_mps);
3981
3982 /**
3983 * pcie_set_mps - set PCI Express maximum payload size
3984 * @dev: PCI device to query
3985 * @mps: maximum payload size in bytes
3986 * valid values are 128, 256, 512, 1024, 2048, 4096
3987 *
3988 * If possible sets maximum payload size
3989 */
3990 int pcie_set_mps(struct pci_dev *dev, int mps)
3991 {
3992 u16 v;
3993
3994 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3995 return -EINVAL;
3996
3997 v = ffs(mps) - 8;
3998 if (v > dev->pcie_mpss)
3999 return -EINVAL;
4000 v <<= 5;
4001
4002 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4003 PCI_EXP_DEVCTL_PAYLOAD, v);
4004 }
4005 EXPORT_SYMBOL(pcie_set_mps);
4006
4007 /**
4008 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4009 * @dev: PCI device to query
4010 * @speed: storage for minimum speed
4011 * @width: storage for minimum width
4012 *
4013 * This function will walk up the PCI device chain and determine the minimum
4014 * link width and speed of the device.
4015 */
4016 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4017 enum pcie_link_width *width)
4018 {
4019 int ret;
4020
4021 *speed = PCI_SPEED_UNKNOWN;
4022 *width = PCIE_LNK_WIDTH_UNKNOWN;
4023
4024 while (dev) {
4025 u16 lnksta;
4026 enum pci_bus_speed next_speed;
4027 enum pcie_link_width next_width;
4028
4029 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4030 if (ret)
4031 return ret;
4032
4033 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4034 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4035 PCI_EXP_LNKSTA_NLW_SHIFT;
4036
4037 if (next_speed < *speed)
4038 *speed = next_speed;
4039
4040 if (next_width < *width)
4041 *width = next_width;
4042
4043 dev = dev->bus->self;
4044 }
4045
4046 return 0;
4047 }
4048 EXPORT_SYMBOL(pcie_get_minimum_link);
4049
4050 /**
4051 * pci_select_bars - Make BAR mask from the type of resource
4052 * @dev: the PCI device for which BAR mask is made
4053 * @flags: resource type mask to be selected
4054 *
4055 * This helper routine makes bar mask from the type of resource.
4056 */
4057 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4058 {
4059 int i, bars = 0;
4060 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4061 if (pci_resource_flags(dev, i) & flags)
4062 bars |= (1 << i);
4063 return bars;
4064 }
4065
4066 /**
4067 * pci_resource_bar - get position of the BAR associated with a resource
4068 * @dev: the PCI device
4069 * @resno: the resource number
4070 * @type: the BAR type to be filled in
4071 *
4072 * Returns BAR position in config space, or 0 if the BAR is invalid.
4073 */
4074 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4075 {
4076 int reg;
4077
4078 if (resno < PCI_ROM_RESOURCE) {
4079 *type = pci_bar_unknown;
4080 return PCI_BASE_ADDRESS_0 + 4 * resno;
4081 } else if (resno == PCI_ROM_RESOURCE) {
4082 *type = pci_bar_mem32;
4083 return dev->rom_base_reg;
4084 } else if (resno < PCI_BRIDGE_RESOURCES) {
4085 /* device specific resource */
4086 reg = pci_iov_resource_bar(dev, resno, type);
4087 if (reg)
4088 return reg;
4089 }
4090
4091 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4092 return 0;
4093 }
4094
4095 /* Some architectures require additional programming to enable VGA */
4096 static arch_set_vga_state_t arch_set_vga_state;
4097
4098 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4099 {
4100 arch_set_vga_state = func; /* NULL disables */
4101 }
4102
4103 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4104 unsigned int command_bits, u32 flags)
4105 {
4106 if (arch_set_vga_state)
4107 return arch_set_vga_state(dev, decode, command_bits,
4108 flags);
4109 return 0;
4110 }
4111
4112 /**
4113 * pci_set_vga_state - set VGA decode state on device and parents if requested
4114 * @dev: the PCI device
4115 * @decode: true = enable decoding, false = disable decoding
4116 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4117 * @flags: traverse ancestors and change bridges
4118 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4119 */
4120 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4121 unsigned int command_bits, u32 flags)
4122 {
4123 struct pci_bus *bus;
4124 struct pci_dev *bridge;
4125 u16 cmd;
4126 int rc;
4127
4128 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4129
4130 /* ARCH specific VGA enables */
4131 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4132 if (rc)
4133 return rc;
4134
4135 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4136 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4137 if (decode == true)
4138 cmd |= command_bits;
4139 else
4140 cmd &= ~command_bits;
4141 pci_write_config_word(dev, PCI_COMMAND, cmd);
4142 }
4143
4144 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4145 return 0;
4146
4147 bus = dev->bus;
4148 while (bus) {
4149 bridge = bus->self;
4150 if (bridge) {
4151 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4152 &cmd);
4153 if (decode == true)
4154 cmd |= PCI_BRIDGE_CTL_VGA;
4155 else
4156 cmd &= ~PCI_BRIDGE_CTL_VGA;
4157 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4158 cmd);
4159 }
4160 bus = bus->parent;
4161 }
4162 return 0;
4163 }
4164
4165 bool pci_device_is_present(struct pci_dev *pdev)
4166 {
4167 u32 v;
4168
4169 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4170 }
4171 EXPORT_SYMBOL_GPL(pci_device_is_present);
4172
4173 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4174 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4175 static DEFINE_SPINLOCK(resource_alignment_lock);
4176
4177 /**
4178 * pci_specified_resource_alignment - get resource alignment specified by user.
4179 * @dev: the PCI device to get
4180 *
4181 * RETURNS: Resource alignment if it is specified.
4182 * Zero if it is not specified.
4183 */
4184 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4185 {
4186 int seg, bus, slot, func, align_order, count;
4187 resource_size_t align = 0;
4188 char *p;
4189
4190 spin_lock(&resource_alignment_lock);
4191 p = resource_alignment_param;
4192 while (*p) {
4193 count = 0;
4194 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4195 p[count] == '@') {
4196 p += count + 1;
4197 } else {
4198 align_order = -1;
4199 }
4200 if (sscanf(p, "%x:%x:%x.%x%n",
4201 &seg, &bus, &slot, &func, &count) != 4) {
4202 seg = 0;
4203 if (sscanf(p, "%x:%x.%x%n",
4204 &bus, &slot, &func, &count) != 3) {
4205 /* Invalid format */
4206 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4207 p);
4208 break;
4209 }
4210 }
4211 p += count;
4212 if (seg == pci_domain_nr(dev->bus) &&
4213 bus == dev->bus->number &&
4214 slot == PCI_SLOT(dev->devfn) &&
4215 func == PCI_FUNC(dev->devfn)) {
4216 if (align_order == -1) {
4217 align = PAGE_SIZE;
4218 } else {
4219 align = 1 << align_order;
4220 }
4221 /* Found */
4222 break;
4223 }
4224 if (*p != ';' && *p != ',') {
4225 /* End of param or invalid format */
4226 break;
4227 }
4228 p++;
4229 }
4230 spin_unlock(&resource_alignment_lock);
4231 return align;
4232 }
4233
4234 /*
4235 * This function disables memory decoding and releases memory resources
4236 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4237 * It also rounds up size to specified alignment.
4238 * Later on, the kernel will assign page-aligned memory resource back
4239 * to the device.
4240 */
4241 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4242 {
4243 int i;
4244 struct resource *r;
4245 resource_size_t align, size;
4246 u16 command;
4247
4248 /* check if specified PCI is target device to reassign */
4249 align = pci_specified_resource_alignment(dev);
4250 if (!align)
4251 return;
4252
4253 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4254 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4255 dev_warn(&dev->dev,
4256 "Can't reassign resources to host bridge.\n");
4257 return;
4258 }
4259
4260 dev_info(&dev->dev,
4261 "Disabling memory decoding and releasing memory resources.\n");
4262 pci_read_config_word(dev, PCI_COMMAND, &command);
4263 command &= ~PCI_COMMAND_MEMORY;
4264 pci_write_config_word(dev, PCI_COMMAND, command);
4265
4266 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4267 r = &dev->resource[i];
4268 if (!(r->flags & IORESOURCE_MEM))
4269 continue;
4270 size = resource_size(r);
4271 if (size < align) {
4272 size = align;
4273 dev_info(&dev->dev,
4274 "Rounding up size of resource #%d to %#llx.\n",
4275 i, (unsigned long long)size);
4276 }
4277 r->flags |= IORESOURCE_UNSET;
4278 r->end = size - 1;
4279 r->start = 0;
4280 }
4281 /* Need to disable bridge's resource window,
4282 * to enable the kernel to reassign new resource
4283 * window later on.
4284 */
4285 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4286 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4287 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4288 r = &dev->resource[i];
4289 if (!(r->flags & IORESOURCE_MEM))
4290 continue;
4291 r->flags |= IORESOURCE_UNSET;
4292 r->end = resource_size(r) - 1;
4293 r->start = 0;
4294 }
4295 pci_disable_bridge_window(dev);
4296 }
4297 }
4298
4299 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4300 {
4301 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4302 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4303 spin_lock(&resource_alignment_lock);
4304 strncpy(resource_alignment_param, buf, count);
4305 resource_alignment_param[count] = '\0';
4306 spin_unlock(&resource_alignment_lock);
4307 return count;
4308 }
4309
4310 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4311 {
4312 size_t count;
4313 spin_lock(&resource_alignment_lock);
4314 count = snprintf(buf, size, "%s", resource_alignment_param);
4315 spin_unlock(&resource_alignment_lock);
4316 return count;
4317 }
4318
4319 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4320 {
4321 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4322 }
4323
4324 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4325 const char *buf, size_t count)
4326 {
4327 return pci_set_resource_alignment_param(buf, count);
4328 }
4329
4330 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4331 pci_resource_alignment_store);
4332
4333 static int __init pci_resource_alignment_sysfs_init(void)
4334 {
4335 return bus_create_file(&pci_bus_type,
4336 &bus_attr_resource_alignment);
4337 }
4338
4339 late_initcall(pci_resource_alignment_sysfs_init);
4340
4341 static void pci_no_domains(void)
4342 {
4343 #ifdef CONFIG_PCI_DOMAINS
4344 pci_domains_supported = 0;
4345 #endif
4346 }
4347
4348 /**
4349 * pci_ext_cfg_avail - can we access extended PCI config space?
4350 *
4351 * Returns 1 if we can access PCI extended config space (offsets
4352 * greater than 0xff). This is the default implementation. Architecture
4353 * implementations can override this.
4354 */
4355 int __weak pci_ext_cfg_avail(void)
4356 {
4357 return 1;
4358 }
4359
4360 void __weak pci_fixup_cardbus(struct pci_bus *bus)
4361 {
4362 }
4363 EXPORT_SYMBOL(pci_fixup_cardbus);
4364
4365 static int __init pci_setup(char *str)
4366 {
4367 while (str) {
4368 char *k = strchr(str, ',');
4369 if (k)
4370 *k++ = 0;
4371 if (*str && (str = pcibios_setup(str)) && *str) {
4372 if (!strcmp(str, "nomsi")) {
4373 pci_no_msi();
4374 } else if (!strcmp(str, "noaer")) {
4375 pci_no_aer();
4376 } else if (!strncmp(str, "realloc=", 8)) {
4377 pci_realloc_get_opt(str + 8);
4378 } else if (!strncmp(str, "realloc", 7)) {
4379 pci_realloc_get_opt("on");
4380 } else if (!strcmp(str, "nodomains")) {
4381 pci_no_domains();
4382 } else if (!strncmp(str, "noari", 5)) {
4383 pcie_ari_disabled = true;
4384 } else if (!strncmp(str, "cbiosize=", 9)) {
4385 pci_cardbus_io_size = memparse(str + 9, &str);
4386 } else if (!strncmp(str, "cbmemsize=", 10)) {
4387 pci_cardbus_mem_size = memparse(str + 10, &str);
4388 } else if (!strncmp(str, "resource_alignment=", 19)) {
4389 pci_set_resource_alignment_param(str + 19,
4390 strlen(str + 19));
4391 } else if (!strncmp(str, "ecrc=", 5)) {
4392 pcie_ecrc_get_policy(str + 5);
4393 } else if (!strncmp(str, "hpiosize=", 9)) {
4394 pci_hotplug_io_size = memparse(str + 9, &str);
4395 } else if (!strncmp(str, "hpmemsize=", 10)) {
4396 pci_hotplug_mem_size = memparse(str + 10, &str);
4397 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4398 pcie_bus_config = PCIE_BUS_TUNE_OFF;
4399 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
4400 pcie_bus_config = PCIE_BUS_SAFE;
4401 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
4402 pcie_bus_config = PCIE_BUS_PERFORMANCE;
4403 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4404 pcie_bus_config = PCIE_BUS_PEER2PEER;
4405 } else if (!strncmp(str, "pcie_scan_all", 13)) {
4406 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4407 } else {
4408 printk(KERN_ERR "PCI: Unknown option `%s'\n",
4409 str);
4410 }
4411 }
4412 str = k;
4413 }
4414 return 0;
4415 }
4416 early_param("pci", pci_setup);
4417
4418 EXPORT_SYMBOL(pci_reenable_device);
4419 EXPORT_SYMBOL(pci_enable_device_io);
4420 EXPORT_SYMBOL(pci_enable_device_mem);
4421 EXPORT_SYMBOL(pci_enable_device);
4422 EXPORT_SYMBOL(pcim_enable_device);
4423 EXPORT_SYMBOL(pcim_pin_device);
4424 EXPORT_SYMBOL(pci_disable_device);
4425 EXPORT_SYMBOL(pci_find_capability);
4426 EXPORT_SYMBOL(pci_bus_find_capability);
4427 EXPORT_SYMBOL(pci_release_regions);
4428 EXPORT_SYMBOL(pci_request_regions);
4429 EXPORT_SYMBOL(pci_request_regions_exclusive);
4430 EXPORT_SYMBOL(pci_release_region);
4431 EXPORT_SYMBOL(pci_request_region);
4432 EXPORT_SYMBOL(pci_request_region_exclusive);
4433 EXPORT_SYMBOL(pci_release_selected_regions);
4434 EXPORT_SYMBOL(pci_request_selected_regions);
4435 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4436 EXPORT_SYMBOL(pci_set_master);
4437 EXPORT_SYMBOL(pci_clear_master);
4438 EXPORT_SYMBOL(pci_set_mwi);
4439 EXPORT_SYMBOL(pci_try_set_mwi);
4440 EXPORT_SYMBOL(pci_clear_mwi);
4441 EXPORT_SYMBOL_GPL(pci_intx);
4442 EXPORT_SYMBOL(pci_assign_resource);
4443 EXPORT_SYMBOL(pci_find_parent_resource);
4444 EXPORT_SYMBOL(pci_select_bars);
4445
4446 EXPORT_SYMBOL(pci_set_power_state);
4447 EXPORT_SYMBOL(pci_save_state);
4448 EXPORT_SYMBOL(pci_restore_state);
4449 EXPORT_SYMBOL(pci_pme_capable);
4450 EXPORT_SYMBOL(pci_pme_active);
4451 EXPORT_SYMBOL(pci_wake_from_d3);
4452 EXPORT_SYMBOL(pci_prepare_to_sleep);
4453 EXPORT_SYMBOL(pci_back_from_sleep);
4454 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);