]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/pci/pci.c
PCI: hv: Make sure the bus domain is really unique
[mirror_ubuntu-bionic-kernel.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/delay.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/of.h>
16 #include <linux/of_pci.h>
17 #include <linux/pci.h>
18 #include <linux/pm.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/spinlock.h>
22 #include <linux/string.h>
23 #include <linux/log2.h>
24 #include <linux/logic_pio.h>
25 #include <linux/pci-aspm.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pci-ats.h>
33 #include <asm/setup.h>
34 #include <asm/dma.h>
35 #include <linux/aer.h>
36 #include "pci.h"
37
38 const char *pci_power_names[] = {
39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40 };
41 EXPORT_SYMBOL_GPL(pci_power_names);
42
43 int isa_dma_bridge_buggy;
44 EXPORT_SYMBOL(isa_dma_bridge_buggy);
45
46 int pci_pci_problems;
47 EXPORT_SYMBOL(pci_pci_problems);
48
49 unsigned int pci_pm_d3_delay;
50
51 static void pci_pme_list_scan(struct work_struct *work);
52
53 static LIST_HEAD(pci_pme_list);
54 static DEFINE_MUTEX(pci_pme_list_mutex);
55 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
56
57 struct pci_pme_device {
58 struct list_head list;
59 struct pci_dev *dev;
60 };
61
62 #define PME_TIMEOUT 1000 /* How long between PME checks */
63
64 static void pci_dev_d3_sleep(struct pci_dev *dev)
65 {
66 unsigned int delay = dev->d3_delay;
67
68 if (delay < pci_pm_d3_delay)
69 delay = pci_pm_d3_delay;
70
71 if (delay)
72 msleep(delay);
73 }
74
75 #ifdef CONFIG_PCI_DOMAINS
76 int pci_domains_supported = 1;
77 #endif
78
79 #define DEFAULT_CARDBUS_IO_SIZE (256)
80 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
81 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
82 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
83 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
84
85 #define DEFAULT_HOTPLUG_IO_SIZE (256)
86 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
87 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
88 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
89 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
90
91 #define DEFAULT_HOTPLUG_BUS_SIZE 1
92 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
93
94 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
95
96 /*
97 * The default CLS is used if arch didn't set CLS explicitly and not
98 * all pci devices agree on the same value. Arch can override either
99 * the dfl or actual value as it sees fit. Don't forget this is
100 * measured in 32-bit words, not bytes.
101 */
102 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
103 u8 pci_cache_line_size;
104
105 /*
106 * If we set up a device for bus mastering, we need to check the latency
107 * timer as certain BIOSes forget to set it properly.
108 */
109 unsigned int pcibios_max_latency = 255;
110
111 /* If set, the PCIe ARI capability will not be used. */
112 static bool pcie_ari_disabled;
113
114 /* Disable bridge_d3 for all PCIe ports */
115 static bool pci_bridge_d3_disable;
116 /* Force bridge_d3 for all PCIe ports */
117 static bool pci_bridge_d3_force;
118
119 static int __init pcie_port_pm_setup(char *str)
120 {
121 if (!strcmp(str, "off"))
122 pci_bridge_d3_disable = true;
123 else if (!strcmp(str, "force"))
124 pci_bridge_d3_force = true;
125 return 1;
126 }
127 __setup("pcie_port_pm=", pcie_port_pm_setup);
128
129 /**
130 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
131 * @bus: pointer to PCI bus structure to search
132 *
133 * Given a PCI bus, returns the highest PCI bus number present in the set
134 * including the given PCI bus and its list of child PCI buses.
135 */
136 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
137 {
138 struct pci_bus *tmp;
139 unsigned char max, n;
140
141 max = bus->busn_res.end;
142 list_for_each_entry(tmp, &bus->children, node) {
143 n = pci_bus_max_busnr(tmp);
144 if (n > max)
145 max = n;
146 }
147 return max;
148 }
149 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
150
151 #ifdef CONFIG_HAS_IOMEM
152 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
153 {
154 struct resource *res = &pdev->resource[bar];
155
156 /*
157 * Make sure the BAR is actually a memory resource, not an IO resource
158 */
159 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
160 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
161 return NULL;
162 }
163 return ioremap_nocache(res->start, resource_size(res));
164 }
165 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
166
167 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
168 {
169 /*
170 * Make sure the BAR is actually a memory resource, not an IO resource
171 */
172 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
173 WARN_ON(1);
174 return NULL;
175 }
176 return ioremap_wc(pci_resource_start(pdev, bar),
177 pci_resource_len(pdev, bar));
178 }
179 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
180 #endif
181
182
183 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
184 u8 pos, int cap, int *ttl)
185 {
186 u8 id;
187 u16 ent;
188
189 pci_bus_read_config_byte(bus, devfn, pos, &pos);
190
191 while ((*ttl)--) {
192 if (pos < 0x40)
193 break;
194 pos &= ~3;
195 pci_bus_read_config_word(bus, devfn, pos, &ent);
196
197 id = ent & 0xff;
198 if (id == 0xff)
199 break;
200 if (id == cap)
201 return pos;
202 pos = (ent >> 8);
203 }
204 return 0;
205 }
206
207 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
208 u8 pos, int cap)
209 {
210 int ttl = PCI_FIND_CAP_TTL;
211
212 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
213 }
214
215 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
216 {
217 return __pci_find_next_cap(dev->bus, dev->devfn,
218 pos + PCI_CAP_LIST_NEXT, cap);
219 }
220 EXPORT_SYMBOL_GPL(pci_find_next_capability);
221
222 static int __pci_bus_find_cap_start(struct pci_bus *bus,
223 unsigned int devfn, u8 hdr_type)
224 {
225 u16 status;
226
227 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
228 if (!(status & PCI_STATUS_CAP_LIST))
229 return 0;
230
231 switch (hdr_type) {
232 case PCI_HEADER_TYPE_NORMAL:
233 case PCI_HEADER_TYPE_BRIDGE:
234 return PCI_CAPABILITY_LIST;
235 case PCI_HEADER_TYPE_CARDBUS:
236 return PCI_CB_CAPABILITY_LIST;
237 }
238
239 return 0;
240 }
241
242 /**
243 * pci_find_capability - query for devices' capabilities
244 * @dev: PCI device to query
245 * @cap: capability code
246 *
247 * Tell if a device supports a given PCI capability.
248 * Returns the address of the requested capability structure within the
249 * device's PCI configuration space or 0 in case the device does not
250 * support it. Possible values for @cap:
251 *
252 * %PCI_CAP_ID_PM Power Management
253 * %PCI_CAP_ID_AGP Accelerated Graphics Port
254 * %PCI_CAP_ID_VPD Vital Product Data
255 * %PCI_CAP_ID_SLOTID Slot Identification
256 * %PCI_CAP_ID_MSI Message Signalled Interrupts
257 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
258 * %PCI_CAP_ID_PCIX PCI-X
259 * %PCI_CAP_ID_EXP PCI Express
260 */
261 int pci_find_capability(struct pci_dev *dev, int cap)
262 {
263 int pos;
264
265 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
266 if (pos)
267 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
268
269 return pos;
270 }
271 EXPORT_SYMBOL(pci_find_capability);
272
273 /**
274 * pci_bus_find_capability - query for devices' capabilities
275 * @bus: the PCI bus to query
276 * @devfn: PCI device to query
277 * @cap: capability code
278 *
279 * Like pci_find_capability() but works for pci devices that do not have a
280 * pci_dev structure set up yet.
281 *
282 * Returns the address of the requested capability structure within the
283 * device's PCI configuration space or 0 in case the device does not
284 * support it.
285 */
286 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
287 {
288 int pos;
289 u8 hdr_type;
290
291 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
292
293 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
294 if (pos)
295 pos = __pci_find_next_cap(bus, devfn, pos, cap);
296
297 return pos;
298 }
299 EXPORT_SYMBOL(pci_bus_find_capability);
300
301 /**
302 * pci_find_next_ext_capability - Find an extended capability
303 * @dev: PCI device to query
304 * @start: address at which to start looking (0 to start at beginning of list)
305 * @cap: capability code
306 *
307 * Returns the address of the next matching extended capability structure
308 * within the device's PCI configuration space or 0 if the device does
309 * not support it. Some capabilities can occur several times, e.g., the
310 * vendor-specific capability, and this provides a way to find them all.
311 */
312 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
313 {
314 u32 header;
315 int ttl;
316 int pos = PCI_CFG_SPACE_SIZE;
317
318 /* minimum 8 bytes per capability */
319 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
320
321 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
322 return 0;
323
324 if (start)
325 pos = start;
326
327 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
328 return 0;
329
330 /*
331 * If we have no capabilities, this is indicated by cap ID,
332 * cap version and next pointer all being 0.
333 */
334 if (header == 0)
335 return 0;
336
337 while (ttl-- > 0) {
338 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
339 return pos;
340
341 pos = PCI_EXT_CAP_NEXT(header);
342 if (pos < PCI_CFG_SPACE_SIZE)
343 break;
344
345 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
346 break;
347 }
348
349 return 0;
350 }
351 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
352
353 /**
354 * pci_find_ext_capability - Find an extended capability
355 * @dev: PCI device to query
356 * @cap: capability code
357 *
358 * Returns the address of the requested extended capability structure
359 * within the device's PCI configuration space or 0 if the device does
360 * not support it. Possible values for @cap:
361 *
362 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
363 * %PCI_EXT_CAP_ID_VC Virtual Channel
364 * %PCI_EXT_CAP_ID_DSN Device Serial Number
365 * %PCI_EXT_CAP_ID_PWR Power Budgeting
366 */
367 int pci_find_ext_capability(struct pci_dev *dev, int cap)
368 {
369 return pci_find_next_ext_capability(dev, 0, cap);
370 }
371 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
372
373 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
374 {
375 int rc, ttl = PCI_FIND_CAP_TTL;
376 u8 cap, mask;
377
378 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
379 mask = HT_3BIT_CAP_MASK;
380 else
381 mask = HT_5BIT_CAP_MASK;
382
383 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
384 PCI_CAP_ID_HT, &ttl);
385 while (pos) {
386 rc = pci_read_config_byte(dev, pos + 3, &cap);
387 if (rc != PCIBIOS_SUCCESSFUL)
388 return 0;
389
390 if ((cap & mask) == ht_cap)
391 return pos;
392
393 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
394 pos + PCI_CAP_LIST_NEXT,
395 PCI_CAP_ID_HT, &ttl);
396 }
397
398 return 0;
399 }
400 /**
401 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
402 * @dev: PCI device to query
403 * @pos: Position from which to continue searching
404 * @ht_cap: Hypertransport capability code
405 *
406 * To be used in conjunction with pci_find_ht_capability() to search for
407 * all capabilities matching @ht_cap. @pos should always be a value returned
408 * from pci_find_ht_capability().
409 *
410 * NB. To be 100% safe against broken PCI devices, the caller should take
411 * steps to avoid an infinite loop.
412 */
413 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
414 {
415 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
416 }
417 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
418
419 /**
420 * pci_find_ht_capability - query a device's Hypertransport capabilities
421 * @dev: PCI device to query
422 * @ht_cap: Hypertransport capability code
423 *
424 * Tell if a device supports a given Hypertransport capability.
425 * Returns an address within the device's PCI configuration space
426 * or 0 in case the device does not support the request capability.
427 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
428 * which has a Hypertransport capability matching @ht_cap.
429 */
430 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
431 {
432 int pos;
433
434 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
435 if (pos)
436 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
437
438 return pos;
439 }
440 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
441
442 /**
443 * pci_find_parent_resource - return resource region of parent bus of given region
444 * @dev: PCI device structure contains resources to be searched
445 * @res: child resource record for which parent is sought
446 *
447 * For given resource region of given device, return the resource
448 * region of parent bus the given region is contained in.
449 */
450 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
451 struct resource *res)
452 {
453 const struct pci_bus *bus = dev->bus;
454 struct resource *r;
455 int i;
456
457 pci_bus_for_each_resource(bus, r, i) {
458 if (!r)
459 continue;
460 if (resource_contains(r, res)) {
461
462 /*
463 * If the window is prefetchable but the BAR is
464 * not, the allocator made a mistake.
465 */
466 if (r->flags & IORESOURCE_PREFETCH &&
467 !(res->flags & IORESOURCE_PREFETCH))
468 return NULL;
469
470 /*
471 * If we're below a transparent bridge, there may
472 * be both a positively-decoded aperture and a
473 * subtractively-decoded region that contain the BAR.
474 * We want the positively-decoded one, so this depends
475 * on pci_bus_for_each_resource() giving us those
476 * first.
477 */
478 return r;
479 }
480 }
481 return NULL;
482 }
483 EXPORT_SYMBOL(pci_find_parent_resource);
484
485 /**
486 * pci_find_resource - Return matching PCI device resource
487 * @dev: PCI device to query
488 * @res: Resource to look for
489 *
490 * Goes over standard PCI resources (BARs) and checks if the given resource
491 * is partially or fully contained in any of them. In that case the
492 * matching resource is returned, %NULL otherwise.
493 */
494 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
495 {
496 int i;
497
498 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
499 struct resource *r = &dev->resource[i];
500
501 if (r->start && resource_contains(r, res))
502 return r;
503 }
504
505 return NULL;
506 }
507 EXPORT_SYMBOL(pci_find_resource);
508
509 /**
510 * pci_find_pcie_root_port - return PCIe Root Port
511 * @dev: PCI device to query
512 *
513 * Traverse up the parent chain and return the PCIe Root Port PCI Device
514 * for a given PCI Device.
515 */
516 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
517 {
518 struct pci_dev *bridge, *highest_pcie_bridge = dev;
519
520 bridge = pci_upstream_bridge(dev);
521 while (bridge && pci_is_pcie(bridge)) {
522 highest_pcie_bridge = bridge;
523 bridge = pci_upstream_bridge(bridge);
524 }
525
526 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
527 return NULL;
528
529 return highest_pcie_bridge;
530 }
531 EXPORT_SYMBOL(pci_find_pcie_root_port);
532
533 /**
534 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
535 * @dev: the PCI device to operate on
536 * @pos: config space offset of status word
537 * @mask: mask of bit(s) to care about in status word
538 *
539 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
540 */
541 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
542 {
543 int i;
544
545 /* Wait for Transaction Pending bit clean */
546 for (i = 0; i < 4; i++) {
547 u16 status;
548 if (i)
549 msleep((1 << (i - 1)) * 100);
550
551 pci_read_config_word(dev, pos, &status);
552 if (!(status & mask))
553 return 1;
554 }
555
556 return 0;
557 }
558
559 /**
560 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
561 * @dev: PCI device to have its BARs restored
562 *
563 * Restore the BAR values for a given device, so as to make it
564 * accessible by its driver.
565 */
566 static void pci_restore_bars(struct pci_dev *dev)
567 {
568 int i;
569
570 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
571 pci_update_resource(dev, i);
572 }
573
574 static const struct pci_platform_pm_ops *pci_platform_pm;
575
576 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
577 {
578 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
579 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
580 return -EINVAL;
581 pci_platform_pm = ops;
582 return 0;
583 }
584
585 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
586 {
587 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
588 }
589
590 static inline int platform_pci_set_power_state(struct pci_dev *dev,
591 pci_power_t t)
592 {
593 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
594 }
595
596 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
597 {
598 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
599 }
600
601 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
602 {
603 return pci_platform_pm ?
604 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
605 }
606
607 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
608 {
609 return pci_platform_pm ?
610 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
611 }
612
613 static inline bool platform_pci_need_resume(struct pci_dev *dev)
614 {
615 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
616 }
617
618 /**
619 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
620 * given PCI device
621 * @dev: PCI device to handle.
622 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
623 *
624 * RETURN VALUE:
625 * -EINVAL if the requested state is invalid.
626 * -EIO if device does not support PCI PM or its PM capabilities register has a
627 * wrong version, or device doesn't support the requested state.
628 * 0 if device already is in the requested state.
629 * 0 if device's power state has been successfully changed.
630 */
631 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
632 {
633 u16 pmcsr;
634 bool need_restore = false;
635
636 /* Check if we're already there */
637 if (dev->current_state == state)
638 return 0;
639
640 if (!dev->pm_cap)
641 return -EIO;
642
643 if (state < PCI_D0 || state > PCI_D3hot)
644 return -EINVAL;
645
646 /* Validate current state:
647 * Can enter D0 from any state, but if we can only go deeper
648 * to sleep if we're already in a low power state
649 */
650 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
651 && dev->current_state > state) {
652 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
653 dev->current_state, state);
654 return -EINVAL;
655 }
656
657 /* check if this device supports the desired state */
658 if ((state == PCI_D1 && !dev->d1_support)
659 || (state == PCI_D2 && !dev->d2_support))
660 return -EIO;
661
662 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
663
664 /* If we're (effectively) in D3, force entire word to 0.
665 * This doesn't affect PME_Status, disables PME_En, and
666 * sets PowerState to 0.
667 */
668 switch (dev->current_state) {
669 case PCI_D0:
670 case PCI_D1:
671 case PCI_D2:
672 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
673 pmcsr |= state;
674 break;
675 case PCI_D3hot:
676 case PCI_D3cold:
677 case PCI_UNKNOWN: /* Boot-up */
678 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
679 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
680 need_restore = true;
681 /* Fall-through: force to D0 */
682 default:
683 pmcsr = 0;
684 break;
685 }
686
687 /* enter specified state */
688 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
689
690 /* Mandatory power management transition delays */
691 /* see PCI PM 1.1 5.6.1 table 18 */
692 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
693 pci_dev_d3_sleep(dev);
694 else if (state == PCI_D2 || dev->current_state == PCI_D2)
695 udelay(PCI_PM_D2_DELAY);
696
697 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
698 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
699 if (dev->current_state != state && printk_ratelimit())
700 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
701 dev->current_state);
702
703 /*
704 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
705 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
706 * from D3hot to D0 _may_ perform an internal reset, thereby
707 * going to "D0 Uninitialized" rather than "D0 Initialized".
708 * For example, at least some versions of the 3c905B and the
709 * 3c556B exhibit this behaviour.
710 *
711 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
712 * devices in a D3hot state at boot. Consequently, we need to
713 * restore at least the BARs so that the device will be
714 * accessible to its driver.
715 */
716 if (need_restore)
717 pci_restore_bars(dev);
718
719 if (dev->bus->self)
720 pcie_aspm_pm_state_change(dev->bus->self);
721
722 return 0;
723 }
724
725 /**
726 * pci_update_current_state - Read power state of given device and cache it
727 * @dev: PCI device to handle.
728 * @state: State to cache in case the device doesn't have the PM capability
729 *
730 * The power state is read from the PMCSR register, which however is
731 * inaccessible in D3cold. The platform firmware is therefore queried first
732 * to detect accessibility of the register. In case the platform firmware
733 * reports an incorrect state or the device isn't power manageable by the
734 * platform at all, we try to detect D3cold by testing accessibility of the
735 * vendor ID in config space.
736 */
737 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
738 {
739 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
740 !pci_device_is_present(dev)) {
741 dev->current_state = PCI_D3cold;
742 } else if (dev->pm_cap) {
743 u16 pmcsr;
744
745 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
746 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
747 } else {
748 dev->current_state = state;
749 }
750 }
751
752 /**
753 * pci_power_up - Put the given device into D0 forcibly
754 * @dev: PCI device to power up
755 */
756 void pci_power_up(struct pci_dev *dev)
757 {
758 if (platform_pci_power_manageable(dev))
759 platform_pci_set_power_state(dev, PCI_D0);
760
761 pci_raw_set_power_state(dev, PCI_D0);
762 pci_update_current_state(dev, PCI_D0);
763 }
764
765 /**
766 * pci_platform_power_transition - Use platform to change device power state
767 * @dev: PCI device to handle.
768 * @state: State to put the device into.
769 */
770 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
771 {
772 int error;
773
774 if (platform_pci_power_manageable(dev)) {
775 error = platform_pci_set_power_state(dev, state);
776 if (!error)
777 pci_update_current_state(dev, state);
778 } else
779 error = -ENODEV;
780
781 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
782 dev->current_state = PCI_D0;
783
784 return error;
785 }
786
787 /**
788 * pci_wakeup - Wake up a PCI device
789 * @pci_dev: Device to handle.
790 * @ign: ignored parameter
791 */
792 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
793 {
794 pci_wakeup_event(pci_dev);
795 pm_request_resume(&pci_dev->dev);
796 return 0;
797 }
798
799 /**
800 * pci_wakeup_bus - Walk given bus and wake up devices on it
801 * @bus: Top bus of the subtree to walk.
802 */
803 static void pci_wakeup_bus(struct pci_bus *bus)
804 {
805 if (bus)
806 pci_walk_bus(bus, pci_wakeup, NULL);
807 }
808
809 /**
810 * __pci_start_power_transition - Start power transition of a PCI device
811 * @dev: PCI device to handle.
812 * @state: State to put the device into.
813 */
814 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
815 {
816 if (state == PCI_D0) {
817 pci_platform_power_transition(dev, PCI_D0);
818 /*
819 * Mandatory power management transition delays, see
820 * PCI Express Base Specification Revision 2.0 Section
821 * 6.6.1: Conventional Reset. Do not delay for
822 * devices powered on/off by corresponding bridge,
823 * because have already delayed for the bridge.
824 */
825 if (dev->runtime_d3cold) {
826 if (dev->d3cold_delay)
827 msleep(dev->d3cold_delay);
828 /*
829 * When powering on a bridge from D3cold, the
830 * whole hierarchy may be powered on into
831 * D0uninitialized state, resume them to give
832 * them a chance to suspend again
833 */
834 pci_wakeup_bus(dev->subordinate);
835 }
836 }
837 }
838
839 /**
840 * __pci_dev_set_current_state - Set current state of a PCI device
841 * @dev: Device to handle
842 * @data: pointer to state to be set
843 */
844 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
845 {
846 pci_power_t state = *(pci_power_t *)data;
847
848 dev->current_state = state;
849 return 0;
850 }
851
852 /**
853 * __pci_bus_set_current_state - Walk given bus and set current state of devices
854 * @bus: Top bus of the subtree to walk.
855 * @state: state to be set
856 */
857 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
858 {
859 if (bus)
860 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
861 }
862
863 /**
864 * __pci_complete_power_transition - Complete power transition of a PCI device
865 * @dev: PCI device to handle.
866 * @state: State to put the device into.
867 *
868 * This function should not be called directly by device drivers.
869 */
870 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
871 {
872 int ret;
873
874 if (state <= PCI_D0)
875 return -EINVAL;
876 ret = pci_platform_power_transition(dev, state);
877 /* Power off the bridge may power off the whole hierarchy */
878 if (!ret && state == PCI_D3cold)
879 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
880 return ret;
881 }
882 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
883
884 /**
885 * pci_set_power_state - Set the power state of a PCI device
886 * @dev: PCI device to handle.
887 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
888 *
889 * Transition a device to a new power state, using the platform firmware and/or
890 * the device's PCI PM registers.
891 *
892 * RETURN VALUE:
893 * -EINVAL if the requested state is invalid.
894 * -EIO if device does not support PCI PM or its PM capabilities register has a
895 * wrong version, or device doesn't support the requested state.
896 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
897 * 0 if device already is in the requested state.
898 * 0 if the transition is to D3 but D3 is not supported.
899 * 0 if device's power state has been successfully changed.
900 */
901 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
902 {
903 int error;
904
905 /* bound the state we're entering */
906 if (state > PCI_D3cold)
907 state = PCI_D3cold;
908 else if (state < PCI_D0)
909 state = PCI_D0;
910 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
911 /*
912 * If the device or the parent bridge do not support PCI PM,
913 * ignore the request if we're doing anything other than putting
914 * it into D0 (which would only happen on boot).
915 */
916 return 0;
917
918 /* Check if we're already there */
919 if (dev->current_state == state)
920 return 0;
921
922 __pci_start_power_transition(dev, state);
923
924 /* This device is quirked not to be put into D3, so
925 don't put it in D3 */
926 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
927 return 0;
928
929 /*
930 * To put device in D3cold, we put device into D3hot in native
931 * way, then put device into D3cold with platform ops
932 */
933 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
934 PCI_D3hot : state);
935
936 if (!__pci_complete_power_transition(dev, state))
937 error = 0;
938
939 return error;
940 }
941 EXPORT_SYMBOL(pci_set_power_state);
942
943 /**
944 * pci_choose_state - Choose the power state of a PCI device
945 * @dev: PCI device to be suspended
946 * @state: target sleep state for the whole system. This is the value
947 * that is passed to suspend() function.
948 *
949 * Returns PCI power state suitable for given device and given system
950 * message.
951 */
952
953 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
954 {
955 pci_power_t ret;
956
957 if (!dev->pm_cap)
958 return PCI_D0;
959
960 ret = platform_pci_choose_state(dev);
961 if (ret != PCI_POWER_ERROR)
962 return ret;
963
964 switch (state.event) {
965 case PM_EVENT_ON:
966 return PCI_D0;
967 case PM_EVENT_FREEZE:
968 case PM_EVENT_PRETHAW:
969 /* REVISIT both freeze and pre-thaw "should" use D0 */
970 case PM_EVENT_SUSPEND:
971 case PM_EVENT_HIBERNATE:
972 return PCI_D3hot;
973 default:
974 dev_info(&dev->dev, "unrecognized suspend event %d\n",
975 state.event);
976 BUG();
977 }
978 return PCI_D0;
979 }
980 EXPORT_SYMBOL(pci_choose_state);
981
982 #define PCI_EXP_SAVE_REGS 7
983
984 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
985 u16 cap, bool extended)
986 {
987 struct pci_cap_saved_state *tmp;
988
989 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
990 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
991 return tmp;
992 }
993 return NULL;
994 }
995
996 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
997 {
998 return _pci_find_saved_cap(dev, cap, false);
999 }
1000
1001 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1002 {
1003 return _pci_find_saved_cap(dev, cap, true);
1004 }
1005
1006 static int pci_save_pcie_state(struct pci_dev *dev)
1007 {
1008 int i = 0;
1009 struct pci_cap_saved_state *save_state;
1010 u16 *cap;
1011
1012 if (!pci_is_pcie(dev))
1013 return 0;
1014
1015 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1016 if (!save_state) {
1017 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1018 return -ENOMEM;
1019 }
1020
1021 cap = (u16 *)&save_state->cap.data[0];
1022 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1023 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1024 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1025 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1026 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1027 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1028 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1029
1030 return 0;
1031 }
1032
1033 static void pci_restore_pcie_state(struct pci_dev *dev)
1034 {
1035 int i = 0;
1036 struct pci_cap_saved_state *save_state;
1037 u16 *cap;
1038
1039 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1040 if (!save_state)
1041 return;
1042
1043 cap = (u16 *)&save_state->cap.data[0];
1044 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1045 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1046 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1047 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1048 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1049 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1050 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1051 }
1052
1053
1054 static int pci_save_pcix_state(struct pci_dev *dev)
1055 {
1056 int pos;
1057 struct pci_cap_saved_state *save_state;
1058
1059 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1060 if (!pos)
1061 return 0;
1062
1063 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1064 if (!save_state) {
1065 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1066 return -ENOMEM;
1067 }
1068
1069 pci_read_config_word(dev, pos + PCI_X_CMD,
1070 (u16 *)save_state->cap.data);
1071
1072 return 0;
1073 }
1074
1075 static void pci_restore_pcix_state(struct pci_dev *dev)
1076 {
1077 int i = 0, pos;
1078 struct pci_cap_saved_state *save_state;
1079 u16 *cap;
1080
1081 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1082 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1083 if (!save_state || !pos)
1084 return;
1085 cap = (u16 *)&save_state->cap.data[0];
1086
1087 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1088 }
1089
1090
1091 /**
1092 * pci_save_state - save the PCI configuration space of a device before suspending
1093 * @dev: - PCI device that we're dealing with
1094 */
1095 int pci_save_state(struct pci_dev *dev)
1096 {
1097 int i;
1098 /* XXX: 100% dword access ok here? */
1099 for (i = 0; i < 16; i++)
1100 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1101 dev->state_saved = true;
1102
1103 i = pci_save_pcie_state(dev);
1104 if (i != 0)
1105 return i;
1106
1107 i = pci_save_pcix_state(dev);
1108 if (i != 0)
1109 return i;
1110
1111 return pci_save_vc_state(dev);
1112 }
1113 EXPORT_SYMBOL(pci_save_state);
1114
1115 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1116 u32 saved_val, int retry, bool force)
1117 {
1118 u32 val;
1119
1120 pci_read_config_dword(pdev, offset, &val);
1121 if (!force && val == saved_val)
1122 return;
1123
1124 for (;;) {
1125 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1126 offset, val, saved_val);
1127 pci_write_config_dword(pdev, offset, saved_val);
1128 if (retry-- <= 0)
1129 return;
1130
1131 pci_read_config_dword(pdev, offset, &val);
1132 if (val == saved_val)
1133 return;
1134
1135 mdelay(1);
1136 }
1137 }
1138
1139 static void pci_restore_config_space_range(struct pci_dev *pdev,
1140 int start, int end, int retry,
1141 bool force)
1142 {
1143 int index;
1144
1145 for (index = end; index >= start; index--)
1146 pci_restore_config_dword(pdev, 4 * index,
1147 pdev->saved_config_space[index],
1148 retry, force);
1149 }
1150
1151 static void pci_restore_config_space(struct pci_dev *pdev)
1152 {
1153 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1154 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1155 /* Restore BARs before the command register. */
1156 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1157 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1158 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1159 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1160
1161 /*
1162 * Force rewriting of prefetch registers to avoid S3 resume
1163 * issues on Intel PCI bridges that occur when these
1164 * registers are not explicitly written.
1165 */
1166 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1167 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1168 } else {
1169 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1170 }
1171 }
1172
1173 /**
1174 * pci_restore_state - Restore the saved state of a PCI device
1175 * @dev: - PCI device that we're dealing with
1176 */
1177 void pci_restore_state(struct pci_dev *dev)
1178 {
1179 if (!dev->state_saved)
1180 return;
1181
1182 /* PCI Express register must be restored first */
1183 pci_restore_pcie_state(dev);
1184 pci_restore_pasid_state(dev);
1185 pci_restore_pri_state(dev);
1186 pci_restore_ats_state(dev);
1187 pci_restore_vc_state(dev);
1188
1189 pci_cleanup_aer_error_status_regs(dev);
1190
1191 pci_restore_config_space(dev);
1192
1193 pci_restore_pcix_state(dev);
1194 pci_restore_msi_state(dev);
1195
1196 /* Restore ACS and IOV configuration state */
1197 pci_enable_acs(dev);
1198 pci_restore_iov_state(dev);
1199
1200 dev->state_saved = false;
1201 }
1202 EXPORT_SYMBOL(pci_restore_state);
1203
1204 struct pci_saved_state {
1205 u32 config_space[16];
1206 struct pci_cap_saved_data cap[0];
1207 };
1208
1209 /**
1210 * pci_store_saved_state - Allocate and return an opaque struct containing
1211 * the device saved state.
1212 * @dev: PCI device that we're dealing with
1213 *
1214 * Return NULL if no state or error.
1215 */
1216 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1217 {
1218 struct pci_saved_state *state;
1219 struct pci_cap_saved_state *tmp;
1220 struct pci_cap_saved_data *cap;
1221 size_t size;
1222
1223 if (!dev->state_saved)
1224 return NULL;
1225
1226 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1227
1228 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1229 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1230
1231 state = kzalloc(size, GFP_KERNEL);
1232 if (!state)
1233 return NULL;
1234
1235 memcpy(state->config_space, dev->saved_config_space,
1236 sizeof(state->config_space));
1237
1238 cap = state->cap;
1239 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1240 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1241 memcpy(cap, &tmp->cap, len);
1242 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1243 }
1244 /* Empty cap_save terminates list */
1245
1246 return state;
1247 }
1248 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1249
1250 /**
1251 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1252 * @dev: PCI device that we're dealing with
1253 * @state: Saved state returned from pci_store_saved_state()
1254 */
1255 int pci_load_saved_state(struct pci_dev *dev,
1256 struct pci_saved_state *state)
1257 {
1258 struct pci_cap_saved_data *cap;
1259
1260 dev->state_saved = false;
1261
1262 if (!state)
1263 return 0;
1264
1265 memcpy(dev->saved_config_space, state->config_space,
1266 sizeof(state->config_space));
1267
1268 cap = state->cap;
1269 while (cap->size) {
1270 struct pci_cap_saved_state *tmp;
1271
1272 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1273 if (!tmp || tmp->cap.size != cap->size)
1274 return -EINVAL;
1275
1276 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1277 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1278 sizeof(struct pci_cap_saved_data) + cap->size);
1279 }
1280
1281 dev->state_saved = true;
1282 return 0;
1283 }
1284 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1285
1286 /**
1287 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1288 * and free the memory allocated for it.
1289 * @dev: PCI device that we're dealing with
1290 * @state: Pointer to saved state returned from pci_store_saved_state()
1291 */
1292 int pci_load_and_free_saved_state(struct pci_dev *dev,
1293 struct pci_saved_state **state)
1294 {
1295 int ret = pci_load_saved_state(dev, *state);
1296 kfree(*state);
1297 *state = NULL;
1298 return ret;
1299 }
1300 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1301
1302 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1303 {
1304 return pci_enable_resources(dev, bars);
1305 }
1306
1307 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1308 {
1309 int err;
1310 struct pci_dev *bridge;
1311 u16 cmd;
1312 u8 pin;
1313
1314 err = pci_set_power_state(dev, PCI_D0);
1315 if (err < 0 && err != -EIO)
1316 return err;
1317
1318 bridge = pci_upstream_bridge(dev);
1319 if (bridge)
1320 pcie_aspm_powersave_config_link(bridge);
1321
1322 err = pcibios_enable_device(dev, bars);
1323 if (err < 0)
1324 return err;
1325 pci_fixup_device(pci_fixup_enable, dev);
1326
1327 if (dev->msi_enabled || dev->msix_enabled)
1328 return 0;
1329
1330 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1331 if (pin) {
1332 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1333 if (cmd & PCI_COMMAND_INTX_DISABLE)
1334 pci_write_config_word(dev, PCI_COMMAND,
1335 cmd & ~PCI_COMMAND_INTX_DISABLE);
1336 }
1337
1338 return 0;
1339 }
1340
1341 /**
1342 * pci_reenable_device - Resume abandoned device
1343 * @dev: PCI device to be resumed
1344 *
1345 * Note this function is a backend of pci_default_resume and is not supposed
1346 * to be called by normal code, write proper resume handler and use it instead.
1347 */
1348 int pci_reenable_device(struct pci_dev *dev)
1349 {
1350 if (pci_is_enabled(dev))
1351 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1352 return 0;
1353 }
1354 EXPORT_SYMBOL(pci_reenable_device);
1355
1356 static void pci_enable_bridge(struct pci_dev *dev)
1357 {
1358 struct pci_dev *bridge;
1359 int retval;
1360
1361 bridge = pci_upstream_bridge(dev);
1362 if (bridge)
1363 pci_enable_bridge(bridge);
1364
1365 if (pci_is_enabled(dev)) {
1366 if (!dev->is_busmaster)
1367 pci_set_master(dev);
1368 return;
1369 }
1370
1371 retval = pci_enable_device(dev);
1372 if (retval)
1373 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1374 retval);
1375 pci_set_master(dev);
1376 }
1377
1378 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1379 {
1380 struct pci_dev *bridge;
1381 int err;
1382 int i, bars = 0;
1383
1384 /*
1385 * Power state could be unknown at this point, either due to a fresh
1386 * boot or a device removal call. So get the current power state
1387 * so that things like MSI message writing will behave as expected
1388 * (e.g. if the device really is in D0 at enable time).
1389 */
1390 if (dev->pm_cap) {
1391 u16 pmcsr;
1392 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1393 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1394 }
1395
1396 if (atomic_inc_return(&dev->enable_cnt) > 1)
1397 return 0; /* already enabled */
1398
1399 bridge = pci_upstream_bridge(dev);
1400 if (bridge)
1401 pci_enable_bridge(bridge);
1402
1403 /* only skip sriov related */
1404 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1405 if (dev->resource[i].flags & flags)
1406 bars |= (1 << i);
1407 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1408 if (dev->resource[i].flags & flags)
1409 bars |= (1 << i);
1410
1411 err = do_pci_enable_device(dev, bars);
1412 if (err < 0)
1413 atomic_dec(&dev->enable_cnt);
1414 return err;
1415 }
1416
1417 /**
1418 * pci_enable_device_io - Initialize a device for use with IO space
1419 * @dev: PCI device to be initialized
1420 *
1421 * Initialize device before it's used by a driver. Ask low-level code
1422 * to enable I/O resources. Wake up the device if it was suspended.
1423 * Beware, this function can fail.
1424 */
1425 int pci_enable_device_io(struct pci_dev *dev)
1426 {
1427 return pci_enable_device_flags(dev, IORESOURCE_IO);
1428 }
1429 EXPORT_SYMBOL(pci_enable_device_io);
1430
1431 /**
1432 * pci_enable_device_mem - Initialize a device for use with Memory space
1433 * @dev: PCI device to be initialized
1434 *
1435 * Initialize device before it's used by a driver. Ask low-level code
1436 * to enable Memory resources. Wake up the device if it was suspended.
1437 * Beware, this function can fail.
1438 */
1439 int pci_enable_device_mem(struct pci_dev *dev)
1440 {
1441 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1442 }
1443 EXPORT_SYMBOL(pci_enable_device_mem);
1444
1445 /**
1446 * pci_enable_device - Initialize device before it's used by a driver.
1447 * @dev: PCI device to be initialized
1448 *
1449 * Initialize device before it's used by a driver. Ask low-level code
1450 * to enable I/O and memory. Wake up the device if it was suspended.
1451 * Beware, this function can fail.
1452 *
1453 * Note we don't actually enable the device many times if we call
1454 * this function repeatedly (we just increment the count).
1455 */
1456 int pci_enable_device(struct pci_dev *dev)
1457 {
1458 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1459 }
1460 EXPORT_SYMBOL(pci_enable_device);
1461
1462 /*
1463 * Managed PCI resources. This manages device on/off, intx/msi/msix
1464 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1465 * there's no need to track it separately. pci_devres is initialized
1466 * when a device is enabled using managed PCI device enable interface.
1467 */
1468 struct pci_devres {
1469 unsigned int enabled:1;
1470 unsigned int pinned:1;
1471 unsigned int orig_intx:1;
1472 unsigned int restore_intx:1;
1473 unsigned int mwi:1;
1474 u32 region_mask;
1475 };
1476
1477 static void pcim_release(struct device *gendev, void *res)
1478 {
1479 struct pci_dev *dev = to_pci_dev(gendev);
1480 struct pci_devres *this = res;
1481 int i;
1482
1483 if (dev->msi_enabled)
1484 pci_disable_msi(dev);
1485 if (dev->msix_enabled)
1486 pci_disable_msix(dev);
1487
1488 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1489 if (this->region_mask & (1 << i))
1490 pci_release_region(dev, i);
1491
1492 if (this->mwi)
1493 pci_clear_mwi(dev);
1494
1495 if (this->restore_intx)
1496 pci_intx(dev, this->orig_intx);
1497
1498 if (this->enabled && !this->pinned)
1499 pci_disable_device(dev);
1500 }
1501
1502 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1503 {
1504 struct pci_devres *dr, *new_dr;
1505
1506 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1507 if (dr)
1508 return dr;
1509
1510 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1511 if (!new_dr)
1512 return NULL;
1513 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1514 }
1515
1516 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1517 {
1518 if (pci_is_managed(pdev))
1519 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1520 return NULL;
1521 }
1522
1523 /**
1524 * pcim_enable_device - Managed pci_enable_device()
1525 * @pdev: PCI device to be initialized
1526 *
1527 * Managed pci_enable_device().
1528 */
1529 int pcim_enable_device(struct pci_dev *pdev)
1530 {
1531 struct pci_devres *dr;
1532 int rc;
1533
1534 dr = get_pci_dr(pdev);
1535 if (unlikely(!dr))
1536 return -ENOMEM;
1537 if (dr->enabled)
1538 return 0;
1539
1540 rc = pci_enable_device(pdev);
1541 if (!rc) {
1542 pdev->is_managed = 1;
1543 dr->enabled = 1;
1544 }
1545 return rc;
1546 }
1547 EXPORT_SYMBOL(pcim_enable_device);
1548
1549 /**
1550 * pcim_pin_device - Pin managed PCI device
1551 * @pdev: PCI device to pin
1552 *
1553 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1554 * driver detach. @pdev must have been enabled with
1555 * pcim_enable_device().
1556 */
1557 void pcim_pin_device(struct pci_dev *pdev)
1558 {
1559 struct pci_devres *dr;
1560
1561 dr = find_pci_dr(pdev);
1562 WARN_ON(!dr || !dr->enabled);
1563 if (dr)
1564 dr->pinned = 1;
1565 }
1566 EXPORT_SYMBOL(pcim_pin_device);
1567
1568 /*
1569 * pcibios_add_device - provide arch specific hooks when adding device dev
1570 * @dev: the PCI device being added
1571 *
1572 * Permits the platform to provide architecture specific functionality when
1573 * devices are added. This is the default implementation. Architecture
1574 * implementations can override this.
1575 */
1576 int __weak pcibios_add_device(struct pci_dev *dev)
1577 {
1578 return 0;
1579 }
1580
1581 /**
1582 * pcibios_release_device - provide arch specific hooks when releasing device dev
1583 * @dev: the PCI device being released
1584 *
1585 * Permits the platform to provide architecture specific functionality when
1586 * devices are released. This is the default implementation. Architecture
1587 * implementations can override this.
1588 */
1589 void __weak pcibios_release_device(struct pci_dev *dev) {}
1590
1591 /**
1592 * pcibios_disable_device - disable arch specific PCI resources for device dev
1593 * @dev: the PCI device to disable
1594 *
1595 * Disables architecture specific PCI resources for the device. This
1596 * is the default implementation. Architecture implementations can
1597 * override this.
1598 */
1599 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1600
1601 /**
1602 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1603 * @irq: ISA IRQ to penalize
1604 * @active: IRQ active or not
1605 *
1606 * Permits the platform to provide architecture-specific functionality when
1607 * penalizing ISA IRQs. This is the default implementation. Architecture
1608 * implementations can override this.
1609 */
1610 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1611
1612 static void do_pci_disable_device(struct pci_dev *dev)
1613 {
1614 u16 pci_command;
1615
1616 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1617 if (pci_command & PCI_COMMAND_MASTER) {
1618 pci_command &= ~PCI_COMMAND_MASTER;
1619 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1620 }
1621
1622 pcibios_disable_device(dev);
1623 }
1624
1625 /**
1626 * pci_disable_enabled_device - Disable device without updating enable_cnt
1627 * @dev: PCI device to disable
1628 *
1629 * NOTE: This function is a backend of PCI power management routines and is
1630 * not supposed to be called drivers.
1631 */
1632 void pci_disable_enabled_device(struct pci_dev *dev)
1633 {
1634 if (pci_is_enabled(dev))
1635 do_pci_disable_device(dev);
1636 }
1637
1638 /**
1639 * pci_disable_device - Disable PCI device after use
1640 * @dev: PCI device to be disabled
1641 *
1642 * Signal to the system that the PCI device is not in use by the system
1643 * anymore. This only involves disabling PCI bus-mastering, if active.
1644 *
1645 * Note we don't actually disable the device until all callers of
1646 * pci_enable_device() have called pci_disable_device().
1647 */
1648 void pci_disable_device(struct pci_dev *dev)
1649 {
1650 struct pci_devres *dr;
1651
1652 dr = find_pci_dr(dev);
1653 if (dr)
1654 dr->enabled = 0;
1655
1656 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1657 "disabling already-disabled device");
1658
1659 if (atomic_dec_return(&dev->enable_cnt) != 0)
1660 return;
1661
1662 do_pci_disable_device(dev);
1663
1664 dev->is_busmaster = 0;
1665 }
1666 EXPORT_SYMBOL(pci_disable_device);
1667
1668 /**
1669 * pcibios_set_pcie_reset_state - set reset state for device dev
1670 * @dev: the PCIe device reset
1671 * @state: Reset state to enter into
1672 *
1673 *
1674 * Sets the PCIe reset state for the device. This is the default
1675 * implementation. Architecture implementations can override this.
1676 */
1677 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1678 enum pcie_reset_state state)
1679 {
1680 return -EINVAL;
1681 }
1682
1683 /**
1684 * pci_set_pcie_reset_state - set reset state for device dev
1685 * @dev: the PCIe device reset
1686 * @state: Reset state to enter into
1687 *
1688 *
1689 * Sets the PCI reset state for the device.
1690 */
1691 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1692 {
1693 return pcibios_set_pcie_reset_state(dev, state);
1694 }
1695 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1696
1697 /**
1698 * pci_check_pme_status - Check if given device has generated PME.
1699 * @dev: Device to check.
1700 *
1701 * Check the PME status of the device and if set, clear it and clear PME enable
1702 * (if set). Return 'true' if PME status and PME enable were both set or
1703 * 'false' otherwise.
1704 */
1705 bool pci_check_pme_status(struct pci_dev *dev)
1706 {
1707 int pmcsr_pos;
1708 u16 pmcsr;
1709 bool ret = false;
1710
1711 if (!dev->pm_cap)
1712 return false;
1713
1714 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1715 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1716 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1717 return false;
1718
1719 /* Clear PME status. */
1720 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1721 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1722 /* Disable PME to avoid interrupt flood. */
1723 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1724 ret = true;
1725 }
1726
1727 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1728
1729 return ret;
1730 }
1731
1732 /**
1733 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1734 * @dev: Device to handle.
1735 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1736 *
1737 * Check if @dev has generated PME and queue a resume request for it in that
1738 * case.
1739 */
1740 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1741 {
1742 if (pme_poll_reset && dev->pme_poll)
1743 dev->pme_poll = false;
1744
1745 if (pci_check_pme_status(dev)) {
1746 pci_wakeup_event(dev);
1747 pm_request_resume(&dev->dev);
1748 }
1749 return 0;
1750 }
1751
1752 /**
1753 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1754 * @bus: Top bus of the subtree to walk.
1755 */
1756 void pci_pme_wakeup_bus(struct pci_bus *bus)
1757 {
1758 if (bus)
1759 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1760 }
1761
1762
1763 /**
1764 * pci_pme_capable - check the capability of PCI device to generate PME#
1765 * @dev: PCI device to handle.
1766 * @state: PCI state from which device will issue PME#.
1767 */
1768 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1769 {
1770 if (!dev->pm_cap)
1771 return false;
1772
1773 return !!(dev->pme_support & (1 << state));
1774 }
1775 EXPORT_SYMBOL(pci_pme_capable);
1776
1777 static void pci_pme_list_scan(struct work_struct *work)
1778 {
1779 struct pci_pme_device *pme_dev, *n;
1780
1781 mutex_lock(&pci_pme_list_mutex);
1782 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1783 if (pme_dev->dev->pme_poll) {
1784 struct pci_dev *bridge;
1785
1786 bridge = pme_dev->dev->bus->self;
1787 /*
1788 * If bridge is in low power state, the
1789 * configuration space of subordinate devices
1790 * may be not accessible
1791 */
1792 if (bridge && bridge->current_state != PCI_D0)
1793 continue;
1794 pci_pme_wakeup(pme_dev->dev, NULL);
1795 } else {
1796 list_del(&pme_dev->list);
1797 kfree(pme_dev);
1798 }
1799 }
1800 if (!list_empty(&pci_pme_list))
1801 queue_delayed_work(system_freezable_wq, &pci_pme_work,
1802 msecs_to_jiffies(PME_TIMEOUT));
1803 mutex_unlock(&pci_pme_list_mutex);
1804 }
1805
1806 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1807 {
1808 u16 pmcsr;
1809
1810 if (!dev->pme_support)
1811 return;
1812
1813 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1814 /* Clear PME_Status by writing 1 to it and enable PME# */
1815 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1816 if (!enable)
1817 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1818
1819 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1820 }
1821
1822 /**
1823 * pci_pme_restore - Restore PME configuration after config space restore.
1824 * @dev: PCI device to update.
1825 */
1826 void pci_pme_restore(struct pci_dev *dev)
1827 {
1828 u16 pmcsr;
1829
1830 if (!dev->pme_support)
1831 return;
1832
1833 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1834 if (dev->wakeup_prepared) {
1835 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
1836 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
1837 } else {
1838 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1839 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1840 }
1841 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1842 }
1843
1844 /**
1845 * pci_pme_active - enable or disable PCI device's PME# function
1846 * @dev: PCI device to handle.
1847 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1848 *
1849 * The caller must verify that the device is capable of generating PME# before
1850 * calling this function with @enable equal to 'true'.
1851 */
1852 void pci_pme_active(struct pci_dev *dev, bool enable)
1853 {
1854 __pci_pme_active(dev, enable);
1855
1856 /*
1857 * PCI (as opposed to PCIe) PME requires that the device have
1858 * its PME# line hooked up correctly. Not all hardware vendors
1859 * do this, so the PME never gets delivered and the device
1860 * remains asleep. The easiest way around this is to
1861 * periodically walk the list of suspended devices and check
1862 * whether any have their PME flag set. The assumption is that
1863 * we'll wake up often enough anyway that this won't be a huge
1864 * hit, and the power savings from the devices will still be a
1865 * win.
1866 *
1867 * Although PCIe uses in-band PME message instead of PME# line
1868 * to report PME, PME does not work for some PCIe devices in
1869 * reality. For example, there are devices that set their PME
1870 * status bits, but don't really bother to send a PME message;
1871 * there are PCI Express Root Ports that don't bother to
1872 * trigger interrupts when they receive PME messages from the
1873 * devices below. So PME poll is used for PCIe devices too.
1874 */
1875
1876 if (dev->pme_poll) {
1877 struct pci_pme_device *pme_dev;
1878 if (enable) {
1879 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1880 GFP_KERNEL);
1881 if (!pme_dev) {
1882 dev_warn(&dev->dev, "can't enable PME#\n");
1883 return;
1884 }
1885 pme_dev->dev = dev;
1886 mutex_lock(&pci_pme_list_mutex);
1887 list_add(&pme_dev->list, &pci_pme_list);
1888 if (list_is_singular(&pci_pme_list))
1889 queue_delayed_work(system_freezable_wq,
1890 &pci_pme_work,
1891 msecs_to_jiffies(PME_TIMEOUT));
1892 mutex_unlock(&pci_pme_list_mutex);
1893 } else {
1894 mutex_lock(&pci_pme_list_mutex);
1895 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1896 if (pme_dev->dev == dev) {
1897 list_del(&pme_dev->list);
1898 kfree(pme_dev);
1899 break;
1900 }
1901 }
1902 mutex_unlock(&pci_pme_list_mutex);
1903 }
1904 }
1905
1906 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1907 }
1908 EXPORT_SYMBOL(pci_pme_active);
1909
1910 /**
1911 * __pci_enable_wake - enable PCI device as wakeup event source
1912 * @dev: PCI device affected
1913 * @state: PCI state from which device will issue wakeup events
1914 * @enable: True to enable event generation; false to disable
1915 *
1916 * This enables the device as a wakeup event source, or disables it.
1917 * When such events involves platform-specific hooks, those hooks are
1918 * called automatically by this routine.
1919 *
1920 * Devices with legacy power management (no standard PCI PM capabilities)
1921 * always require such platform hooks.
1922 *
1923 * RETURN VALUE:
1924 * 0 is returned on success
1925 * -EINVAL is returned if device is not supposed to wake up the system
1926 * Error code depending on the platform is returned if both the platform and
1927 * the native mechanism fail to enable the generation of wake-up events
1928 */
1929 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1930 {
1931 int ret = 0;
1932
1933 /*
1934 * Bridges can only signal wakeup on behalf of subordinate devices,
1935 * but that is set up elsewhere, so skip them.
1936 */
1937 if (pci_has_subordinate(dev))
1938 return 0;
1939
1940 /* Don't do the same thing twice in a row for one device. */
1941 if (!!enable == !!dev->wakeup_prepared)
1942 return 0;
1943
1944 /*
1945 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1946 * Anderson we should be doing PME# wake enable followed by ACPI wake
1947 * enable. To disable wake-up we call the platform first, for symmetry.
1948 */
1949
1950 if (enable) {
1951 int error;
1952
1953 if (pci_pme_capable(dev, state))
1954 pci_pme_active(dev, true);
1955 else
1956 ret = 1;
1957 error = platform_pci_set_wakeup(dev, true);
1958 if (ret)
1959 ret = error;
1960 if (!ret)
1961 dev->wakeup_prepared = true;
1962 } else {
1963 platform_pci_set_wakeup(dev, false);
1964 pci_pme_active(dev, false);
1965 dev->wakeup_prepared = false;
1966 }
1967
1968 return ret;
1969 }
1970
1971 /**
1972 * pci_enable_wake - change wakeup settings for a PCI device
1973 * @pci_dev: Target device
1974 * @state: PCI state from which device will issue wakeup events
1975 * @enable: Whether or not to enable event generation
1976 *
1977 * If @enable is set, check device_may_wakeup() for the device before calling
1978 * __pci_enable_wake() for it.
1979 */
1980 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
1981 {
1982 if (enable && !device_may_wakeup(&pci_dev->dev))
1983 return -EINVAL;
1984
1985 return __pci_enable_wake(pci_dev, state, enable);
1986 }
1987 EXPORT_SYMBOL(pci_enable_wake);
1988
1989 /**
1990 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1991 * @dev: PCI device to prepare
1992 * @enable: True to enable wake-up event generation; false to disable
1993 *
1994 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1995 * and this function allows them to set that up cleanly - pci_enable_wake()
1996 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1997 * ordering constraints.
1998 *
1999 * This function only returns error code if the device is not allowed to wake
2000 * up the system from sleep or it is not capable of generating PME# from both
2001 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2002 */
2003 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2004 {
2005 return pci_pme_capable(dev, PCI_D3cold) ?
2006 pci_enable_wake(dev, PCI_D3cold, enable) :
2007 pci_enable_wake(dev, PCI_D3hot, enable);
2008 }
2009 EXPORT_SYMBOL(pci_wake_from_d3);
2010
2011 /**
2012 * pci_target_state - find an appropriate low power state for a given PCI dev
2013 * @dev: PCI device
2014 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2015 *
2016 * Use underlying platform code to find a supported low power state for @dev.
2017 * If the platform can't manage @dev, return the deepest state from which it
2018 * can generate wake events, based on any available PME info.
2019 */
2020 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2021 {
2022 pci_power_t target_state = PCI_D3hot;
2023
2024 if (platform_pci_power_manageable(dev)) {
2025 /*
2026 * Call the platform to choose the target state of the device
2027 * and enable wake-up from this state if supported.
2028 */
2029 pci_power_t state = platform_pci_choose_state(dev);
2030
2031 switch (state) {
2032 case PCI_POWER_ERROR:
2033 case PCI_UNKNOWN:
2034 break;
2035 case PCI_D1:
2036 case PCI_D2:
2037 if (pci_no_d1d2(dev))
2038 break;
2039 default:
2040 target_state = state;
2041 }
2042
2043 return target_state;
2044 }
2045
2046 if (!dev->pm_cap)
2047 target_state = PCI_D0;
2048
2049 /*
2050 * If the device is in D3cold even though it's not power-manageable by
2051 * the platform, it may have been powered down by non-standard means.
2052 * Best to let it slumber.
2053 */
2054 if (dev->current_state == PCI_D3cold)
2055 target_state = PCI_D3cold;
2056
2057 if (wakeup) {
2058 /*
2059 * Find the deepest state from which the device can generate
2060 * wake-up events, make it the target state and enable device
2061 * to generate PME#.
2062 */
2063 if (dev->pme_support) {
2064 while (target_state
2065 && !(dev->pme_support & (1 << target_state)))
2066 target_state--;
2067 }
2068 }
2069
2070 return target_state;
2071 }
2072
2073 /**
2074 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2075 * @dev: Device to handle.
2076 *
2077 * Choose the power state appropriate for the device depending on whether
2078 * it can wake up the system and/or is power manageable by the platform
2079 * (PCI_D3hot is the default) and put the device into that state.
2080 */
2081 int pci_prepare_to_sleep(struct pci_dev *dev)
2082 {
2083 bool wakeup = device_may_wakeup(&dev->dev);
2084 pci_power_t target_state = pci_target_state(dev, wakeup);
2085 int error;
2086
2087 if (target_state == PCI_POWER_ERROR)
2088 return -EIO;
2089
2090 pci_enable_wake(dev, target_state, wakeup);
2091
2092 error = pci_set_power_state(dev, target_state);
2093
2094 if (error)
2095 pci_enable_wake(dev, target_state, false);
2096
2097 return error;
2098 }
2099 EXPORT_SYMBOL(pci_prepare_to_sleep);
2100
2101 /**
2102 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2103 * @dev: Device to handle.
2104 *
2105 * Disable device's system wake-up capability and put it into D0.
2106 */
2107 int pci_back_from_sleep(struct pci_dev *dev)
2108 {
2109 pci_enable_wake(dev, PCI_D0, false);
2110 return pci_set_power_state(dev, PCI_D0);
2111 }
2112 EXPORT_SYMBOL(pci_back_from_sleep);
2113
2114 /**
2115 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2116 * @dev: PCI device being suspended.
2117 *
2118 * Prepare @dev to generate wake-up events at run time and put it into a low
2119 * power state.
2120 */
2121 int pci_finish_runtime_suspend(struct pci_dev *dev)
2122 {
2123 pci_power_t target_state;
2124 int error;
2125
2126 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2127 if (target_state == PCI_POWER_ERROR)
2128 return -EIO;
2129
2130 dev->runtime_d3cold = target_state == PCI_D3cold;
2131
2132 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2133
2134 error = pci_set_power_state(dev, target_state);
2135
2136 if (error) {
2137 pci_enable_wake(dev, target_state, false);
2138 dev->runtime_d3cold = false;
2139 }
2140
2141 return error;
2142 }
2143
2144 /**
2145 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2146 * @dev: Device to check.
2147 *
2148 * Return true if the device itself is capable of generating wake-up events
2149 * (through the platform or using the native PCIe PME) or if the device supports
2150 * PME and one of its upstream bridges can generate wake-up events.
2151 */
2152 bool pci_dev_run_wake(struct pci_dev *dev)
2153 {
2154 struct pci_bus *bus = dev->bus;
2155
2156 if (!dev->pme_support)
2157 return false;
2158
2159 /* PME-capable in principle, but not from the target power state */
2160 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2161 return false;
2162
2163 if (device_can_wakeup(&dev->dev))
2164 return true;
2165
2166 while (bus->parent) {
2167 struct pci_dev *bridge = bus->self;
2168
2169 if (device_can_wakeup(&bridge->dev))
2170 return true;
2171
2172 bus = bus->parent;
2173 }
2174
2175 /* We have reached the root bus. */
2176 if (bus->bridge)
2177 return device_can_wakeup(bus->bridge);
2178
2179 return false;
2180 }
2181 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2182
2183 /**
2184 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2185 * @pci_dev: Device to check.
2186 *
2187 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2188 * reconfigured due to wakeup settings difference between system and runtime
2189 * suspend and the current power state of it is suitable for the upcoming
2190 * (system) transition.
2191 *
2192 * If the device is not configured for system wakeup, disable PME for it before
2193 * returning 'true' to prevent it from waking up the system unnecessarily.
2194 */
2195 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2196 {
2197 struct device *dev = &pci_dev->dev;
2198 bool wakeup = device_may_wakeup(dev);
2199
2200 if (!pm_runtime_suspended(dev)
2201 || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2202 || platform_pci_need_resume(pci_dev))
2203 return false;
2204
2205 /*
2206 * At this point the device is good to go unless it's been configured
2207 * to generate PME at the runtime suspend time, but it is not supposed
2208 * to wake up the system. In that case, simply disable PME for it
2209 * (it will have to be re-enabled on exit from system resume).
2210 *
2211 * If the device's power state is D3cold and the platform check above
2212 * hasn't triggered, the device's configuration is suitable and we don't
2213 * need to manipulate it at all.
2214 */
2215 spin_lock_irq(&dev->power.lock);
2216
2217 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2218 !wakeup)
2219 __pci_pme_active(pci_dev, false);
2220
2221 spin_unlock_irq(&dev->power.lock);
2222 return true;
2223 }
2224
2225 /**
2226 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2227 * @pci_dev: Device to handle.
2228 *
2229 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2230 * it might have been disabled during the prepare phase of system suspend if
2231 * the device was not configured for system wakeup.
2232 */
2233 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2234 {
2235 struct device *dev = &pci_dev->dev;
2236
2237 if (!pci_dev_run_wake(pci_dev))
2238 return;
2239
2240 spin_lock_irq(&dev->power.lock);
2241
2242 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2243 __pci_pme_active(pci_dev, true);
2244
2245 spin_unlock_irq(&dev->power.lock);
2246 }
2247
2248 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2249 {
2250 struct device *dev = &pdev->dev;
2251 struct device *parent = dev->parent;
2252
2253 if (parent)
2254 pm_runtime_get_sync(parent);
2255 pm_runtime_get_noresume(dev);
2256 /*
2257 * pdev->current_state is set to PCI_D3cold during suspending,
2258 * so wait until suspending completes
2259 */
2260 pm_runtime_barrier(dev);
2261 /*
2262 * Only need to resume devices in D3cold, because config
2263 * registers are still accessible for devices suspended but
2264 * not in D3cold.
2265 */
2266 if (pdev->current_state == PCI_D3cold)
2267 pm_runtime_resume(dev);
2268 }
2269
2270 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2271 {
2272 struct device *dev = &pdev->dev;
2273 struct device *parent = dev->parent;
2274
2275 pm_runtime_put(dev);
2276 if (parent)
2277 pm_runtime_put_sync(parent);
2278 }
2279
2280 /**
2281 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2282 * @bridge: Bridge to check
2283 *
2284 * This function checks if it is possible to move the bridge to D3.
2285 * Currently we only allow D3 for recent enough PCIe ports.
2286 */
2287 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2288 {
2289 unsigned int year;
2290
2291 if (!pci_is_pcie(bridge))
2292 return false;
2293
2294 switch (pci_pcie_type(bridge)) {
2295 case PCI_EXP_TYPE_ROOT_PORT:
2296 case PCI_EXP_TYPE_UPSTREAM:
2297 case PCI_EXP_TYPE_DOWNSTREAM:
2298 if (pci_bridge_d3_disable)
2299 return false;
2300
2301 /*
2302 * Hotplug interrupts cannot be delivered if the link is down,
2303 * so parents of a hotplug port must stay awake. In addition,
2304 * hotplug ports handled by firmware in System Management Mode
2305 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2306 * For simplicity, disallow in general for now.
2307 */
2308 if (bridge->is_hotplug_bridge)
2309 return false;
2310
2311 if (pci_bridge_d3_force)
2312 return true;
2313
2314 /*
2315 * It should be safe to put PCIe ports from 2015 or newer
2316 * to D3.
2317 */
2318 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2319 year >= 2015) {
2320 return true;
2321 }
2322 break;
2323 }
2324
2325 return false;
2326 }
2327
2328 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2329 {
2330 bool *d3cold_ok = data;
2331
2332 if (/* The device needs to be allowed to go D3cold ... */
2333 dev->no_d3cold || !dev->d3cold_allowed ||
2334
2335 /* ... and if it is wakeup capable to do so from D3cold. */
2336 (device_may_wakeup(&dev->dev) &&
2337 !pci_pme_capable(dev, PCI_D3cold)) ||
2338
2339 /* If it is a bridge it must be allowed to go to D3. */
2340 !pci_power_manageable(dev))
2341
2342 *d3cold_ok = false;
2343
2344 return !*d3cold_ok;
2345 }
2346
2347 /*
2348 * pci_bridge_d3_update - Update bridge D3 capabilities
2349 * @dev: PCI device which is changed
2350 *
2351 * Update upstream bridge PM capabilities accordingly depending on if the
2352 * device PM configuration was changed or the device is being removed. The
2353 * change is also propagated upstream.
2354 */
2355 void pci_bridge_d3_update(struct pci_dev *dev)
2356 {
2357 bool remove = !device_is_registered(&dev->dev);
2358 struct pci_dev *bridge;
2359 bool d3cold_ok = true;
2360
2361 bridge = pci_upstream_bridge(dev);
2362 if (!bridge || !pci_bridge_d3_possible(bridge))
2363 return;
2364
2365 /*
2366 * If D3 is currently allowed for the bridge, removing one of its
2367 * children won't change that.
2368 */
2369 if (remove && bridge->bridge_d3)
2370 return;
2371
2372 /*
2373 * If D3 is currently allowed for the bridge and a child is added or
2374 * changed, disallowance of D3 can only be caused by that child, so
2375 * we only need to check that single device, not any of its siblings.
2376 *
2377 * If D3 is currently not allowed for the bridge, checking the device
2378 * first may allow us to skip checking its siblings.
2379 */
2380 if (!remove)
2381 pci_dev_check_d3cold(dev, &d3cold_ok);
2382
2383 /*
2384 * If D3 is currently not allowed for the bridge, this may be caused
2385 * either by the device being changed/removed or any of its siblings,
2386 * so we need to go through all children to find out if one of them
2387 * continues to block D3.
2388 */
2389 if (d3cold_ok && !bridge->bridge_d3)
2390 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2391 &d3cold_ok);
2392
2393 if (bridge->bridge_d3 != d3cold_ok) {
2394 bridge->bridge_d3 = d3cold_ok;
2395 /* Propagate change to upstream bridges */
2396 pci_bridge_d3_update(bridge);
2397 }
2398 }
2399
2400 /**
2401 * pci_d3cold_enable - Enable D3cold for device
2402 * @dev: PCI device to handle
2403 *
2404 * This function can be used in drivers to enable D3cold from the device
2405 * they handle. It also updates upstream PCI bridge PM capabilities
2406 * accordingly.
2407 */
2408 void pci_d3cold_enable(struct pci_dev *dev)
2409 {
2410 if (dev->no_d3cold) {
2411 dev->no_d3cold = false;
2412 pci_bridge_d3_update(dev);
2413 }
2414 }
2415 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2416
2417 /**
2418 * pci_d3cold_disable - Disable D3cold for device
2419 * @dev: PCI device to handle
2420 *
2421 * This function can be used in drivers to disable D3cold from the device
2422 * they handle. It also updates upstream PCI bridge PM capabilities
2423 * accordingly.
2424 */
2425 void pci_d3cold_disable(struct pci_dev *dev)
2426 {
2427 if (!dev->no_d3cold) {
2428 dev->no_d3cold = true;
2429 pci_bridge_d3_update(dev);
2430 }
2431 }
2432 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2433
2434 /**
2435 * pci_pm_init - Initialize PM functions of given PCI device
2436 * @dev: PCI device to handle.
2437 */
2438 void pci_pm_init(struct pci_dev *dev)
2439 {
2440 int pm;
2441 u16 pmc;
2442
2443 pm_runtime_forbid(&dev->dev);
2444 pm_runtime_set_active(&dev->dev);
2445 pm_runtime_enable(&dev->dev);
2446 device_enable_async_suspend(&dev->dev);
2447 dev->wakeup_prepared = false;
2448
2449 dev->pm_cap = 0;
2450 dev->pme_support = 0;
2451
2452 /* find PCI PM capability in list */
2453 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2454 if (!pm)
2455 return;
2456 /* Check device's ability to generate PME# */
2457 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2458
2459 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2460 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2461 pmc & PCI_PM_CAP_VER_MASK);
2462 return;
2463 }
2464
2465 dev->pm_cap = pm;
2466 dev->d3_delay = PCI_PM_D3_WAIT;
2467 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2468 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2469 dev->d3cold_allowed = true;
2470
2471 dev->d1_support = false;
2472 dev->d2_support = false;
2473 if (!pci_no_d1d2(dev)) {
2474 if (pmc & PCI_PM_CAP_D1)
2475 dev->d1_support = true;
2476 if (pmc & PCI_PM_CAP_D2)
2477 dev->d2_support = true;
2478
2479 if (dev->d1_support || dev->d2_support)
2480 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2481 dev->d1_support ? " D1" : "",
2482 dev->d2_support ? " D2" : "");
2483 }
2484
2485 pmc &= PCI_PM_CAP_PME_MASK;
2486 if (pmc) {
2487 dev_printk(KERN_DEBUG, &dev->dev,
2488 "PME# supported from%s%s%s%s%s\n",
2489 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2490 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2491 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2492 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2493 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2494 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2495 dev->pme_poll = true;
2496 /*
2497 * Make device's PM flags reflect the wake-up capability, but
2498 * let the user space enable it to wake up the system as needed.
2499 */
2500 device_set_wakeup_capable(&dev->dev, true);
2501 /* Disable the PME# generation functionality */
2502 pci_pme_active(dev, false);
2503 }
2504 }
2505
2506 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2507 {
2508 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2509
2510 switch (prop) {
2511 case PCI_EA_P_MEM:
2512 case PCI_EA_P_VF_MEM:
2513 flags |= IORESOURCE_MEM;
2514 break;
2515 case PCI_EA_P_MEM_PREFETCH:
2516 case PCI_EA_P_VF_MEM_PREFETCH:
2517 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2518 break;
2519 case PCI_EA_P_IO:
2520 flags |= IORESOURCE_IO;
2521 break;
2522 default:
2523 return 0;
2524 }
2525
2526 return flags;
2527 }
2528
2529 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2530 u8 prop)
2531 {
2532 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2533 return &dev->resource[bei];
2534 #ifdef CONFIG_PCI_IOV
2535 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2536 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2537 return &dev->resource[PCI_IOV_RESOURCES +
2538 bei - PCI_EA_BEI_VF_BAR0];
2539 #endif
2540 else if (bei == PCI_EA_BEI_ROM)
2541 return &dev->resource[PCI_ROM_RESOURCE];
2542 else
2543 return NULL;
2544 }
2545
2546 /* Read an Enhanced Allocation (EA) entry */
2547 static int pci_ea_read(struct pci_dev *dev, int offset)
2548 {
2549 struct resource *res;
2550 int ent_size, ent_offset = offset;
2551 resource_size_t start, end;
2552 unsigned long flags;
2553 u32 dw0, bei, base, max_offset;
2554 u8 prop;
2555 bool support_64 = (sizeof(resource_size_t) >= 8);
2556
2557 pci_read_config_dword(dev, ent_offset, &dw0);
2558 ent_offset += 4;
2559
2560 /* Entry size field indicates DWORDs after 1st */
2561 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2562
2563 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2564 goto out;
2565
2566 bei = (dw0 & PCI_EA_BEI) >> 4;
2567 prop = (dw0 & PCI_EA_PP) >> 8;
2568
2569 /*
2570 * If the Property is in the reserved range, try the Secondary
2571 * Property instead.
2572 */
2573 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2574 prop = (dw0 & PCI_EA_SP) >> 16;
2575 if (prop > PCI_EA_P_BRIDGE_IO)
2576 goto out;
2577
2578 res = pci_ea_get_resource(dev, bei, prop);
2579 if (!res) {
2580 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2581 goto out;
2582 }
2583
2584 flags = pci_ea_flags(dev, prop);
2585 if (!flags) {
2586 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2587 goto out;
2588 }
2589
2590 /* Read Base */
2591 pci_read_config_dword(dev, ent_offset, &base);
2592 start = (base & PCI_EA_FIELD_MASK);
2593 ent_offset += 4;
2594
2595 /* Read MaxOffset */
2596 pci_read_config_dword(dev, ent_offset, &max_offset);
2597 ent_offset += 4;
2598
2599 /* Read Base MSBs (if 64-bit entry) */
2600 if (base & PCI_EA_IS_64) {
2601 u32 base_upper;
2602
2603 pci_read_config_dword(dev, ent_offset, &base_upper);
2604 ent_offset += 4;
2605
2606 flags |= IORESOURCE_MEM_64;
2607
2608 /* entry starts above 32-bit boundary, can't use */
2609 if (!support_64 && base_upper)
2610 goto out;
2611
2612 if (support_64)
2613 start |= ((u64)base_upper << 32);
2614 }
2615
2616 end = start + (max_offset | 0x03);
2617
2618 /* Read MaxOffset MSBs (if 64-bit entry) */
2619 if (max_offset & PCI_EA_IS_64) {
2620 u32 max_offset_upper;
2621
2622 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2623 ent_offset += 4;
2624
2625 flags |= IORESOURCE_MEM_64;
2626
2627 /* entry too big, can't use */
2628 if (!support_64 && max_offset_upper)
2629 goto out;
2630
2631 if (support_64)
2632 end += ((u64)max_offset_upper << 32);
2633 }
2634
2635 if (end < start) {
2636 dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2637 goto out;
2638 }
2639
2640 if (ent_size != ent_offset - offset) {
2641 dev_err(&dev->dev,
2642 "EA Entry Size (%d) does not match length read (%d)\n",
2643 ent_size, ent_offset - offset);
2644 goto out;
2645 }
2646
2647 res->name = pci_name(dev);
2648 res->start = start;
2649 res->end = end;
2650 res->flags = flags;
2651
2652 if (bei <= PCI_EA_BEI_BAR5)
2653 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2654 bei, res, prop);
2655 else if (bei == PCI_EA_BEI_ROM)
2656 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2657 res, prop);
2658 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2659 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2660 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2661 else
2662 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2663 bei, res, prop);
2664
2665 out:
2666 return offset + ent_size;
2667 }
2668
2669 /* Enhanced Allocation Initialization */
2670 void pci_ea_init(struct pci_dev *dev)
2671 {
2672 int ea;
2673 u8 num_ent;
2674 int offset;
2675 int i;
2676
2677 /* find PCI EA capability in list */
2678 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2679 if (!ea)
2680 return;
2681
2682 /* determine the number of entries */
2683 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2684 &num_ent);
2685 num_ent &= PCI_EA_NUM_ENT_MASK;
2686
2687 offset = ea + PCI_EA_FIRST_ENT;
2688
2689 /* Skip DWORD 2 for type 1 functions */
2690 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2691 offset += 4;
2692
2693 /* parse each EA entry */
2694 for (i = 0; i < num_ent; ++i)
2695 offset = pci_ea_read(dev, offset);
2696 }
2697
2698 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2699 struct pci_cap_saved_state *new_cap)
2700 {
2701 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2702 }
2703
2704 /**
2705 * _pci_add_cap_save_buffer - allocate buffer for saving given
2706 * capability registers
2707 * @dev: the PCI device
2708 * @cap: the capability to allocate the buffer for
2709 * @extended: Standard or Extended capability ID
2710 * @size: requested size of the buffer
2711 */
2712 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2713 bool extended, unsigned int size)
2714 {
2715 int pos;
2716 struct pci_cap_saved_state *save_state;
2717
2718 if (extended)
2719 pos = pci_find_ext_capability(dev, cap);
2720 else
2721 pos = pci_find_capability(dev, cap);
2722
2723 if (!pos)
2724 return 0;
2725
2726 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2727 if (!save_state)
2728 return -ENOMEM;
2729
2730 save_state->cap.cap_nr = cap;
2731 save_state->cap.cap_extended = extended;
2732 save_state->cap.size = size;
2733 pci_add_saved_cap(dev, save_state);
2734
2735 return 0;
2736 }
2737
2738 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2739 {
2740 return _pci_add_cap_save_buffer(dev, cap, false, size);
2741 }
2742
2743 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2744 {
2745 return _pci_add_cap_save_buffer(dev, cap, true, size);
2746 }
2747
2748 /**
2749 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2750 * @dev: the PCI device
2751 */
2752 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2753 {
2754 int error;
2755
2756 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2757 PCI_EXP_SAVE_REGS * sizeof(u16));
2758 if (error)
2759 dev_err(&dev->dev,
2760 "unable to preallocate PCI Express save buffer\n");
2761
2762 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2763 if (error)
2764 dev_err(&dev->dev,
2765 "unable to preallocate PCI-X save buffer\n");
2766
2767 pci_allocate_vc_save_buffers(dev);
2768 }
2769
2770 void pci_free_cap_save_buffers(struct pci_dev *dev)
2771 {
2772 struct pci_cap_saved_state *tmp;
2773 struct hlist_node *n;
2774
2775 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2776 kfree(tmp);
2777 }
2778
2779 /**
2780 * pci_configure_ari - enable or disable ARI forwarding
2781 * @dev: the PCI device
2782 *
2783 * If @dev and its upstream bridge both support ARI, enable ARI in the
2784 * bridge. Otherwise, disable ARI in the bridge.
2785 */
2786 void pci_configure_ari(struct pci_dev *dev)
2787 {
2788 u32 cap;
2789 struct pci_dev *bridge;
2790
2791 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2792 return;
2793
2794 bridge = dev->bus->self;
2795 if (!bridge)
2796 return;
2797
2798 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2799 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2800 return;
2801
2802 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2803 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2804 PCI_EXP_DEVCTL2_ARI);
2805 bridge->ari_enabled = 1;
2806 } else {
2807 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2808 PCI_EXP_DEVCTL2_ARI);
2809 bridge->ari_enabled = 0;
2810 }
2811 }
2812
2813 static int pci_acs_enable;
2814
2815 /**
2816 * pci_request_acs - ask for ACS to be enabled if supported
2817 */
2818 void pci_request_acs(void)
2819 {
2820 pci_acs_enable = 1;
2821 }
2822
2823 /**
2824 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2825 * @dev: the PCI device
2826 */
2827 static void pci_std_enable_acs(struct pci_dev *dev)
2828 {
2829 int pos;
2830 u16 cap;
2831 u16 ctrl;
2832
2833 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2834 if (!pos)
2835 return;
2836
2837 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2838 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2839
2840 /* Source Validation */
2841 ctrl |= (cap & PCI_ACS_SV);
2842
2843 /* P2P Request Redirect */
2844 ctrl |= (cap & PCI_ACS_RR);
2845
2846 /* P2P Completion Redirect */
2847 ctrl |= (cap & PCI_ACS_CR);
2848
2849 /* Upstream Forwarding */
2850 ctrl |= (cap & PCI_ACS_UF);
2851
2852 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2853 }
2854
2855 /**
2856 * pci_enable_acs - enable ACS if hardware support it
2857 * @dev: the PCI device
2858 */
2859 void pci_enable_acs(struct pci_dev *dev)
2860 {
2861 if (!pci_acs_enable)
2862 return;
2863
2864 if (!pci_dev_specific_enable_acs(dev))
2865 return;
2866
2867 pci_std_enable_acs(dev);
2868 }
2869
2870 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2871 {
2872 int pos;
2873 u16 cap, ctrl;
2874
2875 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2876 if (!pos)
2877 return false;
2878
2879 /*
2880 * Except for egress control, capabilities are either required
2881 * or only required if controllable. Features missing from the
2882 * capability field can therefore be assumed as hard-wired enabled.
2883 */
2884 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2885 acs_flags &= (cap | PCI_ACS_EC);
2886
2887 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2888 return (ctrl & acs_flags) == acs_flags;
2889 }
2890
2891 /**
2892 * pci_acs_enabled - test ACS against required flags for a given device
2893 * @pdev: device to test
2894 * @acs_flags: required PCI ACS flags
2895 *
2896 * Return true if the device supports the provided flags. Automatically
2897 * filters out flags that are not implemented on multifunction devices.
2898 *
2899 * Note that this interface checks the effective ACS capabilities of the
2900 * device rather than the actual capabilities. For instance, most single
2901 * function endpoints are not required to support ACS because they have no
2902 * opportunity for peer-to-peer access. We therefore return 'true'
2903 * regardless of whether the device exposes an ACS capability. This makes
2904 * it much easier for callers of this function to ignore the actual type
2905 * or topology of the device when testing ACS support.
2906 */
2907 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2908 {
2909 int ret;
2910
2911 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2912 if (ret >= 0)
2913 return ret > 0;
2914
2915 /*
2916 * Conventional PCI and PCI-X devices never support ACS, either
2917 * effectively or actually. The shared bus topology implies that
2918 * any device on the bus can receive or snoop DMA.
2919 */
2920 if (!pci_is_pcie(pdev))
2921 return false;
2922
2923 switch (pci_pcie_type(pdev)) {
2924 /*
2925 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2926 * but since their primary interface is PCI/X, we conservatively
2927 * handle them as we would a non-PCIe device.
2928 */
2929 case PCI_EXP_TYPE_PCIE_BRIDGE:
2930 /*
2931 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2932 * applicable... must never implement an ACS Extended Capability...".
2933 * This seems arbitrary, but we take a conservative interpretation
2934 * of this statement.
2935 */
2936 case PCI_EXP_TYPE_PCI_BRIDGE:
2937 case PCI_EXP_TYPE_RC_EC:
2938 return false;
2939 /*
2940 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2941 * implement ACS in order to indicate their peer-to-peer capabilities,
2942 * regardless of whether they are single- or multi-function devices.
2943 */
2944 case PCI_EXP_TYPE_DOWNSTREAM:
2945 case PCI_EXP_TYPE_ROOT_PORT:
2946 return pci_acs_flags_enabled(pdev, acs_flags);
2947 /*
2948 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2949 * implemented by the remaining PCIe types to indicate peer-to-peer
2950 * capabilities, but only when they are part of a multifunction
2951 * device. The footnote for section 6.12 indicates the specific
2952 * PCIe types included here.
2953 */
2954 case PCI_EXP_TYPE_ENDPOINT:
2955 case PCI_EXP_TYPE_UPSTREAM:
2956 case PCI_EXP_TYPE_LEG_END:
2957 case PCI_EXP_TYPE_RC_END:
2958 if (!pdev->multifunction)
2959 break;
2960
2961 return pci_acs_flags_enabled(pdev, acs_flags);
2962 }
2963
2964 /*
2965 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2966 * to single function devices with the exception of downstream ports.
2967 */
2968 return true;
2969 }
2970
2971 /**
2972 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2973 * @start: starting downstream device
2974 * @end: ending upstream device or NULL to search to the root bus
2975 * @acs_flags: required flags
2976 *
2977 * Walk up a device tree from start to end testing PCI ACS support. If
2978 * any step along the way does not support the required flags, return false.
2979 */
2980 bool pci_acs_path_enabled(struct pci_dev *start,
2981 struct pci_dev *end, u16 acs_flags)
2982 {
2983 struct pci_dev *pdev, *parent = start;
2984
2985 do {
2986 pdev = parent;
2987
2988 if (!pci_acs_enabled(pdev, acs_flags))
2989 return false;
2990
2991 if (pci_is_root_bus(pdev->bus))
2992 return (end == NULL);
2993
2994 parent = pdev->bus->self;
2995 } while (pdev != end);
2996
2997 return true;
2998 }
2999
3000 /**
3001 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3002 * @pdev: PCI device
3003 * @bar: BAR to find
3004 *
3005 * Helper to find the position of the ctrl register for a BAR.
3006 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3007 * Returns -ENOENT if no ctrl register for the BAR could be found.
3008 */
3009 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3010 {
3011 unsigned int pos, nbars, i;
3012 u32 ctrl;
3013
3014 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3015 if (!pos)
3016 return -ENOTSUPP;
3017
3018 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3019 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3020 PCI_REBAR_CTRL_NBAR_SHIFT;
3021
3022 for (i = 0; i < nbars; i++, pos += 8) {
3023 int bar_idx;
3024
3025 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3026 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3027 if (bar_idx == bar)
3028 return pos;
3029 }
3030
3031 return -ENOENT;
3032 }
3033
3034 /**
3035 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3036 * @pdev: PCI device
3037 * @bar: BAR to query
3038 *
3039 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3040 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3041 */
3042 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3043 {
3044 int pos;
3045 u32 cap;
3046
3047 pos = pci_rebar_find_pos(pdev, bar);
3048 if (pos < 0)
3049 return 0;
3050
3051 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3052 return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3053 }
3054
3055 /**
3056 * pci_rebar_get_current_size - get the current size of a BAR
3057 * @pdev: PCI device
3058 * @bar: BAR to set size to
3059 *
3060 * Read the size of a BAR from the resizable BAR config.
3061 * Returns size if found or negative error code.
3062 */
3063 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3064 {
3065 int pos;
3066 u32 ctrl;
3067
3068 pos = pci_rebar_find_pos(pdev, bar);
3069 if (pos < 0)
3070 return pos;
3071
3072 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3073 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> 8;
3074 }
3075
3076 /**
3077 * pci_rebar_set_size - set a new size for a BAR
3078 * @pdev: PCI device
3079 * @bar: BAR to set size to
3080 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3081 *
3082 * Set the new size of a BAR as defined in the spec.
3083 * Returns zero if resizing was successful, error code otherwise.
3084 */
3085 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3086 {
3087 int pos;
3088 u32 ctrl;
3089
3090 pos = pci_rebar_find_pos(pdev, bar);
3091 if (pos < 0)
3092 return pos;
3093
3094 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3095 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3096 ctrl |= size << 8;
3097 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3098 return 0;
3099 }
3100
3101 /**
3102 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3103 * @dev: the PCI device
3104 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3105 *
3106 * Perform INTx swizzling for a device behind one level of bridge. This is
3107 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3108 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3109 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3110 * the PCI Express Base Specification, Revision 2.1)
3111 */
3112 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3113 {
3114 int slot;
3115
3116 if (pci_ari_enabled(dev->bus))
3117 slot = 0;
3118 else
3119 slot = PCI_SLOT(dev->devfn);
3120
3121 return (((pin - 1) + slot) % 4) + 1;
3122 }
3123
3124 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3125 {
3126 u8 pin;
3127
3128 pin = dev->pin;
3129 if (!pin)
3130 return -1;
3131
3132 while (!pci_is_root_bus(dev->bus)) {
3133 pin = pci_swizzle_interrupt_pin(dev, pin);
3134 dev = dev->bus->self;
3135 }
3136 *bridge = dev;
3137 return pin;
3138 }
3139
3140 /**
3141 * pci_common_swizzle - swizzle INTx all the way to root bridge
3142 * @dev: the PCI device
3143 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3144 *
3145 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3146 * bridges all the way up to a PCI root bus.
3147 */
3148 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3149 {
3150 u8 pin = *pinp;
3151
3152 while (!pci_is_root_bus(dev->bus)) {
3153 pin = pci_swizzle_interrupt_pin(dev, pin);
3154 dev = dev->bus->self;
3155 }
3156 *pinp = pin;
3157 return PCI_SLOT(dev->devfn);
3158 }
3159 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3160
3161 /**
3162 * pci_release_region - Release a PCI bar
3163 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3164 * @bar: BAR to release
3165 *
3166 * Releases the PCI I/O and memory resources previously reserved by a
3167 * successful call to pci_request_region. Call this function only
3168 * after all use of the PCI regions has ceased.
3169 */
3170 void pci_release_region(struct pci_dev *pdev, int bar)
3171 {
3172 struct pci_devres *dr;
3173
3174 if (pci_resource_len(pdev, bar) == 0)
3175 return;
3176 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3177 release_region(pci_resource_start(pdev, bar),
3178 pci_resource_len(pdev, bar));
3179 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3180 release_mem_region(pci_resource_start(pdev, bar),
3181 pci_resource_len(pdev, bar));
3182
3183 dr = find_pci_dr(pdev);
3184 if (dr)
3185 dr->region_mask &= ~(1 << bar);
3186 }
3187 EXPORT_SYMBOL(pci_release_region);
3188
3189 /**
3190 * __pci_request_region - Reserved PCI I/O and memory resource
3191 * @pdev: PCI device whose resources are to be reserved
3192 * @bar: BAR to be reserved
3193 * @res_name: Name to be associated with resource.
3194 * @exclusive: whether the region access is exclusive or not
3195 *
3196 * Mark the PCI region associated with PCI device @pdev BR @bar as
3197 * being reserved by owner @res_name. Do not access any
3198 * address inside the PCI regions unless this call returns
3199 * successfully.
3200 *
3201 * If @exclusive is set, then the region is marked so that userspace
3202 * is explicitly not allowed to map the resource via /dev/mem or
3203 * sysfs MMIO access.
3204 *
3205 * Returns 0 on success, or %EBUSY on error. A warning
3206 * message is also printed on failure.
3207 */
3208 static int __pci_request_region(struct pci_dev *pdev, int bar,
3209 const char *res_name, int exclusive)
3210 {
3211 struct pci_devres *dr;
3212
3213 if (pci_resource_len(pdev, bar) == 0)
3214 return 0;
3215
3216 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3217 if (!request_region(pci_resource_start(pdev, bar),
3218 pci_resource_len(pdev, bar), res_name))
3219 goto err_out;
3220 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3221 if (!__request_mem_region(pci_resource_start(pdev, bar),
3222 pci_resource_len(pdev, bar), res_name,
3223 exclusive))
3224 goto err_out;
3225 }
3226
3227 dr = find_pci_dr(pdev);
3228 if (dr)
3229 dr->region_mask |= 1 << bar;
3230
3231 return 0;
3232
3233 err_out:
3234 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
3235 &pdev->resource[bar]);
3236 return -EBUSY;
3237 }
3238
3239 /**
3240 * pci_request_region - Reserve PCI I/O and memory resource
3241 * @pdev: PCI device whose resources are to be reserved
3242 * @bar: BAR to be reserved
3243 * @res_name: Name to be associated with resource
3244 *
3245 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3246 * being reserved by owner @res_name. Do not access any
3247 * address inside the PCI regions unless this call returns
3248 * successfully.
3249 *
3250 * Returns 0 on success, or %EBUSY on error. A warning
3251 * message is also printed on failure.
3252 */
3253 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3254 {
3255 return __pci_request_region(pdev, bar, res_name, 0);
3256 }
3257 EXPORT_SYMBOL(pci_request_region);
3258
3259 /**
3260 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3261 * @pdev: PCI device whose resources are to be reserved
3262 * @bar: BAR to be reserved
3263 * @res_name: Name to be associated with resource.
3264 *
3265 * Mark the PCI region associated with PCI device @pdev BR @bar as
3266 * being reserved by owner @res_name. Do not access any
3267 * address inside the PCI regions unless this call returns
3268 * successfully.
3269 *
3270 * Returns 0 on success, or %EBUSY on error. A warning
3271 * message is also printed on failure.
3272 *
3273 * The key difference that _exclusive makes it that userspace is
3274 * explicitly not allowed to map the resource via /dev/mem or
3275 * sysfs.
3276 */
3277 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3278 const char *res_name)
3279 {
3280 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3281 }
3282 EXPORT_SYMBOL(pci_request_region_exclusive);
3283
3284 /**
3285 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3286 * @pdev: PCI device whose resources were previously reserved
3287 * @bars: Bitmask of BARs to be released
3288 *
3289 * Release selected PCI I/O and memory resources previously reserved.
3290 * Call this function only after all use of the PCI regions has ceased.
3291 */
3292 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3293 {
3294 int i;
3295
3296 for (i = 0; i < 6; i++)
3297 if (bars & (1 << i))
3298 pci_release_region(pdev, i);
3299 }
3300 EXPORT_SYMBOL(pci_release_selected_regions);
3301
3302 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3303 const char *res_name, int excl)
3304 {
3305 int i;
3306
3307 for (i = 0; i < 6; i++)
3308 if (bars & (1 << i))
3309 if (__pci_request_region(pdev, i, res_name, excl))
3310 goto err_out;
3311 return 0;
3312
3313 err_out:
3314 while (--i >= 0)
3315 if (bars & (1 << i))
3316 pci_release_region(pdev, i);
3317
3318 return -EBUSY;
3319 }
3320
3321
3322 /**
3323 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3324 * @pdev: PCI device whose resources are to be reserved
3325 * @bars: Bitmask of BARs to be requested
3326 * @res_name: Name to be associated with resource
3327 */
3328 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3329 const char *res_name)
3330 {
3331 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3332 }
3333 EXPORT_SYMBOL(pci_request_selected_regions);
3334
3335 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3336 const char *res_name)
3337 {
3338 return __pci_request_selected_regions(pdev, bars, res_name,
3339 IORESOURCE_EXCLUSIVE);
3340 }
3341 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3342
3343 /**
3344 * pci_release_regions - Release reserved PCI I/O and memory resources
3345 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3346 *
3347 * Releases all PCI I/O and memory resources previously reserved by a
3348 * successful call to pci_request_regions. Call this function only
3349 * after all use of the PCI regions has ceased.
3350 */
3351
3352 void pci_release_regions(struct pci_dev *pdev)
3353 {
3354 pci_release_selected_regions(pdev, (1 << 6) - 1);
3355 }
3356 EXPORT_SYMBOL(pci_release_regions);
3357
3358 /**
3359 * pci_request_regions - Reserved PCI I/O and memory resources
3360 * @pdev: PCI device whose resources are to be reserved
3361 * @res_name: Name to be associated with resource.
3362 *
3363 * Mark all PCI regions associated with PCI device @pdev as
3364 * being reserved by owner @res_name. Do not access any
3365 * address inside the PCI regions unless this call returns
3366 * successfully.
3367 *
3368 * Returns 0 on success, or %EBUSY on error. A warning
3369 * message is also printed on failure.
3370 */
3371 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3372 {
3373 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3374 }
3375 EXPORT_SYMBOL(pci_request_regions);
3376
3377 /**
3378 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3379 * @pdev: PCI device whose resources are to be reserved
3380 * @res_name: Name to be associated with resource.
3381 *
3382 * Mark all PCI regions associated with PCI device @pdev as
3383 * being reserved by owner @res_name. Do not access any
3384 * address inside the PCI regions unless this call returns
3385 * successfully.
3386 *
3387 * pci_request_regions_exclusive() will mark the region so that
3388 * /dev/mem and the sysfs MMIO access will not be allowed.
3389 *
3390 * Returns 0 on success, or %EBUSY on error. A warning
3391 * message is also printed on failure.
3392 */
3393 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3394 {
3395 return pci_request_selected_regions_exclusive(pdev,
3396 ((1 << 6) - 1), res_name);
3397 }
3398 EXPORT_SYMBOL(pci_request_regions_exclusive);
3399
3400 /*
3401 * Record the PCI IO range (expressed as CPU physical address + size).
3402 * Return a negative value if an error has occured, zero otherwise
3403 */
3404 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3405 resource_size_t size)
3406 {
3407 int ret = 0;
3408 #ifdef PCI_IOBASE
3409 struct logic_pio_hwaddr *range;
3410
3411 if (!size || addr + size < addr)
3412 return -EINVAL;
3413
3414 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3415 if (!range)
3416 return -ENOMEM;
3417
3418 range->fwnode = fwnode;
3419 range->size = size;
3420 range->hw_start = addr;
3421 range->flags = LOGIC_PIO_CPU_MMIO;
3422
3423 ret = logic_pio_register_range(range);
3424 if (ret)
3425 kfree(range);
3426 #endif
3427
3428 return ret;
3429 }
3430
3431 phys_addr_t pci_pio_to_address(unsigned long pio)
3432 {
3433 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3434
3435 #ifdef PCI_IOBASE
3436 if (pio >= MMIO_UPPER_LIMIT)
3437 return address;
3438
3439 address = logic_pio_to_hwaddr(pio);
3440 #endif
3441
3442 return address;
3443 }
3444
3445 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3446 {
3447 #ifdef PCI_IOBASE
3448 return logic_pio_trans_cpuaddr(address);
3449 #else
3450 if (address > IO_SPACE_LIMIT)
3451 return (unsigned long)-1;
3452
3453 return (unsigned long) address;
3454 #endif
3455 }
3456
3457 /**
3458 * pci_remap_iospace - Remap the memory mapped I/O space
3459 * @res: Resource describing the I/O space
3460 * @phys_addr: physical address of range to be mapped
3461 *
3462 * Remap the memory mapped I/O space described by the @res
3463 * and the CPU physical address @phys_addr into virtual address space.
3464 * Only architectures that have memory mapped IO functions defined
3465 * (and the PCI_IOBASE value defined) should call this function.
3466 */
3467 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3468 {
3469 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3470 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3471
3472 if (!(res->flags & IORESOURCE_IO))
3473 return -EINVAL;
3474
3475 if (res->end > IO_SPACE_LIMIT)
3476 return -EINVAL;
3477
3478 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3479 pgprot_device(PAGE_KERNEL));
3480 #else
3481 /* this architecture does not have memory mapped I/O space,
3482 so this function should never be called */
3483 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3484 return -ENODEV;
3485 #endif
3486 }
3487 EXPORT_SYMBOL(pci_remap_iospace);
3488
3489 /**
3490 * pci_unmap_iospace - Unmap the memory mapped I/O space
3491 * @res: resource to be unmapped
3492 *
3493 * Unmap the CPU virtual address @res from virtual address space.
3494 * Only architectures that have memory mapped IO functions defined
3495 * (and the PCI_IOBASE value defined) should call this function.
3496 */
3497 void pci_unmap_iospace(struct resource *res)
3498 {
3499 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3500 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3501
3502 unmap_kernel_range(vaddr, resource_size(res));
3503 #endif
3504 }
3505 EXPORT_SYMBOL(pci_unmap_iospace);
3506
3507 /**
3508 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3509 * @dev: Generic device to remap IO address for
3510 * @offset: Resource address to map
3511 * @size: Size of map
3512 *
3513 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
3514 * detach.
3515 */
3516 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3517 resource_size_t offset,
3518 resource_size_t size)
3519 {
3520 void __iomem **ptr, *addr;
3521
3522 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3523 if (!ptr)
3524 return NULL;
3525
3526 addr = pci_remap_cfgspace(offset, size);
3527 if (addr) {
3528 *ptr = addr;
3529 devres_add(dev, ptr);
3530 } else
3531 devres_free(ptr);
3532
3533 return addr;
3534 }
3535 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3536
3537 /**
3538 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3539 * @dev: generic device to handle the resource for
3540 * @res: configuration space resource to be handled
3541 *
3542 * Checks that a resource is a valid memory region, requests the memory
3543 * region and ioremaps with pci_remap_cfgspace() API that ensures the
3544 * proper PCI configuration space memory attributes are guaranteed.
3545 *
3546 * All operations are managed and will be undone on driver detach.
3547 *
3548 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3549 * on failure. Usage example::
3550 *
3551 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3552 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3553 * if (IS_ERR(base))
3554 * return PTR_ERR(base);
3555 */
3556 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3557 struct resource *res)
3558 {
3559 resource_size_t size;
3560 const char *name;
3561 void __iomem *dest_ptr;
3562
3563 BUG_ON(!dev);
3564
3565 if (!res || resource_type(res) != IORESOURCE_MEM) {
3566 dev_err(dev, "invalid resource\n");
3567 return IOMEM_ERR_PTR(-EINVAL);
3568 }
3569
3570 size = resource_size(res);
3571 name = res->name ?: dev_name(dev);
3572
3573 if (!devm_request_mem_region(dev, res->start, size, name)) {
3574 dev_err(dev, "can't request region for resource %pR\n", res);
3575 return IOMEM_ERR_PTR(-EBUSY);
3576 }
3577
3578 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3579 if (!dest_ptr) {
3580 dev_err(dev, "ioremap failed for resource %pR\n", res);
3581 devm_release_mem_region(dev, res->start, size);
3582 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3583 }
3584
3585 return dest_ptr;
3586 }
3587 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3588
3589 static void __pci_set_master(struct pci_dev *dev, bool enable)
3590 {
3591 u16 old_cmd, cmd;
3592
3593 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3594 if (enable)
3595 cmd = old_cmd | PCI_COMMAND_MASTER;
3596 else
3597 cmd = old_cmd & ~PCI_COMMAND_MASTER;
3598 if (cmd != old_cmd) {
3599 dev_dbg(&dev->dev, "%s bus mastering\n",
3600 enable ? "enabling" : "disabling");
3601 pci_write_config_word(dev, PCI_COMMAND, cmd);
3602 }
3603 dev->is_busmaster = enable;
3604 }
3605
3606 /**
3607 * pcibios_setup - process "pci=" kernel boot arguments
3608 * @str: string used to pass in "pci=" kernel boot arguments
3609 *
3610 * Process kernel boot arguments. This is the default implementation.
3611 * Architecture specific implementations can override this as necessary.
3612 */
3613 char * __weak __init pcibios_setup(char *str)
3614 {
3615 return str;
3616 }
3617
3618 /**
3619 * pcibios_set_master - enable PCI bus-mastering for device dev
3620 * @dev: the PCI device to enable
3621 *
3622 * Enables PCI bus-mastering for the device. This is the default
3623 * implementation. Architecture specific implementations can override
3624 * this if necessary.
3625 */
3626 void __weak pcibios_set_master(struct pci_dev *dev)
3627 {
3628 u8 lat;
3629
3630 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3631 if (pci_is_pcie(dev))
3632 return;
3633
3634 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3635 if (lat < 16)
3636 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3637 else if (lat > pcibios_max_latency)
3638 lat = pcibios_max_latency;
3639 else
3640 return;
3641
3642 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3643 }
3644
3645 /**
3646 * pci_set_master - enables bus-mastering for device dev
3647 * @dev: the PCI device to enable
3648 *
3649 * Enables bus-mastering on the device and calls pcibios_set_master()
3650 * to do the needed arch specific settings.
3651 */
3652 void pci_set_master(struct pci_dev *dev)
3653 {
3654 __pci_set_master(dev, true);
3655 pcibios_set_master(dev);
3656 }
3657 EXPORT_SYMBOL(pci_set_master);
3658
3659 /**
3660 * pci_clear_master - disables bus-mastering for device dev
3661 * @dev: the PCI device to disable
3662 */
3663 void pci_clear_master(struct pci_dev *dev)
3664 {
3665 __pci_set_master(dev, false);
3666 }
3667 EXPORT_SYMBOL(pci_clear_master);
3668
3669 /**
3670 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3671 * @dev: the PCI device for which MWI is to be enabled
3672 *
3673 * Helper function for pci_set_mwi.
3674 * Originally copied from drivers/net/acenic.c.
3675 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3676 *
3677 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3678 */
3679 int pci_set_cacheline_size(struct pci_dev *dev)
3680 {
3681 u8 cacheline_size;
3682
3683 if (!pci_cache_line_size)
3684 return -EINVAL;
3685
3686 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3687 equal to or multiple of the right value. */
3688 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3689 if (cacheline_size >= pci_cache_line_size &&
3690 (cacheline_size % pci_cache_line_size) == 0)
3691 return 0;
3692
3693 /* Write the correct value. */
3694 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3695 /* Read it back. */
3696 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3697 if (cacheline_size == pci_cache_line_size)
3698 return 0;
3699
3700 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3701 pci_cache_line_size << 2);
3702
3703 return -EINVAL;
3704 }
3705 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3706
3707 /**
3708 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3709 * @dev: the PCI device for which MWI is enabled
3710 *
3711 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3712 *
3713 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3714 */
3715 int pci_set_mwi(struct pci_dev *dev)
3716 {
3717 #ifdef PCI_DISABLE_MWI
3718 return 0;
3719 #else
3720 int rc;
3721 u16 cmd;
3722
3723 rc = pci_set_cacheline_size(dev);
3724 if (rc)
3725 return rc;
3726
3727 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3728 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3729 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3730 cmd |= PCI_COMMAND_INVALIDATE;
3731 pci_write_config_word(dev, PCI_COMMAND, cmd);
3732 }
3733 return 0;
3734 #endif
3735 }
3736 EXPORT_SYMBOL(pci_set_mwi);
3737
3738 /**
3739 * pcim_set_mwi - a device-managed pci_set_mwi()
3740 * @dev: the PCI device for which MWI is enabled
3741 *
3742 * Managed pci_set_mwi().
3743 *
3744 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3745 */
3746 int pcim_set_mwi(struct pci_dev *dev)
3747 {
3748 struct pci_devres *dr;
3749
3750 dr = find_pci_dr(dev);
3751 if (!dr)
3752 return -ENOMEM;
3753
3754 dr->mwi = 1;
3755 return pci_set_mwi(dev);
3756 }
3757 EXPORT_SYMBOL(pcim_set_mwi);
3758
3759 /**
3760 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3761 * @dev: the PCI device for which MWI is enabled
3762 *
3763 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3764 * Callers are not required to check the return value.
3765 *
3766 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3767 */
3768 int pci_try_set_mwi(struct pci_dev *dev)
3769 {
3770 #ifdef PCI_DISABLE_MWI
3771 return 0;
3772 #else
3773 return pci_set_mwi(dev);
3774 #endif
3775 }
3776 EXPORT_SYMBOL(pci_try_set_mwi);
3777
3778 /**
3779 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3780 * @dev: the PCI device to disable
3781 *
3782 * Disables PCI Memory-Write-Invalidate transaction on the device
3783 */
3784 void pci_clear_mwi(struct pci_dev *dev)
3785 {
3786 #ifndef PCI_DISABLE_MWI
3787 u16 cmd;
3788
3789 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3790 if (cmd & PCI_COMMAND_INVALIDATE) {
3791 cmd &= ~PCI_COMMAND_INVALIDATE;
3792 pci_write_config_word(dev, PCI_COMMAND, cmd);
3793 }
3794 #endif
3795 }
3796 EXPORT_SYMBOL(pci_clear_mwi);
3797
3798 /**
3799 * pci_intx - enables/disables PCI INTx for device dev
3800 * @pdev: the PCI device to operate on
3801 * @enable: boolean: whether to enable or disable PCI INTx
3802 *
3803 * Enables/disables PCI INTx for device dev
3804 */
3805 void pci_intx(struct pci_dev *pdev, int enable)
3806 {
3807 u16 pci_command, new;
3808
3809 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3810
3811 if (enable)
3812 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3813 else
3814 new = pci_command | PCI_COMMAND_INTX_DISABLE;
3815
3816 if (new != pci_command) {
3817 struct pci_devres *dr;
3818
3819 pci_write_config_word(pdev, PCI_COMMAND, new);
3820
3821 dr = find_pci_dr(pdev);
3822 if (dr && !dr->restore_intx) {
3823 dr->restore_intx = 1;
3824 dr->orig_intx = !enable;
3825 }
3826 }
3827 }
3828 EXPORT_SYMBOL_GPL(pci_intx);
3829
3830 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3831 {
3832 struct pci_bus *bus = dev->bus;
3833 bool mask_updated = true;
3834 u32 cmd_status_dword;
3835 u16 origcmd, newcmd;
3836 unsigned long flags;
3837 bool irq_pending;
3838
3839 /*
3840 * We do a single dword read to retrieve both command and status.
3841 * Document assumptions that make this possible.
3842 */
3843 BUILD_BUG_ON(PCI_COMMAND % 4);
3844 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3845
3846 raw_spin_lock_irqsave(&pci_lock, flags);
3847
3848 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3849
3850 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3851
3852 /*
3853 * Check interrupt status register to see whether our device
3854 * triggered the interrupt (when masking) or the next IRQ is
3855 * already pending (when unmasking).
3856 */
3857 if (mask != irq_pending) {
3858 mask_updated = false;
3859 goto done;
3860 }
3861
3862 origcmd = cmd_status_dword;
3863 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3864 if (mask)
3865 newcmd |= PCI_COMMAND_INTX_DISABLE;
3866 if (newcmd != origcmd)
3867 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3868
3869 done:
3870 raw_spin_unlock_irqrestore(&pci_lock, flags);
3871
3872 return mask_updated;
3873 }
3874
3875 /**
3876 * pci_check_and_mask_intx - mask INTx on pending interrupt
3877 * @dev: the PCI device to operate on
3878 *
3879 * Check if the device dev has its INTx line asserted, mask it and
3880 * return true in that case. False is returned if no interrupt was
3881 * pending.
3882 */
3883 bool pci_check_and_mask_intx(struct pci_dev *dev)
3884 {
3885 return pci_check_and_set_intx_mask(dev, true);
3886 }
3887 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3888
3889 /**
3890 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3891 * @dev: the PCI device to operate on
3892 *
3893 * Check if the device dev has its INTx line asserted, unmask it if not
3894 * and return true. False is returned and the mask remains active if
3895 * there was still an interrupt pending.
3896 */
3897 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3898 {
3899 return pci_check_and_set_intx_mask(dev, false);
3900 }
3901 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3902
3903 /**
3904 * pci_wait_for_pending_transaction - waits for pending transaction
3905 * @dev: the PCI device to operate on
3906 *
3907 * Return 0 if transaction is pending 1 otherwise.
3908 */
3909 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3910 {
3911 if (!pci_is_pcie(dev))
3912 return 1;
3913
3914 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3915 PCI_EXP_DEVSTA_TRPND);
3916 }
3917 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3918
3919 static void pci_flr_wait(struct pci_dev *dev)
3920 {
3921 int delay = 1, timeout = 60000;
3922 u32 id;
3923
3924 /*
3925 * Per PCIe r3.1, sec 6.6.2, a device must complete an FLR within
3926 * 100ms, but may silently discard requests while the FLR is in
3927 * progress. Wait 100ms before trying to access the device.
3928 */
3929 msleep(100);
3930
3931 /*
3932 * After 100ms, the device should not silently discard config
3933 * requests, but it may still indicate that it needs more time by
3934 * responding to them with CRS completions. The Root Port will
3935 * generally synthesize ~0 data to complete the read (except when
3936 * CRS SV is enabled and the read was for the Vendor ID; in that
3937 * case it synthesizes 0x0001 data).
3938 *
3939 * Wait for the device to return a non-CRS completion. Read the
3940 * Command register instead of Vendor ID so we don't have to
3941 * contend with the CRS SV value.
3942 */
3943 pci_read_config_dword(dev, PCI_COMMAND, &id);
3944 while (id == ~0) {
3945 if (delay > timeout) {
3946 dev_warn(&dev->dev, "not ready %dms after FLR; giving up\n",
3947 100 + delay - 1);
3948 return;
3949 }
3950
3951 if (delay > 1000)
3952 dev_info(&dev->dev, "not ready %dms after FLR; waiting\n",
3953 100 + delay - 1);
3954
3955 msleep(delay);
3956 delay *= 2;
3957 pci_read_config_dword(dev, PCI_COMMAND, &id);
3958 }
3959
3960 if (delay > 1000)
3961 dev_info(&dev->dev, "ready %dms after FLR\n", 100 + delay - 1);
3962 }
3963
3964 /**
3965 * pcie_has_flr - check if a device supports function level resets
3966 * @dev: device to check
3967 *
3968 * Returns true if the device advertises support for PCIe function level
3969 * resets.
3970 */
3971 static bool pcie_has_flr(struct pci_dev *dev)
3972 {
3973 u32 cap;
3974
3975 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
3976 return false;
3977
3978 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3979 return cap & PCI_EXP_DEVCAP_FLR;
3980 }
3981
3982 /**
3983 * pcie_flr - initiate a PCIe function level reset
3984 * @dev: device to reset
3985 *
3986 * Initiate a function level reset on @dev. The caller should ensure the
3987 * device supports FLR before calling this function, e.g. by using the
3988 * pcie_has_flr() helper.
3989 */
3990 void pcie_flr(struct pci_dev *dev)
3991 {
3992 if (!pci_wait_for_pending_transaction(dev))
3993 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3994
3995 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3996 pci_flr_wait(dev);
3997 }
3998 EXPORT_SYMBOL_GPL(pcie_flr);
3999
4000 static int pci_af_flr(struct pci_dev *dev, int probe)
4001 {
4002 int pos;
4003 u8 cap;
4004
4005 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4006 if (!pos)
4007 return -ENOTTY;
4008
4009 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4010 return -ENOTTY;
4011
4012 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4013 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4014 return -ENOTTY;
4015
4016 if (probe)
4017 return 0;
4018
4019 /*
4020 * Wait for Transaction Pending bit to clear. A word-aligned test
4021 * is used, so we use the conrol offset rather than status and shift
4022 * the test bit to match.
4023 */
4024 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4025 PCI_AF_STATUS_TP << 8))
4026 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4027
4028 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4029 pci_flr_wait(dev);
4030 return 0;
4031 }
4032
4033 /**
4034 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4035 * @dev: Device to reset.
4036 * @probe: If set, only check if the device can be reset this way.
4037 *
4038 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4039 * unset, it will be reinitialized internally when going from PCI_D3hot to
4040 * PCI_D0. If that's the case and the device is not in a low-power state
4041 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4042 *
4043 * NOTE: This causes the caller to sleep for twice the device power transition
4044 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4045 * by default (i.e. unless the @dev's d3_delay field has a different value).
4046 * Moreover, only devices in D0 can be reset by this function.
4047 */
4048 static int pci_pm_reset(struct pci_dev *dev, int probe)
4049 {
4050 u16 csr;
4051
4052 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4053 return -ENOTTY;
4054
4055 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4056 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4057 return -ENOTTY;
4058
4059 if (probe)
4060 return 0;
4061
4062 if (dev->current_state != PCI_D0)
4063 return -EINVAL;
4064
4065 csr &= ~PCI_PM_CTRL_STATE_MASK;
4066 csr |= PCI_D3hot;
4067 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4068 pci_dev_d3_sleep(dev);
4069
4070 csr &= ~PCI_PM_CTRL_STATE_MASK;
4071 csr |= PCI_D0;
4072 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4073 pci_dev_d3_sleep(dev);
4074
4075 return 0;
4076 }
4077
4078 void pci_reset_secondary_bus(struct pci_dev *dev)
4079 {
4080 u16 ctrl;
4081
4082 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4083 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4084 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4085 /*
4086 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4087 * this to 2ms to ensure that we meet the minimum requirement.
4088 */
4089 msleep(2);
4090
4091 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4092 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4093
4094 /*
4095 * Trhfa for conventional PCI is 2^25 clock cycles.
4096 * Assuming a minimum 33MHz clock this results in a 1s
4097 * delay before we can consider subordinate devices to
4098 * be re-initialized. PCIe has some ways to shorten this,
4099 * but we don't make use of them yet.
4100 */
4101 ssleep(1);
4102 }
4103
4104 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4105 {
4106 pci_reset_secondary_bus(dev);
4107 }
4108
4109 /**
4110 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
4111 * @dev: Bridge device
4112 *
4113 * Use the bridge control register to assert reset on the secondary bus.
4114 * Devices on the secondary bus are left in power-on state.
4115 */
4116 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
4117 {
4118 pcibios_reset_secondary_bus(dev);
4119 }
4120 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
4121
4122 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4123 {
4124 struct pci_dev *pdev;
4125
4126 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4127 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4128 return -ENOTTY;
4129
4130 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4131 if (pdev != dev)
4132 return -ENOTTY;
4133
4134 if (probe)
4135 return 0;
4136
4137 pci_reset_bridge_secondary_bus(dev->bus->self);
4138
4139 return 0;
4140 }
4141
4142 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4143 {
4144 int rc = -ENOTTY;
4145
4146 if (!hotplug || !try_module_get(hotplug->ops->owner))
4147 return rc;
4148
4149 if (hotplug->ops->reset_slot)
4150 rc = hotplug->ops->reset_slot(hotplug, probe);
4151
4152 module_put(hotplug->ops->owner);
4153
4154 return rc;
4155 }
4156
4157 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4158 {
4159 struct pci_dev *pdev;
4160
4161 if (dev->subordinate || !dev->slot ||
4162 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4163 return -ENOTTY;
4164
4165 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4166 if (pdev != dev && pdev->slot == dev->slot)
4167 return -ENOTTY;
4168
4169 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4170 }
4171
4172 static void pci_dev_lock(struct pci_dev *dev)
4173 {
4174 pci_cfg_access_lock(dev);
4175 /* block PM suspend, driver probe, etc. */
4176 device_lock(&dev->dev);
4177 }
4178
4179 /* Return 1 on successful lock, 0 on contention */
4180 static int pci_dev_trylock(struct pci_dev *dev)
4181 {
4182 if (pci_cfg_access_trylock(dev)) {
4183 if (device_trylock(&dev->dev))
4184 return 1;
4185 pci_cfg_access_unlock(dev);
4186 }
4187
4188 return 0;
4189 }
4190
4191 static void pci_dev_unlock(struct pci_dev *dev)
4192 {
4193 device_unlock(&dev->dev);
4194 pci_cfg_access_unlock(dev);
4195 }
4196
4197 static void pci_dev_save_and_disable(struct pci_dev *dev)
4198 {
4199 const struct pci_error_handlers *err_handler =
4200 dev->driver ? dev->driver->err_handler : NULL;
4201
4202 /*
4203 * dev->driver->err_handler->reset_prepare() is protected against
4204 * races with ->remove() by the device lock, which must be held by
4205 * the caller.
4206 */
4207 if (err_handler && err_handler->reset_prepare)
4208 err_handler->reset_prepare(dev);
4209
4210 /*
4211 * Wake-up device prior to save. PM registers default to D0 after
4212 * reset and a simple register restore doesn't reliably return
4213 * to a non-D0 state anyway.
4214 */
4215 pci_set_power_state(dev, PCI_D0);
4216
4217 pci_save_state(dev);
4218 /*
4219 * Disable the device by clearing the Command register, except for
4220 * INTx-disable which is set. This not only disables MMIO and I/O port
4221 * BARs, but also prevents the device from being Bus Master, preventing
4222 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4223 * compliant devices, INTx-disable prevents legacy interrupts.
4224 */
4225 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4226 }
4227
4228 static void pci_dev_restore(struct pci_dev *dev)
4229 {
4230 const struct pci_error_handlers *err_handler =
4231 dev->driver ? dev->driver->err_handler : NULL;
4232
4233 pci_restore_state(dev);
4234
4235 /*
4236 * dev->driver->err_handler->reset_done() is protected against
4237 * races with ->remove() by the device lock, which must be held by
4238 * the caller.
4239 */
4240 if (err_handler && err_handler->reset_done)
4241 err_handler->reset_done(dev);
4242 }
4243
4244 /**
4245 * __pci_reset_function_locked - reset a PCI device function while holding
4246 * the @dev mutex lock.
4247 * @dev: PCI device to reset
4248 *
4249 * Some devices allow an individual function to be reset without affecting
4250 * other functions in the same device. The PCI device must be responsive
4251 * to PCI config space in order to use this function.
4252 *
4253 * The device function is presumed to be unused and the caller is holding
4254 * the device mutex lock when this function is called.
4255 * Resetting the device will make the contents of PCI configuration space
4256 * random, so any caller of this must be prepared to reinitialise the
4257 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4258 * etc.
4259 *
4260 * Returns 0 if the device function was successfully reset or negative if the
4261 * device doesn't support resetting a single function.
4262 */
4263 int __pci_reset_function_locked(struct pci_dev *dev)
4264 {
4265 int rc;
4266
4267 might_sleep();
4268
4269 /*
4270 * A reset method returns -ENOTTY if it doesn't support this device
4271 * and we should try the next method.
4272 *
4273 * If it returns 0 (success), we're finished. If it returns any
4274 * other error, we're also finished: this indicates that further
4275 * reset mechanisms might be broken on the device.
4276 */
4277 rc = pci_dev_specific_reset(dev, 0);
4278 if (rc != -ENOTTY)
4279 return rc;
4280 if (pcie_has_flr(dev)) {
4281 pcie_flr(dev);
4282 return 0;
4283 }
4284 rc = pci_af_flr(dev, 0);
4285 if (rc != -ENOTTY)
4286 return rc;
4287 rc = pci_pm_reset(dev, 0);
4288 if (rc != -ENOTTY)
4289 return rc;
4290 rc = pci_dev_reset_slot_function(dev, 0);
4291 if (rc != -ENOTTY)
4292 return rc;
4293 return pci_parent_bus_reset(dev, 0);
4294 }
4295 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4296
4297 /**
4298 * pci_probe_reset_function - check whether the device can be safely reset
4299 * @dev: PCI device to reset
4300 *
4301 * Some devices allow an individual function to be reset without affecting
4302 * other functions in the same device. The PCI device must be responsive
4303 * to PCI config space in order to use this function.
4304 *
4305 * Returns 0 if the device function can be reset or negative if the
4306 * device doesn't support resetting a single function.
4307 */
4308 int pci_probe_reset_function(struct pci_dev *dev)
4309 {
4310 int rc;
4311
4312 might_sleep();
4313
4314 rc = pci_dev_specific_reset(dev, 1);
4315 if (rc != -ENOTTY)
4316 return rc;
4317 if (pcie_has_flr(dev))
4318 return 0;
4319 rc = pci_af_flr(dev, 1);
4320 if (rc != -ENOTTY)
4321 return rc;
4322 rc = pci_pm_reset(dev, 1);
4323 if (rc != -ENOTTY)
4324 return rc;
4325 rc = pci_dev_reset_slot_function(dev, 1);
4326 if (rc != -ENOTTY)
4327 return rc;
4328
4329 return pci_parent_bus_reset(dev, 1);
4330 }
4331
4332 /**
4333 * pci_reset_function - quiesce and reset a PCI device function
4334 * @dev: PCI device to reset
4335 *
4336 * Some devices allow an individual function to be reset without affecting
4337 * other functions in the same device. The PCI device must be responsive
4338 * to PCI config space in order to use this function.
4339 *
4340 * This function does not just reset the PCI portion of a device, but
4341 * clears all the state associated with the device. This function differs
4342 * from __pci_reset_function_locked() in that it saves and restores device state
4343 * over the reset and takes the PCI device lock.
4344 *
4345 * Returns 0 if the device function was successfully reset or negative if the
4346 * device doesn't support resetting a single function.
4347 */
4348 int pci_reset_function(struct pci_dev *dev)
4349 {
4350 int rc;
4351
4352 rc = pci_probe_reset_function(dev);
4353 if (rc)
4354 return rc;
4355
4356 pci_dev_lock(dev);
4357 pci_dev_save_and_disable(dev);
4358
4359 rc = __pci_reset_function_locked(dev);
4360
4361 pci_dev_restore(dev);
4362 pci_dev_unlock(dev);
4363
4364 return rc;
4365 }
4366 EXPORT_SYMBOL_GPL(pci_reset_function);
4367
4368 /**
4369 * pci_reset_function_locked - quiesce and reset a PCI device function
4370 * @dev: PCI device to reset
4371 *
4372 * Some devices allow an individual function to be reset without affecting
4373 * other functions in the same device. The PCI device must be responsive
4374 * to PCI config space in order to use this function.
4375 *
4376 * This function does not just reset the PCI portion of a device, but
4377 * clears all the state associated with the device. This function differs
4378 * from __pci_reset_function_locked() in that it saves and restores device state
4379 * over the reset. It also differs from pci_reset_function() in that it
4380 * requires the PCI device lock to be held.
4381 *
4382 * Returns 0 if the device function was successfully reset or negative if the
4383 * device doesn't support resetting a single function.
4384 */
4385 int pci_reset_function_locked(struct pci_dev *dev)
4386 {
4387 int rc;
4388
4389 rc = pci_probe_reset_function(dev);
4390 if (rc)
4391 return rc;
4392
4393 pci_dev_save_and_disable(dev);
4394
4395 rc = __pci_reset_function_locked(dev);
4396
4397 pci_dev_restore(dev);
4398
4399 return rc;
4400 }
4401 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4402
4403 /**
4404 * pci_try_reset_function - quiesce and reset a PCI device function
4405 * @dev: PCI device to reset
4406 *
4407 * Same as above, except return -EAGAIN if unable to lock device.
4408 */
4409 int pci_try_reset_function(struct pci_dev *dev)
4410 {
4411 int rc;
4412
4413 rc = pci_probe_reset_function(dev);
4414 if (rc)
4415 return rc;
4416
4417 if (!pci_dev_trylock(dev))
4418 return -EAGAIN;
4419
4420 pci_dev_save_and_disable(dev);
4421 rc = __pci_reset_function_locked(dev);
4422 pci_dev_unlock(dev);
4423
4424 pci_dev_restore(dev);
4425 return rc;
4426 }
4427 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4428
4429 /* Do any devices on or below this bus prevent a bus reset? */
4430 static bool pci_bus_resetable(struct pci_bus *bus)
4431 {
4432 struct pci_dev *dev;
4433
4434
4435 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4436 return false;
4437
4438 list_for_each_entry(dev, &bus->devices, bus_list) {
4439 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4440 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4441 return false;
4442 }
4443
4444 return true;
4445 }
4446
4447 /* Lock devices from the top of the tree down */
4448 static void pci_bus_lock(struct pci_bus *bus)
4449 {
4450 struct pci_dev *dev;
4451
4452 list_for_each_entry(dev, &bus->devices, bus_list) {
4453 pci_dev_lock(dev);
4454 if (dev->subordinate)
4455 pci_bus_lock(dev->subordinate);
4456 }
4457 }
4458
4459 /* Unlock devices from the bottom of the tree up */
4460 static void pci_bus_unlock(struct pci_bus *bus)
4461 {
4462 struct pci_dev *dev;
4463
4464 list_for_each_entry(dev, &bus->devices, bus_list) {
4465 if (dev->subordinate)
4466 pci_bus_unlock(dev->subordinate);
4467 pci_dev_unlock(dev);
4468 }
4469 }
4470
4471 /* Return 1 on successful lock, 0 on contention */
4472 static int pci_bus_trylock(struct pci_bus *bus)
4473 {
4474 struct pci_dev *dev;
4475
4476 list_for_each_entry(dev, &bus->devices, bus_list) {
4477 if (!pci_dev_trylock(dev))
4478 goto unlock;
4479 if (dev->subordinate) {
4480 if (!pci_bus_trylock(dev->subordinate)) {
4481 pci_dev_unlock(dev);
4482 goto unlock;
4483 }
4484 }
4485 }
4486 return 1;
4487
4488 unlock:
4489 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4490 if (dev->subordinate)
4491 pci_bus_unlock(dev->subordinate);
4492 pci_dev_unlock(dev);
4493 }
4494 return 0;
4495 }
4496
4497 /* Do any devices on or below this slot prevent a bus reset? */
4498 static bool pci_slot_resetable(struct pci_slot *slot)
4499 {
4500 struct pci_dev *dev;
4501
4502 if (slot->bus->self &&
4503 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4504 return false;
4505
4506 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4507 if (!dev->slot || dev->slot != slot)
4508 continue;
4509 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4510 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4511 return false;
4512 }
4513
4514 return true;
4515 }
4516
4517 /* Lock devices from the top of the tree down */
4518 static void pci_slot_lock(struct pci_slot *slot)
4519 {
4520 struct pci_dev *dev;
4521
4522 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4523 if (!dev->slot || dev->slot != slot)
4524 continue;
4525 pci_dev_lock(dev);
4526 if (dev->subordinate)
4527 pci_bus_lock(dev->subordinate);
4528 }
4529 }
4530
4531 /* Unlock devices from the bottom of the tree up */
4532 static void pci_slot_unlock(struct pci_slot *slot)
4533 {
4534 struct pci_dev *dev;
4535
4536 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4537 if (!dev->slot || dev->slot != slot)
4538 continue;
4539 if (dev->subordinate)
4540 pci_bus_unlock(dev->subordinate);
4541 pci_dev_unlock(dev);
4542 }
4543 }
4544
4545 /* Return 1 on successful lock, 0 on contention */
4546 static int pci_slot_trylock(struct pci_slot *slot)
4547 {
4548 struct pci_dev *dev;
4549
4550 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4551 if (!dev->slot || dev->slot != slot)
4552 continue;
4553 if (!pci_dev_trylock(dev))
4554 goto unlock;
4555 if (dev->subordinate) {
4556 if (!pci_bus_trylock(dev->subordinate)) {
4557 pci_dev_unlock(dev);
4558 goto unlock;
4559 }
4560 }
4561 }
4562 return 1;
4563
4564 unlock:
4565 list_for_each_entry_continue_reverse(dev,
4566 &slot->bus->devices, bus_list) {
4567 if (!dev->slot || dev->slot != slot)
4568 continue;
4569 if (dev->subordinate)
4570 pci_bus_unlock(dev->subordinate);
4571 pci_dev_unlock(dev);
4572 }
4573 return 0;
4574 }
4575
4576 /* Save and disable devices from the top of the tree down */
4577 static void pci_bus_save_and_disable(struct pci_bus *bus)
4578 {
4579 struct pci_dev *dev;
4580
4581 list_for_each_entry(dev, &bus->devices, bus_list) {
4582 pci_dev_lock(dev);
4583 pci_dev_save_and_disable(dev);
4584 pci_dev_unlock(dev);
4585 if (dev->subordinate)
4586 pci_bus_save_and_disable(dev->subordinate);
4587 }
4588 }
4589
4590 /*
4591 * Restore devices from top of the tree down - parent bridges need to be
4592 * restored before we can get to subordinate devices.
4593 */
4594 static void pci_bus_restore(struct pci_bus *bus)
4595 {
4596 struct pci_dev *dev;
4597
4598 list_for_each_entry(dev, &bus->devices, bus_list) {
4599 pci_dev_lock(dev);
4600 pci_dev_restore(dev);
4601 pci_dev_unlock(dev);
4602 if (dev->subordinate)
4603 pci_bus_restore(dev->subordinate);
4604 }
4605 }
4606
4607 /* Save and disable devices from the top of the tree down */
4608 static void pci_slot_save_and_disable(struct pci_slot *slot)
4609 {
4610 struct pci_dev *dev;
4611
4612 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4613 if (!dev->slot || dev->slot != slot)
4614 continue;
4615 pci_dev_save_and_disable(dev);
4616 if (dev->subordinate)
4617 pci_bus_save_and_disable(dev->subordinate);
4618 }
4619 }
4620
4621 /*
4622 * Restore devices from top of the tree down - parent bridges need to be
4623 * restored before we can get to subordinate devices.
4624 */
4625 static void pci_slot_restore(struct pci_slot *slot)
4626 {
4627 struct pci_dev *dev;
4628
4629 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4630 if (!dev->slot || dev->slot != slot)
4631 continue;
4632 pci_dev_restore(dev);
4633 if (dev->subordinate)
4634 pci_bus_restore(dev->subordinate);
4635 }
4636 }
4637
4638 static int pci_slot_reset(struct pci_slot *slot, int probe)
4639 {
4640 int rc;
4641
4642 if (!slot || !pci_slot_resetable(slot))
4643 return -ENOTTY;
4644
4645 if (!probe)
4646 pci_slot_lock(slot);
4647
4648 might_sleep();
4649
4650 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4651
4652 if (!probe)
4653 pci_slot_unlock(slot);
4654
4655 return rc;
4656 }
4657
4658 /**
4659 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4660 * @slot: PCI slot to probe
4661 *
4662 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4663 */
4664 int pci_probe_reset_slot(struct pci_slot *slot)
4665 {
4666 return pci_slot_reset(slot, 1);
4667 }
4668 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4669
4670 /**
4671 * pci_reset_slot - reset a PCI slot
4672 * @slot: PCI slot to reset
4673 *
4674 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4675 * independent of other slots. For instance, some slots may support slot power
4676 * control. In the case of a 1:1 bus to slot architecture, this function may
4677 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4678 * Generally a slot reset should be attempted before a bus reset. All of the
4679 * function of the slot and any subordinate buses behind the slot are reset
4680 * through this function. PCI config space of all devices in the slot and
4681 * behind the slot is saved before and restored after reset.
4682 *
4683 * Return 0 on success, non-zero on error.
4684 */
4685 int pci_reset_slot(struct pci_slot *slot)
4686 {
4687 int rc;
4688
4689 rc = pci_slot_reset(slot, 1);
4690 if (rc)
4691 return rc;
4692
4693 pci_slot_save_and_disable(slot);
4694
4695 rc = pci_slot_reset(slot, 0);
4696
4697 pci_slot_restore(slot);
4698
4699 return rc;
4700 }
4701 EXPORT_SYMBOL_GPL(pci_reset_slot);
4702
4703 /**
4704 * pci_try_reset_slot - Try to reset a PCI slot
4705 * @slot: PCI slot to reset
4706 *
4707 * Same as above except return -EAGAIN if the slot cannot be locked
4708 */
4709 int pci_try_reset_slot(struct pci_slot *slot)
4710 {
4711 int rc;
4712
4713 rc = pci_slot_reset(slot, 1);
4714 if (rc)
4715 return rc;
4716
4717 pci_slot_save_and_disable(slot);
4718
4719 if (pci_slot_trylock(slot)) {
4720 might_sleep();
4721 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4722 pci_slot_unlock(slot);
4723 } else
4724 rc = -EAGAIN;
4725
4726 pci_slot_restore(slot);
4727
4728 return rc;
4729 }
4730 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4731
4732 static int pci_bus_reset(struct pci_bus *bus, int probe)
4733 {
4734 if (!bus->self || !pci_bus_resetable(bus))
4735 return -ENOTTY;
4736
4737 if (probe)
4738 return 0;
4739
4740 pci_bus_lock(bus);
4741
4742 might_sleep();
4743
4744 pci_reset_bridge_secondary_bus(bus->self);
4745
4746 pci_bus_unlock(bus);
4747
4748 return 0;
4749 }
4750
4751 /**
4752 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4753 * @bus: PCI bus to probe
4754 *
4755 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4756 */
4757 int pci_probe_reset_bus(struct pci_bus *bus)
4758 {
4759 return pci_bus_reset(bus, 1);
4760 }
4761 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4762
4763 /**
4764 * pci_reset_bus - reset a PCI bus
4765 * @bus: top level PCI bus to reset
4766 *
4767 * Do a bus reset on the given bus and any subordinate buses, saving
4768 * and restoring state of all devices.
4769 *
4770 * Return 0 on success, non-zero on error.
4771 */
4772 int pci_reset_bus(struct pci_bus *bus)
4773 {
4774 int rc;
4775
4776 rc = pci_bus_reset(bus, 1);
4777 if (rc)
4778 return rc;
4779
4780 pci_bus_save_and_disable(bus);
4781
4782 rc = pci_bus_reset(bus, 0);
4783
4784 pci_bus_restore(bus);
4785
4786 return rc;
4787 }
4788 EXPORT_SYMBOL_GPL(pci_reset_bus);
4789
4790 /**
4791 * pci_try_reset_bus - Try to reset a PCI bus
4792 * @bus: top level PCI bus to reset
4793 *
4794 * Same as above except return -EAGAIN if the bus cannot be locked
4795 */
4796 int pci_try_reset_bus(struct pci_bus *bus)
4797 {
4798 int rc;
4799
4800 rc = pci_bus_reset(bus, 1);
4801 if (rc)
4802 return rc;
4803
4804 pci_bus_save_and_disable(bus);
4805
4806 if (pci_bus_trylock(bus)) {
4807 might_sleep();
4808 pci_reset_bridge_secondary_bus(bus->self);
4809 pci_bus_unlock(bus);
4810 } else
4811 rc = -EAGAIN;
4812
4813 pci_bus_restore(bus);
4814
4815 return rc;
4816 }
4817 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4818
4819 /**
4820 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4821 * @dev: PCI device to query
4822 *
4823 * Returns mmrbc: maximum designed memory read count in bytes
4824 * or appropriate error value.
4825 */
4826 int pcix_get_max_mmrbc(struct pci_dev *dev)
4827 {
4828 int cap;
4829 u32 stat;
4830
4831 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4832 if (!cap)
4833 return -EINVAL;
4834
4835 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4836 return -EINVAL;
4837
4838 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4839 }
4840 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4841
4842 /**
4843 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4844 * @dev: PCI device to query
4845 *
4846 * Returns mmrbc: maximum memory read count in bytes
4847 * or appropriate error value.
4848 */
4849 int pcix_get_mmrbc(struct pci_dev *dev)
4850 {
4851 int cap;
4852 u16 cmd;
4853
4854 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4855 if (!cap)
4856 return -EINVAL;
4857
4858 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4859 return -EINVAL;
4860
4861 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4862 }
4863 EXPORT_SYMBOL(pcix_get_mmrbc);
4864
4865 /**
4866 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4867 * @dev: PCI device to query
4868 * @mmrbc: maximum memory read count in bytes
4869 * valid values are 512, 1024, 2048, 4096
4870 *
4871 * If possible sets maximum memory read byte count, some bridges have erratas
4872 * that prevent this.
4873 */
4874 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4875 {
4876 int cap;
4877 u32 stat, v, o;
4878 u16 cmd;
4879
4880 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4881 return -EINVAL;
4882
4883 v = ffs(mmrbc) - 10;
4884
4885 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4886 if (!cap)
4887 return -EINVAL;
4888
4889 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4890 return -EINVAL;
4891
4892 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4893 return -E2BIG;
4894
4895 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4896 return -EINVAL;
4897
4898 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4899 if (o != v) {
4900 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4901 return -EIO;
4902
4903 cmd &= ~PCI_X_CMD_MAX_READ;
4904 cmd |= v << 2;
4905 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4906 return -EIO;
4907 }
4908 return 0;
4909 }
4910 EXPORT_SYMBOL(pcix_set_mmrbc);
4911
4912 /**
4913 * pcie_get_readrq - get PCI Express read request size
4914 * @dev: PCI device to query
4915 *
4916 * Returns maximum memory read request in bytes
4917 * or appropriate error value.
4918 */
4919 int pcie_get_readrq(struct pci_dev *dev)
4920 {
4921 u16 ctl;
4922
4923 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4924
4925 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4926 }
4927 EXPORT_SYMBOL(pcie_get_readrq);
4928
4929 /**
4930 * pcie_set_readrq - set PCI Express maximum memory read request
4931 * @dev: PCI device to query
4932 * @rq: maximum memory read count in bytes
4933 * valid values are 128, 256, 512, 1024, 2048, 4096
4934 *
4935 * If possible sets maximum memory read request in bytes
4936 */
4937 int pcie_set_readrq(struct pci_dev *dev, int rq)
4938 {
4939 u16 v;
4940
4941 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4942 return -EINVAL;
4943
4944 /*
4945 * If using the "performance" PCIe config, we clamp the
4946 * read rq size to the max packet size to prevent the
4947 * host bridge generating requests larger than we can
4948 * cope with
4949 */
4950 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4951 int mps = pcie_get_mps(dev);
4952
4953 if (mps < rq)
4954 rq = mps;
4955 }
4956
4957 v = (ffs(rq) - 8) << 12;
4958
4959 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4960 PCI_EXP_DEVCTL_READRQ, v);
4961 }
4962 EXPORT_SYMBOL(pcie_set_readrq);
4963
4964 /**
4965 * pcie_get_mps - get PCI Express maximum payload size
4966 * @dev: PCI device to query
4967 *
4968 * Returns maximum payload size in bytes
4969 */
4970 int pcie_get_mps(struct pci_dev *dev)
4971 {
4972 u16 ctl;
4973
4974 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4975
4976 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4977 }
4978 EXPORT_SYMBOL(pcie_get_mps);
4979
4980 /**
4981 * pcie_set_mps - set PCI Express maximum payload size
4982 * @dev: PCI device to query
4983 * @mps: maximum payload size in bytes
4984 * valid values are 128, 256, 512, 1024, 2048, 4096
4985 *
4986 * If possible sets maximum payload size
4987 */
4988 int pcie_set_mps(struct pci_dev *dev, int mps)
4989 {
4990 u16 v;
4991
4992 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4993 return -EINVAL;
4994
4995 v = ffs(mps) - 8;
4996 if (v > dev->pcie_mpss)
4997 return -EINVAL;
4998 v <<= 5;
4999
5000 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5001 PCI_EXP_DEVCTL_PAYLOAD, v);
5002 }
5003 EXPORT_SYMBOL(pcie_set_mps);
5004
5005 /**
5006 * pcie_get_minimum_link - determine minimum link settings of a PCI device
5007 * @dev: PCI device to query
5008 * @speed: storage for minimum speed
5009 * @width: storage for minimum width
5010 *
5011 * This function will walk up the PCI device chain and determine the minimum
5012 * link width and speed of the device.
5013 */
5014 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
5015 enum pcie_link_width *width)
5016 {
5017 int ret;
5018
5019 *speed = PCI_SPEED_UNKNOWN;
5020 *width = PCIE_LNK_WIDTH_UNKNOWN;
5021
5022 while (dev) {
5023 u16 lnksta;
5024 enum pci_bus_speed next_speed;
5025 enum pcie_link_width next_width;
5026
5027 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5028 if (ret)
5029 return ret;
5030
5031 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5032 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5033 PCI_EXP_LNKSTA_NLW_SHIFT;
5034
5035 if (next_speed < *speed)
5036 *speed = next_speed;
5037
5038 if (next_width < *width)
5039 *width = next_width;
5040
5041 dev = dev->bus->self;
5042 }
5043
5044 return 0;
5045 }
5046 EXPORT_SYMBOL(pcie_get_minimum_link);
5047
5048 /**
5049 * pci_select_bars - Make BAR mask from the type of resource
5050 * @dev: the PCI device for which BAR mask is made
5051 * @flags: resource type mask to be selected
5052 *
5053 * This helper routine makes bar mask from the type of resource.
5054 */
5055 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5056 {
5057 int i, bars = 0;
5058 for (i = 0; i < PCI_NUM_RESOURCES; i++)
5059 if (pci_resource_flags(dev, i) & flags)
5060 bars |= (1 << i);
5061 return bars;
5062 }
5063 EXPORT_SYMBOL(pci_select_bars);
5064
5065 /* Some architectures require additional programming to enable VGA */
5066 static arch_set_vga_state_t arch_set_vga_state;
5067
5068 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5069 {
5070 arch_set_vga_state = func; /* NULL disables */
5071 }
5072
5073 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5074 unsigned int command_bits, u32 flags)
5075 {
5076 if (arch_set_vga_state)
5077 return arch_set_vga_state(dev, decode, command_bits,
5078 flags);
5079 return 0;
5080 }
5081
5082 /**
5083 * pci_set_vga_state - set VGA decode state on device and parents if requested
5084 * @dev: the PCI device
5085 * @decode: true = enable decoding, false = disable decoding
5086 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5087 * @flags: traverse ancestors and change bridges
5088 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5089 */
5090 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5091 unsigned int command_bits, u32 flags)
5092 {
5093 struct pci_bus *bus;
5094 struct pci_dev *bridge;
5095 u16 cmd;
5096 int rc;
5097
5098 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5099
5100 /* ARCH specific VGA enables */
5101 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5102 if (rc)
5103 return rc;
5104
5105 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5106 pci_read_config_word(dev, PCI_COMMAND, &cmd);
5107 if (decode == true)
5108 cmd |= command_bits;
5109 else
5110 cmd &= ~command_bits;
5111 pci_write_config_word(dev, PCI_COMMAND, cmd);
5112 }
5113
5114 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5115 return 0;
5116
5117 bus = dev->bus;
5118 while (bus) {
5119 bridge = bus->self;
5120 if (bridge) {
5121 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5122 &cmd);
5123 if (decode == true)
5124 cmd |= PCI_BRIDGE_CTL_VGA;
5125 else
5126 cmd &= ~PCI_BRIDGE_CTL_VGA;
5127 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5128 cmd);
5129 }
5130 bus = bus->parent;
5131 }
5132 return 0;
5133 }
5134
5135 /**
5136 * pci_add_dma_alias - Add a DMA devfn alias for a device
5137 * @dev: the PCI device for which alias is added
5138 * @devfn: alias slot and function
5139 *
5140 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
5141 * It should be called early, preferably as PCI fixup header quirk.
5142 */
5143 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5144 {
5145 if (!dev->dma_alias_mask)
5146 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5147 sizeof(long), GFP_KERNEL);
5148 if (!dev->dma_alias_mask) {
5149 dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n");
5150 return;
5151 }
5152
5153 set_bit(devfn, dev->dma_alias_mask);
5154 dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n",
5155 PCI_SLOT(devfn), PCI_FUNC(devfn));
5156 }
5157
5158 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5159 {
5160 return (dev1->dma_alias_mask &&
5161 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5162 (dev2->dma_alias_mask &&
5163 test_bit(dev1->devfn, dev2->dma_alias_mask));
5164 }
5165
5166 bool pci_device_is_present(struct pci_dev *pdev)
5167 {
5168 u32 v;
5169
5170 if (pci_dev_is_disconnected(pdev))
5171 return false;
5172 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5173 }
5174 EXPORT_SYMBOL_GPL(pci_device_is_present);
5175
5176 void pci_ignore_hotplug(struct pci_dev *dev)
5177 {
5178 struct pci_dev *bridge = dev->bus->self;
5179
5180 dev->ignore_hotplug = 1;
5181 /* Propagate the "ignore hotplug" setting to the parent bridge. */
5182 if (bridge)
5183 bridge->ignore_hotplug = 1;
5184 }
5185 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5186
5187 resource_size_t __weak pcibios_default_alignment(void)
5188 {
5189 return 0;
5190 }
5191
5192 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5193 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5194 static DEFINE_SPINLOCK(resource_alignment_lock);
5195
5196 /**
5197 * pci_specified_resource_alignment - get resource alignment specified by user.
5198 * @dev: the PCI device to get
5199 * @resize: whether or not to change resources' size when reassigning alignment
5200 *
5201 * RETURNS: Resource alignment if it is specified.
5202 * Zero if it is not specified.
5203 */
5204 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5205 bool *resize)
5206 {
5207 int seg, bus, slot, func, align_order, count;
5208 unsigned short vendor, device, subsystem_vendor, subsystem_device;
5209 resource_size_t align = pcibios_default_alignment();
5210 char *p;
5211
5212 spin_lock(&resource_alignment_lock);
5213 p = resource_alignment_param;
5214 if (!*p && !align)
5215 goto out;
5216 if (pci_has_flag(PCI_PROBE_ONLY)) {
5217 align = 0;
5218 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5219 goto out;
5220 }
5221
5222 while (*p) {
5223 count = 0;
5224 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5225 p[count] == '@') {
5226 p += count + 1;
5227 } else {
5228 align_order = -1;
5229 }
5230 if (strncmp(p, "pci:", 4) == 0) {
5231 /* PCI vendor/device (subvendor/subdevice) ids are specified */
5232 p += 4;
5233 if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5234 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5235 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5236 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5237 p);
5238 break;
5239 }
5240 subsystem_vendor = subsystem_device = 0;
5241 }
5242 p += count;
5243 if ((!vendor || (vendor == dev->vendor)) &&
5244 (!device || (device == dev->device)) &&
5245 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5246 (!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5247 *resize = true;
5248 if (align_order == -1)
5249 align = PAGE_SIZE;
5250 else
5251 align = 1 << align_order;
5252 /* Found */
5253 break;
5254 }
5255 }
5256 else {
5257 if (sscanf(p, "%x:%x:%x.%x%n",
5258 &seg, &bus, &slot, &func, &count) != 4) {
5259 seg = 0;
5260 if (sscanf(p, "%x:%x.%x%n",
5261 &bus, &slot, &func, &count) != 3) {
5262 /* Invalid format */
5263 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5264 p);
5265 break;
5266 }
5267 }
5268 p += count;
5269 if (seg == pci_domain_nr(dev->bus) &&
5270 bus == dev->bus->number &&
5271 slot == PCI_SLOT(dev->devfn) &&
5272 func == PCI_FUNC(dev->devfn)) {
5273 *resize = true;
5274 if (align_order == -1)
5275 align = PAGE_SIZE;
5276 else
5277 align = 1 << align_order;
5278 /* Found */
5279 break;
5280 }
5281 }
5282 if (*p != ';' && *p != ',') {
5283 /* End of param or invalid format */
5284 break;
5285 }
5286 p++;
5287 }
5288 out:
5289 spin_unlock(&resource_alignment_lock);
5290 return align;
5291 }
5292
5293 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5294 resource_size_t align, bool resize)
5295 {
5296 struct resource *r = &dev->resource[bar];
5297 resource_size_t size;
5298
5299 if (!(r->flags & IORESOURCE_MEM))
5300 return;
5301
5302 if (r->flags & IORESOURCE_PCI_FIXED) {
5303 dev_info(&dev->dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5304 bar, r, (unsigned long long)align);
5305 return;
5306 }
5307
5308 size = resource_size(r);
5309 if (size >= align)
5310 return;
5311
5312 /*
5313 * Increase the alignment of the resource. There are two ways we
5314 * can do this:
5315 *
5316 * 1) Increase the size of the resource. BARs are aligned on their
5317 * size, so when we reallocate space for this resource, we'll
5318 * allocate it with the larger alignment. This also prevents
5319 * assignment of any other BARs inside the alignment region, so
5320 * if we're requesting page alignment, this means no other BARs
5321 * will share the page.
5322 *
5323 * The disadvantage is that this makes the resource larger than
5324 * the hardware BAR, which may break drivers that compute things
5325 * based on the resource size, e.g., to find registers at a
5326 * fixed offset before the end of the BAR.
5327 *
5328 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5329 * set r->start to the desired alignment. By itself this
5330 * doesn't prevent other BARs being put inside the alignment
5331 * region, but if we realign *every* resource of every device in
5332 * the system, none of them will share an alignment region.
5333 *
5334 * When the user has requested alignment for only some devices via
5335 * the "pci=resource_alignment" argument, "resize" is true and we
5336 * use the first method. Otherwise we assume we're aligning all
5337 * devices and we use the second.
5338 */
5339
5340 dev_info(&dev->dev, "BAR%d %pR: requesting alignment to %#llx\n",
5341 bar, r, (unsigned long long)align);
5342
5343 if (resize) {
5344 r->start = 0;
5345 r->end = align - 1;
5346 } else {
5347 r->flags &= ~IORESOURCE_SIZEALIGN;
5348 r->flags |= IORESOURCE_STARTALIGN;
5349 r->start = align;
5350 r->end = r->start + size - 1;
5351 }
5352 r->flags |= IORESOURCE_UNSET;
5353 }
5354
5355 /*
5356 * This function disables memory decoding and releases memory resources
5357 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5358 * It also rounds up size to specified alignment.
5359 * Later on, the kernel will assign page-aligned memory resource back
5360 * to the device.
5361 */
5362 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5363 {
5364 int i;
5365 struct resource *r;
5366 resource_size_t align;
5367 u16 command;
5368 bool resize = false;
5369
5370 /*
5371 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5372 * 3.4.1.11. Their resources are allocated from the space
5373 * described by the VF BARx register in the PF's SR-IOV capability.
5374 * We can't influence their alignment here.
5375 */
5376 if (dev->is_virtfn)
5377 return;
5378
5379 /* check if specified PCI is target device to reassign */
5380 align = pci_specified_resource_alignment(dev, &resize);
5381 if (!align)
5382 return;
5383
5384 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5385 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5386 dev_warn(&dev->dev,
5387 "Can't reassign resources to host bridge.\n");
5388 return;
5389 }
5390
5391 dev_info(&dev->dev,
5392 "Disabling memory decoding and releasing memory resources.\n");
5393 pci_read_config_word(dev, PCI_COMMAND, &command);
5394 command &= ~PCI_COMMAND_MEMORY;
5395 pci_write_config_word(dev, PCI_COMMAND, command);
5396
5397 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
5398 pci_request_resource_alignment(dev, i, align, resize);
5399
5400 /*
5401 * Need to disable bridge's resource window,
5402 * to enable the kernel to reassign new resource
5403 * window later on.
5404 */
5405 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5406 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5407 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5408 r = &dev->resource[i];
5409 if (!(r->flags & IORESOURCE_MEM))
5410 continue;
5411 r->flags |= IORESOURCE_UNSET;
5412 r->end = resource_size(r) - 1;
5413 r->start = 0;
5414 }
5415 pci_disable_bridge_window(dev);
5416 }
5417 }
5418
5419 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5420 {
5421 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5422 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5423 spin_lock(&resource_alignment_lock);
5424 strncpy(resource_alignment_param, buf, count);
5425 resource_alignment_param[count] = '\0';
5426 spin_unlock(&resource_alignment_lock);
5427 return count;
5428 }
5429
5430 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5431 {
5432 size_t count;
5433 spin_lock(&resource_alignment_lock);
5434 count = snprintf(buf, size, "%s", resource_alignment_param);
5435 spin_unlock(&resource_alignment_lock);
5436 return count;
5437 }
5438
5439 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5440 {
5441 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5442 }
5443
5444 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5445 const char *buf, size_t count)
5446 {
5447 return pci_set_resource_alignment_param(buf, count);
5448 }
5449
5450 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5451 pci_resource_alignment_store);
5452
5453 static int __init pci_resource_alignment_sysfs_init(void)
5454 {
5455 return bus_create_file(&pci_bus_type,
5456 &bus_attr_resource_alignment);
5457 }
5458 late_initcall(pci_resource_alignment_sysfs_init);
5459
5460 static void pci_no_domains(void)
5461 {
5462 #ifdef CONFIG_PCI_DOMAINS
5463 pci_domains_supported = 0;
5464 #endif
5465 }
5466
5467 #ifdef CONFIG_PCI_DOMAINS
5468 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5469
5470 int pci_get_new_domain_nr(void)
5471 {
5472 return atomic_inc_return(&__domain_nr);
5473 }
5474
5475 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5476 static int of_pci_bus_find_domain_nr(struct device *parent)
5477 {
5478 static int use_dt_domains = -1;
5479 int domain = -1;
5480
5481 if (parent)
5482 domain = of_get_pci_domain_nr(parent->of_node);
5483 /*
5484 * Check DT domain and use_dt_domains values.
5485 *
5486 * If DT domain property is valid (domain >= 0) and
5487 * use_dt_domains != 0, the DT assignment is valid since this means
5488 * we have not previously allocated a domain number by using
5489 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5490 * 1, to indicate that we have just assigned a domain number from
5491 * DT.
5492 *
5493 * If DT domain property value is not valid (ie domain < 0), and we
5494 * have not previously assigned a domain number from DT
5495 * (use_dt_domains != 1) we should assign a domain number by
5496 * using the:
5497 *
5498 * pci_get_new_domain_nr()
5499 *
5500 * API and update the use_dt_domains value to keep track of method we
5501 * are using to assign domain numbers (use_dt_domains = 0).
5502 *
5503 * All other combinations imply we have a platform that is trying
5504 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5505 * which is a recipe for domain mishandling and it is prevented by
5506 * invalidating the domain value (domain = -1) and printing a
5507 * corresponding error.
5508 */
5509 if (domain >= 0 && use_dt_domains) {
5510 use_dt_domains = 1;
5511 } else if (domain < 0 && use_dt_domains != 1) {
5512 use_dt_domains = 0;
5513 domain = pci_get_new_domain_nr();
5514 } else {
5515 dev_err(parent, "Node %pOF has inconsistent \"linux,pci-domain\" property in DT\n",
5516 parent->of_node);
5517 domain = -1;
5518 }
5519
5520 return domain;
5521 }
5522
5523 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5524 {
5525 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5526 acpi_pci_bus_find_domain_nr(bus);
5527 }
5528 #endif
5529 #endif
5530
5531 /**
5532 * pci_ext_cfg_avail - can we access extended PCI config space?
5533 *
5534 * Returns 1 if we can access PCI extended config space (offsets
5535 * greater than 0xff). This is the default implementation. Architecture
5536 * implementations can override this.
5537 */
5538 int __weak pci_ext_cfg_avail(void)
5539 {
5540 return 1;
5541 }
5542
5543 void __weak pci_fixup_cardbus(struct pci_bus *bus)
5544 {
5545 }
5546 EXPORT_SYMBOL(pci_fixup_cardbus);
5547
5548 static int __init pci_setup(char *str)
5549 {
5550 while (str) {
5551 char *k = strchr(str, ',');
5552 if (k)
5553 *k++ = 0;
5554 if (*str && (str = pcibios_setup(str)) && *str) {
5555 if (!strcmp(str, "nomsi")) {
5556 pci_no_msi();
5557 } else if (!strcmp(str, "noaer")) {
5558 pci_no_aer();
5559 } else if (!strncmp(str, "realloc=", 8)) {
5560 pci_realloc_get_opt(str + 8);
5561 } else if (!strncmp(str, "realloc", 7)) {
5562 pci_realloc_get_opt("on");
5563 } else if (!strcmp(str, "nodomains")) {
5564 pci_no_domains();
5565 } else if (!strncmp(str, "noari", 5)) {
5566 pcie_ari_disabled = true;
5567 } else if (!strncmp(str, "cbiosize=", 9)) {
5568 pci_cardbus_io_size = memparse(str + 9, &str);
5569 } else if (!strncmp(str, "cbmemsize=", 10)) {
5570 pci_cardbus_mem_size = memparse(str + 10, &str);
5571 } else if (!strncmp(str, "resource_alignment=", 19)) {
5572 pci_set_resource_alignment_param(str + 19,
5573 strlen(str + 19));
5574 } else if (!strncmp(str, "ecrc=", 5)) {
5575 pcie_ecrc_get_policy(str + 5);
5576 } else if (!strncmp(str, "hpiosize=", 9)) {
5577 pci_hotplug_io_size = memparse(str + 9, &str);
5578 } else if (!strncmp(str, "hpmemsize=", 10)) {
5579 pci_hotplug_mem_size = memparse(str + 10, &str);
5580 } else if (!strncmp(str, "hpbussize=", 10)) {
5581 pci_hotplug_bus_size =
5582 simple_strtoul(str + 10, &str, 0);
5583 if (pci_hotplug_bus_size > 0xff)
5584 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5585 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5586 pcie_bus_config = PCIE_BUS_TUNE_OFF;
5587 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
5588 pcie_bus_config = PCIE_BUS_SAFE;
5589 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
5590 pcie_bus_config = PCIE_BUS_PERFORMANCE;
5591 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5592 pcie_bus_config = PCIE_BUS_PEER2PEER;
5593 } else if (!strncmp(str, "pcie_scan_all", 13)) {
5594 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5595 } else {
5596 printk(KERN_ERR "PCI: Unknown option `%s'\n",
5597 str);
5598 }
5599 }
5600 str = k;
5601 }
5602 return 0;
5603 }
5604 early_param("pci", pci_setup);