]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/pci/pci.c
9779483f81fdadc0d527069583d7f6c29531cb29
[mirror_ubuntu-bionic-kernel.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/delay.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/of.h>
16 #include <linux/of_pci.h>
17 #include <linux/pci.h>
18 #include <linux/pm.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/spinlock.h>
22 #include <linux/string.h>
23 #include <linux/log2.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/pm_wakeup.h>
26 #include <linux/interrupt.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
31 #include <asm/setup.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include "pci.h"
35
36 const char *pci_power_names[] = {
37 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
38 };
39 EXPORT_SYMBOL_GPL(pci_power_names);
40
41 int isa_dma_bridge_buggy;
42 EXPORT_SYMBOL(isa_dma_bridge_buggy);
43
44 int pci_pci_problems;
45 EXPORT_SYMBOL(pci_pci_problems);
46
47 unsigned int pci_pm_d3_delay;
48
49 static void pci_pme_list_scan(struct work_struct *work);
50
51 static LIST_HEAD(pci_pme_list);
52 static DEFINE_MUTEX(pci_pme_list_mutex);
53 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
54
55 struct pci_pme_device {
56 struct list_head list;
57 struct pci_dev *dev;
58 };
59
60 #define PME_TIMEOUT 1000 /* How long between PME checks */
61
62 static void pci_dev_d3_sleep(struct pci_dev *dev)
63 {
64 unsigned int delay = dev->d3_delay;
65
66 if (delay < pci_pm_d3_delay)
67 delay = pci_pm_d3_delay;
68
69 if (delay)
70 msleep(delay);
71 }
72
73 #ifdef CONFIG_PCI_DOMAINS
74 int pci_domains_supported = 1;
75 #endif
76
77 #define DEFAULT_CARDBUS_IO_SIZE (256)
78 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
79 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
80 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
81 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
82
83 #define DEFAULT_HOTPLUG_IO_SIZE (256)
84 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
85 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
86 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
87 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
88
89 #define DEFAULT_HOTPLUG_BUS_SIZE 1
90 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
91
92 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
93
94 /*
95 * The default CLS is used if arch didn't set CLS explicitly and not
96 * all pci devices agree on the same value. Arch can override either
97 * the dfl or actual value as it sees fit. Don't forget this is
98 * measured in 32-bit words, not bytes.
99 */
100 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
101 u8 pci_cache_line_size;
102
103 /*
104 * If we set up a device for bus mastering, we need to check the latency
105 * timer as certain BIOSes forget to set it properly.
106 */
107 unsigned int pcibios_max_latency = 255;
108
109 /* If set, the PCIe ARI capability will not be used. */
110 static bool pcie_ari_disabled;
111
112 /* Disable bridge_d3 for all PCIe ports */
113 static bool pci_bridge_d3_disable;
114 /* Force bridge_d3 for all PCIe ports */
115 static bool pci_bridge_d3_force;
116
117 static int __init pcie_port_pm_setup(char *str)
118 {
119 if (!strcmp(str, "off"))
120 pci_bridge_d3_disable = true;
121 else if (!strcmp(str, "force"))
122 pci_bridge_d3_force = true;
123 return 1;
124 }
125 __setup("pcie_port_pm=", pcie_port_pm_setup);
126
127 /**
128 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
129 * @bus: pointer to PCI bus structure to search
130 *
131 * Given a PCI bus, returns the highest PCI bus number present in the set
132 * including the given PCI bus and its list of child PCI buses.
133 */
134 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
135 {
136 struct pci_bus *tmp;
137 unsigned char max, n;
138
139 max = bus->busn_res.end;
140 list_for_each_entry(tmp, &bus->children, node) {
141 n = pci_bus_max_busnr(tmp);
142 if (n > max)
143 max = n;
144 }
145 return max;
146 }
147 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
148
149 #ifdef CONFIG_HAS_IOMEM
150 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
151 {
152 struct resource *res = &pdev->resource[bar];
153
154 /*
155 * Make sure the BAR is actually a memory resource, not an IO resource
156 */
157 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
158 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
159 return NULL;
160 }
161 return ioremap_nocache(res->start, resource_size(res));
162 }
163 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
164
165 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
166 {
167 /*
168 * Make sure the BAR is actually a memory resource, not an IO resource
169 */
170 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
171 WARN_ON(1);
172 return NULL;
173 }
174 return ioremap_wc(pci_resource_start(pdev, bar),
175 pci_resource_len(pdev, bar));
176 }
177 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
178 #endif
179
180
181 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
182 u8 pos, int cap, int *ttl)
183 {
184 u8 id;
185 u16 ent;
186
187 pci_bus_read_config_byte(bus, devfn, pos, &pos);
188
189 while ((*ttl)--) {
190 if (pos < 0x40)
191 break;
192 pos &= ~3;
193 pci_bus_read_config_word(bus, devfn, pos, &ent);
194
195 id = ent & 0xff;
196 if (id == 0xff)
197 break;
198 if (id == cap)
199 return pos;
200 pos = (ent >> 8);
201 }
202 return 0;
203 }
204
205 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
206 u8 pos, int cap)
207 {
208 int ttl = PCI_FIND_CAP_TTL;
209
210 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
211 }
212
213 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
214 {
215 return __pci_find_next_cap(dev->bus, dev->devfn,
216 pos + PCI_CAP_LIST_NEXT, cap);
217 }
218 EXPORT_SYMBOL_GPL(pci_find_next_capability);
219
220 static int __pci_bus_find_cap_start(struct pci_bus *bus,
221 unsigned int devfn, u8 hdr_type)
222 {
223 u16 status;
224
225 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
226 if (!(status & PCI_STATUS_CAP_LIST))
227 return 0;
228
229 switch (hdr_type) {
230 case PCI_HEADER_TYPE_NORMAL:
231 case PCI_HEADER_TYPE_BRIDGE:
232 return PCI_CAPABILITY_LIST;
233 case PCI_HEADER_TYPE_CARDBUS:
234 return PCI_CB_CAPABILITY_LIST;
235 }
236
237 return 0;
238 }
239
240 /**
241 * pci_find_capability - query for devices' capabilities
242 * @dev: PCI device to query
243 * @cap: capability code
244 *
245 * Tell if a device supports a given PCI capability.
246 * Returns the address of the requested capability structure within the
247 * device's PCI configuration space or 0 in case the device does not
248 * support it. Possible values for @cap:
249 *
250 * %PCI_CAP_ID_PM Power Management
251 * %PCI_CAP_ID_AGP Accelerated Graphics Port
252 * %PCI_CAP_ID_VPD Vital Product Data
253 * %PCI_CAP_ID_SLOTID Slot Identification
254 * %PCI_CAP_ID_MSI Message Signalled Interrupts
255 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
256 * %PCI_CAP_ID_PCIX PCI-X
257 * %PCI_CAP_ID_EXP PCI Express
258 */
259 int pci_find_capability(struct pci_dev *dev, int cap)
260 {
261 int pos;
262
263 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
264 if (pos)
265 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
266
267 return pos;
268 }
269 EXPORT_SYMBOL(pci_find_capability);
270
271 /**
272 * pci_bus_find_capability - query for devices' capabilities
273 * @bus: the PCI bus to query
274 * @devfn: PCI device to query
275 * @cap: capability code
276 *
277 * Like pci_find_capability() but works for pci devices that do not have a
278 * pci_dev structure set up yet.
279 *
280 * Returns the address of the requested capability structure within the
281 * device's PCI configuration space or 0 in case the device does not
282 * support it.
283 */
284 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
285 {
286 int pos;
287 u8 hdr_type;
288
289 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
290
291 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
292 if (pos)
293 pos = __pci_find_next_cap(bus, devfn, pos, cap);
294
295 return pos;
296 }
297 EXPORT_SYMBOL(pci_bus_find_capability);
298
299 /**
300 * pci_find_next_ext_capability - Find an extended capability
301 * @dev: PCI device to query
302 * @start: address at which to start looking (0 to start at beginning of list)
303 * @cap: capability code
304 *
305 * Returns the address of the next matching extended capability structure
306 * within the device's PCI configuration space or 0 if the device does
307 * not support it. Some capabilities can occur several times, e.g., the
308 * vendor-specific capability, and this provides a way to find them all.
309 */
310 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
311 {
312 u32 header;
313 int ttl;
314 int pos = PCI_CFG_SPACE_SIZE;
315
316 /* minimum 8 bytes per capability */
317 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
318
319 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
320 return 0;
321
322 if (start)
323 pos = start;
324
325 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
326 return 0;
327
328 /*
329 * If we have no capabilities, this is indicated by cap ID,
330 * cap version and next pointer all being 0.
331 */
332 if (header == 0)
333 return 0;
334
335 while (ttl-- > 0) {
336 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
337 return pos;
338
339 pos = PCI_EXT_CAP_NEXT(header);
340 if (pos < PCI_CFG_SPACE_SIZE)
341 break;
342
343 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
344 break;
345 }
346
347 return 0;
348 }
349 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
350
351 /**
352 * pci_find_ext_capability - Find an extended capability
353 * @dev: PCI device to query
354 * @cap: capability code
355 *
356 * Returns the address of the requested extended capability structure
357 * within the device's PCI configuration space or 0 if the device does
358 * not support it. Possible values for @cap:
359 *
360 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
361 * %PCI_EXT_CAP_ID_VC Virtual Channel
362 * %PCI_EXT_CAP_ID_DSN Device Serial Number
363 * %PCI_EXT_CAP_ID_PWR Power Budgeting
364 */
365 int pci_find_ext_capability(struct pci_dev *dev, int cap)
366 {
367 return pci_find_next_ext_capability(dev, 0, cap);
368 }
369 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
370
371 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
372 {
373 int rc, ttl = PCI_FIND_CAP_TTL;
374 u8 cap, mask;
375
376 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
377 mask = HT_3BIT_CAP_MASK;
378 else
379 mask = HT_5BIT_CAP_MASK;
380
381 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
382 PCI_CAP_ID_HT, &ttl);
383 while (pos) {
384 rc = pci_read_config_byte(dev, pos + 3, &cap);
385 if (rc != PCIBIOS_SUCCESSFUL)
386 return 0;
387
388 if ((cap & mask) == ht_cap)
389 return pos;
390
391 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
392 pos + PCI_CAP_LIST_NEXT,
393 PCI_CAP_ID_HT, &ttl);
394 }
395
396 return 0;
397 }
398 /**
399 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
400 * @dev: PCI device to query
401 * @pos: Position from which to continue searching
402 * @ht_cap: Hypertransport capability code
403 *
404 * To be used in conjunction with pci_find_ht_capability() to search for
405 * all capabilities matching @ht_cap. @pos should always be a value returned
406 * from pci_find_ht_capability().
407 *
408 * NB. To be 100% safe against broken PCI devices, the caller should take
409 * steps to avoid an infinite loop.
410 */
411 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
412 {
413 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
414 }
415 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
416
417 /**
418 * pci_find_ht_capability - query a device's Hypertransport capabilities
419 * @dev: PCI device to query
420 * @ht_cap: Hypertransport capability code
421 *
422 * Tell if a device supports a given Hypertransport capability.
423 * Returns an address within the device's PCI configuration space
424 * or 0 in case the device does not support the request capability.
425 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
426 * which has a Hypertransport capability matching @ht_cap.
427 */
428 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
429 {
430 int pos;
431
432 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
433 if (pos)
434 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
435
436 return pos;
437 }
438 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
439
440 /**
441 * pci_find_parent_resource - return resource region of parent bus of given region
442 * @dev: PCI device structure contains resources to be searched
443 * @res: child resource record for which parent is sought
444 *
445 * For given resource region of given device, return the resource
446 * region of parent bus the given region is contained in.
447 */
448 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
449 struct resource *res)
450 {
451 const struct pci_bus *bus = dev->bus;
452 struct resource *r;
453 int i;
454
455 pci_bus_for_each_resource(bus, r, i) {
456 if (!r)
457 continue;
458 if (res->start && resource_contains(r, res)) {
459
460 /*
461 * If the window is prefetchable but the BAR is
462 * not, the allocator made a mistake.
463 */
464 if (r->flags & IORESOURCE_PREFETCH &&
465 !(res->flags & IORESOURCE_PREFETCH))
466 return NULL;
467
468 /*
469 * If we're below a transparent bridge, there may
470 * be both a positively-decoded aperture and a
471 * subtractively-decoded region that contain the BAR.
472 * We want the positively-decoded one, so this depends
473 * on pci_bus_for_each_resource() giving us those
474 * first.
475 */
476 return r;
477 }
478 }
479 return NULL;
480 }
481 EXPORT_SYMBOL(pci_find_parent_resource);
482
483 /**
484 * pci_find_resource - Return matching PCI device resource
485 * @dev: PCI device to query
486 * @res: Resource to look for
487 *
488 * Goes over standard PCI resources (BARs) and checks if the given resource
489 * is partially or fully contained in any of them. In that case the
490 * matching resource is returned, %NULL otherwise.
491 */
492 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
493 {
494 int i;
495
496 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
497 struct resource *r = &dev->resource[i];
498
499 if (r->start && resource_contains(r, res))
500 return r;
501 }
502
503 return NULL;
504 }
505 EXPORT_SYMBOL(pci_find_resource);
506
507 /**
508 * pci_find_pcie_root_port - return PCIe Root Port
509 * @dev: PCI device to query
510 *
511 * Traverse up the parent chain and return the PCIe Root Port PCI Device
512 * for a given PCI Device.
513 */
514 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
515 {
516 struct pci_dev *bridge, *highest_pcie_bridge = NULL;
517
518 bridge = pci_upstream_bridge(dev);
519 while (bridge && pci_is_pcie(bridge)) {
520 highest_pcie_bridge = bridge;
521 bridge = pci_upstream_bridge(bridge);
522 }
523
524 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
525 return NULL;
526
527 return highest_pcie_bridge;
528 }
529 EXPORT_SYMBOL(pci_find_pcie_root_port);
530
531 /**
532 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
533 * @dev: the PCI device to operate on
534 * @pos: config space offset of status word
535 * @mask: mask of bit(s) to care about in status word
536 *
537 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
538 */
539 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
540 {
541 int i;
542
543 /* Wait for Transaction Pending bit clean */
544 for (i = 0; i < 4; i++) {
545 u16 status;
546 if (i)
547 msleep((1 << (i - 1)) * 100);
548
549 pci_read_config_word(dev, pos, &status);
550 if (!(status & mask))
551 return 1;
552 }
553
554 return 0;
555 }
556
557 /**
558 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
559 * @dev: PCI device to have its BARs restored
560 *
561 * Restore the BAR values for a given device, so as to make it
562 * accessible by its driver.
563 */
564 static void pci_restore_bars(struct pci_dev *dev)
565 {
566 int i;
567
568 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
569 pci_update_resource(dev, i);
570 }
571
572 static const struct pci_platform_pm_ops *pci_platform_pm;
573
574 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
575 {
576 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
577 !ops->choose_state || !ops->sleep_wake || !ops->run_wake ||
578 !ops->need_resume)
579 return -EINVAL;
580 pci_platform_pm = ops;
581 return 0;
582 }
583
584 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
585 {
586 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
587 }
588
589 static inline int platform_pci_set_power_state(struct pci_dev *dev,
590 pci_power_t t)
591 {
592 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
593 }
594
595 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
596 {
597 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
598 }
599
600 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
601 {
602 return pci_platform_pm ?
603 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
604 }
605
606 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
607 {
608 return pci_platform_pm ?
609 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
610 }
611
612 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
613 {
614 return pci_platform_pm ?
615 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
616 }
617
618 static inline bool platform_pci_need_resume(struct pci_dev *dev)
619 {
620 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
621 }
622
623 /**
624 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
625 * given PCI device
626 * @dev: PCI device to handle.
627 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
628 *
629 * RETURN VALUE:
630 * -EINVAL if the requested state is invalid.
631 * -EIO if device does not support PCI PM or its PM capabilities register has a
632 * wrong version, or device doesn't support the requested state.
633 * 0 if device already is in the requested state.
634 * 0 if device's power state has been successfully changed.
635 */
636 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
637 {
638 u16 pmcsr;
639 bool need_restore = false;
640
641 /* Check if we're already there */
642 if (dev->current_state == state)
643 return 0;
644
645 if (!dev->pm_cap)
646 return -EIO;
647
648 if (state < PCI_D0 || state > PCI_D3hot)
649 return -EINVAL;
650
651 /* Validate current state:
652 * Can enter D0 from any state, but if we can only go deeper
653 * to sleep if we're already in a low power state
654 */
655 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
656 && dev->current_state > state) {
657 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
658 dev->current_state, state);
659 return -EINVAL;
660 }
661
662 /* check if this device supports the desired state */
663 if ((state == PCI_D1 && !dev->d1_support)
664 || (state == PCI_D2 && !dev->d2_support))
665 return -EIO;
666
667 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
668
669 /* If we're (effectively) in D3, force entire word to 0.
670 * This doesn't affect PME_Status, disables PME_En, and
671 * sets PowerState to 0.
672 */
673 switch (dev->current_state) {
674 case PCI_D0:
675 case PCI_D1:
676 case PCI_D2:
677 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
678 pmcsr |= state;
679 break;
680 case PCI_D3hot:
681 case PCI_D3cold:
682 case PCI_UNKNOWN: /* Boot-up */
683 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
684 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
685 need_restore = true;
686 /* Fall-through: force to D0 */
687 default:
688 pmcsr = 0;
689 break;
690 }
691
692 /* enter specified state */
693 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
694
695 /* Mandatory power management transition delays */
696 /* see PCI PM 1.1 5.6.1 table 18 */
697 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
698 pci_dev_d3_sleep(dev);
699 else if (state == PCI_D2 || dev->current_state == PCI_D2)
700 udelay(PCI_PM_D2_DELAY);
701
702 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
703 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
704 if (dev->current_state != state && printk_ratelimit())
705 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
706 dev->current_state);
707
708 /*
709 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
710 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
711 * from D3hot to D0 _may_ perform an internal reset, thereby
712 * going to "D0 Uninitialized" rather than "D0 Initialized".
713 * For example, at least some versions of the 3c905B and the
714 * 3c556B exhibit this behaviour.
715 *
716 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
717 * devices in a D3hot state at boot. Consequently, we need to
718 * restore at least the BARs so that the device will be
719 * accessible to its driver.
720 */
721 if (need_restore)
722 pci_restore_bars(dev);
723
724 if (dev->bus->self)
725 pcie_aspm_pm_state_change(dev->bus->self);
726
727 return 0;
728 }
729
730 /**
731 * pci_update_current_state - Read power state of given device and cache it
732 * @dev: PCI device to handle.
733 * @state: State to cache in case the device doesn't have the PM capability
734 *
735 * The power state is read from the PMCSR register, which however is
736 * inaccessible in D3cold. The platform firmware is therefore queried first
737 * to detect accessibility of the register. In case the platform firmware
738 * reports an incorrect state or the device isn't power manageable by the
739 * platform at all, we try to detect D3cold by testing accessibility of the
740 * vendor ID in config space.
741 */
742 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
743 {
744 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
745 !pci_device_is_present(dev)) {
746 dev->current_state = PCI_D3cold;
747 } else if (dev->pm_cap) {
748 u16 pmcsr;
749
750 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
751 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
752 } else {
753 dev->current_state = state;
754 }
755 }
756
757 /**
758 * pci_power_up - Put the given device into D0 forcibly
759 * @dev: PCI device to power up
760 */
761 void pci_power_up(struct pci_dev *dev)
762 {
763 if (platform_pci_power_manageable(dev))
764 platform_pci_set_power_state(dev, PCI_D0);
765
766 pci_raw_set_power_state(dev, PCI_D0);
767 pci_update_current_state(dev, PCI_D0);
768 }
769
770 /**
771 * pci_platform_power_transition - Use platform to change device power state
772 * @dev: PCI device to handle.
773 * @state: State to put the device into.
774 */
775 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
776 {
777 int error;
778
779 if (platform_pci_power_manageable(dev)) {
780 error = platform_pci_set_power_state(dev, state);
781 if (!error)
782 pci_update_current_state(dev, state);
783 } else
784 error = -ENODEV;
785
786 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
787 dev->current_state = PCI_D0;
788
789 return error;
790 }
791
792 /**
793 * pci_wakeup - Wake up a PCI device
794 * @pci_dev: Device to handle.
795 * @ign: ignored parameter
796 */
797 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
798 {
799 pci_wakeup_event(pci_dev);
800 pm_request_resume(&pci_dev->dev);
801 return 0;
802 }
803
804 /**
805 * pci_wakeup_bus - Walk given bus and wake up devices on it
806 * @bus: Top bus of the subtree to walk.
807 */
808 static void pci_wakeup_bus(struct pci_bus *bus)
809 {
810 if (bus)
811 pci_walk_bus(bus, pci_wakeup, NULL);
812 }
813
814 /**
815 * __pci_start_power_transition - Start power transition of a PCI device
816 * @dev: PCI device to handle.
817 * @state: State to put the device into.
818 */
819 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
820 {
821 if (state == PCI_D0) {
822 pci_platform_power_transition(dev, PCI_D0);
823 /*
824 * Mandatory power management transition delays, see
825 * PCI Express Base Specification Revision 2.0 Section
826 * 6.6.1: Conventional Reset. Do not delay for
827 * devices powered on/off by corresponding bridge,
828 * because have already delayed for the bridge.
829 */
830 if (dev->runtime_d3cold) {
831 if (dev->d3cold_delay)
832 msleep(dev->d3cold_delay);
833 /*
834 * When powering on a bridge from D3cold, the
835 * whole hierarchy may be powered on into
836 * D0uninitialized state, resume them to give
837 * them a chance to suspend again
838 */
839 pci_wakeup_bus(dev->subordinate);
840 }
841 }
842 }
843
844 /**
845 * __pci_dev_set_current_state - Set current state of a PCI device
846 * @dev: Device to handle
847 * @data: pointer to state to be set
848 */
849 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
850 {
851 pci_power_t state = *(pci_power_t *)data;
852
853 dev->current_state = state;
854 return 0;
855 }
856
857 /**
858 * __pci_bus_set_current_state - Walk given bus and set current state of devices
859 * @bus: Top bus of the subtree to walk.
860 * @state: state to be set
861 */
862 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
863 {
864 if (bus)
865 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
866 }
867
868 /**
869 * __pci_complete_power_transition - Complete power transition of a PCI device
870 * @dev: PCI device to handle.
871 * @state: State to put the device into.
872 *
873 * This function should not be called directly by device drivers.
874 */
875 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
876 {
877 int ret;
878
879 if (state <= PCI_D0)
880 return -EINVAL;
881 ret = pci_platform_power_transition(dev, state);
882 /* Power off the bridge may power off the whole hierarchy */
883 if (!ret && state == PCI_D3cold)
884 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
885 return ret;
886 }
887 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
888
889 /**
890 * pci_set_power_state - Set the power state of a PCI device
891 * @dev: PCI device to handle.
892 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
893 *
894 * Transition a device to a new power state, using the platform firmware and/or
895 * the device's PCI PM registers.
896 *
897 * RETURN VALUE:
898 * -EINVAL if the requested state is invalid.
899 * -EIO if device does not support PCI PM or its PM capabilities register has a
900 * wrong version, or device doesn't support the requested state.
901 * 0 if device already is in the requested state.
902 * 0 if device's power state has been successfully changed.
903 */
904 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
905 {
906 int error;
907
908 /* bound the state we're entering */
909 if (state > PCI_D3cold)
910 state = PCI_D3cold;
911 else if (state < PCI_D0)
912 state = PCI_D0;
913 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
914 /*
915 * If the device or the parent bridge do not support PCI PM,
916 * ignore the request if we're doing anything other than putting
917 * it into D0 (which would only happen on boot).
918 */
919 return 0;
920
921 /* Check if we're already there */
922 if (dev->current_state == state)
923 return 0;
924
925 __pci_start_power_transition(dev, state);
926
927 /* This device is quirked not to be put into D3, so
928 don't put it in D3 */
929 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
930 return 0;
931
932 /*
933 * To put device in D3cold, we put device into D3hot in native
934 * way, then put device into D3cold with platform ops
935 */
936 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
937 PCI_D3hot : state);
938
939 if (!__pci_complete_power_transition(dev, state))
940 error = 0;
941
942 return error;
943 }
944 EXPORT_SYMBOL(pci_set_power_state);
945
946 /**
947 * pci_choose_state - Choose the power state of a PCI device
948 * @dev: PCI device to be suspended
949 * @state: target sleep state for the whole system. This is the value
950 * that is passed to suspend() function.
951 *
952 * Returns PCI power state suitable for given device and given system
953 * message.
954 */
955
956 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
957 {
958 pci_power_t ret;
959
960 if (!dev->pm_cap)
961 return PCI_D0;
962
963 ret = platform_pci_choose_state(dev);
964 if (ret != PCI_POWER_ERROR)
965 return ret;
966
967 switch (state.event) {
968 case PM_EVENT_ON:
969 return PCI_D0;
970 case PM_EVENT_FREEZE:
971 case PM_EVENT_PRETHAW:
972 /* REVISIT both freeze and pre-thaw "should" use D0 */
973 case PM_EVENT_SUSPEND:
974 case PM_EVENT_HIBERNATE:
975 return PCI_D3hot;
976 default:
977 dev_info(&dev->dev, "unrecognized suspend event %d\n",
978 state.event);
979 BUG();
980 }
981 return PCI_D0;
982 }
983 EXPORT_SYMBOL(pci_choose_state);
984
985 #define PCI_EXP_SAVE_REGS 7
986
987 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
988 u16 cap, bool extended)
989 {
990 struct pci_cap_saved_state *tmp;
991
992 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
993 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
994 return tmp;
995 }
996 return NULL;
997 }
998
999 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1000 {
1001 return _pci_find_saved_cap(dev, cap, false);
1002 }
1003
1004 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1005 {
1006 return _pci_find_saved_cap(dev, cap, true);
1007 }
1008
1009 static int pci_save_pcie_state(struct pci_dev *dev)
1010 {
1011 int i = 0;
1012 struct pci_cap_saved_state *save_state;
1013 u16 *cap;
1014
1015 if (!pci_is_pcie(dev))
1016 return 0;
1017
1018 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1019 if (!save_state) {
1020 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1021 return -ENOMEM;
1022 }
1023
1024 cap = (u16 *)&save_state->cap.data[0];
1025 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1026 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1027 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1028 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1029 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1030 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1031 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1032
1033 return 0;
1034 }
1035
1036 static void pci_restore_pcie_state(struct pci_dev *dev)
1037 {
1038 int i = 0;
1039 struct pci_cap_saved_state *save_state;
1040 u16 *cap;
1041
1042 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1043 if (!save_state)
1044 return;
1045
1046 cap = (u16 *)&save_state->cap.data[0];
1047 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1048 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1049 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1050 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1051 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1052 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1053 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1054 }
1055
1056
1057 static int pci_save_pcix_state(struct pci_dev *dev)
1058 {
1059 int pos;
1060 struct pci_cap_saved_state *save_state;
1061
1062 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1063 if (!pos)
1064 return 0;
1065
1066 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1067 if (!save_state) {
1068 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1069 return -ENOMEM;
1070 }
1071
1072 pci_read_config_word(dev, pos + PCI_X_CMD,
1073 (u16 *)save_state->cap.data);
1074
1075 return 0;
1076 }
1077
1078 static void pci_restore_pcix_state(struct pci_dev *dev)
1079 {
1080 int i = 0, pos;
1081 struct pci_cap_saved_state *save_state;
1082 u16 *cap;
1083
1084 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1085 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1086 if (!save_state || !pos)
1087 return;
1088 cap = (u16 *)&save_state->cap.data[0];
1089
1090 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1091 }
1092
1093
1094 /**
1095 * pci_save_state - save the PCI configuration space of a device before suspending
1096 * @dev: - PCI device that we're dealing with
1097 */
1098 int pci_save_state(struct pci_dev *dev)
1099 {
1100 int i;
1101 /* XXX: 100% dword access ok here? */
1102 for (i = 0; i < 16; i++)
1103 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1104 dev->state_saved = true;
1105
1106 i = pci_save_pcie_state(dev);
1107 if (i != 0)
1108 return i;
1109
1110 i = pci_save_pcix_state(dev);
1111 if (i != 0)
1112 return i;
1113
1114 return pci_save_vc_state(dev);
1115 }
1116 EXPORT_SYMBOL(pci_save_state);
1117
1118 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1119 u32 saved_val, int retry)
1120 {
1121 u32 val;
1122
1123 pci_read_config_dword(pdev, offset, &val);
1124 if (val == saved_val)
1125 return;
1126
1127 for (;;) {
1128 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1129 offset, val, saved_val);
1130 pci_write_config_dword(pdev, offset, saved_val);
1131 if (retry-- <= 0)
1132 return;
1133
1134 pci_read_config_dword(pdev, offset, &val);
1135 if (val == saved_val)
1136 return;
1137
1138 mdelay(1);
1139 }
1140 }
1141
1142 static void pci_restore_config_space_range(struct pci_dev *pdev,
1143 int start, int end, int retry)
1144 {
1145 int index;
1146
1147 for (index = end; index >= start; index--)
1148 pci_restore_config_dword(pdev, 4 * index,
1149 pdev->saved_config_space[index],
1150 retry);
1151 }
1152
1153 static void pci_restore_config_space(struct pci_dev *pdev)
1154 {
1155 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1156 pci_restore_config_space_range(pdev, 10, 15, 0);
1157 /* Restore BARs before the command register. */
1158 pci_restore_config_space_range(pdev, 4, 9, 10);
1159 pci_restore_config_space_range(pdev, 0, 3, 0);
1160 } else {
1161 pci_restore_config_space_range(pdev, 0, 15, 0);
1162 }
1163 }
1164
1165 /**
1166 * pci_restore_state - Restore the saved state of a PCI device
1167 * @dev: - PCI device that we're dealing with
1168 */
1169 void pci_restore_state(struct pci_dev *dev)
1170 {
1171 if (!dev->state_saved)
1172 return;
1173
1174 /* PCI Express register must be restored first */
1175 pci_restore_pcie_state(dev);
1176 pci_restore_ats_state(dev);
1177 pci_restore_vc_state(dev);
1178
1179 pci_cleanup_aer_error_status_regs(dev);
1180
1181 pci_restore_config_space(dev);
1182
1183 pci_restore_pcix_state(dev);
1184 pci_restore_msi_state(dev);
1185
1186 /* Restore ACS and IOV configuration state */
1187 pci_enable_acs(dev);
1188 pci_restore_iov_state(dev);
1189
1190 dev->state_saved = false;
1191 }
1192 EXPORT_SYMBOL(pci_restore_state);
1193
1194 struct pci_saved_state {
1195 u32 config_space[16];
1196 struct pci_cap_saved_data cap[0];
1197 };
1198
1199 /**
1200 * pci_store_saved_state - Allocate and return an opaque struct containing
1201 * the device saved state.
1202 * @dev: PCI device that we're dealing with
1203 *
1204 * Return NULL if no state or error.
1205 */
1206 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1207 {
1208 struct pci_saved_state *state;
1209 struct pci_cap_saved_state *tmp;
1210 struct pci_cap_saved_data *cap;
1211 size_t size;
1212
1213 if (!dev->state_saved)
1214 return NULL;
1215
1216 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1217
1218 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1219 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1220
1221 state = kzalloc(size, GFP_KERNEL);
1222 if (!state)
1223 return NULL;
1224
1225 memcpy(state->config_space, dev->saved_config_space,
1226 sizeof(state->config_space));
1227
1228 cap = state->cap;
1229 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1230 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1231 memcpy(cap, &tmp->cap, len);
1232 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1233 }
1234 /* Empty cap_save terminates list */
1235
1236 return state;
1237 }
1238 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1239
1240 /**
1241 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1242 * @dev: PCI device that we're dealing with
1243 * @state: Saved state returned from pci_store_saved_state()
1244 */
1245 int pci_load_saved_state(struct pci_dev *dev,
1246 struct pci_saved_state *state)
1247 {
1248 struct pci_cap_saved_data *cap;
1249
1250 dev->state_saved = false;
1251
1252 if (!state)
1253 return 0;
1254
1255 memcpy(dev->saved_config_space, state->config_space,
1256 sizeof(state->config_space));
1257
1258 cap = state->cap;
1259 while (cap->size) {
1260 struct pci_cap_saved_state *tmp;
1261
1262 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1263 if (!tmp || tmp->cap.size != cap->size)
1264 return -EINVAL;
1265
1266 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1267 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1268 sizeof(struct pci_cap_saved_data) + cap->size);
1269 }
1270
1271 dev->state_saved = true;
1272 return 0;
1273 }
1274 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1275
1276 /**
1277 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1278 * and free the memory allocated for it.
1279 * @dev: PCI device that we're dealing with
1280 * @state: Pointer to saved state returned from pci_store_saved_state()
1281 */
1282 int pci_load_and_free_saved_state(struct pci_dev *dev,
1283 struct pci_saved_state **state)
1284 {
1285 int ret = pci_load_saved_state(dev, *state);
1286 kfree(*state);
1287 *state = NULL;
1288 return ret;
1289 }
1290 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1291
1292 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1293 {
1294 return pci_enable_resources(dev, bars);
1295 }
1296
1297 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1298 {
1299 int err;
1300 struct pci_dev *bridge;
1301 u16 cmd;
1302 u8 pin;
1303
1304 err = pci_set_power_state(dev, PCI_D0);
1305 if (err < 0 && err != -EIO)
1306 return err;
1307
1308 bridge = pci_upstream_bridge(dev);
1309 if (bridge)
1310 pcie_aspm_powersave_config_link(bridge);
1311
1312 err = pcibios_enable_device(dev, bars);
1313 if (err < 0)
1314 return err;
1315 pci_fixup_device(pci_fixup_enable, dev);
1316
1317 if (dev->msi_enabled || dev->msix_enabled)
1318 return 0;
1319
1320 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1321 if (pin) {
1322 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1323 if (cmd & PCI_COMMAND_INTX_DISABLE)
1324 pci_write_config_word(dev, PCI_COMMAND,
1325 cmd & ~PCI_COMMAND_INTX_DISABLE);
1326 }
1327
1328 return 0;
1329 }
1330
1331 /**
1332 * pci_reenable_device - Resume abandoned device
1333 * @dev: PCI device to be resumed
1334 *
1335 * Note this function is a backend of pci_default_resume and is not supposed
1336 * to be called by normal code, write proper resume handler and use it instead.
1337 */
1338 int pci_reenable_device(struct pci_dev *dev)
1339 {
1340 if (pci_is_enabled(dev))
1341 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1342 return 0;
1343 }
1344 EXPORT_SYMBOL(pci_reenable_device);
1345
1346 static void pci_enable_bridge(struct pci_dev *dev)
1347 {
1348 struct pci_dev *bridge;
1349 int retval;
1350
1351 bridge = pci_upstream_bridge(dev);
1352 if (bridge)
1353 pci_enable_bridge(bridge);
1354
1355 if (pci_is_enabled(dev)) {
1356 if (!dev->is_busmaster)
1357 pci_set_master(dev);
1358 return;
1359 }
1360
1361 retval = pci_enable_device(dev);
1362 if (retval)
1363 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1364 retval);
1365 pci_set_master(dev);
1366 }
1367
1368 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1369 {
1370 struct pci_dev *bridge;
1371 int err;
1372 int i, bars = 0;
1373
1374 /*
1375 * Power state could be unknown at this point, either due to a fresh
1376 * boot or a device removal call. So get the current power state
1377 * so that things like MSI message writing will behave as expected
1378 * (e.g. if the device really is in D0 at enable time).
1379 */
1380 if (dev->pm_cap) {
1381 u16 pmcsr;
1382 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1383 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1384 }
1385
1386 if (atomic_inc_return(&dev->enable_cnt) > 1)
1387 return 0; /* already enabled */
1388
1389 bridge = pci_upstream_bridge(dev);
1390 if (bridge)
1391 pci_enable_bridge(bridge);
1392
1393 /* only skip sriov related */
1394 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1395 if (dev->resource[i].flags & flags)
1396 bars |= (1 << i);
1397 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1398 if (dev->resource[i].flags & flags)
1399 bars |= (1 << i);
1400
1401 err = do_pci_enable_device(dev, bars);
1402 if (err < 0)
1403 atomic_dec(&dev->enable_cnt);
1404 return err;
1405 }
1406
1407 /**
1408 * pci_enable_device_io - Initialize a device for use with IO space
1409 * @dev: PCI device to be initialized
1410 *
1411 * Initialize device before it's used by a driver. Ask low-level code
1412 * to enable I/O resources. Wake up the device if it was suspended.
1413 * Beware, this function can fail.
1414 */
1415 int pci_enable_device_io(struct pci_dev *dev)
1416 {
1417 return pci_enable_device_flags(dev, IORESOURCE_IO);
1418 }
1419 EXPORT_SYMBOL(pci_enable_device_io);
1420
1421 /**
1422 * pci_enable_device_mem - Initialize a device for use with Memory space
1423 * @dev: PCI device to be initialized
1424 *
1425 * Initialize device before it's used by a driver. Ask low-level code
1426 * to enable Memory resources. Wake up the device if it was suspended.
1427 * Beware, this function can fail.
1428 */
1429 int pci_enable_device_mem(struct pci_dev *dev)
1430 {
1431 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1432 }
1433 EXPORT_SYMBOL(pci_enable_device_mem);
1434
1435 /**
1436 * pci_enable_device - Initialize device before it's used by a driver.
1437 * @dev: PCI device to be initialized
1438 *
1439 * Initialize device before it's used by a driver. Ask low-level code
1440 * to enable I/O and memory. Wake up the device if it was suspended.
1441 * Beware, this function can fail.
1442 *
1443 * Note we don't actually enable the device many times if we call
1444 * this function repeatedly (we just increment the count).
1445 */
1446 int pci_enable_device(struct pci_dev *dev)
1447 {
1448 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1449 }
1450 EXPORT_SYMBOL(pci_enable_device);
1451
1452 /*
1453 * Managed PCI resources. This manages device on/off, intx/msi/msix
1454 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1455 * there's no need to track it separately. pci_devres is initialized
1456 * when a device is enabled using managed PCI device enable interface.
1457 */
1458 struct pci_devres {
1459 unsigned int enabled:1;
1460 unsigned int pinned:1;
1461 unsigned int orig_intx:1;
1462 unsigned int restore_intx:1;
1463 u32 region_mask;
1464 };
1465
1466 static void pcim_release(struct device *gendev, void *res)
1467 {
1468 struct pci_dev *dev = to_pci_dev(gendev);
1469 struct pci_devres *this = res;
1470 int i;
1471
1472 if (dev->msi_enabled)
1473 pci_disable_msi(dev);
1474 if (dev->msix_enabled)
1475 pci_disable_msix(dev);
1476
1477 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1478 if (this->region_mask & (1 << i))
1479 pci_release_region(dev, i);
1480
1481 if (this->restore_intx)
1482 pci_intx(dev, this->orig_intx);
1483
1484 if (this->enabled && !this->pinned)
1485 pci_disable_device(dev);
1486 }
1487
1488 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1489 {
1490 struct pci_devres *dr, *new_dr;
1491
1492 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1493 if (dr)
1494 return dr;
1495
1496 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1497 if (!new_dr)
1498 return NULL;
1499 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1500 }
1501
1502 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1503 {
1504 if (pci_is_managed(pdev))
1505 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1506 return NULL;
1507 }
1508
1509 /**
1510 * pcim_enable_device - Managed pci_enable_device()
1511 * @pdev: PCI device to be initialized
1512 *
1513 * Managed pci_enable_device().
1514 */
1515 int pcim_enable_device(struct pci_dev *pdev)
1516 {
1517 struct pci_devres *dr;
1518 int rc;
1519
1520 dr = get_pci_dr(pdev);
1521 if (unlikely(!dr))
1522 return -ENOMEM;
1523 if (dr->enabled)
1524 return 0;
1525
1526 rc = pci_enable_device(pdev);
1527 if (!rc) {
1528 pdev->is_managed = 1;
1529 dr->enabled = 1;
1530 }
1531 return rc;
1532 }
1533 EXPORT_SYMBOL(pcim_enable_device);
1534
1535 /**
1536 * pcim_pin_device - Pin managed PCI device
1537 * @pdev: PCI device to pin
1538 *
1539 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1540 * driver detach. @pdev must have been enabled with
1541 * pcim_enable_device().
1542 */
1543 void pcim_pin_device(struct pci_dev *pdev)
1544 {
1545 struct pci_devres *dr;
1546
1547 dr = find_pci_dr(pdev);
1548 WARN_ON(!dr || !dr->enabled);
1549 if (dr)
1550 dr->pinned = 1;
1551 }
1552 EXPORT_SYMBOL(pcim_pin_device);
1553
1554 /*
1555 * pcibios_add_device - provide arch specific hooks when adding device dev
1556 * @dev: the PCI device being added
1557 *
1558 * Permits the platform to provide architecture specific functionality when
1559 * devices are added. This is the default implementation. Architecture
1560 * implementations can override this.
1561 */
1562 int __weak pcibios_add_device(struct pci_dev *dev)
1563 {
1564 return 0;
1565 }
1566
1567 /**
1568 * pcibios_release_device - provide arch specific hooks when releasing device dev
1569 * @dev: the PCI device being released
1570 *
1571 * Permits the platform to provide architecture specific functionality when
1572 * devices are released. This is the default implementation. Architecture
1573 * implementations can override this.
1574 */
1575 void __weak pcibios_release_device(struct pci_dev *dev) {}
1576
1577 /**
1578 * pcibios_disable_device - disable arch specific PCI resources for device dev
1579 * @dev: the PCI device to disable
1580 *
1581 * Disables architecture specific PCI resources for the device. This
1582 * is the default implementation. Architecture implementations can
1583 * override this.
1584 */
1585 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1586
1587 /**
1588 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1589 * @irq: ISA IRQ to penalize
1590 * @active: IRQ active or not
1591 *
1592 * Permits the platform to provide architecture-specific functionality when
1593 * penalizing ISA IRQs. This is the default implementation. Architecture
1594 * implementations can override this.
1595 */
1596 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1597
1598 static void do_pci_disable_device(struct pci_dev *dev)
1599 {
1600 u16 pci_command;
1601
1602 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1603 if (pci_command & PCI_COMMAND_MASTER) {
1604 pci_command &= ~PCI_COMMAND_MASTER;
1605 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1606 }
1607
1608 pcibios_disable_device(dev);
1609 }
1610
1611 /**
1612 * pci_disable_enabled_device - Disable device without updating enable_cnt
1613 * @dev: PCI device to disable
1614 *
1615 * NOTE: This function is a backend of PCI power management routines and is
1616 * not supposed to be called drivers.
1617 */
1618 void pci_disable_enabled_device(struct pci_dev *dev)
1619 {
1620 if (pci_is_enabled(dev))
1621 do_pci_disable_device(dev);
1622 }
1623
1624 /**
1625 * pci_disable_device - Disable PCI device after use
1626 * @dev: PCI device to be disabled
1627 *
1628 * Signal to the system that the PCI device is not in use by the system
1629 * anymore. This only involves disabling PCI bus-mastering, if active.
1630 *
1631 * Note we don't actually disable the device until all callers of
1632 * pci_enable_device() have called pci_disable_device().
1633 */
1634 void pci_disable_device(struct pci_dev *dev)
1635 {
1636 struct pci_devres *dr;
1637
1638 dr = find_pci_dr(dev);
1639 if (dr)
1640 dr->enabled = 0;
1641
1642 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1643 "disabling already-disabled device");
1644
1645 if (atomic_dec_return(&dev->enable_cnt) != 0)
1646 return;
1647
1648 do_pci_disable_device(dev);
1649
1650 dev->is_busmaster = 0;
1651 }
1652 EXPORT_SYMBOL(pci_disable_device);
1653
1654 /**
1655 * pcibios_set_pcie_reset_state - set reset state for device dev
1656 * @dev: the PCIe device reset
1657 * @state: Reset state to enter into
1658 *
1659 *
1660 * Sets the PCIe reset state for the device. This is the default
1661 * implementation. Architecture implementations can override this.
1662 */
1663 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1664 enum pcie_reset_state state)
1665 {
1666 return -EINVAL;
1667 }
1668
1669 /**
1670 * pci_set_pcie_reset_state - set reset state for device dev
1671 * @dev: the PCIe device reset
1672 * @state: Reset state to enter into
1673 *
1674 *
1675 * Sets the PCI reset state for the device.
1676 */
1677 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1678 {
1679 return pcibios_set_pcie_reset_state(dev, state);
1680 }
1681 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1682
1683 /**
1684 * pci_check_pme_status - Check if given device has generated PME.
1685 * @dev: Device to check.
1686 *
1687 * Check the PME status of the device and if set, clear it and clear PME enable
1688 * (if set). Return 'true' if PME status and PME enable were both set or
1689 * 'false' otherwise.
1690 */
1691 bool pci_check_pme_status(struct pci_dev *dev)
1692 {
1693 int pmcsr_pos;
1694 u16 pmcsr;
1695 bool ret = false;
1696
1697 if (!dev->pm_cap)
1698 return false;
1699
1700 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1701 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1702 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1703 return false;
1704
1705 /* Clear PME status. */
1706 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1707 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1708 /* Disable PME to avoid interrupt flood. */
1709 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1710 ret = true;
1711 }
1712
1713 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1714
1715 return ret;
1716 }
1717
1718 /**
1719 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1720 * @dev: Device to handle.
1721 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1722 *
1723 * Check if @dev has generated PME and queue a resume request for it in that
1724 * case.
1725 */
1726 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1727 {
1728 if (pme_poll_reset && dev->pme_poll)
1729 dev->pme_poll = false;
1730
1731 if (pci_check_pme_status(dev)) {
1732 pci_wakeup_event(dev);
1733 pm_request_resume(&dev->dev);
1734 }
1735 return 0;
1736 }
1737
1738 /**
1739 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1740 * @bus: Top bus of the subtree to walk.
1741 */
1742 void pci_pme_wakeup_bus(struct pci_bus *bus)
1743 {
1744 if (bus)
1745 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1746 }
1747
1748
1749 /**
1750 * pci_pme_capable - check the capability of PCI device to generate PME#
1751 * @dev: PCI device to handle.
1752 * @state: PCI state from which device will issue PME#.
1753 */
1754 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1755 {
1756 if (!dev->pm_cap)
1757 return false;
1758
1759 return !!(dev->pme_support & (1 << state));
1760 }
1761 EXPORT_SYMBOL(pci_pme_capable);
1762
1763 static void pci_pme_list_scan(struct work_struct *work)
1764 {
1765 struct pci_pme_device *pme_dev, *n;
1766
1767 mutex_lock(&pci_pme_list_mutex);
1768 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1769 if (pme_dev->dev->pme_poll) {
1770 struct pci_dev *bridge;
1771
1772 bridge = pme_dev->dev->bus->self;
1773 /*
1774 * If bridge is in low power state, the
1775 * configuration space of subordinate devices
1776 * may be not accessible
1777 */
1778 if (bridge && bridge->current_state != PCI_D0)
1779 continue;
1780 pci_pme_wakeup(pme_dev->dev, NULL);
1781 } else {
1782 list_del(&pme_dev->list);
1783 kfree(pme_dev);
1784 }
1785 }
1786 if (!list_empty(&pci_pme_list))
1787 schedule_delayed_work(&pci_pme_work,
1788 msecs_to_jiffies(PME_TIMEOUT));
1789 mutex_unlock(&pci_pme_list_mutex);
1790 }
1791
1792 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1793 {
1794 u16 pmcsr;
1795
1796 if (!dev->pme_support)
1797 return;
1798
1799 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1800 /* Clear PME_Status by writing 1 to it and enable PME# */
1801 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1802 if (!enable)
1803 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1804
1805 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1806 }
1807
1808 /**
1809 * pci_pme_active - enable or disable PCI device's PME# function
1810 * @dev: PCI device to handle.
1811 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1812 *
1813 * The caller must verify that the device is capable of generating PME# before
1814 * calling this function with @enable equal to 'true'.
1815 */
1816 void pci_pme_active(struct pci_dev *dev, bool enable)
1817 {
1818 __pci_pme_active(dev, enable);
1819
1820 /*
1821 * PCI (as opposed to PCIe) PME requires that the device have
1822 * its PME# line hooked up correctly. Not all hardware vendors
1823 * do this, so the PME never gets delivered and the device
1824 * remains asleep. The easiest way around this is to
1825 * periodically walk the list of suspended devices and check
1826 * whether any have their PME flag set. The assumption is that
1827 * we'll wake up often enough anyway that this won't be a huge
1828 * hit, and the power savings from the devices will still be a
1829 * win.
1830 *
1831 * Although PCIe uses in-band PME message instead of PME# line
1832 * to report PME, PME does not work for some PCIe devices in
1833 * reality. For example, there are devices that set their PME
1834 * status bits, but don't really bother to send a PME message;
1835 * there are PCI Express Root Ports that don't bother to
1836 * trigger interrupts when they receive PME messages from the
1837 * devices below. So PME poll is used for PCIe devices too.
1838 */
1839
1840 if (dev->pme_poll) {
1841 struct pci_pme_device *pme_dev;
1842 if (enable) {
1843 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1844 GFP_KERNEL);
1845 if (!pme_dev) {
1846 dev_warn(&dev->dev, "can't enable PME#\n");
1847 return;
1848 }
1849 pme_dev->dev = dev;
1850 mutex_lock(&pci_pme_list_mutex);
1851 list_add(&pme_dev->list, &pci_pme_list);
1852 if (list_is_singular(&pci_pme_list))
1853 schedule_delayed_work(&pci_pme_work,
1854 msecs_to_jiffies(PME_TIMEOUT));
1855 mutex_unlock(&pci_pme_list_mutex);
1856 } else {
1857 mutex_lock(&pci_pme_list_mutex);
1858 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1859 if (pme_dev->dev == dev) {
1860 list_del(&pme_dev->list);
1861 kfree(pme_dev);
1862 break;
1863 }
1864 }
1865 mutex_unlock(&pci_pme_list_mutex);
1866 }
1867 }
1868
1869 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1870 }
1871 EXPORT_SYMBOL(pci_pme_active);
1872
1873 /**
1874 * __pci_enable_wake - enable PCI device as wakeup event source
1875 * @dev: PCI device affected
1876 * @state: PCI state from which device will issue wakeup events
1877 * @runtime: True if the events are to be generated at run time
1878 * @enable: True to enable event generation; false to disable
1879 *
1880 * This enables the device as a wakeup event source, or disables it.
1881 * When such events involves platform-specific hooks, those hooks are
1882 * called automatically by this routine.
1883 *
1884 * Devices with legacy power management (no standard PCI PM capabilities)
1885 * always require such platform hooks.
1886 *
1887 * RETURN VALUE:
1888 * 0 is returned on success
1889 * -EINVAL is returned if device is not supposed to wake up the system
1890 * Error code depending on the platform is returned if both the platform and
1891 * the native mechanism fail to enable the generation of wake-up events
1892 */
1893 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1894 bool runtime, bool enable)
1895 {
1896 int ret = 0;
1897
1898 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1899 return -EINVAL;
1900
1901 /* Don't do the same thing twice in a row for one device. */
1902 if (!!enable == !!dev->wakeup_prepared)
1903 return 0;
1904
1905 /*
1906 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1907 * Anderson we should be doing PME# wake enable followed by ACPI wake
1908 * enable. To disable wake-up we call the platform first, for symmetry.
1909 */
1910
1911 if (enable) {
1912 int error;
1913
1914 if (pci_pme_capable(dev, state))
1915 pci_pme_active(dev, true);
1916 else
1917 ret = 1;
1918 error = runtime ? platform_pci_run_wake(dev, true) :
1919 platform_pci_sleep_wake(dev, true);
1920 if (ret)
1921 ret = error;
1922 if (!ret)
1923 dev->wakeup_prepared = true;
1924 } else {
1925 if (runtime)
1926 platform_pci_run_wake(dev, false);
1927 else
1928 platform_pci_sleep_wake(dev, false);
1929 pci_pme_active(dev, false);
1930 dev->wakeup_prepared = false;
1931 }
1932
1933 return ret;
1934 }
1935 EXPORT_SYMBOL(__pci_enable_wake);
1936
1937 /**
1938 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1939 * @dev: PCI device to prepare
1940 * @enable: True to enable wake-up event generation; false to disable
1941 *
1942 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1943 * and this function allows them to set that up cleanly - pci_enable_wake()
1944 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1945 * ordering constraints.
1946 *
1947 * This function only returns error code if the device is not capable of
1948 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1949 * enable wake-up power for it.
1950 */
1951 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1952 {
1953 return pci_pme_capable(dev, PCI_D3cold) ?
1954 pci_enable_wake(dev, PCI_D3cold, enable) :
1955 pci_enable_wake(dev, PCI_D3hot, enable);
1956 }
1957 EXPORT_SYMBOL(pci_wake_from_d3);
1958
1959 /**
1960 * pci_target_state - find an appropriate low power state for a given PCI dev
1961 * @dev: PCI device
1962 *
1963 * Use underlying platform code to find a supported low power state for @dev.
1964 * If the platform can't manage @dev, return the deepest state from which it
1965 * can generate wake events, based on any available PME info.
1966 */
1967 static pci_power_t pci_target_state(struct pci_dev *dev)
1968 {
1969 pci_power_t target_state = PCI_D3hot;
1970
1971 if (platform_pci_power_manageable(dev)) {
1972 /*
1973 * Call the platform to choose the target state of the device
1974 * and enable wake-up from this state if supported.
1975 */
1976 pci_power_t state = platform_pci_choose_state(dev);
1977
1978 switch (state) {
1979 case PCI_POWER_ERROR:
1980 case PCI_UNKNOWN:
1981 break;
1982 case PCI_D1:
1983 case PCI_D2:
1984 if (pci_no_d1d2(dev))
1985 break;
1986 default:
1987 target_state = state;
1988 }
1989
1990 return target_state;
1991 }
1992
1993 if (!dev->pm_cap)
1994 target_state = PCI_D0;
1995
1996 /*
1997 * If the device is in D3cold even though it's not power-manageable by
1998 * the platform, it may have been powered down by non-standard means.
1999 * Best to let it slumber.
2000 */
2001 if (dev->current_state == PCI_D3cold)
2002 target_state = PCI_D3cold;
2003
2004 if (device_may_wakeup(&dev->dev)) {
2005 /*
2006 * Find the deepest state from which the device can generate
2007 * wake-up events, make it the target state and enable device
2008 * to generate PME#.
2009 */
2010 if (dev->pme_support) {
2011 while (target_state
2012 && !(dev->pme_support & (1 << target_state)))
2013 target_state--;
2014 }
2015 }
2016
2017 return target_state;
2018 }
2019
2020 /**
2021 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2022 * @dev: Device to handle.
2023 *
2024 * Choose the power state appropriate for the device depending on whether
2025 * it can wake up the system and/or is power manageable by the platform
2026 * (PCI_D3hot is the default) and put the device into that state.
2027 */
2028 int pci_prepare_to_sleep(struct pci_dev *dev)
2029 {
2030 pci_power_t target_state = pci_target_state(dev);
2031 int error;
2032
2033 if (target_state == PCI_POWER_ERROR)
2034 return -EIO;
2035
2036 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
2037
2038 error = pci_set_power_state(dev, target_state);
2039
2040 if (error)
2041 pci_enable_wake(dev, target_state, false);
2042
2043 return error;
2044 }
2045 EXPORT_SYMBOL(pci_prepare_to_sleep);
2046
2047 /**
2048 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2049 * @dev: Device to handle.
2050 *
2051 * Disable device's system wake-up capability and put it into D0.
2052 */
2053 int pci_back_from_sleep(struct pci_dev *dev)
2054 {
2055 pci_enable_wake(dev, PCI_D0, false);
2056 return pci_set_power_state(dev, PCI_D0);
2057 }
2058 EXPORT_SYMBOL(pci_back_from_sleep);
2059
2060 /**
2061 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2062 * @dev: PCI device being suspended.
2063 *
2064 * Prepare @dev to generate wake-up events at run time and put it into a low
2065 * power state.
2066 */
2067 int pci_finish_runtime_suspend(struct pci_dev *dev)
2068 {
2069 pci_power_t target_state = pci_target_state(dev);
2070 int error;
2071
2072 if (target_state == PCI_POWER_ERROR)
2073 return -EIO;
2074
2075 dev->runtime_d3cold = target_state == PCI_D3cold;
2076
2077 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
2078
2079 error = pci_set_power_state(dev, target_state);
2080
2081 if (error) {
2082 __pci_enable_wake(dev, target_state, true, false);
2083 dev->runtime_d3cold = false;
2084 }
2085
2086 return error;
2087 }
2088
2089 /**
2090 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2091 * @dev: Device to check.
2092 *
2093 * Return true if the device itself is capable of generating wake-up events
2094 * (through the platform or using the native PCIe PME) or if the device supports
2095 * PME and one of its upstream bridges can generate wake-up events.
2096 */
2097 bool pci_dev_run_wake(struct pci_dev *dev)
2098 {
2099 struct pci_bus *bus = dev->bus;
2100
2101 if (device_run_wake(&dev->dev))
2102 return true;
2103
2104 if (!dev->pme_support)
2105 return false;
2106
2107 /* PME-capable in principle, but not from the intended sleep state */
2108 if (!pci_pme_capable(dev, pci_target_state(dev)))
2109 return false;
2110
2111 while (bus->parent) {
2112 struct pci_dev *bridge = bus->self;
2113
2114 if (device_run_wake(&bridge->dev))
2115 return true;
2116
2117 bus = bus->parent;
2118 }
2119
2120 /* We have reached the root bus. */
2121 if (bus->bridge)
2122 return device_run_wake(bus->bridge);
2123
2124 return false;
2125 }
2126 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2127
2128 /**
2129 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2130 * @pci_dev: Device to check.
2131 *
2132 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2133 * reconfigured due to wakeup settings difference between system and runtime
2134 * suspend and the current power state of it is suitable for the upcoming
2135 * (system) transition.
2136 *
2137 * If the device is not configured for system wakeup, disable PME for it before
2138 * returning 'true' to prevent it from waking up the system unnecessarily.
2139 */
2140 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2141 {
2142 struct device *dev = &pci_dev->dev;
2143
2144 if (!pm_runtime_suspended(dev)
2145 || pci_target_state(pci_dev) != pci_dev->current_state
2146 || platform_pci_need_resume(pci_dev))
2147 return false;
2148
2149 /*
2150 * At this point the device is good to go unless it's been configured
2151 * to generate PME at the runtime suspend time, but it is not supposed
2152 * to wake up the system. In that case, simply disable PME for it
2153 * (it will have to be re-enabled on exit from system resume).
2154 *
2155 * If the device's power state is D3cold and the platform check above
2156 * hasn't triggered, the device's configuration is suitable and we don't
2157 * need to manipulate it at all.
2158 */
2159 spin_lock_irq(&dev->power.lock);
2160
2161 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2162 !device_may_wakeup(dev))
2163 __pci_pme_active(pci_dev, false);
2164
2165 spin_unlock_irq(&dev->power.lock);
2166 return true;
2167 }
2168
2169 /**
2170 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2171 * @pci_dev: Device to handle.
2172 *
2173 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2174 * it might have been disabled during the prepare phase of system suspend if
2175 * the device was not configured for system wakeup.
2176 */
2177 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2178 {
2179 struct device *dev = &pci_dev->dev;
2180
2181 if (!pci_dev_run_wake(pci_dev))
2182 return;
2183
2184 spin_lock_irq(&dev->power.lock);
2185
2186 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2187 __pci_pme_active(pci_dev, true);
2188
2189 spin_unlock_irq(&dev->power.lock);
2190 }
2191
2192 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2193 {
2194 struct device *dev = &pdev->dev;
2195 struct device *parent = dev->parent;
2196
2197 if (parent)
2198 pm_runtime_get_sync(parent);
2199 pm_runtime_get_noresume(dev);
2200 /*
2201 * pdev->current_state is set to PCI_D3cold during suspending,
2202 * so wait until suspending completes
2203 */
2204 pm_runtime_barrier(dev);
2205 /*
2206 * Only need to resume devices in D3cold, because config
2207 * registers are still accessible for devices suspended but
2208 * not in D3cold.
2209 */
2210 if (pdev->current_state == PCI_D3cold)
2211 pm_runtime_resume(dev);
2212 }
2213
2214 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2215 {
2216 struct device *dev = &pdev->dev;
2217 struct device *parent = dev->parent;
2218
2219 pm_runtime_put(dev);
2220 if (parent)
2221 pm_runtime_put_sync(parent);
2222 }
2223
2224 /**
2225 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2226 * @bridge: Bridge to check
2227 *
2228 * This function checks if it is possible to move the bridge to D3.
2229 * Currently we only allow D3 for recent enough PCIe ports.
2230 */
2231 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2232 {
2233 unsigned int year;
2234
2235 if (!pci_is_pcie(bridge))
2236 return false;
2237
2238 switch (pci_pcie_type(bridge)) {
2239 case PCI_EXP_TYPE_ROOT_PORT:
2240 case PCI_EXP_TYPE_UPSTREAM:
2241 case PCI_EXP_TYPE_DOWNSTREAM:
2242 if (pci_bridge_d3_disable)
2243 return false;
2244
2245 /*
2246 * Hotplug interrupts cannot be delivered if the link is down,
2247 * so parents of a hotplug port must stay awake. In addition,
2248 * hotplug ports handled by firmware in System Management Mode
2249 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2250 * For simplicity, disallow in general for now.
2251 */
2252 if (bridge->is_hotplug_bridge)
2253 return false;
2254
2255 if (pci_bridge_d3_force)
2256 return true;
2257
2258 /*
2259 * It should be safe to put PCIe ports from 2015 or newer
2260 * to D3.
2261 */
2262 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2263 year >= 2015) {
2264 return true;
2265 }
2266 break;
2267 }
2268
2269 return false;
2270 }
2271
2272 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2273 {
2274 bool *d3cold_ok = data;
2275
2276 if (/* The device needs to be allowed to go D3cold ... */
2277 dev->no_d3cold || !dev->d3cold_allowed ||
2278
2279 /* ... and if it is wakeup capable to do so from D3cold. */
2280 (device_may_wakeup(&dev->dev) &&
2281 !pci_pme_capable(dev, PCI_D3cold)) ||
2282
2283 /* If it is a bridge it must be allowed to go to D3. */
2284 !pci_power_manageable(dev))
2285
2286 *d3cold_ok = false;
2287
2288 return !*d3cold_ok;
2289 }
2290
2291 /*
2292 * pci_bridge_d3_update - Update bridge D3 capabilities
2293 * @dev: PCI device which is changed
2294 *
2295 * Update upstream bridge PM capabilities accordingly depending on if the
2296 * device PM configuration was changed or the device is being removed. The
2297 * change is also propagated upstream.
2298 */
2299 void pci_bridge_d3_update(struct pci_dev *dev)
2300 {
2301 bool remove = !device_is_registered(&dev->dev);
2302 struct pci_dev *bridge;
2303 bool d3cold_ok = true;
2304
2305 bridge = pci_upstream_bridge(dev);
2306 if (!bridge || !pci_bridge_d3_possible(bridge))
2307 return;
2308
2309 /*
2310 * If D3 is currently allowed for the bridge, removing one of its
2311 * children won't change that.
2312 */
2313 if (remove && bridge->bridge_d3)
2314 return;
2315
2316 /*
2317 * If D3 is currently allowed for the bridge and a child is added or
2318 * changed, disallowance of D3 can only be caused by that child, so
2319 * we only need to check that single device, not any of its siblings.
2320 *
2321 * If D3 is currently not allowed for the bridge, checking the device
2322 * first may allow us to skip checking its siblings.
2323 */
2324 if (!remove)
2325 pci_dev_check_d3cold(dev, &d3cold_ok);
2326
2327 /*
2328 * If D3 is currently not allowed for the bridge, this may be caused
2329 * either by the device being changed/removed or any of its siblings,
2330 * so we need to go through all children to find out if one of them
2331 * continues to block D3.
2332 */
2333 if (d3cold_ok && !bridge->bridge_d3)
2334 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2335 &d3cold_ok);
2336
2337 if (bridge->bridge_d3 != d3cold_ok) {
2338 bridge->bridge_d3 = d3cold_ok;
2339 /* Propagate change to upstream bridges */
2340 pci_bridge_d3_update(bridge);
2341 }
2342 }
2343
2344 /**
2345 * pci_d3cold_enable - Enable D3cold for device
2346 * @dev: PCI device to handle
2347 *
2348 * This function can be used in drivers to enable D3cold from the device
2349 * they handle. It also updates upstream PCI bridge PM capabilities
2350 * accordingly.
2351 */
2352 void pci_d3cold_enable(struct pci_dev *dev)
2353 {
2354 if (dev->no_d3cold) {
2355 dev->no_d3cold = false;
2356 pci_bridge_d3_update(dev);
2357 }
2358 }
2359 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2360
2361 /**
2362 * pci_d3cold_disable - Disable D3cold for device
2363 * @dev: PCI device to handle
2364 *
2365 * This function can be used in drivers to disable D3cold from the device
2366 * they handle. It also updates upstream PCI bridge PM capabilities
2367 * accordingly.
2368 */
2369 void pci_d3cold_disable(struct pci_dev *dev)
2370 {
2371 if (!dev->no_d3cold) {
2372 dev->no_d3cold = true;
2373 pci_bridge_d3_update(dev);
2374 }
2375 }
2376 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2377
2378 /**
2379 * pci_pm_init - Initialize PM functions of given PCI device
2380 * @dev: PCI device to handle.
2381 */
2382 void pci_pm_init(struct pci_dev *dev)
2383 {
2384 int pm;
2385 u16 pmc;
2386
2387 pm_runtime_forbid(&dev->dev);
2388 pm_runtime_set_active(&dev->dev);
2389 pm_runtime_enable(&dev->dev);
2390 device_enable_async_suspend(&dev->dev);
2391 dev->wakeup_prepared = false;
2392
2393 dev->pm_cap = 0;
2394 dev->pme_support = 0;
2395
2396 /* find PCI PM capability in list */
2397 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2398 if (!pm)
2399 return;
2400 /* Check device's ability to generate PME# */
2401 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2402
2403 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2404 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2405 pmc & PCI_PM_CAP_VER_MASK);
2406 return;
2407 }
2408
2409 dev->pm_cap = pm;
2410 dev->d3_delay = PCI_PM_D3_WAIT;
2411 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2412 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2413 dev->d3cold_allowed = true;
2414
2415 dev->d1_support = false;
2416 dev->d2_support = false;
2417 if (!pci_no_d1d2(dev)) {
2418 if (pmc & PCI_PM_CAP_D1)
2419 dev->d1_support = true;
2420 if (pmc & PCI_PM_CAP_D2)
2421 dev->d2_support = true;
2422
2423 if (dev->d1_support || dev->d2_support)
2424 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2425 dev->d1_support ? " D1" : "",
2426 dev->d2_support ? " D2" : "");
2427 }
2428
2429 pmc &= PCI_PM_CAP_PME_MASK;
2430 if (pmc) {
2431 dev_printk(KERN_DEBUG, &dev->dev,
2432 "PME# supported from%s%s%s%s%s\n",
2433 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2434 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2435 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2436 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2437 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2438 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2439 dev->pme_poll = true;
2440 /*
2441 * Make device's PM flags reflect the wake-up capability, but
2442 * let the user space enable it to wake up the system as needed.
2443 */
2444 device_set_wakeup_capable(&dev->dev, true);
2445 /* Disable the PME# generation functionality */
2446 pci_pme_active(dev, false);
2447 }
2448 }
2449
2450 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2451 {
2452 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2453
2454 switch (prop) {
2455 case PCI_EA_P_MEM:
2456 case PCI_EA_P_VF_MEM:
2457 flags |= IORESOURCE_MEM;
2458 break;
2459 case PCI_EA_P_MEM_PREFETCH:
2460 case PCI_EA_P_VF_MEM_PREFETCH:
2461 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2462 break;
2463 case PCI_EA_P_IO:
2464 flags |= IORESOURCE_IO;
2465 break;
2466 default:
2467 return 0;
2468 }
2469
2470 return flags;
2471 }
2472
2473 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2474 u8 prop)
2475 {
2476 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2477 return &dev->resource[bei];
2478 #ifdef CONFIG_PCI_IOV
2479 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2480 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2481 return &dev->resource[PCI_IOV_RESOURCES +
2482 bei - PCI_EA_BEI_VF_BAR0];
2483 #endif
2484 else if (bei == PCI_EA_BEI_ROM)
2485 return &dev->resource[PCI_ROM_RESOURCE];
2486 else
2487 return NULL;
2488 }
2489
2490 /* Read an Enhanced Allocation (EA) entry */
2491 static int pci_ea_read(struct pci_dev *dev, int offset)
2492 {
2493 struct resource *res;
2494 int ent_size, ent_offset = offset;
2495 resource_size_t start, end;
2496 unsigned long flags;
2497 u32 dw0, bei, base, max_offset;
2498 u8 prop;
2499 bool support_64 = (sizeof(resource_size_t) >= 8);
2500
2501 pci_read_config_dword(dev, ent_offset, &dw0);
2502 ent_offset += 4;
2503
2504 /* Entry size field indicates DWORDs after 1st */
2505 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2506
2507 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2508 goto out;
2509
2510 bei = (dw0 & PCI_EA_BEI) >> 4;
2511 prop = (dw0 & PCI_EA_PP) >> 8;
2512
2513 /*
2514 * If the Property is in the reserved range, try the Secondary
2515 * Property instead.
2516 */
2517 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2518 prop = (dw0 & PCI_EA_SP) >> 16;
2519 if (prop > PCI_EA_P_BRIDGE_IO)
2520 goto out;
2521
2522 res = pci_ea_get_resource(dev, bei, prop);
2523 if (!res) {
2524 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2525 goto out;
2526 }
2527
2528 flags = pci_ea_flags(dev, prop);
2529 if (!flags) {
2530 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2531 goto out;
2532 }
2533
2534 /* Read Base */
2535 pci_read_config_dword(dev, ent_offset, &base);
2536 start = (base & PCI_EA_FIELD_MASK);
2537 ent_offset += 4;
2538
2539 /* Read MaxOffset */
2540 pci_read_config_dword(dev, ent_offset, &max_offset);
2541 ent_offset += 4;
2542
2543 /* Read Base MSBs (if 64-bit entry) */
2544 if (base & PCI_EA_IS_64) {
2545 u32 base_upper;
2546
2547 pci_read_config_dword(dev, ent_offset, &base_upper);
2548 ent_offset += 4;
2549
2550 flags |= IORESOURCE_MEM_64;
2551
2552 /* entry starts above 32-bit boundary, can't use */
2553 if (!support_64 && base_upper)
2554 goto out;
2555
2556 if (support_64)
2557 start |= ((u64)base_upper << 32);
2558 }
2559
2560 end = start + (max_offset | 0x03);
2561
2562 /* Read MaxOffset MSBs (if 64-bit entry) */
2563 if (max_offset & PCI_EA_IS_64) {
2564 u32 max_offset_upper;
2565
2566 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2567 ent_offset += 4;
2568
2569 flags |= IORESOURCE_MEM_64;
2570
2571 /* entry too big, can't use */
2572 if (!support_64 && max_offset_upper)
2573 goto out;
2574
2575 if (support_64)
2576 end += ((u64)max_offset_upper << 32);
2577 }
2578
2579 if (end < start) {
2580 dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2581 goto out;
2582 }
2583
2584 if (ent_size != ent_offset - offset) {
2585 dev_err(&dev->dev,
2586 "EA Entry Size (%d) does not match length read (%d)\n",
2587 ent_size, ent_offset - offset);
2588 goto out;
2589 }
2590
2591 res->name = pci_name(dev);
2592 res->start = start;
2593 res->end = end;
2594 res->flags = flags;
2595
2596 if (bei <= PCI_EA_BEI_BAR5)
2597 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2598 bei, res, prop);
2599 else if (bei == PCI_EA_BEI_ROM)
2600 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2601 res, prop);
2602 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2603 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2604 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2605 else
2606 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2607 bei, res, prop);
2608
2609 out:
2610 return offset + ent_size;
2611 }
2612
2613 /* Enhanced Allocation Initialization */
2614 void pci_ea_init(struct pci_dev *dev)
2615 {
2616 int ea;
2617 u8 num_ent;
2618 int offset;
2619 int i;
2620
2621 /* find PCI EA capability in list */
2622 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2623 if (!ea)
2624 return;
2625
2626 /* determine the number of entries */
2627 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2628 &num_ent);
2629 num_ent &= PCI_EA_NUM_ENT_MASK;
2630
2631 offset = ea + PCI_EA_FIRST_ENT;
2632
2633 /* Skip DWORD 2 for type 1 functions */
2634 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2635 offset += 4;
2636
2637 /* parse each EA entry */
2638 for (i = 0; i < num_ent; ++i)
2639 offset = pci_ea_read(dev, offset);
2640 }
2641
2642 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2643 struct pci_cap_saved_state *new_cap)
2644 {
2645 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2646 }
2647
2648 /**
2649 * _pci_add_cap_save_buffer - allocate buffer for saving given
2650 * capability registers
2651 * @dev: the PCI device
2652 * @cap: the capability to allocate the buffer for
2653 * @extended: Standard or Extended capability ID
2654 * @size: requested size of the buffer
2655 */
2656 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2657 bool extended, unsigned int size)
2658 {
2659 int pos;
2660 struct pci_cap_saved_state *save_state;
2661
2662 if (extended)
2663 pos = pci_find_ext_capability(dev, cap);
2664 else
2665 pos = pci_find_capability(dev, cap);
2666
2667 if (!pos)
2668 return 0;
2669
2670 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2671 if (!save_state)
2672 return -ENOMEM;
2673
2674 save_state->cap.cap_nr = cap;
2675 save_state->cap.cap_extended = extended;
2676 save_state->cap.size = size;
2677 pci_add_saved_cap(dev, save_state);
2678
2679 return 0;
2680 }
2681
2682 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2683 {
2684 return _pci_add_cap_save_buffer(dev, cap, false, size);
2685 }
2686
2687 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2688 {
2689 return _pci_add_cap_save_buffer(dev, cap, true, size);
2690 }
2691
2692 /**
2693 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2694 * @dev: the PCI device
2695 */
2696 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2697 {
2698 int error;
2699
2700 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2701 PCI_EXP_SAVE_REGS * sizeof(u16));
2702 if (error)
2703 dev_err(&dev->dev,
2704 "unable to preallocate PCI Express save buffer\n");
2705
2706 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2707 if (error)
2708 dev_err(&dev->dev,
2709 "unable to preallocate PCI-X save buffer\n");
2710
2711 pci_allocate_vc_save_buffers(dev);
2712 }
2713
2714 void pci_free_cap_save_buffers(struct pci_dev *dev)
2715 {
2716 struct pci_cap_saved_state *tmp;
2717 struct hlist_node *n;
2718
2719 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2720 kfree(tmp);
2721 }
2722
2723 /**
2724 * pci_configure_ari - enable or disable ARI forwarding
2725 * @dev: the PCI device
2726 *
2727 * If @dev and its upstream bridge both support ARI, enable ARI in the
2728 * bridge. Otherwise, disable ARI in the bridge.
2729 */
2730 void pci_configure_ari(struct pci_dev *dev)
2731 {
2732 u32 cap;
2733 struct pci_dev *bridge;
2734
2735 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2736 return;
2737
2738 bridge = dev->bus->self;
2739 if (!bridge)
2740 return;
2741
2742 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2743 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2744 return;
2745
2746 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2747 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2748 PCI_EXP_DEVCTL2_ARI);
2749 bridge->ari_enabled = 1;
2750 } else {
2751 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2752 PCI_EXP_DEVCTL2_ARI);
2753 bridge->ari_enabled = 0;
2754 }
2755 }
2756
2757 static int pci_acs_enable;
2758
2759 /**
2760 * pci_request_acs - ask for ACS to be enabled if supported
2761 */
2762 void pci_request_acs(void)
2763 {
2764 pci_acs_enable = 1;
2765 }
2766
2767 /**
2768 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2769 * @dev: the PCI device
2770 */
2771 static void pci_std_enable_acs(struct pci_dev *dev)
2772 {
2773 int pos;
2774 u16 cap;
2775 u16 ctrl;
2776
2777 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2778 if (!pos)
2779 return;
2780
2781 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2782 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2783
2784 /* Source Validation */
2785 ctrl |= (cap & PCI_ACS_SV);
2786
2787 /* P2P Request Redirect */
2788 ctrl |= (cap & PCI_ACS_RR);
2789
2790 /* P2P Completion Redirect */
2791 ctrl |= (cap & PCI_ACS_CR);
2792
2793 /* Upstream Forwarding */
2794 ctrl |= (cap & PCI_ACS_UF);
2795
2796 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2797 }
2798
2799 /**
2800 * pci_enable_acs - enable ACS if hardware support it
2801 * @dev: the PCI device
2802 */
2803 void pci_enable_acs(struct pci_dev *dev)
2804 {
2805 if (!pci_acs_enable)
2806 return;
2807
2808 if (!pci_dev_specific_enable_acs(dev))
2809 return;
2810
2811 pci_std_enable_acs(dev);
2812 }
2813
2814 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2815 {
2816 int pos;
2817 u16 cap, ctrl;
2818
2819 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2820 if (!pos)
2821 return false;
2822
2823 /*
2824 * Except for egress control, capabilities are either required
2825 * or only required if controllable. Features missing from the
2826 * capability field can therefore be assumed as hard-wired enabled.
2827 */
2828 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2829 acs_flags &= (cap | PCI_ACS_EC);
2830
2831 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2832 return (ctrl & acs_flags) == acs_flags;
2833 }
2834
2835 /**
2836 * pci_acs_enabled - test ACS against required flags for a given device
2837 * @pdev: device to test
2838 * @acs_flags: required PCI ACS flags
2839 *
2840 * Return true if the device supports the provided flags. Automatically
2841 * filters out flags that are not implemented on multifunction devices.
2842 *
2843 * Note that this interface checks the effective ACS capabilities of the
2844 * device rather than the actual capabilities. For instance, most single
2845 * function endpoints are not required to support ACS because they have no
2846 * opportunity for peer-to-peer access. We therefore return 'true'
2847 * regardless of whether the device exposes an ACS capability. This makes
2848 * it much easier for callers of this function to ignore the actual type
2849 * or topology of the device when testing ACS support.
2850 */
2851 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2852 {
2853 int ret;
2854
2855 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2856 if (ret >= 0)
2857 return ret > 0;
2858
2859 /*
2860 * Conventional PCI and PCI-X devices never support ACS, either
2861 * effectively or actually. The shared bus topology implies that
2862 * any device on the bus can receive or snoop DMA.
2863 */
2864 if (!pci_is_pcie(pdev))
2865 return false;
2866
2867 switch (pci_pcie_type(pdev)) {
2868 /*
2869 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2870 * but since their primary interface is PCI/X, we conservatively
2871 * handle them as we would a non-PCIe device.
2872 */
2873 case PCI_EXP_TYPE_PCIE_BRIDGE:
2874 /*
2875 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2876 * applicable... must never implement an ACS Extended Capability...".
2877 * This seems arbitrary, but we take a conservative interpretation
2878 * of this statement.
2879 */
2880 case PCI_EXP_TYPE_PCI_BRIDGE:
2881 case PCI_EXP_TYPE_RC_EC:
2882 return false;
2883 /*
2884 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2885 * implement ACS in order to indicate their peer-to-peer capabilities,
2886 * regardless of whether they are single- or multi-function devices.
2887 */
2888 case PCI_EXP_TYPE_DOWNSTREAM:
2889 case PCI_EXP_TYPE_ROOT_PORT:
2890 return pci_acs_flags_enabled(pdev, acs_flags);
2891 /*
2892 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2893 * implemented by the remaining PCIe types to indicate peer-to-peer
2894 * capabilities, but only when they are part of a multifunction
2895 * device. The footnote for section 6.12 indicates the specific
2896 * PCIe types included here.
2897 */
2898 case PCI_EXP_TYPE_ENDPOINT:
2899 case PCI_EXP_TYPE_UPSTREAM:
2900 case PCI_EXP_TYPE_LEG_END:
2901 case PCI_EXP_TYPE_RC_END:
2902 if (!pdev->multifunction)
2903 break;
2904
2905 return pci_acs_flags_enabled(pdev, acs_flags);
2906 }
2907
2908 /*
2909 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2910 * to single function devices with the exception of downstream ports.
2911 */
2912 return true;
2913 }
2914
2915 /**
2916 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2917 * @start: starting downstream device
2918 * @end: ending upstream device or NULL to search to the root bus
2919 * @acs_flags: required flags
2920 *
2921 * Walk up a device tree from start to end testing PCI ACS support. If
2922 * any step along the way does not support the required flags, return false.
2923 */
2924 bool pci_acs_path_enabled(struct pci_dev *start,
2925 struct pci_dev *end, u16 acs_flags)
2926 {
2927 struct pci_dev *pdev, *parent = start;
2928
2929 do {
2930 pdev = parent;
2931
2932 if (!pci_acs_enabled(pdev, acs_flags))
2933 return false;
2934
2935 if (pci_is_root_bus(pdev->bus))
2936 return (end == NULL);
2937
2938 parent = pdev->bus->self;
2939 } while (pdev != end);
2940
2941 return true;
2942 }
2943
2944 /**
2945 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2946 * @dev: the PCI device
2947 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2948 *
2949 * Perform INTx swizzling for a device behind one level of bridge. This is
2950 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2951 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2952 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2953 * the PCI Express Base Specification, Revision 2.1)
2954 */
2955 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2956 {
2957 int slot;
2958
2959 if (pci_ari_enabled(dev->bus))
2960 slot = 0;
2961 else
2962 slot = PCI_SLOT(dev->devfn);
2963
2964 return (((pin - 1) + slot) % 4) + 1;
2965 }
2966
2967 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2968 {
2969 u8 pin;
2970
2971 pin = dev->pin;
2972 if (!pin)
2973 return -1;
2974
2975 while (!pci_is_root_bus(dev->bus)) {
2976 pin = pci_swizzle_interrupt_pin(dev, pin);
2977 dev = dev->bus->self;
2978 }
2979 *bridge = dev;
2980 return pin;
2981 }
2982
2983 /**
2984 * pci_common_swizzle - swizzle INTx all the way to root bridge
2985 * @dev: the PCI device
2986 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2987 *
2988 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2989 * bridges all the way up to a PCI root bus.
2990 */
2991 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2992 {
2993 u8 pin = *pinp;
2994
2995 while (!pci_is_root_bus(dev->bus)) {
2996 pin = pci_swizzle_interrupt_pin(dev, pin);
2997 dev = dev->bus->self;
2998 }
2999 *pinp = pin;
3000 return PCI_SLOT(dev->devfn);
3001 }
3002 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3003
3004 /**
3005 * pci_release_region - Release a PCI bar
3006 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3007 * @bar: BAR to release
3008 *
3009 * Releases the PCI I/O and memory resources previously reserved by a
3010 * successful call to pci_request_region. Call this function only
3011 * after all use of the PCI regions has ceased.
3012 */
3013 void pci_release_region(struct pci_dev *pdev, int bar)
3014 {
3015 struct pci_devres *dr;
3016
3017 if (pci_resource_len(pdev, bar) == 0)
3018 return;
3019 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3020 release_region(pci_resource_start(pdev, bar),
3021 pci_resource_len(pdev, bar));
3022 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3023 release_mem_region(pci_resource_start(pdev, bar),
3024 pci_resource_len(pdev, bar));
3025
3026 dr = find_pci_dr(pdev);
3027 if (dr)
3028 dr->region_mask &= ~(1 << bar);
3029 }
3030 EXPORT_SYMBOL(pci_release_region);
3031
3032 /**
3033 * __pci_request_region - Reserved PCI I/O and memory resource
3034 * @pdev: PCI device whose resources are to be reserved
3035 * @bar: BAR to be reserved
3036 * @res_name: Name to be associated with resource.
3037 * @exclusive: whether the region access is exclusive or not
3038 *
3039 * Mark the PCI region associated with PCI device @pdev BR @bar as
3040 * being reserved by owner @res_name. Do not access any
3041 * address inside the PCI regions unless this call returns
3042 * successfully.
3043 *
3044 * If @exclusive is set, then the region is marked so that userspace
3045 * is explicitly not allowed to map the resource via /dev/mem or
3046 * sysfs MMIO access.
3047 *
3048 * Returns 0 on success, or %EBUSY on error. A warning
3049 * message is also printed on failure.
3050 */
3051 static int __pci_request_region(struct pci_dev *pdev, int bar,
3052 const char *res_name, int exclusive)
3053 {
3054 struct pci_devres *dr;
3055
3056 if (pci_resource_len(pdev, bar) == 0)
3057 return 0;
3058
3059 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3060 if (!request_region(pci_resource_start(pdev, bar),
3061 pci_resource_len(pdev, bar), res_name))
3062 goto err_out;
3063 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3064 if (!__request_mem_region(pci_resource_start(pdev, bar),
3065 pci_resource_len(pdev, bar), res_name,
3066 exclusive))
3067 goto err_out;
3068 }
3069
3070 dr = find_pci_dr(pdev);
3071 if (dr)
3072 dr->region_mask |= 1 << bar;
3073
3074 return 0;
3075
3076 err_out:
3077 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
3078 &pdev->resource[bar]);
3079 return -EBUSY;
3080 }
3081
3082 /**
3083 * pci_request_region - Reserve PCI I/O and memory resource
3084 * @pdev: PCI device whose resources are to be reserved
3085 * @bar: BAR to be reserved
3086 * @res_name: Name to be associated with resource
3087 *
3088 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3089 * being reserved by owner @res_name. Do not access any
3090 * address inside the PCI regions unless this call returns
3091 * successfully.
3092 *
3093 * Returns 0 on success, or %EBUSY on error. A warning
3094 * message is also printed on failure.
3095 */
3096 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3097 {
3098 return __pci_request_region(pdev, bar, res_name, 0);
3099 }
3100 EXPORT_SYMBOL(pci_request_region);
3101
3102 /**
3103 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3104 * @pdev: PCI device whose resources are to be reserved
3105 * @bar: BAR to be reserved
3106 * @res_name: Name to be associated with resource.
3107 *
3108 * Mark the PCI region associated with PCI device @pdev BR @bar as
3109 * being reserved by owner @res_name. Do not access any
3110 * address inside the PCI regions unless this call returns
3111 * successfully.
3112 *
3113 * Returns 0 on success, or %EBUSY on error. A warning
3114 * message is also printed on failure.
3115 *
3116 * The key difference that _exclusive makes it that userspace is
3117 * explicitly not allowed to map the resource via /dev/mem or
3118 * sysfs.
3119 */
3120 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3121 const char *res_name)
3122 {
3123 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3124 }
3125 EXPORT_SYMBOL(pci_request_region_exclusive);
3126
3127 /**
3128 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3129 * @pdev: PCI device whose resources were previously reserved
3130 * @bars: Bitmask of BARs to be released
3131 *
3132 * Release selected PCI I/O and memory resources previously reserved.
3133 * Call this function only after all use of the PCI regions has ceased.
3134 */
3135 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3136 {
3137 int i;
3138
3139 for (i = 0; i < 6; i++)
3140 if (bars & (1 << i))
3141 pci_release_region(pdev, i);
3142 }
3143 EXPORT_SYMBOL(pci_release_selected_regions);
3144
3145 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3146 const char *res_name, int excl)
3147 {
3148 int i;
3149
3150 for (i = 0; i < 6; i++)
3151 if (bars & (1 << i))
3152 if (__pci_request_region(pdev, i, res_name, excl))
3153 goto err_out;
3154 return 0;
3155
3156 err_out:
3157 while (--i >= 0)
3158 if (bars & (1 << i))
3159 pci_release_region(pdev, i);
3160
3161 return -EBUSY;
3162 }
3163
3164
3165 /**
3166 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3167 * @pdev: PCI device whose resources are to be reserved
3168 * @bars: Bitmask of BARs to be requested
3169 * @res_name: Name to be associated with resource
3170 */
3171 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3172 const char *res_name)
3173 {
3174 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3175 }
3176 EXPORT_SYMBOL(pci_request_selected_regions);
3177
3178 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3179 const char *res_name)
3180 {
3181 return __pci_request_selected_regions(pdev, bars, res_name,
3182 IORESOURCE_EXCLUSIVE);
3183 }
3184 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3185
3186 /**
3187 * pci_release_regions - Release reserved PCI I/O and memory resources
3188 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3189 *
3190 * Releases all PCI I/O and memory resources previously reserved by a
3191 * successful call to pci_request_regions. Call this function only
3192 * after all use of the PCI regions has ceased.
3193 */
3194
3195 void pci_release_regions(struct pci_dev *pdev)
3196 {
3197 pci_release_selected_regions(pdev, (1 << 6) - 1);
3198 }
3199 EXPORT_SYMBOL(pci_release_regions);
3200
3201 /**
3202 * pci_request_regions - Reserved PCI I/O and memory resources
3203 * @pdev: PCI device whose resources are to be reserved
3204 * @res_name: Name to be associated with resource.
3205 *
3206 * Mark all PCI regions associated with PCI device @pdev as
3207 * being reserved by owner @res_name. Do not access any
3208 * address inside the PCI regions unless this call returns
3209 * successfully.
3210 *
3211 * Returns 0 on success, or %EBUSY on error. A warning
3212 * message is also printed on failure.
3213 */
3214 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3215 {
3216 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3217 }
3218 EXPORT_SYMBOL(pci_request_regions);
3219
3220 /**
3221 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3222 * @pdev: PCI device whose resources are to be reserved
3223 * @res_name: Name to be associated with resource.
3224 *
3225 * Mark all PCI regions associated with PCI device @pdev as
3226 * being reserved by owner @res_name. Do not access any
3227 * address inside the PCI regions unless this call returns
3228 * successfully.
3229 *
3230 * pci_request_regions_exclusive() will mark the region so that
3231 * /dev/mem and the sysfs MMIO access will not be allowed.
3232 *
3233 * Returns 0 on success, or %EBUSY on error. A warning
3234 * message is also printed on failure.
3235 */
3236 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3237 {
3238 return pci_request_selected_regions_exclusive(pdev,
3239 ((1 << 6) - 1), res_name);
3240 }
3241 EXPORT_SYMBOL(pci_request_regions_exclusive);
3242
3243 #ifdef PCI_IOBASE
3244 struct io_range {
3245 struct list_head list;
3246 phys_addr_t start;
3247 resource_size_t size;
3248 };
3249
3250 static LIST_HEAD(io_range_list);
3251 static DEFINE_SPINLOCK(io_range_lock);
3252 #endif
3253
3254 /*
3255 * Record the PCI IO range (expressed as CPU physical address + size).
3256 * Return a negative value if an error has occured, zero otherwise
3257 */
3258 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
3259 {
3260 int err = 0;
3261
3262 #ifdef PCI_IOBASE
3263 struct io_range *range;
3264 resource_size_t allocated_size = 0;
3265
3266 /* check if the range hasn't been previously recorded */
3267 spin_lock(&io_range_lock);
3268 list_for_each_entry(range, &io_range_list, list) {
3269 if (addr >= range->start && addr + size <= range->start + size) {
3270 /* range already registered, bail out */
3271 goto end_register;
3272 }
3273 allocated_size += range->size;
3274 }
3275
3276 /* range not registed yet, check for available space */
3277 if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
3278 /* if it's too big check if 64K space can be reserved */
3279 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
3280 err = -E2BIG;
3281 goto end_register;
3282 }
3283
3284 size = SZ_64K;
3285 pr_warn("Requested IO range too big, new size set to 64K\n");
3286 }
3287
3288 /* add the range to the list */
3289 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3290 if (!range) {
3291 err = -ENOMEM;
3292 goto end_register;
3293 }
3294
3295 range->start = addr;
3296 range->size = size;
3297
3298 list_add_tail(&range->list, &io_range_list);
3299
3300 end_register:
3301 spin_unlock(&io_range_lock);
3302 #endif
3303
3304 return err;
3305 }
3306
3307 phys_addr_t pci_pio_to_address(unsigned long pio)
3308 {
3309 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3310
3311 #ifdef PCI_IOBASE
3312 struct io_range *range;
3313 resource_size_t allocated_size = 0;
3314
3315 if (pio > IO_SPACE_LIMIT)
3316 return address;
3317
3318 spin_lock(&io_range_lock);
3319 list_for_each_entry(range, &io_range_list, list) {
3320 if (pio >= allocated_size && pio < allocated_size + range->size) {
3321 address = range->start + pio - allocated_size;
3322 break;
3323 }
3324 allocated_size += range->size;
3325 }
3326 spin_unlock(&io_range_lock);
3327 #endif
3328
3329 return address;
3330 }
3331
3332 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3333 {
3334 #ifdef PCI_IOBASE
3335 struct io_range *res;
3336 resource_size_t offset = 0;
3337 unsigned long addr = -1;
3338
3339 spin_lock(&io_range_lock);
3340 list_for_each_entry(res, &io_range_list, list) {
3341 if (address >= res->start && address < res->start + res->size) {
3342 addr = address - res->start + offset;
3343 break;
3344 }
3345 offset += res->size;
3346 }
3347 spin_unlock(&io_range_lock);
3348
3349 return addr;
3350 #else
3351 if (address > IO_SPACE_LIMIT)
3352 return (unsigned long)-1;
3353
3354 return (unsigned long) address;
3355 #endif
3356 }
3357
3358 /**
3359 * pci_remap_iospace - Remap the memory mapped I/O space
3360 * @res: Resource describing the I/O space
3361 * @phys_addr: physical address of range to be mapped
3362 *
3363 * Remap the memory mapped I/O space described by the @res
3364 * and the CPU physical address @phys_addr into virtual address space.
3365 * Only architectures that have memory mapped IO functions defined
3366 * (and the PCI_IOBASE value defined) should call this function.
3367 */
3368 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3369 {
3370 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3371 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3372
3373 if (!(res->flags & IORESOURCE_IO))
3374 return -EINVAL;
3375
3376 if (res->end > IO_SPACE_LIMIT)
3377 return -EINVAL;
3378
3379 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3380 pgprot_device(PAGE_KERNEL));
3381 #else
3382 /* this architecture does not have memory mapped I/O space,
3383 so this function should never be called */
3384 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3385 return -ENODEV;
3386 #endif
3387 }
3388
3389 /**
3390 * pci_unmap_iospace - Unmap the memory mapped I/O space
3391 * @res: resource to be unmapped
3392 *
3393 * Unmap the CPU virtual address @res from virtual address space.
3394 * Only architectures that have memory mapped IO functions defined
3395 * (and the PCI_IOBASE value defined) should call this function.
3396 */
3397 void pci_unmap_iospace(struct resource *res)
3398 {
3399 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3400 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3401
3402 unmap_kernel_range(vaddr, resource_size(res));
3403 #endif
3404 }
3405
3406 static void __pci_set_master(struct pci_dev *dev, bool enable)
3407 {
3408 u16 old_cmd, cmd;
3409
3410 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3411 if (enable)
3412 cmd = old_cmd | PCI_COMMAND_MASTER;
3413 else
3414 cmd = old_cmd & ~PCI_COMMAND_MASTER;
3415 if (cmd != old_cmd) {
3416 dev_dbg(&dev->dev, "%s bus mastering\n",
3417 enable ? "enabling" : "disabling");
3418 pci_write_config_word(dev, PCI_COMMAND, cmd);
3419 }
3420 dev->is_busmaster = enable;
3421 }
3422
3423 /**
3424 * pcibios_setup - process "pci=" kernel boot arguments
3425 * @str: string used to pass in "pci=" kernel boot arguments
3426 *
3427 * Process kernel boot arguments. This is the default implementation.
3428 * Architecture specific implementations can override this as necessary.
3429 */
3430 char * __weak __init pcibios_setup(char *str)
3431 {
3432 return str;
3433 }
3434
3435 /**
3436 * pcibios_set_master - enable PCI bus-mastering for device dev
3437 * @dev: the PCI device to enable
3438 *
3439 * Enables PCI bus-mastering for the device. This is the default
3440 * implementation. Architecture specific implementations can override
3441 * this if necessary.
3442 */
3443 void __weak pcibios_set_master(struct pci_dev *dev)
3444 {
3445 u8 lat;
3446
3447 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3448 if (pci_is_pcie(dev))
3449 return;
3450
3451 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3452 if (lat < 16)
3453 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3454 else if (lat > pcibios_max_latency)
3455 lat = pcibios_max_latency;
3456 else
3457 return;
3458
3459 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3460 }
3461
3462 /**
3463 * pci_set_master - enables bus-mastering for device dev
3464 * @dev: the PCI device to enable
3465 *
3466 * Enables bus-mastering on the device and calls pcibios_set_master()
3467 * to do the needed arch specific settings.
3468 */
3469 void pci_set_master(struct pci_dev *dev)
3470 {
3471 __pci_set_master(dev, true);
3472 pcibios_set_master(dev);
3473 }
3474 EXPORT_SYMBOL(pci_set_master);
3475
3476 /**
3477 * pci_clear_master - disables bus-mastering for device dev
3478 * @dev: the PCI device to disable
3479 */
3480 void pci_clear_master(struct pci_dev *dev)
3481 {
3482 __pci_set_master(dev, false);
3483 }
3484 EXPORT_SYMBOL(pci_clear_master);
3485
3486 /**
3487 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3488 * @dev: the PCI device for which MWI is to be enabled
3489 *
3490 * Helper function for pci_set_mwi.
3491 * Originally copied from drivers/net/acenic.c.
3492 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3493 *
3494 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3495 */
3496 int pci_set_cacheline_size(struct pci_dev *dev)
3497 {
3498 u8 cacheline_size;
3499
3500 if (!pci_cache_line_size)
3501 return -EINVAL;
3502
3503 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3504 equal to or multiple of the right value. */
3505 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3506 if (cacheline_size >= pci_cache_line_size &&
3507 (cacheline_size % pci_cache_line_size) == 0)
3508 return 0;
3509
3510 /* Write the correct value. */
3511 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3512 /* Read it back. */
3513 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3514 if (cacheline_size == pci_cache_line_size)
3515 return 0;
3516
3517 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3518 pci_cache_line_size << 2);
3519
3520 return -EINVAL;
3521 }
3522 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3523
3524 /**
3525 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3526 * @dev: the PCI device for which MWI is enabled
3527 *
3528 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3529 *
3530 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3531 */
3532 int pci_set_mwi(struct pci_dev *dev)
3533 {
3534 #ifdef PCI_DISABLE_MWI
3535 return 0;
3536 #else
3537 int rc;
3538 u16 cmd;
3539
3540 rc = pci_set_cacheline_size(dev);
3541 if (rc)
3542 return rc;
3543
3544 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3545 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3546 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3547 cmd |= PCI_COMMAND_INVALIDATE;
3548 pci_write_config_word(dev, PCI_COMMAND, cmd);
3549 }
3550 return 0;
3551 #endif
3552 }
3553 EXPORT_SYMBOL(pci_set_mwi);
3554
3555 /**
3556 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3557 * @dev: the PCI device for which MWI is enabled
3558 *
3559 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3560 * Callers are not required to check the return value.
3561 *
3562 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3563 */
3564 int pci_try_set_mwi(struct pci_dev *dev)
3565 {
3566 #ifdef PCI_DISABLE_MWI
3567 return 0;
3568 #else
3569 return pci_set_mwi(dev);
3570 #endif
3571 }
3572 EXPORT_SYMBOL(pci_try_set_mwi);
3573
3574 /**
3575 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3576 * @dev: the PCI device to disable
3577 *
3578 * Disables PCI Memory-Write-Invalidate transaction on the device
3579 */
3580 void pci_clear_mwi(struct pci_dev *dev)
3581 {
3582 #ifndef PCI_DISABLE_MWI
3583 u16 cmd;
3584
3585 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3586 if (cmd & PCI_COMMAND_INVALIDATE) {
3587 cmd &= ~PCI_COMMAND_INVALIDATE;
3588 pci_write_config_word(dev, PCI_COMMAND, cmd);
3589 }
3590 #endif
3591 }
3592 EXPORT_SYMBOL(pci_clear_mwi);
3593
3594 /**
3595 * pci_intx - enables/disables PCI INTx for device dev
3596 * @pdev: the PCI device to operate on
3597 * @enable: boolean: whether to enable or disable PCI INTx
3598 *
3599 * Enables/disables PCI INTx for device dev
3600 */
3601 void pci_intx(struct pci_dev *pdev, int enable)
3602 {
3603 u16 pci_command, new;
3604
3605 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3606
3607 if (enable)
3608 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3609 else
3610 new = pci_command | PCI_COMMAND_INTX_DISABLE;
3611
3612 if (new != pci_command) {
3613 struct pci_devres *dr;
3614
3615 pci_write_config_word(pdev, PCI_COMMAND, new);
3616
3617 dr = find_pci_dr(pdev);
3618 if (dr && !dr->restore_intx) {
3619 dr->restore_intx = 1;
3620 dr->orig_intx = !enable;
3621 }
3622 }
3623 }
3624 EXPORT_SYMBOL_GPL(pci_intx);
3625
3626 /**
3627 * pci_intx_mask_supported - probe for INTx masking support
3628 * @dev: the PCI device to operate on
3629 *
3630 * Check if the device dev support INTx masking via the config space
3631 * command word.
3632 */
3633 bool pci_intx_mask_supported(struct pci_dev *dev)
3634 {
3635 bool mask_supported = false;
3636 u16 orig, new;
3637
3638 if (dev->broken_intx_masking)
3639 return false;
3640
3641 pci_cfg_access_lock(dev);
3642
3643 pci_read_config_word(dev, PCI_COMMAND, &orig);
3644 pci_write_config_word(dev, PCI_COMMAND,
3645 orig ^ PCI_COMMAND_INTX_DISABLE);
3646 pci_read_config_word(dev, PCI_COMMAND, &new);
3647
3648 /*
3649 * There's no way to protect against hardware bugs or detect them
3650 * reliably, but as long as we know what the value should be, let's
3651 * go ahead and check it.
3652 */
3653 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3654 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3655 orig, new);
3656 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3657 mask_supported = true;
3658 pci_write_config_word(dev, PCI_COMMAND, orig);
3659 }
3660
3661 pci_cfg_access_unlock(dev);
3662 return mask_supported;
3663 }
3664 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3665
3666 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3667 {
3668 struct pci_bus *bus = dev->bus;
3669 bool mask_updated = true;
3670 u32 cmd_status_dword;
3671 u16 origcmd, newcmd;
3672 unsigned long flags;
3673 bool irq_pending;
3674
3675 /*
3676 * We do a single dword read to retrieve both command and status.
3677 * Document assumptions that make this possible.
3678 */
3679 BUILD_BUG_ON(PCI_COMMAND % 4);
3680 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3681
3682 raw_spin_lock_irqsave(&pci_lock, flags);
3683
3684 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3685
3686 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3687
3688 /*
3689 * Check interrupt status register to see whether our device
3690 * triggered the interrupt (when masking) or the next IRQ is
3691 * already pending (when unmasking).
3692 */
3693 if (mask != irq_pending) {
3694 mask_updated = false;
3695 goto done;
3696 }
3697
3698 origcmd = cmd_status_dword;
3699 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3700 if (mask)
3701 newcmd |= PCI_COMMAND_INTX_DISABLE;
3702 if (newcmd != origcmd)
3703 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3704
3705 done:
3706 raw_spin_unlock_irqrestore(&pci_lock, flags);
3707
3708 return mask_updated;
3709 }
3710
3711 /**
3712 * pci_check_and_mask_intx - mask INTx on pending interrupt
3713 * @dev: the PCI device to operate on
3714 *
3715 * Check if the device dev has its INTx line asserted, mask it and
3716 * return true in that case. False is returned if not interrupt was
3717 * pending.
3718 */
3719 bool pci_check_and_mask_intx(struct pci_dev *dev)
3720 {
3721 return pci_check_and_set_intx_mask(dev, true);
3722 }
3723 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3724
3725 /**
3726 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3727 * @dev: the PCI device to operate on
3728 *
3729 * Check if the device dev has its INTx line asserted, unmask it if not
3730 * and return true. False is returned and the mask remains active if
3731 * there was still an interrupt pending.
3732 */
3733 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3734 {
3735 return pci_check_and_set_intx_mask(dev, false);
3736 }
3737 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3738
3739 /**
3740 * pci_wait_for_pending_transaction - waits for pending transaction
3741 * @dev: the PCI device to operate on
3742 *
3743 * Return 0 if transaction is pending 1 otherwise.
3744 */
3745 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3746 {
3747 if (!pci_is_pcie(dev))
3748 return 1;
3749
3750 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3751 PCI_EXP_DEVSTA_TRPND);
3752 }
3753 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3754
3755 /*
3756 * We should only need to wait 100ms after FLR, but some devices take longer.
3757 * Wait for up to 1000ms for config space to return something other than -1.
3758 * Intel IGD requires this when an LCD panel is attached. We read the 2nd
3759 * dword because VFs don't implement the 1st dword.
3760 */
3761 static void pci_flr_wait(struct pci_dev *dev)
3762 {
3763 int i = 0;
3764 u32 id;
3765
3766 do {
3767 msleep(100);
3768 pci_read_config_dword(dev, PCI_COMMAND, &id);
3769 } while (i++ < 10 && id == ~0);
3770
3771 if (id == ~0)
3772 dev_warn(&dev->dev, "Failed to return from FLR\n");
3773 else if (i > 1)
3774 dev_info(&dev->dev, "Required additional %dms to return from FLR\n",
3775 (i - 1) * 100);
3776 }
3777
3778 static int pcie_flr(struct pci_dev *dev, int probe)
3779 {
3780 u32 cap;
3781
3782 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3783 if (!(cap & PCI_EXP_DEVCAP_FLR))
3784 return -ENOTTY;
3785
3786 if (probe)
3787 return 0;
3788
3789 if (!pci_wait_for_pending_transaction(dev))
3790 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3791
3792 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3793 pci_flr_wait(dev);
3794 return 0;
3795 }
3796
3797 static int pci_af_flr(struct pci_dev *dev, int probe)
3798 {
3799 int pos;
3800 u8 cap;
3801
3802 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3803 if (!pos)
3804 return -ENOTTY;
3805
3806 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3807 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3808 return -ENOTTY;
3809
3810 if (probe)
3811 return 0;
3812
3813 /*
3814 * Wait for Transaction Pending bit to clear. A word-aligned test
3815 * is used, so we use the conrol offset rather than status and shift
3816 * the test bit to match.
3817 */
3818 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3819 PCI_AF_STATUS_TP << 8))
3820 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3821
3822 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3823 pci_flr_wait(dev);
3824 return 0;
3825 }
3826
3827 /**
3828 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3829 * @dev: Device to reset.
3830 * @probe: If set, only check if the device can be reset this way.
3831 *
3832 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3833 * unset, it will be reinitialized internally when going from PCI_D3hot to
3834 * PCI_D0. If that's the case and the device is not in a low-power state
3835 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3836 *
3837 * NOTE: This causes the caller to sleep for twice the device power transition
3838 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3839 * by default (i.e. unless the @dev's d3_delay field has a different value).
3840 * Moreover, only devices in D0 can be reset by this function.
3841 */
3842 static int pci_pm_reset(struct pci_dev *dev, int probe)
3843 {
3844 u16 csr;
3845
3846 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3847 return -ENOTTY;
3848
3849 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3850 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3851 return -ENOTTY;
3852
3853 if (probe)
3854 return 0;
3855
3856 if (dev->current_state != PCI_D0)
3857 return -EINVAL;
3858
3859 csr &= ~PCI_PM_CTRL_STATE_MASK;
3860 csr |= PCI_D3hot;
3861 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3862 pci_dev_d3_sleep(dev);
3863
3864 csr &= ~PCI_PM_CTRL_STATE_MASK;
3865 csr |= PCI_D0;
3866 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3867 pci_dev_d3_sleep(dev);
3868
3869 return 0;
3870 }
3871
3872 void pci_reset_secondary_bus(struct pci_dev *dev)
3873 {
3874 u16 ctrl;
3875
3876 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3877 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3878 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3879 /*
3880 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3881 * this to 2ms to ensure that we meet the minimum requirement.
3882 */
3883 msleep(2);
3884
3885 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3886 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3887
3888 /*
3889 * Trhfa for conventional PCI is 2^25 clock cycles.
3890 * Assuming a minimum 33MHz clock this results in a 1s
3891 * delay before we can consider subordinate devices to
3892 * be re-initialized. PCIe has some ways to shorten this,
3893 * but we don't make use of them yet.
3894 */
3895 ssleep(1);
3896 }
3897
3898 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3899 {
3900 pci_reset_secondary_bus(dev);
3901 }
3902
3903 /**
3904 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3905 * @dev: Bridge device
3906 *
3907 * Use the bridge control register to assert reset on the secondary bus.
3908 * Devices on the secondary bus are left in power-on state.
3909 */
3910 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3911 {
3912 pcibios_reset_secondary_bus(dev);
3913 }
3914 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3915
3916 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3917 {
3918 struct pci_dev *pdev;
3919
3920 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
3921 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3922 return -ENOTTY;
3923
3924 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3925 if (pdev != dev)
3926 return -ENOTTY;
3927
3928 if (probe)
3929 return 0;
3930
3931 pci_reset_bridge_secondary_bus(dev->bus->self);
3932
3933 return 0;
3934 }
3935
3936 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3937 {
3938 int rc = -ENOTTY;
3939
3940 if (!hotplug || !try_module_get(hotplug->ops->owner))
3941 return rc;
3942
3943 if (hotplug->ops->reset_slot)
3944 rc = hotplug->ops->reset_slot(hotplug, probe);
3945
3946 module_put(hotplug->ops->owner);
3947
3948 return rc;
3949 }
3950
3951 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3952 {
3953 struct pci_dev *pdev;
3954
3955 if (dev->subordinate || !dev->slot ||
3956 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3957 return -ENOTTY;
3958
3959 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3960 if (pdev != dev && pdev->slot == dev->slot)
3961 return -ENOTTY;
3962
3963 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3964 }
3965
3966 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3967 {
3968 int rc;
3969
3970 might_sleep();
3971
3972 rc = pci_dev_specific_reset(dev, probe);
3973 if (rc != -ENOTTY)
3974 goto done;
3975
3976 rc = pcie_flr(dev, probe);
3977 if (rc != -ENOTTY)
3978 goto done;
3979
3980 rc = pci_af_flr(dev, probe);
3981 if (rc != -ENOTTY)
3982 goto done;
3983
3984 rc = pci_pm_reset(dev, probe);
3985 if (rc != -ENOTTY)
3986 goto done;
3987
3988 rc = pci_dev_reset_slot_function(dev, probe);
3989 if (rc != -ENOTTY)
3990 goto done;
3991
3992 rc = pci_parent_bus_reset(dev, probe);
3993 done:
3994 return rc;
3995 }
3996
3997 static void pci_dev_lock(struct pci_dev *dev)
3998 {
3999 pci_cfg_access_lock(dev);
4000 /* block PM suspend, driver probe, etc. */
4001 device_lock(&dev->dev);
4002 }
4003
4004 /* Return 1 on successful lock, 0 on contention */
4005 static int pci_dev_trylock(struct pci_dev *dev)
4006 {
4007 if (pci_cfg_access_trylock(dev)) {
4008 if (device_trylock(&dev->dev))
4009 return 1;
4010 pci_cfg_access_unlock(dev);
4011 }
4012
4013 return 0;
4014 }
4015
4016 static void pci_dev_unlock(struct pci_dev *dev)
4017 {
4018 device_unlock(&dev->dev);
4019 pci_cfg_access_unlock(dev);
4020 }
4021
4022 /**
4023 * pci_reset_notify - notify device driver of reset
4024 * @dev: device to be notified of reset
4025 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
4026 * completed
4027 *
4028 * Must be called prior to device access being disabled and after device
4029 * access is restored.
4030 */
4031 static void pci_reset_notify(struct pci_dev *dev, bool prepare)
4032 {
4033 const struct pci_error_handlers *err_handler =
4034 dev->driver ? dev->driver->err_handler : NULL;
4035 if (err_handler && err_handler->reset_notify)
4036 err_handler->reset_notify(dev, prepare);
4037 }
4038
4039 static void pci_dev_save_and_disable(struct pci_dev *dev)
4040 {
4041 pci_reset_notify(dev, true);
4042
4043 /*
4044 * Wake-up device prior to save. PM registers default to D0 after
4045 * reset and a simple register restore doesn't reliably return
4046 * to a non-D0 state anyway.
4047 */
4048 pci_set_power_state(dev, PCI_D0);
4049
4050 pci_save_state(dev);
4051 /*
4052 * Disable the device by clearing the Command register, except for
4053 * INTx-disable which is set. This not only disables MMIO and I/O port
4054 * BARs, but also prevents the device from being Bus Master, preventing
4055 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4056 * compliant devices, INTx-disable prevents legacy interrupts.
4057 */
4058 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4059 }
4060
4061 static void pci_dev_restore(struct pci_dev *dev)
4062 {
4063 pci_restore_state(dev);
4064 pci_reset_notify(dev, false);
4065 }
4066
4067 static int pci_dev_reset(struct pci_dev *dev, int probe)
4068 {
4069 int rc;
4070
4071 if (!probe)
4072 pci_dev_lock(dev);
4073
4074 rc = __pci_dev_reset(dev, probe);
4075
4076 if (!probe)
4077 pci_dev_unlock(dev);
4078
4079 return rc;
4080 }
4081
4082 /**
4083 * __pci_reset_function - reset a PCI device function
4084 * @dev: PCI device to reset
4085 *
4086 * Some devices allow an individual function to be reset without affecting
4087 * other functions in the same device. The PCI device must be responsive
4088 * to PCI config space in order to use this function.
4089 *
4090 * The device function is presumed to be unused when this function is called.
4091 * Resetting the device will make the contents of PCI configuration space
4092 * random, so any caller of this must be prepared to reinitialise the
4093 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4094 * etc.
4095 *
4096 * Returns 0 if the device function was successfully reset or negative if the
4097 * device doesn't support resetting a single function.
4098 */
4099 int __pci_reset_function(struct pci_dev *dev)
4100 {
4101 return pci_dev_reset(dev, 0);
4102 }
4103 EXPORT_SYMBOL_GPL(__pci_reset_function);
4104
4105 /**
4106 * __pci_reset_function_locked - reset a PCI device function while holding
4107 * the @dev mutex lock.
4108 * @dev: PCI device to reset
4109 *
4110 * Some devices allow an individual function to be reset without affecting
4111 * other functions in the same device. The PCI device must be responsive
4112 * to PCI config space in order to use this function.
4113 *
4114 * The device function is presumed to be unused and the caller is holding
4115 * the device mutex lock when this function is called.
4116 * Resetting the device will make the contents of PCI configuration space
4117 * random, so any caller of this must be prepared to reinitialise the
4118 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4119 * etc.
4120 *
4121 * Returns 0 if the device function was successfully reset or negative if the
4122 * device doesn't support resetting a single function.
4123 */
4124 int __pci_reset_function_locked(struct pci_dev *dev)
4125 {
4126 return __pci_dev_reset(dev, 0);
4127 }
4128 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4129
4130 /**
4131 * pci_probe_reset_function - check whether the device can be safely reset
4132 * @dev: PCI device to reset
4133 *
4134 * Some devices allow an individual function to be reset without affecting
4135 * other functions in the same device. The PCI device must be responsive
4136 * to PCI config space in order to use this function.
4137 *
4138 * Returns 0 if the device function can be reset or negative if the
4139 * device doesn't support resetting a single function.
4140 */
4141 int pci_probe_reset_function(struct pci_dev *dev)
4142 {
4143 return pci_dev_reset(dev, 1);
4144 }
4145
4146 /**
4147 * pci_reset_function - quiesce and reset a PCI device function
4148 * @dev: PCI device to reset
4149 *
4150 * Some devices allow an individual function to be reset without affecting
4151 * other functions in the same device. The PCI device must be responsive
4152 * to PCI config space in order to use this function.
4153 *
4154 * This function does not just reset the PCI portion of a device, but
4155 * clears all the state associated with the device. This function differs
4156 * from __pci_reset_function in that it saves and restores device state
4157 * over the reset.
4158 *
4159 * Returns 0 if the device function was successfully reset or negative if the
4160 * device doesn't support resetting a single function.
4161 */
4162 int pci_reset_function(struct pci_dev *dev)
4163 {
4164 int rc;
4165
4166 rc = pci_dev_reset(dev, 1);
4167 if (rc)
4168 return rc;
4169
4170 pci_dev_save_and_disable(dev);
4171
4172 rc = pci_dev_reset(dev, 0);
4173
4174 pci_dev_restore(dev);
4175
4176 return rc;
4177 }
4178 EXPORT_SYMBOL_GPL(pci_reset_function);
4179
4180 /**
4181 * pci_try_reset_function - quiesce and reset a PCI device function
4182 * @dev: PCI device to reset
4183 *
4184 * Same as above, except return -EAGAIN if unable to lock device.
4185 */
4186 int pci_try_reset_function(struct pci_dev *dev)
4187 {
4188 int rc;
4189
4190 rc = pci_dev_reset(dev, 1);
4191 if (rc)
4192 return rc;
4193
4194 pci_dev_save_and_disable(dev);
4195
4196 if (pci_dev_trylock(dev)) {
4197 rc = __pci_dev_reset(dev, 0);
4198 pci_dev_unlock(dev);
4199 } else
4200 rc = -EAGAIN;
4201
4202 pci_dev_restore(dev);
4203
4204 return rc;
4205 }
4206 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4207
4208 /* Do any devices on or below this bus prevent a bus reset? */
4209 static bool pci_bus_resetable(struct pci_bus *bus)
4210 {
4211 struct pci_dev *dev;
4212
4213 list_for_each_entry(dev, &bus->devices, bus_list) {
4214 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4215 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4216 return false;
4217 }
4218
4219 return true;
4220 }
4221
4222 /* Lock devices from the top of the tree down */
4223 static void pci_bus_lock(struct pci_bus *bus)
4224 {
4225 struct pci_dev *dev;
4226
4227 list_for_each_entry(dev, &bus->devices, bus_list) {
4228 pci_dev_lock(dev);
4229 if (dev->subordinate)
4230 pci_bus_lock(dev->subordinate);
4231 }
4232 }
4233
4234 /* Unlock devices from the bottom of the tree up */
4235 static void pci_bus_unlock(struct pci_bus *bus)
4236 {
4237 struct pci_dev *dev;
4238
4239 list_for_each_entry(dev, &bus->devices, bus_list) {
4240 if (dev->subordinate)
4241 pci_bus_unlock(dev->subordinate);
4242 pci_dev_unlock(dev);
4243 }
4244 }
4245
4246 /* Return 1 on successful lock, 0 on contention */
4247 static int pci_bus_trylock(struct pci_bus *bus)
4248 {
4249 struct pci_dev *dev;
4250
4251 list_for_each_entry(dev, &bus->devices, bus_list) {
4252 if (!pci_dev_trylock(dev))
4253 goto unlock;
4254 if (dev->subordinate) {
4255 if (!pci_bus_trylock(dev->subordinate)) {
4256 pci_dev_unlock(dev);
4257 goto unlock;
4258 }
4259 }
4260 }
4261 return 1;
4262
4263 unlock:
4264 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4265 if (dev->subordinate)
4266 pci_bus_unlock(dev->subordinate);
4267 pci_dev_unlock(dev);
4268 }
4269 return 0;
4270 }
4271
4272 /* Do any devices on or below this slot prevent a bus reset? */
4273 static bool pci_slot_resetable(struct pci_slot *slot)
4274 {
4275 struct pci_dev *dev;
4276
4277 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4278 if (!dev->slot || dev->slot != slot)
4279 continue;
4280 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4281 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4282 return false;
4283 }
4284
4285 return true;
4286 }
4287
4288 /* Lock devices from the top of the tree down */
4289 static void pci_slot_lock(struct pci_slot *slot)
4290 {
4291 struct pci_dev *dev;
4292
4293 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4294 if (!dev->slot || dev->slot != slot)
4295 continue;
4296 pci_dev_lock(dev);
4297 if (dev->subordinate)
4298 pci_bus_lock(dev->subordinate);
4299 }
4300 }
4301
4302 /* Unlock devices from the bottom of the tree up */
4303 static void pci_slot_unlock(struct pci_slot *slot)
4304 {
4305 struct pci_dev *dev;
4306
4307 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4308 if (!dev->slot || dev->slot != slot)
4309 continue;
4310 if (dev->subordinate)
4311 pci_bus_unlock(dev->subordinate);
4312 pci_dev_unlock(dev);
4313 }
4314 }
4315
4316 /* Return 1 on successful lock, 0 on contention */
4317 static int pci_slot_trylock(struct pci_slot *slot)
4318 {
4319 struct pci_dev *dev;
4320
4321 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4322 if (!dev->slot || dev->slot != slot)
4323 continue;
4324 if (!pci_dev_trylock(dev))
4325 goto unlock;
4326 if (dev->subordinate) {
4327 if (!pci_bus_trylock(dev->subordinate)) {
4328 pci_dev_unlock(dev);
4329 goto unlock;
4330 }
4331 }
4332 }
4333 return 1;
4334
4335 unlock:
4336 list_for_each_entry_continue_reverse(dev,
4337 &slot->bus->devices, bus_list) {
4338 if (!dev->slot || dev->slot != slot)
4339 continue;
4340 if (dev->subordinate)
4341 pci_bus_unlock(dev->subordinate);
4342 pci_dev_unlock(dev);
4343 }
4344 return 0;
4345 }
4346
4347 /* Save and disable devices from the top of the tree down */
4348 static void pci_bus_save_and_disable(struct pci_bus *bus)
4349 {
4350 struct pci_dev *dev;
4351
4352 list_for_each_entry(dev, &bus->devices, bus_list) {
4353 pci_dev_save_and_disable(dev);
4354 if (dev->subordinate)
4355 pci_bus_save_and_disable(dev->subordinate);
4356 }
4357 }
4358
4359 /*
4360 * Restore devices from top of the tree down - parent bridges need to be
4361 * restored before we can get to subordinate devices.
4362 */
4363 static void pci_bus_restore(struct pci_bus *bus)
4364 {
4365 struct pci_dev *dev;
4366
4367 list_for_each_entry(dev, &bus->devices, bus_list) {
4368 pci_dev_restore(dev);
4369 if (dev->subordinate)
4370 pci_bus_restore(dev->subordinate);
4371 }
4372 }
4373
4374 /* Save and disable devices from the top of the tree down */
4375 static void pci_slot_save_and_disable(struct pci_slot *slot)
4376 {
4377 struct pci_dev *dev;
4378
4379 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4380 if (!dev->slot || dev->slot != slot)
4381 continue;
4382 pci_dev_save_and_disable(dev);
4383 if (dev->subordinate)
4384 pci_bus_save_and_disable(dev->subordinate);
4385 }
4386 }
4387
4388 /*
4389 * Restore devices from top of the tree down - parent bridges need to be
4390 * restored before we can get to subordinate devices.
4391 */
4392 static void pci_slot_restore(struct pci_slot *slot)
4393 {
4394 struct pci_dev *dev;
4395
4396 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4397 if (!dev->slot || dev->slot != slot)
4398 continue;
4399 pci_dev_restore(dev);
4400 if (dev->subordinate)
4401 pci_bus_restore(dev->subordinate);
4402 }
4403 }
4404
4405 static int pci_slot_reset(struct pci_slot *slot, int probe)
4406 {
4407 int rc;
4408
4409 if (!slot || !pci_slot_resetable(slot))
4410 return -ENOTTY;
4411
4412 if (!probe)
4413 pci_slot_lock(slot);
4414
4415 might_sleep();
4416
4417 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4418
4419 if (!probe)
4420 pci_slot_unlock(slot);
4421
4422 return rc;
4423 }
4424
4425 /**
4426 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4427 * @slot: PCI slot to probe
4428 *
4429 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4430 */
4431 int pci_probe_reset_slot(struct pci_slot *slot)
4432 {
4433 return pci_slot_reset(slot, 1);
4434 }
4435 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4436
4437 /**
4438 * pci_reset_slot - reset a PCI slot
4439 * @slot: PCI slot to reset
4440 *
4441 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4442 * independent of other slots. For instance, some slots may support slot power
4443 * control. In the case of a 1:1 bus to slot architecture, this function may
4444 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4445 * Generally a slot reset should be attempted before a bus reset. All of the
4446 * function of the slot and any subordinate buses behind the slot are reset
4447 * through this function. PCI config space of all devices in the slot and
4448 * behind the slot is saved before and restored after reset.
4449 *
4450 * Return 0 on success, non-zero on error.
4451 */
4452 int pci_reset_slot(struct pci_slot *slot)
4453 {
4454 int rc;
4455
4456 rc = pci_slot_reset(slot, 1);
4457 if (rc)
4458 return rc;
4459
4460 pci_slot_save_and_disable(slot);
4461
4462 rc = pci_slot_reset(slot, 0);
4463
4464 pci_slot_restore(slot);
4465
4466 return rc;
4467 }
4468 EXPORT_SYMBOL_GPL(pci_reset_slot);
4469
4470 /**
4471 * pci_try_reset_slot - Try to reset a PCI slot
4472 * @slot: PCI slot to reset
4473 *
4474 * Same as above except return -EAGAIN if the slot cannot be locked
4475 */
4476 int pci_try_reset_slot(struct pci_slot *slot)
4477 {
4478 int rc;
4479
4480 rc = pci_slot_reset(slot, 1);
4481 if (rc)
4482 return rc;
4483
4484 pci_slot_save_and_disable(slot);
4485
4486 if (pci_slot_trylock(slot)) {
4487 might_sleep();
4488 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4489 pci_slot_unlock(slot);
4490 } else
4491 rc = -EAGAIN;
4492
4493 pci_slot_restore(slot);
4494
4495 return rc;
4496 }
4497 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4498
4499 static int pci_bus_reset(struct pci_bus *bus, int probe)
4500 {
4501 if (!bus->self || !pci_bus_resetable(bus))
4502 return -ENOTTY;
4503
4504 if (probe)
4505 return 0;
4506
4507 pci_bus_lock(bus);
4508
4509 might_sleep();
4510
4511 pci_reset_bridge_secondary_bus(bus->self);
4512
4513 pci_bus_unlock(bus);
4514
4515 return 0;
4516 }
4517
4518 /**
4519 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4520 * @bus: PCI bus to probe
4521 *
4522 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4523 */
4524 int pci_probe_reset_bus(struct pci_bus *bus)
4525 {
4526 return pci_bus_reset(bus, 1);
4527 }
4528 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4529
4530 /**
4531 * pci_reset_bus - reset a PCI bus
4532 * @bus: top level PCI bus to reset
4533 *
4534 * Do a bus reset on the given bus and any subordinate buses, saving
4535 * and restoring state of all devices.
4536 *
4537 * Return 0 on success, non-zero on error.
4538 */
4539 int pci_reset_bus(struct pci_bus *bus)
4540 {
4541 int rc;
4542
4543 rc = pci_bus_reset(bus, 1);
4544 if (rc)
4545 return rc;
4546
4547 pci_bus_save_and_disable(bus);
4548
4549 rc = pci_bus_reset(bus, 0);
4550
4551 pci_bus_restore(bus);
4552
4553 return rc;
4554 }
4555 EXPORT_SYMBOL_GPL(pci_reset_bus);
4556
4557 /**
4558 * pci_try_reset_bus - Try to reset a PCI bus
4559 * @bus: top level PCI bus to reset
4560 *
4561 * Same as above except return -EAGAIN if the bus cannot be locked
4562 */
4563 int pci_try_reset_bus(struct pci_bus *bus)
4564 {
4565 int rc;
4566
4567 rc = pci_bus_reset(bus, 1);
4568 if (rc)
4569 return rc;
4570
4571 pci_bus_save_and_disable(bus);
4572
4573 if (pci_bus_trylock(bus)) {
4574 might_sleep();
4575 pci_reset_bridge_secondary_bus(bus->self);
4576 pci_bus_unlock(bus);
4577 } else
4578 rc = -EAGAIN;
4579
4580 pci_bus_restore(bus);
4581
4582 return rc;
4583 }
4584 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4585
4586 /**
4587 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4588 * @dev: PCI device to query
4589 *
4590 * Returns mmrbc: maximum designed memory read count in bytes
4591 * or appropriate error value.
4592 */
4593 int pcix_get_max_mmrbc(struct pci_dev *dev)
4594 {
4595 int cap;
4596 u32 stat;
4597
4598 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4599 if (!cap)
4600 return -EINVAL;
4601
4602 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4603 return -EINVAL;
4604
4605 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4606 }
4607 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4608
4609 /**
4610 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4611 * @dev: PCI device to query
4612 *
4613 * Returns mmrbc: maximum memory read count in bytes
4614 * or appropriate error value.
4615 */
4616 int pcix_get_mmrbc(struct pci_dev *dev)
4617 {
4618 int cap;
4619 u16 cmd;
4620
4621 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4622 if (!cap)
4623 return -EINVAL;
4624
4625 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4626 return -EINVAL;
4627
4628 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4629 }
4630 EXPORT_SYMBOL(pcix_get_mmrbc);
4631
4632 /**
4633 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4634 * @dev: PCI device to query
4635 * @mmrbc: maximum memory read count in bytes
4636 * valid values are 512, 1024, 2048, 4096
4637 *
4638 * If possible sets maximum memory read byte count, some bridges have erratas
4639 * that prevent this.
4640 */
4641 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4642 {
4643 int cap;
4644 u32 stat, v, o;
4645 u16 cmd;
4646
4647 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4648 return -EINVAL;
4649
4650 v = ffs(mmrbc) - 10;
4651
4652 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4653 if (!cap)
4654 return -EINVAL;
4655
4656 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4657 return -EINVAL;
4658
4659 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4660 return -E2BIG;
4661
4662 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4663 return -EINVAL;
4664
4665 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4666 if (o != v) {
4667 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4668 return -EIO;
4669
4670 cmd &= ~PCI_X_CMD_MAX_READ;
4671 cmd |= v << 2;
4672 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4673 return -EIO;
4674 }
4675 return 0;
4676 }
4677 EXPORT_SYMBOL(pcix_set_mmrbc);
4678
4679 /**
4680 * pcie_get_readrq - get PCI Express read request size
4681 * @dev: PCI device to query
4682 *
4683 * Returns maximum memory read request in bytes
4684 * or appropriate error value.
4685 */
4686 int pcie_get_readrq(struct pci_dev *dev)
4687 {
4688 u16 ctl;
4689
4690 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4691
4692 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4693 }
4694 EXPORT_SYMBOL(pcie_get_readrq);
4695
4696 /**
4697 * pcie_set_readrq - set PCI Express maximum memory read request
4698 * @dev: PCI device to query
4699 * @rq: maximum memory read count in bytes
4700 * valid values are 128, 256, 512, 1024, 2048, 4096
4701 *
4702 * If possible sets maximum memory read request in bytes
4703 */
4704 int pcie_set_readrq(struct pci_dev *dev, int rq)
4705 {
4706 u16 v;
4707
4708 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4709 return -EINVAL;
4710
4711 /*
4712 * If using the "performance" PCIe config, we clamp the
4713 * read rq size to the max packet size to prevent the
4714 * host bridge generating requests larger than we can
4715 * cope with
4716 */
4717 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4718 int mps = pcie_get_mps(dev);
4719
4720 if (mps < rq)
4721 rq = mps;
4722 }
4723
4724 v = (ffs(rq) - 8) << 12;
4725
4726 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4727 PCI_EXP_DEVCTL_READRQ, v);
4728 }
4729 EXPORT_SYMBOL(pcie_set_readrq);
4730
4731 /**
4732 * pcie_get_mps - get PCI Express maximum payload size
4733 * @dev: PCI device to query
4734 *
4735 * Returns maximum payload size in bytes
4736 */
4737 int pcie_get_mps(struct pci_dev *dev)
4738 {
4739 u16 ctl;
4740
4741 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4742
4743 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4744 }
4745 EXPORT_SYMBOL(pcie_get_mps);
4746
4747 /**
4748 * pcie_set_mps - set PCI Express maximum payload size
4749 * @dev: PCI device to query
4750 * @mps: maximum payload size in bytes
4751 * valid values are 128, 256, 512, 1024, 2048, 4096
4752 *
4753 * If possible sets maximum payload size
4754 */
4755 int pcie_set_mps(struct pci_dev *dev, int mps)
4756 {
4757 u16 v;
4758
4759 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4760 return -EINVAL;
4761
4762 v = ffs(mps) - 8;
4763 if (v > dev->pcie_mpss)
4764 return -EINVAL;
4765 v <<= 5;
4766
4767 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4768 PCI_EXP_DEVCTL_PAYLOAD, v);
4769 }
4770 EXPORT_SYMBOL(pcie_set_mps);
4771
4772 /**
4773 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4774 * @dev: PCI device to query
4775 * @speed: storage for minimum speed
4776 * @width: storage for minimum width
4777 *
4778 * This function will walk up the PCI device chain and determine the minimum
4779 * link width and speed of the device.
4780 */
4781 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4782 enum pcie_link_width *width)
4783 {
4784 int ret;
4785
4786 *speed = PCI_SPEED_UNKNOWN;
4787 *width = PCIE_LNK_WIDTH_UNKNOWN;
4788
4789 while (dev) {
4790 u16 lnksta;
4791 enum pci_bus_speed next_speed;
4792 enum pcie_link_width next_width;
4793
4794 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4795 if (ret)
4796 return ret;
4797
4798 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4799 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4800 PCI_EXP_LNKSTA_NLW_SHIFT;
4801
4802 if (next_speed < *speed)
4803 *speed = next_speed;
4804
4805 if (next_width < *width)
4806 *width = next_width;
4807
4808 dev = dev->bus->self;
4809 }
4810
4811 return 0;
4812 }
4813 EXPORT_SYMBOL(pcie_get_minimum_link);
4814
4815 /**
4816 * pci_select_bars - Make BAR mask from the type of resource
4817 * @dev: the PCI device for which BAR mask is made
4818 * @flags: resource type mask to be selected
4819 *
4820 * This helper routine makes bar mask from the type of resource.
4821 */
4822 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4823 {
4824 int i, bars = 0;
4825 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4826 if (pci_resource_flags(dev, i) & flags)
4827 bars |= (1 << i);
4828 return bars;
4829 }
4830 EXPORT_SYMBOL(pci_select_bars);
4831
4832 /* Some architectures require additional programming to enable VGA */
4833 static arch_set_vga_state_t arch_set_vga_state;
4834
4835 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4836 {
4837 arch_set_vga_state = func; /* NULL disables */
4838 }
4839
4840 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4841 unsigned int command_bits, u32 flags)
4842 {
4843 if (arch_set_vga_state)
4844 return arch_set_vga_state(dev, decode, command_bits,
4845 flags);
4846 return 0;
4847 }
4848
4849 /**
4850 * pci_set_vga_state - set VGA decode state on device and parents if requested
4851 * @dev: the PCI device
4852 * @decode: true = enable decoding, false = disable decoding
4853 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4854 * @flags: traverse ancestors and change bridges
4855 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4856 */
4857 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4858 unsigned int command_bits, u32 flags)
4859 {
4860 struct pci_bus *bus;
4861 struct pci_dev *bridge;
4862 u16 cmd;
4863 int rc;
4864
4865 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4866
4867 /* ARCH specific VGA enables */
4868 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4869 if (rc)
4870 return rc;
4871
4872 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4873 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4874 if (decode == true)
4875 cmd |= command_bits;
4876 else
4877 cmd &= ~command_bits;
4878 pci_write_config_word(dev, PCI_COMMAND, cmd);
4879 }
4880
4881 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4882 return 0;
4883
4884 bus = dev->bus;
4885 while (bus) {
4886 bridge = bus->self;
4887 if (bridge) {
4888 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4889 &cmd);
4890 if (decode == true)
4891 cmd |= PCI_BRIDGE_CTL_VGA;
4892 else
4893 cmd &= ~PCI_BRIDGE_CTL_VGA;
4894 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4895 cmd);
4896 }
4897 bus = bus->parent;
4898 }
4899 return 0;
4900 }
4901
4902 /**
4903 * pci_add_dma_alias - Add a DMA devfn alias for a device
4904 * @dev: the PCI device for which alias is added
4905 * @devfn: alias slot and function
4906 *
4907 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
4908 * It should be called early, preferably as PCI fixup header quirk.
4909 */
4910 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
4911 {
4912 if (!dev->dma_alias_mask)
4913 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
4914 sizeof(long), GFP_KERNEL);
4915 if (!dev->dma_alias_mask) {
4916 dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n");
4917 return;
4918 }
4919
4920 set_bit(devfn, dev->dma_alias_mask);
4921 dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n",
4922 PCI_SLOT(devfn), PCI_FUNC(devfn));
4923 }
4924
4925 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
4926 {
4927 return (dev1->dma_alias_mask &&
4928 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
4929 (dev2->dma_alias_mask &&
4930 test_bit(dev1->devfn, dev2->dma_alias_mask));
4931 }
4932
4933 bool pci_device_is_present(struct pci_dev *pdev)
4934 {
4935 u32 v;
4936
4937 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4938 }
4939 EXPORT_SYMBOL_GPL(pci_device_is_present);
4940
4941 void pci_ignore_hotplug(struct pci_dev *dev)
4942 {
4943 struct pci_dev *bridge = dev->bus->self;
4944
4945 dev->ignore_hotplug = 1;
4946 /* Propagate the "ignore hotplug" setting to the parent bridge. */
4947 if (bridge)
4948 bridge->ignore_hotplug = 1;
4949 }
4950 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
4951
4952 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4953 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4954 static DEFINE_SPINLOCK(resource_alignment_lock);
4955
4956 /**
4957 * pci_specified_resource_alignment - get resource alignment specified by user.
4958 * @dev: the PCI device to get
4959 *
4960 * RETURNS: Resource alignment if it is specified.
4961 * Zero if it is not specified.
4962 */
4963 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4964 {
4965 int seg, bus, slot, func, align_order, count;
4966 unsigned short vendor, device, subsystem_vendor, subsystem_device;
4967 resource_size_t align = 0;
4968 char *p;
4969
4970 spin_lock(&resource_alignment_lock);
4971 p = resource_alignment_param;
4972 if (!*p)
4973 goto out;
4974 if (pci_has_flag(PCI_PROBE_ONLY)) {
4975 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
4976 goto out;
4977 }
4978
4979 while (*p) {
4980 count = 0;
4981 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4982 p[count] == '@') {
4983 p += count + 1;
4984 } else {
4985 align_order = -1;
4986 }
4987 if (strncmp(p, "pci:", 4) == 0) {
4988 /* PCI vendor/device (subvendor/subdevice) ids are specified */
4989 p += 4;
4990 if (sscanf(p, "%hx:%hx:%hx:%hx%n",
4991 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
4992 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
4993 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
4994 p);
4995 break;
4996 }
4997 subsystem_vendor = subsystem_device = 0;
4998 }
4999 p += count;
5000 if ((!vendor || (vendor == dev->vendor)) &&
5001 (!device || (device == dev->device)) &&
5002 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5003 (!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5004 if (align_order == -1)
5005 align = PAGE_SIZE;
5006 else
5007 align = 1 << align_order;
5008 /* Found */
5009 break;
5010 }
5011 }
5012 else {
5013 if (sscanf(p, "%x:%x:%x.%x%n",
5014 &seg, &bus, &slot, &func, &count) != 4) {
5015 seg = 0;
5016 if (sscanf(p, "%x:%x.%x%n",
5017 &bus, &slot, &func, &count) != 3) {
5018 /* Invalid format */
5019 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5020 p);
5021 break;
5022 }
5023 }
5024 p += count;
5025 if (seg == pci_domain_nr(dev->bus) &&
5026 bus == dev->bus->number &&
5027 slot == PCI_SLOT(dev->devfn) &&
5028 func == PCI_FUNC(dev->devfn)) {
5029 if (align_order == -1)
5030 align = PAGE_SIZE;
5031 else
5032 align = 1 << align_order;
5033 /* Found */
5034 break;
5035 }
5036 }
5037 if (*p != ';' && *p != ',') {
5038 /* End of param or invalid format */
5039 break;
5040 }
5041 p++;
5042 }
5043 out:
5044 spin_unlock(&resource_alignment_lock);
5045 return align;
5046 }
5047
5048 /*
5049 * This function disables memory decoding and releases memory resources
5050 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5051 * It also rounds up size to specified alignment.
5052 * Later on, the kernel will assign page-aligned memory resource back
5053 * to the device.
5054 */
5055 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5056 {
5057 int i;
5058 struct resource *r;
5059 resource_size_t align, size;
5060 u16 command;
5061
5062 /*
5063 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5064 * 3.4.1.11. Their resources are allocated from the space
5065 * described by the VF BARx register in the PF's SR-IOV capability.
5066 * We can't influence their alignment here.
5067 */
5068 if (dev->is_virtfn)
5069 return;
5070
5071 /* check if specified PCI is target device to reassign */
5072 align = pci_specified_resource_alignment(dev);
5073 if (!align)
5074 return;
5075
5076 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5077 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5078 dev_warn(&dev->dev,
5079 "Can't reassign resources to host bridge.\n");
5080 return;
5081 }
5082
5083 dev_info(&dev->dev,
5084 "Disabling memory decoding and releasing memory resources.\n");
5085 pci_read_config_word(dev, PCI_COMMAND, &command);
5086 command &= ~PCI_COMMAND_MEMORY;
5087 pci_write_config_word(dev, PCI_COMMAND, command);
5088
5089 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
5090 r = &dev->resource[i];
5091 if (!(r->flags & IORESOURCE_MEM))
5092 continue;
5093 if (r->flags & IORESOURCE_PCI_FIXED) {
5094 dev_info(&dev->dev, "Ignoring requested alignment for BAR%d: %pR\n",
5095 i, r);
5096 continue;
5097 }
5098
5099 size = resource_size(r);
5100 if (size < align) {
5101 size = align;
5102 dev_info(&dev->dev,
5103 "Rounding up size of resource #%d to %#llx.\n",
5104 i, (unsigned long long)size);
5105 }
5106 r->flags |= IORESOURCE_UNSET;
5107 r->end = size - 1;
5108 r->start = 0;
5109 }
5110 /* Need to disable bridge's resource window,
5111 * to enable the kernel to reassign new resource
5112 * window later on.
5113 */
5114 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5115 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5116 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5117 r = &dev->resource[i];
5118 if (!(r->flags & IORESOURCE_MEM))
5119 continue;
5120 r->flags |= IORESOURCE_UNSET;
5121 r->end = resource_size(r) - 1;
5122 r->start = 0;
5123 }
5124 pci_disable_bridge_window(dev);
5125 }
5126 }
5127
5128 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5129 {
5130 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5131 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5132 spin_lock(&resource_alignment_lock);
5133 strncpy(resource_alignment_param, buf, count);
5134 resource_alignment_param[count] = '\0';
5135 spin_unlock(&resource_alignment_lock);
5136 return count;
5137 }
5138
5139 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5140 {
5141 size_t count;
5142 spin_lock(&resource_alignment_lock);
5143 count = snprintf(buf, size, "%s", resource_alignment_param);
5144 spin_unlock(&resource_alignment_lock);
5145 return count;
5146 }
5147
5148 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5149 {
5150 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5151 }
5152
5153 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5154 const char *buf, size_t count)
5155 {
5156 return pci_set_resource_alignment_param(buf, count);
5157 }
5158
5159 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5160 pci_resource_alignment_store);
5161
5162 static int __init pci_resource_alignment_sysfs_init(void)
5163 {
5164 return bus_create_file(&pci_bus_type,
5165 &bus_attr_resource_alignment);
5166 }
5167 late_initcall(pci_resource_alignment_sysfs_init);
5168
5169 static void pci_no_domains(void)
5170 {
5171 #ifdef CONFIG_PCI_DOMAINS
5172 pci_domains_supported = 0;
5173 #endif
5174 }
5175
5176 #ifdef CONFIG_PCI_DOMAINS
5177 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5178
5179 int pci_get_new_domain_nr(void)
5180 {
5181 return atomic_inc_return(&__domain_nr);
5182 }
5183
5184 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5185 static int of_pci_bus_find_domain_nr(struct device *parent)
5186 {
5187 static int use_dt_domains = -1;
5188 int domain = -1;
5189
5190 if (parent)
5191 domain = of_get_pci_domain_nr(parent->of_node);
5192 /*
5193 * Check DT domain and use_dt_domains values.
5194 *
5195 * If DT domain property is valid (domain >= 0) and
5196 * use_dt_domains != 0, the DT assignment is valid since this means
5197 * we have not previously allocated a domain number by using
5198 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5199 * 1, to indicate that we have just assigned a domain number from
5200 * DT.
5201 *
5202 * If DT domain property value is not valid (ie domain < 0), and we
5203 * have not previously assigned a domain number from DT
5204 * (use_dt_domains != 1) we should assign a domain number by
5205 * using the:
5206 *
5207 * pci_get_new_domain_nr()
5208 *
5209 * API and update the use_dt_domains value to keep track of method we
5210 * are using to assign domain numbers (use_dt_domains = 0).
5211 *
5212 * All other combinations imply we have a platform that is trying
5213 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5214 * which is a recipe for domain mishandling and it is prevented by
5215 * invalidating the domain value (domain = -1) and printing a
5216 * corresponding error.
5217 */
5218 if (domain >= 0 && use_dt_domains) {
5219 use_dt_domains = 1;
5220 } else if (domain < 0 && use_dt_domains != 1) {
5221 use_dt_domains = 0;
5222 domain = pci_get_new_domain_nr();
5223 } else {
5224 dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
5225 parent->of_node->full_name);
5226 domain = -1;
5227 }
5228
5229 return domain;
5230 }
5231
5232 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5233 {
5234 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5235 acpi_pci_bus_find_domain_nr(bus);
5236 }
5237 #endif
5238 #endif
5239
5240 /**
5241 * pci_ext_cfg_avail - can we access extended PCI config space?
5242 *
5243 * Returns 1 if we can access PCI extended config space (offsets
5244 * greater than 0xff). This is the default implementation. Architecture
5245 * implementations can override this.
5246 */
5247 int __weak pci_ext_cfg_avail(void)
5248 {
5249 return 1;
5250 }
5251
5252 void __weak pci_fixup_cardbus(struct pci_bus *bus)
5253 {
5254 }
5255 EXPORT_SYMBOL(pci_fixup_cardbus);
5256
5257 static int __init pci_setup(char *str)
5258 {
5259 while (str) {
5260 char *k = strchr(str, ',');
5261 if (k)
5262 *k++ = 0;
5263 if (*str && (str = pcibios_setup(str)) && *str) {
5264 if (!strcmp(str, "nomsi")) {
5265 pci_no_msi();
5266 } else if (!strcmp(str, "noaer")) {
5267 pci_no_aer();
5268 } else if (!strncmp(str, "realloc=", 8)) {
5269 pci_realloc_get_opt(str + 8);
5270 } else if (!strncmp(str, "realloc", 7)) {
5271 pci_realloc_get_opt("on");
5272 } else if (!strcmp(str, "nodomains")) {
5273 pci_no_domains();
5274 } else if (!strncmp(str, "noari", 5)) {
5275 pcie_ari_disabled = true;
5276 } else if (!strncmp(str, "cbiosize=", 9)) {
5277 pci_cardbus_io_size = memparse(str + 9, &str);
5278 } else if (!strncmp(str, "cbmemsize=", 10)) {
5279 pci_cardbus_mem_size = memparse(str + 10, &str);
5280 } else if (!strncmp(str, "resource_alignment=", 19)) {
5281 pci_set_resource_alignment_param(str + 19,
5282 strlen(str + 19));
5283 } else if (!strncmp(str, "ecrc=", 5)) {
5284 pcie_ecrc_get_policy(str + 5);
5285 } else if (!strncmp(str, "hpiosize=", 9)) {
5286 pci_hotplug_io_size = memparse(str + 9, &str);
5287 } else if (!strncmp(str, "hpmemsize=", 10)) {
5288 pci_hotplug_mem_size = memparse(str + 10, &str);
5289 } else if (!strncmp(str, "hpbussize=", 10)) {
5290 pci_hotplug_bus_size =
5291 simple_strtoul(str + 10, &str, 0);
5292 if (pci_hotplug_bus_size > 0xff)
5293 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5294 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5295 pcie_bus_config = PCIE_BUS_TUNE_OFF;
5296 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
5297 pcie_bus_config = PCIE_BUS_SAFE;
5298 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
5299 pcie_bus_config = PCIE_BUS_PERFORMANCE;
5300 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5301 pcie_bus_config = PCIE_BUS_PEER2PEER;
5302 } else if (!strncmp(str, "pcie_scan_all", 13)) {
5303 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5304 } else {
5305 printk(KERN_ERR "PCI: Unknown option `%s'\n",
5306 str);
5307 }
5308 }
5309 str = k;
5310 }
5311 return 0;
5312 }
5313 early_param("pci", pci_setup);