]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/pci/pci.c
UBUNTU: SAUCE: whitelist platforms that needs save/restore ASPM L1SS for suspend...
[mirror_ubuntu-jammy-kernel.git] / drivers / pci / pci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
35 #include "pci.h"
36
37 DEFINE_MUTEX(pci_slot_mutex);
38
39 const char *pci_power_names[] = {
40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
46
47 int pci_pci_problems;
48 EXPORT_SYMBOL(pci_pci_problems);
49
50 unsigned int pci_pm_d3hot_delay;
51
52 static void pci_pme_list_scan(struct work_struct *work);
53
54 static LIST_HEAD(pci_pme_list);
55 static DEFINE_MUTEX(pci_pme_list_mutex);
56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
57
58 struct pci_pme_device {
59 struct list_head list;
60 struct pci_dev *dev;
61 };
62
63 #define PME_TIMEOUT 1000 /* How long between PME checks */
64
65 static void pci_dev_d3_sleep(struct pci_dev *dev)
66 {
67 unsigned int delay = dev->d3hot_delay;
68
69 if (delay < pci_pm_d3hot_delay)
70 delay = pci_pm_d3hot_delay;
71
72 if (delay)
73 msleep(delay);
74 }
75
76 bool pci_reset_supported(struct pci_dev *dev)
77 {
78 return dev->reset_methods[0] != 0;
79 }
80
81 #ifdef CONFIG_PCI_DOMAINS
82 int pci_domains_supported = 1;
83 #endif
84
85 #define DEFAULT_CARDBUS_IO_SIZE (256)
86 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
87 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
88 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
89 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
90
91 #define DEFAULT_HOTPLUG_IO_SIZE (256)
92 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
93 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
94 /* hpiosize=nn can override this */
95 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
96 /*
97 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
98 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
99 * pci=hpmemsize=nnM overrides both
100 */
101 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
102 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
103
104 #define DEFAULT_HOTPLUG_BUS_SIZE 1
105 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
106
107
108 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
109 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
111 #elif defined CONFIG_PCIE_BUS_SAFE
112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
113 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
114 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
115 #elif defined CONFIG_PCIE_BUS_PEER2PEER
116 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
117 #else
118 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
119 #endif
120
121 /*
122 * The default CLS is used if arch didn't set CLS explicitly and not
123 * all pci devices agree on the same value. Arch can override either
124 * the dfl or actual value as it sees fit. Don't forget this is
125 * measured in 32-bit words, not bytes.
126 */
127 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
128 u8 pci_cache_line_size;
129
130 /*
131 * If we set up a device for bus mastering, we need to check the latency
132 * timer as certain BIOSes forget to set it properly.
133 */
134 unsigned int pcibios_max_latency = 255;
135
136 /* If set, the PCIe ARI capability will not be used. */
137 static bool pcie_ari_disabled;
138
139 /* If set, the PCIe ATS capability will not be used. */
140 static bool pcie_ats_disabled;
141
142 /* If set, the PCI config space of each device is printed during boot. */
143 bool pci_early_dump;
144
145 bool pci_ats_disabled(void)
146 {
147 return pcie_ats_disabled;
148 }
149 EXPORT_SYMBOL_GPL(pci_ats_disabled);
150
151 /* Disable bridge_d3 for all PCIe ports */
152 static bool pci_bridge_d3_disable;
153 /* Force bridge_d3 for all PCIe ports */
154 static bool pci_bridge_d3_force;
155
156 static int __init pcie_port_pm_setup(char *str)
157 {
158 if (!strcmp(str, "off"))
159 pci_bridge_d3_disable = true;
160 else if (!strcmp(str, "force"))
161 pci_bridge_d3_force = true;
162 return 1;
163 }
164 __setup("pcie_port_pm=", pcie_port_pm_setup);
165
166 /* Time to wait after a reset for device to become responsive */
167 #define PCIE_RESET_READY_POLL_MS 60000
168
169 static const struct dmi_system_id aspm_fix_whitelist[] = {
170 {
171 .ident = "LENOVO Stealth Thinkstation",
172 .matches = {
173 DMI_MATCH(DMI_BIOS_VERSION, "S07K"),
174 },
175 },
176 {
177 .ident = "Dell Inc. Precision 7960 Tower",
178 .matches = {
179 DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."),
180 DMI_MATCH(DMI_PRODUCT_NAME, "Precision 7960 Tower"),
181 },
182 },
183 {}
184 };
185
186 /**
187 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
188 * @bus: pointer to PCI bus structure to search
189 *
190 * Given a PCI bus, returns the highest PCI bus number present in the set
191 * including the given PCI bus and its list of child PCI buses.
192 */
193 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
194 {
195 struct pci_bus *tmp;
196 unsigned char max, n;
197
198 max = bus->busn_res.end;
199 list_for_each_entry(tmp, &bus->children, node) {
200 n = pci_bus_max_busnr(tmp);
201 if (n > max)
202 max = n;
203 }
204 return max;
205 }
206 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
207
208 /**
209 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
210 * @pdev: the PCI device
211 *
212 * Returns error bits set in PCI_STATUS and clears them.
213 */
214 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
215 {
216 u16 status;
217 int ret;
218
219 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
220 if (ret != PCIBIOS_SUCCESSFUL)
221 return -EIO;
222
223 status &= PCI_STATUS_ERROR_BITS;
224 if (status)
225 pci_write_config_word(pdev, PCI_STATUS, status);
226
227 return status;
228 }
229 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
230
231 #ifdef CONFIG_HAS_IOMEM
232 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
233 bool write_combine)
234 {
235 struct resource *res = &pdev->resource[bar];
236 resource_size_t start = res->start;
237 resource_size_t size = resource_size(res);
238
239 /*
240 * Make sure the BAR is actually a memory resource, not an IO resource
241 */
242 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
243 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
244 return NULL;
245 }
246
247 if (write_combine)
248 return ioremap_wc(start, size);
249
250 return ioremap(start, size);
251 }
252
253 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
254 {
255 return __pci_ioremap_resource(pdev, bar, false);
256 }
257 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
258
259 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
260 {
261 return __pci_ioremap_resource(pdev, bar, true);
262 }
263 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
264 #endif
265
266 /**
267 * pci_dev_str_match_path - test if a path string matches a device
268 * @dev: the PCI device to test
269 * @path: string to match the device against
270 * @endptr: pointer to the string after the match
271 *
272 * Test if a string (typically from a kernel parameter) formatted as a
273 * path of device/function addresses matches a PCI device. The string must
274 * be of the form:
275 *
276 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
277 *
278 * A path for a device can be obtained using 'lspci -t'. Using a path
279 * is more robust against bus renumbering than using only a single bus,
280 * device and function address.
281 *
282 * Returns 1 if the string matches the device, 0 if it does not and
283 * a negative error code if it fails to parse the string.
284 */
285 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
286 const char **endptr)
287 {
288 int ret;
289 int seg, bus, slot, func;
290 char *wpath, *p;
291 char end;
292
293 *endptr = strchrnul(path, ';');
294
295 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
296 if (!wpath)
297 return -ENOMEM;
298
299 while (1) {
300 p = strrchr(wpath, '/');
301 if (!p)
302 break;
303 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
304 if (ret != 2) {
305 ret = -EINVAL;
306 goto free_and_exit;
307 }
308
309 if (dev->devfn != PCI_DEVFN(slot, func)) {
310 ret = 0;
311 goto free_and_exit;
312 }
313
314 /*
315 * Note: we don't need to get a reference to the upstream
316 * bridge because we hold a reference to the top level
317 * device which should hold a reference to the bridge,
318 * and so on.
319 */
320 dev = pci_upstream_bridge(dev);
321 if (!dev) {
322 ret = 0;
323 goto free_and_exit;
324 }
325
326 *p = 0;
327 }
328
329 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
330 &func, &end);
331 if (ret != 4) {
332 seg = 0;
333 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
334 if (ret != 3) {
335 ret = -EINVAL;
336 goto free_and_exit;
337 }
338 }
339
340 ret = (seg == pci_domain_nr(dev->bus) &&
341 bus == dev->bus->number &&
342 dev->devfn == PCI_DEVFN(slot, func));
343
344 free_and_exit:
345 kfree(wpath);
346 return ret;
347 }
348
349 /**
350 * pci_dev_str_match - test if a string matches a device
351 * @dev: the PCI device to test
352 * @p: string to match the device against
353 * @endptr: pointer to the string after the match
354 *
355 * Test if a string (typically from a kernel parameter) matches a specified
356 * PCI device. The string may be of one of the following formats:
357 *
358 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
359 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
360 *
361 * The first format specifies a PCI bus/device/function address which
362 * may change if new hardware is inserted, if motherboard firmware changes,
363 * or due to changes caused in kernel parameters. If the domain is
364 * left unspecified, it is taken to be 0. In order to be robust against
365 * bus renumbering issues, a path of PCI device/function numbers may be used
366 * to address the specific device. The path for a device can be determined
367 * through the use of 'lspci -t'.
368 *
369 * The second format matches devices using IDs in the configuration
370 * space which may match multiple devices in the system. A value of 0
371 * for any field will match all devices. (Note: this differs from
372 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
373 * legacy reasons and convenience so users don't have to specify
374 * FFFFFFFFs on the command line.)
375 *
376 * Returns 1 if the string matches the device, 0 if it does not and
377 * a negative error code if the string cannot be parsed.
378 */
379 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
380 const char **endptr)
381 {
382 int ret;
383 int count;
384 unsigned short vendor, device, subsystem_vendor, subsystem_device;
385
386 if (strncmp(p, "pci:", 4) == 0) {
387 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
388 p += 4;
389 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
390 &subsystem_vendor, &subsystem_device, &count);
391 if (ret != 4) {
392 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
393 if (ret != 2)
394 return -EINVAL;
395
396 subsystem_vendor = 0;
397 subsystem_device = 0;
398 }
399
400 p += count;
401
402 if ((!vendor || vendor == dev->vendor) &&
403 (!device || device == dev->device) &&
404 (!subsystem_vendor ||
405 subsystem_vendor == dev->subsystem_vendor) &&
406 (!subsystem_device ||
407 subsystem_device == dev->subsystem_device))
408 goto found;
409 } else {
410 /*
411 * PCI Bus, Device, Function IDs are specified
412 * (optionally, may include a path of devfns following it)
413 */
414 ret = pci_dev_str_match_path(dev, p, &p);
415 if (ret < 0)
416 return ret;
417 else if (ret)
418 goto found;
419 }
420
421 *endptr = p;
422 return 0;
423
424 found:
425 *endptr = p;
426 return 1;
427 }
428
429 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
430 u8 pos, int cap, int *ttl)
431 {
432 u8 id;
433 u16 ent;
434
435 pci_bus_read_config_byte(bus, devfn, pos, &pos);
436
437 while ((*ttl)--) {
438 if (pos < 0x40)
439 break;
440 pos &= ~3;
441 pci_bus_read_config_word(bus, devfn, pos, &ent);
442
443 id = ent & 0xff;
444 if (id == 0xff)
445 break;
446 if (id == cap)
447 return pos;
448 pos = (ent >> 8);
449 }
450 return 0;
451 }
452
453 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
454 u8 pos, int cap)
455 {
456 int ttl = PCI_FIND_CAP_TTL;
457
458 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
459 }
460
461 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
462 {
463 return __pci_find_next_cap(dev->bus, dev->devfn,
464 pos + PCI_CAP_LIST_NEXT, cap);
465 }
466 EXPORT_SYMBOL_GPL(pci_find_next_capability);
467
468 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
469 unsigned int devfn, u8 hdr_type)
470 {
471 u16 status;
472
473 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
474 if (!(status & PCI_STATUS_CAP_LIST))
475 return 0;
476
477 switch (hdr_type) {
478 case PCI_HEADER_TYPE_NORMAL:
479 case PCI_HEADER_TYPE_BRIDGE:
480 return PCI_CAPABILITY_LIST;
481 case PCI_HEADER_TYPE_CARDBUS:
482 return PCI_CB_CAPABILITY_LIST;
483 }
484
485 return 0;
486 }
487
488 /**
489 * pci_find_capability - query for devices' capabilities
490 * @dev: PCI device to query
491 * @cap: capability code
492 *
493 * Tell if a device supports a given PCI capability.
494 * Returns the address of the requested capability structure within the
495 * device's PCI configuration space or 0 in case the device does not
496 * support it. Possible values for @cap include:
497 *
498 * %PCI_CAP_ID_PM Power Management
499 * %PCI_CAP_ID_AGP Accelerated Graphics Port
500 * %PCI_CAP_ID_VPD Vital Product Data
501 * %PCI_CAP_ID_SLOTID Slot Identification
502 * %PCI_CAP_ID_MSI Message Signalled Interrupts
503 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
504 * %PCI_CAP_ID_PCIX PCI-X
505 * %PCI_CAP_ID_EXP PCI Express
506 */
507 u8 pci_find_capability(struct pci_dev *dev, int cap)
508 {
509 u8 pos;
510
511 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
512 if (pos)
513 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
514
515 return pos;
516 }
517 EXPORT_SYMBOL(pci_find_capability);
518
519 /**
520 * pci_bus_find_capability - query for devices' capabilities
521 * @bus: the PCI bus to query
522 * @devfn: PCI device to query
523 * @cap: capability code
524 *
525 * Like pci_find_capability() but works for PCI devices that do not have a
526 * pci_dev structure set up yet.
527 *
528 * Returns the address of the requested capability structure within the
529 * device's PCI configuration space or 0 in case the device does not
530 * support it.
531 */
532 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
533 {
534 u8 hdr_type, pos;
535
536 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
537
538 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
539 if (pos)
540 pos = __pci_find_next_cap(bus, devfn, pos, cap);
541
542 return pos;
543 }
544 EXPORT_SYMBOL(pci_bus_find_capability);
545
546 /**
547 * pci_find_next_ext_capability - Find an extended capability
548 * @dev: PCI device to query
549 * @start: address at which to start looking (0 to start at beginning of list)
550 * @cap: capability code
551 *
552 * Returns the address of the next matching extended capability structure
553 * within the device's PCI configuration space or 0 if the device does
554 * not support it. Some capabilities can occur several times, e.g., the
555 * vendor-specific capability, and this provides a way to find them all.
556 */
557 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
558 {
559 u32 header;
560 int ttl;
561 u16 pos = PCI_CFG_SPACE_SIZE;
562
563 /* minimum 8 bytes per capability */
564 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
565
566 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
567 return 0;
568
569 if (start)
570 pos = start;
571
572 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
573 return 0;
574
575 /*
576 * If we have no capabilities, this is indicated by cap ID,
577 * cap version and next pointer all being 0.
578 */
579 if (header == 0)
580 return 0;
581
582 while (ttl-- > 0) {
583 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
584 return pos;
585
586 pos = PCI_EXT_CAP_NEXT(header);
587 if (pos < PCI_CFG_SPACE_SIZE)
588 break;
589
590 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
591 break;
592 }
593
594 return 0;
595 }
596 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
597
598 /**
599 * pci_find_ext_capability - Find an extended capability
600 * @dev: PCI device to query
601 * @cap: capability code
602 *
603 * Returns the address of the requested extended capability structure
604 * within the device's PCI configuration space or 0 if the device does
605 * not support it. Possible values for @cap include:
606 *
607 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
608 * %PCI_EXT_CAP_ID_VC Virtual Channel
609 * %PCI_EXT_CAP_ID_DSN Device Serial Number
610 * %PCI_EXT_CAP_ID_PWR Power Budgeting
611 */
612 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
613 {
614 return pci_find_next_ext_capability(dev, 0, cap);
615 }
616 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
617
618 /**
619 * pci_get_dsn - Read and return the 8-byte Device Serial Number
620 * @dev: PCI device to query
621 *
622 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
623 * Number.
624 *
625 * Returns the DSN, or zero if the capability does not exist.
626 */
627 u64 pci_get_dsn(struct pci_dev *dev)
628 {
629 u32 dword;
630 u64 dsn;
631 int pos;
632
633 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
634 if (!pos)
635 return 0;
636
637 /*
638 * The Device Serial Number is two dwords offset 4 bytes from the
639 * capability position. The specification says that the first dword is
640 * the lower half, and the second dword is the upper half.
641 */
642 pos += 4;
643 pci_read_config_dword(dev, pos, &dword);
644 dsn = (u64)dword;
645 pci_read_config_dword(dev, pos + 4, &dword);
646 dsn |= ((u64)dword) << 32;
647
648 return dsn;
649 }
650 EXPORT_SYMBOL_GPL(pci_get_dsn);
651
652 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
653 {
654 int rc, ttl = PCI_FIND_CAP_TTL;
655 u8 cap, mask;
656
657 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
658 mask = HT_3BIT_CAP_MASK;
659 else
660 mask = HT_5BIT_CAP_MASK;
661
662 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
663 PCI_CAP_ID_HT, &ttl);
664 while (pos) {
665 rc = pci_read_config_byte(dev, pos + 3, &cap);
666 if (rc != PCIBIOS_SUCCESSFUL)
667 return 0;
668
669 if ((cap & mask) == ht_cap)
670 return pos;
671
672 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
673 pos + PCI_CAP_LIST_NEXT,
674 PCI_CAP_ID_HT, &ttl);
675 }
676
677 return 0;
678 }
679
680 /**
681 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
682 * @dev: PCI device to query
683 * @pos: Position from which to continue searching
684 * @ht_cap: HyperTransport capability code
685 *
686 * To be used in conjunction with pci_find_ht_capability() to search for
687 * all capabilities matching @ht_cap. @pos should always be a value returned
688 * from pci_find_ht_capability().
689 *
690 * NB. To be 100% safe against broken PCI devices, the caller should take
691 * steps to avoid an infinite loop.
692 */
693 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
694 {
695 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
696 }
697 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
698
699 /**
700 * pci_find_ht_capability - query a device's HyperTransport capabilities
701 * @dev: PCI device to query
702 * @ht_cap: HyperTransport capability code
703 *
704 * Tell if a device supports a given HyperTransport capability.
705 * Returns an address within the device's PCI configuration space
706 * or 0 in case the device does not support the request capability.
707 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
708 * which has a HyperTransport capability matching @ht_cap.
709 */
710 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
711 {
712 u8 pos;
713
714 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
715 if (pos)
716 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
717
718 return pos;
719 }
720 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
721
722 /**
723 * pci_find_vsec_capability - Find a vendor-specific extended capability
724 * @dev: PCI device to query
725 * @vendor: Vendor ID for which capability is defined
726 * @cap: Vendor-specific capability ID
727 *
728 * If @dev has Vendor ID @vendor, search for a VSEC capability with
729 * VSEC ID @cap. If found, return the capability offset in
730 * config space; otherwise return 0.
731 */
732 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
733 {
734 u16 vsec = 0;
735 u32 header;
736
737 if (vendor != dev->vendor)
738 return 0;
739
740 while ((vsec = pci_find_next_ext_capability(dev, vsec,
741 PCI_EXT_CAP_ID_VNDR))) {
742 if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
743 &header) == PCIBIOS_SUCCESSFUL &&
744 PCI_VNDR_HEADER_ID(header) == cap)
745 return vsec;
746 }
747
748 return 0;
749 }
750 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
751
752 /**
753 * pci_find_parent_resource - return resource region of parent bus of given
754 * region
755 * @dev: PCI device structure contains resources to be searched
756 * @res: child resource record for which parent is sought
757 *
758 * For given resource region of given device, return the resource region of
759 * parent bus the given region is contained in.
760 */
761 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
762 struct resource *res)
763 {
764 const struct pci_bus *bus = dev->bus;
765 struct resource *r;
766 int i;
767
768 pci_bus_for_each_resource(bus, r, i) {
769 if (!r)
770 continue;
771 if (resource_contains(r, res)) {
772
773 /*
774 * If the window is prefetchable but the BAR is
775 * not, the allocator made a mistake.
776 */
777 if (r->flags & IORESOURCE_PREFETCH &&
778 !(res->flags & IORESOURCE_PREFETCH))
779 return NULL;
780
781 /*
782 * If we're below a transparent bridge, there may
783 * be both a positively-decoded aperture and a
784 * subtractively-decoded region that contain the BAR.
785 * We want the positively-decoded one, so this depends
786 * on pci_bus_for_each_resource() giving us those
787 * first.
788 */
789 return r;
790 }
791 }
792 return NULL;
793 }
794 EXPORT_SYMBOL(pci_find_parent_resource);
795
796 /**
797 * pci_find_resource - Return matching PCI device resource
798 * @dev: PCI device to query
799 * @res: Resource to look for
800 *
801 * Goes over standard PCI resources (BARs) and checks if the given resource
802 * is partially or fully contained in any of them. In that case the
803 * matching resource is returned, %NULL otherwise.
804 */
805 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
806 {
807 int i;
808
809 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
810 struct resource *r = &dev->resource[i];
811
812 if (r->start && resource_contains(r, res))
813 return r;
814 }
815
816 return NULL;
817 }
818 EXPORT_SYMBOL(pci_find_resource);
819
820 /**
821 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
822 * @dev: the PCI device to operate on
823 * @pos: config space offset of status word
824 * @mask: mask of bit(s) to care about in status word
825 *
826 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
827 */
828 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
829 {
830 int i;
831
832 /* Wait for Transaction Pending bit clean */
833 for (i = 0; i < 4; i++) {
834 u16 status;
835 if (i)
836 msleep((1 << (i - 1)) * 100);
837
838 pci_read_config_word(dev, pos, &status);
839 if (!(status & mask))
840 return 1;
841 }
842
843 return 0;
844 }
845
846 static int pci_acs_enable;
847
848 /**
849 * pci_request_acs - ask for ACS to be enabled if supported
850 */
851 void pci_request_acs(void)
852 {
853 pci_acs_enable = 1;
854 }
855
856 static const char *disable_acs_redir_param;
857
858 /**
859 * pci_disable_acs_redir - disable ACS redirect capabilities
860 * @dev: the PCI device
861 *
862 * For only devices specified in the disable_acs_redir parameter.
863 */
864 static void pci_disable_acs_redir(struct pci_dev *dev)
865 {
866 int ret = 0;
867 const char *p;
868 int pos;
869 u16 ctrl;
870
871 if (!disable_acs_redir_param)
872 return;
873
874 p = disable_acs_redir_param;
875 while (*p) {
876 ret = pci_dev_str_match(dev, p, &p);
877 if (ret < 0) {
878 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
879 disable_acs_redir_param);
880
881 break;
882 } else if (ret == 1) {
883 /* Found a match */
884 break;
885 }
886
887 if (*p != ';' && *p != ',') {
888 /* End of param or invalid format */
889 break;
890 }
891 p++;
892 }
893
894 if (ret != 1)
895 return;
896
897 if (!pci_dev_specific_disable_acs_redir(dev))
898 return;
899
900 pos = dev->acs_cap;
901 if (!pos) {
902 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
903 return;
904 }
905
906 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
907
908 /* P2P Request & Completion Redirect */
909 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
910
911 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
912
913 pci_info(dev, "disabled ACS redirect\n");
914 }
915
916 /**
917 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
918 * @dev: the PCI device
919 */
920 static void pci_std_enable_acs(struct pci_dev *dev)
921 {
922 int pos;
923 u16 cap;
924 u16 ctrl;
925
926 pos = dev->acs_cap;
927 if (!pos)
928 return;
929
930 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
931 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
932
933 /* Source Validation */
934 ctrl |= (cap & PCI_ACS_SV);
935
936 /* P2P Request Redirect */
937 ctrl |= (cap & PCI_ACS_RR);
938
939 /* P2P Completion Redirect */
940 ctrl |= (cap & PCI_ACS_CR);
941
942 /* Upstream Forwarding */
943 ctrl |= (cap & PCI_ACS_UF);
944
945 /* Enable Translation Blocking for external devices and noats */
946 if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
947 ctrl |= (cap & PCI_ACS_TB);
948
949 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
950 }
951
952 /**
953 * pci_enable_acs - enable ACS if hardware support it
954 * @dev: the PCI device
955 */
956 static void pci_enable_acs(struct pci_dev *dev)
957 {
958 if (!pci_acs_enable)
959 goto disable_acs_redir;
960
961 if (!pci_dev_specific_enable_acs(dev))
962 goto disable_acs_redir;
963
964 pci_std_enable_acs(dev);
965
966 disable_acs_redir:
967 /*
968 * Note: pci_disable_acs_redir() must be called even if ACS was not
969 * enabled by the kernel because it may have been enabled by
970 * platform firmware. So if we are told to disable it, we should
971 * always disable it after setting the kernel's default
972 * preferences.
973 */
974 pci_disable_acs_redir(dev);
975 }
976
977 /**
978 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
979 * @dev: PCI device to have its BARs restored
980 *
981 * Restore the BAR values for a given device, so as to make it
982 * accessible by its driver.
983 */
984 static void pci_restore_bars(struct pci_dev *dev)
985 {
986 int i;
987
988 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
989 pci_update_resource(dev, i);
990 }
991
992 static const struct pci_platform_pm_ops *pci_platform_pm;
993
994 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
995 {
996 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
997 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
998 return -EINVAL;
999 pci_platform_pm = ops;
1000 return 0;
1001 }
1002
1003 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1004 {
1005 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
1006 }
1007
1008 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1009 pci_power_t t)
1010 {
1011 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
1012 }
1013
1014 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1015 {
1016 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
1017 }
1018
1019 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1020 {
1021 if (pci_platform_pm && pci_platform_pm->refresh_state)
1022 pci_platform_pm->refresh_state(dev);
1023 }
1024
1025 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1026 {
1027 return pci_platform_pm ?
1028 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
1029 }
1030
1031 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1032 {
1033 return pci_platform_pm ?
1034 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
1035 }
1036
1037 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1038 {
1039 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
1040 }
1041
1042 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1043 {
1044 if (pci_platform_pm && pci_platform_pm->bridge_d3)
1045 return pci_platform_pm->bridge_d3(dev);
1046 return false;
1047 }
1048
1049 /**
1050 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
1051 * given PCI device
1052 * @dev: PCI device to handle.
1053 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1054 *
1055 * RETURN VALUE:
1056 * -EINVAL if the requested state is invalid.
1057 * -EIO if device does not support PCI PM or its PM capabilities register has a
1058 * wrong version, or device doesn't support the requested state.
1059 * 0 if device already is in the requested state.
1060 * 0 if device's power state has been successfully changed.
1061 */
1062 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1063 {
1064 u16 pmcsr;
1065 bool need_restore = false;
1066
1067 /* Check if we're already there */
1068 if (dev->current_state == state)
1069 return 0;
1070
1071 if (!dev->pm_cap)
1072 return -EIO;
1073
1074 if (state < PCI_D0 || state > PCI_D3hot)
1075 return -EINVAL;
1076
1077 /*
1078 * Validate transition: We can enter D0 from any state, but if
1079 * we're already in a low-power state, we can only go deeper. E.g.,
1080 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1081 * we'd have to go from D3 to D0, then to D1.
1082 */
1083 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1084 && dev->current_state > state) {
1085 pci_err(dev, "invalid power transition (from %s to %s)\n",
1086 pci_power_name(dev->current_state),
1087 pci_power_name(state));
1088 return -EINVAL;
1089 }
1090
1091 /* Check if this device supports the desired state */
1092 if ((state == PCI_D1 && !dev->d1_support)
1093 || (state == PCI_D2 && !dev->d2_support))
1094 return -EIO;
1095
1096 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1097 if (pmcsr == (u16) ~0) {
1098 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1099 pci_power_name(dev->current_state),
1100 pci_power_name(state));
1101 return -EIO;
1102 }
1103
1104 /*
1105 * If we're (effectively) in D3, force entire word to 0.
1106 * This doesn't affect PME_Status, disables PME_En, and
1107 * sets PowerState to 0.
1108 */
1109 switch (dev->current_state) {
1110 case PCI_D0:
1111 case PCI_D1:
1112 case PCI_D2:
1113 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1114 pmcsr |= state;
1115 break;
1116 case PCI_D3hot:
1117 case PCI_D3cold:
1118 case PCI_UNKNOWN: /* Boot-up */
1119 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1120 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1121 need_restore = true;
1122 fallthrough; /* force to D0 */
1123 default:
1124 pmcsr = 0;
1125 break;
1126 }
1127
1128 /* Enter specified state */
1129 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1130
1131 /*
1132 * Mandatory power management transition delays; see PCI PM 1.1
1133 * 5.6.1 table 18
1134 */
1135 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1136 pci_dev_d3_sleep(dev);
1137 else if (state == PCI_D2 || dev->current_state == PCI_D2)
1138 udelay(PCI_PM_D2_DELAY);
1139
1140 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1141 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1142 if (dev->current_state != state)
1143 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1144 pci_power_name(dev->current_state),
1145 pci_power_name(state));
1146
1147 /*
1148 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1149 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1150 * from D3hot to D0 _may_ perform an internal reset, thereby
1151 * going to "D0 Uninitialized" rather than "D0 Initialized".
1152 * For example, at least some versions of the 3c905B and the
1153 * 3c556B exhibit this behaviour.
1154 *
1155 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1156 * devices in a D3hot state at boot. Consequently, we need to
1157 * restore at least the BARs so that the device will be
1158 * accessible to its driver.
1159 */
1160 if (need_restore)
1161 pci_restore_bars(dev);
1162
1163 if (dev->bus->self && !dmi_check_system(aspm_fix_whitelist))
1164 pcie_aspm_pm_state_change(dev->bus->self);
1165
1166 return 0;
1167 }
1168
1169 /**
1170 * pci_update_current_state - Read power state of given device and cache it
1171 * @dev: PCI device to handle.
1172 * @state: State to cache in case the device doesn't have the PM capability
1173 *
1174 * The power state is read from the PMCSR register, which however is
1175 * inaccessible in D3cold. The platform firmware is therefore queried first
1176 * to detect accessibility of the register. In case the platform firmware
1177 * reports an incorrect state or the device isn't power manageable by the
1178 * platform at all, we try to detect D3cold by testing accessibility of the
1179 * vendor ID in config space.
1180 */
1181 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1182 {
1183 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1184 !pci_device_is_present(dev)) {
1185 dev->current_state = PCI_D3cold;
1186 } else if (dev->pm_cap) {
1187 u16 pmcsr;
1188
1189 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1190 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1191 } else {
1192 dev->current_state = state;
1193 }
1194 }
1195
1196 /**
1197 * pci_refresh_power_state - Refresh the given device's power state data
1198 * @dev: Target PCI device.
1199 *
1200 * Ask the platform to refresh the devices power state information and invoke
1201 * pci_update_current_state() to update its current PCI power state.
1202 */
1203 void pci_refresh_power_state(struct pci_dev *dev)
1204 {
1205 if (platform_pci_power_manageable(dev))
1206 platform_pci_refresh_power_state(dev);
1207
1208 pci_update_current_state(dev, dev->current_state);
1209 }
1210
1211 /**
1212 * pci_platform_power_transition - Use platform to change device power state
1213 * @dev: PCI device to handle.
1214 * @state: State to put the device into.
1215 */
1216 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1217 {
1218 int error;
1219
1220 if (platform_pci_power_manageable(dev)) {
1221 error = platform_pci_set_power_state(dev, state);
1222 if (!error)
1223 pci_update_current_state(dev, state);
1224 } else
1225 error = -ENODEV;
1226
1227 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1228 dev->current_state = PCI_D0;
1229
1230 return error;
1231 }
1232 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1233
1234 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1235 {
1236 pm_request_resume(&pci_dev->dev);
1237 return 0;
1238 }
1239
1240 /**
1241 * pci_resume_bus - Walk given bus and runtime resume devices on it
1242 * @bus: Top bus of the subtree to walk.
1243 */
1244 void pci_resume_bus(struct pci_bus *bus)
1245 {
1246 if (bus)
1247 pci_walk_bus(bus, pci_resume_one, NULL);
1248 }
1249
1250 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1251 {
1252 int delay = 1;
1253 u32 id;
1254
1255 /*
1256 * After reset, the device should not silently discard config
1257 * requests, but it may still indicate that it needs more time by
1258 * responding to them with CRS completions. The Root Port will
1259 * generally synthesize ~0 data to complete the read (except when
1260 * CRS SV is enabled and the read was for the Vendor ID; in that
1261 * case it synthesizes 0x0001 data).
1262 *
1263 * Wait for the device to return a non-CRS completion. Read the
1264 * Command register instead of Vendor ID so we don't have to
1265 * contend with the CRS SV value.
1266 */
1267 pci_read_config_dword(dev, PCI_COMMAND, &id);
1268 while (id == ~0) {
1269 if (delay > timeout) {
1270 pci_warn(dev, "not ready %dms after %s; giving up\n",
1271 delay - 1, reset_type);
1272 return -ENOTTY;
1273 }
1274
1275 if (delay > 1000)
1276 pci_info(dev, "not ready %dms after %s; waiting\n",
1277 delay - 1, reset_type);
1278
1279 msleep(delay);
1280 delay *= 2;
1281 pci_read_config_dword(dev, PCI_COMMAND, &id);
1282 }
1283
1284 if (delay > 1000)
1285 pci_info(dev, "ready %dms after %s\n", delay - 1,
1286 reset_type);
1287
1288 return 0;
1289 }
1290
1291 /**
1292 * pci_power_up - Put the given device into D0
1293 * @dev: PCI device to power up
1294 */
1295 int pci_power_up(struct pci_dev *dev)
1296 {
1297 pci_platform_power_transition(dev, PCI_D0);
1298
1299 /*
1300 * Mandatory power management transition delays are handled in
1301 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1302 * corresponding bridge.
1303 */
1304 if (dev->runtime_d3cold) {
1305 /*
1306 * When powering on a bridge from D3cold, the whole hierarchy
1307 * may be powered on into D0uninitialized state, resume them to
1308 * give them a chance to suspend again
1309 */
1310 pci_resume_bus(dev->subordinate);
1311 }
1312
1313 return pci_raw_set_power_state(dev, PCI_D0);
1314 }
1315
1316 /**
1317 * __pci_dev_set_current_state - Set current state of a PCI device
1318 * @dev: Device to handle
1319 * @data: pointer to state to be set
1320 */
1321 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1322 {
1323 pci_power_t state = *(pci_power_t *)data;
1324
1325 dev->current_state = state;
1326 return 0;
1327 }
1328
1329 /**
1330 * pci_bus_set_current_state - Walk given bus and set current state of devices
1331 * @bus: Top bus of the subtree to walk.
1332 * @state: state to be set
1333 */
1334 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1335 {
1336 if (bus)
1337 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1338 }
1339
1340 /**
1341 * pci_set_power_state - Set the power state of a PCI device
1342 * @dev: PCI device to handle.
1343 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1344 *
1345 * Transition a device to a new power state, using the platform firmware and/or
1346 * the device's PCI PM registers.
1347 *
1348 * RETURN VALUE:
1349 * -EINVAL if the requested state is invalid.
1350 * -EIO if device does not support PCI PM or its PM capabilities register has a
1351 * wrong version, or device doesn't support the requested state.
1352 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1353 * 0 if device already is in the requested state.
1354 * 0 if the transition is to D3 but D3 is not supported.
1355 * 0 if device's power state has been successfully changed.
1356 */
1357 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1358 {
1359 int error;
1360
1361 /* Bound the state we're entering */
1362 if (state > PCI_D3cold)
1363 state = PCI_D3cold;
1364 else if (state < PCI_D0)
1365 state = PCI_D0;
1366 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1367
1368 /*
1369 * If the device or the parent bridge do not support PCI
1370 * PM, ignore the request if we're doing anything other
1371 * than putting it into D0 (which would only happen on
1372 * boot).
1373 */
1374 return 0;
1375
1376 /* Check if we're already there */
1377 if (dev->current_state == state)
1378 return 0;
1379
1380 if (state == PCI_D0)
1381 return pci_power_up(dev);
1382
1383 /*
1384 * This device is quirked not to be put into D3, so don't put it in
1385 * D3
1386 */
1387 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1388 return 0;
1389
1390 /*
1391 * To put device in D3cold, we put device into D3hot in native
1392 * way, then put device into D3cold with platform ops
1393 */
1394 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1395 PCI_D3hot : state);
1396
1397 if (pci_platform_power_transition(dev, state))
1398 return error;
1399
1400 /* Powering off a bridge may power off the whole hierarchy */
1401 if (state == PCI_D3cold)
1402 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1403
1404 return 0;
1405 }
1406 EXPORT_SYMBOL(pci_set_power_state);
1407
1408 /**
1409 * pci_choose_state - Choose the power state of a PCI device
1410 * @dev: PCI device to be suspended
1411 * @state: target sleep state for the whole system. This is the value
1412 * that is passed to suspend() function.
1413 *
1414 * Returns PCI power state suitable for given device and given system
1415 * message.
1416 */
1417 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1418 {
1419 pci_power_t ret;
1420
1421 if (!dev->pm_cap)
1422 return PCI_D0;
1423
1424 ret = platform_pci_choose_state(dev);
1425 if (ret != PCI_POWER_ERROR)
1426 return ret;
1427
1428 switch (state.event) {
1429 case PM_EVENT_ON:
1430 return PCI_D0;
1431 case PM_EVENT_FREEZE:
1432 case PM_EVENT_PRETHAW:
1433 /* REVISIT both freeze and pre-thaw "should" use D0 */
1434 case PM_EVENT_SUSPEND:
1435 case PM_EVENT_HIBERNATE:
1436 return PCI_D3hot;
1437 default:
1438 pci_info(dev, "unrecognized suspend event %d\n",
1439 state.event);
1440 BUG();
1441 }
1442 return PCI_D0;
1443 }
1444 EXPORT_SYMBOL(pci_choose_state);
1445
1446 #define PCI_EXP_SAVE_REGS 7
1447
1448 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1449 u16 cap, bool extended)
1450 {
1451 struct pci_cap_saved_state *tmp;
1452
1453 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1454 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1455 return tmp;
1456 }
1457 return NULL;
1458 }
1459
1460 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1461 {
1462 return _pci_find_saved_cap(dev, cap, false);
1463 }
1464
1465 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1466 {
1467 return _pci_find_saved_cap(dev, cap, true);
1468 }
1469
1470 static int pci_save_pcie_state(struct pci_dev *dev)
1471 {
1472 int i = 0;
1473 struct pci_cap_saved_state *save_state;
1474 u16 *cap;
1475
1476 if (!pci_is_pcie(dev))
1477 return 0;
1478
1479 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1480 if (!save_state) {
1481 pci_err(dev, "buffer not found in %s\n", __func__);
1482 return -ENOMEM;
1483 }
1484
1485 cap = (u16 *)&save_state->cap.data[0];
1486 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1487 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1488 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1489 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1490 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1491 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1492 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1493
1494 return 0;
1495 }
1496
1497 void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1498 {
1499 #ifdef CONFIG_PCIEASPM
1500 struct pci_dev *bridge;
1501 u32 ctl;
1502
1503 bridge = pci_upstream_bridge(dev);
1504 if (bridge && bridge->ltr_path) {
1505 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1506 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1507 pci_dbg(bridge, "re-enabling LTR\n");
1508 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1509 PCI_EXP_DEVCTL2_LTR_EN);
1510 }
1511 }
1512 #endif
1513 }
1514
1515 static void pci_restore_pcie_state(struct pci_dev *dev)
1516 {
1517 int i = 0;
1518 struct pci_cap_saved_state *save_state;
1519 u16 *cap;
1520
1521 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1522 if (!save_state)
1523 return;
1524
1525 /*
1526 * Downstream ports reset the LTR enable bit when link goes down.
1527 * Check and re-configure the bit here before restoring device.
1528 * PCIe r5.0, sec 7.5.3.16.
1529 */
1530 pci_bridge_reconfigure_ltr(dev);
1531
1532 cap = (u16 *)&save_state->cap.data[0];
1533 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1534 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1535 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1536 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1537 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1538 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1539 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1540 }
1541
1542 static int pci_save_pcix_state(struct pci_dev *dev)
1543 {
1544 int pos;
1545 struct pci_cap_saved_state *save_state;
1546
1547 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1548 if (!pos)
1549 return 0;
1550
1551 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1552 if (!save_state) {
1553 pci_err(dev, "buffer not found in %s\n", __func__);
1554 return -ENOMEM;
1555 }
1556
1557 pci_read_config_word(dev, pos + PCI_X_CMD,
1558 (u16 *)save_state->cap.data);
1559
1560 return 0;
1561 }
1562
1563 static void pci_restore_pcix_state(struct pci_dev *dev)
1564 {
1565 int i = 0, pos;
1566 struct pci_cap_saved_state *save_state;
1567 u16 *cap;
1568
1569 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1570 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1571 if (!save_state || !pos)
1572 return;
1573 cap = (u16 *)&save_state->cap.data[0];
1574
1575 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1576 }
1577
1578 static void pci_save_ltr_state(struct pci_dev *dev)
1579 {
1580 int ltr;
1581 struct pci_cap_saved_state *save_state;
1582 u16 *cap;
1583
1584 if (!pci_is_pcie(dev))
1585 return;
1586
1587 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1588 if (!ltr)
1589 return;
1590
1591 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1592 if (!save_state) {
1593 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1594 return;
1595 }
1596
1597 cap = (u16 *)&save_state->cap.data[0];
1598 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1599 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1600 }
1601
1602 static void pci_restore_ltr_state(struct pci_dev *dev)
1603 {
1604 struct pci_cap_saved_state *save_state;
1605 int ltr;
1606 u16 *cap;
1607
1608 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1609 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1610 if (!save_state || !ltr)
1611 return;
1612
1613 cap = (u16 *)&save_state->cap.data[0];
1614 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1615 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1616 }
1617
1618 /**
1619 * pci_save_state - save the PCI configuration space of a device before
1620 * suspending
1621 * @dev: PCI device that we're dealing with
1622 */
1623 int pci_save_state(struct pci_dev *dev)
1624 {
1625 int i;
1626 /* XXX: 100% dword access ok here? */
1627 for (i = 0; i < 16; i++) {
1628 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1629 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1630 i * 4, dev->saved_config_space[i]);
1631 }
1632 dev->state_saved = true;
1633
1634 i = pci_save_pcie_state(dev);
1635 if (i != 0)
1636 return i;
1637
1638 i = pci_save_pcix_state(dev);
1639 if (i != 0)
1640 return i;
1641
1642 pci_save_ltr_state(dev);
1643 if (dmi_check_system(aspm_fix_whitelist))
1644 pci_save_aspm_l1ss_state(dev);
1645 pci_save_dpc_state(dev);
1646 pci_save_aer_state(dev);
1647 pci_save_ptm_state(dev);
1648 return pci_save_vc_state(dev);
1649 }
1650 EXPORT_SYMBOL(pci_save_state);
1651
1652 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1653 u32 saved_val, int retry, bool force)
1654 {
1655 u32 val;
1656
1657 pci_read_config_dword(pdev, offset, &val);
1658 if (!force && val == saved_val)
1659 return;
1660
1661 for (;;) {
1662 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1663 offset, val, saved_val);
1664 pci_write_config_dword(pdev, offset, saved_val);
1665 if (retry-- <= 0)
1666 return;
1667
1668 pci_read_config_dword(pdev, offset, &val);
1669 if (val == saved_val)
1670 return;
1671
1672 mdelay(1);
1673 }
1674 }
1675
1676 static void pci_restore_config_space_range(struct pci_dev *pdev,
1677 int start, int end, int retry,
1678 bool force)
1679 {
1680 int index;
1681
1682 for (index = end; index >= start; index--)
1683 pci_restore_config_dword(pdev, 4 * index,
1684 pdev->saved_config_space[index],
1685 retry, force);
1686 }
1687
1688 static void pci_restore_config_space(struct pci_dev *pdev)
1689 {
1690 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1691 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1692 /* Restore BARs before the command register. */
1693 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1694 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1695 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1696 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1697
1698 /*
1699 * Force rewriting of prefetch registers to avoid S3 resume
1700 * issues on Intel PCI bridges that occur when these
1701 * registers are not explicitly written.
1702 */
1703 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1704 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1705 } else {
1706 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1707 }
1708 }
1709
1710 static void pci_restore_rebar_state(struct pci_dev *pdev)
1711 {
1712 unsigned int pos, nbars, i;
1713 u32 ctrl;
1714
1715 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1716 if (!pos)
1717 return;
1718
1719 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1720 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1721 PCI_REBAR_CTRL_NBAR_SHIFT;
1722
1723 for (i = 0; i < nbars; i++, pos += 8) {
1724 struct resource *res;
1725 int bar_idx, size;
1726
1727 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1728 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1729 res = pdev->resource + bar_idx;
1730 size = pci_rebar_bytes_to_size(resource_size(res));
1731 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1732 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1733 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1734 }
1735 }
1736
1737 /**
1738 * pci_restore_state - Restore the saved state of a PCI device
1739 * @dev: PCI device that we're dealing with
1740 */
1741 void pci_restore_state(struct pci_dev *dev)
1742 {
1743 if (!dev->state_saved)
1744 return;
1745
1746 /*
1747 * Restore max latencies (in the LTR capability) before enabling
1748 * LTR itself (in the PCIe capability).
1749 */
1750 pci_restore_ltr_state(dev);
1751 if (dmi_check_system(aspm_fix_whitelist))
1752 pci_restore_aspm_l1ss_state(dev);
1753
1754 pci_restore_pcie_state(dev);
1755 pci_restore_pasid_state(dev);
1756 pci_restore_pri_state(dev);
1757 pci_restore_ats_state(dev);
1758 pci_restore_vc_state(dev);
1759 pci_restore_rebar_state(dev);
1760 pci_restore_dpc_state(dev);
1761 pci_restore_ptm_state(dev);
1762
1763 pci_aer_clear_status(dev);
1764 pci_restore_aer_state(dev);
1765
1766 pci_restore_config_space(dev);
1767
1768 pci_restore_pcix_state(dev);
1769 pci_restore_msi_state(dev);
1770
1771 /* Restore ACS and IOV configuration state */
1772 pci_enable_acs(dev);
1773 pci_restore_iov_state(dev);
1774
1775 dev->state_saved = false;
1776 }
1777 EXPORT_SYMBOL(pci_restore_state);
1778
1779 struct pci_saved_state {
1780 u32 config_space[16];
1781 struct pci_cap_saved_data cap[];
1782 };
1783
1784 /**
1785 * pci_store_saved_state - Allocate and return an opaque struct containing
1786 * the device saved state.
1787 * @dev: PCI device that we're dealing with
1788 *
1789 * Return NULL if no state or error.
1790 */
1791 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1792 {
1793 struct pci_saved_state *state;
1794 struct pci_cap_saved_state *tmp;
1795 struct pci_cap_saved_data *cap;
1796 size_t size;
1797
1798 if (!dev->state_saved)
1799 return NULL;
1800
1801 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1802
1803 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1804 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1805
1806 state = kzalloc(size, GFP_KERNEL);
1807 if (!state)
1808 return NULL;
1809
1810 memcpy(state->config_space, dev->saved_config_space,
1811 sizeof(state->config_space));
1812
1813 cap = state->cap;
1814 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1815 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1816 memcpy(cap, &tmp->cap, len);
1817 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1818 }
1819 /* Empty cap_save terminates list */
1820
1821 return state;
1822 }
1823 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1824
1825 /**
1826 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1827 * @dev: PCI device that we're dealing with
1828 * @state: Saved state returned from pci_store_saved_state()
1829 */
1830 int pci_load_saved_state(struct pci_dev *dev,
1831 struct pci_saved_state *state)
1832 {
1833 struct pci_cap_saved_data *cap;
1834
1835 dev->state_saved = false;
1836
1837 if (!state)
1838 return 0;
1839
1840 memcpy(dev->saved_config_space, state->config_space,
1841 sizeof(state->config_space));
1842
1843 cap = state->cap;
1844 while (cap->size) {
1845 struct pci_cap_saved_state *tmp;
1846
1847 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1848 if (!tmp || tmp->cap.size != cap->size)
1849 return -EINVAL;
1850
1851 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1852 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1853 sizeof(struct pci_cap_saved_data) + cap->size);
1854 }
1855
1856 dev->state_saved = true;
1857 return 0;
1858 }
1859 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1860
1861 /**
1862 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1863 * and free the memory allocated for it.
1864 * @dev: PCI device that we're dealing with
1865 * @state: Pointer to saved state returned from pci_store_saved_state()
1866 */
1867 int pci_load_and_free_saved_state(struct pci_dev *dev,
1868 struct pci_saved_state **state)
1869 {
1870 int ret = pci_load_saved_state(dev, *state);
1871 kfree(*state);
1872 *state = NULL;
1873 return ret;
1874 }
1875 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1876
1877 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1878 {
1879 return pci_enable_resources(dev, bars);
1880 }
1881
1882 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1883 {
1884 int err;
1885 struct pci_dev *bridge;
1886 u16 cmd;
1887 u8 pin;
1888
1889 err = pci_set_power_state(dev, PCI_D0);
1890 if (err < 0 && err != -EIO)
1891 return err;
1892
1893 bridge = pci_upstream_bridge(dev);
1894 if (bridge)
1895 pcie_aspm_powersave_config_link(bridge);
1896
1897 err = pcibios_enable_device(dev, bars);
1898 if (err < 0)
1899 return err;
1900 pci_fixup_device(pci_fixup_enable, dev);
1901
1902 if (dev->msi_enabled || dev->msix_enabled)
1903 return 0;
1904
1905 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1906 if (pin) {
1907 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1908 if (cmd & PCI_COMMAND_INTX_DISABLE)
1909 pci_write_config_word(dev, PCI_COMMAND,
1910 cmd & ~PCI_COMMAND_INTX_DISABLE);
1911 }
1912
1913 return 0;
1914 }
1915
1916 /**
1917 * pci_reenable_device - Resume abandoned device
1918 * @dev: PCI device to be resumed
1919 *
1920 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1921 * to be called by normal code, write proper resume handler and use it instead.
1922 */
1923 int pci_reenable_device(struct pci_dev *dev)
1924 {
1925 if (pci_is_enabled(dev))
1926 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1927 return 0;
1928 }
1929 EXPORT_SYMBOL(pci_reenable_device);
1930
1931 static void pci_enable_bridge(struct pci_dev *dev)
1932 {
1933 struct pci_dev *bridge;
1934 int retval;
1935
1936 bridge = pci_upstream_bridge(dev);
1937 if (bridge)
1938 pci_enable_bridge(bridge);
1939
1940 if (pci_is_enabled(dev)) {
1941 if (!dev->is_busmaster)
1942 pci_set_master(dev);
1943 return;
1944 }
1945
1946 retval = pci_enable_device(dev);
1947 if (retval)
1948 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1949 retval);
1950 pci_set_master(dev);
1951 }
1952
1953 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1954 {
1955 struct pci_dev *bridge;
1956 int err;
1957 int i, bars = 0;
1958
1959 /*
1960 * Power state could be unknown at this point, either due to a fresh
1961 * boot or a device removal call. So get the current power state
1962 * so that things like MSI message writing will behave as expected
1963 * (e.g. if the device really is in D0 at enable time).
1964 */
1965 pci_update_current_state(dev, dev->current_state);
1966
1967 if (atomic_inc_return(&dev->enable_cnt) > 1)
1968 return 0; /* already enabled */
1969
1970 bridge = pci_upstream_bridge(dev);
1971 if (bridge)
1972 pci_enable_bridge(bridge);
1973
1974 /* only skip sriov related */
1975 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1976 if (dev->resource[i].flags & flags)
1977 bars |= (1 << i);
1978 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1979 if (dev->resource[i].flags & flags)
1980 bars |= (1 << i);
1981
1982 err = do_pci_enable_device(dev, bars);
1983 if (err < 0)
1984 atomic_dec(&dev->enable_cnt);
1985 return err;
1986 }
1987
1988 /**
1989 * pci_enable_device_io - Initialize a device for use with IO space
1990 * @dev: PCI device to be initialized
1991 *
1992 * Initialize device before it's used by a driver. Ask low-level code
1993 * to enable I/O resources. Wake up the device if it was suspended.
1994 * Beware, this function can fail.
1995 */
1996 int pci_enable_device_io(struct pci_dev *dev)
1997 {
1998 return pci_enable_device_flags(dev, IORESOURCE_IO);
1999 }
2000 EXPORT_SYMBOL(pci_enable_device_io);
2001
2002 /**
2003 * pci_enable_device_mem - Initialize a device for use with Memory space
2004 * @dev: PCI device to be initialized
2005 *
2006 * Initialize device before it's used by a driver. Ask low-level code
2007 * to enable Memory resources. Wake up the device if it was suspended.
2008 * Beware, this function can fail.
2009 */
2010 int pci_enable_device_mem(struct pci_dev *dev)
2011 {
2012 return pci_enable_device_flags(dev, IORESOURCE_MEM);
2013 }
2014 EXPORT_SYMBOL(pci_enable_device_mem);
2015
2016 /**
2017 * pci_enable_device - Initialize device before it's used by a driver.
2018 * @dev: PCI device to be initialized
2019 *
2020 * Initialize device before it's used by a driver. Ask low-level code
2021 * to enable I/O and memory. Wake up the device if it was suspended.
2022 * Beware, this function can fail.
2023 *
2024 * Note we don't actually enable the device many times if we call
2025 * this function repeatedly (we just increment the count).
2026 */
2027 int pci_enable_device(struct pci_dev *dev)
2028 {
2029 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2030 }
2031 EXPORT_SYMBOL(pci_enable_device);
2032
2033 /*
2034 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
2035 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
2036 * there's no need to track it separately. pci_devres is initialized
2037 * when a device is enabled using managed PCI device enable interface.
2038 */
2039 struct pci_devres {
2040 unsigned int enabled:1;
2041 unsigned int pinned:1;
2042 unsigned int orig_intx:1;
2043 unsigned int restore_intx:1;
2044 unsigned int mwi:1;
2045 u32 region_mask;
2046 };
2047
2048 static void pcim_release(struct device *gendev, void *res)
2049 {
2050 struct pci_dev *dev = to_pci_dev(gendev);
2051 struct pci_devres *this = res;
2052 int i;
2053
2054 if (dev->msi_enabled)
2055 pci_disable_msi(dev);
2056 if (dev->msix_enabled)
2057 pci_disable_msix(dev);
2058
2059 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2060 if (this->region_mask & (1 << i))
2061 pci_release_region(dev, i);
2062
2063 if (this->mwi)
2064 pci_clear_mwi(dev);
2065
2066 if (this->restore_intx)
2067 pci_intx(dev, this->orig_intx);
2068
2069 if (this->enabled && !this->pinned)
2070 pci_disable_device(dev);
2071 }
2072
2073 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2074 {
2075 struct pci_devres *dr, *new_dr;
2076
2077 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2078 if (dr)
2079 return dr;
2080
2081 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2082 if (!new_dr)
2083 return NULL;
2084 return devres_get(&pdev->dev, new_dr, NULL, NULL);
2085 }
2086
2087 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2088 {
2089 if (pci_is_managed(pdev))
2090 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2091 return NULL;
2092 }
2093
2094 /**
2095 * pcim_enable_device - Managed pci_enable_device()
2096 * @pdev: PCI device to be initialized
2097 *
2098 * Managed pci_enable_device().
2099 */
2100 int pcim_enable_device(struct pci_dev *pdev)
2101 {
2102 struct pci_devres *dr;
2103 int rc;
2104
2105 dr = get_pci_dr(pdev);
2106 if (unlikely(!dr))
2107 return -ENOMEM;
2108 if (dr->enabled)
2109 return 0;
2110
2111 rc = pci_enable_device(pdev);
2112 if (!rc) {
2113 pdev->is_managed = 1;
2114 dr->enabled = 1;
2115 }
2116 return rc;
2117 }
2118 EXPORT_SYMBOL(pcim_enable_device);
2119
2120 /**
2121 * pcim_pin_device - Pin managed PCI device
2122 * @pdev: PCI device to pin
2123 *
2124 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2125 * driver detach. @pdev must have been enabled with
2126 * pcim_enable_device().
2127 */
2128 void pcim_pin_device(struct pci_dev *pdev)
2129 {
2130 struct pci_devres *dr;
2131
2132 dr = find_pci_dr(pdev);
2133 WARN_ON(!dr || !dr->enabled);
2134 if (dr)
2135 dr->pinned = 1;
2136 }
2137 EXPORT_SYMBOL(pcim_pin_device);
2138
2139 /*
2140 * pcibios_add_device - provide arch specific hooks when adding device dev
2141 * @dev: the PCI device being added
2142 *
2143 * Permits the platform to provide architecture specific functionality when
2144 * devices are added. This is the default implementation. Architecture
2145 * implementations can override this.
2146 */
2147 int __weak pcibios_add_device(struct pci_dev *dev)
2148 {
2149 return 0;
2150 }
2151
2152 /**
2153 * pcibios_release_device - provide arch specific hooks when releasing
2154 * device dev
2155 * @dev: the PCI device being released
2156 *
2157 * Permits the platform to provide architecture specific functionality when
2158 * devices are released. This is the default implementation. Architecture
2159 * implementations can override this.
2160 */
2161 void __weak pcibios_release_device(struct pci_dev *dev) {}
2162
2163 /**
2164 * pcibios_disable_device - disable arch specific PCI resources for device dev
2165 * @dev: the PCI device to disable
2166 *
2167 * Disables architecture specific PCI resources for the device. This
2168 * is the default implementation. Architecture implementations can
2169 * override this.
2170 */
2171 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2172
2173 /**
2174 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2175 * @irq: ISA IRQ to penalize
2176 * @active: IRQ active or not
2177 *
2178 * Permits the platform to provide architecture-specific functionality when
2179 * penalizing ISA IRQs. This is the default implementation. Architecture
2180 * implementations can override this.
2181 */
2182 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2183
2184 static void do_pci_disable_device(struct pci_dev *dev)
2185 {
2186 u16 pci_command;
2187
2188 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2189 if (pci_command & PCI_COMMAND_MASTER) {
2190 pci_command &= ~PCI_COMMAND_MASTER;
2191 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2192 }
2193
2194 pcibios_disable_device(dev);
2195 }
2196
2197 /**
2198 * pci_disable_enabled_device - Disable device without updating enable_cnt
2199 * @dev: PCI device to disable
2200 *
2201 * NOTE: This function is a backend of PCI power management routines and is
2202 * not supposed to be called drivers.
2203 */
2204 void pci_disable_enabled_device(struct pci_dev *dev)
2205 {
2206 if (pci_is_enabled(dev))
2207 do_pci_disable_device(dev);
2208 }
2209
2210 /**
2211 * pci_disable_device - Disable PCI device after use
2212 * @dev: PCI device to be disabled
2213 *
2214 * Signal to the system that the PCI device is not in use by the system
2215 * anymore. This only involves disabling PCI bus-mastering, if active.
2216 *
2217 * Note we don't actually disable the device until all callers of
2218 * pci_enable_device() have called pci_disable_device().
2219 */
2220 void pci_disable_device(struct pci_dev *dev)
2221 {
2222 struct pci_devres *dr;
2223
2224 dr = find_pci_dr(dev);
2225 if (dr)
2226 dr->enabled = 0;
2227
2228 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2229 "disabling already-disabled device");
2230
2231 if (atomic_dec_return(&dev->enable_cnt) != 0)
2232 return;
2233
2234 do_pci_disable_device(dev);
2235
2236 dev->is_busmaster = 0;
2237 }
2238 EXPORT_SYMBOL(pci_disable_device);
2239
2240 /**
2241 * pcibios_set_pcie_reset_state - set reset state for device dev
2242 * @dev: the PCIe device reset
2243 * @state: Reset state to enter into
2244 *
2245 * Set the PCIe reset state for the device. This is the default
2246 * implementation. Architecture implementations can override this.
2247 */
2248 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2249 enum pcie_reset_state state)
2250 {
2251 return -EINVAL;
2252 }
2253
2254 /**
2255 * pci_set_pcie_reset_state - set reset state for device dev
2256 * @dev: the PCIe device reset
2257 * @state: Reset state to enter into
2258 *
2259 * Sets the PCI reset state for the device.
2260 */
2261 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2262 {
2263 return pcibios_set_pcie_reset_state(dev, state);
2264 }
2265 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2266
2267 void pcie_clear_device_status(struct pci_dev *dev)
2268 {
2269 u16 sta;
2270
2271 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2272 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2273 }
2274
2275 /**
2276 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2277 * @dev: PCIe root port or event collector.
2278 */
2279 void pcie_clear_root_pme_status(struct pci_dev *dev)
2280 {
2281 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2282 }
2283
2284 /**
2285 * pci_check_pme_status - Check if given device has generated PME.
2286 * @dev: Device to check.
2287 *
2288 * Check the PME status of the device and if set, clear it and clear PME enable
2289 * (if set). Return 'true' if PME status and PME enable were both set or
2290 * 'false' otherwise.
2291 */
2292 bool pci_check_pme_status(struct pci_dev *dev)
2293 {
2294 int pmcsr_pos;
2295 u16 pmcsr;
2296 bool ret = false;
2297
2298 if (!dev->pm_cap)
2299 return false;
2300
2301 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2302 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2303 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2304 return false;
2305
2306 /* Clear PME status. */
2307 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2308 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2309 /* Disable PME to avoid interrupt flood. */
2310 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2311 ret = true;
2312 }
2313
2314 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2315
2316 return ret;
2317 }
2318
2319 /**
2320 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2321 * @dev: Device to handle.
2322 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2323 *
2324 * Check if @dev has generated PME and queue a resume request for it in that
2325 * case.
2326 */
2327 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2328 {
2329 if (pme_poll_reset && dev->pme_poll)
2330 dev->pme_poll = false;
2331
2332 if (pci_check_pme_status(dev)) {
2333 pci_wakeup_event(dev);
2334 pm_request_resume(&dev->dev);
2335 }
2336 return 0;
2337 }
2338
2339 /**
2340 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2341 * @bus: Top bus of the subtree to walk.
2342 */
2343 void pci_pme_wakeup_bus(struct pci_bus *bus)
2344 {
2345 if (bus)
2346 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2347 }
2348
2349
2350 /**
2351 * pci_pme_capable - check the capability of PCI device to generate PME#
2352 * @dev: PCI device to handle.
2353 * @state: PCI state from which device will issue PME#.
2354 */
2355 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2356 {
2357 if (!dev->pm_cap)
2358 return false;
2359
2360 return !!(dev->pme_support & (1 << state));
2361 }
2362 EXPORT_SYMBOL(pci_pme_capable);
2363
2364 static void pci_pme_list_scan(struct work_struct *work)
2365 {
2366 struct pci_pme_device *pme_dev, *n;
2367
2368 mutex_lock(&pci_pme_list_mutex);
2369 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2370 if (pme_dev->dev->pme_poll) {
2371 struct pci_dev *bridge;
2372
2373 bridge = pme_dev->dev->bus->self;
2374 /*
2375 * If bridge is in low power state, the
2376 * configuration space of subordinate devices
2377 * may be not accessible
2378 */
2379 if (bridge && bridge->current_state != PCI_D0)
2380 continue;
2381 /*
2382 * If the device is in D3cold it should not be
2383 * polled either.
2384 */
2385 if (pme_dev->dev->current_state == PCI_D3cold)
2386 continue;
2387
2388 pci_pme_wakeup(pme_dev->dev, NULL);
2389 } else {
2390 list_del(&pme_dev->list);
2391 kfree(pme_dev);
2392 }
2393 }
2394 if (!list_empty(&pci_pme_list))
2395 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2396 msecs_to_jiffies(PME_TIMEOUT));
2397 mutex_unlock(&pci_pme_list_mutex);
2398 }
2399
2400 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2401 {
2402 u16 pmcsr;
2403
2404 if (!dev->pme_support)
2405 return;
2406
2407 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2408 /* Clear PME_Status by writing 1 to it and enable PME# */
2409 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2410 if (!enable)
2411 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2412
2413 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2414 }
2415
2416 /**
2417 * pci_pme_restore - Restore PME configuration after config space restore.
2418 * @dev: PCI device to update.
2419 */
2420 void pci_pme_restore(struct pci_dev *dev)
2421 {
2422 u16 pmcsr;
2423
2424 if (!dev->pme_support)
2425 return;
2426
2427 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2428 if (dev->wakeup_prepared) {
2429 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2430 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2431 } else {
2432 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2433 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2434 }
2435 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2436 }
2437
2438 /**
2439 * pci_pme_active - enable or disable PCI device's PME# function
2440 * @dev: PCI device to handle.
2441 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2442 *
2443 * The caller must verify that the device is capable of generating PME# before
2444 * calling this function with @enable equal to 'true'.
2445 */
2446 void pci_pme_active(struct pci_dev *dev, bool enable)
2447 {
2448 __pci_pme_active(dev, enable);
2449
2450 /*
2451 * PCI (as opposed to PCIe) PME requires that the device have
2452 * its PME# line hooked up correctly. Not all hardware vendors
2453 * do this, so the PME never gets delivered and the device
2454 * remains asleep. The easiest way around this is to
2455 * periodically walk the list of suspended devices and check
2456 * whether any have their PME flag set. The assumption is that
2457 * we'll wake up often enough anyway that this won't be a huge
2458 * hit, and the power savings from the devices will still be a
2459 * win.
2460 *
2461 * Although PCIe uses in-band PME message instead of PME# line
2462 * to report PME, PME does not work for some PCIe devices in
2463 * reality. For example, there are devices that set their PME
2464 * status bits, but don't really bother to send a PME message;
2465 * there are PCI Express Root Ports that don't bother to
2466 * trigger interrupts when they receive PME messages from the
2467 * devices below. So PME poll is used for PCIe devices too.
2468 */
2469
2470 if (dev->pme_poll) {
2471 struct pci_pme_device *pme_dev;
2472 if (enable) {
2473 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2474 GFP_KERNEL);
2475 if (!pme_dev) {
2476 pci_warn(dev, "can't enable PME#\n");
2477 return;
2478 }
2479 pme_dev->dev = dev;
2480 mutex_lock(&pci_pme_list_mutex);
2481 list_add(&pme_dev->list, &pci_pme_list);
2482 if (list_is_singular(&pci_pme_list))
2483 queue_delayed_work(system_freezable_wq,
2484 &pci_pme_work,
2485 msecs_to_jiffies(PME_TIMEOUT));
2486 mutex_unlock(&pci_pme_list_mutex);
2487 } else {
2488 mutex_lock(&pci_pme_list_mutex);
2489 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2490 if (pme_dev->dev == dev) {
2491 list_del(&pme_dev->list);
2492 kfree(pme_dev);
2493 break;
2494 }
2495 }
2496 mutex_unlock(&pci_pme_list_mutex);
2497 }
2498 }
2499
2500 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2501 }
2502 EXPORT_SYMBOL(pci_pme_active);
2503
2504 /**
2505 * __pci_enable_wake - enable PCI device as wakeup event source
2506 * @dev: PCI device affected
2507 * @state: PCI state from which device will issue wakeup events
2508 * @enable: True to enable event generation; false to disable
2509 *
2510 * This enables the device as a wakeup event source, or disables it.
2511 * When such events involves platform-specific hooks, those hooks are
2512 * called automatically by this routine.
2513 *
2514 * Devices with legacy power management (no standard PCI PM capabilities)
2515 * always require such platform hooks.
2516 *
2517 * RETURN VALUE:
2518 * 0 is returned on success
2519 * -EINVAL is returned if device is not supposed to wake up the system
2520 * Error code depending on the platform is returned if both the platform and
2521 * the native mechanism fail to enable the generation of wake-up events
2522 */
2523 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2524 {
2525 int ret = 0;
2526
2527 /*
2528 * Bridges that are not power-manageable directly only signal
2529 * wakeup on behalf of subordinate devices which is set up
2530 * elsewhere, so skip them. However, bridges that are
2531 * power-manageable may signal wakeup for themselves (for example,
2532 * on a hotplug event) and they need to be covered here.
2533 */
2534 if (!pci_power_manageable(dev))
2535 return 0;
2536
2537 /* Don't do the same thing twice in a row for one device. */
2538 if (!!enable == !!dev->wakeup_prepared)
2539 return 0;
2540
2541 /*
2542 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2543 * Anderson we should be doing PME# wake enable followed by ACPI wake
2544 * enable. To disable wake-up we call the platform first, for symmetry.
2545 */
2546
2547 if (enable) {
2548 int error;
2549
2550 /*
2551 * Enable PME signaling if the device can signal PME from
2552 * D3cold regardless of whether or not it can signal PME from
2553 * the current target state, because that will allow it to
2554 * signal PME when the hierarchy above it goes into D3cold and
2555 * the device itself ends up in D3cold as a result of that.
2556 */
2557 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2558 pci_pme_active(dev, true);
2559 else
2560 ret = 1;
2561 error = platform_pci_set_wakeup(dev, true);
2562 if (ret)
2563 ret = error;
2564 if (!ret)
2565 dev->wakeup_prepared = true;
2566 } else {
2567 platform_pci_set_wakeup(dev, false);
2568 pci_pme_active(dev, false);
2569 dev->wakeup_prepared = false;
2570 }
2571
2572 return ret;
2573 }
2574
2575 /**
2576 * pci_enable_wake - change wakeup settings for a PCI device
2577 * @pci_dev: Target device
2578 * @state: PCI state from which device will issue wakeup events
2579 * @enable: Whether or not to enable event generation
2580 *
2581 * If @enable is set, check device_may_wakeup() for the device before calling
2582 * __pci_enable_wake() for it.
2583 */
2584 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2585 {
2586 if (enable && !device_may_wakeup(&pci_dev->dev))
2587 return -EINVAL;
2588
2589 return __pci_enable_wake(pci_dev, state, enable);
2590 }
2591 EXPORT_SYMBOL(pci_enable_wake);
2592
2593 /**
2594 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2595 * @dev: PCI device to prepare
2596 * @enable: True to enable wake-up event generation; false to disable
2597 *
2598 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2599 * and this function allows them to set that up cleanly - pci_enable_wake()
2600 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2601 * ordering constraints.
2602 *
2603 * This function only returns error code if the device is not allowed to wake
2604 * up the system from sleep or it is not capable of generating PME# from both
2605 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2606 */
2607 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2608 {
2609 return pci_pme_capable(dev, PCI_D3cold) ?
2610 pci_enable_wake(dev, PCI_D3cold, enable) :
2611 pci_enable_wake(dev, PCI_D3hot, enable);
2612 }
2613 EXPORT_SYMBOL(pci_wake_from_d3);
2614
2615 /**
2616 * pci_target_state - find an appropriate low power state for a given PCI dev
2617 * @dev: PCI device
2618 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2619 *
2620 * Use underlying platform code to find a supported low power state for @dev.
2621 * If the platform can't manage @dev, return the deepest state from which it
2622 * can generate wake events, based on any available PME info.
2623 */
2624 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2625 {
2626 pci_power_t target_state = PCI_D3hot;
2627
2628 if (platform_pci_power_manageable(dev)) {
2629 /*
2630 * Call the platform to find the target state for the device.
2631 */
2632 pci_power_t state = platform_pci_choose_state(dev);
2633
2634 switch (state) {
2635 case PCI_POWER_ERROR:
2636 case PCI_UNKNOWN:
2637 break;
2638 case PCI_D1:
2639 case PCI_D2:
2640 if (pci_no_d1d2(dev))
2641 break;
2642 fallthrough;
2643 default:
2644 target_state = state;
2645 }
2646
2647 return target_state;
2648 }
2649
2650 if (!dev->pm_cap)
2651 target_state = PCI_D0;
2652
2653 /*
2654 * If the device is in D3cold even though it's not power-manageable by
2655 * the platform, it may have been powered down by non-standard means.
2656 * Best to let it slumber.
2657 */
2658 if (dev->current_state == PCI_D3cold)
2659 target_state = PCI_D3cold;
2660
2661 if (wakeup && dev->pme_support) {
2662 pci_power_t state = target_state;
2663
2664 /*
2665 * Find the deepest state from which the device can generate
2666 * PME#.
2667 */
2668 while (state && !(dev->pme_support & (1 << state)))
2669 state--;
2670
2671 if (state)
2672 return state;
2673 else if (dev->pme_support & 1)
2674 return PCI_D0;
2675 }
2676
2677 return target_state;
2678 }
2679
2680 /**
2681 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2682 * into a sleep state
2683 * @dev: Device to handle.
2684 *
2685 * Choose the power state appropriate for the device depending on whether
2686 * it can wake up the system and/or is power manageable by the platform
2687 * (PCI_D3hot is the default) and put the device into that state.
2688 */
2689 int pci_prepare_to_sleep(struct pci_dev *dev)
2690 {
2691 bool wakeup = device_may_wakeup(&dev->dev);
2692 pci_power_t target_state = pci_target_state(dev, wakeup);
2693 int error;
2694
2695 if (target_state == PCI_POWER_ERROR)
2696 return -EIO;
2697
2698 /*
2699 * There are systems (for example, Intel mobile chips since Coffee
2700 * Lake) where the power drawn while suspended can be significantly
2701 * reduced by disabling PTM on PCIe root ports as this allows the
2702 * port to enter a lower-power PM state and the SoC to reach a
2703 * lower-power idle state as a whole.
2704 */
2705 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2706 pci_disable_ptm(dev);
2707
2708 pci_enable_wake(dev, target_state, wakeup);
2709
2710 error = pci_set_power_state(dev, target_state);
2711
2712 if (error) {
2713 pci_enable_wake(dev, target_state, false);
2714 pci_restore_ptm_state(dev);
2715 }
2716
2717 return error;
2718 }
2719 EXPORT_SYMBOL(pci_prepare_to_sleep);
2720
2721 /**
2722 * pci_back_from_sleep - turn PCI device on during system-wide transition
2723 * into working state
2724 * @dev: Device to handle.
2725 *
2726 * Disable device's system wake-up capability and put it into D0.
2727 */
2728 int pci_back_from_sleep(struct pci_dev *dev)
2729 {
2730 pci_enable_wake(dev, PCI_D0, false);
2731 return pci_set_power_state(dev, PCI_D0);
2732 }
2733 EXPORT_SYMBOL(pci_back_from_sleep);
2734
2735 /**
2736 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2737 * @dev: PCI device being suspended.
2738 *
2739 * Prepare @dev to generate wake-up events at run time and put it into a low
2740 * power state.
2741 */
2742 int pci_finish_runtime_suspend(struct pci_dev *dev)
2743 {
2744 pci_power_t target_state;
2745 int error;
2746
2747 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2748 if (target_state == PCI_POWER_ERROR)
2749 return -EIO;
2750
2751 dev->runtime_d3cold = target_state == PCI_D3cold;
2752
2753 /*
2754 * There are systems (for example, Intel mobile chips since Coffee
2755 * Lake) where the power drawn while suspended can be significantly
2756 * reduced by disabling PTM on PCIe root ports as this allows the
2757 * port to enter a lower-power PM state and the SoC to reach a
2758 * lower-power idle state as a whole.
2759 */
2760 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2761 pci_disable_ptm(dev);
2762
2763 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2764
2765 error = pci_set_power_state(dev, target_state);
2766
2767 if (error) {
2768 pci_enable_wake(dev, target_state, false);
2769 pci_restore_ptm_state(dev);
2770 dev->runtime_d3cold = false;
2771 }
2772
2773 return error;
2774 }
2775
2776 /**
2777 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2778 * @dev: Device to check.
2779 *
2780 * Return true if the device itself is capable of generating wake-up events
2781 * (through the platform or using the native PCIe PME) or if the device supports
2782 * PME and one of its upstream bridges can generate wake-up events.
2783 */
2784 bool pci_dev_run_wake(struct pci_dev *dev)
2785 {
2786 struct pci_bus *bus = dev->bus;
2787
2788 if (!dev->pme_support)
2789 return false;
2790
2791 /* PME-capable in principle, but not from the target power state */
2792 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2793 return false;
2794
2795 if (device_can_wakeup(&dev->dev))
2796 return true;
2797
2798 while (bus->parent) {
2799 struct pci_dev *bridge = bus->self;
2800
2801 if (device_can_wakeup(&bridge->dev))
2802 return true;
2803
2804 bus = bus->parent;
2805 }
2806
2807 /* We have reached the root bus. */
2808 if (bus->bridge)
2809 return device_can_wakeup(bus->bridge);
2810
2811 return false;
2812 }
2813 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2814
2815 /**
2816 * pci_dev_need_resume - Check if it is necessary to resume the device.
2817 * @pci_dev: Device to check.
2818 *
2819 * Return 'true' if the device is not runtime-suspended or it has to be
2820 * reconfigured due to wakeup settings difference between system and runtime
2821 * suspend, or the current power state of it is not suitable for the upcoming
2822 * (system-wide) transition.
2823 */
2824 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2825 {
2826 struct device *dev = &pci_dev->dev;
2827 pci_power_t target_state;
2828
2829 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2830 return true;
2831
2832 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2833
2834 /*
2835 * If the earlier platform check has not triggered, D3cold is just power
2836 * removal on top of D3hot, so no need to resume the device in that
2837 * case.
2838 */
2839 return target_state != pci_dev->current_state &&
2840 target_state != PCI_D3cold &&
2841 pci_dev->current_state != PCI_D3hot;
2842 }
2843
2844 /**
2845 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2846 * @pci_dev: Device to check.
2847 *
2848 * If the device is suspended and it is not configured for system wakeup,
2849 * disable PME for it to prevent it from waking up the system unnecessarily.
2850 *
2851 * Note that if the device's power state is D3cold and the platform check in
2852 * pci_dev_need_resume() has not triggered, the device's configuration need not
2853 * be changed.
2854 */
2855 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2856 {
2857 struct device *dev = &pci_dev->dev;
2858
2859 spin_lock_irq(&dev->power.lock);
2860
2861 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2862 pci_dev->current_state < PCI_D3cold)
2863 __pci_pme_active(pci_dev, false);
2864
2865 spin_unlock_irq(&dev->power.lock);
2866 }
2867
2868 /**
2869 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2870 * @pci_dev: Device to handle.
2871 *
2872 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2873 * it might have been disabled during the prepare phase of system suspend if
2874 * the device was not configured for system wakeup.
2875 */
2876 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2877 {
2878 struct device *dev = &pci_dev->dev;
2879
2880 if (!pci_dev_run_wake(pci_dev))
2881 return;
2882
2883 spin_lock_irq(&dev->power.lock);
2884
2885 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2886 __pci_pme_active(pci_dev, true);
2887
2888 spin_unlock_irq(&dev->power.lock);
2889 }
2890
2891 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2892 {
2893 struct device *dev = &pdev->dev;
2894 struct device *parent = dev->parent;
2895
2896 if (parent)
2897 pm_runtime_get_sync(parent);
2898 pm_runtime_get_noresume(dev);
2899 /*
2900 * pdev->current_state is set to PCI_D3cold during suspending,
2901 * so wait until suspending completes
2902 */
2903 pm_runtime_barrier(dev);
2904 /*
2905 * Only need to resume devices in D3cold, because config
2906 * registers are still accessible for devices suspended but
2907 * not in D3cold.
2908 */
2909 if (pdev->current_state == PCI_D3cold)
2910 pm_runtime_resume(dev);
2911 }
2912
2913 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2914 {
2915 struct device *dev = &pdev->dev;
2916 struct device *parent = dev->parent;
2917
2918 pm_runtime_put(dev);
2919 if (parent)
2920 pm_runtime_put_sync(parent);
2921 }
2922
2923 static const struct dmi_system_id bridge_d3_blacklist[] = {
2924 #ifdef CONFIG_X86
2925 {
2926 /*
2927 * Gigabyte X299 root port is not marked as hotplug capable
2928 * which allows Linux to power manage it. However, this
2929 * confuses the BIOS SMI handler so don't power manage root
2930 * ports on that system.
2931 */
2932 .ident = "X299 DESIGNARE EX-CF",
2933 .matches = {
2934 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2935 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2936 },
2937 },
2938 {
2939 /*
2940 * Downstream device is not accessible after putting a root port
2941 * into D3cold and back into D0 on Elo i2.
2942 */
2943 .ident = "Elo i2",
2944 .matches = {
2945 DMI_MATCH(DMI_SYS_VENDOR, "Elo Touch Solutions"),
2946 DMI_MATCH(DMI_PRODUCT_NAME, "Elo i2"),
2947 DMI_MATCH(DMI_PRODUCT_VERSION, "RevB"),
2948 },
2949 },
2950 #endif
2951 { }
2952 };
2953
2954 /**
2955 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2956 * @bridge: Bridge to check
2957 *
2958 * This function checks if it is possible to move the bridge to D3.
2959 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2960 */
2961 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2962 {
2963 if (!pci_is_pcie(bridge))
2964 return false;
2965
2966 switch (pci_pcie_type(bridge)) {
2967 case PCI_EXP_TYPE_ROOT_PORT:
2968 case PCI_EXP_TYPE_UPSTREAM:
2969 case PCI_EXP_TYPE_DOWNSTREAM:
2970 if (pci_bridge_d3_disable)
2971 return false;
2972
2973 /*
2974 * Hotplug ports handled by firmware in System Management Mode
2975 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2976 */
2977 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2978 return false;
2979
2980 if (pci_bridge_d3_force)
2981 return true;
2982
2983 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2984 if (bridge->is_thunderbolt)
2985 return true;
2986
2987 /* Platform might know better if the bridge supports D3 */
2988 if (platform_pci_bridge_d3(bridge))
2989 return true;
2990
2991 /*
2992 * Hotplug ports handled natively by the OS were not validated
2993 * by vendors for runtime D3 at least until 2018 because there
2994 * was no OS support.
2995 */
2996 if (bridge->is_hotplug_bridge)
2997 return false;
2998
2999 if (dmi_check_system(bridge_d3_blacklist))
3000 return false;
3001
3002 /*
3003 * It should be safe to put PCIe ports from 2015 or newer
3004 * to D3.
3005 */
3006 if (dmi_get_bios_year() >= 2015)
3007 return true;
3008 break;
3009 }
3010
3011 return false;
3012 }
3013
3014 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3015 {
3016 bool *d3cold_ok = data;
3017
3018 if (/* The device needs to be allowed to go D3cold ... */
3019 dev->no_d3cold || !dev->d3cold_allowed ||
3020
3021 /* ... and if it is wakeup capable to do so from D3cold. */
3022 (device_may_wakeup(&dev->dev) &&
3023 !pci_pme_capable(dev, PCI_D3cold)) ||
3024
3025 /* If it is a bridge it must be allowed to go to D3. */
3026 !pci_power_manageable(dev))
3027
3028 *d3cold_ok = false;
3029
3030 return !*d3cold_ok;
3031 }
3032
3033 /*
3034 * pci_bridge_d3_update - Update bridge D3 capabilities
3035 * @dev: PCI device which is changed
3036 *
3037 * Update upstream bridge PM capabilities accordingly depending on if the
3038 * device PM configuration was changed or the device is being removed. The
3039 * change is also propagated upstream.
3040 */
3041 void pci_bridge_d3_update(struct pci_dev *dev)
3042 {
3043 bool remove = !device_is_registered(&dev->dev);
3044 struct pci_dev *bridge;
3045 bool d3cold_ok = true;
3046
3047 bridge = pci_upstream_bridge(dev);
3048 if (!bridge || !pci_bridge_d3_possible(bridge))
3049 return;
3050
3051 /*
3052 * If D3 is currently allowed for the bridge, removing one of its
3053 * children won't change that.
3054 */
3055 if (remove && bridge->bridge_d3)
3056 return;
3057
3058 /*
3059 * If D3 is currently allowed for the bridge and a child is added or
3060 * changed, disallowance of D3 can only be caused by that child, so
3061 * we only need to check that single device, not any of its siblings.
3062 *
3063 * If D3 is currently not allowed for the bridge, checking the device
3064 * first may allow us to skip checking its siblings.
3065 */
3066 if (!remove)
3067 pci_dev_check_d3cold(dev, &d3cold_ok);
3068
3069 /*
3070 * If D3 is currently not allowed for the bridge, this may be caused
3071 * either by the device being changed/removed or any of its siblings,
3072 * so we need to go through all children to find out if one of them
3073 * continues to block D3.
3074 */
3075 if (d3cold_ok && !bridge->bridge_d3)
3076 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3077 &d3cold_ok);
3078
3079 if (bridge->bridge_d3 != d3cold_ok) {
3080 bridge->bridge_d3 = d3cold_ok;
3081 /* Propagate change to upstream bridges */
3082 pci_bridge_d3_update(bridge);
3083 }
3084 }
3085
3086 /**
3087 * pci_d3cold_enable - Enable D3cold for device
3088 * @dev: PCI device to handle
3089 *
3090 * This function can be used in drivers to enable D3cold from the device
3091 * they handle. It also updates upstream PCI bridge PM capabilities
3092 * accordingly.
3093 */
3094 void pci_d3cold_enable(struct pci_dev *dev)
3095 {
3096 if (dev->no_d3cold) {
3097 dev->no_d3cold = false;
3098 pci_bridge_d3_update(dev);
3099 }
3100 }
3101 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3102
3103 /**
3104 * pci_d3cold_disable - Disable D3cold for device
3105 * @dev: PCI device to handle
3106 *
3107 * This function can be used in drivers to disable D3cold from the device
3108 * they handle. It also updates upstream PCI bridge PM capabilities
3109 * accordingly.
3110 */
3111 void pci_d3cold_disable(struct pci_dev *dev)
3112 {
3113 if (!dev->no_d3cold) {
3114 dev->no_d3cold = true;
3115 pci_bridge_d3_update(dev);
3116 }
3117 }
3118 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3119
3120 /**
3121 * pci_pm_init - Initialize PM functions of given PCI device
3122 * @dev: PCI device to handle.
3123 */
3124 void pci_pm_init(struct pci_dev *dev)
3125 {
3126 int pm;
3127 u16 status;
3128 u16 pmc;
3129
3130 pm_runtime_forbid(&dev->dev);
3131 pm_runtime_set_active(&dev->dev);
3132 pm_runtime_enable(&dev->dev);
3133 device_enable_async_suspend(&dev->dev);
3134 dev->wakeup_prepared = false;
3135
3136 dev->pm_cap = 0;
3137 dev->pme_support = 0;
3138
3139 /* find PCI PM capability in list */
3140 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3141 if (!pm)
3142 return;
3143 /* Check device's ability to generate PME# */
3144 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3145
3146 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3147 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3148 pmc & PCI_PM_CAP_VER_MASK);
3149 return;
3150 }
3151
3152 dev->pm_cap = pm;
3153 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3154 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3155 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3156 dev->d3cold_allowed = true;
3157
3158 dev->d1_support = false;
3159 dev->d2_support = false;
3160 if (!pci_no_d1d2(dev)) {
3161 if (pmc & PCI_PM_CAP_D1)
3162 dev->d1_support = true;
3163 if (pmc & PCI_PM_CAP_D2)
3164 dev->d2_support = true;
3165
3166 if (dev->d1_support || dev->d2_support)
3167 pci_info(dev, "supports%s%s\n",
3168 dev->d1_support ? " D1" : "",
3169 dev->d2_support ? " D2" : "");
3170 }
3171
3172 pmc &= PCI_PM_CAP_PME_MASK;
3173 if (pmc) {
3174 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3175 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3176 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3177 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3178 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3179 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3180 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3181 dev->pme_poll = true;
3182 /*
3183 * Make device's PM flags reflect the wake-up capability, but
3184 * let the user space enable it to wake up the system as needed.
3185 */
3186 device_set_wakeup_capable(&dev->dev, true);
3187 /* Disable the PME# generation functionality */
3188 pci_pme_active(dev, false);
3189 }
3190
3191 pci_read_config_word(dev, PCI_STATUS, &status);
3192 if (status & PCI_STATUS_IMM_READY)
3193 dev->imm_ready = 1;
3194 }
3195
3196 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3197 {
3198 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3199
3200 switch (prop) {
3201 case PCI_EA_P_MEM:
3202 case PCI_EA_P_VF_MEM:
3203 flags |= IORESOURCE_MEM;
3204 break;
3205 case PCI_EA_P_MEM_PREFETCH:
3206 case PCI_EA_P_VF_MEM_PREFETCH:
3207 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3208 break;
3209 case PCI_EA_P_IO:
3210 flags |= IORESOURCE_IO;
3211 break;
3212 default:
3213 return 0;
3214 }
3215
3216 return flags;
3217 }
3218
3219 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3220 u8 prop)
3221 {
3222 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3223 return &dev->resource[bei];
3224 #ifdef CONFIG_PCI_IOV
3225 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3226 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3227 return &dev->resource[PCI_IOV_RESOURCES +
3228 bei - PCI_EA_BEI_VF_BAR0];
3229 #endif
3230 else if (bei == PCI_EA_BEI_ROM)
3231 return &dev->resource[PCI_ROM_RESOURCE];
3232 else
3233 return NULL;
3234 }
3235
3236 /* Read an Enhanced Allocation (EA) entry */
3237 static int pci_ea_read(struct pci_dev *dev, int offset)
3238 {
3239 struct resource *res;
3240 int ent_size, ent_offset = offset;
3241 resource_size_t start, end;
3242 unsigned long flags;
3243 u32 dw0, bei, base, max_offset;
3244 u8 prop;
3245 bool support_64 = (sizeof(resource_size_t) >= 8);
3246
3247 pci_read_config_dword(dev, ent_offset, &dw0);
3248 ent_offset += 4;
3249
3250 /* Entry size field indicates DWORDs after 1st */
3251 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3252
3253 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3254 goto out;
3255
3256 bei = (dw0 & PCI_EA_BEI) >> 4;
3257 prop = (dw0 & PCI_EA_PP) >> 8;
3258
3259 /*
3260 * If the Property is in the reserved range, try the Secondary
3261 * Property instead.
3262 */
3263 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3264 prop = (dw0 & PCI_EA_SP) >> 16;
3265 if (prop > PCI_EA_P_BRIDGE_IO)
3266 goto out;
3267
3268 res = pci_ea_get_resource(dev, bei, prop);
3269 if (!res) {
3270 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3271 goto out;
3272 }
3273
3274 flags = pci_ea_flags(dev, prop);
3275 if (!flags) {
3276 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3277 goto out;
3278 }
3279
3280 /* Read Base */
3281 pci_read_config_dword(dev, ent_offset, &base);
3282 start = (base & PCI_EA_FIELD_MASK);
3283 ent_offset += 4;
3284
3285 /* Read MaxOffset */
3286 pci_read_config_dword(dev, ent_offset, &max_offset);
3287 ent_offset += 4;
3288
3289 /* Read Base MSBs (if 64-bit entry) */
3290 if (base & PCI_EA_IS_64) {
3291 u32 base_upper;
3292
3293 pci_read_config_dword(dev, ent_offset, &base_upper);
3294 ent_offset += 4;
3295
3296 flags |= IORESOURCE_MEM_64;
3297
3298 /* entry starts above 32-bit boundary, can't use */
3299 if (!support_64 && base_upper)
3300 goto out;
3301
3302 if (support_64)
3303 start |= ((u64)base_upper << 32);
3304 }
3305
3306 end = start + (max_offset | 0x03);
3307
3308 /* Read MaxOffset MSBs (if 64-bit entry) */
3309 if (max_offset & PCI_EA_IS_64) {
3310 u32 max_offset_upper;
3311
3312 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3313 ent_offset += 4;
3314
3315 flags |= IORESOURCE_MEM_64;
3316
3317 /* entry too big, can't use */
3318 if (!support_64 && max_offset_upper)
3319 goto out;
3320
3321 if (support_64)
3322 end += ((u64)max_offset_upper << 32);
3323 }
3324
3325 if (end < start) {
3326 pci_err(dev, "EA Entry crosses address boundary\n");
3327 goto out;
3328 }
3329
3330 if (ent_size != ent_offset - offset) {
3331 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3332 ent_size, ent_offset - offset);
3333 goto out;
3334 }
3335
3336 res->name = pci_name(dev);
3337 res->start = start;
3338 res->end = end;
3339 res->flags = flags;
3340
3341 if (bei <= PCI_EA_BEI_BAR5)
3342 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3343 bei, res, prop);
3344 else if (bei == PCI_EA_BEI_ROM)
3345 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3346 res, prop);
3347 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3348 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3349 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3350 else
3351 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3352 bei, res, prop);
3353
3354 out:
3355 return offset + ent_size;
3356 }
3357
3358 /* Enhanced Allocation Initialization */
3359 void pci_ea_init(struct pci_dev *dev)
3360 {
3361 int ea;
3362 u8 num_ent;
3363 int offset;
3364 int i;
3365
3366 /* find PCI EA capability in list */
3367 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3368 if (!ea)
3369 return;
3370
3371 /* determine the number of entries */
3372 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3373 &num_ent);
3374 num_ent &= PCI_EA_NUM_ENT_MASK;
3375
3376 offset = ea + PCI_EA_FIRST_ENT;
3377
3378 /* Skip DWORD 2 for type 1 functions */
3379 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3380 offset += 4;
3381
3382 /* parse each EA entry */
3383 for (i = 0; i < num_ent; ++i)
3384 offset = pci_ea_read(dev, offset);
3385 }
3386
3387 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3388 struct pci_cap_saved_state *new_cap)
3389 {
3390 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3391 }
3392
3393 /**
3394 * _pci_add_cap_save_buffer - allocate buffer for saving given
3395 * capability registers
3396 * @dev: the PCI device
3397 * @cap: the capability to allocate the buffer for
3398 * @extended: Standard or Extended capability ID
3399 * @size: requested size of the buffer
3400 */
3401 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3402 bool extended, unsigned int size)
3403 {
3404 int pos;
3405 struct pci_cap_saved_state *save_state;
3406
3407 if (extended)
3408 pos = pci_find_ext_capability(dev, cap);
3409 else
3410 pos = pci_find_capability(dev, cap);
3411
3412 if (!pos)
3413 return 0;
3414
3415 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3416 if (!save_state)
3417 return -ENOMEM;
3418
3419 save_state->cap.cap_nr = cap;
3420 save_state->cap.cap_extended = extended;
3421 save_state->cap.size = size;
3422 pci_add_saved_cap(dev, save_state);
3423
3424 return 0;
3425 }
3426
3427 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3428 {
3429 return _pci_add_cap_save_buffer(dev, cap, false, size);
3430 }
3431
3432 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3433 {
3434 return _pci_add_cap_save_buffer(dev, cap, true, size);
3435 }
3436
3437 /**
3438 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3439 * @dev: the PCI device
3440 */
3441 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3442 {
3443 int error;
3444
3445 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3446 PCI_EXP_SAVE_REGS * sizeof(u16));
3447 if (error)
3448 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3449
3450 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3451 if (error)
3452 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3453
3454 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3455 2 * sizeof(u16));
3456 if (error)
3457 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3458
3459 if (dmi_check_system(aspm_fix_whitelist)) {
3460 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_L1SS,
3461 2 * sizeof(u32));
3462 if (error)
3463 pci_err(dev, "unable to allocate suspend buffer for ASPM-L1SS\n");
3464 }
3465
3466 pci_allocate_vc_save_buffers(dev);
3467 }
3468
3469 void pci_free_cap_save_buffers(struct pci_dev *dev)
3470 {
3471 struct pci_cap_saved_state *tmp;
3472 struct hlist_node *n;
3473
3474 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3475 kfree(tmp);
3476 }
3477
3478 /**
3479 * pci_configure_ari - enable or disable ARI forwarding
3480 * @dev: the PCI device
3481 *
3482 * If @dev and its upstream bridge both support ARI, enable ARI in the
3483 * bridge. Otherwise, disable ARI in the bridge.
3484 */
3485 void pci_configure_ari(struct pci_dev *dev)
3486 {
3487 u32 cap;
3488 struct pci_dev *bridge;
3489
3490 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3491 return;
3492
3493 bridge = dev->bus->self;
3494 if (!bridge)
3495 return;
3496
3497 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3498 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3499 return;
3500
3501 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3502 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3503 PCI_EXP_DEVCTL2_ARI);
3504 bridge->ari_enabled = 1;
3505 } else {
3506 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3507 PCI_EXP_DEVCTL2_ARI);
3508 bridge->ari_enabled = 0;
3509 }
3510 }
3511
3512 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3513 {
3514 int pos;
3515 u16 cap, ctrl;
3516
3517 pos = pdev->acs_cap;
3518 if (!pos)
3519 return false;
3520
3521 /*
3522 * Except for egress control, capabilities are either required
3523 * or only required if controllable. Features missing from the
3524 * capability field can therefore be assumed as hard-wired enabled.
3525 */
3526 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3527 acs_flags &= (cap | PCI_ACS_EC);
3528
3529 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3530 return (ctrl & acs_flags) == acs_flags;
3531 }
3532
3533 /**
3534 * pci_acs_enabled - test ACS against required flags for a given device
3535 * @pdev: device to test
3536 * @acs_flags: required PCI ACS flags
3537 *
3538 * Return true if the device supports the provided flags. Automatically
3539 * filters out flags that are not implemented on multifunction devices.
3540 *
3541 * Note that this interface checks the effective ACS capabilities of the
3542 * device rather than the actual capabilities. For instance, most single
3543 * function endpoints are not required to support ACS because they have no
3544 * opportunity for peer-to-peer access. We therefore return 'true'
3545 * regardless of whether the device exposes an ACS capability. This makes
3546 * it much easier for callers of this function to ignore the actual type
3547 * or topology of the device when testing ACS support.
3548 */
3549 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3550 {
3551 int ret;
3552
3553 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3554 if (ret >= 0)
3555 return ret > 0;
3556
3557 /*
3558 * Conventional PCI and PCI-X devices never support ACS, either
3559 * effectively or actually. The shared bus topology implies that
3560 * any device on the bus can receive or snoop DMA.
3561 */
3562 if (!pci_is_pcie(pdev))
3563 return false;
3564
3565 switch (pci_pcie_type(pdev)) {
3566 /*
3567 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3568 * but since their primary interface is PCI/X, we conservatively
3569 * handle them as we would a non-PCIe device.
3570 */
3571 case PCI_EXP_TYPE_PCIE_BRIDGE:
3572 /*
3573 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3574 * applicable... must never implement an ACS Extended Capability...".
3575 * This seems arbitrary, but we take a conservative interpretation
3576 * of this statement.
3577 */
3578 case PCI_EXP_TYPE_PCI_BRIDGE:
3579 case PCI_EXP_TYPE_RC_EC:
3580 return false;
3581 /*
3582 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3583 * implement ACS in order to indicate their peer-to-peer capabilities,
3584 * regardless of whether they are single- or multi-function devices.
3585 */
3586 case PCI_EXP_TYPE_DOWNSTREAM:
3587 case PCI_EXP_TYPE_ROOT_PORT:
3588 return pci_acs_flags_enabled(pdev, acs_flags);
3589 /*
3590 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3591 * implemented by the remaining PCIe types to indicate peer-to-peer
3592 * capabilities, but only when they are part of a multifunction
3593 * device. The footnote for section 6.12 indicates the specific
3594 * PCIe types included here.
3595 */
3596 case PCI_EXP_TYPE_ENDPOINT:
3597 case PCI_EXP_TYPE_UPSTREAM:
3598 case PCI_EXP_TYPE_LEG_END:
3599 case PCI_EXP_TYPE_RC_END:
3600 if (!pdev->multifunction)
3601 break;
3602
3603 return pci_acs_flags_enabled(pdev, acs_flags);
3604 }
3605
3606 /*
3607 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3608 * to single function devices with the exception of downstream ports.
3609 */
3610 return true;
3611 }
3612
3613 /**
3614 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3615 * @start: starting downstream device
3616 * @end: ending upstream device or NULL to search to the root bus
3617 * @acs_flags: required flags
3618 *
3619 * Walk up a device tree from start to end testing PCI ACS support. If
3620 * any step along the way does not support the required flags, return false.
3621 */
3622 bool pci_acs_path_enabled(struct pci_dev *start,
3623 struct pci_dev *end, u16 acs_flags)
3624 {
3625 struct pci_dev *pdev, *parent = start;
3626
3627 do {
3628 pdev = parent;
3629
3630 if (!pci_acs_enabled(pdev, acs_flags))
3631 return false;
3632
3633 if (pci_is_root_bus(pdev->bus))
3634 return (end == NULL);
3635
3636 parent = pdev->bus->self;
3637 } while (pdev != end);
3638
3639 return true;
3640 }
3641
3642 /**
3643 * pci_acs_init - Initialize ACS if hardware supports it
3644 * @dev: the PCI device
3645 */
3646 void pci_acs_init(struct pci_dev *dev)
3647 {
3648 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3649
3650 /*
3651 * Attempt to enable ACS regardless of capability because some Root
3652 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3653 * the standard ACS capability but still support ACS via those
3654 * quirks.
3655 */
3656 pci_enable_acs(dev);
3657 }
3658
3659 /**
3660 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3661 * @pdev: PCI device
3662 * @bar: BAR to find
3663 *
3664 * Helper to find the position of the ctrl register for a BAR.
3665 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3666 * Returns -ENOENT if no ctrl register for the BAR could be found.
3667 */
3668 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3669 {
3670 unsigned int pos, nbars, i;
3671 u32 ctrl;
3672
3673 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3674 if (!pos)
3675 return -ENOTSUPP;
3676
3677 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3678 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3679 PCI_REBAR_CTRL_NBAR_SHIFT;
3680
3681 for (i = 0; i < nbars; i++, pos += 8) {
3682 int bar_idx;
3683
3684 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3685 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3686 if (bar_idx == bar)
3687 return pos;
3688 }
3689
3690 return -ENOENT;
3691 }
3692
3693 /**
3694 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3695 * @pdev: PCI device
3696 * @bar: BAR to query
3697 *
3698 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3699 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3700 */
3701 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3702 {
3703 int pos;
3704 u32 cap;
3705
3706 pos = pci_rebar_find_pos(pdev, bar);
3707 if (pos < 0)
3708 return 0;
3709
3710 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3711 cap &= PCI_REBAR_CAP_SIZES;
3712
3713 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3714 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3715 bar == 0 && cap == 0x7000)
3716 cap = 0x3f000;
3717
3718 return cap >> 4;
3719 }
3720 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3721
3722 /**
3723 * pci_rebar_get_current_size - get the current size of a BAR
3724 * @pdev: PCI device
3725 * @bar: BAR to set size to
3726 *
3727 * Read the size of a BAR from the resizable BAR config.
3728 * Returns size if found or negative error code.
3729 */
3730 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3731 {
3732 int pos;
3733 u32 ctrl;
3734
3735 pos = pci_rebar_find_pos(pdev, bar);
3736 if (pos < 0)
3737 return pos;
3738
3739 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3740 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3741 }
3742
3743 /**
3744 * pci_rebar_set_size - set a new size for a BAR
3745 * @pdev: PCI device
3746 * @bar: BAR to set size to
3747 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3748 *
3749 * Set the new size of a BAR as defined in the spec.
3750 * Returns zero if resizing was successful, error code otherwise.
3751 */
3752 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3753 {
3754 int pos;
3755 u32 ctrl;
3756
3757 pos = pci_rebar_find_pos(pdev, bar);
3758 if (pos < 0)
3759 return pos;
3760
3761 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3762 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3763 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3764 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3765 return 0;
3766 }
3767
3768 /**
3769 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3770 * @dev: the PCI device
3771 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3772 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3773 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3774 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3775 *
3776 * Return 0 if all upstream bridges support AtomicOp routing, egress
3777 * blocking is disabled on all upstream ports, and the root port supports
3778 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3779 * AtomicOp completion), or negative otherwise.
3780 */
3781 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3782 {
3783 struct pci_bus *bus = dev->bus;
3784 struct pci_dev *bridge;
3785 u32 cap, ctl2;
3786
3787 /*
3788 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3789 * in Device Control 2 is reserved in VFs and the PF value applies
3790 * to all associated VFs.
3791 */
3792 if (dev->is_virtfn)
3793 return -EINVAL;
3794
3795 if (!pci_is_pcie(dev))
3796 return -EINVAL;
3797
3798 /*
3799 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3800 * AtomicOp requesters. For now, we only support endpoints as
3801 * requesters and root ports as completers. No endpoints as
3802 * completers, and no peer-to-peer.
3803 */
3804
3805 switch (pci_pcie_type(dev)) {
3806 case PCI_EXP_TYPE_ENDPOINT:
3807 case PCI_EXP_TYPE_LEG_END:
3808 case PCI_EXP_TYPE_RC_END:
3809 break;
3810 default:
3811 return -EINVAL;
3812 }
3813
3814 while (bus->parent) {
3815 bridge = bus->self;
3816
3817 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3818
3819 switch (pci_pcie_type(bridge)) {
3820 /* Ensure switch ports support AtomicOp routing */
3821 case PCI_EXP_TYPE_UPSTREAM:
3822 case PCI_EXP_TYPE_DOWNSTREAM:
3823 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3824 return -EINVAL;
3825 break;
3826
3827 /* Ensure root port supports all the sizes we care about */
3828 case PCI_EXP_TYPE_ROOT_PORT:
3829 if ((cap & cap_mask) != cap_mask)
3830 return -EINVAL;
3831 break;
3832 }
3833
3834 /* Ensure upstream ports don't block AtomicOps on egress */
3835 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3836 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3837 &ctl2);
3838 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3839 return -EINVAL;
3840 }
3841
3842 bus = bus->parent;
3843 }
3844
3845 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3846 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3847 return 0;
3848 }
3849 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3850
3851 /**
3852 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3853 * @dev: the PCI device
3854 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3855 *
3856 * Perform INTx swizzling for a device behind one level of bridge. This is
3857 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3858 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3859 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3860 * the PCI Express Base Specification, Revision 2.1)
3861 */
3862 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3863 {
3864 int slot;
3865
3866 if (pci_ari_enabled(dev->bus))
3867 slot = 0;
3868 else
3869 slot = PCI_SLOT(dev->devfn);
3870
3871 return (((pin - 1) + slot) % 4) + 1;
3872 }
3873
3874 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3875 {
3876 u8 pin;
3877
3878 pin = dev->pin;
3879 if (!pin)
3880 return -1;
3881
3882 while (!pci_is_root_bus(dev->bus)) {
3883 pin = pci_swizzle_interrupt_pin(dev, pin);
3884 dev = dev->bus->self;
3885 }
3886 *bridge = dev;
3887 return pin;
3888 }
3889
3890 /**
3891 * pci_common_swizzle - swizzle INTx all the way to root bridge
3892 * @dev: the PCI device
3893 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3894 *
3895 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3896 * bridges all the way up to a PCI root bus.
3897 */
3898 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3899 {
3900 u8 pin = *pinp;
3901
3902 while (!pci_is_root_bus(dev->bus)) {
3903 pin = pci_swizzle_interrupt_pin(dev, pin);
3904 dev = dev->bus->self;
3905 }
3906 *pinp = pin;
3907 return PCI_SLOT(dev->devfn);
3908 }
3909 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3910
3911 /**
3912 * pci_release_region - Release a PCI bar
3913 * @pdev: PCI device whose resources were previously reserved by
3914 * pci_request_region()
3915 * @bar: BAR to release
3916 *
3917 * Releases the PCI I/O and memory resources previously reserved by a
3918 * successful call to pci_request_region(). Call this function only
3919 * after all use of the PCI regions has ceased.
3920 */
3921 void pci_release_region(struct pci_dev *pdev, int bar)
3922 {
3923 struct pci_devres *dr;
3924
3925 if (pci_resource_len(pdev, bar) == 0)
3926 return;
3927 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3928 release_region(pci_resource_start(pdev, bar),
3929 pci_resource_len(pdev, bar));
3930 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3931 release_mem_region(pci_resource_start(pdev, bar),
3932 pci_resource_len(pdev, bar));
3933
3934 dr = find_pci_dr(pdev);
3935 if (dr)
3936 dr->region_mask &= ~(1 << bar);
3937 }
3938 EXPORT_SYMBOL(pci_release_region);
3939
3940 /**
3941 * __pci_request_region - Reserved PCI I/O and memory resource
3942 * @pdev: PCI device whose resources are to be reserved
3943 * @bar: BAR to be reserved
3944 * @res_name: Name to be associated with resource.
3945 * @exclusive: whether the region access is exclusive or not
3946 *
3947 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3948 * being reserved by owner @res_name. Do not access any
3949 * address inside the PCI regions unless this call returns
3950 * successfully.
3951 *
3952 * If @exclusive is set, then the region is marked so that userspace
3953 * is explicitly not allowed to map the resource via /dev/mem or
3954 * sysfs MMIO access.
3955 *
3956 * Returns 0 on success, or %EBUSY on error. A warning
3957 * message is also printed on failure.
3958 */
3959 static int __pci_request_region(struct pci_dev *pdev, int bar,
3960 const char *res_name, int exclusive)
3961 {
3962 struct pci_devres *dr;
3963
3964 if (pci_resource_len(pdev, bar) == 0)
3965 return 0;
3966
3967 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3968 if (!request_region(pci_resource_start(pdev, bar),
3969 pci_resource_len(pdev, bar), res_name))
3970 goto err_out;
3971 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3972 if (!__request_mem_region(pci_resource_start(pdev, bar),
3973 pci_resource_len(pdev, bar), res_name,
3974 exclusive))
3975 goto err_out;
3976 }
3977
3978 dr = find_pci_dr(pdev);
3979 if (dr)
3980 dr->region_mask |= 1 << bar;
3981
3982 return 0;
3983
3984 err_out:
3985 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3986 &pdev->resource[bar]);
3987 return -EBUSY;
3988 }
3989
3990 /**
3991 * pci_request_region - Reserve PCI I/O and memory resource
3992 * @pdev: PCI device whose resources are to be reserved
3993 * @bar: BAR to be reserved
3994 * @res_name: Name to be associated with resource
3995 *
3996 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3997 * being reserved by owner @res_name. Do not access any
3998 * address inside the PCI regions unless this call returns
3999 * successfully.
4000 *
4001 * Returns 0 on success, or %EBUSY on error. A warning
4002 * message is also printed on failure.
4003 */
4004 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4005 {
4006 return __pci_request_region(pdev, bar, res_name, 0);
4007 }
4008 EXPORT_SYMBOL(pci_request_region);
4009
4010 /**
4011 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4012 * @pdev: PCI device whose resources were previously reserved
4013 * @bars: Bitmask of BARs to be released
4014 *
4015 * Release selected PCI I/O and memory resources previously reserved.
4016 * Call this function only after all use of the PCI regions has ceased.
4017 */
4018 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4019 {
4020 int i;
4021
4022 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4023 if (bars & (1 << i))
4024 pci_release_region(pdev, i);
4025 }
4026 EXPORT_SYMBOL(pci_release_selected_regions);
4027
4028 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4029 const char *res_name, int excl)
4030 {
4031 int i;
4032
4033 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4034 if (bars & (1 << i))
4035 if (__pci_request_region(pdev, i, res_name, excl))
4036 goto err_out;
4037 return 0;
4038
4039 err_out:
4040 while (--i >= 0)
4041 if (bars & (1 << i))
4042 pci_release_region(pdev, i);
4043
4044 return -EBUSY;
4045 }
4046
4047
4048 /**
4049 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4050 * @pdev: PCI device whose resources are to be reserved
4051 * @bars: Bitmask of BARs to be requested
4052 * @res_name: Name to be associated with resource
4053 */
4054 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4055 const char *res_name)
4056 {
4057 return __pci_request_selected_regions(pdev, bars, res_name, 0);
4058 }
4059 EXPORT_SYMBOL(pci_request_selected_regions);
4060
4061 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4062 const char *res_name)
4063 {
4064 return __pci_request_selected_regions(pdev, bars, res_name,
4065 IORESOURCE_EXCLUSIVE);
4066 }
4067 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4068
4069 /**
4070 * pci_release_regions - Release reserved PCI I/O and memory resources
4071 * @pdev: PCI device whose resources were previously reserved by
4072 * pci_request_regions()
4073 *
4074 * Releases all PCI I/O and memory resources previously reserved by a
4075 * successful call to pci_request_regions(). Call this function only
4076 * after all use of the PCI regions has ceased.
4077 */
4078
4079 void pci_release_regions(struct pci_dev *pdev)
4080 {
4081 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4082 }
4083 EXPORT_SYMBOL(pci_release_regions);
4084
4085 /**
4086 * pci_request_regions - Reserve PCI I/O and memory resources
4087 * @pdev: PCI device whose resources are to be reserved
4088 * @res_name: Name to be associated with resource.
4089 *
4090 * Mark all PCI regions associated with PCI device @pdev as
4091 * being reserved by owner @res_name. Do not access any
4092 * address inside the PCI regions unless this call returns
4093 * successfully.
4094 *
4095 * Returns 0 on success, or %EBUSY on error. A warning
4096 * message is also printed on failure.
4097 */
4098 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4099 {
4100 return pci_request_selected_regions(pdev,
4101 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4102 }
4103 EXPORT_SYMBOL(pci_request_regions);
4104
4105 /**
4106 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4107 * @pdev: PCI device whose resources are to be reserved
4108 * @res_name: Name to be associated with resource.
4109 *
4110 * Mark all PCI regions associated with PCI device @pdev as being reserved
4111 * by owner @res_name. Do not access any address inside the PCI regions
4112 * unless this call returns successfully.
4113 *
4114 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4115 * and the sysfs MMIO access will not be allowed.
4116 *
4117 * Returns 0 on success, or %EBUSY on error. A warning message is also
4118 * printed on failure.
4119 */
4120 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4121 {
4122 return pci_request_selected_regions_exclusive(pdev,
4123 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4124 }
4125 EXPORT_SYMBOL(pci_request_regions_exclusive);
4126
4127 /*
4128 * Record the PCI IO range (expressed as CPU physical address + size).
4129 * Return a negative value if an error has occurred, zero otherwise
4130 */
4131 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4132 resource_size_t size)
4133 {
4134 int ret = 0;
4135 #ifdef PCI_IOBASE
4136 struct logic_pio_hwaddr *range;
4137
4138 if (!size || addr + size < addr)
4139 return -EINVAL;
4140
4141 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4142 if (!range)
4143 return -ENOMEM;
4144
4145 range->fwnode = fwnode;
4146 range->size = size;
4147 range->hw_start = addr;
4148 range->flags = LOGIC_PIO_CPU_MMIO;
4149
4150 ret = logic_pio_register_range(range);
4151 if (ret)
4152 kfree(range);
4153
4154 /* Ignore duplicates due to deferred probing */
4155 if (ret == -EEXIST)
4156 ret = 0;
4157 #endif
4158
4159 return ret;
4160 }
4161
4162 phys_addr_t pci_pio_to_address(unsigned long pio)
4163 {
4164 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4165
4166 #ifdef PCI_IOBASE
4167 if (pio >= MMIO_UPPER_LIMIT)
4168 return address;
4169
4170 address = logic_pio_to_hwaddr(pio);
4171 #endif
4172
4173 return address;
4174 }
4175 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4176
4177 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4178 {
4179 #ifdef PCI_IOBASE
4180 return logic_pio_trans_cpuaddr(address);
4181 #else
4182 if (address > IO_SPACE_LIMIT)
4183 return (unsigned long)-1;
4184
4185 return (unsigned long) address;
4186 #endif
4187 }
4188
4189 /**
4190 * pci_remap_iospace - Remap the memory mapped I/O space
4191 * @res: Resource describing the I/O space
4192 * @phys_addr: physical address of range to be mapped
4193 *
4194 * Remap the memory mapped I/O space described by the @res and the CPU
4195 * physical address @phys_addr into virtual address space. Only
4196 * architectures that have memory mapped IO functions defined (and the
4197 * PCI_IOBASE value defined) should call this function.
4198 */
4199 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4200 {
4201 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4202 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4203
4204 if (!(res->flags & IORESOURCE_IO))
4205 return -EINVAL;
4206
4207 if (res->end > IO_SPACE_LIMIT)
4208 return -EINVAL;
4209
4210 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4211 pgprot_device(PAGE_KERNEL));
4212 #else
4213 /*
4214 * This architecture does not have memory mapped I/O space,
4215 * so this function should never be called
4216 */
4217 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4218 return -ENODEV;
4219 #endif
4220 }
4221 EXPORT_SYMBOL(pci_remap_iospace);
4222
4223 /**
4224 * pci_unmap_iospace - Unmap the memory mapped I/O space
4225 * @res: resource to be unmapped
4226 *
4227 * Unmap the CPU virtual address @res from virtual address space. Only
4228 * architectures that have memory mapped IO functions defined (and the
4229 * PCI_IOBASE value defined) should call this function.
4230 */
4231 void pci_unmap_iospace(struct resource *res)
4232 {
4233 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4234 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4235
4236 vunmap_range(vaddr, vaddr + resource_size(res));
4237 #endif
4238 }
4239 EXPORT_SYMBOL(pci_unmap_iospace);
4240
4241 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4242 {
4243 struct resource **res = ptr;
4244
4245 pci_unmap_iospace(*res);
4246 }
4247
4248 /**
4249 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4250 * @dev: Generic device to remap IO address for
4251 * @res: Resource describing the I/O space
4252 * @phys_addr: physical address of range to be mapped
4253 *
4254 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4255 * detach.
4256 */
4257 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4258 phys_addr_t phys_addr)
4259 {
4260 const struct resource **ptr;
4261 int error;
4262
4263 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4264 if (!ptr)
4265 return -ENOMEM;
4266
4267 error = pci_remap_iospace(res, phys_addr);
4268 if (error) {
4269 devres_free(ptr);
4270 } else {
4271 *ptr = res;
4272 devres_add(dev, ptr);
4273 }
4274
4275 return error;
4276 }
4277 EXPORT_SYMBOL(devm_pci_remap_iospace);
4278
4279 /**
4280 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4281 * @dev: Generic device to remap IO address for
4282 * @offset: Resource address to map
4283 * @size: Size of map
4284 *
4285 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4286 * detach.
4287 */
4288 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4289 resource_size_t offset,
4290 resource_size_t size)
4291 {
4292 void __iomem **ptr, *addr;
4293
4294 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4295 if (!ptr)
4296 return NULL;
4297
4298 addr = pci_remap_cfgspace(offset, size);
4299 if (addr) {
4300 *ptr = addr;
4301 devres_add(dev, ptr);
4302 } else
4303 devres_free(ptr);
4304
4305 return addr;
4306 }
4307 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4308
4309 /**
4310 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4311 * @dev: generic device to handle the resource for
4312 * @res: configuration space resource to be handled
4313 *
4314 * Checks that a resource is a valid memory region, requests the memory
4315 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4316 * proper PCI configuration space memory attributes are guaranteed.
4317 *
4318 * All operations are managed and will be undone on driver detach.
4319 *
4320 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4321 * on failure. Usage example::
4322 *
4323 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4324 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4325 * if (IS_ERR(base))
4326 * return PTR_ERR(base);
4327 */
4328 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4329 struct resource *res)
4330 {
4331 resource_size_t size;
4332 const char *name;
4333 void __iomem *dest_ptr;
4334
4335 BUG_ON(!dev);
4336
4337 if (!res || resource_type(res) != IORESOURCE_MEM) {
4338 dev_err(dev, "invalid resource\n");
4339 return IOMEM_ERR_PTR(-EINVAL);
4340 }
4341
4342 size = resource_size(res);
4343
4344 if (res->name)
4345 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4346 res->name);
4347 else
4348 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4349 if (!name)
4350 return IOMEM_ERR_PTR(-ENOMEM);
4351
4352 if (!devm_request_mem_region(dev, res->start, size, name)) {
4353 dev_err(dev, "can't request region for resource %pR\n", res);
4354 return IOMEM_ERR_PTR(-EBUSY);
4355 }
4356
4357 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4358 if (!dest_ptr) {
4359 dev_err(dev, "ioremap failed for resource %pR\n", res);
4360 devm_release_mem_region(dev, res->start, size);
4361 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4362 }
4363
4364 return dest_ptr;
4365 }
4366 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4367
4368 static void __pci_set_master(struct pci_dev *dev, bool enable)
4369 {
4370 u16 old_cmd, cmd;
4371
4372 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4373 if (enable)
4374 cmd = old_cmd | PCI_COMMAND_MASTER;
4375 else
4376 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4377 if (cmd != old_cmd) {
4378 pci_dbg(dev, "%s bus mastering\n",
4379 enable ? "enabling" : "disabling");
4380 pci_write_config_word(dev, PCI_COMMAND, cmd);
4381 }
4382 dev->is_busmaster = enable;
4383 }
4384
4385 /**
4386 * pcibios_setup - process "pci=" kernel boot arguments
4387 * @str: string used to pass in "pci=" kernel boot arguments
4388 *
4389 * Process kernel boot arguments. This is the default implementation.
4390 * Architecture specific implementations can override this as necessary.
4391 */
4392 char * __weak __init pcibios_setup(char *str)
4393 {
4394 return str;
4395 }
4396
4397 /**
4398 * pcibios_set_master - enable PCI bus-mastering for device dev
4399 * @dev: the PCI device to enable
4400 *
4401 * Enables PCI bus-mastering for the device. This is the default
4402 * implementation. Architecture specific implementations can override
4403 * this if necessary.
4404 */
4405 void __weak pcibios_set_master(struct pci_dev *dev)
4406 {
4407 u8 lat;
4408
4409 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4410 if (pci_is_pcie(dev))
4411 return;
4412
4413 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4414 if (lat < 16)
4415 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4416 else if (lat > pcibios_max_latency)
4417 lat = pcibios_max_latency;
4418 else
4419 return;
4420
4421 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4422 }
4423
4424 /**
4425 * pci_set_master - enables bus-mastering for device dev
4426 * @dev: the PCI device to enable
4427 *
4428 * Enables bus-mastering on the device and calls pcibios_set_master()
4429 * to do the needed arch specific settings.
4430 */
4431 void pci_set_master(struct pci_dev *dev)
4432 {
4433 __pci_set_master(dev, true);
4434 pcibios_set_master(dev);
4435 }
4436 EXPORT_SYMBOL(pci_set_master);
4437
4438 /**
4439 * pci_clear_master - disables bus-mastering for device dev
4440 * @dev: the PCI device to disable
4441 */
4442 void pci_clear_master(struct pci_dev *dev)
4443 {
4444 __pci_set_master(dev, false);
4445 }
4446 EXPORT_SYMBOL(pci_clear_master);
4447
4448 /**
4449 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4450 * @dev: the PCI device for which MWI is to be enabled
4451 *
4452 * Helper function for pci_set_mwi.
4453 * Originally copied from drivers/net/acenic.c.
4454 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4455 *
4456 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4457 */
4458 int pci_set_cacheline_size(struct pci_dev *dev)
4459 {
4460 u8 cacheline_size;
4461
4462 if (!pci_cache_line_size)
4463 return -EINVAL;
4464
4465 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4466 equal to or multiple of the right value. */
4467 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4468 if (cacheline_size >= pci_cache_line_size &&
4469 (cacheline_size % pci_cache_line_size) == 0)
4470 return 0;
4471
4472 /* Write the correct value. */
4473 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4474 /* Read it back. */
4475 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4476 if (cacheline_size == pci_cache_line_size)
4477 return 0;
4478
4479 pci_dbg(dev, "cache line size of %d is not supported\n",
4480 pci_cache_line_size << 2);
4481
4482 return -EINVAL;
4483 }
4484 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4485
4486 /**
4487 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4488 * @dev: the PCI device for which MWI is enabled
4489 *
4490 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4491 *
4492 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4493 */
4494 int pci_set_mwi(struct pci_dev *dev)
4495 {
4496 #ifdef PCI_DISABLE_MWI
4497 return 0;
4498 #else
4499 int rc;
4500 u16 cmd;
4501
4502 rc = pci_set_cacheline_size(dev);
4503 if (rc)
4504 return rc;
4505
4506 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4507 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4508 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4509 cmd |= PCI_COMMAND_INVALIDATE;
4510 pci_write_config_word(dev, PCI_COMMAND, cmd);
4511 }
4512 return 0;
4513 #endif
4514 }
4515 EXPORT_SYMBOL(pci_set_mwi);
4516
4517 /**
4518 * pcim_set_mwi - a device-managed pci_set_mwi()
4519 * @dev: the PCI device for which MWI is enabled
4520 *
4521 * Managed pci_set_mwi().
4522 *
4523 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4524 */
4525 int pcim_set_mwi(struct pci_dev *dev)
4526 {
4527 struct pci_devres *dr;
4528
4529 dr = find_pci_dr(dev);
4530 if (!dr)
4531 return -ENOMEM;
4532
4533 dr->mwi = 1;
4534 return pci_set_mwi(dev);
4535 }
4536 EXPORT_SYMBOL(pcim_set_mwi);
4537
4538 /**
4539 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4540 * @dev: the PCI device for which MWI is enabled
4541 *
4542 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4543 * Callers are not required to check the return value.
4544 *
4545 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4546 */
4547 int pci_try_set_mwi(struct pci_dev *dev)
4548 {
4549 #ifdef PCI_DISABLE_MWI
4550 return 0;
4551 #else
4552 return pci_set_mwi(dev);
4553 #endif
4554 }
4555 EXPORT_SYMBOL(pci_try_set_mwi);
4556
4557 /**
4558 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4559 * @dev: the PCI device to disable
4560 *
4561 * Disables PCI Memory-Write-Invalidate transaction on the device
4562 */
4563 void pci_clear_mwi(struct pci_dev *dev)
4564 {
4565 #ifndef PCI_DISABLE_MWI
4566 u16 cmd;
4567
4568 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4569 if (cmd & PCI_COMMAND_INVALIDATE) {
4570 cmd &= ~PCI_COMMAND_INVALIDATE;
4571 pci_write_config_word(dev, PCI_COMMAND, cmd);
4572 }
4573 #endif
4574 }
4575 EXPORT_SYMBOL(pci_clear_mwi);
4576
4577 /**
4578 * pci_disable_parity - disable parity checking for device
4579 * @dev: the PCI device to operate on
4580 *
4581 * Disable parity checking for device @dev
4582 */
4583 void pci_disable_parity(struct pci_dev *dev)
4584 {
4585 u16 cmd;
4586
4587 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4588 if (cmd & PCI_COMMAND_PARITY) {
4589 cmd &= ~PCI_COMMAND_PARITY;
4590 pci_write_config_word(dev, PCI_COMMAND, cmd);
4591 }
4592 }
4593
4594 /**
4595 * pci_intx - enables/disables PCI INTx for device dev
4596 * @pdev: the PCI device to operate on
4597 * @enable: boolean: whether to enable or disable PCI INTx
4598 *
4599 * Enables/disables PCI INTx for device @pdev
4600 */
4601 void pci_intx(struct pci_dev *pdev, int enable)
4602 {
4603 u16 pci_command, new;
4604
4605 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4606
4607 if (enable)
4608 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4609 else
4610 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4611
4612 if (new != pci_command) {
4613 struct pci_devres *dr;
4614
4615 pci_write_config_word(pdev, PCI_COMMAND, new);
4616
4617 dr = find_pci_dr(pdev);
4618 if (dr && !dr->restore_intx) {
4619 dr->restore_intx = 1;
4620 dr->orig_intx = !enable;
4621 }
4622 }
4623 }
4624 EXPORT_SYMBOL_GPL(pci_intx);
4625
4626 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4627 {
4628 struct pci_bus *bus = dev->bus;
4629 bool mask_updated = true;
4630 u32 cmd_status_dword;
4631 u16 origcmd, newcmd;
4632 unsigned long flags;
4633 bool irq_pending;
4634
4635 /*
4636 * We do a single dword read to retrieve both command and status.
4637 * Document assumptions that make this possible.
4638 */
4639 BUILD_BUG_ON(PCI_COMMAND % 4);
4640 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4641
4642 raw_spin_lock_irqsave(&pci_lock, flags);
4643
4644 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4645
4646 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4647
4648 /*
4649 * Check interrupt status register to see whether our device
4650 * triggered the interrupt (when masking) or the next IRQ is
4651 * already pending (when unmasking).
4652 */
4653 if (mask != irq_pending) {
4654 mask_updated = false;
4655 goto done;
4656 }
4657
4658 origcmd = cmd_status_dword;
4659 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4660 if (mask)
4661 newcmd |= PCI_COMMAND_INTX_DISABLE;
4662 if (newcmd != origcmd)
4663 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4664
4665 done:
4666 raw_spin_unlock_irqrestore(&pci_lock, flags);
4667
4668 return mask_updated;
4669 }
4670
4671 /**
4672 * pci_check_and_mask_intx - mask INTx on pending interrupt
4673 * @dev: the PCI device to operate on
4674 *
4675 * Check if the device dev has its INTx line asserted, mask it and return
4676 * true in that case. False is returned if no interrupt was pending.
4677 */
4678 bool pci_check_and_mask_intx(struct pci_dev *dev)
4679 {
4680 return pci_check_and_set_intx_mask(dev, true);
4681 }
4682 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4683
4684 /**
4685 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4686 * @dev: the PCI device to operate on
4687 *
4688 * Check if the device dev has its INTx line asserted, unmask it if not and
4689 * return true. False is returned and the mask remains active if there was
4690 * still an interrupt pending.
4691 */
4692 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4693 {
4694 return pci_check_and_set_intx_mask(dev, false);
4695 }
4696 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4697
4698 /**
4699 * pci_wait_for_pending_transaction - wait for pending transaction
4700 * @dev: the PCI device to operate on
4701 *
4702 * Return 0 if transaction is pending 1 otherwise.
4703 */
4704 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4705 {
4706 if (!pci_is_pcie(dev))
4707 return 1;
4708
4709 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4710 PCI_EXP_DEVSTA_TRPND);
4711 }
4712 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4713
4714 /**
4715 * pcie_flr - initiate a PCIe function level reset
4716 * @dev: device to reset
4717 *
4718 * Initiate a function level reset unconditionally on @dev without
4719 * checking any flags and DEVCAP
4720 */
4721 int pcie_flr(struct pci_dev *dev)
4722 {
4723 if (!pci_wait_for_pending_transaction(dev))
4724 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4725
4726 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4727
4728 if (dev->imm_ready)
4729 return 0;
4730
4731 /*
4732 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4733 * 100ms, but may silently discard requests while the FLR is in
4734 * progress. Wait 100ms before trying to access the device.
4735 */
4736 msleep(100);
4737
4738 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4739 }
4740 EXPORT_SYMBOL_GPL(pcie_flr);
4741
4742 /**
4743 * pcie_reset_flr - initiate a PCIe function level reset
4744 * @dev: device to reset
4745 * @probe: if true, return 0 if device can be reset this way
4746 *
4747 * Initiate a function level reset on @dev.
4748 */
4749 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4750 {
4751 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4752 return -ENOTTY;
4753
4754 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4755 return -ENOTTY;
4756
4757 if (probe)
4758 return 0;
4759
4760 return pcie_flr(dev);
4761 }
4762 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4763
4764 static int pci_af_flr(struct pci_dev *dev, bool probe)
4765 {
4766 int pos;
4767 u8 cap;
4768
4769 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4770 if (!pos)
4771 return -ENOTTY;
4772
4773 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4774 return -ENOTTY;
4775
4776 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4777 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4778 return -ENOTTY;
4779
4780 if (probe)
4781 return 0;
4782
4783 /*
4784 * Wait for Transaction Pending bit to clear. A word-aligned test
4785 * is used, so we use the control offset rather than status and shift
4786 * the test bit to match.
4787 */
4788 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4789 PCI_AF_STATUS_TP << 8))
4790 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4791
4792 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4793
4794 if (dev->imm_ready)
4795 return 0;
4796
4797 /*
4798 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4799 * updated 27 July 2006; a device must complete an FLR within
4800 * 100ms, but may silently discard requests while the FLR is in
4801 * progress. Wait 100ms before trying to access the device.
4802 */
4803 msleep(100);
4804
4805 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4806 }
4807
4808 /**
4809 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4810 * @dev: Device to reset.
4811 * @probe: if true, return 0 if the device can be reset this way.
4812 *
4813 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4814 * unset, it will be reinitialized internally when going from PCI_D3hot to
4815 * PCI_D0. If that's the case and the device is not in a low-power state
4816 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4817 *
4818 * NOTE: This causes the caller to sleep for twice the device power transition
4819 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4820 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4821 * Moreover, only devices in D0 can be reset by this function.
4822 */
4823 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4824 {
4825 u16 csr;
4826
4827 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4828 return -ENOTTY;
4829
4830 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4831 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4832 return -ENOTTY;
4833
4834 if (probe)
4835 return 0;
4836
4837 if (dev->current_state != PCI_D0)
4838 return -EINVAL;
4839
4840 csr &= ~PCI_PM_CTRL_STATE_MASK;
4841 csr |= PCI_D3hot;
4842 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4843 pci_dev_d3_sleep(dev);
4844
4845 csr &= ~PCI_PM_CTRL_STATE_MASK;
4846 csr |= PCI_D0;
4847 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4848 pci_dev_d3_sleep(dev);
4849
4850 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4851 }
4852
4853 /**
4854 * pcie_wait_for_link_delay - Wait until link is active or inactive
4855 * @pdev: Bridge device
4856 * @active: waiting for active or inactive?
4857 * @delay: Delay to wait after link has become active (in ms)
4858 *
4859 * Use this to wait till link becomes active or inactive.
4860 */
4861 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4862 int delay)
4863 {
4864 int timeout = 1000;
4865 bool ret;
4866 u16 lnk_status;
4867
4868 /*
4869 * Some controllers might not implement link active reporting. In this
4870 * case, we wait for 1000 ms + any delay requested by the caller.
4871 */
4872 if (!pdev->link_active_reporting) {
4873 msleep(timeout + delay);
4874 return true;
4875 }
4876
4877 /*
4878 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4879 * after which we should expect an link active if the reset was
4880 * successful. If so, software must wait a minimum 100ms before sending
4881 * configuration requests to devices downstream this port.
4882 *
4883 * If the link fails to activate, either the device was physically
4884 * removed or the link is permanently failed.
4885 */
4886 if (active)
4887 msleep(20);
4888 for (;;) {
4889 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4890 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4891 if (ret == active)
4892 break;
4893 if (timeout <= 0)
4894 break;
4895 msleep(10);
4896 timeout -= 10;
4897 }
4898 if (active && ret)
4899 msleep(delay);
4900
4901 return ret == active;
4902 }
4903
4904 /**
4905 * pcie_wait_for_link - Wait until link is active or inactive
4906 * @pdev: Bridge device
4907 * @active: waiting for active or inactive?
4908 *
4909 * Use this to wait till link becomes active or inactive.
4910 */
4911 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4912 {
4913 return pcie_wait_for_link_delay(pdev, active, 100);
4914 }
4915
4916 /*
4917 * Find maximum D3cold delay required by all the devices on the bus. The
4918 * spec says 100 ms, but firmware can lower it and we allow drivers to
4919 * increase it as well.
4920 *
4921 * Called with @pci_bus_sem locked for reading.
4922 */
4923 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4924 {
4925 const struct pci_dev *pdev;
4926 int min_delay = 100;
4927 int max_delay = 0;
4928
4929 list_for_each_entry(pdev, &bus->devices, bus_list) {
4930 if (pdev->d3cold_delay < min_delay)
4931 min_delay = pdev->d3cold_delay;
4932 if (pdev->d3cold_delay > max_delay)
4933 max_delay = pdev->d3cold_delay;
4934 }
4935
4936 return max(min_delay, max_delay);
4937 }
4938
4939 /**
4940 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4941 * @dev: PCI bridge
4942 *
4943 * Handle necessary delays before access to the devices on the secondary
4944 * side of the bridge are permitted after D3cold to D0 transition.
4945 *
4946 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4947 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4948 * 4.3.2.
4949 */
4950 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4951 {
4952 struct pci_dev *child;
4953 int delay;
4954
4955 if (pci_dev_is_disconnected(dev))
4956 return;
4957
4958 if (!pci_is_bridge(dev) || !dev->bridge_d3)
4959 return;
4960
4961 down_read(&pci_bus_sem);
4962
4963 /*
4964 * We only deal with devices that are present currently on the bus.
4965 * For any hot-added devices the access delay is handled in pciehp
4966 * board_added(). In case of ACPI hotplug the firmware is expected
4967 * to configure the devices before OS is notified.
4968 */
4969 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4970 up_read(&pci_bus_sem);
4971 return;
4972 }
4973
4974 /* Take d3cold_delay requirements into account */
4975 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4976 if (!delay) {
4977 up_read(&pci_bus_sem);
4978 return;
4979 }
4980
4981 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4982 bus_list);
4983 up_read(&pci_bus_sem);
4984
4985 /*
4986 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4987 * accessing the device after reset (that is 1000 ms + 100 ms). In
4988 * practice this should not be needed because we don't do power
4989 * management for them (see pci_bridge_d3_possible()).
4990 */
4991 if (!pci_is_pcie(dev)) {
4992 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4993 msleep(1000 + delay);
4994 return;
4995 }
4996
4997 /*
4998 * For PCIe downstream and root ports that do not support speeds
4999 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5000 * speeds (gen3) we need to wait first for the data link layer to
5001 * become active.
5002 *
5003 * However, 100 ms is the minimum and the PCIe spec says the
5004 * software must allow at least 1s before it can determine that the
5005 * device that did not respond is a broken device. There is
5006 * evidence that 100 ms is not always enough, for example certain
5007 * Titan Ridge xHCI controller does not always respond to
5008 * configuration requests if we only wait for 100 ms (see
5009 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
5010 *
5011 * Therefore we wait for 100 ms and check for the device presence.
5012 * If it is still not present give it an additional 100 ms.
5013 */
5014 if (!pcie_downstream_port(dev))
5015 return;
5016
5017 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5018 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5019 msleep(delay);
5020 } else {
5021 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5022 delay);
5023 if (!pcie_wait_for_link_delay(dev, true, delay)) {
5024 /* Did not train, no need to wait any further */
5025 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5026 return;
5027 }
5028 }
5029
5030 if (!pci_device_is_present(child)) {
5031 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
5032 msleep(delay);
5033 }
5034 }
5035
5036 void pci_reset_secondary_bus(struct pci_dev *dev)
5037 {
5038 u16 ctrl;
5039
5040 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5041 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5042 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5043
5044 /*
5045 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
5046 * this to 2ms to ensure that we meet the minimum requirement.
5047 */
5048 msleep(2);
5049
5050 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5051 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5052
5053 /*
5054 * Trhfa for conventional PCI is 2^25 clock cycles.
5055 * Assuming a minimum 33MHz clock this results in a 1s
5056 * delay before we can consider subordinate devices to
5057 * be re-initialized. PCIe has some ways to shorten this,
5058 * but we don't make use of them yet.
5059 */
5060 ssleep(1);
5061 }
5062
5063 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5064 {
5065 pci_reset_secondary_bus(dev);
5066 }
5067
5068 /**
5069 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5070 * @dev: Bridge device
5071 *
5072 * Use the bridge control register to assert reset on the secondary bus.
5073 * Devices on the secondary bus are left in power-on state.
5074 */
5075 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5076 {
5077 pcibios_reset_secondary_bus(dev);
5078
5079 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
5080 }
5081 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5082
5083 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5084 {
5085 struct pci_dev *pdev;
5086
5087 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5088 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5089 return -ENOTTY;
5090
5091 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5092 if (pdev != dev)
5093 return -ENOTTY;
5094
5095 if (probe)
5096 return 0;
5097
5098 return pci_bridge_secondary_bus_reset(dev->bus->self);
5099 }
5100
5101 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5102 {
5103 int rc = -ENOTTY;
5104
5105 if (!hotplug || !try_module_get(hotplug->owner))
5106 return rc;
5107
5108 if (hotplug->ops->reset_slot)
5109 rc = hotplug->ops->reset_slot(hotplug, probe);
5110
5111 module_put(hotplug->owner);
5112
5113 return rc;
5114 }
5115
5116 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5117 {
5118 if (dev->multifunction || dev->subordinate || !dev->slot ||
5119 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5120 return -ENOTTY;
5121
5122 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5123 }
5124
5125 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5126 {
5127 int rc;
5128
5129 rc = pci_dev_reset_slot_function(dev, probe);
5130 if (rc != -ENOTTY)
5131 return rc;
5132 return pci_parent_bus_reset(dev, probe);
5133 }
5134
5135 void pci_dev_lock(struct pci_dev *dev)
5136 {
5137 /* block PM suspend, driver probe, etc. */
5138 device_lock(&dev->dev);
5139 pci_cfg_access_lock(dev);
5140 }
5141 EXPORT_SYMBOL_GPL(pci_dev_lock);
5142
5143 /* Return 1 on successful lock, 0 on contention */
5144 int pci_dev_trylock(struct pci_dev *dev)
5145 {
5146 if (device_trylock(&dev->dev)) {
5147 if (pci_cfg_access_trylock(dev))
5148 return 1;
5149 device_unlock(&dev->dev);
5150 }
5151
5152 return 0;
5153 }
5154 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5155
5156 void pci_dev_unlock(struct pci_dev *dev)
5157 {
5158 pci_cfg_access_unlock(dev);
5159 device_unlock(&dev->dev);
5160 }
5161 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5162
5163 static void pci_dev_save_and_disable(struct pci_dev *dev)
5164 {
5165 const struct pci_error_handlers *err_handler =
5166 dev->driver ? dev->driver->err_handler : NULL;
5167
5168 /*
5169 * dev->driver->err_handler->reset_prepare() is protected against
5170 * races with ->remove() by the device lock, which must be held by
5171 * the caller.
5172 */
5173 if (err_handler && err_handler->reset_prepare)
5174 err_handler->reset_prepare(dev);
5175
5176 /*
5177 * Wake-up device prior to save. PM registers default to D0 after
5178 * reset and a simple register restore doesn't reliably return
5179 * to a non-D0 state anyway.
5180 */
5181 pci_set_power_state(dev, PCI_D0);
5182
5183 pci_save_state(dev);
5184 /*
5185 * Disable the device by clearing the Command register, except for
5186 * INTx-disable which is set. This not only disables MMIO and I/O port
5187 * BARs, but also prevents the device from being Bus Master, preventing
5188 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5189 * compliant devices, INTx-disable prevents legacy interrupts.
5190 */
5191 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5192 }
5193
5194 static void pci_dev_restore(struct pci_dev *dev)
5195 {
5196 const struct pci_error_handlers *err_handler =
5197 dev->driver ? dev->driver->err_handler : NULL;
5198
5199 pci_restore_state(dev);
5200
5201 /*
5202 * dev->driver->err_handler->reset_done() is protected against
5203 * races with ->remove() by the device lock, which must be held by
5204 * the caller.
5205 */
5206 if (err_handler && err_handler->reset_done)
5207 err_handler->reset_done(dev);
5208 }
5209
5210 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5211 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5212 { },
5213 { pci_dev_specific_reset, .name = "device_specific" },
5214 { pci_dev_acpi_reset, .name = "acpi" },
5215 { pcie_reset_flr, .name = "flr" },
5216 { pci_af_flr, .name = "af_flr" },
5217 { pci_pm_reset, .name = "pm" },
5218 { pci_reset_bus_function, .name = "bus" },
5219 };
5220
5221 static ssize_t reset_method_show(struct device *dev,
5222 struct device_attribute *attr, char *buf)
5223 {
5224 struct pci_dev *pdev = to_pci_dev(dev);
5225 ssize_t len = 0;
5226 int i, m;
5227
5228 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5229 m = pdev->reset_methods[i];
5230 if (!m)
5231 break;
5232
5233 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5234 pci_reset_fn_methods[m].name);
5235 }
5236
5237 if (len)
5238 len += sysfs_emit_at(buf, len, "\n");
5239
5240 return len;
5241 }
5242
5243 static int reset_method_lookup(const char *name)
5244 {
5245 int m;
5246
5247 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5248 if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5249 return m;
5250 }
5251
5252 return 0; /* not found */
5253 }
5254
5255 static ssize_t reset_method_store(struct device *dev,
5256 struct device_attribute *attr,
5257 const char *buf, size_t count)
5258 {
5259 struct pci_dev *pdev = to_pci_dev(dev);
5260 char *options, *name;
5261 int m, n;
5262 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5263
5264 if (sysfs_streq(buf, "")) {
5265 pdev->reset_methods[0] = 0;
5266 pci_warn(pdev, "All device reset methods disabled by user");
5267 return count;
5268 }
5269
5270 if (sysfs_streq(buf, "default")) {
5271 pci_init_reset_methods(pdev);
5272 return count;
5273 }
5274
5275 options = kstrndup(buf, count, GFP_KERNEL);
5276 if (!options)
5277 return -ENOMEM;
5278
5279 n = 0;
5280 while ((name = strsep(&options, " ")) != NULL) {
5281 if (sysfs_streq(name, ""))
5282 continue;
5283
5284 name = strim(name);
5285
5286 m = reset_method_lookup(name);
5287 if (!m) {
5288 pci_err(pdev, "Invalid reset method '%s'", name);
5289 goto error;
5290 }
5291
5292 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5293 pci_err(pdev, "Unsupported reset method '%s'", name);
5294 goto error;
5295 }
5296
5297 if (n == PCI_NUM_RESET_METHODS - 1) {
5298 pci_err(pdev, "Too many reset methods\n");
5299 goto error;
5300 }
5301
5302 reset_methods[n++] = m;
5303 }
5304
5305 reset_methods[n] = 0;
5306
5307 /* Warn if dev-specific supported but not highest priority */
5308 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5309 reset_methods[0] != 1)
5310 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5311 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5312 kfree(options);
5313 return count;
5314
5315 error:
5316 /* Leave previous methods unchanged */
5317 kfree(options);
5318 return -EINVAL;
5319 }
5320 static DEVICE_ATTR_RW(reset_method);
5321
5322 static struct attribute *pci_dev_reset_method_attrs[] = {
5323 &dev_attr_reset_method.attr,
5324 NULL,
5325 };
5326
5327 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5328 struct attribute *a, int n)
5329 {
5330 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5331
5332 if (!pci_reset_supported(pdev))
5333 return 0;
5334
5335 return a->mode;
5336 }
5337
5338 const struct attribute_group pci_dev_reset_method_attr_group = {
5339 .attrs = pci_dev_reset_method_attrs,
5340 .is_visible = pci_dev_reset_method_attr_is_visible,
5341 };
5342
5343 /**
5344 * __pci_reset_function_locked - reset a PCI device function while holding
5345 * the @dev mutex lock.
5346 * @dev: PCI device to reset
5347 *
5348 * Some devices allow an individual function to be reset without affecting
5349 * other functions in the same device. The PCI device must be responsive
5350 * to PCI config space in order to use this function.
5351 *
5352 * The device function is presumed to be unused and the caller is holding
5353 * the device mutex lock when this function is called.
5354 *
5355 * Resetting the device will make the contents of PCI configuration space
5356 * random, so any caller of this must be prepared to reinitialise the
5357 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5358 * etc.
5359 *
5360 * Returns 0 if the device function was successfully reset or negative if the
5361 * device doesn't support resetting a single function.
5362 */
5363 int __pci_reset_function_locked(struct pci_dev *dev)
5364 {
5365 int i, m, rc = -ENOTTY;
5366
5367 might_sleep();
5368
5369 /*
5370 * A reset method returns -ENOTTY if it doesn't support this device and
5371 * we should try the next method.
5372 *
5373 * If it returns 0 (success), we're finished. If it returns any other
5374 * error, we're also finished: this indicates that further reset
5375 * mechanisms might be broken on the device.
5376 */
5377 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5378 m = dev->reset_methods[i];
5379 if (!m)
5380 return -ENOTTY;
5381
5382 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5383 if (!rc)
5384 return 0;
5385 if (rc != -ENOTTY)
5386 return rc;
5387 }
5388
5389 return -ENOTTY;
5390 }
5391 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5392
5393 /**
5394 * pci_init_reset_methods - check whether device can be safely reset
5395 * and store supported reset mechanisms.
5396 * @dev: PCI device to check for reset mechanisms
5397 *
5398 * Some devices allow an individual function to be reset without affecting
5399 * other functions in the same device. The PCI device must be in D0-D3hot
5400 * state.
5401 *
5402 * Stores reset mechanisms supported by device in reset_methods byte array
5403 * which is a member of struct pci_dev.
5404 */
5405 void pci_init_reset_methods(struct pci_dev *dev)
5406 {
5407 int m, i, rc;
5408
5409 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5410
5411 might_sleep();
5412
5413 i = 0;
5414 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5415 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5416 if (!rc)
5417 dev->reset_methods[i++] = m;
5418 else if (rc != -ENOTTY)
5419 break;
5420 }
5421
5422 dev->reset_methods[i] = 0;
5423 }
5424
5425 /**
5426 * pci_reset_function - quiesce and reset a PCI device function
5427 * @dev: PCI device to reset
5428 *
5429 * Some devices allow an individual function to be reset without affecting
5430 * other functions in the same device. The PCI device must be responsive
5431 * to PCI config space in order to use this function.
5432 *
5433 * This function does not just reset the PCI portion of a device, but
5434 * clears all the state associated with the device. This function differs
5435 * from __pci_reset_function_locked() in that it saves and restores device state
5436 * over the reset and takes the PCI device lock.
5437 *
5438 * Returns 0 if the device function was successfully reset or negative if the
5439 * device doesn't support resetting a single function.
5440 */
5441 int pci_reset_function(struct pci_dev *dev)
5442 {
5443 int rc;
5444
5445 if (!pci_reset_supported(dev))
5446 return -ENOTTY;
5447
5448 pci_dev_lock(dev);
5449 pci_dev_save_and_disable(dev);
5450
5451 rc = __pci_reset_function_locked(dev);
5452
5453 pci_dev_restore(dev);
5454 pci_dev_unlock(dev);
5455
5456 return rc;
5457 }
5458 EXPORT_SYMBOL_GPL(pci_reset_function);
5459
5460 /**
5461 * pci_reset_function_locked - quiesce and reset a PCI device function
5462 * @dev: PCI device to reset
5463 *
5464 * Some devices allow an individual function to be reset without affecting
5465 * other functions in the same device. The PCI device must be responsive
5466 * to PCI config space in order to use this function.
5467 *
5468 * This function does not just reset the PCI portion of a device, but
5469 * clears all the state associated with the device. This function differs
5470 * from __pci_reset_function_locked() in that it saves and restores device state
5471 * over the reset. It also differs from pci_reset_function() in that it
5472 * requires the PCI device lock to be held.
5473 *
5474 * Returns 0 if the device function was successfully reset or negative if the
5475 * device doesn't support resetting a single function.
5476 */
5477 int pci_reset_function_locked(struct pci_dev *dev)
5478 {
5479 int rc;
5480
5481 if (!pci_reset_supported(dev))
5482 return -ENOTTY;
5483
5484 pci_dev_save_and_disable(dev);
5485
5486 rc = __pci_reset_function_locked(dev);
5487
5488 pci_dev_restore(dev);
5489
5490 return rc;
5491 }
5492 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5493
5494 /**
5495 * pci_try_reset_function - quiesce and reset a PCI device function
5496 * @dev: PCI device to reset
5497 *
5498 * Same as above, except return -EAGAIN if unable to lock device.
5499 */
5500 int pci_try_reset_function(struct pci_dev *dev)
5501 {
5502 int rc;
5503
5504 if (!pci_reset_supported(dev))
5505 return -ENOTTY;
5506
5507 if (!pci_dev_trylock(dev))
5508 return -EAGAIN;
5509
5510 pci_dev_save_and_disable(dev);
5511 rc = __pci_reset_function_locked(dev);
5512 pci_dev_restore(dev);
5513 pci_dev_unlock(dev);
5514
5515 return rc;
5516 }
5517 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5518
5519 /* Do any devices on or below this bus prevent a bus reset? */
5520 static bool pci_bus_resetable(struct pci_bus *bus)
5521 {
5522 struct pci_dev *dev;
5523
5524
5525 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5526 return false;
5527
5528 list_for_each_entry(dev, &bus->devices, bus_list) {
5529 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5530 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5531 return false;
5532 }
5533
5534 return true;
5535 }
5536
5537 /* Lock devices from the top of the tree down */
5538 static void pci_bus_lock(struct pci_bus *bus)
5539 {
5540 struct pci_dev *dev;
5541
5542 list_for_each_entry(dev, &bus->devices, bus_list) {
5543 pci_dev_lock(dev);
5544 if (dev->subordinate)
5545 pci_bus_lock(dev->subordinate);
5546 }
5547 }
5548
5549 /* Unlock devices from the bottom of the tree up */
5550 static void pci_bus_unlock(struct pci_bus *bus)
5551 {
5552 struct pci_dev *dev;
5553
5554 list_for_each_entry(dev, &bus->devices, bus_list) {
5555 if (dev->subordinate)
5556 pci_bus_unlock(dev->subordinate);
5557 pci_dev_unlock(dev);
5558 }
5559 }
5560
5561 /* Return 1 on successful lock, 0 on contention */
5562 static int pci_bus_trylock(struct pci_bus *bus)
5563 {
5564 struct pci_dev *dev;
5565
5566 list_for_each_entry(dev, &bus->devices, bus_list) {
5567 if (!pci_dev_trylock(dev))
5568 goto unlock;
5569 if (dev->subordinate) {
5570 if (!pci_bus_trylock(dev->subordinate)) {
5571 pci_dev_unlock(dev);
5572 goto unlock;
5573 }
5574 }
5575 }
5576 return 1;
5577
5578 unlock:
5579 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5580 if (dev->subordinate)
5581 pci_bus_unlock(dev->subordinate);
5582 pci_dev_unlock(dev);
5583 }
5584 return 0;
5585 }
5586
5587 /* Do any devices on or below this slot prevent a bus reset? */
5588 static bool pci_slot_resetable(struct pci_slot *slot)
5589 {
5590 struct pci_dev *dev;
5591
5592 if (slot->bus->self &&
5593 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5594 return false;
5595
5596 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5597 if (!dev->slot || dev->slot != slot)
5598 continue;
5599 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5600 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5601 return false;
5602 }
5603
5604 return true;
5605 }
5606
5607 /* Lock devices from the top of the tree down */
5608 static void pci_slot_lock(struct pci_slot *slot)
5609 {
5610 struct pci_dev *dev;
5611
5612 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5613 if (!dev->slot || dev->slot != slot)
5614 continue;
5615 pci_dev_lock(dev);
5616 if (dev->subordinate)
5617 pci_bus_lock(dev->subordinate);
5618 }
5619 }
5620
5621 /* Unlock devices from the bottom of the tree up */
5622 static void pci_slot_unlock(struct pci_slot *slot)
5623 {
5624 struct pci_dev *dev;
5625
5626 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5627 if (!dev->slot || dev->slot != slot)
5628 continue;
5629 if (dev->subordinate)
5630 pci_bus_unlock(dev->subordinate);
5631 pci_dev_unlock(dev);
5632 }
5633 }
5634
5635 /* Return 1 on successful lock, 0 on contention */
5636 static int pci_slot_trylock(struct pci_slot *slot)
5637 {
5638 struct pci_dev *dev;
5639
5640 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5641 if (!dev->slot || dev->slot != slot)
5642 continue;
5643 if (!pci_dev_trylock(dev))
5644 goto unlock;
5645 if (dev->subordinate) {
5646 if (!pci_bus_trylock(dev->subordinate)) {
5647 pci_dev_unlock(dev);
5648 goto unlock;
5649 }
5650 }
5651 }
5652 return 1;
5653
5654 unlock:
5655 list_for_each_entry_continue_reverse(dev,
5656 &slot->bus->devices, bus_list) {
5657 if (!dev->slot || dev->slot != slot)
5658 continue;
5659 if (dev->subordinate)
5660 pci_bus_unlock(dev->subordinate);
5661 pci_dev_unlock(dev);
5662 }
5663 return 0;
5664 }
5665
5666 /*
5667 * Save and disable devices from the top of the tree down while holding
5668 * the @dev mutex lock for the entire tree.
5669 */
5670 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5671 {
5672 struct pci_dev *dev;
5673
5674 list_for_each_entry(dev, &bus->devices, bus_list) {
5675 pci_dev_save_and_disable(dev);
5676 if (dev->subordinate)
5677 pci_bus_save_and_disable_locked(dev->subordinate);
5678 }
5679 }
5680
5681 /*
5682 * Restore devices from top of the tree down while holding @dev mutex lock
5683 * for the entire tree. Parent bridges need to be restored before we can
5684 * get to subordinate devices.
5685 */
5686 static void pci_bus_restore_locked(struct pci_bus *bus)
5687 {
5688 struct pci_dev *dev;
5689
5690 list_for_each_entry(dev, &bus->devices, bus_list) {
5691 pci_dev_restore(dev);
5692 if (dev->subordinate)
5693 pci_bus_restore_locked(dev->subordinate);
5694 }
5695 }
5696
5697 /*
5698 * Save and disable devices from the top of the tree down while holding
5699 * the @dev mutex lock for the entire tree.
5700 */
5701 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5702 {
5703 struct pci_dev *dev;
5704
5705 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5706 if (!dev->slot || dev->slot != slot)
5707 continue;
5708 pci_dev_save_and_disable(dev);
5709 if (dev->subordinate)
5710 pci_bus_save_and_disable_locked(dev->subordinate);
5711 }
5712 }
5713
5714 /*
5715 * Restore devices from top of the tree down while holding @dev mutex lock
5716 * for the entire tree. Parent bridges need to be restored before we can
5717 * get to subordinate devices.
5718 */
5719 static void pci_slot_restore_locked(struct pci_slot *slot)
5720 {
5721 struct pci_dev *dev;
5722
5723 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5724 if (!dev->slot || dev->slot != slot)
5725 continue;
5726 pci_dev_restore(dev);
5727 if (dev->subordinate)
5728 pci_bus_restore_locked(dev->subordinate);
5729 }
5730 }
5731
5732 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5733 {
5734 int rc;
5735
5736 if (!slot || !pci_slot_resetable(slot))
5737 return -ENOTTY;
5738
5739 if (!probe)
5740 pci_slot_lock(slot);
5741
5742 might_sleep();
5743
5744 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5745
5746 if (!probe)
5747 pci_slot_unlock(slot);
5748
5749 return rc;
5750 }
5751
5752 /**
5753 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5754 * @slot: PCI slot to probe
5755 *
5756 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5757 */
5758 int pci_probe_reset_slot(struct pci_slot *slot)
5759 {
5760 return pci_slot_reset(slot, PCI_RESET_PROBE);
5761 }
5762 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5763
5764 /**
5765 * __pci_reset_slot - Try to reset a PCI slot
5766 * @slot: PCI slot to reset
5767 *
5768 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5769 * independent of other slots. For instance, some slots may support slot power
5770 * control. In the case of a 1:1 bus to slot architecture, this function may
5771 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5772 * Generally a slot reset should be attempted before a bus reset. All of the
5773 * function of the slot and any subordinate buses behind the slot are reset
5774 * through this function. PCI config space of all devices in the slot and
5775 * behind the slot is saved before and restored after reset.
5776 *
5777 * Same as above except return -EAGAIN if the slot cannot be locked
5778 */
5779 static int __pci_reset_slot(struct pci_slot *slot)
5780 {
5781 int rc;
5782
5783 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5784 if (rc)
5785 return rc;
5786
5787 if (pci_slot_trylock(slot)) {
5788 pci_slot_save_and_disable_locked(slot);
5789 might_sleep();
5790 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5791 pci_slot_restore_locked(slot);
5792 pci_slot_unlock(slot);
5793 } else
5794 rc = -EAGAIN;
5795
5796 return rc;
5797 }
5798
5799 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5800 {
5801 int ret;
5802
5803 if (!bus->self || !pci_bus_resetable(bus))
5804 return -ENOTTY;
5805
5806 if (probe)
5807 return 0;
5808
5809 pci_bus_lock(bus);
5810
5811 might_sleep();
5812
5813 ret = pci_bridge_secondary_bus_reset(bus->self);
5814
5815 pci_bus_unlock(bus);
5816
5817 return ret;
5818 }
5819
5820 /**
5821 * pci_bus_error_reset - reset the bridge's subordinate bus
5822 * @bridge: The parent device that connects to the bus to reset
5823 *
5824 * This function will first try to reset the slots on this bus if the method is
5825 * available. If slot reset fails or is not available, this will fall back to a
5826 * secondary bus reset.
5827 */
5828 int pci_bus_error_reset(struct pci_dev *bridge)
5829 {
5830 struct pci_bus *bus = bridge->subordinate;
5831 struct pci_slot *slot;
5832
5833 if (!bus)
5834 return -ENOTTY;
5835
5836 mutex_lock(&pci_slot_mutex);
5837 if (list_empty(&bus->slots))
5838 goto bus_reset;
5839
5840 list_for_each_entry(slot, &bus->slots, list)
5841 if (pci_probe_reset_slot(slot))
5842 goto bus_reset;
5843
5844 list_for_each_entry(slot, &bus->slots, list)
5845 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5846 goto bus_reset;
5847
5848 mutex_unlock(&pci_slot_mutex);
5849 return 0;
5850 bus_reset:
5851 mutex_unlock(&pci_slot_mutex);
5852 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5853 }
5854
5855 /**
5856 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5857 * @bus: PCI bus to probe
5858 *
5859 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5860 */
5861 int pci_probe_reset_bus(struct pci_bus *bus)
5862 {
5863 return pci_bus_reset(bus, PCI_RESET_PROBE);
5864 }
5865 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5866
5867 /**
5868 * __pci_reset_bus - Try to reset a PCI bus
5869 * @bus: top level PCI bus to reset
5870 *
5871 * Same as above except return -EAGAIN if the bus cannot be locked
5872 */
5873 static int __pci_reset_bus(struct pci_bus *bus)
5874 {
5875 int rc;
5876
5877 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5878 if (rc)
5879 return rc;
5880
5881 if (pci_bus_trylock(bus)) {
5882 pci_bus_save_and_disable_locked(bus);
5883 might_sleep();
5884 rc = pci_bridge_secondary_bus_reset(bus->self);
5885 pci_bus_restore_locked(bus);
5886 pci_bus_unlock(bus);
5887 } else
5888 rc = -EAGAIN;
5889
5890 return rc;
5891 }
5892
5893 /**
5894 * pci_reset_bus - Try to reset a PCI bus
5895 * @pdev: top level PCI device to reset via slot/bus
5896 *
5897 * Same as above except return -EAGAIN if the bus cannot be locked
5898 */
5899 int pci_reset_bus(struct pci_dev *pdev)
5900 {
5901 return (!pci_probe_reset_slot(pdev->slot)) ?
5902 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5903 }
5904 EXPORT_SYMBOL_GPL(pci_reset_bus);
5905
5906 /**
5907 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5908 * @dev: PCI device to query
5909 *
5910 * Returns mmrbc: maximum designed memory read count in bytes or
5911 * appropriate error value.
5912 */
5913 int pcix_get_max_mmrbc(struct pci_dev *dev)
5914 {
5915 int cap;
5916 u32 stat;
5917
5918 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5919 if (!cap)
5920 return -EINVAL;
5921
5922 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5923 return -EINVAL;
5924
5925 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5926 }
5927 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5928
5929 /**
5930 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5931 * @dev: PCI device to query
5932 *
5933 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5934 * value.
5935 */
5936 int pcix_get_mmrbc(struct pci_dev *dev)
5937 {
5938 int cap;
5939 u16 cmd;
5940
5941 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5942 if (!cap)
5943 return -EINVAL;
5944
5945 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5946 return -EINVAL;
5947
5948 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5949 }
5950 EXPORT_SYMBOL(pcix_get_mmrbc);
5951
5952 /**
5953 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5954 * @dev: PCI device to query
5955 * @mmrbc: maximum memory read count in bytes
5956 * valid values are 512, 1024, 2048, 4096
5957 *
5958 * If possible sets maximum memory read byte count, some bridges have errata
5959 * that prevent this.
5960 */
5961 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5962 {
5963 int cap;
5964 u32 stat, v, o;
5965 u16 cmd;
5966
5967 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5968 return -EINVAL;
5969
5970 v = ffs(mmrbc) - 10;
5971
5972 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5973 if (!cap)
5974 return -EINVAL;
5975
5976 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5977 return -EINVAL;
5978
5979 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5980 return -E2BIG;
5981
5982 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5983 return -EINVAL;
5984
5985 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5986 if (o != v) {
5987 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5988 return -EIO;
5989
5990 cmd &= ~PCI_X_CMD_MAX_READ;
5991 cmd |= v << 2;
5992 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5993 return -EIO;
5994 }
5995 return 0;
5996 }
5997 EXPORT_SYMBOL(pcix_set_mmrbc);
5998
5999 /**
6000 * pcie_get_readrq - get PCI Express read request size
6001 * @dev: PCI device to query
6002 *
6003 * Returns maximum memory read request in bytes or appropriate error value.
6004 */
6005 int pcie_get_readrq(struct pci_dev *dev)
6006 {
6007 u16 ctl;
6008
6009 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6010
6011 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6012 }
6013 EXPORT_SYMBOL(pcie_get_readrq);
6014
6015 /**
6016 * pcie_set_readrq - set PCI Express maximum memory read request
6017 * @dev: PCI device to query
6018 * @rq: maximum memory read count in bytes
6019 * valid values are 128, 256, 512, 1024, 2048, 4096
6020 *
6021 * If possible sets maximum memory read request in bytes
6022 */
6023 int pcie_set_readrq(struct pci_dev *dev, int rq)
6024 {
6025 u16 v;
6026 int ret;
6027
6028 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6029 return -EINVAL;
6030
6031 /*
6032 * If using the "performance" PCIe config, we clamp the read rq
6033 * size to the max packet size to keep the host bridge from
6034 * generating requests larger than we can cope with.
6035 */
6036 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6037 int mps = pcie_get_mps(dev);
6038
6039 if (mps < rq)
6040 rq = mps;
6041 }
6042
6043 v = (ffs(rq) - 8) << 12;
6044
6045 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6046 PCI_EXP_DEVCTL_READRQ, v);
6047
6048 return pcibios_err_to_errno(ret);
6049 }
6050 EXPORT_SYMBOL(pcie_set_readrq);
6051
6052 /**
6053 * pcie_get_mps - get PCI Express maximum payload size
6054 * @dev: PCI device to query
6055 *
6056 * Returns maximum payload size in bytes
6057 */
6058 int pcie_get_mps(struct pci_dev *dev)
6059 {
6060 u16 ctl;
6061
6062 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6063
6064 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6065 }
6066 EXPORT_SYMBOL(pcie_get_mps);
6067
6068 /**
6069 * pcie_set_mps - set PCI Express maximum payload size
6070 * @dev: PCI device to query
6071 * @mps: maximum payload size in bytes
6072 * valid values are 128, 256, 512, 1024, 2048, 4096
6073 *
6074 * If possible sets maximum payload size
6075 */
6076 int pcie_set_mps(struct pci_dev *dev, int mps)
6077 {
6078 u16 v;
6079 int ret;
6080
6081 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6082 return -EINVAL;
6083
6084 v = ffs(mps) - 8;
6085 if (v > dev->pcie_mpss)
6086 return -EINVAL;
6087 v <<= 5;
6088
6089 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6090 PCI_EXP_DEVCTL_PAYLOAD, v);
6091
6092 return pcibios_err_to_errno(ret);
6093 }
6094 EXPORT_SYMBOL(pcie_set_mps);
6095
6096 /**
6097 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6098 * device and its bandwidth limitation
6099 * @dev: PCI device to query
6100 * @limiting_dev: storage for device causing the bandwidth limitation
6101 * @speed: storage for speed of limiting device
6102 * @width: storage for width of limiting device
6103 *
6104 * Walk up the PCI device chain and find the point where the minimum
6105 * bandwidth is available. Return the bandwidth available there and (if
6106 * limiting_dev, speed, and width pointers are supplied) information about
6107 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6108 * raw bandwidth.
6109 */
6110 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6111 enum pci_bus_speed *speed,
6112 enum pcie_link_width *width)
6113 {
6114 u16 lnksta;
6115 enum pci_bus_speed next_speed;
6116 enum pcie_link_width next_width;
6117 u32 bw, next_bw;
6118
6119 if (speed)
6120 *speed = PCI_SPEED_UNKNOWN;
6121 if (width)
6122 *width = PCIE_LNK_WIDTH_UNKNOWN;
6123
6124 bw = 0;
6125
6126 while (dev) {
6127 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6128
6129 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6130 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6131 PCI_EXP_LNKSTA_NLW_SHIFT;
6132
6133 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6134
6135 /* Check if current device limits the total bandwidth */
6136 if (!bw || next_bw <= bw) {
6137 bw = next_bw;
6138
6139 if (limiting_dev)
6140 *limiting_dev = dev;
6141 if (speed)
6142 *speed = next_speed;
6143 if (width)
6144 *width = next_width;
6145 }
6146
6147 dev = pci_upstream_bridge(dev);
6148 }
6149
6150 return bw;
6151 }
6152 EXPORT_SYMBOL(pcie_bandwidth_available);
6153
6154 /**
6155 * pcie_get_speed_cap - query for the PCI device's link speed capability
6156 * @dev: PCI device to query
6157 *
6158 * Query the PCI device speed capability. Return the maximum link speed
6159 * supported by the device.
6160 */
6161 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6162 {
6163 u32 lnkcap2, lnkcap;
6164
6165 /*
6166 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
6167 * implementation note there recommends using the Supported Link
6168 * Speeds Vector in Link Capabilities 2 when supported.
6169 *
6170 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6171 * should use the Supported Link Speeds field in Link Capabilities,
6172 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6173 */
6174 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6175
6176 /* PCIe r3.0-compliant */
6177 if (lnkcap2)
6178 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6179
6180 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6181 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6182 return PCIE_SPEED_5_0GT;
6183 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6184 return PCIE_SPEED_2_5GT;
6185
6186 return PCI_SPEED_UNKNOWN;
6187 }
6188 EXPORT_SYMBOL(pcie_get_speed_cap);
6189
6190 /**
6191 * pcie_get_width_cap - query for the PCI device's link width capability
6192 * @dev: PCI device to query
6193 *
6194 * Query the PCI device width capability. Return the maximum link width
6195 * supported by the device.
6196 */
6197 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6198 {
6199 u32 lnkcap;
6200
6201 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6202 if (lnkcap)
6203 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6204
6205 return PCIE_LNK_WIDTH_UNKNOWN;
6206 }
6207 EXPORT_SYMBOL(pcie_get_width_cap);
6208
6209 /**
6210 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6211 * @dev: PCI device
6212 * @speed: storage for link speed
6213 * @width: storage for link width
6214 *
6215 * Calculate a PCI device's link bandwidth by querying for its link speed
6216 * and width, multiplying them, and applying encoding overhead. The result
6217 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6218 */
6219 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6220 enum pcie_link_width *width)
6221 {
6222 *speed = pcie_get_speed_cap(dev);
6223 *width = pcie_get_width_cap(dev);
6224
6225 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6226 return 0;
6227
6228 return *width * PCIE_SPEED2MBS_ENC(*speed);
6229 }
6230
6231 /**
6232 * __pcie_print_link_status - Report the PCI device's link speed and width
6233 * @dev: PCI device to query
6234 * @verbose: Print info even when enough bandwidth is available
6235 *
6236 * If the available bandwidth at the device is less than the device is
6237 * capable of, report the device's maximum possible bandwidth and the
6238 * upstream link that limits its performance. If @verbose, always print
6239 * the available bandwidth, even if the device isn't constrained.
6240 */
6241 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6242 {
6243 enum pcie_link_width width, width_cap;
6244 enum pci_bus_speed speed, speed_cap;
6245 struct pci_dev *limiting_dev = NULL;
6246 u32 bw_avail, bw_cap;
6247
6248 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6249 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6250
6251 if (bw_avail >= bw_cap && verbose)
6252 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6253 bw_cap / 1000, bw_cap % 1000,
6254 pci_speed_string(speed_cap), width_cap);
6255 else if (bw_avail < bw_cap)
6256 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6257 bw_avail / 1000, bw_avail % 1000,
6258 pci_speed_string(speed), width,
6259 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6260 bw_cap / 1000, bw_cap % 1000,
6261 pci_speed_string(speed_cap), width_cap);
6262 }
6263
6264 /**
6265 * pcie_print_link_status - Report the PCI device's link speed and width
6266 * @dev: PCI device to query
6267 *
6268 * Report the available bandwidth at the device.
6269 */
6270 void pcie_print_link_status(struct pci_dev *dev)
6271 {
6272 __pcie_print_link_status(dev, true);
6273 }
6274 EXPORT_SYMBOL(pcie_print_link_status);
6275
6276 /**
6277 * pci_select_bars - Make BAR mask from the type of resource
6278 * @dev: the PCI device for which BAR mask is made
6279 * @flags: resource type mask to be selected
6280 *
6281 * This helper routine makes bar mask from the type of resource.
6282 */
6283 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6284 {
6285 int i, bars = 0;
6286 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6287 if (pci_resource_flags(dev, i) & flags)
6288 bars |= (1 << i);
6289 return bars;
6290 }
6291 EXPORT_SYMBOL(pci_select_bars);
6292
6293 /* Some architectures require additional programming to enable VGA */
6294 static arch_set_vga_state_t arch_set_vga_state;
6295
6296 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6297 {
6298 arch_set_vga_state = func; /* NULL disables */
6299 }
6300
6301 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6302 unsigned int command_bits, u32 flags)
6303 {
6304 if (arch_set_vga_state)
6305 return arch_set_vga_state(dev, decode, command_bits,
6306 flags);
6307 return 0;
6308 }
6309
6310 /**
6311 * pci_set_vga_state - set VGA decode state on device and parents if requested
6312 * @dev: the PCI device
6313 * @decode: true = enable decoding, false = disable decoding
6314 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6315 * @flags: traverse ancestors and change bridges
6316 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6317 */
6318 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6319 unsigned int command_bits, u32 flags)
6320 {
6321 struct pci_bus *bus;
6322 struct pci_dev *bridge;
6323 u16 cmd;
6324 int rc;
6325
6326 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6327
6328 /* ARCH specific VGA enables */
6329 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6330 if (rc)
6331 return rc;
6332
6333 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6334 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6335 if (decode)
6336 cmd |= command_bits;
6337 else
6338 cmd &= ~command_bits;
6339 pci_write_config_word(dev, PCI_COMMAND, cmd);
6340 }
6341
6342 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6343 return 0;
6344
6345 bus = dev->bus;
6346 while (bus) {
6347 bridge = bus->self;
6348 if (bridge) {
6349 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6350 &cmd);
6351 if (decode)
6352 cmd |= PCI_BRIDGE_CTL_VGA;
6353 else
6354 cmd &= ~PCI_BRIDGE_CTL_VGA;
6355 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6356 cmd);
6357 }
6358 bus = bus->parent;
6359 }
6360 return 0;
6361 }
6362
6363 #ifdef CONFIG_ACPI
6364 bool pci_pr3_present(struct pci_dev *pdev)
6365 {
6366 struct acpi_device *adev;
6367
6368 if (acpi_disabled)
6369 return false;
6370
6371 adev = ACPI_COMPANION(&pdev->dev);
6372 if (!adev)
6373 return false;
6374
6375 return adev->power.flags.power_resources &&
6376 acpi_has_method(adev->handle, "_PR3");
6377 }
6378 EXPORT_SYMBOL_GPL(pci_pr3_present);
6379 #endif
6380
6381 /**
6382 * pci_add_dma_alias - Add a DMA devfn alias for a device
6383 * @dev: the PCI device for which alias is added
6384 * @devfn_from: alias slot and function
6385 * @nr_devfns: number of subsequent devfns to alias
6386 *
6387 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6388 * which is used to program permissible bus-devfn source addresses for DMA
6389 * requests in an IOMMU. These aliases factor into IOMMU group creation
6390 * and are useful for devices generating DMA requests beyond or different
6391 * from their logical bus-devfn. Examples include device quirks where the
6392 * device simply uses the wrong devfn, as well as non-transparent bridges
6393 * where the alias may be a proxy for devices in another domain.
6394 *
6395 * IOMMU group creation is performed during device discovery or addition,
6396 * prior to any potential DMA mapping and therefore prior to driver probing
6397 * (especially for userspace assigned devices where IOMMU group definition
6398 * cannot be left as a userspace activity). DMA aliases should therefore
6399 * be configured via quirks, such as the PCI fixup header quirk.
6400 */
6401 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6402 {
6403 int devfn_to;
6404
6405 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6406 devfn_to = devfn_from + nr_devfns - 1;
6407
6408 if (!dev->dma_alias_mask)
6409 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6410 if (!dev->dma_alias_mask) {
6411 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6412 return;
6413 }
6414
6415 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6416
6417 if (nr_devfns == 1)
6418 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6419 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6420 else if (nr_devfns > 1)
6421 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6422 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6423 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6424 }
6425
6426 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6427 {
6428 return (dev1->dma_alias_mask &&
6429 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6430 (dev2->dma_alias_mask &&
6431 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6432 pci_real_dma_dev(dev1) == dev2 ||
6433 pci_real_dma_dev(dev2) == dev1;
6434 }
6435
6436 bool pci_device_is_present(struct pci_dev *pdev)
6437 {
6438 u32 v;
6439
6440 if (pci_dev_is_disconnected(pdev))
6441 return false;
6442 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6443 }
6444 EXPORT_SYMBOL_GPL(pci_device_is_present);
6445
6446 void pci_ignore_hotplug(struct pci_dev *dev)
6447 {
6448 struct pci_dev *bridge = dev->bus->self;
6449
6450 dev->ignore_hotplug = 1;
6451 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6452 if (bridge)
6453 bridge->ignore_hotplug = 1;
6454 }
6455 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6456
6457 /**
6458 * pci_real_dma_dev - Get PCI DMA device for PCI device
6459 * @dev: the PCI device that may have a PCI DMA alias
6460 *
6461 * Permits the platform to provide architecture-specific functionality to
6462 * devices needing to alias DMA to another PCI device on another PCI bus. If
6463 * the PCI device is on the same bus, it is recommended to use
6464 * pci_add_dma_alias(). This is the default implementation. Architecture
6465 * implementations can override this.
6466 */
6467 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6468 {
6469 return dev;
6470 }
6471
6472 resource_size_t __weak pcibios_default_alignment(void)
6473 {
6474 return 0;
6475 }
6476
6477 /*
6478 * Arches that don't want to expose struct resource to userland as-is in
6479 * sysfs and /proc can implement their own pci_resource_to_user().
6480 */
6481 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6482 const struct resource *rsrc,
6483 resource_size_t *start, resource_size_t *end)
6484 {
6485 *start = rsrc->start;
6486 *end = rsrc->end;
6487 }
6488
6489 static char *resource_alignment_param;
6490 static DEFINE_SPINLOCK(resource_alignment_lock);
6491
6492 /**
6493 * pci_specified_resource_alignment - get resource alignment specified by user.
6494 * @dev: the PCI device to get
6495 * @resize: whether or not to change resources' size when reassigning alignment
6496 *
6497 * RETURNS: Resource alignment if it is specified.
6498 * Zero if it is not specified.
6499 */
6500 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6501 bool *resize)
6502 {
6503 int align_order, count;
6504 resource_size_t align = pcibios_default_alignment();
6505 const char *p;
6506 int ret;
6507
6508 spin_lock(&resource_alignment_lock);
6509 p = resource_alignment_param;
6510 if (!p || !*p)
6511 goto out;
6512 if (pci_has_flag(PCI_PROBE_ONLY)) {
6513 align = 0;
6514 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6515 goto out;
6516 }
6517
6518 while (*p) {
6519 count = 0;
6520 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6521 p[count] == '@') {
6522 p += count + 1;
6523 if (align_order > 63) {
6524 pr_err("PCI: Invalid requested alignment (order %d)\n",
6525 align_order);
6526 align_order = PAGE_SHIFT;
6527 }
6528 } else {
6529 align_order = PAGE_SHIFT;
6530 }
6531
6532 ret = pci_dev_str_match(dev, p, &p);
6533 if (ret == 1) {
6534 *resize = true;
6535 align = 1ULL << align_order;
6536 break;
6537 } else if (ret < 0) {
6538 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6539 p);
6540 break;
6541 }
6542
6543 if (*p != ';' && *p != ',') {
6544 /* End of param or invalid format */
6545 break;
6546 }
6547 p++;
6548 }
6549 out:
6550 spin_unlock(&resource_alignment_lock);
6551 return align;
6552 }
6553
6554 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6555 resource_size_t align, bool resize)
6556 {
6557 struct resource *r = &dev->resource[bar];
6558 resource_size_t size;
6559
6560 if (!(r->flags & IORESOURCE_MEM))
6561 return;
6562
6563 if (r->flags & IORESOURCE_PCI_FIXED) {
6564 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6565 bar, r, (unsigned long long)align);
6566 return;
6567 }
6568
6569 size = resource_size(r);
6570 if (size >= align)
6571 return;
6572
6573 /*
6574 * Increase the alignment of the resource. There are two ways we
6575 * can do this:
6576 *
6577 * 1) Increase the size of the resource. BARs are aligned on their
6578 * size, so when we reallocate space for this resource, we'll
6579 * allocate it with the larger alignment. This also prevents
6580 * assignment of any other BARs inside the alignment region, so
6581 * if we're requesting page alignment, this means no other BARs
6582 * will share the page.
6583 *
6584 * The disadvantage is that this makes the resource larger than
6585 * the hardware BAR, which may break drivers that compute things
6586 * based on the resource size, e.g., to find registers at a
6587 * fixed offset before the end of the BAR.
6588 *
6589 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6590 * set r->start to the desired alignment. By itself this
6591 * doesn't prevent other BARs being put inside the alignment
6592 * region, but if we realign *every* resource of every device in
6593 * the system, none of them will share an alignment region.
6594 *
6595 * When the user has requested alignment for only some devices via
6596 * the "pci=resource_alignment" argument, "resize" is true and we
6597 * use the first method. Otherwise we assume we're aligning all
6598 * devices and we use the second.
6599 */
6600
6601 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6602 bar, r, (unsigned long long)align);
6603
6604 if (resize) {
6605 r->start = 0;
6606 r->end = align - 1;
6607 } else {
6608 r->flags &= ~IORESOURCE_SIZEALIGN;
6609 r->flags |= IORESOURCE_STARTALIGN;
6610 r->start = align;
6611 r->end = r->start + size - 1;
6612 }
6613 r->flags |= IORESOURCE_UNSET;
6614 }
6615
6616 /*
6617 * This function disables memory decoding and releases memory resources
6618 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6619 * It also rounds up size to specified alignment.
6620 * Later on, the kernel will assign page-aligned memory resource back
6621 * to the device.
6622 */
6623 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6624 {
6625 int i;
6626 struct resource *r;
6627 resource_size_t align;
6628 u16 command;
6629 bool resize = false;
6630
6631 /*
6632 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6633 * 3.4.1.11. Their resources are allocated from the space
6634 * described by the VF BARx register in the PF's SR-IOV capability.
6635 * We can't influence their alignment here.
6636 */
6637 if (dev->is_virtfn)
6638 return;
6639
6640 /* check if specified PCI is target device to reassign */
6641 align = pci_specified_resource_alignment(dev, &resize);
6642 if (!align)
6643 return;
6644
6645 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6646 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6647 pci_warn(dev, "Can't reassign resources to host bridge\n");
6648 return;
6649 }
6650
6651 pci_read_config_word(dev, PCI_COMMAND, &command);
6652 command &= ~PCI_COMMAND_MEMORY;
6653 pci_write_config_word(dev, PCI_COMMAND, command);
6654
6655 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6656 pci_request_resource_alignment(dev, i, align, resize);
6657
6658 /*
6659 * Need to disable bridge's resource window,
6660 * to enable the kernel to reassign new resource
6661 * window later on.
6662 */
6663 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6664 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6665 r = &dev->resource[i];
6666 if (!(r->flags & IORESOURCE_MEM))
6667 continue;
6668 r->flags |= IORESOURCE_UNSET;
6669 r->end = resource_size(r) - 1;
6670 r->start = 0;
6671 }
6672 pci_disable_bridge_window(dev);
6673 }
6674 }
6675
6676 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6677 {
6678 size_t count = 0;
6679
6680 spin_lock(&resource_alignment_lock);
6681 if (resource_alignment_param)
6682 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6683 spin_unlock(&resource_alignment_lock);
6684
6685 return count;
6686 }
6687
6688 static ssize_t resource_alignment_store(struct bus_type *bus,
6689 const char *buf, size_t count)
6690 {
6691 char *param, *old, *end;
6692
6693 if (count >= (PAGE_SIZE - 1))
6694 return -EINVAL;
6695
6696 param = kstrndup(buf, count, GFP_KERNEL);
6697 if (!param)
6698 return -ENOMEM;
6699
6700 end = strchr(param, '\n');
6701 if (end)
6702 *end = '\0';
6703
6704 spin_lock(&resource_alignment_lock);
6705 old = resource_alignment_param;
6706 if (strlen(param)) {
6707 resource_alignment_param = param;
6708 } else {
6709 kfree(param);
6710 resource_alignment_param = NULL;
6711 }
6712 spin_unlock(&resource_alignment_lock);
6713
6714 kfree(old);
6715
6716 return count;
6717 }
6718
6719 static BUS_ATTR_RW(resource_alignment);
6720
6721 static int __init pci_resource_alignment_sysfs_init(void)
6722 {
6723 return bus_create_file(&pci_bus_type,
6724 &bus_attr_resource_alignment);
6725 }
6726 late_initcall(pci_resource_alignment_sysfs_init);
6727
6728 static void pci_no_domains(void)
6729 {
6730 #ifdef CONFIG_PCI_DOMAINS
6731 pci_domains_supported = 0;
6732 #endif
6733 }
6734
6735 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6736 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6737
6738 static int pci_get_new_domain_nr(void)
6739 {
6740 return atomic_inc_return(&__domain_nr);
6741 }
6742
6743 static int of_pci_bus_find_domain_nr(struct device *parent)
6744 {
6745 static int use_dt_domains = -1;
6746 int domain = -1;
6747
6748 if (parent)
6749 domain = of_get_pci_domain_nr(parent->of_node);
6750
6751 /*
6752 * Check DT domain and use_dt_domains values.
6753 *
6754 * If DT domain property is valid (domain >= 0) and
6755 * use_dt_domains != 0, the DT assignment is valid since this means
6756 * we have not previously allocated a domain number by using
6757 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6758 * 1, to indicate that we have just assigned a domain number from
6759 * DT.
6760 *
6761 * If DT domain property value is not valid (ie domain < 0), and we
6762 * have not previously assigned a domain number from DT
6763 * (use_dt_domains != 1) we should assign a domain number by
6764 * using the:
6765 *
6766 * pci_get_new_domain_nr()
6767 *
6768 * API and update the use_dt_domains value to keep track of method we
6769 * are using to assign domain numbers (use_dt_domains = 0).
6770 *
6771 * All other combinations imply we have a platform that is trying
6772 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6773 * which is a recipe for domain mishandling and it is prevented by
6774 * invalidating the domain value (domain = -1) and printing a
6775 * corresponding error.
6776 */
6777 if (domain >= 0 && use_dt_domains) {
6778 use_dt_domains = 1;
6779 } else if (domain < 0 && use_dt_domains != 1) {
6780 use_dt_domains = 0;
6781 domain = pci_get_new_domain_nr();
6782 } else {
6783 if (parent)
6784 pr_err("Node %pOF has ", parent->of_node);
6785 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6786 domain = -1;
6787 }
6788
6789 return domain;
6790 }
6791
6792 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6793 {
6794 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6795 acpi_pci_bus_find_domain_nr(bus);
6796 }
6797 #endif
6798
6799 /**
6800 * pci_ext_cfg_avail - can we access extended PCI config space?
6801 *
6802 * Returns 1 if we can access PCI extended config space (offsets
6803 * greater than 0xff). This is the default implementation. Architecture
6804 * implementations can override this.
6805 */
6806 int __weak pci_ext_cfg_avail(void)
6807 {
6808 return 1;
6809 }
6810
6811 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6812 {
6813 }
6814 EXPORT_SYMBOL(pci_fixup_cardbus);
6815
6816 static int __init pci_setup(char *str)
6817 {
6818 while (str) {
6819 char *k = strchr(str, ',');
6820 if (k)
6821 *k++ = 0;
6822 if (*str && (str = pcibios_setup(str)) && *str) {
6823 if (!strcmp(str, "nomsi")) {
6824 pci_no_msi();
6825 } else if (!strncmp(str, "noats", 5)) {
6826 pr_info("PCIe: ATS is disabled\n");
6827 pcie_ats_disabled = true;
6828 } else if (!strcmp(str, "noaer")) {
6829 pci_no_aer();
6830 } else if (!strcmp(str, "earlydump")) {
6831 pci_early_dump = true;
6832 } else if (!strncmp(str, "realloc=", 8)) {
6833 pci_realloc_get_opt(str + 8);
6834 } else if (!strncmp(str, "realloc", 7)) {
6835 pci_realloc_get_opt("on");
6836 } else if (!strcmp(str, "nodomains")) {
6837 pci_no_domains();
6838 } else if (!strncmp(str, "noari", 5)) {
6839 pcie_ari_disabled = true;
6840 } else if (!strncmp(str, "cbiosize=", 9)) {
6841 pci_cardbus_io_size = memparse(str + 9, &str);
6842 } else if (!strncmp(str, "cbmemsize=", 10)) {
6843 pci_cardbus_mem_size = memparse(str + 10, &str);
6844 } else if (!strncmp(str, "resource_alignment=", 19)) {
6845 resource_alignment_param = str + 19;
6846 } else if (!strncmp(str, "ecrc=", 5)) {
6847 pcie_ecrc_get_policy(str + 5);
6848 } else if (!strncmp(str, "hpiosize=", 9)) {
6849 pci_hotplug_io_size = memparse(str + 9, &str);
6850 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6851 pci_hotplug_mmio_size = memparse(str + 11, &str);
6852 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6853 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6854 } else if (!strncmp(str, "hpmemsize=", 10)) {
6855 pci_hotplug_mmio_size = memparse(str + 10, &str);
6856 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6857 } else if (!strncmp(str, "hpbussize=", 10)) {
6858 pci_hotplug_bus_size =
6859 simple_strtoul(str + 10, &str, 0);
6860 if (pci_hotplug_bus_size > 0xff)
6861 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6862 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6863 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6864 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6865 pcie_bus_config = PCIE_BUS_SAFE;
6866 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6867 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6868 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6869 pcie_bus_config = PCIE_BUS_PEER2PEER;
6870 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6871 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6872 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6873 disable_acs_redir_param = str + 18;
6874 } else {
6875 pr_err("PCI: Unknown option `%s'\n", str);
6876 }
6877 }
6878 str = k;
6879 }
6880 return 0;
6881 }
6882 early_param("pci", pci_setup);
6883
6884 /*
6885 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6886 * in pci_setup(), above, to point to data in the __initdata section which
6887 * will be freed after the init sequence is complete. We can't allocate memory
6888 * in pci_setup() because some architectures do not have any memory allocation
6889 * service available during an early_param() call. So we allocate memory and
6890 * copy the variable here before the init section is freed.
6891 *
6892 */
6893 static int __init pci_realloc_setup_params(void)
6894 {
6895 resource_alignment_param = kstrdup(resource_alignment_param,
6896 GFP_KERNEL);
6897 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6898
6899 return 0;
6900 }
6901 pure_initcall(pci_realloc_setup_params);