]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/pci/pci.c
da5570cf5c6a4eddf115da1e18cfd6c1643c88e2
[mirror_ubuntu-artful-kernel.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/delay.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/of.h>
16 #include <linux/of_pci.h>
17 #include <linux/pci.h>
18 #include <linux/pm.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/spinlock.h>
22 #include <linux/string.h>
23 #include <linux/log2.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/pm_wakeup.h>
26 #include <linux/interrupt.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pci-ats.h>
32 #include <asm/setup.h>
33 #include <asm/dma.h>
34 #include <linux/aer.h>
35 #include "pci.h"
36
37 const char *pci_power_names[] = {
38 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
39 };
40 EXPORT_SYMBOL_GPL(pci_power_names);
41
42 int isa_dma_bridge_buggy;
43 EXPORT_SYMBOL(isa_dma_bridge_buggy);
44
45 int pci_pci_problems;
46 EXPORT_SYMBOL(pci_pci_problems);
47
48 unsigned int pci_pm_d3_delay;
49
50 static void pci_pme_list_scan(struct work_struct *work);
51
52 static LIST_HEAD(pci_pme_list);
53 static DEFINE_MUTEX(pci_pme_list_mutex);
54 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
55
56 struct pci_pme_device {
57 struct list_head list;
58 struct pci_dev *dev;
59 };
60
61 #define PME_TIMEOUT 1000 /* How long between PME checks */
62
63 static void pci_dev_d3_sleep(struct pci_dev *dev)
64 {
65 unsigned int delay = dev->d3_delay;
66
67 if (delay < pci_pm_d3_delay)
68 delay = pci_pm_d3_delay;
69
70 if (delay)
71 msleep(delay);
72 }
73
74 #ifdef CONFIG_PCI_DOMAINS
75 int pci_domains_supported = 1;
76 #endif
77
78 #define DEFAULT_CARDBUS_IO_SIZE (256)
79 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
80 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
81 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
82 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
83
84 #define DEFAULT_HOTPLUG_IO_SIZE (256)
85 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
86 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
87 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
88 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
89
90 #define DEFAULT_HOTPLUG_BUS_SIZE 1
91 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
92
93 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
94
95 /*
96 * The default CLS is used if arch didn't set CLS explicitly and not
97 * all pci devices agree on the same value. Arch can override either
98 * the dfl or actual value as it sees fit. Don't forget this is
99 * measured in 32-bit words, not bytes.
100 */
101 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
102 u8 pci_cache_line_size;
103
104 /*
105 * If we set up a device for bus mastering, we need to check the latency
106 * timer as certain BIOSes forget to set it properly.
107 */
108 unsigned int pcibios_max_latency = 255;
109
110 /* If set, the PCIe ARI capability will not be used. */
111 static bool pcie_ari_disabled;
112
113 /* Disable bridge_d3 for all PCIe ports */
114 static bool pci_bridge_d3_disable;
115 /* Force bridge_d3 for all PCIe ports */
116 static bool pci_bridge_d3_force;
117
118 static int __init pcie_port_pm_setup(char *str)
119 {
120 if (!strcmp(str, "off"))
121 pci_bridge_d3_disable = true;
122 else if (!strcmp(str, "force"))
123 pci_bridge_d3_force = true;
124 return 1;
125 }
126 __setup("pcie_port_pm=", pcie_port_pm_setup);
127
128 /**
129 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
130 * @bus: pointer to PCI bus structure to search
131 *
132 * Given a PCI bus, returns the highest PCI bus number present in the set
133 * including the given PCI bus and its list of child PCI buses.
134 */
135 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
136 {
137 struct pci_bus *tmp;
138 unsigned char max, n;
139
140 max = bus->busn_res.end;
141 list_for_each_entry(tmp, &bus->children, node) {
142 n = pci_bus_max_busnr(tmp);
143 if (n > max)
144 max = n;
145 }
146 return max;
147 }
148 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
149
150 #ifdef CONFIG_HAS_IOMEM
151 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
152 {
153 struct resource *res = &pdev->resource[bar];
154
155 /*
156 * Make sure the BAR is actually a memory resource, not an IO resource
157 */
158 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
159 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
160 return NULL;
161 }
162 return ioremap_nocache(res->start, resource_size(res));
163 }
164 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
165
166 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
167 {
168 /*
169 * Make sure the BAR is actually a memory resource, not an IO resource
170 */
171 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
172 WARN_ON(1);
173 return NULL;
174 }
175 return ioremap_wc(pci_resource_start(pdev, bar),
176 pci_resource_len(pdev, bar));
177 }
178 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
179 #endif
180
181
182 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
183 u8 pos, int cap, int *ttl)
184 {
185 u8 id;
186 u16 ent;
187
188 pci_bus_read_config_byte(bus, devfn, pos, &pos);
189
190 while ((*ttl)--) {
191 if (pos < 0x40)
192 break;
193 pos &= ~3;
194 pci_bus_read_config_word(bus, devfn, pos, &ent);
195
196 id = ent & 0xff;
197 if (id == 0xff)
198 break;
199 if (id == cap)
200 return pos;
201 pos = (ent >> 8);
202 }
203 return 0;
204 }
205
206 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
207 u8 pos, int cap)
208 {
209 int ttl = PCI_FIND_CAP_TTL;
210
211 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
212 }
213
214 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
215 {
216 return __pci_find_next_cap(dev->bus, dev->devfn,
217 pos + PCI_CAP_LIST_NEXT, cap);
218 }
219 EXPORT_SYMBOL_GPL(pci_find_next_capability);
220
221 static int __pci_bus_find_cap_start(struct pci_bus *bus,
222 unsigned int devfn, u8 hdr_type)
223 {
224 u16 status;
225
226 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
227 if (!(status & PCI_STATUS_CAP_LIST))
228 return 0;
229
230 switch (hdr_type) {
231 case PCI_HEADER_TYPE_NORMAL:
232 case PCI_HEADER_TYPE_BRIDGE:
233 return PCI_CAPABILITY_LIST;
234 case PCI_HEADER_TYPE_CARDBUS:
235 return PCI_CB_CAPABILITY_LIST;
236 }
237
238 return 0;
239 }
240
241 /**
242 * pci_find_capability - query for devices' capabilities
243 * @dev: PCI device to query
244 * @cap: capability code
245 *
246 * Tell if a device supports a given PCI capability.
247 * Returns the address of the requested capability structure within the
248 * device's PCI configuration space or 0 in case the device does not
249 * support it. Possible values for @cap:
250 *
251 * %PCI_CAP_ID_PM Power Management
252 * %PCI_CAP_ID_AGP Accelerated Graphics Port
253 * %PCI_CAP_ID_VPD Vital Product Data
254 * %PCI_CAP_ID_SLOTID Slot Identification
255 * %PCI_CAP_ID_MSI Message Signalled Interrupts
256 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
257 * %PCI_CAP_ID_PCIX PCI-X
258 * %PCI_CAP_ID_EXP PCI Express
259 */
260 int pci_find_capability(struct pci_dev *dev, int cap)
261 {
262 int pos;
263
264 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
265 if (pos)
266 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
267
268 return pos;
269 }
270 EXPORT_SYMBOL(pci_find_capability);
271
272 /**
273 * pci_bus_find_capability - query for devices' capabilities
274 * @bus: the PCI bus to query
275 * @devfn: PCI device to query
276 * @cap: capability code
277 *
278 * Like pci_find_capability() but works for pci devices that do not have a
279 * pci_dev structure set up yet.
280 *
281 * Returns the address of the requested capability structure within the
282 * device's PCI configuration space or 0 in case the device does not
283 * support it.
284 */
285 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
286 {
287 int pos;
288 u8 hdr_type;
289
290 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
291
292 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
293 if (pos)
294 pos = __pci_find_next_cap(bus, devfn, pos, cap);
295
296 return pos;
297 }
298 EXPORT_SYMBOL(pci_bus_find_capability);
299
300 /**
301 * pci_find_next_ext_capability - Find an extended capability
302 * @dev: PCI device to query
303 * @start: address at which to start looking (0 to start at beginning of list)
304 * @cap: capability code
305 *
306 * Returns the address of the next matching extended capability structure
307 * within the device's PCI configuration space or 0 if the device does
308 * not support it. Some capabilities can occur several times, e.g., the
309 * vendor-specific capability, and this provides a way to find them all.
310 */
311 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
312 {
313 u32 header;
314 int ttl;
315 int pos = PCI_CFG_SPACE_SIZE;
316
317 /* minimum 8 bytes per capability */
318 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
319
320 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
321 return 0;
322
323 if (start)
324 pos = start;
325
326 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
327 return 0;
328
329 /*
330 * If we have no capabilities, this is indicated by cap ID,
331 * cap version and next pointer all being 0.
332 */
333 if (header == 0)
334 return 0;
335
336 while (ttl-- > 0) {
337 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
338 return pos;
339
340 pos = PCI_EXT_CAP_NEXT(header);
341 if (pos < PCI_CFG_SPACE_SIZE)
342 break;
343
344 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
345 break;
346 }
347
348 return 0;
349 }
350 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
351
352 /**
353 * pci_find_ext_capability - Find an extended capability
354 * @dev: PCI device to query
355 * @cap: capability code
356 *
357 * Returns the address of the requested extended capability structure
358 * within the device's PCI configuration space or 0 if the device does
359 * not support it. Possible values for @cap:
360 *
361 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
362 * %PCI_EXT_CAP_ID_VC Virtual Channel
363 * %PCI_EXT_CAP_ID_DSN Device Serial Number
364 * %PCI_EXT_CAP_ID_PWR Power Budgeting
365 */
366 int pci_find_ext_capability(struct pci_dev *dev, int cap)
367 {
368 return pci_find_next_ext_capability(dev, 0, cap);
369 }
370 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
371
372 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
373 {
374 int rc, ttl = PCI_FIND_CAP_TTL;
375 u8 cap, mask;
376
377 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
378 mask = HT_3BIT_CAP_MASK;
379 else
380 mask = HT_5BIT_CAP_MASK;
381
382 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
383 PCI_CAP_ID_HT, &ttl);
384 while (pos) {
385 rc = pci_read_config_byte(dev, pos + 3, &cap);
386 if (rc != PCIBIOS_SUCCESSFUL)
387 return 0;
388
389 if ((cap & mask) == ht_cap)
390 return pos;
391
392 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
393 pos + PCI_CAP_LIST_NEXT,
394 PCI_CAP_ID_HT, &ttl);
395 }
396
397 return 0;
398 }
399 /**
400 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
401 * @dev: PCI device to query
402 * @pos: Position from which to continue searching
403 * @ht_cap: Hypertransport capability code
404 *
405 * To be used in conjunction with pci_find_ht_capability() to search for
406 * all capabilities matching @ht_cap. @pos should always be a value returned
407 * from pci_find_ht_capability().
408 *
409 * NB. To be 100% safe against broken PCI devices, the caller should take
410 * steps to avoid an infinite loop.
411 */
412 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
413 {
414 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
415 }
416 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
417
418 /**
419 * pci_find_ht_capability - query a device's Hypertransport capabilities
420 * @dev: PCI device to query
421 * @ht_cap: Hypertransport capability code
422 *
423 * Tell if a device supports a given Hypertransport capability.
424 * Returns an address within the device's PCI configuration space
425 * or 0 in case the device does not support the request capability.
426 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
427 * which has a Hypertransport capability matching @ht_cap.
428 */
429 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
430 {
431 int pos;
432
433 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
434 if (pos)
435 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
436
437 return pos;
438 }
439 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
440
441 /**
442 * pci_find_parent_resource - return resource region of parent bus of given region
443 * @dev: PCI device structure contains resources to be searched
444 * @res: child resource record for which parent is sought
445 *
446 * For given resource region of given device, return the resource
447 * region of parent bus the given region is contained in.
448 */
449 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
450 struct resource *res)
451 {
452 const struct pci_bus *bus = dev->bus;
453 struct resource *r;
454 int i;
455
456 pci_bus_for_each_resource(bus, r, i) {
457 if (!r)
458 continue;
459 if (resource_contains(r, res)) {
460
461 /*
462 * If the window is prefetchable but the BAR is
463 * not, the allocator made a mistake.
464 */
465 if (r->flags & IORESOURCE_PREFETCH &&
466 !(res->flags & IORESOURCE_PREFETCH))
467 return NULL;
468
469 /*
470 * If we're below a transparent bridge, there may
471 * be both a positively-decoded aperture and a
472 * subtractively-decoded region that contain the BAR.
473 * We want the positively-decoded one, so this depends
474 * on pci_bus_for_each_resource() giving us those
475 * first.
476 */
477 return r;
478 }
479 }
480 return NULL;
481 }
482 EXPORT_SYMBOL(pci_find_parent_resource);
483
484 /**
485 * pci_find_resource - Return matching PCI device resource
486 * @dev: PCI device to query
487 * @res: Resource to look for
488 *
489 * Goes over standard PCI resources (BARs) and checks if the given resource
490 * is partially or fully contained in any of them. In that case the
491 * matching resource is returned, %NULL otherwise.
492 */
493 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
494 {
495 int i;
496
497 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
498 struct resource *r = &dev->resource[i];
499
500 if (r->start && resource_contains(r, res))
501 return r;
502 }
503
504 return NULL;
505 }
506 EXPORT_SYMBOL(pci_find_resource);
507
508 /**
509 * pci_find_pcie_root_port - return PCIe Root Port
510 * @dev: PCI device to query
511 *
512 * Traverse up the parent chain and return the PCIe Root Port PCI Device
513 * for a given PCI Device.
514 */
515 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
516 {
517 struct pci_dev *bridge, *highest_pcie_bridge = NULL;
518
519 bridge = pci_upstream_bridge(dev);
520 while (bridge && pci_is_pcie(bridge)) {
521 highest_pcie_bridge = bridge;
522 bridge = pci_upstream_bridge(bridge);
523 }
524
525 if (highest_pcie_bridge &&
526 pci_pcie_type(highest_pcie_bridge) == PCI_EXP_TYPE_ROOT_PORT)
527 return highest_pcie_bridge;
528
529 return NULL;
530 }
531 EXPORT_SYMBOL(pci_find_pcie_root_port);
532
533 /**
534 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
535 * @dev: the PCI device to operate on
536 * @pos: config space offset of status word
537 * @mask: mask of bit(s) to care about in status word
538 *
539 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
540 */
541 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
542 {
543 int i;
544
545 /* Wait for Transaction Pending bit clean */
546 for (i = 0; i < 4; i++) {
547 u16 status;
548 if (i)
549 msleep((1 << (i - 1)) * 100);
550
551 pci_read_config_word(dev, pos, &status);
552 if (!(status & mask))
553 return 1;
554 }
555
556 return 0;
557 }
558
559 /**
560 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
561 * @dev: PCI device to have its BARs restored
562 *
563 * Restore the BAR values for a given device, so as to make it
564 * accessible by its driver.
565 */
566 static void pci_restore_bars(struct pci_dev *dev)
567 {
568 int i;
569
570 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
571 pci_update_resource(dev, i);
572 }
573
574 static const struct pci_platform_pm_ops *pci_platform_pm;
575
576 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
577 {
578 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
579 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
580 return -EINVAL;
581 pci_platform_pm = ops;
582 return 0;
583 }
584
585 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
586 {
587 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
588 }
589
590 static inline int platform_pci_set_power_state(struct pci_dev *dev,
591 pci_power_t t)
592 {
593 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
594 }
595
596 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
597 {
598 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
599 }
600
601 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
602 {
603 return pci_platform_pm ?
604 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
605 }
606
607 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
608 {
609 return pci_platform_pm ?
610 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
611 }
612
613 static inline bool platform_pci_need_resume(struct pci_dev *dev)
614 {
615 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
616 }
617
618 /**
619 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
620 * given PCI device
621 * @dev: PCI device to handle.
622 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
623 *
624 * RETURN VALUE:
625 * -EINVAL if the requested state is invalid.
626 * -EIO if device does not support PCI PM or its PM capabilities register has a
627 * wrong version, or device doesn't support the requested state.
628 * 0 if device already is in the requested state.
629 * 0 if device's power state has been successfully changed.
630 */
631 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
632 {
633 u16 pmcsr;
634 bool need_restore = false;
635
636 /* Check if we're already there */
637 if (dev->current_state == state)
638 return 0;
639
640 if (!dev->pm_cap)
641 return -EIO;
642
643 if (state < PCI_D0 || state > PCI_D3hot)
644 return -EINVAL;
645
646 /* Validate current state:
647 * Can enter D0 from any state, but if we can only go deeper
648 * to sleep if we're already in a low power state
649 */
650 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
651 && dev->current_state > state) {
652 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
653 dev->current_state, state);
654 return -EINVAL;
655 }
656
657 /* check if this device supports the desired state */
658 if ((state == PCI_D1 && !dev->d1_support)
659 || (state == PCI_D2 && !dev->d2_support))
660 return -EIO;
661
662 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
663
664 /* If we're (effectively) in D3, force entire word to 0.
665 * This doesn't affect PME_Status, disables PME_En, and
666 * sets PowerState to 0.
667 */
668 switch (dev->current_state) {
669 case PCI_D0:
670 case PCI_D1:
671 case PCI_D2:
672 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
673 pmcsr |= state;
674 break;
675 case PCI_D3hot:
676 case PCI_D3cold:
677 case PCI_UNKNOWN: /* Boot-up */
678 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
679 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
680 need_restore = true;
681 /* Fall-through: force to D0 */
682 default:
683 pmcsr = 0;
684 break;
685 }
686
687 /* enter specified state */
688 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
689
690 /* Mandatory power management transition delays */
691 /* see PCI PM 1.1 5.6.1 table 18 */
692 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
693 pci_dev_d3_sleep(dev);
694 else if (state == PCI_D2 || dev->current_state == PCI_D2)
695 udelay(PCI_PM_D2_DELAY);
696
697 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
698 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
699 if (dev->current_state != state && printk_ratelimit())
700 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
701 dev->current_state);
702
703 /*
704 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
705 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
706 * from D3hot to D0 _may_ perform an internal reset, thereby
707 * going to "D0 Uninitialized" rather than "D0 Initialized".
708 * For example, at least some versions of the 3c905B and the
709 * 3c556B exhibit this behaviour.
710 *
711 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
712 * devices in a D3hot state at boot. Consequently, we need to
713 * restore at least the BARs so that the device will be
714 * accessible to its driver.
715 */
716 if (need_restore)
717 pci_restore_bars(dev);
718
719 if (dev->bus->self)
720 pcie_aspm_pm_state_change(dev->bus->self);
721
722 return 0;
723 }
724
725 /**
726 * pci_update_current_state - Read power state of given device and cache it
727 * @dev: PCI device to handle.
728 * @state: State to cache in case the device doesn't have the PM capability
729 *
730 * The power state is read from the PMCSR register, which however is
731 * inaccessible in D3cold. The platform firmware is therefore queried first
732 * to detect accessibility of the register. In case the platform firmware
733 * reports an incorrect state or the device isn't power manageable by the
734 * platform at all, we try to detect D3cold by testing accessibility of the
735 * vendor ID in config space.
736 */
737 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
738 {
739 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
740 !pci_device_is_present(dev)) {
741 dev->current_state = PCI_D3cold;
742 } else if (dev->pm_cap) {
743 u16 pmcsr;
744
745 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
746 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
747 } else {
748 dev->current_state = state;
749 }
750 }
751
752 /**
753 * pci_power_up - Put the given device into D0 forcibly
754 * @dev: PCI device to power up
755 */
756 void pci_power_up(struct pci_dev *dev)
757 {
758 if (platform_pci_power_manageable(dev))
759 platform_pci_set_power_state(dev, PCI_D0);
760
761 pci_raw_set_power_state(dev, PCI_D0);
762 pci_update_current_state(dev, PCI_D0);
763 }
764
765 /**
766 * pci_platform_power_transition - Use platform to change device power state
767 * @dev: PCI device to handle.
768 * @state: State to put the device into.
769 */
770 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
771 {
772 int error;
773
774 if (platform_pci_power_manageable(dev)) {
775 error = platform_pci_set_power_state(dev, state);
776 if (!error)
777 pci_update_current_state(dev, state);
778 } else
779 error = -ENODEV;
780
781 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
782 dev->current_state = PCI_D0;
783
784 return error;
785 }
786
787 /**
788 * pci_wakeup - Wake up a PCI device
789 * @pci_dev: Device to handle.
790 * @ign: ignored parameter
791 */
792 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
793 {
794 pci_wakeup_event(pci_dev);
795 pm_request_resume(&pci_dev->dev);
796 return 0;
797 }
798
799 /**
800 * pci_wakeup_bus - Walk given bus and wake up devices on it
801 * @bus: Top bus of the subtree to walk.
802 */
803 static void pci_wakeup_bus(struct pci_bus *bus)
804 {
805 if (bus)
806 pci_walk_bus(bus, pci_wakeup, NULL);
807 }
808
809 /**
810 * __pci_start_power_transition - Start power transition of a PCI device
811 * @dev: PCI device to handle.
812 * @state: State to put the device into.
813 */
814 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
815 {
816 if (state == PCI_D0) {
817 pci_platform_power_transition(dev, PCI_D0);
818 /*
819 * Mandatory power management transition delays, see
820 * PCI Express Base Specification Revision 2.0 Section
821 * 6.6.1: Conventional Reset. Do not delay for
822 * devices powered on/off by corresponding bridge,
823 * because have already delayed for the bridge.
824 */
825 if (dev->runtime_d3cold) {
826 if (dev->d3cold_delay)
827 msleep(dev->d3cold_delay);
828 /*
829 * When powering on a bridge from D3cold, the
830 * whole hierarchy may be powered on into
831 * D0uninitialized state, resume them to give
832 * them a chance to suspend again
833 */
834 pci_wakeup_bus(dev->subordinate);
835 }
836 }
837 }
838
839 /**
840 * __pci_dev_set_current_state - Set current state of a PCI device
841 * @dev: Device to handle
842 * @data: pointer to state to be set
843 */
844 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
845 {
846 pci_power_t state = *(pci_power_t *)data;
847
848 dev->current_state = state;
849 return 0;
850 }
851
852 /**
853 * __pci_bus_set_current_state - Walk given bus and set current state of devices
854 * @bus: Top bus of the subtree to walk.
855 * @state: state to be set
856 */
857 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
858 {
859 if (bus)
860 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
861 }
862
863 /**
864 * __pci_complete_power_transition - Complete power transition of a PCI device
865 * @dev: PCI device to handle.
866 * @state: State to put the device into.
867 *
868 * This function should not be called directly by device drivers.
869 */
870 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
871 {
872 int ret;
873
874 if (state <= PCI_D0)
875 return -EINVAL;
876 ret = pci_platform_power_transition(dev, state);
877 /* Power off the bridge may power off the whole hierarchy */
878 if (!ret && state == PCI_D3cold)
879 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
880 return ret;
881 }
882 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
883
884 /**
885 * pci_set_power_state - Set the power state of a PCI device
886 * @dev: PCI device to handle.
887 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
888 *
889 * Transition a device to a new power state, using the platform firmware and/or
890 * the device's PCI PM registers.
891 *
892 * RETURN VALUE:
893 * -EINVAL if the requested state is invalid.
894 * -EIO if device does not support PCI PM or its PM capabilities register has a
895 * wrong version, or device doesn't support the requested state.
896 * 0 if device already is in the requested state.
897 * 0 if device's power state has been successfully changed.
898 */
899 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
900 {
901 int error;
902
903 /* bound the state we're entering */
904 if (state > PCI_D3cold)
905 state = PCI_D3cold;
906 else if (state < PCI_D0)
907 state = PCI_D0;
908 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
909 /*
910 * If the device or the parent bridge do not support PCI PM,
911 * ignore the request if we're doing anything other than putting
912 * it into D0 (which would only happen on boot).
913 */
914 return 0;
915
916 /* Check if we're already there */
917 if (dev->current_state == state)
918 return 0;
919
920 __pci_start_power_transition(dev, state);
921
922 /* This device is quirked not to be put into D3, so
923 don't put it in D3 */
924 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
925 return 0;
926
927 /*
928 * To put device in D3cold, we put device into D3hot in native
929 * way, then put device into D3cold with platform ops
930 */
931 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
932 PCI_D3hot : state);
933
934 if (!__pci_complete_power_transition(dev, state))
935 error = 0;
936
937 return error;
938 }
939 EXPORT_SYMBOL(pci_set_power_state);
940
941 /**
942 * pci_choose_state - Choose the power state of a PCI device
943 * @dev: PCI device to be suspended
944 * @state: target sleep state for the whole system. This is the value
945 * that is passed to suspend() function.
946 *
947 * Returns PCI power state suitable for given device and given system
948 * message.
949 */
950
951 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
952 {
953 pci_power_t ret;
954
955 if (!dev->pm_cap)
956 return PCI_D0;
957
958 ret = platform_pci_choose_state(dev);
959 if (ret != PCI_POWER_ERROR)
960 return ret;
961
962 switch (state.event) {
963 case PM_EVENT_ON:
964 return PCI_D0;
965 case PM_EVENT_FREEZE:
966 case PM_EVENT_PRETHAW:
967 /* REVISIT both freeze and pre-thaw "should" use D0 */
968 case PM_EVENT_SUSPEND:
969 case PM_EVENT_HIBERNATE:
970 return PCI_D3hot;
971 default:
972 dev_info(&dev->dev, "unrecognized suspend event %d\n",
973 state.event);
974 BUG();
975 }
976 return PCI_D0;
977 }
978 EXPORT_SYMBOL(pci_choose_state);
979
980 #define PCI_EXP_SAVE_REGS 7
981
982 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
983 u16 cap, bool extended)
984 {
985 struct pci_cap_saved_state *tmp;
986
987 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
988 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
989 return tmp;
990 }
991 return NULL;
992 }
993
994 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
995 {
996 return _pci_find_saved_cap(dev, cap, false);
997 }
998
999 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1000 {
1001 return _pci_find_saved_cap(dev, cap, true);
1002 }
1003
1004 static int pci_save_pcie_state(struct pci_dev *dev)
1005 {
1006 int i = 0;
1007 struct pci_cap_saved_state *save_state;
1008 u16 *cap;
1009
1010 if (!pci_is_pcie(dev))
1011 return 0;
1012
1013 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1014 if (!save_state) {
1015 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1016 return -ENOMEM;
1017 }
1018
1019 cap = (u16 *)&save_state->cap.data[0];
1020 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1021 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1022 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1023 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1024 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1025 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1026 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1027
1028 return 0;
1029 }
1030
1031 static void pci_restore_pcie_state(struct pci_dev *dev)
1032 {
1033 int i = 0;
1034 struct pci_cap_saved_state *save_state;
1035 u16 *cap;
1036
1037 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1038 if (!save_state)
1039 return;
1040
1041 cap = (u16 *)&save_state->cap.data[0];
1042 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1043 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1044 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1045 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1046 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1047 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1048 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1049 }
1050
1051
1052 static int pci_save_pcix_state(struct pci_dev *dev)
1053 {
1054 int pos;
1055 struct pci_cap_saved_state *save_state;
1056
1057 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1058 if (!pos)
1059 return 0;
1060
1061 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1062 if (!save_state) {
1063 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1064 return -ENOMEM;
1065 }
1066
1067 pci_read_config_word(dev, pos + PCI_X_CMD,
1068 (u16 *)save_state->cap.data);
1069
1070 return 0;
1071 }
1072
1073 static void pci_restore_pcix_state(struct pci_dev *dev)
1074 {
1075 int i = 0, pos;
1076 struct pci_cap_saved_state *save_state;
1077 u16 *cap;
1078
1079 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1080 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1081 if (!save_state || !pos)
1082 return;
1083 cap = (u16 *)&save_state->cap.data[0];
1084
1085 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1086 }
1087
1088
1089 /**
1090 * pci_save_state - save the PCI configuration space of a device before suspending
1091 * @dev: - PCI device that we're dealing with
1092 */
1093 int pci_save_state(struct pci_dev *dev)
1094 {
1095 int i;
1096 /* XXX: 100% dword access ok here? */
1097 for (i = 0; i < 16; i++)
1098 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1099 dev->state_saved = true;
1100
1101 i = pci_save_pcie_state(dev);
1102 if (i != 0)
1103 return i;
1104
1105 i = pci_save_pcix_state(dev);
1106 if (i != 0)
1107 return i;
1108
1109 return pci_save_vc_state(dev);
1110 }
1111 EXPORT_SYMBOL(pci_save_state);
1112
1113 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1114 u32 saved_val, int retry)
1115 {
1116 u32 val;
1117
1118 pci_read_config_dword(pdev, offset, &val);
1119 if (val == saved_val)
1120 return;
1121
1122 for (;;) {
1123 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1124 offset, val, saved_val);
1125 pci_write_config_dword(pdev, offset, saved_val);
1126 if (retry-- <= 0)
1127 return;
1128
1129 pci_read_config_dword(pdev, offset, &val);
1130 if (val == saved_val)
1131 return;
1132
1133 mdelay(1);
1134 }
1135 }
1136
1137 static void pci_restore_config_space_range(struct pci_dev *pdev,
1138 int start, int end, int retry)
1139 {
1140 int index;
1141
1142 for (index = end; index >= start; index--)
1143 pci_restore_config_dword(pdev, 4 * index,
1144 pdev->saved_config_space[index],
1145 retry);
1146 }
1147
1148 static void pci_restore_config_space(struct pci_dev *pdev)
1149 {
1150 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1151 pci_restore_config_space_range(pdev, 10, 15, 0);
1152 /* Restore BARs before the command register. */
1153 pci_restore_config_space_range(pdev, 4, 9, 10);
1154 pci_restore_config_space_range(pdev, 0, 3, 0);
1155 } else {
1156 pci_restore_config_space_range(pdev, 0, 15, 0);
1157 }
1158 }
1159
1160 /**
1161 * pci_restore_state - Restore the saved state of a PCI device
1162 * @dev: - PCI device that we're dealing with
1163 */
1164 void pci_restore_state(struct pci_dev *dev)
1165 {
1166 if (!dev->state_saved)
1167 return;
1168
1169 /* PCI Express register must be restored first */
1170 pci_restore_pcie_state(dev);
1171 pci_restore_pasid_state(dev);
1172 pci_restore_pri_state(dev);
1173 pci_restore_ats_state(dev);
1174 pci_restore_vc_state(dev);
1175
1176 pci_cleanup_aer_error_status_regs(dev);
1177
1178 pci_restore_config_space(dev);
1179
1180 pci_restore_pcix_state(dev);
1181 pci_restore_msi_state(dev);
1182
1183 /* Restore ACS and IOV configuration state */
1184 pci_enable_acs(dev);
1185 pci_restore_iov_state(dev);
1186
1187 dev->state_saved = false;
1188 }
1189 EXPORT_SYMBOL(pci_restore_state);
1190
1191 struct pci_saved_state {
1192 u32 config_space[16];
1193 struct pci_cap_saved_data cap[0];
1194 };
1195
1196 /**
1197 * pci_store_saved_state - Allocate and return an opaque struct containing
1198 * the device saved state.
1199 * @dev: PCI device that we're dealing with
1200 *
1201 * Return NULL if no state or error.
1202 */
1203 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1204 {
1205 struct pci_saved_state *state;
1206 struct pci_cap_saved_state *tmp;
1207 struct pci_cap_saved_data *cap;
1208 size_t size;
1209
1210 if (!dev->state_saved)
1211 return NULL;
1212
1213 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1214
1215 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1216 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1217
1218 state = kzalloc(size, GFP_KERNEL);
1219 if (!state)
1220 return NULL;
1221
1222 memcpy(state->config_space, dev->saved_config_space,
1223 sizeof(state->config_space));
1224
1225 cap = state->cap;
1226 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1227 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1228 memcpy(cap, &tmp->cap, len);
1229 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1230 }
1231 /* Empty cap_save terminates list */
1232
1233 return state;
1234 }
1235 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1236
1237 /**
1238 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1239 * @dev: PCI device that we're dealing with
1240 * @state: Saved state returned from pci_store_saved_state()
1241 */
1242 int pci_load_saved_state(struct pci_dev *dev,
1243 struct pci_saved_state *state)
1244 {
1245 struct pci_cap_saved_data *cap;
1246
1247 dev->state_saved = false;
1248
1249 if (!state)
1250 return 0;
1251
1252 memcpy(dev->saved_config_space, state->config_space,
1253 sizeof(state->config_space));
1254
1255 cap = state->cap;
1256 while (cap->size) {
1257 struct pci_cap_saved_state *tmp;
1258
1259 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1260 if (!tmp || tmp->cap.size != cap->size)
1261 return -EINVAL;
1262
1263 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1264 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1265 sizeof(struct pci_cap_saved_data) + cap->size);
1266 }
1267
1268 dev->state_saved = true;
1269 return 0;
1270 }
1271 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1272
1273 /**
1274 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1275 * and free the memory allocated for it.
1276 * @dev: PCI device that we're dealing with
1277 * @state: Pointer to saved state returned from pci_store_saved_state()
1278 */
1279 int pci_load_and_free_saved_state(struct pci_dev *dev,
1280 struct pci_saved_state **state)
1281 {
1282 int ret = pci_load_saved_state(dev, *state);
1283 kfree(*state);
1284 *state = NULL;
1285 return ret;
1286 }
1287 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1288
1289 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1290 {
1291 return pci_enable_resources(dev, bars);
1292 }
1293
1294 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1295 {
1296 int err;
1297 struct pci_dev *bridge;
1298 u16 cmd;
1299 u8 pin;
1300
1301 err = pci_set_power_state(dev, PCI_D0);
1302 if (err < 0 && err != -EIO)
1303 return err;
1304
1305 bridge = pci_upstream_bridge(dev);
1306 if (bridge)
1307 pcie_aspm_powersave_config_link(bridge);
1308
1309 err = pcibios_enable_device(dev, bars);
1310 if (err < 0)
1311 return err;
1312 pci_fixup_device(pci_fixup_enable, dev);
1313
1314 if (dev->msi_enabled || dev->msix_enabled)
1315 return 0;
1316
1317 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1318 if (pin) {
1319 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1320 if (cmd & PCI_COMMAND_INTX_DISABLE)
1321 pci_write_config_word(dev, PCI_COMMAND,
1322 cmd & ~PCI_COMMAND_INTX_DISABLE);
1323 }
1324
1325 return 0;
1326 }
1327
1328 /**
1329 * pci_reenable_device - Resume abandoned device
1330 * @dev: PCI device to be resumed
1331 *
1332 * Note this function is a backend of pci_default_resume and is not supposed
1333 * to be called by normal code, write proper resume handler and use it instead.
1334 */
1335 int pci_reenable_device(struct pci_dev *dev)
1336 {
1337 if (pci_is_enabled(dev))
1338 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1339 return 0;
1340 }
1341 EXPORT_SYMBOL(pci_reenable_device);
1342
1343 static void pci_enable_bridge(struct pci_dev *dev)
1344 {
1345 struct pci_dev *bridge;
1346 int retval;
1347
1348 bridge = pci_upstream_bridge(dev);
1349 if (bridge)
1350 pci_enable_bridge(bridge);
1351
1352 if (pci_is_enabled(dev)) {
1353 if (!dev->is_busmaster)
1354 pci_set_master(dev);
1355 return;
1356 }
1357
1358 retval = pci_enable_device(dev);
1359 if (retval)
1360 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1361 retval);
1362 pci_set_master(dev);
1363 }
1364
1365 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1366 {
1367 struct pci_dev *bridge;
1368 int err;
1369 int i, bars = 0;
1370
1371 /*
1372 * Power state could be unknown at this point, either due to a fresh
1373 * boot or a device removal call. So get the current power state
1374 * so that things like MSI message writing will behave as expected
1375 * (e.g. if the device really is in D0 at enable time).
1376 */
1377 if (dev->pm_cap) {
1378 u16 pmcsr;
1379 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1380 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1381 }
1382
1383 if (atomic_inc_return(&dev->enable_cnt) > 1)
1384 return 0; /* already enabled */
1385
1386 bridge = pci_upstream_bridge(dev);
1387 if (bridge)
1388 pci_enable_bridge(bridge);
1389
1390 /* only skip sriov related */
1391 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1392 if (dev->resource[i].flags & flags)
1393 bars |= (1 << i);
1394 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1395 if (dev->resource[i].flags & flags)
1396 bars |= (1 << i);
1397
1398 err = do_pci_enable_device(dev, bars);
1399 if (err < 0)
1400 atomic_dec(&dev->enable_cnt);
1401 return err;
1402 }
1403
1404 /**
1405 * pci_enable_device_io - Initialize a device for use with IO space
1406 * @dev: PCI device to be initialized
1407 *
1408 * Initialize device before it's used by a driver. Ask low-level code
1409 * to enable I/O resources. Wake up the device if it was suspended.
1410 * Beware, this function can fail.
1411 */
1412 int pci_enable_device_io(struct pci_dev *dev)
1413 {
1414 return pci_enable_device_flags(dev, IORESOURCE_IO);
1415 }
1416 EXPORT_SYMBOL(pci_enable_device_io);
1417
1418 /**
1419 * pci_enable_device_mem - Initialize a device for use with Memory space
1420 * @dev: PCI device to be initialized
1421 *
1422 * Initialize device before it's used by a driver. Ask low-level code
1423 * to enable Memory resources. Wake up the device if it was suspended.
1424 * Beware, this function can fail.
1425 */
1426 int pci_enable_device_mem(struct pci_dev *dev)
1427 {
1428 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1429 }
1430 EXPORT_SYMBOL(pci_enable_device_mem);
1431
1432 /**
1433 * pci_enable_device - Initialize device before it's used by a driver.
1434 * @dev: PCI device to be initialized
1435 *
1436 * Initialize device before it's used by a driver. Ask low-level code
1437 * to enable I/O and memory. Wake up the device if it was suspended.
1438 * Beware, this function can fail.
1439 *
1440 * Note we don't actually enable the device many times if we call
1441 * this function repeatedly (we just increment the count).
1442 */
1443 int pci_enable_device(struct pci_dev *dev)
1444 {
1445 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1446 }
1447 EXPORT_SYMBOL(pci_enable_device);
1448
1449 /*
1450 * Managed PCI resources. This manages device on/off, intx/msi/msix
1451 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1452 * there's no need to track it separately. pci_devres is initialized
1453 * when a device is enabled using managed PCI device enable interface.
1454 */
1455 struct pci_devres {
1456 unsigned int enabled:1;
1457 unsigned int pinned:1;
1458 unsigned int orig_intx:1;
1459 unsigned int restore_intx:1;
1460 u32 region_mask;
1461 };
1462
1463 static void pcim_release(struct device *gendev, void *res)
1464 {
1465 struct pci_dev *dev = to_pci_dev(gendev);
1466 struct pci_devres *this = res;
1467 int i;
1468
1469 if (dev->msi_enabled)
1470 pci_disable_msi(dev);
1471 if (dev->msix_enabled)
1472 pci_disable_msix(dev);
1473
1474 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1475 if (this->region_mask & (1 << i))
1476 pci_release_region(dev, i);
1477
1478 if (this->restore_intx)
1479 pci_intx(dev, this->orig_intx);
1480
1481 if (this->enabled && !this->pinned)
1482 pci_disable_device(dev);
1483 }
1484
1485 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1486 {
1487 struct pci_devres *dr, *new_dr;
1488
1489 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1490 if (dr)
1491 return dr;
1492
1493 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1494 if (!new_dr)
1495 return NULL;
1496 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1497 }
1498
1499 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1500 {
1501 if (pci_is_managed(pdev))
1502 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1503 return NULL;
1504 }
1505
1506 /**
1507 * pcim_enable_device - Managed pci_enable_device()
1508 * @pdev: PCI device to be initialized
1509 *
1510 * Managed pci_enable_device().
1511 */
1512 int pcim_enable_device(struct pci_dev *pdev)
1513 {
1514 struct pci_devres *dr;
1515 int rc;
1516
1517 dr = get_pci_dr(pdev);
1518 if (unlikely(!dr))
1519 return -ENOMEM;
1520 if (dr->enabled)
1521 return 0;
1522
1523 rc = pci_enable_device(pdev);
1524 if (!rc) {
1525 pdev->is_managed = 1;
1526 dr->enabled = 1;
1527 }
1528 return rc;
1529 }
1530 EXPORT_SYMBOL(pcim_enable_device);
1531
1532 /**
1533 * pcim_pin_device - Pin managed PCI device
1534 * @pdev: PCI device to pin
1535 *
1536 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1537 * driver detach. @pdev must have been enabled with
1538 * pcim_enable_device().
1539 */
1540 void pcim_pin_device(struct pci_dev *pdev)
1541 {
1542 struct pci_devres *dr;
1543
1544 dr = find_pci_dr(pdev);
1545 WARN_ON(!dr || !dr->enabled);
1546 if (dr)
1547 dr->pinned = 1;
1548 }
1549 EXPORT_SYMBOL(pcim_pin_device);
1550
1551 /*
1552 * pcibios_add_device - provide arch specific hooks when adding device dev
1553 * @dev: the PCI device being added
1554 *
1555 * Permits the platform to provide architecture specific functionality when
1556 * devices are added. This is the default implementation. Architecture
1557 * implementations can override this.
1558 */
1559 int __weak pcibios_add_device(struct pci_dev *dev)
1560 {
1561 return 0;
1562 }
1563
1564 /**
1565 * pcibios_release_device - provide arch specific hooks when releasing device dev
1566 * @dev: the PCI device being released
1567 *
1568 * Permits the platform to provide architecture specific functionality when
1569 * devices are released. This is the default implementation. Architecture
1570 * implementations can override this.
1571 */
1572 void __weak pcibios_release_device(struct pci_dev *dev) {}
1573
1574 /**
1575 * pcibios_disable_device - disable arch specific PCI resources for device dev
1576 * @dev: the PCI device to disable
1577 *
1578 * Disables architecture specific PCI resources for the device. This
1579 * is the default implementation. Architecture implementations can
1580 * override this.
1581 */
1582 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1583
1584 /**
1585 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1586 * @irq: ISA IRQ to penalize
1587 * @active: IRQ active or not
1588 *
1589 * Permits the platform to provide architecture-specific functionality when
1590 * penalizing ISA IRQs. This is the default implementation. Architecture
1591 * implementations can override this.
1592 */
1593 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1594
1595 static void do_pci_disable_device(struct pci_dev *dev)
1596 {
1597 u16 pci_command;
1598
1599 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1600 if (pci_command & PCI_COMMAND_MASTER) {
1601 pci_command &= ~PCI_COMMAND_MASTER;
1602 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1603 }
1604
1605 pcibios_disable_device(dev);
1606 }
1607
1608 /**
1609 * pci_disable_enabled_device - Disable device without updating enable_cnt
1610 * @dev: PCI device to disable
1611 *
1612 * NOTE: This function is a backend of PCI power management routines and is
1613 * not supposed to be called drivers.
1614 */
1615 void pci_disable_enabled_device(struct pci_dev *dev)
1616 {
1617 if (pci_is_enabled(dev))
1618 do_pci_disable_device(dev);
1619 }
1620
1621 /**
1622 * pci_disable_device - Disable PCI device after use
1623 * @dev: PCI device to be disabled
1624 *
1625 * Signal to the system that the PCI device is not in use by the system
1626 * anymore. This only involves disabling PCI bus-mastering, if active.
1627 *
1628 * Note we don't actually disable the device until all callers of
1629 * pci_enable_device() have called pci_disable_device().
1630 */
1631 void pci_disable_device(struct pci_dev *dev)
1632 {
1633 struct pci_devres *dr;
1634
1635 dr = find_pci_dr(dev);
1636 if (dr)
1637 dr->enabled = 0;
1638
1639 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1640 "disabling already-disabled device");
1641
1642 if (atomic_dec_return(&dev->enable_cnt) != 0)
1643 return;
1644
1645 do_pci_disable_device(dev);
1646
1647 dev->is_busmaster = 0;
1648 }
1649 EXPORT_SYMBOL(pci_disable_device);
1650
1651 /**
1652 * pcibios_set_pcie_reset_state - set reset state for device dev
1653 * @dev: the PCIe device reset
1654 * @state: Reset state to enter into
1655 *
1656 *
1657 * Sets the PCIe reset state for the device. This is the default
1658 * implementation. Architecture implementations can override this.
1659 */
1660 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1661 enum pcie_reset_state state)
1662 {
1663 return -EINVAL;
1664 }
1665
1666 /**
1667 * pci_set_pcie_reset_state - set reset state for device dev
1668 * @dev: the PCIe device reset
1669 * @state: Reset state to enter into
1670 *
1671 *
1672 * Sets the PCI reset state for the device.
1673 */
1674 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1675 {
1676 return pcibios_set_pcie_reset_state(dev, state);
1677 }
1678 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1679
1680 /**
1681 * pci_check_pme_status - Check if given device has generated PME.
1682 * @dev: Device to check.
1683 *
1684 * Check the PME status of the device and if set, clear it and clear PME enable
1685 * (if set). Return 'true' if PME status and PME enable were both set or
1686 * 'false' otherwise.
1687 */
1688 bool pci_check_pme_status(struct pci_dev *dev)
1689 {
1690 int pmcsr_pos;
1691 u16 pmcsr;
1692 bool ret = false;
1693
1694 if (!dev->pm_cap)
1695 return false;
1696
1697 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1698 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1699 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1700 return false;
1701
1702 /* Clear PME status. */
1703 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1704 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1705 /* Disable PME to avoid interrupt flood. */
1706 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1707 ret = true;
1708 }
1709
1710 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1711
1712 return ret;
1713 }
1714
1715 /**
1716 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1717 * @dev: Device to handle.
1718 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1719 *
1720 * Check if @dev has generated PME and queue a resume request for it in that
1721 * case.
1722 */
1723 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1724 {
1725 if (pme_poll_reset && dev->pme_poll)
1726 dev->pme_poll = false;
1727
1728 if (pci_check_pme_status(dev)) {
1729 pci_wakeup_event(dev);
1730 pm_request_resume(&dev->dev);
1731 }
1732 return 0;
1733 }
1734
1735 /**
1736 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1737 * @bus: Top bus of the subtree to walk.
1738 */
1739 void pci_pme_wakeup_bus(struct pci_bus *bus)
1740 {
1741 if (bus)
1742 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1743 }
1744
1745
1746 /**
1747 * pci_pme_capable - check the capability of PCI device to generate PME#
1748 * @dev: PCI device to handle.
1749 * @state: PCI state from which device will issue PME#.
1750 */
1751 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1752 {
1753 if (!dev->pm_cap)
1754 return false;
1755
1756 return !!(dev->pme_support & (1 << state));
1757 }
1758 EXPORT_SYMBOL(pci_pme_capable);
1759
1760 static void pci_pme_list_scan(struct work_struct *work)
1761 {
1762 struct pci_pme_device *pme_dev, *n;
1763
1764 mutex_lock(&pci_pme_list_mutex);
1765 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1766 if (pme_dev->dev->pme_poll) {
1767 struct pci_dev *bridge;
1768
1769 bridge = pme_dev->dev->bus->self;
1770 /*
1771 * If bridge is in low power state, the
1772 * configuration space of subordinate devices
1773 * may be not accessible
1774 */
1775 if (bridge && bridge->current_state != PCI_D0)
1776 continue;
1777 pci_pme_wakeup(pme_dev->dev, NULL);
1778 } else {
1779 list_del(&pme_dev->list);
1780 kfree(pme_dev);
1781 }
1782 }
1783 if (!list_empty(&pci_pme_list))
1784 queue_delayed_work(system_freezable_wq, &pci_pme_work,
1785 msecs_to_jiffies(PME_TIMEOUT));
1786 mutex_unlock(&pci_pme_list_mutex);
1787 }
1788
1789 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1790 {
1791 u16 pmcsr;
1792
1793 if (!dev->pme_support)
1794 return;
1795
1796 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1797 /* Clear PME_Status by writing 1 to it and enable PME# */
1798 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1799 if (!enable)
1800 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1801
1802 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1803 }
1804
1805 /**
1806 * pci_pme_restore - Restore PME configuration after config space restore.
1807 * @dev: PCI device to update.
1808 */
1809 void pci_pme_restore(struct pci_dev *dev)
1810 {
1811 u16 pmcsr;
1812
1813 if (!dev->pme_support)
1814 return;
1815
1816 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1817 if (dev->wakeup_prepared) {
1818 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
1819 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
1820 } else {
1821 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1822 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1823 }
1824 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1825 }
1826
1827 /**
1828 * pci_pme_active - enable or disable PCI device's PME# function
1829 * @dev: PCI device to handle.
1830 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1831 *
1832 * The caller must verify that the device is capable of generating PME# before
1833 * calling this function with @enable equal to 'true'.
1834 */
1835 void pci_pme_active(struct pci_dev *dev, bool enable)
1836 {
1837 __pci_pme_active(dev, enable);
1838
1839 /*
1840 * PCI (as opposed to PCIe) PME requires that the device have
1841 * its PME# line hooked up correctly. Not all hardware vendors
1842 * do this, so the PME never gets delivered and the device
1843 * remains asleep. The easiest way around this is to
1844 * periodically walk the list of suspended devices and check
1845 * whether any have their PME flag set. The assumption is that
1846 * we'll wake up often enough anyway that this won't be a huge
1847 * hit, and the power savings from the devices will still be a
1848 * win.
1849 *
1850 * Although PCIe uses in-band PME message instead of PME# line
1851 * to report PME, PME does not work for some PCIe devices in
1852 * reality. For example, there are devices that set their PME
1853 * status bits, but don't really bother to send a PME message;
1854 * there are PCI Express Root Ports that don't bother to
1855 * trigger interrupts when they receive PME messages from the
1856 * devices below. So PME poll is used for PCIe devices too.
1857 */
1858
1859 if (dev->pme_poll) {
1860 struct pci_pme_device *pme_dev;
1861 if (enable) {
1862 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1863 GFP_KERNEL);
1864 if (!pme_dev) {
1865 dev_warn(&dev->dev, "can't enable PME#\n");
1866 return;
1867 }
1868 pme_dev->dev = dev;
1869 mutex_lock(&pci_pme_list_mutex);
1870 list_add(&pme_dev->list, &pci_pme_list);
1871 if (list_is_singular(&pci_pme_list))
1872 queue_delayed_work(system_freezable_wq,
1873 &pci_pme_work,
1874 msecs_to_jiffies(PME_TIMEOUT));
1875 mutex_unlock(&pci_pme_list_mutex);
1876 } else {
1877 mutex_lock(&pci_pme_list_mutex);
1878 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1879 if (pme_dev->dev == dev) {
1880 list_del(&pme_dev->list);
1881 kfree(pme_dev);
1882 break;
1883 }
1884 }
1885 mutex_unlock(&pci_pme_list_mutex);
1886 }
1887 }
1888
1889 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1890 }
1891 EXPORT_SYMBOL(pci_pme_active);
1892
1893 /**
1894 * pci_enable_wake - enable PCI device as wakeup event source
1895 * @dev: PCI device affected
1896 * @state: PCI state from which device will issue wakeup events
1897 * @enable: True to enable event generation; false to disable
1898 *
1899 * This enables the device as a wakeup event source, or disables it.
1900 * When such events involves platform-specific hooks, those hooks are
1901 * called automatically by this routine.
1902 *
1903 * Devices with legacy power management (no standard PCI PM capabilities)
1904 * always require such platform hooks.
1905 *
1906 * RETURN VALUE:
1907 * 0 is returned on success
1908 * -EINVAL is returned if device is not supposed to wake up the system
1909 * Error code depending on the platform is returned if both the platform and
1910 * the native mechanism fail to enable the generation of wake-up events
1911 */
1912 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1913 {
1914 int ret = 0;
1915
1916 /* Don't do the same thing twice in a row for one device. */
1917 if (!!enable == !!dev->wakeup_prepared)
1918 return 0;
1919
1920 /*
1921 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1922 * Anderson we should be doing PME# wake enable followed by ACPI wake
1923 * enable. To disable wake-up we call the platform first, for symmetry.
1924 */
1925
1926 if (enable) {
1927 int error;
1928
1929 if (pci_pme_capable(dev, state))
1930 pci_pme_active(dev, true);
1931 else
1932 ret = 1;
1933 error = platform_pci_set_wakeup(dev, true);
1934 if (ret)
1935 ret = error;
1936 if (!ret)
1937 dev->wakeup_prepared = true;
1938 } else {
1939 platform_pci_set_wakeup(dev, false);
1940 pci_pme_active(dev, false);
1941 dev->wakeup_prepared = false;
1942 }
1943
1944 return ret;
1945 }
1946 EXPORT_SYMBOL(pci_enable_wake);
1947
1948 /**
1949 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1950 * @dev: PCI device to prepare
1951 * @enable: True to enable wake-up event generation; false to disable
1952 *
1953 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1954 * and this function allows them to set that up cleanly - pci_enable_wake()
1955 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1956 * ordering constraints.
1957 *
1958 * This function only returns error code if the device is not capable of
1959 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1960 * enable wake-up power for it.
1961 */
1962 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1963 {
1964 return pci_pme_capable(dev, PCI_D3cold) ?
1965 pci_enable_wake(dev, PCI_D3cold, enable) :
1966 pci_enable_wake(dev, PCI_D3hot, enable);
1967 }
1968 EXPORT_SYMBOL(pci_wake_from_d3);
1969
1970 /**
1971 * pci_target_state - find an appropriate low power state for a given PCI dev
1972 * @dev: PCI device
1973 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
1974 *
1975 * Use underlying platform code to find a supported low power state for @dev.
1976 * If the platform can't manage @dev, return the deepest state from which it
1977 * can generate wake events, based on any available PME info.
1978 */
1979 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
1980 {
1981 pci_power_t target_state = PCI_D3hot;
1982
1983 if (platform_pci_power_manageable(dev)) {
1984 /*
1985 * Call the platform to choose the target state of the device
1986 * and enable wake-up from this state if supported.
1987 */
1988 pci_power_t state = platform_pci_choose_state(dev);
1989
1990 switch (state) {
1991 case PCI_POWER_ERROR:
1992 case PCI_UNKNOWN:
1993 break;
1994 case PCI_D1:
1995 case PCI_D2:
1996 if (pci_no_d1d2(dev))
1997 break;
1998 default:
1999 target_state = state;
2000 }
2001
2002 return target_state;
2003 }
2004
2005 if (!dev->pm_cap)
2006 target_state = PCI_D0;
2007
2008 /*
2009 * If the device is in D3cold even though it's not power-manageable by
2010 * the platform, it may have been powered down by non-standard means.
2011 * Best to let it slumber.
2012 */
2013 if (dev->current_state == PCI_D3cold)
2014 target_state = PCI_D3cold;
2015
2016 if (wakeup) {
2017 /*
2018 * Find the deepest state from which the device can generate
2019 * wake-up events, make it the target state and enable device
2020 * to generate PME#.
2021 */
2022 if (dev->pme_support) {
2023 while (target_state
2024 && !(dev->pme_support & (1 << target_state)))
2025 target_state--;
2026 }
2027 }
2028
2029 return target_state;
2030 }
2031
2032 /**
2033 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2034 * @dev: Device to handle.
2035 *
2036 * Choose the power state appropriate for the device depending on whether
2037 * it can wake up the system and/or is power manageable by the platform
2038 * (PCI_D3hot is the default) and put the device into that state.
2039 */
2040 int pci_prepare_to_sleep(struct pci_dev *dev)
2041 {
2042 bool wakeup = device_may_wakeup(&dev->dev);
2043 pci_power_t target_state = pci_target_state(dev, wakeup);
2044 int error;
2045
2046 if (target_state == PCI_POWER_ERROR)
2047 return -EIO;
2048
2049 pci_enable_wake(dev, target_state, wakeup);
2050
2051 error = pci_set_power_state(dev, target_state);
2052
2053 if (error)
2054 pci_enable_wake(dev, target_state, false);
2055
2056 return error;
2057 }
2058 EXPORT_SYMBOL(pci_prepare_to_sleep);
2059
2060 /**
2061 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2062 * @dev: Device to handle.
2063 *
2064 * Disable device's system wake-up capability and put it into D0.
2065 */
2066 int pci_back_from_sleep(struct pci_dev *dev)
2067 {
2068 pci_enable_wake(dev, PCI_D0, false);
2069 return pci_set_power_state(dev, PCI_D0);
2070 }
2071 EXPORT_SYMBOL(pci_back_from_sleep);
2072
2073 /**
2074 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2075 * @dev: PCI device being suspended.
2076 *
2077 * Prepare @dev to generate wake-up events at run time and put it into a low
2078 * power state.
2079 */
2080 int pci_finish_runtime_suspend(struct pci_dev *dev)
2081 {
2082 pci_power_t target_state;
2083 int error;
2084
2085 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2086 if (target_state == PCI_POWER_ERROR)
2087 return -EIO;
2088
2089 dev->runtime_d3cold = target_state == PCI_D3cold;
2090
2091 pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2092
2093 error = pci_set_power_state(dev, target_state);
2094
2095 if (error) {
2096 pci_enable_wake(dev, target_state, false);
2097 dev->runtime_d3cold = false;
2098 }
2099
2100 return error;
2101 }
2102
2103 /**
2104 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2105 * @dev: Device to check.
2106 *
2107 * Return true if the device itself is capable of generating wake-up events
2108 * (through the platform or using the native PCIe PME) or if the device supports
2109 * PME and one of its upstream bridges can generate wake-up events.
2110 */
2111 bool pci_dev_run_wake(struct pci_dev *dev)
2112 {
2113 struct pci_bus *bus = dev->bus;
2114
2115 if (device_can_wakeup(&dev->dev))
2116 return true;
2117
2118 if (!dev->pme_support)
2119 return false;
2120
2121 /* PME-capable in principle, but not from the target power state */
2122 if (!pci_pme_capable(dev, pci_target_state(dev, false)))
2123 return false;
2124
2125 while (bus->parent) {
2126 struct pci_dev *bridge = bus->self;
2127
2128 if (device_can_wakeup(&bridge->dev))
2129 return true;
2130
2131 bus = bus->parent;
2132 }
2133
2134 /* We have reached the root bus. */
2135 if (bus->bridge)
2136 return device_can_wakeup(bus->bridge);
2137
2138 return false;
2139 }
2140 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2141
2142 /**
2143 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2144 * @pci_dev: Device to check.
2145 *
2146 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2147 * reconfigured due to wakeup settings difference between system and runtime
2148 * suspend and the current power state of it is suitable for the upcoming
2149 * (system) transition.
2150 *
2151 * If the device is not configured for system wakeup, disable PME for it before
2152 * returning 'true' to prevent it from waking up the system unnecessarily.
2153 */
2154 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2155 {
2156 struct device *dev = &pci_dev->dev;
2157 bool wakeup = device_may_wakeup(dev);
2158
2159 if (!pm_runtime_suspended(dev)
2160 || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2161 || platform_pci_need_resume(pci_dev)
2162 || (pci_dev->dev_flags & PCI_DEV_FLAGS_NEEDS_RESUME))
2163 return false;
2164
2165 /*
2166 * At this point the device is good to go unless it's been configured
2167 * to generate PME at the runtime suspend time, but it is not supposed
2168 * to wake up the system. In that case, simply disable PME for it
2169 * (it will have to be re-enabled on exit from system resume).
2170 *
2171 * If the device's power state is D3cold and the platform check above
2172 * hasn't triggered, the device's configuration is suitable and we don't
2173 * need to manipulate it at all.
2174 */
2175 spin_lock_irq(&dev->power.lock);
2176
2177 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2178 !wakeup)
2179 __pci_pme_active(pci_dev, false);
2180
2181 spin_unlock_irq(&dev->power.lock);
2182 return true;
2183 }
2184
2185 /**
2186 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2187 * @pci_dev: Device to handle.
2188 *
2189 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2190 * it might have been disabled during the prepare phase of system suspend if
2191 * the device was not configured for system wakeup.
2192 */
2193 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2194 {
2195 struct device *dev = &pci_dev->dev;
2196
2197 if (!pci_dev_run_wake(pci_dev))
2198 return;
2199
2200 spin_lock_irq(&dev->power.lock);
2201
2202 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2203 __pci_pme_active(pci_dev, true);
2204
2205 spin_unlock_irq(&dev->power.lock);
2206 }
2207
2208 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2209 {
2210 struct device *dev = &pdev->dev;
2211 struct device *parent = dev->parent;
2212
2213 if (parent)
2214 pm_runtime_get_sync(parent);
2215 pm_runtime_get_noresume(dev);
2216 /*
2217 * pdev->current_state is set to PCI_D3cold during suspending,
2218 * so wait until suspending completes
2219 */
2220 pm_runtime_barrier(dev);
2221 /*
2222 * Only need to resume devices in D3cold, because config
2223 * registers are still accessible for devices suspended but
2224 * not in D3cold.
2225 */
2226 if (pdev->current_state == PCI_D3cold)
2227 pm_runtime_resume(dev);
2228 }
2229
2230 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2231 {
2232 struct device *dev = &pdev->dev;
2233 struct device *parent = dev->parent;
2234
2235 pm_runtime_put(dev);
2236 if (parent)
2237 pm_runtime_put_sync(parent);
2238 }
2239
2240 /**
2241 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2242 * @bridge: Bridge to check
2243 *
2244 * This function checks if it is possible to move the bridge to D3.
2245 * Currently we only allow D3 for recent enough PCIe ports.
2246 */
2247 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2248 {
2249 unsigned int year;
2250
2251 if (!pci_is_pcie(bridge))
2252 return false;
2253
2254 switch (pci_pcie_type(bridge)) {
2255 case PCI_EXP_TYPE_ROOT_PORT:
2256 case PCI_EXP_TYPE_UPSTREAM:
2257 case PCI_EXP_TYPE_DOWNSTREAM:
2258 if (pci_bridge_d3_disable)
2259 return false;
2260
2261 /*
2262 * Hotplug interrupts cannot be delivered if the link is down,
2263 * so parents of a hotplug port must stay awake. In addition,
2264 * hotplug ports handled by firmware in System Management Mode
2265 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2266 * For simplicity, disallow in general for now.
2267 */
2268 if (bridge->is_hotplug_bridge)
2269 return false;
2270
2271 if (pci_bridge_d3_force)
2272 return true;
2273
2274 /*
2275 * It should be safe to put PCIe ports from 2015 or newer
2276 * to D3.
2277 */
2278 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2279 year >= 2015) {
2280 return true;
2281 }
2282 break;
2283 }
2284
2285 return false;
2286 }
2287
2288 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2289 {
2290 bool *d3cold_ok = data;
2291
2292 if (/* The device needs to be allowed to go D3cold ... */
2293 dev->no_d3cold || !dev->d3cold_allowed ||
2294
2295 /* ... and if it is wakeup capable to do so from D3cold. */
2296 (device_may_wakeup(&dev->dev) &&
2297 !pci_pme_capable(dev, PCI_D3cold)) ||
2298
2299 /* If it is a bridge it must be allowed to go to D3. */
2300 !pci_power_manageable(dev))
2301
2302 *d3cold_ok = false;
2303
2304 return !*d3cold_ok;
2305 }
2306
2307 /*
2308 * pci_bridge_d3_update - Update bridge D3 capabilities
2309 * @dev: PCI device which is changed
2310 *
2311 * Update upstream bridge PM capabilities accordingly depending on if the
2312 * device PM configuration was changed or the device is being removed. The
2313 * change is also propagated upstream.
2314 */
2315 void pci_bridge_d3_update(struct pci_dev *dev)
2316 {
2317 bool remove = !device_is_registered(&dev->dev);
2318 struct pci_dev *bridge;
2319 bool d3cold_ok = true;
2320
2321 bridge = pci_upstream_bridge(dev);
2322 if (!bridge || !pci_bridge_d3_possible(bridge))
2323 return;
2324
2325 /*
2326 * If D3 is currently allowed for the bridge, removing one of its
2327 * children won't change that.
2328 */
2329 if (remove && bridge->bridge_d3)
2330 return;
2331
2332 /*
2333 * If D3 is currently allowed for the bridge and a child is added or
2334 * changed, disallowance of D3 can only be caused by that child, so
2335 * we only need to check that single device, not any of its siblings.
2336 *
2337 * If D3 is currently not allowed for the bridge, checking the device
2338 * first may allow us to skip checking its siblings.
2339 */
2340 if (!remove)
2341 pci_dev_check_d3cold(dev, &d3cold_ok);
2342
2343 /*
2344 * If D3 is currently not allowed for the bridge, this may be caused
2345 * either by the device being changed/removed or any of its siblings,
2346 * so we need to go through all children to find out if one of them
2347 * continues to block D3.
2348 */
2349 if (d3cold_ok && !bridge->bridge_d3)
2350 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2351 &d3cold_ok);
2352
2353 if (bridge->bridge_d3 != d3cold_ok) {
2354 bridge->bridge_d3 = d3cold_ok;
2355 /* Propagate change to upstream bridges */
2356 pci_bridge_d3_update(bridge);
2357 }
2358 }
2359
2360 /**
2361 * pci_d3cold_enable - Enable D3cold for device
2362 * @dev: PCI device to handle
2363 *
2364 * This function can be used in drivers to enable D3cold from the device
2365 * they handle. It also updates upstream PCI bridge PM capabilities
2366 * accordingly.
2367 */
2368 void pci_d3cold_enable(struct pci_dev *dev)
2369 {
2370 if (dev->no_d3cold) {
2371 dev->no_d3cold = false;
2372 pci_bridge_d3_update(dev);
2373 }
2374 }
2375 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2376
2377 /**
2378 * pci_d3cold_disable - Disable D3cold for device
2379 * @dev: PCI device to handle
2380 *
2381 * This function can be used in drivers to disable D3cold from the device
2382 * they handle. It also updates upstream PCI bridge PM capabilities
2383 * accordingly.
2384 */
2385 void pci_d3cold_disable(struct pci_dev *dev)
2386 {
2387 if (!dev->no_d3cold) {
2388 dev->no_d3cold = true;
2389 pci_bridge_d3_update(dev);
2390 }
2391 }
2392 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2393
2394 /**
2395 * pci_pm_init - Initialize PM functions of given PCI device
2396 * @dev: PCI device to handle.
2397 */
2398 void pci_pm_init(struct pci_dev *dev)
2399 {
2400 int pm;
2401 u16 pmc;
2402
2403 pm_runtime_forbid(&dev->dev);
2404 pm_runtime_set_active(&dev->dev);
2405 pm_runtime_enable(&dev->dev);
2406 device_enable_async_suspend(&dev->dev);
2407 dev->wakeup_prepared = false;
2408
2409 dev->pm_cap = 0;
2410 dev->pme_support = 0;
2411
2412 /* find PCI PM capability in list */
2413 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2414 if (!pm)
2415 return;
2416 /* Check device's ability to generate PME# */
2417 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2418
2419 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2420 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2421 pmc & PCI_PM_CAP_VER_MASK);
2422 return;
2423 }
2424
2425 dev->pm_cap = pm;
2426 dev->d3_delay = PCI_PM_D3_WAIT;
2427 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2428 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2429 dev->d3cold_allowed = true;
2430
2431 dev->d1_support = false;
2432 dev->d2_support = false;
2433 if (!pci_no_d1d2(dev)) {
2434 if (pmc & PCI_PM_CAP_D1)
2435 dev->d1_support = true;
2436 if (pmc & PCI_PM_CAP_D2)
2437 dev->d2_support = true;
2438
2439 if (dev->d1_support || dev->d2_support)
2440 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2441 dev->d1_support ? " D1" : "",
2442 dev->d2_support ? " D2" : "");
2443 }
2444
2445 pmc &= PCI_PM_CAP_PME_MASK;
2446 if (pmc) {
2447 dev_printk(KERN_DEBUG, &dev->dev,
2448 "PME# supported from%s%s%s%s%s\n",
2449 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2450 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2451 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2452 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2453 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2454 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2455 dev->pme_poll = true;
2456 /*
2457 * Make device's PM flags reflect the wake-up capability, but
2458 * let the user space enable it to wake up the system as needed.
2459 */
2460 device_set_wakeup_capable(&dev->dev, true);
2461 /* Disable the PME# generation functionality */
2462 pci_pme_active(dev, false);
2463 }
2464 }
2465
2466 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2467 {
2468 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2469
2470 switch (prop) {
2471 case PCI_EA_P_MEM:
2472 case PCI_EA_P_VF_MEM:
2473 flags |= IORESOURCE_MEM;
2474 break;
2475 case PCI_EA_P_MEM_PREFETCH:
2476 case PCI_EA_P_VF_MEM_PREFETCH:
2477 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2478 break;
2479 case PCI_EA_P_IO:
2480 flags |= IORESOURCE_IO;
2481 break;
2482 default:
2483 return 0;
2484 }
2485
2486 return flags;
2487 }
2488
2489 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2490 u8 prop)
2491 {
2492 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2493 return &dev->resource[bei];
2494 #ifdef CONFIG_PCI_IOV
2495 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2496 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2497 return &dev->resource[PCI_IOV_RESOURCES +
2498 bei - PCI_EA_BEI_VF_BAR0];
2499 #endif
2500 else if (bei == PCI_EA_BEI_ROM)
2501 return &dev->resource[PCI_ROM_RESOURCE];
2502 else
2503 return NULL;
2504 }
2505
2506 /* Read an Enhanced Allocation (EA) entry */
2507 static int pci_ea_read(struct pci_dev *dev, int offset)
2508 {
2509 struct resource *res;
2510 int ent_size, ent_offset = offset;
2511 resource_size_t start, end;
2512 unsigned long flags;
2513 u32 dw0, bei, base, max_offset;
2514 u8 prop;
2515 bool support_64 = (sizeof(resource_size_t) >= 8);
2516
2517 pci_read_config_dword(dev, ent_offset, &dw0);
2518 ent_offset += 4;
2519
2520 /* Entry size field indicates DWORDs after 1st */
2521 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2522
2523 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2524 goto out;
2525
2526 bei = (dw0 & PCI_EA_BEI) >> 4;
2527 prop = (dw0 & PCI_EA_PP) >> 8;
2528
2529 /*
2530 * If the Property is in the reserved range, try the Secondary
2531 * Property instead.
2532 */
2533 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2534 prop = (dw0 & PCI_EA_SP) >> 16;
2535 if (prop > PCI_EA_P_BRIDGE_IO)
2536 goto out;
2537
2538 res = pci_ea_get_resource(dev, bei, prop);
2539 if (!res) {
2540 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2541 goto out;
2542 }
2543
2544 flags = pci_ea_flags(dev, prop);
2545 if (!flags) {
2546 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2547 goto out;
2548 }
2549
2550 /* Read Base */
2551 pci_read_config_dword(dev, ent_offset, &base);
2552 start = (base & PCI_EA_FIELD_MASK);
2553 ent_offset += 4;
2554
2555 /* Read MaxOffset */
2556 pci_read_config_dword(dev, ent_offset, &max_offset);
2557 ent_offset += 4;
2558
2559 /* Read Base MSBs (if 64-bit entry) */
2560 if (base & PCI_EA_IS_64) {
2561 u32 base_upper;
2562
2563 pci_read_config_dword(dev, ent_offset, &base_upper);
2564 ent_offset += 4;
2565
2566 flags |= IORESOURCE_MEM_64;
2567
2568 /* entry starts above 32-bit boundary, can't use */
2569 if (!support_64 && base_upper)
2570 goto out;
2571
2572 if (support_64)
2573 start |= ((u64)base_upper << 32);
2574 }
2575
2576 end = start + (max_offset | 0x03);
2577
2578 /* Read MaxOffset MSBs (if 64-bit entry) */
2579 if (max_offset & PCI_EA_IS_64) {
2580 u32 max_offset_upper;
2581
2582 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2583 ent_offset += 4;
2584
2585 flags |= IORESOURCE_MEM_64;
2586
2587 /* entry too big, can't use */
2588 if (!support_64 && max_offset_upper)
2589 goto out;
2590
2591 if (support_64)
2592 end += ((u64)max_offset_upper << 32);
2593 }
2594
2595 if (end < start) {
2596 dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2597 goto out;
2598 }
2599
2600 if (ent_size != ent_offset - offset) {
2601 dev_err(&dev->dev,
2602 "EA Entry Size (%d) does not match length read (%d)\n",
2603 ent_size, ent_offset - offset);
2604 goto out;
2605 }
2606
2607 res->name = pci_name(dev);
2608 res->start = start;
2609 res->end = end;
2610 res->flags = flags;
2611
2612 if (bei <= PCI_EA_BEI_BAR5)
2613 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2614 bei, res, prop);
2615 else if (bei == PCI_EA_BEI_ROM)
2616 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2617 res, prop);
2618 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2619 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2620 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2621 else
2622 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2623 bei, res, prop);
2624
2625 out:
2626 return offset + ent_size;
2627 }
2628
2629 /* Enhanced Allocation Initialization */
2630 void pci_ea_init(struct pci_dev *dev)
2631 {
2632 int ea;
2633 u8 num_ent;
2634 int offset;
2635 int i;
2636
2637 /* find PCI EA capability in list */
2638 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2639 if (!ea)
2640 return;
2641
2642 /* determine the number of entries */
2643 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2644 &num_ent);
2645 num_ent &= PCI_EA_NUM_ENT_MASK;
2646
2647 offset = ea + PCI_EA_FIRST_ENT;
2648
2649 /* Skip DWORD 2 for type 1 functions */
2650 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2651 offset += 4;
2652
2653 /* parse each EA entry */
2654 for (i = 0; i < num_ent; ++i)
2655 offset = pci_ea_read(dev, offset);
2656 }
2657
2658 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2659 struct pci_cap_saved_state *new_cap)
2660 {
2661 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2662 }
2663
2664 /**
2665 * _pci_add_cap_save_buffer - allocate buffer for saving given
2666 * capability registers
2667 * @dev: the PCI device
2668 * @cap: the capability to allocate the buffer for
2669 * @extended: Standard or Extended capability ID
2670 * @size: requested size of the buffer
2671 */
2672 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2673 bool extended, unsigned int size)
2674 {
2675 int pos;
2676 struct pci_cap_saved_state *save_state;
2677
2678 if (extended)
2679 pos = pci_find_ext_capability(dev, cap);
2680 else
2681 pos = pci_find_capability(dev, cap);
2682
2683 if (!pos)
2684 return 0;
2685
2686 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2687 if (!save_state)
2688 return -ENOMEM;
2689
2690 save_state->cap.cap_nr = cap;
2691 save_state->cap.cap_extended = extended;
2692 save_state->cap.size = size;
2693 pci_add_saved_cap(dev, save_state);
2694
2695 return 0;
2696 }
2697
2698 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2699 {
2700 return _pci_add_cap_save_buffer(dev, cap, false, size);
2701 }
2702
2703 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2704 {
2705 return _pci_add_cap_save_buffer(dev, cap, true, size);
2706 }
2707
2708 /**
2709 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2710 * @dev: the PCI device
2711 */
2712 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2713 {
2714 int error;
2715
2716 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2717 PCI_EXP_SAVE_REGS * sizeof(u16));
2718 if (error)
2719 dev_err(&dev->dev,
2720 "unable to preallocate PCI Express save buffer\n");
2721
2722 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2723 if (error)
2724 dev_err(&dev->dev,
2725 "unable to preallocate PCI-X save buffer\n");
2726
2727 pci_allocate_vc_save_buffers(dev);
2728 }
2729
2730 void pci_free_cap_save_buffers(struct pci_dev *dev)
2731 {
2732 struct pci_cap_saved_state *tmp;
2733 struct hlist_node *n;
2734
2735 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2736 kfree(tmp);
2737 }
2738
2739 /**
2740 * pci_configure_ari - enable or disable ARI forwarding
2741 * @dev: the PCI device
2742 *
2743 * If @dev and its upstream bridge both support ARI, enable ARI in the
2744 * bridge. Otherwise, disable ARI in the bridge.
2745 */
2746 void pci_configure_ari(struct pci_dev *dev)
2747 {
2748 u32 cap;
2749 struct pci_dev *bridge;
2750
2751 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2752 return;
2753
2754 bridge = dev->bus->self;
2755 if (!bridge)
2756 return;
2757
2758 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2759 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2760 return;
2761
2762 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2763 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2764 PCI_EXP_DEVCTL2_ARI);
2765 bridge->ari_enabled = 1;
2766 } else {
2767 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2768 PCI_EXP_DEVCTL2_ARI);
2769 bridge->ari_enabled = 0;
2770 }
2771 }
2772
2773 static int pci_acs_enable;
2774
2775 /**
2776 * pci_request_acs - ask for ACS to be enabled if supported
2777 */
2778 void pci_request_acs(void)
2779 {
2780 pci_acs_enable = 1;
2781 }
2782
2783 /**
2784 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2785 * @dev: the PCI device
2786 */
2787 static void pci_std_enable_acs(struct pci_dev *dev)
2788 {
2789 int pos;
2790 u16 cap;
2791 u16 ctrl;
2792
2793 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2794 if (!pos)
2795 return;
2796
2797 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2798 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2799
2800 /* Source Validation */
2801 ctrl |= (cap & PCI_ACS_SV);
2802
2803 /* P2P Request Redirect */
2804 ctrl |= (cap & PCI_ACS_RR);
2805
2806 /* P2P Completion Redirect */
2807 ctrl |= (cap & PCI_ACS_CR);
2808
2809 /* Upstream Forwarding */
2810 ctrl |= (cap & PCI_ACS_UF);
2811
2812 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2813 }
2814
2815 /**
2816 * pci_enable_acs - enable ACS if hardware support it
2817 * @dev: the PCI device
2818 */
2819 void pci_enable_acs(struct pci_dev *dev)
2820 {
2821 if (!pci_acs_enable)
2822 return;
2823
2824 if (!pci_dev_specific_enable_acs(dev))
2825 return;
2826
2827 pci_std_enable_acs(dev);
2828 }
2829
2830 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2831 {
2832 int pos;
2833 u16 cap, ctrl;
2834
2835 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2836 if (!pos)
2837 return false;
2838
2839 /*
2840 * Except for egress control, capabilities are either required
2841 * or only required if controllable. Features missing from the
2842 * capability field can therefore be assumed as hard-wired enabled.
2843 */
2844 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2845 acs_flags &= (cap | PCI_ACS_EC);
2846
2847 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2848 return (ctrl & acs_flags) == acs_flags;
2849 }
2850
2851 /**
2852 * pci_acs_enabled - test ACS against required flags for a given device
2853 * @pdev: device to test
2854 * @acs_flags: required PCI ACS flags
2855 *
2856 * Return true if the device supports the provided flags. Automatically
2857 * filters out flags that are not implemented on multifunction devices.
2858 *
2859 * Note that this interface checks the effective ACS capabilities of the
2860 * device rather than the actual capabilities. For instance, most single
2861 * function endpoints are not required to support ACS because they have no
2862 * opportunity for peer-to-peer access. We therefore return 'true'
2863 * regardless of whether the device exposes an ACS capability. This makes
2864 * it much easier for callers of this function to ignore the actual type
2865 * or topology of the device when testing ACS support.
2866 */
2867 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2868 {
2869 int ret;
2870
2871 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2872 if (ret >= 0)
2873 return ret > 0;
2874
2875 /*
2876 * Conventional PCI and PCI-X devices never support ACS, either
2877 * effectively or actually. The shared bus topology implies that
2878 * any device on the bus can receive or snoop DMA.
2879 */
2880 if (!pci_is_pcie(pdev))
2881 return false;
2882
2883 switch (pci_pcie_type(pdev)) {
2884 /*
2885 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2886 * but since their primary interface is PCI/X, we conservatively
2887 * handle them as we would a non-PCIe device.
2888 */
2889 case PCI_EXP_TYPE_PCIE_BRIDGE:
2890 /*
2891 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2892 * applicable... must never implement an ACS Extended Capability...".
2893 * This seems arbitrary, but we take a conservative interpretation
2894 * of this statement.
2895 */
2896 case PCI_EXP_TYPE_PCI_BRIDGE:
2897 case PCI_EXP_TYPE_RC_EC:
2898 return false;
2899 /*
2900 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2901 * implement ACS in order to indicate their peer-to-peer capabilities,
2902 * regardless of whether they are single- or multi-function devices.
2903 */
2904 case PCI_EXP_TYPE_DOWNSTREAM:
2905 case PCI_EXP_TYPE_ROOT_PORT:
2906 return pci_acs_flags_enabled(pdev, acs_flags);
2907 /*
2908 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2909 * implemented by the remaining PCIe types to indicate peer-to-peer
2910 * capabilities, but only when they are part of a multifunction
2911 * device. The footnote for section 6.12 indicates the specific
2912 * PCIe types included here.
2913 */
2914 case PCI_EXP_TYPE_ENDPOINT:
2915 case PCI_EXP_TYPE_UPSTREAM:
2916 case PCI_EXP_TYPE_LEG_END:
2917 case PCI_EXP_TYPE_RC_END:
2918 if (!pdev->multifunction)
2919 break;
2920
2921 return pci_acs_flags_enabled(pdev, acs_flags);
2922 }
2923
2924 /*
2925 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2926 * to single function devices with the exception of downstream ports.
2927 */
2928 return true;
2929 }
2930
2931 /**
2932 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2933 * @start: starting downstream device
2934 * @end: ending upstream device or NULL to search to the root bus
2935 * @acs_flags: required flags
2936 *
2937 * Walk up a device tree from start to end testing PCI ACS support. If
2938 * any step along the way does not support the required flags, return false.
2939 */
2940 bool pci_acs_path_enabled(struct pci_dev *start,
2941 struct pci_dev *end, u16 acs_flags)
2942 {
2943 struct pci_dev *pdev, *parent = start;
2944
2945 do {
2946 pdev = parent;
2947
2948 if (!pci_acs_enabled(pdev, acs_flags))
2949 return false;
2950
2951 if (pci_is_root_bus(pdev->bus))
2952 return (end == NULL);
2953
2954 parent = pdev->bus->self;
2955 } while (pdev != end);
2956
2957 return true;
2958 }
2959
2960 /**
2961 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2962 * @dev: the PCI device
2963 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2964 *
2965 * Perform INTx swizzling for a device behind one level of bridge. This is
2966 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2967 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2968 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2969 * the PCI Express Base Specification, Revision 2.1)
2970 */
2971 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2972 {
2973 int slot;
2974
2975 if (pci_ari_enabled(dev->bus))
2976 slot = 0;
2977 else
2978 slot = PCI_SLOT(dev->devfn);
2979
2980 return (((pin - 1) + slot) % 4) + 1;
2981 }
2982
2983 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2984 {
2985 u8 pin;
2986
2987 pin = dev->pin;
2988 if (!pin)
2989 return -1;
2990
2991 while (!pci_is_root_bus(dev->bus)) {
2992 pin = pci_swizzle_interrupt_pin(dev, pin);
2993 dev = dev->bus->self;
2994 }
2995 *bridge = dev;
2996 return pin;
2997 }
2998
2999 /**
3000 * pci_common_swizzle - swizzle INTx all the way to root bridge
3001 * @dev: the PCI device
3002 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3003 *
3004 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3005 * bridges all the way up to a PCI root bus.
3006 */
3007 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3008 {
3009 u8 pin = *pinp;
3010
3011 while (!pci_is_root_bus(dev->bus)) {
3012 pin = pci_swizzle_interrupt_pin(dev, pin);
3013 dev = dev->bus->self;
3014 }
3015 *pinp = pin;
3016 return PCI_SLOT(dev->devfn);
3017 }
3018 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3019
3020 /**
3021 * pci_release_region - Release a PCI bar
3022 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3023 * @bar: BAR to release
3024 *
3025 * Releases the PCI I/O and memory resources previously reserved by a
3026 * successful call to pci_request_region. Call this function only
3027 * after all use of the PCI regions has ceased.
3028 */
3029 void pci_release_region(struct pci_dev *pdev, int bar)
3030 {
3031 struct pci_devres *dr;
3032
3033 if (pci_resource_len(pdev, bar) == 0)
3034 return;
3035 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3036 release_region(pci_resource_start(pdev, bar),
3037 pci_resource_len(pdev, bar));
3038 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3039 release_mem_region(pci_resource_start(pdev, bar),
3040 pci_resource_len(pdev, bar));
3041
3042 dr = find_pci_dr(pdev);
3043 if (dr)
3044 dr->region_mask &= ~(1 << bar);
3045 }
3046 EXPORT_SYMBOL(pci_release_region);
3047
3048 /**
3049 * __pci_request_region - Reserved PCI I/O and memory resource
3050 * @pdev: PCI device whose resources are to be reserved
3051 * @bar: BAR to be reserved
3052 * @res_name: Name to be associated with resource.
3053 * @exclusive: whether the region access is exclusive or not
3054 *
3055 * Mark the PCI region associated with PCI device @pdev BR @bar as
3056 * being reserved by owner @res_name. Do not access any
3057 * address inside the PCI regions unless this call returns
3058 * successfully.
3059 *
3060 * If @exclusive is set, then the region is marked so that userspace
3061 * is explicitly not allowed to map the resource via /dev/mem or
3062 * sysfs MMIO access.
3063 *
3064 * Returns 0 on success, or %EBUSY on error. A warning
3065 * message is also printed on failure.
3066 */
3067 static int __pci_request_region(struct pci_dev *pdev, int bar,
3068 const char *res_name, int exclusive)
3069 {
3070 struct pci_devres *dr;
3071
3072 if (pci_resource_len(pdev, bar) == 0)
3073 return 0;
3074
3075 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3076 if (!request_region(pci_resource_start(pdev, bar),
3077 pci_resource_len(pdev, bar), res_name))
3078 goto err_out;
3079 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3080 if (!__request_mem_region(pci_resource_start(pdev, bar),
3081 pci_resource_len(pdev, bar), res_name,
3082 exclusive))
3083 goto err_out;
3084 }
3085
3086 dr = find_pci_dr(pdev);
3087 if (dr)
3088 dr->region_mask |= 1 << bar;
3089
3090 return 0;
3091
3092 err_out:
3093 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
3094 &pdev->resource[bar]);
3095 return -EBUSY;
3096 }
3097
3098 /**
3099 * pci_request_region - Reserve PCI I/O and memory resource
3100 * @pdev: PCI device whose resources are to be reserved
3101 * @bar: BAR to be reserved
3102 * @res_name: Name to be associated with resource
3103 *
3104 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3105 * being reserved by owner @res_name. Do not access any
3106 * address inside the PCI regions unless this call returns
3107 * successfully.
3108 *
3109 * Returns 0 on success, or %EBUSY on error. A warning
3110 * message is also printed on failure.
3111 */
3112 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3113 {
3114 return __pci_request_region(pdev, bar, res_name, 0);
3115 }
3116 EXPORT_SYMBOL(pci_request_region);
3117
3118 /**
3119 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3120 * @pdev: PCI device whose resources are to be reserved
3121 * @bar: BAR to be reserved
3122 * @res_name: Name to be associated with resource.
3123 *
3124 * Mark the PCI region associated with PCI device @pdev BR @bar as
3125 * being reserved by owner @res_name. Do not access any
3126 * address inside the PCI regions unless this call returns
3127 * successfully.
3128 *
3129 * Returns 0 on success, or %EBUSY on error. A warning
3130 * message is also printed on failure.
3131 *
3132 * The key difference that _exclusive makes it that userspace is
3133 * explicitly not allowed to map the resource via /dev/mem or
3134 * sysfs.
3135 */
3136 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3137 const char *res_name)
3138 {
3139 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3140 }
3141 EXPORT_SYMBOL(pci_request_region_exclusive);
3142
3143 /**
3144 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3145 * @pdev: PCI device whose resources were previously reserved
3146 * @bars: Bitmask of BARs to be released
3147 *
3148 * Release selected PCI I/O and memory resources previously reserved.
3149 * Call this function only after all use of the PCI regions has ceased.
3150 */
3151 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3152 {
3153 int i;
3154
3155 for (i = 0; i < 6; i++)
3156 if (bars & (1 << i))
3157 pci_release_region(pdev, i);
3158 }
3159 EXPORT_SYMBOL(pci_release_selected_regions);
3160
3161 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3162 const char *res_name, int excl)
3163 {
3164 int i;
3165
3166 for (i = 0; i < 6; i++)
3167 if (bars & (1 << i))
3168 if (__pci_request_region(pdev, i, res_name, excl))
3169 goto err_out;
3170 return 0;
3171
3172 err_out:
3173 while (--i >= 0)
3174 if (bars & (1 << i))
3175 pci_release_region(pdev, i);
3176
3177 return -EBUSY;
3178 }
3179
3180
3181 /**
3182 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3183 * @pdev: PCI device whose resources are to be reserved
3184 * @bars: Bitmask of BARs to be requested
3185 * @res_name: Name to be associated with resource
3186 */
3187 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3188 const char *res_name)
3189 {
3190 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3191 }
3192 EXPORT_SYMBOL(pci_request_selected_regions);
3193
3194 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3195 const char *res_name)
3196 {
3197 return __pci_request_selected_regions(pdev, bars, res_name,
3198 IORESOURCE_EXCLUSIVE);
3199 }
3200 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3201
3202 /**
3203 * pci_release_regions - Release reserved PCI I/O and memory resources
3204 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3205 *
3206 * Releases all PCI I/O and memory resources previously reserved by a
3207 * successful call to pci_request_regions. Call this function only
3208 * after all use of the PCI regions has ceased.
3209 */
3210
3211 void pci_release_regions(struct pci_dev *pdev)
3212 {
3213 pci_release_selected_regions(pdev, (1 << 6) - 1);
3214 }
3215 EXPORT_SYMBOL(pci_release_regions);
3216
3217 /**
3218 * pci_request_regions - Reserved PCI I/O and memory resources
3219 * @pdev: PCI device whose resources are to be reserved
3220 * @res_name: Name to be associated with resource.
3221 *
3222 * Mark all PCI regions associated with PCI device @pdev as
3223 * being reserved by owner @res_name. Do not access any
3224 * address inside the PCI regions unless this call returns
3225 * successfully.
3226 *
3227 * Returns 0 on success, or %EBUSY on error. A warning
3228 * message is also printed on failure.
3229 */
3230 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3231 {
3232 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3233 }
3234 EXPORT_SYMBOL(pci_request_regions);
3235
3236 /**
3237 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3238 * @pdev: PCI device whose resources are to be reserved
3239 * @res_name: Name to be associated with resource.
3240 *
3241 * Mark all PCI regions associated with PCI device @pdev as
3242 * being reserved by owner @res_name. Do not access any
3243 * address inside the PCI regions unless this call returns
3244 * successfully.
3245 *
3246 * pci_request_regions_exclusive() will mark the region so that
3247 * /dev/mem and the sysfs MMIO access will not be allowed.
3248 *
3249 * Returns 0 on success, or %EBUSY on error. A warning
3250 * message is also printed on failure.
3251 */
3252 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3253 {
3254 return pci_request_selected_regions_exclusive(pdev,
3255 ((1 << 6) - 1), res_name);
3256 }
3257 EXPORT_SYMBOL(pci_request_regions_exclusive);
3258
3259 #ifdef PCI_IOBASE
3260 struct io_range {
3261 struct list_head list;
3262 phys_addr_t start;
3263 resource_size_t size;
3264 };
3265
3266 static LIST_HEAD(io_range_list);
3267 static DEFINE_SPINLOCK(io_range_lock);
3268 #endif
3269
3270 /*
3271 * Record the PCI IO range (expressed as CPU physical address + size).
3272 * Return a negative value if an error has occured, zero otherwise
3273 */
3274 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
3275 {
3276 int err = 0;
3277
3278 #ifdef PCI_IOBASE
3279 struct io_range *range;
3280 resource_size_t allocated_size = 0;
3281
3282 /* check if the range hasn't been previously recorded */
3283 spin_lock(&io_range_lock);
3284 list_for_each_entry(range, &io_range_list, list) {
3285 if (addr >= range->start && addr + size <= range->start + size) {
3286 /* range already registered, bail out */
3287 goto end_register;
3288 }
3289 allocated_size += range->size;
3290 }
3291
3292 /* range not registed yet, check for available space */
3293 if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
3294 /* if it's too big check if 64K space can be reserved */
3295 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
3296 err = -E2BIG;
3297 goto end_register;
3298 }
3299
3300 size = SZ_64K;
3301 pr_warn("Requested IO range too big, new size set to 64K\n");
3302 }
3303
3304 /* add the range to the list */
3305 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3306 if (!range) {
3307 err = -ENOMEM;
3308 goto end_register;
3309 }
3310
3311 range->start = addr;
3312 range->size = size;
3313
3314 list_add_tail(&range->list, &io_range_list);
3315
3316 end_register:
3317 spin_unlock(&io_range_lock);
3318 #endif
3319
3320 return err;
3321 }
3322
3323 phys_addr_t pci_pio_to_address(unsigned long pio)
3324 {
3325 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3326
3327 #ifdef PCI_IOBASE
3328 struct io_range *range;
3329 resource_size_t allocated_size = 0;
3330
3331 if (pio > IO_SPACE_LIMIT)
3332 return address;
3333
3334 spin_lock(&io_range_lock);
3335 list_for_each_entry(range, &io_range_list, list) {
3336 if (pio >= allocated_size && pio < allocated_size + range->size) {
3337 address = range->start + pio - allocated_size;
3338 break;
3339 }
3340 allocated_size += range->size;
3341 }
3342 spin_unlock(&io_range_lock);
3343 #endif
3344
3345 return address;
3346 }
3347
3348 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3349 {
3350 #ifdef PCI_IOBASE
3351 struct io_range *res;
3352 resource_size_t offset = 0;
3353 unsigned long addr = -1;
3354
3355 spin_lock(&io_range_lock);
3356 list_for_each_entry(res, &io_range_list, list) {
3357 if (address >= res->start && address < res->start + res->size) {
3358 addr = address - res->start + offset;
3359 break;
3360 }
3361 offset += res->size;
3362 }
3363 spin_unlock(&io_range_lock);
3364
3365 return addr;
3366 #else
3367 if (address > IO_SPACE_LIMIT)
3368 return (unsigned long)-1;
3369
3370 return (unsigned long) address;
3371 #endif
3372 }
3373
3374 /**
3375 * pci_remap_iospace - Remap the memory mapped I/O space
3376 * @res: Resource describing the I/O space
3377 * @phys_addr: physical address of range to be mapped
3378 *
3379 * Remap the memory mapped I/O space described by the @res
3380 * and the CPU physical address @phys_addr into virtual address space.
3381 * Only architectures that have memory mapped IO functions defined
3382 * (and the PCI_IOBASE value defined) should call this function.
3383 */
3384 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3385 {
3386 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3387 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3388
3389 if (!(res->flags & IORESOURCE_IO))
3390 return -EINVAL;
3391
3392 if (res->end > IO_SPACE_LIMIT)
3393 return -EINVAL;
3394
3395 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3396 pgprot_device(PAGE_KERNEL));
3397 #else
3398 /* this architecture does not have memory mapped I/O space,
3399 so this function should never be called */
3400 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3401 return -ENODEV;
3402 #endif
3403 }
3404 EXPORT_SYMBOL(pci_remap_iospace);
3405
3406 /**
3407 * pci_unmap_iospace - Unmap the memory mapped I/O space
3408 * @res: resource to be unmapped
3409 *
3410 * Unmap the CPU virtual address @res from virtual address space.
3411 * Only architectures that have memory mapped IO functions defined
3412 * (and the PCI_IOBASE value defined) should call this function.
3413 */
3414 void pci_unmap_iospace(struct resource *res)
3415 {
3416 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3417 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3418
3419 unmap_kernel_range(vaddr, resource_size(res));
3420 #endif
3421 }
3422 EXPORT_SYMBOL(pci_unmap_iospace);
3423
3424 /**
3425 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3426 * @dev: Generic device to remap IO address for
3427 * @offset: Resource address to map
3428 * @size: Size of map
3429 *
3430 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
3431 * detach.
3432 */
3433 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3434 resource_size_t offset,
3435 resource_size_t size)
3436 {
3437 void __iomem **ptr, *addr;
3438
3439 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3440 if (!ptr)
3441 return NULL;
3442
3443 addr = pci_remap_cfgspace(offset, size);
3444 if (addr) {
3445 *ptr = addr;
3446 devres_add(dev, ptr);
3447 } else
3448 devres_free(ptr);
3449
3450 return addr;
3451 }
3452 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3453
3454 /**
3455 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3456 * @dev: generic device to handle the resource for
3457 * @res: configuration space resource to be handled
3458 *
3459 * Checks that a resource is a valid memory region, requests the memory
3460 * region and ioremaps with pci_remap_cfgspace() API that ensures the
3461 * proper PCI configuration space memory attributes are guaranteed.
3462 *
3463 * All operations are managed and will be undone on driver detach.
3464 *
3465 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3466 * on failure. Usage example:
3467 *
3468 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3469 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3470 * if (IS_ERR(base))
3471 * return PTR_ERR(base);
3472 */
3473 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3474 struct resource *res)
3475 {
3476 resource_size_t size;
3477 const char *name;
3478 void __iomem *dest_ptr;
3479
3480 BUG_ON(!dev);
3481
3482 if (!res || resource_type(res) != IORESOURCE_MEM) {
3483 dev_err(dev, "invalid resource\n");
3484 return IOMEM_ERR_PTR(-EINVAL);
3485 }
3486
3487 size = resource_size(res);
3488 name = res->name ?: dev_name(dev);
3489
3490 if (!devm_request_mem_region(dev, res->start, size, name)) {
3491 dev_err(dev, "can't request region for resource %pR\n", res);
3492 return IOMEM_ERR_PTR(-EBUSY);
3493 }
3494
3495 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3496 if (!dest_ptr) {
3497 dev_err(dev, "ioremap failed for resource %pR\n", res);
3498 devm_release_mem_region(dev, res->start, size);
3499 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3500 }
3501
3502 return dest_ptr;
3503 }
3504 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3505
3506 static void __pci_set_master(struct pci_dev *dev, bool enable)
3507 {
3508 u16 old_cmd, cmd;
3509
3510 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3511 if (enable)
3512 cmd = old_cmd | PCI_COMMAND_MASTER;
3513 else
3514 cmd = old_cmd & ~PCI_COMMAND_MASTER;
3515 if (cmd != old_cmd) {
3516 dev_dbg(&dev->dev, "%s bus mastering\n",
3517 enable ? "enabling" : "disabling");
3518 pci_write_config_word(dev, PCI_COMMAND, cmd);
3519 }
3520 dev->is_busmaster = enable;
3521 }
3522
3523 /**
3524 * pcibios_setup - process "pci=" kernel boot arguments
3525 * @str: string used to pass in "pci=" kernel boot arguments
3526 *
3527 * Process kernel boot arguments. This is the default implementation.
3528 * Architecture specific implementations can override this as necessary.
3529 */
3530 char * __weak __init pcibios_setup(char *str)
3531 {
3532 return str;
3533 }
3534
3535 /**
3536 * pcibios_set_master - enable PCI bus-mastering for device dev
3537 * @dev: the PCI device to enable
3538 *
3539 * Enables PCI bus-mastering for the device. This is the default
3540 * implementation. Architecture specific implementations can override
3541 * this if necessary.
3542 */
3543 void __weak pcibios_set_master(struct pci_dev *dev)
3544 {
3545 u8 lat;
3546
3547 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3548 if (pci_is_pcie(dev))
3549 return;
3550
3551 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3552 if (lat < 16)
3553 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3554 else if (lat > pcibios_max_latency)
3555 lat = pcibios_max_latency;
3556 else
3557 return;
3558
3559 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3560 }
3561
3562 /**
3563 * pci_set_master - enables bus-mastering for device dev
3564 * @dev: the PCI device to enable
3565 *
3566 * Enables bus-mastering on the device and calls pcibios_set_master()
3567 * to do the needed arch specific settings.
3568 */
3569 void pci_set_master(struct pci_dev *dev)
3570 {
3571 __pci_set_master(dev, true);
3572 pcibios_set_master(dev);
3573 }
3574 EXPORT_SYMBOL(pci_set_master);
3575
3576 /**
3577 * pci_clear_master - disables bus-mastering for device dev
3578 * @dev: the PCI device to disable
3579 */
3580 void pci_clear_master(struct pci_dev *dev)
3581 {
3582 __pci_set_master(dev, false);
3583 }
3584 EXPORT_SYMBOL(pci_clear_master);
3585
3586 /**
3587 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3588 * @dev: the PCI device for which MWI is to be enabled
3589 *
3590 * Helper function for pci_set_mwi.
3591 * Originally copied from drivers/net/acenic.c.
3592 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3593 *
3594 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3595 */
3596 int pci_set_cacheline_size(struct pci_dev *dev)
3597 {
3598 u8 cacheline_size;
3599
3600 if (!pci_cache_line_size)
3601 return -EINVAL;
3602
3603 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3604 equal to or multiple of the right value. */
3605 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3606 if (cacheline_size >= pci_cache_line_size &&
3607 (cacheline_size % pci_cache_line_size) == 0)
3608 return 0;
3609
3610 /* Write the correct value. */
3611 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3612 /* Read it back. */
3613 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3614 if (cacheline_size == pci_cache_line_size)
3615 return 0;
3616
3617 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3618 pci_cache_line_size << 2);
3619
3620 return -EINVAL;
3621 }
3622 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3623
3624 /**
3625 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3626 * @dev: the PCI device for which MWI is enabled
3627 *
3628 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3629 *
3630 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3631 */
3632 int pci_set_mwi(struct pci_dev *dev)
3633 {
3634 #ifdef PCI_DISABLE_MWI
3635 return 0;
3636 #else
3637 int rc;
3638 u16 cmd;
3639
3640 rc = pci_set_cacheline_size(dev);
3641 if (rc)
3642 return rc;
3643
3644 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3645 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3646 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3647 cmd |= PCI_COMMAND_INVALIDATE;
3648 pci_write_config_word(dev, PCI_COMMAND, cmd);
3649 }
3650 return 0;
3651 #endif
3652 }
3653 EXPORT_SYMBOL(pci_set_mwi);
3654
3655 /**
3656 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3657 * @dev: the PCI device for which MWI is enabled
3658 *
3659 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3660 * Callers are not required to check the return value.
3661 *
3662 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3663 */
3664 int pci_try_set_mwi(struct pci_dev *dev)
3665 {
3666 #ifdef PCI_DISABLE_MWI
3667 return 0;
3668 #else
3669 return pci_set_mwi(dev);
3670 #endif
3671 }
3672 EXPORT_SYMBOL(pci_try_set_mwi);
3673
3674 /**
3675 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3676 * @dev: the PCI device to disable
3677 *
3678 * Disables PCI Memory-Write-Invalidate transaction on the device
3679 */
3680 void pci_clear_mwi(struct pci_dev *dev)
3681 {
3682 #ifndef PCI_DISABLE_MWI
3683 u16 cmd;
3684
3685 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3686 if (cmd & PCI_COMMAND_INVALIDATE) {
3687 cmd &= ~PCI_COMMAND_INVALIDATE;
3688 pci_write_config_word(dev, PCI_COMMAND, cmd);
3689 }
3690 #endif
3691 }
3692 EXPORT_SYMBOL(pci_clear_mwi);
3693
3694 /**
3695 * pci_intx - enables/disables PCI INTx for device dev
3696 * @pdev: the PCI device to operate on
3697 * @enable: boolean: whether to enable or disable PCI INTx
3698 *
3699 * Enables/disables PCI INTx for device dev
3700 */
3701 void pci_intx(struct pci_dev *pdev, int enable)
3702 {
3703 u16 pci_command, new;
3704
3705 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3706
3707 if (enable)
3708 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3709 else
3710 new = pci_command | PCI_COMMAND_INTX_DISABLE;
3711
3712 if (new != pci_command) {
3713 struct pci_devres *dr;
3714
3715 pci_write_config_word(pdev, PCI_COMMAND, new);
3716
3717 dr = find_pci_dr(pdev);
3718 if (dr && !dr->restore_intx) {
3719 dr->restore_intx = 1;
3720 dr->orig_intx = !enable;
3721 }
3722 }
3723 }
3724 EXPORT_SYMBOL_GPL(pci_intx);
3725
3726 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3727 {
3728 struct pci_bus *bus = dev->bus;
3729 bool mask_updated = true;
3730 u32 cmd_status_dword;
3731 u16 origcmd, newcmd;
3732 unsigned long flags;
3733 bool irq_pending;
3734
3735 /*
3736 * We do a single dword read to retrieve both command and status.
3737 * Document assumptions that make this possible.
3738 */
3739 BUILD_BUG_ON(PCI_COMMAND % 4);
3740 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3741
3742 raw_spin_lock_irqsave(&pci_lock, flags);
3743
3744 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3745
3746 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3747
3748 /*
3749 * Check interrupt status register to see whether our device
3750 * triggered the interrupt (when masking) or the next IRQ is
3751 * already pending (when unmasking).
3752 */
3753 if (mask != irq_pending) {
3754 mask_updated = false;
3755 goto done;
3756 }
3757
3758 origcmd = cmd_status_dword;
3759 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3760 if (mask)
3761 newcmd |= PCI_COMMAND_INTX_DISABLE;
3762 if (newcmd != origcmd)
3763 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3764
3765 done:
3766 raw_spin_unlock_irqrestore(&pci_lock, flags);
3767
3768 return mask_updated;
3769 }
3770
3771 /**
3772 * pci_check_and_mask_intx - mask INTx on pending interrupt
3773 * @dev: the PCI device to operate on
3774 *
3775 * Check if the device dev has its INTx line asserted, mask it and
3776 * return true in that case. False is returned if no interrupt was
3777 * pending.
3778 */
3779 bool pci_check_and_mask_intx(struct pci_dev *dev)
3780 {
3781 return pci_check_and_set_intx_mask(dev, true);
3782 }
3783 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3784
3785 /**
3786 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3787 * @dev: the PCI device to operate on
3788 *
3789 * Check if the device dev has its INTx line asserted, unmask it if not
3790 * and return true. False is returned and the mask remains active if
3791 * there was still an interrupt pending.
3792 */
3793 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3794 {
3795 return pci_check_and_set_intx_mask(dev, false);
3796 }
3797 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3798
3799 /**
3800 * pci_wait_for_pending_transaction - waits for pending transaction
3801 * @dev: the PCI device to operate on
3802 *
3803 * Return 0 if transaction is pending 1 otherwise.
3804 */
3805 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3806 {
3807 if (!pci_is_pcie(dev))
3808 return 1;
3809
3810 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3811 PCI_EXP_DEVSTA_TRPND);
3812 }
3813 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3814
3815 /*
3816 * We should only need to wait 100ms after FLR, but some devices take longer.
3817 * Wait for up to 1000ms for config space to return something other than -1.
3818 * Intel IGD requires this when an LCD panel is attached. We read the 2nd
3819 * dword because VFs don't implement the 1st dword.
3820 */
3821 static void pci_flr_wait(struct pci_dev *dev)
3822 {
3823 int i = 0;
3824 u32 id;
3825
3826 do {
3827 msleep(100);
3828 pci_read_config_dword(dev, PCI_COMMAND, &id);
3829 } while (i++ < 10 && id == ~0);
3830
3831 if (id == ~0)
3832 dev_warn(&dev->dev, "Failed to return from FLR\n");
3833 else if (i > 1)
3834 dev_info(&dev->dev, "Required additional %dms to return from FLR\n",
3835 (i - 1) * 100);
3836 }
3837
3838 /**
3839 * pcie_has_flr - check if a device supports function level resets
3840 * @dev: device to check
3841 *
3842 * Returns true if the device advertises support for PCIe function level
3843 * resets.
3844 */
3845 static bool pcie_has_flr(struct pci_dev *dev)
3846 {
3847 u32 cap;
3848
3849 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
3850 return false;
3851
3852 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3853 return cap & PCI_EXP_DEVCAP_FLR;
3854 }
3855
3856 /**
3857 * pcie_flr - initiate a PCIe function level reset
3858 * @dev: device to reset
3859 *
3860 * Initiate a function level reset on @dev. The caller should ensure the
3861 * device supports FLR before calling this function, e.g. by using the
3862 * pcie_has_flr() helper.
3863 */
3864 void pcie_flr(struct pci_dev *dev)
3865 {
3866 if (!pci_wait_for_pending_transaction(dev))
3867 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3868
3869 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3870 pci_flr_wait(dev);
3871 }
3872 EXPORT_SYMBOL_GPL(pcie_flr);
3873
3874 static int pci_af_flr(struct pci_dev *dev, int probe)
3875 {
3876 int pos;
3877 u8 cap;
3878
3879 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3880 if (!pos)
3881 return -ENOTTY;
3882
3883 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
3884 return -ENOTTY;
3885
3886 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3887 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3888 return -ENOTTY;
3889
3890 if (probe)
3891 return 0;
3892
3893 /*
3894 * Wait for Transaction Pending bit to clear. A word-aligned test
3895 * is used, so we use the conrol offset rather than status and shift
3896 * the test bit to match.
3897 */
3898 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3899 PCI_AF_STATUS_TP << 8))
3900 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3901
3902 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3903 pci_flr_wait(dev);
3904 return 0;
3905 }
3906
3907 /**
3908 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3909 * @dev: Device to reset.
3910 * @probe: If set, only check if the device can be reset this way.
3911 *
3912 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3913 * unset, it will be reinitialized internally when going from PCI_D3hot to
3914 * PCI_D0. If that's the case and the device is not in a low-power state
3915 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3916 *
3917 * NOTE: This causes the caller to sleep for twice the device power transition
3918 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3919 * by default (i.e. unless the @dev's d3_delay field has a different value).
3920 * Moreover, only devices in D0 can be reset by this function.
3921 */
3922 static int pci_pm_reset(struct pci_dev *dev, int probe)
3923 {
3924 u16 csr;
3925
3926 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3927 return -ENOTTY;
3928
3929 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3930 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3931 return -ENOTTY;
3932
3933 if (probe)
3934 return 0;
3935
3936 if (dev->current_state != PCI_D0)
3937 return -EINVAL;
3938
3939 csr &= ~PCI_PM_CTRL_STATE_MASK;
3940 csr |= PCI_D3hot;
3941 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3942 pci_dev_d3_sleep(dev);
3943
3944 csr &= ~PCI_PM_CTRL_STATE_MASK;
3945 csr |= PCI_D0;
3946 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3947 pci_dev_d3_sleep(dev);
3948
3949 return 0;
3950 }
3951
3952 void pci_reset_secondary_bus(struct pci_dev *dev)
3953 {
3954 u16 ctrl;
3955
3956 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3957 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3958 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3959 /*
3960 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3961 * this to 2ms to ensure that we meet the minimum requirement.
3962 */
3963 msleep(2);
3964
3965 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3966 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3967
3968 /*
3969 * Trhfa for conventional PCI is 2^25 clock cycles.
3970 * Assuming a minimum 33MHz clock this results in a 1s
3971 * delay before we can consider subordinate devices to
3972 * be re-initialized. PCIe has some ways to shorten this,
3973 * but we don't make use of them yet.
3974 */
3975 ssleep(1);
3976 }
3977
3978 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3979 {
3980 pci_reset_secondary_bus(dev);
3981 }
3982
3983 /**
3984 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3985 * @dev: Bridge device
3986 *
3987 * Use the bridge control register to assert reset on the secondary bus.
3988 * Devices on the secondary bus are left in power-on state.
3989 */
3990 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3991 {
3992 pcibios_reset_secondary_bus(dev);
3993 }
3994 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3995
3996 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3997 {
3998 struct pci_dev *pdev;
3999
4000 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4001 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4002 return -ENOTTY;
4003
4004 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4005 if (pdev != dev)
4006 return -ENOTTY;
4007
4008 if (probe)
4009 return 0;
4010
4011 pci_reset_bridge_secondary_bus(dev->bus->self);
4012
4013 return 0;
4014 }
4015
4016 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4017 {
4018 int rc = -ENOTTY;
4019
4020 if (!hotplug || !try_module_get(hotplug->ops->owner))
4021 return rc;
4022
4023 if (hotplug->ops->reset_slot)
4024 rc = hotplug->ops->reset_slot(hotplug, probe);
4025
4026 module_put(hotplug->ops->owner);
4027
4028 return rc;
4029 }
4030
4031 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4032 {
4033 struct pci_dev *pdev;
4034
4035 if (dev->subordinate || !dev->slot ||
4036 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4037 return -ENOTTY;
4038
4039 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4040 if (pdev != dev && pdev->slot == dev->slot)
4041 return -ENOTTY;
4042
4043 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4044 }
4045
4046 static void pci_dev_lock(struct pci_dev *dev)
4047 {
4048 pci_cfg_access_lock(dev);
4049 /* block PM suspend, driver probe, etc. */
4050 device_lock(&dev->dev);
4051 }
4052
4053 /* Return 1 on successful lock, 0 on contention */
4054 static int pci_dev_trylock(struct pci_dev *dev)
4055 {
4056 if (pci_cfg_access_trylock(dev)) {
4057 if (device_trylock(&dev->dev))
4058 return 1;
4059 pci_cfg_access_unlock(dev);
4060 }
4061
4062 return 0;
4063 }
4064
4065 static void pci_dev_unlock(struct pci_dev *dev)
4066 {
4067 device_unlock(&dev->dev);
4068 pci_cfg_access_unlock(dev);
4069 }
4070
4071 static void pci_dev_save_and_disable(struct pci_dev *dev)
4072 {
4073 const struct pci_error_handlers *err_handler =
4074 dev->driver ? dev->driver->err_handler : NULL;
4075
4076 /*
4077 * dev->driver->err_handler->reset_prepare() is protected against
4078 * races with ->remove() by the device lock, which must be held by
4079 * the caller.
4080 */
4081 if (err_handler && err_handler->reset_prepare)
4082 err_handler->reset_prepare(dev);
4083
4084 /*
4085 * Wake-up device prior to save. PM registers default to D0 after
4086 * reset and a simple register restore doesn't reliably return
4087 * to a non-D0 state anyway.
4088 */
4089 pci_set_power_state(dev, PCI_D0);
4090
4091 pci_save_state(dev);
4092 /*
4093 * Disable the device by clearing the Command register, except for
4094 * INTx-disable which is set. This not only disables MMIO and I/O port
4095 * BARs, but also prevents the device from being Bus Master, preventing
4096 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4097 * compliant devices, INTx-disable prevents legacy interrupts.
4098 */
4099 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4100 }
4101
4102 static void pci_dev_restore(struct pci_dev *dev)
4103 {
4104 const struct pci_error_handlers *err_handler =
4105 dev->driver ? dev->driver->err_handler : NULL;
4106
4107 pci_restore_state(dev);
4108
4109 /*
4110 * dev->driver->err_handler->reset_done() is protected against
4111 * races with ->remove() by the device lock, which must be held by
4112 * the caller.
4113 */
4114 if (err_handler && err_handler->reset_done)
4115 err_handler->reset_done(dev);
4116 }
4117
4118 /**
4119 * __pci_reset_function - reset a PCI device function
4120 * @dev: PCI device to reset
4121 *
4122 * Some devices allow an individual function to be reset without affecting
4123 * other functions in the same device. The PCI device must be responsive
4124 * to PCI config space in order to use this function.
4125 *
4126 * The device function is presumed to be unused when this function is called.
4127 * Resetting the device will make the contents of PCI configuration space
4128 * random, so any caller of this must be prepared to reinitialise the
4129 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4130 * etc.
4131 *
4132 * Returns 0 if the device function was successfully reset or negative if the
4133 * device doesn't support resetting a single function.
4134 */
4135 int __pci_reset_function(struct pci_dev *dev)
4136 {
4137 int ret;
4138
4139 pci_dev_lock(dev);
4140 ret = __pci_reset_function_locked(dev);
4141 pci_dev_unlock(dev);
4142
4143 return ret;
4144 }
4145 EXPORT_SYMBOL_GPL(__pci_reset_function);
4146
4147 /**
4148 * __pci_reset_function_locked - reset a PCI device function while holding
4149 * the @dev mutex lock.
4150 * @dev: PCI device to reset
4151 *
4152 * Some devices allow an individual function to be reset without affecting
4153 * other functions in the same device. The PCI device must be responsive
4154 * to PCI config space in order to use this function.
4155 *
4156 * The device function is presumed to be unused and the caller is holding
4157 * the device mutex lock when this function is called.
4158 * Resetting the device will make the contents of PCI configuration space
4159 * random, so any caller of this must be prepared to reinitialise the
4160 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4161 * etc.
4162 *
4163 * Returns 0 if the device function was successfully reset or negative if the
4164 * device doesn't support resetting a single function.
4165 */
4166 int __pci_reset_function_locked(struct pci_dev *dev)
4167 {
4168 int rc;
4169
4170 might_sleep();
4171
4172 rc = pci_dev_specific_reset(dev, 0);
4173 if (rc != -ENOTTY)
4174 return rc;
4175 if (pcie_has_flr(dev)) {
4176 pcie_flr(dev);
4177 return 0;
4178 }
4179 rc = pci_af_flr(dev, 0);
4180 if (rc != -ENOTTY)
4181 return rc;
4182 rc = pci_pm_reset(dev, 0);
4183 if (rc != -ENOTTY)
4184 return rc;
4185 rc = pci_dev_reset_slot_function(dev, 0);
4186 if (rc != -ENOTTY)
4187 return rc;
4188 return pci_parent_bus_reset(dev, 0);
4189 }
4190 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4191
4192 /**
4193 * pci_probe_reset_function - check whether the device can be safely reset
4194 * @dev: PCI device to reset
4195 *
4196 * Some devices allow an individual function to be reset without affecting
4197 * other functions in the same device. The PCI device must be responsive
4198 * to PCI config space in order to use this function.
4199 *
4200 * Returns 0 if the device function can be reset or negative if the
4201 * device doesn't support resetting a single function.
4202 */
4203 int pci_probe_reset_function(struct pci_dev *dev)
4204 {
4205 int rc;
4206
4207 might_sleep();
4208
4209 rc = pci_dev_specific_reset(dev, 1);
4210 if (rc != -ENOTTY)
4211 return rc;
4212 if (pcie_has_flr(dev))
4213 return 0;
4214 rc = pci_af_flr(dev, 1);
4215 if (rc != -ENOTTY)
4216 return rc;
4217 rc = pci_pm_reset(dev, 1);
4218 if (rc != -ENOTTY)
4219 return rc;
4220 rc = pci_dev_reset_slot_function(dev, 1);
4221 if (rc != -ENOTTY)
4222 return rc;
4223
4224 return pci_parent_bus_reset(dev, 1);
4225 }
4226
4227 /**
4228 * pci_reset_function - quiesce and reset a PCI device function
4229 * @dev: PCI device to reset
4230 *
4231 * Some devices allow an individual function to be reset without affecting
4232 * other functions in the same device. The PCI device must be responsive
4233 * to PCI config space in order to use this function.
4234 *
4235 * This function does not just reset the PCI portion of a device, but
4236 * clears all the state associated with the device. This function differs
4237 * from __pci_reset_function in that it saves and restores device state
4238 * over the reset.
4239 *
4240 * Returns 0 if the device function was successfully reset or negative if the
4241 * device doesn't support resetting a single function.
4242 */
4243 int pci_reset_function(struct pci_dev *dev)
4244 {
4245 int rc;
4246
4247 rc = pci_probe_reset_function(dev);
4248 if (rc)
4249 return rc;
4250
4251 pci_dev_lock(dev);
4252 pci_dev_save_and_disable(dev);
4253
4254 rc = __pci_reset_function_locked(dev);
4255
4256 pci_dev_restore(dev);
4257 pci_dev_unlock(dev);
4258
4259 return rc;
4260 }
4261 EXPORT_SYMBOL_GPL(pci_reset_function);
4262
4263 /**
4264 * pci_reset_function_locked - quiesce and reset a PCI device function
4265 * @dev: PCI device to reset
4266 *
4267 * Some devices allow an individual function to be reset without affecting
4268 * other functions in the same device. The PCI device must be responsive
4269 * to PCI config space in order to use this function.
4270 *
4271 * This function does not just reset the PCI portion of a device, but
4272 * clears all the state associated with the device. This function differs
4273 * from __pci_reset_function() in that it saves and restores device state
4274 * over the reset. It also differs from pci_reset_function() in that it
4275 * requires the PCI device lock to be held.
4276 *
4277 * Returns 0 if the device function was successfully reset or negative if the
4278 * device doesn't support resetting a single function.
4279 */
4280 int pci_reset_function_locked(struct pci_dev *dev)
4281 {
4282 int rc;
4283
4284 rc = pci_probe_reset_function(dev);
4285 if (rc)
4286 return rc;
4287
4288 pci_dev_save_and_disable(dev);
4289
4290 rc = __pci_reset_function_locked(dev);
4291
4292 pci_dev_restore(dev);
4293
4294 return rc;
4295 }
4296 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4297
4298 /**
4299 * pci_try_reset_function - quiesce and reset a PCI device function
4300 * @dev: PCI device to reset
4301 *
4302 * Same as above, except return -EAGAIN if unable to lock device.
4303 */
4304 int pci_try_reset_function(struct pci_dev *dev)
4305 {
4306 int rc;
4307
4308 rc = pci_probe_reset_function(dev);
4309 if (rc)
4310 return rc;
4311
4312 if (!pci_dev_trylock(dev))
4313 return -EAGAIN;
4314
4315 pci_dev_save_and_disable(dev);
4316 rc = __pci_reset_function_locked(dev);
4317 pci_dev_unlock(dev);
4318
4319 pci_dev_restore(dev);
4320 return rc;
4321 }
4322 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4323
4324 /* Do any devices on or below this bus prevent a bus reset? */
4325 static bool pci_bus_resetable(struct pci_bus *bus)
4326 {
4327 struct pci_dev *dev;
4328
4329 list_for_each_entry(dev, &bus->devices, bus_list) {
4330 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4331 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4332 return false;
4333 }
4334
4335 return true;
4336 }
4337
4338 /* Lock devices from the top of the tree down */
4339 static void pci_bus_lock(struct pci_bus *bus)
4340 {
4341 struct pci_dev *dev;
4342
4343 list_for_each_entry(dev, &bus->devices, bus_list) {
4344 pci_dev_lock(dev);
4345 if (dev->subordinate)
4346 pci_bus_lock(dev->subordinate);
4347 }
4348 }
4349
4350 /* Unlock devices from the bottom of the tree up */
4351 static void pci_bus_unlock(struct pci_bus *bus)
4352 {
4353 struct pci_dev *dev;
4354
4355 list_for_each_entry(dev, &bus->devices, bus_list) {
4356 if (dev->subordinate)
4357 pci_bus_unlock(dev->subordinate);
4358 pci_dev_unlock(dev);
4359 }
4360 }
4361
4362 /* Return 1 on successful lock, 0 on contention */
4363 static int pci_bus_trylock(struct pci_bus *bus)
4364 {
4365 struct pci_dev *dev;
4366
4367 list_for_each_entry(dev, &bus->devices, bus_list) {
4368 if (!pci_dev_trylock(dev))
4369 goto unlock;
4370 if (dev->subordinate) {
4371 if (!pci_bus_trylock(dev->subordinate)) {
4372 pci_dev_unlock(dev);
4373 goto unlock;
4374 }
4375 }
4376 }
4377 return 1;
4378
4379 unlock:
4380 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4381 if (dev->subordinate)
4382 pci_bus_unlock(dev->subordinate);
4383 pci_dev_unlock(dev);
4384 }
4385 return 0;
4386 }
4387
4388 /* Do any devices on or below this slot prevent a bus reset? */
4389 static bool pci_slot_resetable(struct pci_slot *slot)
4390 {
4391 struct pci_dev *dev;
4392
4393 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4394 if (!dev->slot || dev->slot != slot)
4395 continue;
4396 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4397 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4398 return false;
4399 }
4400
4401 return true;
4402 }
4403
4404 /* Lock devices from the top of the tree down */
4405 static void pci_slot_lock(struct pci_slot *slot)
4406 {
4407 struct pci_dev *dev;
4408
4409 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4410 if (!dev->slot || dev->slot != slot)
4411 continue;
4412 pci_dev_lock(dev);
4413 if (dev->subordinate)
4414 pci_bus_lock(dev->subordinate);
4415 }
4416 }
4417
4418 /* Unlock devices from the bottom of the tree up */
4419 static void pci_slot_unlock(struct pci_slot *slot)
4420 {
4421 struct pci_dev *dev;
4422
4423 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4424 if (!dev->slot || dev->slot != slot)
4425 continue;
4426 if (dev->subordinate)
4427 pci_bus_unlock(dev->subordinate);
4428 pci_dev_unlock(dev);
4429 }
4430 }
4431
4432 /* Return 1 on successful lock, 0 on contention */
4433 static int pci_slot_trylock(struct pci_slot *slot)
4434 {
4435 struct pci_dev *dev;
4436
4437 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4438 if (!dev->slot || dev->slot != slot)
4439 continue;
4440 if (!pci_dev_trylock(dev))
4441 goto unlock;
4442 if (dev->subordinate) {
4443 if (!pci_bus_trylock(dev->subordinate)) {
4444 pci_dev_unlock(dev);
4445 goto unlock;
4446 }
4447 }
4448 }
4449 return 1;
4450
4451 unlock:
4452 list_for_each_entry_continue_reverse(dev,
4453 &slot->bus->devices, bus_list) {
4454 if (!dev->slot || dev->slot != slot)
4455 continue;
4456 if (dev->subordinate)
4457 pci_bus_unlock(dev->subordinate);
4458 pci_dev_unlock(dev);
4459 }
4460 return 0;
4461 }
4462
4463 /* Save and disable devices from the top of the tree down */
4464 static void pci_bus_save_and_disable(struct pci_bus *bus)
4465 {
4466 struct pci_dev *dev;
4467
4468 list_for_each_entry(dev, &bus->devices, bus_list) {
4469 pci_dev_lock(dev);
4470 pci_dev_save_and_disable(dev);
4471 pci_dev_unlock(dev);
4472 if (dev->subordinate)
4473 pci_bus_save_and_disable(dev->subordinate);
4474 }
4475 }
4476
4477 /*
4478 * Restore devices from top of the tree down - parent bridges need to be
4479 * restored before we can get to subordinate devices.
4480 */
4481 static void pci_bus_restore(struct pci_bus *bus)
4482 {
4483 struct pci_dev *dev;
4484
4485 list_for_each_entry(dev, &bus->devices, bus_list) {
4486 pci_dev_lock(dev);
4487 pci_dev_restore(dev);
4488 pci_dev_unlock(dev);
4489 if (dev->subordinate)
4490 pci_bus_restore(dev->subordinate);
4491 }
4492 }
4493
4494 /* Save and disable devices from the top of the tree down */
4495 static void pci_slot_save_and_disable(struct pci_slot *slot)
4496 {
4497 struct pci_dev *dev;
4498
4499 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4500 if (!dev->slot || dev->slot != slot)
4501 continue;
4502 pci_dev_save_and_disable(dev);
4503 if (dev->subordinate)
4504 pci_bus_save_and_disable(dev->subordinate);
4505 }
4506 }
4507
4508 /*
4509 * Restore devices from top of the tree down - parent bridges need to be
4510 * restored before we can get to subordinate devices.
4511 */
4512 static void pci_slot_restore(struct pci_slot *slot)
4513 {
4514 struct pci_dev *dev;
4515
4516 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4517 if (!dev->slot || dev->slot != slot)
4518 continue;
4519 pci_dev_restore(dev);
4520 if (dev->subordinate)
4521 pci_bus_restore(dev->subordinate);
4522 }
4523 }
4524
4525 static int pci_slot_reset(struct pci_slot *slot, int probe)
4526 {
4527 int rc;
4528
4529 if (!slot || !pci_slot_resetable(slot))
4530 return -ENOTTY;
4531
4532 if (!probe)
4533 pci_slot_lock(slot);
4534
4535 might_sleep();
4536
4537 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4538
4539 if (!probe)
4540 pci_slot_unlock(slot);
4541
4542 return rc;
4543 }
4544
4545 /**
4546 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4547 * @slot: PCI slot to probe
4548 *
4549 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4550 */
4551 int pci_probe_reset_slot(struct pci_slot *slot)
4552 {
4553 return pci_slot_reset(slot, 1);
4554 }
4555 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4556
4557 /**
4558 * pci_reset_slot - reset a PCI slot
4559 * @slot: PCI slot to reset
4560 *
4561 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4562 * independent of other slots. For instance, some slots may support slot power
4563 * control. In the case of a 1:1 bus to slot architecture, this function may
4564 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4565 * Generally a slot reset should be attempted before a bus reset. All of the
4566 * function of the slot and any subordinate buses behind the slot are reset
4567 * through this function. PCI config space of all devices in the slot and
4568 * behind the slot is saved before and restored after reset.
4569 *
4570 * Return 0 on success, non-zero on error.
4571 */
4572 int pci_reset_slot(struct pci_slot *slot)
4573 {
4574 int rc;
4575
4576 rc = pci_slot_reset(slot, 1);
4577 if (rc)
4578 return rc;
4579
4580 pci_slot_save_and_disable(slot);
4581
4582 rc = pci_slot_reset(slot, 0);
4583
4584 pci_slot_restore(slot);
4585
4586 return rc;
4587 }
4588 EXPORT_SYMBOL_GPL(pci_reset_slot);
4589
4590 /**
4591 * pci_try_reset_slot - Try to reset a PCI slot
4592 * @slot: PCI slot to reset
4593 *
4594 * Same as above except return -EAGAIN if the slot cannot be locked
4595 */
4596 int pci_try_reset_slot(struct pci_slot *slot)
4597 {
4598 int rc;
4599
4600 rc = pci_slot_reset(slot, 1);
4601 if (rc)
4602 return rc;
4603
4604 pci_slot_save_and_disable(slot);
4605
4606 if (pci_slot_trylock(slot)) {
4607 might_sleep();
4608 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4609 pci_slot_unlock(slot);
4610 } else
4611 rc = -EAGAIN;
4612
4613 pci_slot_restore(slot);
4614
4615 return rc;
4616 }
4617 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4618
4619 static int pci_bus_reset(struct pci_bus *bus, int probe)
4620 {
4621 if (!bus->self || !pci_bus_resetable(bus))
4622 return -ENOTTY;
4623
4624 if (probe)
4625 return 0;
4626
4627 pci_bus_lock(bus);
4628
4629 might_sleep();
4630
4631 pci_reset_bridge_secondary_bus(bus->self);
4632
4633 pci_bus_unlock(bus);
4634
4635 return 0;
4636 }
4637
4638 /**
4639 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4640 * @bus: PCI bus to probe
4641 *
4642 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4643 */
4644 int pci_probe_reset_bus(struct pci_bus *bus)
4645 {
4646 return pci_bus_reset(bus, 1);
4647 }
4648 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4649
4650 /**
4651 * pci_reset_bus - reset a PCI bus
4652 * @bus: top level PCI bus to reset
4653 *
4654 * Do a bus reset on the given bus and any subordinate buses, saving
4655 * and restoring state of all devices.
4656 *
4657 * Return 0 on success, non-zero on error.
4658 */
4659 int pci_reset_bus(struct pci_bus *bus)
4660 {
4661 int rc;
4662
4663 rc = pci_bus_reset(bus, 1);
4664 if (rc)
4665 return rc;
4666
4667 pci_bus_save_and_disable(bus);
4668
4669 rc = pci_bus_reset(bus, 0);
4670
4671 pci_bus_restore(bus);
4672
4673 return rc;
4674 }
4675 EXPORT_SYMBOL_GPL(pci_reset_bus);
4676
4677 /**
4678 * pci_try_reset_bus - Try to reset a PCI bus
4679 * @bus: top level PCI bus to reset
4680 *
4681 * Same as above except return -EAGAIN if the bus cannot be locked
4682 */
4683 int pci_try_reset_bus(struct pci_bus *bus)
4684 {
4685 int rc;
4686
4687 rc = pci_bus_reset(bus, 1);
4688 if (rc)
4689 return rc;
4690
4691 pci_bus_save_and_disable(bus);
4692
4693 if (pci_bus_trylock(bus)) {
4694 might_sleep();
4695 pci_reset_bridge_secondary_bus(bus->self);
4696 pci_bus_unlock(bus);
4697 } else
4698 rc = -EAGAIN;
4699
4700 pci_bus_restore(bus);
4701
4702 return rc;
4703 }
4704 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4705
4706 /**
4707 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4708 * @dev: PCI device to query
4709 *
4710 * Returns mmrbc: maximum designed memory read count in bytes
4711 * or appropriate error value.
4712 */
4713 int pcix_get_max_mmrbc(struct pci_dev *dev)
4714 {
4715 int cap;
4716 u32 stat;
4717
4718 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4719 if (!cap)
4720 return -EINVAL;
4721
4722 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4723 return -EINVAL;
4724
4725 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4726 }
4727 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4728
4729 /**
4730 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4731 * @dev: PCI device to query
4732 *
4733 * Returns mmrbc: maximum memory read count in bytes
4734 * or appropriate error value.
4735 */
4736 int pcix_get_mmrbc(struct pci_dev *dev)
4737 {
4738 int cap;
4739 u16 cmd;
4740
4741 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4742 if (!cap)
4743 return -EINVAL;
4744
4745 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4746 return -EINVAL;
4747
4748 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4749 }
4750 EXPORT_SYMBOL(pcix_get_mmrbc);
4751
4752 /**
4753 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4754 * @dev: PCI device to query
4755 * @mmrbc: maximum memory read count in bytes
4756 * valid values are 512, 1024, 2048, 4096
4757 *
4758 * If possible sets maximum memory read byte count, some bridges have erratas
4759 * that prevent this.
4760 */
4761 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4762 {
4763 int cap;
4764 u32 stat, v, o;
4765 u16 cmd;
4766
4767 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4768 return -EINVAL;
4769
4770 v = ffs(mmrbc) - 10;
4771
4772 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4773 if (!cap)
4774 return -EINVAL;
4775
4776 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4777 return -EINVAL;
4778
4779 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4780 return -E2BIG;
4781
4782 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4783 return -EINVAL;
4784
4785 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4786 if (o != v) {
4787 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4788 return -EIO;
4789
4790 cmd &= ~PCI_X_CMD_MAX_READ;
4791 cmd |= v << 2;
4792 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4793 return -EIO;
4794 }
4795 return 0;
4796 }
4797 EXPORT_SYMBOL(pcix_set_mmrbc);
4798
4799 /**
4800 * pcie_get_readrq - get PCI Express read request size
4801 * @dev: PCI device to query
4802 *
4803 * Returns maximum memory read request in bytes
4804 * or appropriate error value.
4805 */
4806 int pcie_get_readrq(struct pci_dev *dev)
4807 {
4808 u16 ctl;
4809
4810 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4811
4812 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4813 }
4814 EXPORT_SYMBOL(pcie_get_readrq);
4815
4816 /**
4817 * pcie_set_readrq - set PCI Express maximum memory read request
4818 * @dev: PCI device to query
4819 * @rq: maximum memory read count in bytes
4820 * valid values are 128, 256, 512, 1024, 2048, 4096
4821 *
4822 * If possible sets maximum memory read request in bytes
4823 */
4824 int pcie_set_readrq(struct pci_dev *dev, int rq)
4825 {
4826 u16 v;
4827
4828 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4829 return -EINVAL;
4830
4831 /*
4832 * If using the "performance" PCIe config, we clamp the
4833 * read rq size to the max packet size to prevent the
4834 * host bridge generating requests larger than we can
4835 * cope with
4836 */
4837 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4838 int mps = pcie_get_mps(dev);
4839
4840 if (mps < rq)
4841 rq = mps;
4842 }
4843
4844 v = (ffs(rq) - 8) << 12;
4845
4846 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4847 PCI_EXP_DEVCTL_READRQ, v);
4848 }
4849 EXPORT_SYMBOL(pcie_set_readrq);
4850
4851 /**
4852 * pcie_get_mps - get PCI Express maximum payload size
4853 * @dev: PCI device to query
4854 *
4855 * Returns maximum payload size in bytes
4856 */
4857 int pcie_get_mps(struct pci_dev *dev)
4858 {
4859 u16 ctl;
4860
4861 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4862
4863 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4864 }
4865 EXPORT_SYMBOL(pcie_get_mps);
4866
4867 /**
4868 * pcie_set_mps - set PCI Express maximum payload size
4869 * @dev: PCI device to query
4870 * @mps: maximum payload size in bytes
4871 * valid values are 128, 256, 512, 1024, 2048, 4096
4872 *
4873 * If possible sets maximum payload size
4874 */
4875 int pcie_set_mps(struct pci_dev *dev, int mps)
4876 {
4877 u16 v;
4878
4879 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4880 return -EINVAL;
4881
4882 v = ffs(mps) - 8;
4883 if (v > dev->pcie_mpss)
4884 return -EINVAL;
4885 v <<= 5;
4886
4887 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4888 PCI_EXP_DEVCTL_PAYLOAD, v);
4889 }
4890 EXPORT_SYMBOL(pcie_set_mps);
4891
4892 /**
4893 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4894 * @dev: PCI device to query
4895 * @speed: storage for minimum speed
4896 * @width: storage for minimum width
4897 *
4898 * This function will walk up the PCI device chain and determine the minimum
4899 * link width and speed of the device.
4900 */
4901 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4902 enum pcie_link_width *width)
4903 {
4904 int ret;
4905
4906 *speed = PCI_SPEED_UNKNOWN;
4907 *width = PCIE_LNK_WIDTH_UNKNOWN;
4908
4909 while (dev) {
4910 u16 lnksta;
4911 enum pci_bus_speed next_speed;
4912 enum pcie_link_width next_width;
4913
4914 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4915 if (ret)
4916 return ret;
4917
4918 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4919 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4920 PCI_EXP_LNKSTA_NLW_SHIFT;
4921
4922 if (next_speed < *speed)
4923 *speed = next_speed;
4924
4925 if (next_width < *width)
4926 *width = next_width;
4927
4928 dev = dev->bus->self;
4929 }
4930
4931 return 0;
4932 }
4933 EXPORT_SYMBOL(pcie_get_minimum_link);
4934
4935 /**
4936 * pci_select_bars - Make BAR mask from the type of resource
4937 * @dev: the PCI device for which BAR mask is made
4938 * @flags: resource type mask to be selected
4939 *
4940 * This helper routine makes bar mask from the type of resource.
4941 */
4942 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4943 {
4944 int i, bars = 0;
4945 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4946 if (pci_resource_flags(dev, i) & flags)
4947 bars |= (1 << i);
4948 return bars;
4949 }
4950 EXPORT_SYMBOL(pci_select_bars);
4951
4952 /* Some architectures require additional programming to enable VGA */
4953 static arch_set_vga_state_t arch_set_vga_state;
4954
4955 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4956 {
4957 arch_set_vga_state = func; /* NULL disables */
4958 }
4959
4960 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4961 unsigned int command_bits, u32 flags)
4962 {
4963 if (arch_set_vga_state)
4964 return arch_set_vga_state(dev, decode, command_bits,
4965 flags);
4966 return 0;
4967 }
4968
4969 /**
4970 * pci_set_vga_state - set VGA decode state on device and parents if requested
4971 * @dev: the PCI device
4972 * @decode: true = enable decoding, false = disable decoding
4973 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4974 * @flags: traverse ancestors and change bridges
4975 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4976 */
4977 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4978 unsigned int command_bits, u32 flags)
4979 {
4980 struct pci_bus *bus;
4981 struct pci_dev *bridge;
4982 u16 cmd;
4983 int rc;
4984
4985 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4986
4987 /* ARCH specific VGA enables */
4988 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4989 if (rc)
4990 return rc;
4991
4992 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4993 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4994 if (decode == true)
4995 cmd |= command_bits;
4996 else
4997 cmd &= ~command_bits;
4998 pci_write_config_word(dev, PCI_COMMAND, cmd);
4999 }
5000
5001 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5002 return 0;
5003
5004 bus = dev->bus;
5005 while (bus) {
5006 bridge = bus->self;
5007 if (bridge) {
5008 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5009 &cmd);
5010 if (decode == true)
5011 cmd |= PCI_BRIDGE_CTL_VGA;
5012 else
5013 cmd &= ~PCI_BRIDGE_CTL_VGA;
5014 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5015 cmd);
5016 }
5017 bus = bus->parent;
5018 }
5019 return 0;
5020 }
5021
5022 /**
5023 * pci_add_dma_alias - Add a DMA devfn alias for a device
5024 * @dev: the PCI device for which alias is added
5025 * @devfn: alias slot and function
5026 *
5027 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
5028 * It should be called early, preferably as PCI fixup header quirk.
5029 */
5030 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5031 {
5032 if (!dev->dma_alias_mask)
5033 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5034 sizeof(long), GFP_KERNEL);
5035 if (!dev->dma_alias_mask) {
5036 dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n");
5037 return;
5038 }
5039
5040 set_bit(devfn, dev->dma_alias_mask);
5041 dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n",
5042 PCI_SLOT(devfn), PCI_FUNC(devfn));
5043 }
5044
5045 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5046 {
5047 return (dev1->dma_alias_mask &&
5048 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5049 (dev2->dma_alias_mask &&
5050 test_bit(dev1->devfn, dev2->dma_alias_mask));
5051 }
5052
5053 bool pci_device_is_present(struct pci_dev *pdev)
5054 {
5055 u32 v;
5056
5057 if (pci_dev_is_disconnected(pdev))
5058 return false;
5059 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5060 }
5061 EXPORT_SYMBOL_GPL(pci_device_is_present);
5062
5063 void pci_ignore_hotplug(struct pci_dev *dev)
5064 {
5065 struct pci_dev *bridge = dev->bus->self;
5066
5067 dev->ignore_hotplug = 1;
5068 /* Propagate the "ignore hotplug" setting to the parent bridge. */
5069 if (bridge)
5070 bridge->ignore_hotplug = 1;
5071 }
5072 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5073
5074 resource_size_t __weak pcibios_default_alignment(void)
5075 {
5076 return 0;
5077 }
5078
5079 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5080 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5081 static DEFINE_SPINLOCK(resource_alignment_lock);
5082
5083 /**
5084 * pci_specified_resource_alignment - get resource alignment specified by user.
5085 * @dev: the PCI device to get
5086 * @resize: whether or not to change resources' size when reassigning alignment
5087 *
5088 * RETURNS: Resource alignment if it is specified.
5089 * Zero if it is not specified.
5090 */
5091 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5092 bool *resize)
5093 {
5094 int seg, bus, slot, func, align_order, count;
5095 unsigned short vendor, device, subsystem_vendor, subsystem_device;
5096 resource_size_t align = pcibios_default_alignment();
5097 char *p;
5098
5099 spin_lock(&resource_alignment_lock);
5100 p = resource_alignment_param;
5101 if (!*p && !align)
5102 goto out;
5103 if (pci_has_flag(PCI_PROBE_ONLY)) {
5104 align = 0;
5105 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5106 goto out;
5107 }
5108
5109 while (*p) {
5110 count = 0;
5111 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5112 p[count] == '@') {
5113 p += count + 1;
5114 } else {
5115 align_order = -1;
5116 }
5117 if (strncmp(p, "pci:", 4) == 0) {
5118 /* PCI vendor/device (subvendor/subdevice) ids are specified */
5119 p += 4;
5120 if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5121 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5122 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5123 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5124 p);
5125 break;
5126 }
5127 subsystem_vendor = subsystem_device = 0;
5128 }
5129 p += count;
5130 if ((!vendor || (vendor == dev->vendor)) &&
5131 (!device || (device == dev->device)) &&
5132 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5133 (!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5134 *resize = true;
5135 if (align_order == -1)
5136 align = PAGE_SIZE;
5137 else
5138 align = 1 << align_order;
5139 /* Found */
5140 break;
5141 }
5142 }
5143 else {
5144 if (sscanf(p, "%x:%x:%x.%x%n",
5145 &seg, &bus, &slot, &func, &count) != 4) {
5146 seg = 0;
5147 if (sscanf(p, "%x:%x.%x%n",
5148 &bus, &slot, &func, &count) != 3) {
5149 /* Invalid format */
5150 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5151 p);
5152 break;
5153 }
5154 }
5155 p += count;
5156 if (seg == pci_domain_nr(dev->bus) &&
5157 bus == dev->bus->number &&
5158 slot == PCI_SLOT(dev->devfn) &&
5159 func == PCI_FUNC(dev->devfn)) {
5160 *resize = true;
5161 if (align_order == -1)
5162 align = PAGE_SIZE;
5163 else
5164 align = 1 << align_order;
5165 /* Found */
5166 break;
5167 }
5168 }
5169 if (*p != ';' && *p != ',') {
5170 /* End of param or invalid format */
5171 break;
5172 }
5173 p++;
5174 }
5175 out:
5176 spin_unlock(&resource_alignment_lock);
5177 return align;
5178 }
5179
5180 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5181 resource_size_t align, bool resize)
5182 {
5183 struct resource *r = &dev->resource[bar];
5184 resource_size_t size;
5185
5186 if (!(r->flags & IORESOURCE_MEM))
5187 return;
5188
5189 if (r->flags & IORESOURCE_PCI_FIXED) {
5190 dev_info(&dev->dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5191 bar, r, (unsigned long long)align);
5192 return;
5193 }
5194
5195 size = resource_size(r);
5196 if (size >= align)
5197 return;
5198
5199 /*
5200 * Increase the alignment of the resource. There are two ways we
5201 * can do this:
5202 *
5203 * 1) Increase the size of the resource. BARs are aligned on their
5204 * size, so when we reallocate space for this resource, we'll
5205 * allocate it with the larger alignment. This also prevents
5206 * assignment of any other BARs inside the alignment region, so
5207 * if we're requesting page alignment, this means no other BARs
5208 * will share the page.
5209 *
5210 * The disadvantage is that this makes the resource larger than
5211 * the hardware BAR, which may break drivers that compute things
5212 * based on the resource size, e.g., to find registers at a
5213 * fixed offset before the end of the BAR.
5214 *
5215 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5216 * set r->start to the desired alignment. By itself this
5217 * doesn't prevent other BARs being put inside the alignment
5218 * region, but if we realign *every* resource of every device in
5219 * the system, none of them will share an alignment region.
5220 *
5221 * When the user has requested alignment for only some devices via
5222 * the "pci=resource_alignment" argument, "resize" is true and we
5223 * use the first method. Otherwise we assume we're aligning all
5224 * devices and we use the second.
5225 */
5226
5227 dev_info(&dev->dev, "BAR%d %pR: requesting alignment to %#llx\n",
5228 bar, r, (unsigned long long)align);
5229
5230 if (resize) {
5231 r->start = 0;
5232 r->end = align - 1;
5233 } else {
5234 r->flags &= ~IORESOURCE_SIZEALIGN;
5235 r->flags |= IORESOURCE_STARTALIGN;
5236 r->start = align;
5237 r->end = r->start + size - 1;
5238 }
5239 r->flags |= IORESOURCE_UNSET;
5240 }
5241
5242 /*
5243 * This function disables memory decoding and releases memory resources
5244 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5245 * It also rounds up size to specified alignment.
5246 * Later on, the kernel will assign page-aligned memory resource back
5247 * to the device.
5248 */
5249 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5250 {
5251 int i;
5252 struct resource *r;
5253 resource_size_t align;
5254 u16 command;
5255 bool resize = false;
5256
5257 /*
5258 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5259 * 3.4.1.11. Their resources are allocated from the space
5260 * described by the VF BARx register in the PF's SR-IOV capability.
5261 * We can't influence their alignment here.
5262 */
5263 if (dev->is_virtfn)
5264 return;
5265
5266 /* check if specified PCI is target device to reassign */
5267 align = pci_specified_resource_alignment(dev, &resize);
5268 if (!align)
5269 return;
5270
5271 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5272 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5273 dev_warn(&dev->dev,
5274 "Can't reassign resources to host bridge.\n");
5275 return;
5276 }
5277
5278 dev_info(&dev->dev,
5279 "Disabling memory decoding and releasing memory resources.\n");
5280 pci_read_config_word(dev, PCI_COMMAND, &command);
5281 command &= ~PCI_COMMAND_MEMORY;
5282 pci_write_config_word(dev, PCI_COMMAND, command);
5283
5284 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
5285 pci_request_resource_alignment(dev, i, align, resize);
5286
5287 /*
5288 * Need to disable bridge's resource window,
5289 * to enable the kernel to reassign new resource
5290 * window later on.
5291 */
5292 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5293 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5294 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5295 r = &dev->resource[i];
5296 if (!(r->flags & IORESOURCE_MEM))
5297 continue;
5298 r->flags |= IORESOURCE_UNSET;
5299 r->end = resource_size(r) - 1;
5300 r->start = 0;
5301 }
5302 pci_disable_bridge_window(dev);
5303 }
5304 }
5305
5306 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5307 {
5308 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5309 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5310 spin_lock(&resource_alignment_lock);
5311 strncpy(resource_alignment_param, buf, count);
5312 resource_alignment_param[count] = '\0';
5313 spin_unlock(&resource_alignment_lock);
5314 return count;
5315 }
5316
5317 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5318 {
5319 size_t count;
5320 spin_lock(&resource_alignment_lock);
5321 count = snprintf(buf, size, "%s", resource_alignment_param);
5322 spin_unlock(&resource_alignment_lock);
5323 return count;
5324 }
5325
5326 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5327 {
5328 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5329 }
5330
5331 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5332 const char *buf, size_t count)
5333 {
5334 return pci_set_resource_alignment_param(buf, count);
5335 }
5336
5337 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5338 pci_resource_alignment_store);
5339
5340 static int __init pci_resource_alignment_sysfs_init(void)
5341 {
5342 return bus_create_file(&pci_bus_type,
5343 &bus_attr_resource_alignment);
5344 }
5345 late_initcall(pci_resource_alignment_sysfs_init);
5346
5347 static void pci_no_domains(void)
5348 {
5349 #ifdef CONFIG_PCI_DOMAINS
5350 pci_domains_supported = 0;
5351 #endif
5352 }
5353
5354 #ifdef CONFIG_PCI_DOMAINS
5355 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5356
5357 int pci_get_new_domain_nr(void)
5358 {
5359 return atomic_inc_return(&__domain_nr);
5360 }
5361
5362 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5363 static int of_pci_bus_find_domain_nr(struct device *parent)
5364 {
5365 static int use_dt_domains = -1;
5366 int domain = -1;
5367
5368 if (parent)
5369 domain = of_get_pci_domain_nr(parent->of_node);
5370 /*
5371 * Check DT domain and use_dt_domains values.
5372 *
5373 * If DT domain property is valid (domain >= 0) and
5374 * use_dt_domains != 0, the DT assignment is valid since this means
5375 * we have not previously allocated a domain number by using
5376 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5377 * 1, to indicate that we have just assigned a domain number from
5378 * DT.
5379 *
5380 * If DT domain property value is not valid (ie domain < 0), and we
5381 * have not previously assigned a domain number from DT
5382 * (use_dt_domains != 1) we should assign a domain number by
5383 * using the:
5384 *
5385 * pci_get_new_domain_nr()
5386 *
5387 * API and update the use_dt_domains value to keep track of method we
5388 * are using to assign domain numbers (use_dt_domains = 0).
5389 *
5390 * All other combinations imply we have a platform that is trying
5391 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5392 * which is a recipe for domain mishandling and it is prevented by
5393 * invalidating the domain value (domain = -1) and printing a
5394 * corresponding error.
5395 */
5396 if (domain >= 0 && use_dt_domains) {
5397 use_dt_domains = 1;
5398 } else if (domain < 0 && use_dt_domains != 1) {
5399 use_dt_domains = 0;
5400 domain = pci_get_new_domain_nr();
5401 } else {
5402 dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
5403 parent->of_node->full_name);
5404 domain = -1;
5405 }
5406
5407 return domain;
5408 }
5409
5410 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5411 {
5412 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5413 acpi_pci_bus_find_domain_nr(bus);
5414 }
5415 #endif
5416 #endif
5417
5418 /**
5419 * pci_ext_cfg_avail - can we access extended PCI config space?
5420 *
5421 * Returns 1 if we can access PCI extended config space (offsets
5422 * greater than 0xff). This is the default implementation. Architecture
5423 * implementations can override this.
5424 */
5425 int __weak pci_ext_cfg_avail(void)
5426 {
5427 return 1;
5428 }
5429
5430 void __weak pci_fixup_cardbus(struct pci_bus *bus)
5431 {
5432 }
5433 EXPORT_SYMBOL(pci_fixup_cardbus);
5434
5435 static int __init pci_setup(char *str)
5436 {
5437 while (str) {
5438 char *k = strchr(str, ',');
5439 if (k)
5440 *k++ = 0;
5441 if (*str && (str = pcibios_setup(str)) && *str) {
5442 if (!strcmp(str, "nomsi")) {
5443 pci_no_msi();
5444 } else if (!strcmp(str, "noaer")) {
5445 pci_no_aer();
5446 } else if (!strncmp(str, "realloc=", 8)) {
5447 pci_realloc_get_opt(str + 8);
5448 } else if (!strncmp(str, "realloc", 7)) {
5449 pci_realloc_get_opt("on");
5450 } else if (!strcmp(str, "nodomains")) {
5451 pci_no_domains();
5452 } else if (!strncmp(str, "noari", 5)) {
5453 pcie_ari_disabled = true;
5454 } else if (!strncmp(str, "cbiosize=", 9)) {
5455 pci_cardbus_io_size = memparse(str + 9, &str);
5456 } else if (!strncmp(str, "cbmemsize=", 10)) {
5457 pci_cardbus_mem_size = memparse(str + 10, &str);
5458 } else if (!strncmp(str, "resource_alignment=", 19)) {
5459 pci_set_resource_alignment_param(str + 19,
5460 strlen(str + 19));
5461 } else if (!strncmp(str, "ecrc=", 5)) {
5462 pcie_ecrc_get_policy(str + 5);
5463 } else if (!strncmp(str, "hpiosize=", 9)) {
5464 pci_hotplug_io_size = memparse(str + 9, &str);
5465 } else if (!strncmp(str, "hpmemsize=", 10)) {
5466 pci_hotplug_mem_size = memparse(str + 10, &str);
5467 } else if (!strncmp(str, "hpbussize=", 10)) {
5468 pci_hotplug_bus_size =
5469 simple_strtoul(str + 10, &str, 0);
5470 if (pci_hotplug_bus_size > 0xff)
5471 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5472 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5473 pcie_bus_config = PCIE_BUS_TUNE_OFF;
5474 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
5475 pcie_bus_config = PCIE_BUS_SAFE;
5476 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
5477 pcie_bus_config = PCIE_BUS_PERFORMANCE;
5478 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5479 pcie_bus_config = PCIE_BUS_PEER2PEER;
5480 } else if (!strncmp(str, "pcie_scan_all", 13)) {
5481 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5482 } else {
5483 printk(KERN_ERR "PCI: Unknown option `%s'\n",
5484 str);
5485 }
5486 }
5487 str = k;
5488 }
5489 return 0;
5490 }
5491 early_param("pci", pci_setup);