]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/pci/pci.c
HID: logitech-dj: fix spelling in printk
[mirror_ubuntu-kernels.git] / drivers / pci / pci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/of.h>
17 #include <linux/of_pci.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pci-ats.h>
33 #include <asm/setup.h>
34 #include <asm/dma.h>
35 #include <linux/aer.h>
36 #include "pci.h"
37
38 DEFINE_MUTEX(pci_slot_mutex);
39
40 const char *pci_power_names[] = {
41 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
42 };
43 EXPORT_SYMBOL_GPL(pci_power_names);
44
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
47
48 int pci_pci_problems;
49 EXPORT_SYMBOL(pci_pci_problems);
50
51 unsigned int pci_pm_d3_delay;
52
53 static void pci_pme_list_scan(struct work_struct *work);
54
55 static LIST_HEAD(pci_pme_list);
56 static DEFINE_MUTEX(pci_pme_list_mutex);
57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58
59 struct pci_pme_device {
60 struct list_head list;
61 struct pci_dev *dev;
62 };
63
64 #define PME_TIMEOUT 1000 /* How long between PME checks */
65
66 static void pci_dev_d3_sleep(struct pci_dev *dev)
67 {
68 unsigned int delay = dev->d3_delay;
69
70 if (delay < pci_pm_d3_delay)
71 delay = pci_pm_d3_delay;
72
73 if (delay)
74 msleep(delay);
75 }
76
77 #ifdef CONFIG_PCI_DOMAINS
78 int pci_domains_supported = 1;
79 #endif
80
81 #define DEFAULT_CARDBUS_IO_SIZE (256)
82 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
83 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
84 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
85 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
86
87 #define DEFAULT_HOTPLUG_IO_SIZE (256)
88 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
89 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
90 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
91 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
92
93 #define DEFAULT_HOTPLUG_BUS_SIZE 1
94 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
95
96 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
97
98 /*
99 * The default CLS is used if arch didn't set CLS explicitly and not
100 * all pci devices agree on the same value. Arch can override either
101 * the dfl or actual value as it sees fit. Don't forget this is
102 * measured in 32-bit words, not bytes.
103 */
104 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
105 u8 pci_cache_line_size;
106
107 /*
108 * If we set up a device for bus mastering, we need to check the latency
109 * timer as certain BIOSes forget to set it properly.
110 */
111 unsigned int pcibios_max_latency = 255;
112
113 /* If set, the PCIe ARI capability will not be used. */
114 static bool pcie_ari_disabled;
115
116 /* If set, the PCIe ATS capability will not be used. */
117 static bool pcie_ats_disabled;
118
119 /* If set, the PCI config space of each device is printed during boot. */
120 bool pci_early_dump;
121
122 bool pci_ats_disabled(void)
123 {
124 return pcie_ats_disabled;
125 }
126
127 /* Disable bridge_d3 for all PCIe ports */
128 static bool pci_bridge_d3_disable;
129 /* Force bridge_d3 for all PCIe ports */
130 static bool pci_bridge_d3_force;
131
132 static int __init pcie_port_pm_setup(char *str)
133 {
134 if (!strcmp(str, "off"))
135 pci_bridge_d3_disable = true;
136 else if (!strcmp(str, "force"))
137 pci_bridge_d3_force = true;
138 return 1;
139 }
140 __setup("pcie_port_pm=", pcie_port_pm_setup);
141
142 /* Time to wait after a reset for device to become responsive */
143 #define PCIE_RESET_READY_POLL_MS 60000
144
145 /**
146 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
147 * @bus: pointer to PCI bus structure to search
148 *
149 * Given a PCI bus, returns the highest PCI bus number present in the set
150 * including the given PCI bus and its list of child PCI buses.
151 */
152 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
153 {
154 struct pci_bus *tmp;
155 unsigned char max, n;
156
157 max = bus->busn_res.end;
158 list_for_each_entry(tmp, &bus->children, node) {
159 n = pci_bus_max_busnr(tmp);
160 if (n > max)
161 max = n;
162 }
163 return max;
164 }
165 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
166
167 #ifdef CONFIG_HAS_IOMEM
168 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
169 {
170 struct resource *res = &pdev->resource[bar];
171
172 /*
173 * Make sure the BAR is actually a memory resource, not an IO resource
174 */
175 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
176 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
177 return NULL;
178 }
179 return ioremap_nocache(res->start, resource_size(res));
180 }
181 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
182
183 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
184 {
185 /*
186 * Make sure the BAR is actually a memory resource, not an IO resource
187 */
188 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
189 WARN_ON(1);
190 return NULL;
191 }
192 return ioremap_wc(pci_resource_start(pdev, bar),
193 pci_resource_len(pdev, bar));
194 }
195 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
196 #endif
197
198 /**
199 * pci_dev_str_match_path - test if a path string matches a device
200 * @dev: the PCI device to test
201 * @path: string to match the device against
202 * @endptr: pointer to the string after the match
203 *
204 * Test if a string (typically from a kernel parameter) formatted as a
205 * path of device/function addresses matches a PCI device. The string must
206 * be of the form:
207 *
208 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
209 *
210 * A path for a device can be obtained using 'lspci -t'. Using a path
211 * is more robust against bus renumbering than using only a single bus,
212 * device and function address.
213 *
214 * Returns 1 if the string matches the device, 0 if it does not and
215 * a negative error code if it fails to parse the string.
216 */
217 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
218 const char **endptr)
219 {
220 int ret;
221 int seg, bus, slot, func;
222 char *wpath, *p;
223 char end;
224
225 *endptr = strchrnul(path, ';');
226
227 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
228 if (!wpath)
229 return -ENOMEM;
230
231 while (1) {
232 p = strrchr(wpath, '/');
233 if (!p)
234 break;
235 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
236 if (ret != 2) {
237 ret = -EINVAL;
238 goto free_and_exit;
239 }
240
241 if (dev->devfn != PCI_DEVFN(slot, func)) {
242 ret = 0;
243 goto free_and_exit;
244 }
245
246 /*
247 * Note: we don't need to get a reference to the upstream
248 * bridge because we hold a reference to the top level
249 * device which should hold a reference to the bridge,
250 * and so on.
251 */
252 dev = pci_upstream_bridge(dev);
253 if (!dev) {
254 ret = 0;
255 goto free_and_exit;
256 }
257
258 *p = 0;
259 }
260
261 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
262 &func, &end);
263 if (ret != 4) {
264 seg = 0;
265 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
266 if (ret != 3) {
267 ret = -EINVAL;
268 goto free_and_exit;
269 }
270 }
271
272 ret = (seg == pci_domain_nr(dev->bus) &&
273 bus == dev->bus->number &&
274 dev->devfn == PCI_DEVFN(slot, func));
275
276 free_and_exit:
277 kfree(wpath);
278 return ret;
279 }
280
281 /**
282 * pci_dev_str_match - test if a string matches a device
283 * @dev: the PCI device to test
284 * @p: string to match the device against
285 * @endptr: pointer to the string after the match
286 *
287 * Test if a string (typically from a kernel parameter) matches a specified
288 * PCI device. The string may be of one of the following formats:
289 *
290 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
291 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
292 *
293 * The first format specifies a PCI bus/device/function address which
294 * may change if new hardware is inserted, if motherboard firmware changes,
295 * or due to changes caused in kernel parameters. If the domain is
296 * left unspecified, it is taken to be 0. In order to be robust against
297 * bus renumbering issues, a path of PCI device/function numbers may be used
298 * to address the specific device. The path for a device can be determined
299 * through the use of 'lspci -t'.
300 *
301 * The second format matches devices using IDs in the configuration
302 * space which may match multiple devices in the system. A value of 0
303 * for any field will match all devices. (Note: this differs from
304 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
305 * legacy reasons and convenience so users don't have to specify
306 * FFFFFFFFs on the command line.)
307 *
308 * Returns 1 if the string matches the device, 0 if it does not and
309 * a negative error code if the string cannot be parsed.
310 */
311 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
312 const char **endptr)
313 {
314 int ret;
315 int count;
316 unsigned short vendor, device, subsystem_vendor, subsystem_device;
317
318 if (strncmp(p, "pci:", 4) == 0) {
319 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
320 p += 4;
321 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
322 &subsystem_vendor, &subsystem_device, &count);
323 if (ret != 4) {
324 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
325 if (ret != 2)
326 return -EINVAL;
327
328 subsystem_vendor = 0;
329 subsystem_device = 0;
330 }
331
332 p += count;
333
334 if ((!vendor || vendor == dev->vendor) &&
335 (!device || device == dev->device) &&
336 (!subsystem_vendor ||
337 subsystem_vendor == dev->subsystem_vendor) &&
338 (!subsystem_device ||
339 subsystem_device == dev->subsystem_device))
340 goto found;
341 } else {
342 /*
343 * PCI Bus, Device, Function IDs are specified
344 * (optionally, may include a path of devfns following it)
345 */
346 ret = pci_dev_str_match_path(dev, p, &p);
347 if (ret < 0)
348 return ret;
349 else if (ret)
350 goto found;
351 }
352
353 *endptr = p;
354 return 0;
355
356 found:
357 *endptr = p;
358 return 1;
359 }
360
361 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
362 u8 pos, int cap, int *ttl)
363 {
364 u8 id;
365 u16 ent;
366
367 pci_bus_read_config_byte(bus, devfn, pos, &pos);
368
369 while ((*ttl)--) {
370 if (pos < 0x40)
371 break;
372 pos &= ~3;
373 pci_bus_read_config_word(bus, devfn, pos, &ent);
374
375 id = ent & 0xff;
376 if (id == 0xff)
377 break;
378 if (id == cap)
379 return pos;
380 pos = (ent >> 8);
381 }
382 return 0;
383 }
384
385 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
386 u8 pos, int cap)
387 {
388 int ttl = PCI_FIND_CAP_TTL;
389
390 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
391 }
392
393 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
394 {
395 return __pci_find_next_cap(dev->bus, dev->devfn,
396 pos + PCI_CAP_LIST_NEXT, cap);
397 }
398 EXPORT_SYMBOL_GPL(pci_find_next_capability);
399
400 static int __pci_bus_find_cap_start(struct pci_bus *bus,
401 unsigned int devfn, u8 hdr_type)
402 {
403 u16 status;
404
405 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
406 if (!(status & PCI_STATUS_CAP_LIST))
407 return 0;
408
409 switch (hdr_type) {
410 case PCI_HEADER_TYPE_NORMAL:
411 case PCI_HEADER_TYPE_BRIDGE:
412 return PCI_CAPABILITY_LIST;
413 case PCI_HEADER_TYPE_CARDBUS:
414 return PCI_CB_CAPABILITY_LIST;
415 }
416
417 return 0;
418 }
419
420 /**
421 * pci_find_capability - query for devices' capabilities
422 * @dev: PCI device to query
423 * @cap: capability code
424 *
425 * Tell if a device supports a given PCI capability.
426 * Returns the address of the requested capability structure within the
427 * device's PCI configuration space or 0 in case the device does not
428 * support it. Possible values for @cap:
429 *
430 * %PCI_CAP_ID_PM Power Management
431 * %PCI_CAP_ID_AGP Accelerated Graphics Port
432 * %PCI_CAP_ID_VPD Vital Product Data
433 * %PCI_CAP_ID_SLOTID Slot Identification
434 * %PCI_CAP_ID_MSI Message Signalled Interrupts
435 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
436 * %PCI_CAP_ID_PCIX PCI-X
437 * %PCI_CAP_ID_EXP PCI Express
438 */
439 int pci_find_capability(struct pci_dev *dev, int cap)
440 {
441 int pos;
442
443 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
444 if (pos)
445 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
446
447 return pos;
448 }
449 EXPORT_SYMBOL(pci_find_capability);
450
451 /**
452 * pci_bus_find_capability - query for devices' capabilities
453 * @bus: the PCI bus to query
454 * @devfn: PCI device to query
455 * @cap: capability code
456 *
457 * Like pci_find_capability() but works for pci devices that do not have a
458 * pci_dev structure set up yet.
459 *
460 * Returns the address of the requested capability structure within the
461 * device's PCI configuration space or 0 in case the device does not
462 * support it.
463 */
464 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
465 {
466 int pos;
467 u8 hdr_type;
468
469 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
470
471 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
472 if (pos)
473 pos = __pci_find_next_cap(bus, devfn, pos, cap);
474
475 return pos;
476 }
477 EXPORT_SYMBOL(pci_bus_find_capability);
478
479 /**
480 * pci_find_next_ext_capability - Find an extended capability
481 * @dev: PCI device to query
482 * @start: address at which to start looking (0 to start at beginning of list)
483 * @cap: capability code
484 *
485 * Returns the address of the next matching extended capability structure
486 * within the device's PCI configuration space or 0 if the device does
487 * not support it. Some capabilities can occur several times, e.g., the
488 * vendor-specific capability, and this provides a way to find them all.
489 */
490 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
491 {
492 u32 header;
493 int ttl;
494 int pos = PCI_CFG_SPACE_SIZE;
495
496 /* minimum 8 bytes per capability */
497 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
498
499 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
500 return 0;
501
502 if (start)
503 pos = start;
504
505 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
506 return 0;
507
508 /*
509 * If we have no capabilities, this is indicated by cap ID,
510 * cap version and next pointer all being 0.
511 */
512 if (header == 0)
513 return 0;
514
515 while (ttl-- > 0) {
516 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
517 return pos;
518
519 pos = PCI_EXT_CAP_NEXT(header);
520 if (pos < PCI_CFG_SPACE_SIZE)
521 break;
522
523 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
524 break;
525 }
526
527 return 0;
528 }
529 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
530
531 /**
532 * pci_find_ext_capability - Find an extended capability
533 * @dev: PCI device to query
534 * @cap: capability code
535 *
536 * Returns the address of the requested extended capability structure
537 * within the device's PCI configuration space or 0 if the device does
538 * not support it. Possible values for @cap:
539 *
540 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
541 * %PCI_EXT_CAP_ID_VC Virtual Channel
542 * %PCI_EXT_CAP_ID_DSN Device Serial Number
543 * %PCI_EXT_CAP_ID_PWR Power Budgeting
544 */
545 int pci_find_ext_capability(struct pci_dev *dev, int cap)
546 {
547 return pci_find_next_ext_capability(dev, 0, cap);
548 }
549 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
550
551 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
552 {
553 int rc, ttl = PCI_FIND_CAP_TTL;
554 u8 cap, mask;
555
556 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
557 mask = HT_3BIT_CAP_MASK;
558 else
559 mask = HT_5BIT_CAP_MASK;
560
561 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
562 PCI_CAP_ID_HT, &ttl);
563 while (pos) {
564 rc = pci_read_config_byte(dev, pos + 3, &cap);
565 if (rc != PCIBIOS_SUCCESSFUL)
566 return 0;
567
568 if ((cap & mask) == ht_cap)
569 return pos;
570
571 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
572 pos + PCI_CAP_LIST_NEXT,
573 PCI_CAP_ID_HT, &ttl);
574 }
575
576 return 0;
577 }
578 /**
579 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
580 * @dev: PCI device to query
581 * @pos: Position from which to continue searching
582 * @ht_cap: Hypertransport capability code
583 *
584 * To be used in conjunction with pci_find_ht_capability() to search for
585 * all capabilities matching @ht_cap. @pos should always be a value returned
586 * from pci_find_ht_capability().
587 *
588 * NB. To be 100% safe against broken PCI devices, the caller should take
589 * steps to avoid an infinite loop.
590 */
591 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
592 {
593 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
594 }
595 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
596
597 /**
598 * pci_find_ht_capability - query a device's Hypertransport capabilities
599 * @dev: PCI device to query
600 * @ht_cap: Hypertransport capability code
601 *
602 * Tell if a device supports a given Hypertransport capability.
603 * Returns an address within the device's PCI configuration space
604 * or 0 in case the device does not support the request capability.
605 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
606 * which has a Hypertransport capability matching @ht_cap.
607 */
608 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
609 {
610 int pos;
611
612 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
613 if (pos)
614 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
615
616 return pos;
617 }
618 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
619
620 /**
621 * pci_find_parent_resource - return resource region of parent bus of given region
622 * @dev: PCI device structure contains resources to be searched
623 * @res: child resource record for which parent is sought
624 *
625 * For given resource region of given device, return the resource
626 * region of parent bus the given region is contained in.
627 */
628 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
629 struct resource *res)
630 {
631 const struct pci_bus *bus = dev->bus;
632 struct resource *r;
633 int i;
634
635 pci_bus_for_each_resource(bus, r, i) {
636 if (!r)
637 continue;
638 if (resource_contains(r, res)) {
639
640 /*
641 * If the window is prefetchable but the BAR is
642 * not, the allocator made a mistake.
643 */
644 if (r->flags & IORESOURCE_PREFETCH &&
645 !(res->flags & IORESOURCE_PREFETCH))
646 return NULL;
647
648 /*
649 * If we're below a transparent bridge, there may
650 * be both a positively-decoded aperture and a
651 * subtractively-decoded region that contain the BAR.
652 * We want the positively-decoded one, so this depends
653 * on pci_bus_for_each_resource() giving us those
654 * first.
655 */
656 return r;
657 }
658 }
659 return NULL;
660 }
661 EXPORT_SYMBOL(pci_find_parent_resource);
662
663 /**
664 * pci_find_resource - Return matching PCI device resource
665 * @dev: PCI device to query
666 * @res: Resource to look for
667 *
668 * Goes over standard PCI resources (BARs) and checks if the given resource
669 * is partially or fully contained in any of them. In that case the
670 * matching resource is returned, %NULL otherwise.
671 */
672 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
673 {
674 int i;
675
676 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
677 struct resource *r = &dev->resource[i];
678
679 if (r->start && resource_contains(r, res))
680 return r;
681 }
682
683 return NULL;
684 }
685 EXPORT_SYMBOL(pci_find_resource);
686
687 /**
688 * pci_find_pcie_root_port - return PCIe Root Port
689 * @dev: PCI device to query
690 *
691 * Traverse up the parent chain and return the PCIe Root Port PCI Device
692 * for a given PCI Device.
693 */
694 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
695 {
696 struct pci_dev *bridge, *highest_pcie_bridge = dev;
697
698 bridge = pci_upstream_bridge(dev);
699 while (bridge && pci_is_pcie(bridge)) {
700 highest_pcie_bridge = bridge;
701 bridge = pci_upstream_bridge(bridge);
702 }
703
704 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
705 return NULL;
706
707 return highest_pcie_bridge;
708 }
709 EXPORT_SYMBOL(pci_find_pcie_root_port);
710
711 /**
712 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
713 * @dev: the PCI device to operate on
714 * @pos: config space offset of status word
715 * @mask: mask of bit(s) to care about in status word
716 *
717 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
718 */
719 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
720 {
721 int i;
722
723 /* Wait for Transaction Pending bit clean */
724 for (i = 0; i < 4; i++) {
725 u16 status;
726 if (i)
727 msleep((1 << (i - 1)) * 100);
728
729 pci_read_config_word(dev, pos, &status);
730 if (!(status & mask))
731 return 1;
732 }
733
734 return 0;
735 }
736
737 /**
738 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
739 * @dev: PCI device to have its BARs restored
740 *
741 * Restore the BAR values for a given device, so as to make it
742 * accessible by its driver.
743 */
744 static void pci_restore_bars(struct pci_dev *dev)
745 {
746 int i;
747
748 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
749 pci_update_resource(dev, i);
750 }
751
752 static const struct pci_platform_pm_ops *pci_platform_pm;
753
754 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
755 {
756 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
757 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
758 return -EINVAL;
759 pci_platform_pm = ops;
760 return 0;
761 }
762
763 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
764 {
765 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
766 }
767
768 static inline int platform_pci_set_power_state(struct pci_dev *dev,
769 pci_power_t t)
770 {
771 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
772 }
773
774 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
775 {
776 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
777 }
778
779 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
780 {
781 return pci_platform_pm ?
782 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
783 }
784
785 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
786 {
787 return pci_platform_pm ?
788 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
789 }
790
791 static inline bool platform_pci_need_resume(struct pci_dev *dev)
792 {
793 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
794 }
795
796 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
797 {
798 return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false;
799 }
800
801 /**
802 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
803 * given PCI device
804 * @dev: PCI device to handle.
805 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
806 *
807 * RETURN VALUE:
808 * -EINVAL if the requested state is invalid.
809 * -EIO if device does not support PCI PM or its PM capabilities register has a
810 * wrong version, or device doesn't support the requested state.
811 * 0 if device already is in the requested state.
812 * 0 if device's power state has been successfully changed.
813 */
814 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
815 {
816 u16 pmcsr;
817 bool need_restore = false;
818
819 /* Check if we're already there */
820 if (dev->current_state == state)
821 return 0;
822
823 if (!dev->pm_cap)
824 return -EIO;
825
826 if (state < PCI_D0 || state > PCI_D3hot)
827 return -EINVAL;
828
829 /* Validate current state:
830 * Can enter D0 from any state, but if we can only go deeper
831 * to sleep if we're already in a low power state
832 */
833 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
834 && dev->current_state > state) {
835 pci_err(dev, "invalid power transition (from state %d to %d)\n",
836 dev->current_state, state);
837 return -EINVAL;
838 }
839
840 /* check if this device supports the desired state */
841 if ((state == PCI_D1 && !dev->d1_support)
842 || (state == PCI_D2 && !dev->d2_support))
843 return -EIO;
844
845 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
846
847 /* If we're (effectively) in D3, force entire word to 0.
848 * This doesn't affect PME_Status, disables PME_En, and
849 * sets PowerState to 0.
850 */
851 switch (dev->current_state) {
852 case PCI_D0:
853 case PCI_D1:
854 case PCI_D2:
855 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
856 pmcsr |= state;
857 break;
858 case PCI_D3hot:
859 case PCI_D3cold:
860 case PCI_UNKNOWN: /* Boot-up */
861 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
862 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
863 need_restore = true;
864 /* Fall-through: force to D0 */
865 default:
866 pmcsr = 0;
867 break;
868 }
869
870 /* enter specified state */
871 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
872
873 /* Mandatory power management transition delays */
874 /* see PCI PM 1.1 5.6.1 table 18 */
875 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
876 pci_dev_d3_sleep(dev);
877 else if (state == PCI_D2 || dev->current_state == PCI_D2)
878 udelay(PCI_PM_D2_DELAY);
879
880 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
881 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
882 if (dev->current_state != state && printk_ratelimit())
883 pci_info(dev, "Refused to change power state, currently in D%d\n",
884 dev->current_state);
885
886 /*
887 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
888 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
889 * from D3hot to D0 _may_ perform an internal reset, thereby
890 * going to "D0 Uninitialized" rather than "D0 Initialized".
891 * For example, at least some versions of the 3c905B and the
892 * 3c556B exhibit this behaviour.
893 *
894 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
895 * devices in a D3hot state at boot. Consequently, we need to
896 * restore at least the BARs so that the device will be
897 * accessible to its driver.
898 */
899 if (need_restore)
900 pci_restore_bars(dev);
901
902 if (dev->bus->self)
903 pcie_aspm_pm_state_change(dev->bus->self);
904
905 return 0;
906 }
907
908 /**
909 * pci_update_current_state - Read power state of given device and cache it
910 * @dev: PCI device to handle.
911 * @state: State to cache in case the device doesn't have the PM capability
912 *
913 * The power state is read from the PMCSR register, which however is
914 * inaccessible in D3cold. The platform firmware is therefore queried first
915 * to detect accessibility of the register. In case the platform firmware
916 * reports an incorrect state or the device isn't power manageable by the
917 * platform at all, we try to detect D3cold by testing accessibility of the
918 * vendor ID in config space.
919 */
920 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
921 {
922 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
923 !pci_device_is_present(dev)) {
924 dev->current_state = PCI_D3cold;
925 } else if (dev->pm_cap) {
926 u16 pmcsr;
927
928 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
929 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
930 } else {
931 dev->current_state = state;
932 }
933 }
934
935 /**
936 * pci_power_up - Put the given device into D0 forcibly
937 * @dev: PCI device to power up
938 */
939 void pci_power_up(struct pci_dev *dev)
940 {
941 if (platform_pci_power_manageable(dev))
942 platform_pci_set_power_state(dev, PCI_D0);
943
944 pci_raw_set_power_state(dev, PCI_D0);
945 pci_update_current_state(dev, PCI_D0);
946 }
947
948 /**
949 * pci_platform_power_transition - Use platform to change device power state
950 * @dev: PCI device to handle.
951 * @state: State to put the device into.
952 */
953 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
954 {
955 int error;
956
957 if (platform_pci_power_manageable(dev)) {
958 error = platform_pci_set_power_state(dev, state);
959 if (!error)
960 pci_update_current_state(dev, state);
961 } else
962 error = -ENODEV;
963
964 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
965 dev->current_state = PCI_D0;
966
967 return error;
968 }
969
970 /**
971 * pci_wakeup - Wake up a PCI device
972 * @pci_dev: Device to handle.
973 * @ign: ignored parameter
974 */
975 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
976 {
977 pci_wakeup_event(pci_dev);
978 pm_request_resume(&pci_dev->dev);
979 return 0;
980 }
981
982 /**
983 * pci_wakeup_bus - Walk given bus and wake up devices on it
984 * @bus: Top bus of the subtree to walk.
985 */
986 void pci_wakeup_bus(struct pci_bus *bus)
987 {
988 if (bus)
989 pci_walk_bus(bus, pci_wakeup, NULL);
990 }
991
992 /**
993 * __pci_start_power_transition - Start power transition of a PCI device
994 * @dev: PCI device to handle.
995 * @state: State to put the device into.
996 */
997 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
998 {
999 if (state == PCI_D0) {
1000 pci_platform_power_transition(dev, PCI_D0);
1001 /*
1002 * Mandatory power management transition delays, see
1003 * PCI Express Base Specification Revision 2.0 Section
1004 * 6.6.1: Conventional Reset. Do not delay for
1005 * devices powered on/off by corresponding bridge,
1006 * because have already delayed for the bridge.
1007 */
1008 if (dev->runtime_d3cold) {
1009 if (dev->d3cold_delay && !dev->imm_ready)
1010 msleep(dev->d3cold_delay);
1011 /*
1012 * When powering on a bridge from D3cold, the
1013 * whole hierarchy may be powered on into
1014 * D0uninitialized state, resume them to give
1015 * them a chance to suspend again
1016 */
1017 pci_wakeup_bus(dev->subordinate);
1018 }
1019 }
1020 }
1021
1022 /**
1023 * __pci_dev_set_current_state - Set current state of a PCI device
1024 * @dev: Device to handle
1025 * @data: pointer to state to be set
1026 */
1027 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1028 {
1029 pci_power_t state = *(pci_power_t *)data;
1030
1031 dev->current_state = state;
1032 return 0;
1033 }
1034
1035 /**
1036 * pci_bus_set_current_state - Walk given bus and set current state of devices
1037 * @bus: Top bus of the subtree to walk.
1038 * @state: state to be set
1039 */
1040 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1041 {
1042 if (bus)
1043 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1044 }
1045
1046 /**
1047 * __pci_complete_power_transition - Complete power transition of a PCI device
1048 * @dev: PCI device to handle.
1049 * @state: State to put the device into.
1050 *
1051 * This function should not be called directly by device drivers.
1052 */
1053 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
1054 {
1055 int ret;
1056
1057 if (state <= PCI_D0)
1058 return -EINVAL;
1059 ret = pci_platform_power_transition(dev, state);
1060 /* Power off the bridge may power off the whole hierarchy */
1061 if (!ret && state == PCI_D3cold)
1062 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1063 return ret;
1064 }
1065 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
1066
1067 /**
1068 * pci_set_power_state - Set the power state of a PCI device
1069 * @dev: PCI device to handle.
1070 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1071 *
1072 * Transition a device to a new power state, using the platform firmware and/or
1073 * the device's PCI PM registers.
1074 *
1075 * RETURN VALUE:
1076 * -EINVAL if the requested state is invalid.
1077 * -EIO if device does not support PCI PM or its PM capabilities register has a
1078 * wrong version, or device doesn't support the requested state.
1079 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1080 * 0 if device already is in the requested state.
1081 * 0 if the transition is to D3 but D3 is not supported.
1082 * 0 if device's power state has been successfully changed.
1083 */
1084 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1085 {
1086 int error;
1087
1088 /* bound the state we're entering */
1089 if (state > PCI_D3cold)
1090 state = PCI_D3cold;
1091 else if (state < PCI_D0)
1092 state = PCI_D0;
1093 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1094 /*
1095 * If the device or the parent bridge do not support PCI PM,
1096 * ignore the request if we're doing anything other than putting
1097 * it into D0 (which would only happen on boot).
1098 */
1099 return 0;
1100
1101 /* Check if we're already there */
1102 if (dev->current_state == state)
1103 return 0;
1104
1105 __pci_start_power_transition(dev, state);
1106
1107 /* This device is quirked not to be put into D3, so
1108 don't put it in D3 */
1109 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1110 return 0;
1111
1112 /*
1113 * To put device in D3cold, we put device into D3hot in native
1114 * way, then put device into D3cold with platform ops
1115 */
1116 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1117 PCI_D3hot : state);
1118
1119 if (!__pci_complete_power_transition(dev, state))
1120 error = 0;
1121
1122 return error;
1123 }
1124 EXPORT_SYMBOL(pci_set_power_state);
1125
1126 /**
1127 * pci_choose_state - Choose the power state of a PCI device
1128 * @dev: PCI device to be suspended
1129 * @state: target sleep state for the whole system. This is the value
1130 * that is passed to suspend() function.
1131 *
1132 * Returns PCI power state suitable for given device and given system
1133 * message.
1134 */
1135
1136 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1137 {
1138 pci_power_t ret;
1139
1140 if (!dev->pm_cap)
1141 return PCI_D0;
1142
1143 ret = platform_pci_choose_state(dev);
1144 if (ret != PCI_POWER_ERROR)
1145 return ret;
1146
1147 switch (state.event) {
1148 case PM_EVENT_ON:
1149 return PCI_D0;
1150 case PM_EVENT_FREEZE:
1151 case PM_EVENT_PRETHAW:
1152 /* REVISIT both freeze and pre-thaw "should" use D0 */
1153 case PM_EVENT_SUSPEND:
1154 case PM_EVENT_HIBERNATE:
1155 return PCI_D3hot;
1156 default:
1157 pci_info(dev, "unrecognized suspend event %d\n",
1158 state.event);
1159 BUG();
1160 }
1161 return PCI_D0;
1162 }
1163 EXPORT_SYMBOL(pci_choose_state);
1164
1165 #define PCI_EXP_SAVE_REGS 7
1166
1167 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1168 u16 cap, bool extended)
1169 {
1170 struct pci_cap_saved_state *tmp;
1171
1172 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1173 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1174 return tmp;
1175 }
1176 return NULL;
1177 }
1178
1179 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1180 {
1181 return _pci_find_saved_cap(dev, cap, false);
1182 }
1183
1184 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1185 {
1186 return _pci_find_saved_cap(dev, cap, true);
1187 }
1188
1189 static int pci_save_pcie_state(struct pci_dev *dev)
1190 {
1191 int i = 0;
1192 struct pci_cap_saved_state *save_state;
1193 u16 *cap;
1194
1195 if (!pci_is_pcie(dev))
1196 return 0;
1197
1198 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1199 if (!save_state) {
1200 pci_err(dev, "buffer not found in %s\n", __func__);
1201 return -ENOMEM;
1202 }
1203
1204 cap = (u16 *)&save_state->cap.data[0];
1205 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1206 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1207 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1208 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1209 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1210 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1211 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1212
1213 return 0;
1214 }
1215
1216 static void pci_restore_pcie_state(struct pci_dev *dev)
1217 {
1218 int i = 0;
1219 struct pci_cap_saved_state *save_state;
1220 u16 *cap;
1221
1222 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1223 if (!save_state)
1224 return;
1225
1226 cap = (u16 *)&save_state->cap.data[0];
1227 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1228 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1229 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1230 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1231 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1232 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1233 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1234 }
1235
1236
1237 static int pci_save_pcix_state(struct pci_dev *dev)
1238 {
1239 int pos;
1240 struct pci_cap_saved_state *save_state;
1241
1242 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1243 if (!pos)
1244 return 0;
1245
1246 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1247 if (!save_state) {
1248 pci_err(dev, "buffer not found in %s\n", __func__);
1249 return -ENOMEM;
1250 }
1251
1252 pci_read_config_word(dev, pos + PCI_X_CMD,
1253 (u16 *)save_state->cap.data);
1254
1255 return 0;
1256 }
1257
1258 static void pci_restore_pcix_state(struct pci_dev *dev)
1259 {
1260 int i = 0, pos;
1261 struct pci_cap_saved_state *save_state;
1262 u16 *cap;
1263
1264 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1265 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1266 if (!save_state || !pos)
1267 return;
1268 cap = (u16 *)&save_state->cap.data[0];
1269
1270 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1271 }
1272
1273
1274 /**
1275 * pci_save_state - save the PCI configuration space of a device before suspending
1276 * @dev: - PCI device that we're dealing with
1277 */
1278 int pci_save_state(struct pci_dev *dev)
1279 {
1280 int i;
1281 /* XXX: 100% dword access ok here? */
1282 for (i = 0; i < 16; i++)
1283 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1284 dev->state_saved = true;
1285
1286 i = pci_save_pcie_state(dev);
1287 if (i != 0)
1288 return i;
1289
1290 i = pci_save_pcix_state(dev);
1291 if (i != 0)
1292 return i;
1293
1294 pci_save_dpc_state(dev);
1295 return pci_save_vc_state(dev);
1296 }
1297 EXPORT_SYMBOL(pci_save_state);
1298
1299 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1300 u32 saved_val, int retry, bool force)
1301 {
1302 u32 val;
1303
1304 pci_read_config_dword(pdev, offset, &val);
1305 if (!force && val == saved_val)
1306 return;
1307
1308 for (;;) {
1309 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1310 offset, val, saved_val);
1311 pci_write_config_dword(pdev, offset, saved_val);
1312 if (retry-- <= 0)
1313 return;
1314
1315 pci_read_config_dword(pdev, offset, &val);
1316 if (val == saved_val)
1317 return;
1318
1319 mdelay(1);
1320 }
1321 }
1322
1323 static void pci_restore_config_space_range(struct pci_dev *pdev,
1324 int start, int end, int retry,
1325 bool force)
1326 {
1327 int index;
1328
1329 for (index = end; index >= start; index--)
1330 pci_restore_config_dword(pdev, 4 * index,
1331 pdev->saved_config_space[index],
1332 retry, force);
1333 }
1334
1335 static void pci_restore_config_space(struct pci_dev *pdev)
1336 {
1337 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1338 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1339 /* Restore BARs before the command register. */
1340 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1341 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1342 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1343 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1344
1345 /*
1346 * Force rewriting of prefetch registers to avoid S3 resume
1347 * issues on Intel PCI bridges that occur when these
1348 * registers are not explicitly written.
1349 */
1350 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1351 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1352 } else {
1353 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1354 }
1355 }
1356
1357 static void pci_restore_rebar_state(struct pci_dev *pdev)
1358 {
1359 unsigned int pos, nbars, i;
1360 u32 ctrl;
1361
1362 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1363 if (!pos)
1364 return;
1365
1366 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1367 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1368 PCI_REBAR_CTRL_NBAR_SHIFT;
1369
1370 for (i = 0; i < nbars; i++, pos += 8) {
1371 struct resource *res;
1372 int bar_idx, size;
1373
1374 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1375 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1376 res = pdev->resource + bar_idx;
1377 size = order_base_2((resource_size(res) >> 20) | 1) - 1;
1378 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1379 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1380 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1381 }
1382 }
1383
1384 /**
1385 * pci_restore_state - Restore the saved state of a PCI device
1386 * @dev: - PCI device that we're dealing with
1387 */
1388 void pci_restore_state(struct pci_dev *dev)
1389 {
1390 if (!dev->state_saved)
1391 return;
1392
1393 /* PCI Express register must be restored first */
1394 pci_restore_pcie_state(dev);
1395 pci_restore_pasid_state(dev);
1396 pci_restore_pri_state(dev);
1397 pci_restore_ats_state(dev);
1398 pci_restore_vc_state(dev);
1399 pci_restore_rebar_state(dev);
1400 pci_restore_dpc_state(dev);
1401
1402 pci_cleanup_aer_error_status_regs(dev);
1403
1404 pci_restore_config_space(dev);
1405
1406 pci_restore_pcix_state(dev);
1407 pci_restore_msi_state(dev);
1408
1409 /* Restore ACS and IOV configuration state */
1410 pci_enable_acs(dev);
1411 pci_restore_iov_state(dev);
1412
1413 dev->state_saved = false;
1414 }
1415 EXPORT_SYMBOL(pci_restore_state);
1416
1417 struct pci_saved_state {
1418 u32 config_space[16];
1419 struct pci_cap_saved_data cap[0];
1420 };
1421
1422 /**
1423 * pci_store_saved_state - Allocate and return an opaque struct containing
1424 * the device saved state.
1425 * @dev: PCI device that we're dealing with
1426 *
1427 * Return NULL if no state or error.
1428 */
1429 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1430 {
1431 struct pci_saved_state *state;
1432 struct pci_cap_saved_state *tmp;
1433 struct pci_cap_saved_data *cap;
1434 size_t size;
1435
1436 if (!dev->state_saved)
1437 return NULL;
1438
1439 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1440
1441 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1442 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1443
1444 state = kzalloc(size, GFP_KERNEL);
1445 if (!state)
1446 return NULL;
1447
1448 memcpy(state->config_space, dev->saved_config_space,
1449 sizeof(state->config_space));
1450
1451 cap = state->cap;
1452 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1453 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1454 memcpy(cap, &tmp->cap, len);
1455 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1456 }
1457 /* Empty cap_save terminates list */
1458
1459 return state;
1460 }
1461 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1462
1463 /**
1464 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1465 * @dev: PCI device that we're dealing with
1466 * @state: Saved state returned from pci_store_saved_state()
1467 */
1468 int pci_load_saved_state(struct pci_dev *dev,
1469 struct pci_saved_state *state)
1470 {
1471 struct pci_cap_saved_data *cap;
1472
1473 dev->state_saved = false;
1474
1475 if (!state)
1476 return 0;
1477
1478 memcpy(dev->saved_config_space, state->config_space,
1479 sizeof(state->config_space));
1480
1481 cap = state->cap;
1482 while (cap->size) {
1483 struct pci_cap_saved_state *tmp;
1484
1485 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1486 if (!tmp || tmp->cap.size != cap->size)
1487 return -EINVAL;
1488
1489 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1490 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1491 sizeof(struct pci_cap_saved_data) + cap->size);
1492 }
1493
1494 dev->state_saved = true;
1495 return 0;
1496 }
1497 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1498
1499 /**
1500 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1501 * and free the memory allocated for it.
1502 * @dev: PCI device that we're dealing with
1503 * @state: Pointer to saved state returned from pci_store_saved_state()
1504 */
1505 int pci_load_and_free_saved_state(struct pci_dev *dev,
1506 struct pci_saved_state **state)
1507 {
1508 int ret = pci_load_saved_state(dev, *state);
1509 kfree(*state);
1510 *state = NULL;
1511 return ret;
1512 }
1513 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1514
1515 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1516 {
1517 return pci_enable_resources(dev, bars);
1518 }
1519
1520 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1521 {
1522 int err;
1523 struct pci_dev *bridge;
1524 u16 cmd;
1525 u8 pin;
1526
1527 err = pci_set_power_state(dev, PCI_D0);
1528 if (err < 0 && err != -EIO)
1529 return err;
1530
1531 bridge = pci_upstream_bridge(dev);
1532 if (bridge)
1533 pcie_aspm_powersave_config_link(bridge);
1534
1535 err = pcibios_enable_device(dev, bars);
1536 if (err < 0)
1537 return err;
1538 pci_fixup_device(pci_fixup_enable, dev);
1539
1540 if (dev->msi_enabled || dev->msix_enabled)
1541 return 0;
1542
1543 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1544 if (pin) {
1545 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1546 if (cmd & PCI_COMMAND_INTX_DISABLE)
1547 pci_write_config_word(dev, PCI_COMMAND,
1548 cmd & ~PCI_COMMAND_INTX_DISABLE);
1549 }
1550
1551 return 0;
1552 }
1553
1554 /**
1555 * pci_reenable_device - Resume abandoned device
1556 * @dev: PCI device to be resumed
1557 *
1558 * Note this function is a backend of pci_default_resume and is not supposed
1559 * to be called by normal code, write proper resume handler and use it instead.
1560 */
1561 int pci_reenable_device(struct pci_dev *dev)
1562 {
1563 if (pci_is_enabled(dev))
1564 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1565 return 0;
1566 }
1567 EXPORT_SYMBOL(pci_reenable_device);
1568
1569 static void pci_enable_bridge(struct pci_dev *dev)
1570 {
1571 struct pci_dev *bridge;
1572 int retval;
1573
1574 bridge = pci_upstream_bridge(dev);
1575 if (bridge)
1576 pci_enable_bridge(bridge);
1577
1578 if (pci_is_enabled(dev)) {
1579 if (!dev->is_busmaster)
1580 pci_set_master(dev);
1581 return;
1582 }
1583
1584 retval = pci_enable_device(dev);
1585 if (retval)
1586 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1587 retval);
1588 pci_set_master(dev);
1589 }
1590
1591 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1592 {
1593 struct pci_dev *bridge;
1594 int err;
1595 int i, bars = 0;
1596
1597 /*
1598 * Power state could be unknown at this point, either due to a fresh
1599 * boot or a device removal call. So get the current power state
1600 * so that things like MSI message writing will behave as expected
1601 * (e.g. if the device really is in D0 at enable time).
1602 */
1603 if (dev->pm_cap) {
1604 u16 pmcsr;
1605 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1606 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1607 }
1608
1609 if (atomic_inc_return(&dev->enable_cnt) > 1)
1610 return 0; /* already enabled */
1611
1612 bridge = pci_upstream_bridge(dev);
1613 if (bridge)
1614 pci_enable_bridge(bridge);
1615
1616 /* only skip sriov related */
1617 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1618 if (dev->resource[i].flags & flags)
1619 bars |= (1 << i);
1620 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1621 if (dev->resource[i].flags & flags)
1622 bars |= (1 << i);
1623
1624 err = do_pci_enable_device(dev, bars);
1625 if (err < 0)
1626 atomic_dec(&dev->enable_cnt);
1627 return err;
1628 }
1629
1630 /**
1631 * pci_enable_device_io - Initialize a device for use with IO space
1632 * @dev: PCI device to be initialized
1633 *
1634 * Initialize device before it's used by a driver. Ask low-level code
1635 * to enable I/O resources. Wake up the device if it was suspended.
1636 * Beware, this function can fail.
1637 */
1638 int pci_enable_device_io(struct pci_dev *dev)
1639 {
1640 return pci_enable_device_flags(dev, IORESOURCE_IO);
1641 }
1642 EXPORT_SYMBOL(pci_enable_device_io);
1643
1644 /**
1645 * pci_enable_device_mem - Initialize a device for use with Memory space
1646 * @dev: PCI device to be initialized
1647 *
1648 * Initialize device before it's used by a driver. Ask low-level code
1649 * to enable Memory resources. Wake up the device if it was suspended.
1650 * Beware, this function can fail.
1651 */
1652 int pci_enable_device_mem(struct pci_dev *dev)
1653 {
1654 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1655 }
1656 EXPORT_SYMBOL(pci_enable_device_mem);
1657
1658 /**
1659 * pci_enable_device - Initialize device before it's used by a driver.
1660 * @dev: PCI device to be initialized
1661 *
1662 * Initialize device before it's used by a driver. Ask low-level code
1663 * to enable I/O and memory. Wake up the device if it was suspended.
1664 * Beware, this function can fail.
1665 *
1666 * Note we don't actually enable the device many times if we call
1667 * this function repeatedly (we just increment the count).
1668 */
1669 int pci_enable_device(struct pci_dev *dev)
1670 {
1671 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1672 }
1673 EXPORT_SYMBOL(pci_enable_device);
1674
1675 /*
1676 * Managed PCI resources. This manages device on/off, intx/msi/msix
1677 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1678 * there's no need to track it separately. pci_devres is initialized
1679 * when a device is enabled using managed PCI device enable interface.
1680 */
1681 struct pci_devres {
1682 unsigned int enabled:1;
1683 unsigned int pinned:1;
1684 unsigned int orig_intx:1;
1685 unsigned int restore_intx:1;
1686 unsigned int mwi:1;
1687 u32 region_mask;
1688 };
1689
1690 static void pcim_release(struct device *gendev, void *res)
1691 {
1692 struct pci_dev *dev = to_pci_dev(gendev);
1693 struct pci_devres *this = res;
1694 int i;
1695
1696 if (dev->msi_enabled)
1697 pci_disable_msi(dev);
1698 if (dev->msix_enabled)
1699 pci_disable_msix(dev);
1700
1701 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1702 if (this->region_mask & (1 << i))
1703 pci_release_region(dev, i);
1704
1705 if (this->mwi)
1706 pci_clear_mwi(dev);
1707
1708 if (this->restore_intx)
1709 pci_intx(dev, this->orig_intx);
1710
1711 if (this->enabled && !this->pinned)
1712 pci_disable_device(dev);
1713 }
1714
1715 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1716 {
1717 struct pci_devres *dr, *new_dr;
1718
1719 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1720 if (dr)
1721 return dr;
1722
1723 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1724 if (!new_dr)
1725 return NULL;
1726 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1727 }
1728
1729 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1730 {
1731 if (pci_is_managed(pdev))
1732 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1733 return NULL;
1734 }
1735
1736 /**
1737 * pcim_enable_device - Managed pci_enable_device()
1738 * @pdev: PCI device to be initialized
1739 *
1740 * Managed pci_enable_device().
1741 */
1742 int pcim_enable_device(struct pci_dev *pdev)
1743 {
1744 struct pci_devres *dr;
1745 int rc;
1746
1747 dr = get_pci_dr(pdev);
1748 if (unlikely(!dr))
1749 return -ENOMEM;
1750 if (dr->enabled)
1751 return 0;
1752
1753 rc = pci_enable_device(pdev);
1754 if (!rc) {
1755 pdev->is_managed = 1;
1756 dr->enabled = 1;
1757 }
1758 return rc;
1759 }
1760 EXPORT_SYMBOL(pcim_enable_device);
1761
1762 /**
1763 * pcim_pin_device - Pin managed PCI device
1764 * @pdev: PCI device to pin
1765 *
1766 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1767 * driver detach. @pdev must have been enabled with
1768 * pcim_enable_device().
1769 */
1770 void pcim_pin_device(struct pci_dev *pdev)
1771 {
1772 struct pci_devres *dr;
1773
1774 dr = find_pci_dr(pdev);
1775 WARN_ON(!dr || !dr->enabled);
1776 if (dr)
1777 dr->pinned = 1;
1778 }
1779 EXPORT_SYMBOL(pcim_pin_device);
1780
1781 /*
1782 * pcibios_add_device - provide arch specific hooks when adding device dev
1783 * @dev: the PCI device being added
1784 *
1785 * Permits the platform to provide architecture specific functionality when
1786 * devices are added. This is the default implementation. Architecture
1787 * implementations can override this.
1788 */
1789 int __weak pcibios_add_device(struct pci_dev *dev)
1790 {
1791 return 0;
1792 }
1793
1794 /**
1795 * pcibios_release_device - provide arch specific hooks when releasing device dev
1796 * @dev: the PCI device being released
1797 *
1798 * Permits the platform to provide architecture specific functionality when
1799 * devices are released. This is the default implementation. Architecture
1800 * implementations can override this.
1801 */
1802 void __weak pcibios_release_device(struct pci_dev *dev) {}
1803
1804 /**
1805 * pcibios_disable_device - disable arch specific PCI resources for device dev
1806 * @dev: the PCI device to disable
1807 *
1808 * Disables architecture specific PCI resources for the device. This
1809 * is the default implementation. Architecture implementations can
1810 * override this.
1811 */
1812 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1813
1814 /**
1815 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1816 * @irq: ISA IRQ to penalize
1817 * @active: IRQ active or not
1818 *
1819 * Permits the platform to provide architecture-specific functionality when
1820 * penalizing ISA IRQs. This is the default implementation. Architecture
1821 * implementations can override this.
1822 */
1823 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1824
1825 static void do_pci_disable_device(struct pci_dev *dev)
1826 {
1827 u16 pci_command;
1828
1829 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1830 if (pci_command & PCI_COMMAND_MASTER) {
1831 pci_command &= ~PCI_COMMAND_MASTER;
1832 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1833 }
1834
1835 pcibios_disable_device(dev);
1836 }
1837
1838 /**
1839 * pci_disable_enabled_device - Disable device without updating enable_cnt
1840 * @dev: PCI device to disable
1841 *
1842 * NOTE: This function is a backend of PCI power management routines and is
1843 * not supposed to be called drivers.
1844 */
1845 void pci_disable_enabled_device(struct pci_dev *dev)
1846 {
1847 if (pci_is_enabled(dev))
1848 do_pci_disable_device(dev);
1849 }
1850
1851 /**
1852 * pci_disable_device - Disable PCI device after use
1853 * @dev: PCI device to be disabled
1854 *
1855 * Signal to the system that the PCI device is not in use by the system
1856 * anymore. This only involves disabling PCI bus-mastering, if active.
1857 *
1858 * Note we don't actually disable the device until all callers of
1859 * pci_enable_device() have called pci_disable_device().
1860 */
1861 void pci_disable_device(struct pci_dev *dev)
1862 {
1863 struct pci_devres *dr;
1864
1865 dr = find_pci_dr(dev);
1866 if (dr)
1867 dr->enabled = 0;
1868
1869 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1870 "disabling already-disabled device");
1871
1872 if (atomic_dec_return(&dev->enable_cnt) != 0)
1873 return;
1874
1875 do_pci_disable_device(dev);
1876
1877 dev->is_busmaster = 0;
1878 }
1879 EXPORT_SYMBOL(pci_disable_device);
1880
1881 /**
1882 * pcibios_set_pcie_reset_state - set reset state for device dev
1883 * @dev: the PCIe device reset
1884 * @state: Reset state to enter into
1885 *
1886 *
1887 * Sets the PCIe reset state for the device. This is the default
1888 * implementation. Architecture implementations can override this.
1889 */
1890 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1891 enum pcie_reset_state state)
1892 {
1893 return -EINVAL;
1894 }
1895
1896 /**
1897 * pci_set_pcie_reset_state - set reset state for device dev
1898 * @dev: the PCIe device reset
1899 * @state: Reset state to enter into
1900 *
1901 *
1902 * Sets the PCI reset state for the device.
1903 */
1904 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1905 {
1906 return pcibios_set_pcie_reset_state(dev, state);
1907 }
1908 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1909
1910 /**
1911 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1912 * @dev: PCIe root port or event collector.
1913 */
1914 void pcie_clear_root_pme_status(struct pci_dev *dev)
1915 {
1916 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1917 }
1918
1919 /**
1920 * pci_check_pme_status - Check if given device has generated PME.
1921 * @dev: Device to check.
1922 *
1923 * Check the PME status of the device and if set, clear it and clear PME enable
1924 * (if set). Return 'true' if PME status and PME enable were both set or
1925 * 'false' otherwise.
1926 */
1927 bool pci_check_pme_status(struct pci_dev *dev)
1928 {
1929 int pmcsr_pos;
1930 u16 pmcsr;
1931 bool ret = false;
1932
1933 if (!dev->pm_cap)
1934 return false;
1935
1936 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1937 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1938 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1939 return false;
1940
1941 /* Clear PME status. */
1942 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1943 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1944 /* Disable PME to avoid interrupt flood. */
1945 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1946 ret = true;
1947 }
1948
1949 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1950
1951 return ret;
1952 }
1953
1954 /**
1955 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1956 * @dev: Device to handle.
1957 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1958 *
1959 * Check if @dev has generated PME and queue a resume request for it in that
1960 * case.
1961 */
1962 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1963 {
1964 if (pme_poll_reset && dev->pme_poll)
1965 dev->pme_poll = false;
1966
1967 if (pci_check_pme_status(dev)) {
1968 pci_wakeup_event(dev);
1969 pm_request_resume(&dev->dev);
1970 }
1971 return 0;
1972 }
1973
1974 /**
1975 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1976 * @bus: Top bus of the subtree to walk.
1977 */
1978 void pci_pme_wakeup_bus(struct pci_bus *bus)
1979 {
1980 if (bus)
1981 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1982 }
1983
1984
1985 /**
1986 * pci_pme_capable - check the capability of PCI device to generate PME#
1987 * @dev: PCI device to handle.
1988 * @state: PCI state from which device will issue PME#.
1989 */
1990 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1991 {
1992 if (!dev->pm_cap)
1993 return false;
1994
1995 return !!(dev->pme_support & (1 << state));
1996 }
1997 EXPORT_SYMBOL(pci_pme_capable);
1998
1999 static void pci_pme_list_scan(struct work_struct *work)
2000 {
2001 struct pci_pme_device *pme_dev, *n;
2002
2003 mutex_lock(&pci_pme_list_mutex);
2004 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2005 if (pme_dev->dev->pme_poll) {
2006 struct pci_dev *bridge;
2007
2008 bridge = pme_dev->dev->bus->self;
2009 /*
2010 * If bridge is in low power state, the
2011 * configuration space of subordinate devices
2012 * may be not accessible
2013 */
2014 if (bridge && bridge->current_state != PCI_D0)
2015 continue;
2016 pci_pme_wakeup(pme_dev->dev, NULL);
2017 } else {
2018 list_del(&pme_dev->list);
2019 kfree(pme_dev);
2020 }
2021 }
2022 if (!list_empty(&pci_pme_list))
2023 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2024 msecs_to_jiffies(PME_TIMEOUT));
2025 mutex_unlock(&pci_pme_list_mutex);
2026 }
2027
2028 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2029 {
2030 u16 pmcsr;
2031
2032 if (!dev->pme_support)
2033 return;
2034
2035 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2036 /* Clear PME_Status by writing 1 to it and enable PME# */
2037 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2038 if (!enable)
2039 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2040
2041 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2042 }
2043
2044 /**
2045 * pci_pme_restore - Restore PME configuration after config space restore.
2046 * @dev: PCI device to update.
2047 */
2048 void pci_pme_restore(struct pci_dev *dev)
2049 {
2050 u16 pmcsr;
2051
2052 if (!dev->pme_support)
2053 return;
2054
2055 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2056 if (dev->wakeup_prepared) {
2057 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2058 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2059 } else {
2060 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2061 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2062 }
2063 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2064 }
2065
2066 /**
2067 * pci_pme_active - enable or disable PCI device's PME# function
2068 * @dev: PCI device to handle.
2069 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2070 *
2071 * The caller must verify that the device is capable of generating PME# before
2072 * calling this function with @enable equal to 'true'.
2073 */
2074 void pci_pme_active(struct pci_dev *dev, bool enable)
2075 {
2076 __pci_pme_active(dev, enable);
2077
2078 /*
2079 * PCI (as opposed to PCIe) PME requires that the device have
2080 * its PME# line hooked up correctly. Not all hardware vendors
2081 * do this, so the PME never gets delivered and the device
2082 * remains asleep. The easiest way around this is to
2083 * periodically walk the list of suspended devices and check
2084 * whether any have their PME flag set. The assumption is that
2085 * we'll wake up often enough anyway that this won't be a huge
2086 * hit, and the power savings from the devices will still be a
2087 * win.
2088 *
2089 * Although PCIe uses in-band PME message instead of PME# line
2090 * to report PME, PME does not work for some PCIe devices in
2091 * reality. For example, there are devices that set their PME
2092 * status bits, but don't really bother to send a PME message;
2093 * there are PCI Express Root Ports that don't bother to
2094 * trigger interrupts when they receive PME messages from the
2095 * devices below. So PME poll is used for PCIe devices too.
2096 */
2097
2098 if (dev->pme_poll) {
2099 struct pci_pme_device *pme_dev;
2100 if (enable) {
2101 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2102 GFP_KERNEL);
2103 if (!pme_dev) {
2104 pci_warn(dev, "can't enable PME#\n");
2105 return;
2106 }
2107 pme_dev->dev = dev;
2108 mutex_lock(&pci_pme_list_mutex);
2109 list_add(&pme_dev->list, &pci_pme_list);
2110 if (list_is_singular(&pci_pme_list))
2111 queue_delayed_work(system_freezable_wq,
2112 &pci_pme_work,
2113 msecs_to_jiffies(PME_TIMEOUT));
2114 mutex_unlock(&pci_pme_list_mutex);
2115 } else {
2116 mutex_lock(&pci_pme_list_mutex);
2117 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2118 if (pme_dev->dev == dev) {
2119 list_del(&pme_dev->list);
2120 kfree(pme_dev);
2121 break;
2122 }
2123 }
2124 mutex_unlock(&pci_pme_list_mutex);
2125 }
2126 }
2127
2128 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2129 }
2130 EXPORT_SYMBOL(pci_pme_active);
2131
2132 /**
2133 * __pci_enable_wake - enable PCI device as wakeup event source
2134 * @dev: PCI device affected
2135 * @state: PCI state from which device will issue wakeup events
2136 * @enable: True to enable event generation; false to disable
2137 *
2138 * This enables the device as a wakeup event source, or disables it.
2139 * When such events involves platform-specific hooks, those hooks are
2140 * called automatically by this routine.
2141 *
2142 * Devices with legacy power management (no standard PCI PM capabilities)
2143 * always require such platform hooks.
2144 *
2145 * RETURN VALUE:
2146 * 0 is returned on success
2147 * -EINVAL is returned if device is not supposed to wake up the system
2148 * Error code depending on the platform is returned if both the platform and
2149 * the native mechanism fail to enable the generation of wake-up events
2150 */
2151 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2152 {
2153 int ret = 0;
2154
2155 /*
2156 * Bridges that are not power-manageable directly only signal
2157 * wakeup on behalf of subordinate devices which is set up
2158 * elsewhere, so skip them. However, bridges that are
2159 * power-manageable may signal wakeup for themselves (for example,
2160 * on a hotplug event) and they need to be covered here.
2161 */
2162 if (!pci_power_manageable(dev))
2163 return 0;
2164
2165 /* Don't do the same thing twice in a row for one device. */
2166 if (!!enable == !!dev->wakeup_prepared)
2167 return 0;
2168
2169 /*
2170 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2171 * Anderson we should be doing PME# wake enable followed by ACPI wake
2172 * enable. To disable wake-up we call the platform first, for symmetry.
2173 */
2174
2175 if (enable) {
2176 int error;
2177
2178 if (pci_pme_capable(dev, state))
2179 pci_pme_active(dev, true);
2180 else
2181 ret = 1;
2182 error = platform_pci_set_wakeup(dev, true);
2183 if (ret)
2184 ret = error;
2185 if (!ret)
2186 dev->wakeup_prepared = true;
2187 } else {
2188 platform_pci_set_wakeup(dev, false);
2189 pci_pme_active(dev, false);
2190 dev->wakeup_prepared = false;
2191 }
2192
2193 return ret;
2194 }
2195
2196 /**
2197 * pci_enable_wake - change wakeup settings for a PCI device
2198 * @pci_dev: Target device
2199 * @state: PCI state from which device will issue wakeup events
2200 * @enable: Whether or not to enable event generation
2201 *
2202 * If @enable is set, check device_may_wakeup() for the device before calling
2203 * __pci_enable_wake() for it.
2204 */
2205 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2206 {
2207 if (enable && !device_may_wakeup(&pci_dev->dev))
2208 return -EINVAL;
2209
2210 return __pci_enable_wake(pci_dev, state, enable);
2211 }
2212 EXPORT_SYMBOL(pci_enable_wake);
2213
2214 /**
2215 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2216 * @dev: PCI device to prepare
2217 * @enable: True to enable wake-up event generation; false to disable
2218 *
2219 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2220 * and this function allows them to set that up cleanly - pci_enable_wake()
2221 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2222 * ordering constraints.
2223 *
2224 * This function only returns error code if the device is not allowed to wake
2225 * up the system from sleep or it is not capable of generating PME# from both
2226 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2227 */
2228 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2229 {
2230 return pci_pme_capable(dev, PCI_D3cold) ?
2231 pci_enable_wake(dev, PCI_D3cold, enable) :
2232 pci_enable_wake(dev, PCI_D3hot, enable);
2233 }
2234 EXPORT_SYMBOL(pci_wake_from_d3);
2235
2236 /**
2237 * pci_target_state - find an appropriate low power state for a given PCI dev
2238 * @dev: PCI device
2239 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2240 *
2241 * Use underlying platform code to find a supported low power state for @dev.
2242 * If the platform can't manage @dev, return the deepest state from which it
2243 * can generate wake events, based on any available PME info.
2244 */
2245 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2246 {
2247 pci_power_t target_state = PCI_D3hot;
2248
2249 if (platform_pci_power_manageable(dev)) {
2250 /*
2251 * Call the platform to find the target state for the device.
2252 */
2253 pci_power_t state = platform_pci_choose_state(dev);
2254
2255 switch (state) {
2256 case PCI_POWER_ERROR:
2257 case PCI_UNKNOWN:
2258 break;
2259 case PCI_D1:
2260 case PCI_D2:
2261 if (pci_no_d1d2(dev))
2262 break;
2263 /* else: fall through */
2264 default:
2265 target_state = state;
2266 }
2267
2268 return target_state;
2269 }
2270
2271 if (!dev->pm_cap)
2272 target_state = PCI_D0;
2273
2274 /*
2275 * If the device is in D3cold even though it's not power-manageable by
2276 * the platform, it may have been powered down by non-standard means.
2277 * Best to let it slumber.
2278 */
2279 if (dev->current_state == PCI_D3cold)
2280 target_state = PCI_D3cold;
2281
2282 if (wakeup) {
2283 /*
2284 * Find the deepest state from which the device can generate
2285 * PME#.
2286 */
2287 if (dev->pme_support) {
2288 while (target_state
2289 && !(dev->pme_support & (1 << target_state)))
2290 target_state--;
2291 }
2292 }
2293
2294 return target_state;
2295 }
2296
2297 /**
2298 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2299 * @dev: Device to handle.
2300 *
2301 * Choose the power state appropriate for the device depending on whether
2302 * it can wake up the system and/or is power manageable by the platform
2303 * (PCI_D3hot is the default) and put the device into that state.
2304 */
2305 int pci_prepare_to_sleep(struct pci_dev *dev)
2306 {
2307 bool wakeup = device_may_wakeup(&dev->dev);
2308 pci_power_t target_state = pci_target_state(dev, wakeup);
2309 int error;
2310
2311 if (target_state == PCI_POWER_ERROR)
2312 return -EIO;
2313
2314 pci_enable_wake(dev, target_state, wakeup);
2315
2316 error = pci_set_power_state(dev, target_state);
2317
2318 if (error)
2319 pci_enable_wake(dev, target_state, false);
2320
2321 return error;
2322 }
2323 EXPORT_SYMBOL(pci_prepare_to_sleep);
2324
2325 /**
2326 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2327 * @dev: Device to handle.
2328 *
2329 * Disable device's system wake-up capability and put it into D0.
2330 */
2331 int pci_back_from_sleep(struct pci_dev *dev)
2332 {
2333 pci_enable_wake(dev, PCI_D0, false);
2334 return pci_set_power_state(dev, PCI_D0);
2335 }
2336 EXPORT_SYMBOL(pci_back_from_sleep);
2337
2338 /**
2339 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2340 * @dev: PCI device being suspended.
2341 *
2342 * Prepare @dev to generate wake-up events at run time and put it into a low
2343 * power state.
2344 */
2345 int pci_finish_runtime_suspend(struct pci_dev *dev)
2346 {
2347 pci_power_t target_state;
2348 int error;
2349
2350 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2351 if (target_state == PCI_POWER_ERROR)
2352 return -EIO;
2353
2354 dev->runtime_d3cold = target_state == PCI_D3cold;
2355
2356 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2357
2358 error = pci_set_power_state(dev, target_state);
2359
2360 if (error) {
2361 pci_enable_wake(dev, target_state, false);
2362 dev->runtime_d3cold = false;
2363 }
2364
2365 return error;
2366 }
2367
2368 /**
2369 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2370 * @dev: Device to check.
2371 *
2372 * Return true if the device itself is capable of generating wake-up events
2373 * (through the platform or using the native PCIe PME) or if the device supports
2374 * PME and one of its upstream bridges can generate wake-up events.
2375 */
2376 bool pci_dev_run_wake(struct pci_dev *dev)
2377 {
2378 struct pci_bus *bus = dev->bus;
2379
2380 if (!dev->pme_support)
2381 return false;
2382
2383 /* PME-capable in principle, but not from the target power state */
2384 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2385 return false;
2386
2387 if (device_can_wakeup(&dev->dev))
2388 return true;
2389
2390 while (bus->parent) {
2391 struct pci_dev *bridge = bus->self;
2392
2393 if (device_can_wakeup(&bridge->dev))
2394 return true;
2395
2396 bus = bus->parent;
2397 }
2398
2399 /* We have reached the root bus. */
2400 if (bus->bridge)
2401 return device_can_wakeup(bus->bridge);
2402
2403 return false;
2404 }
2405 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2406
2407 /**
2408 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2409 * @pci_dev: Device to check.
2410 *
2411 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2412 * reconfigured due to wakeup settings difference between system and runtime
2413 * suspend and the current power state of it is suitable for the upcoming
2414 * (system) transition.
2415 *
2416 * If the device is not configured for system wakeup, disable PME for it before
2417 * returning 'true' to prevent it from waking up the system unnecessarily.
2418 */
2419 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2420 {
2421 struct device *dev = &pci_dev->dev;
2422 bool wakeup = device_may_wakeup(dev);
2423
2424 if (!pm_runtime_suspended(dev)
2425 || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2426 || platform_pci_need_resume(pci_dev))
2427 return false;
2428
2429 /*
2430 * At this point the device is good to go unless it's been configured
2431 * to generate PME at the runtime suspend time, but it is not supposed
2432 * to wake up the system. In that case, simply disable PME for it
2433 * (it will have to be re-enabled on exit from system resume).
2434 *
2435 * If the device's power state is D3cold and the platform check above
2436 * hasn't triggered, the device's configuration is suitable and we don't
2437 * need to manipulate it at all.
2438 */
2439 spin_lock_irq(&dev->power.lock);
2440
2441 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2442 !wakeup)
2443 __pci_pme_active(pci_dev, false);
2444
2445 spin_unlock_irq(&dev->power.lock);
2446 return true;
2447 }
2448
2449 /**
2450 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2451 * @pci_dev: Device to handle.
2452 *
2453 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2454 * it might have been disabled during the prepare phase of system suspend if
2455 * the device was not configured for system wakeup.
2456 */
2457 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2458 {
2459 struct device *dev = &pci_dev->dev;
2460
2461 if (!pci_dev_run_wake(pci_dev))
2462 return;
2463
2464 spin_lock_irq(&dev->power.lock);
2465
2466 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2467 __pci_pme_active(pci_dev, true);
2468
2469 spin_unlock_irq(&dev->power.lock);
2470 }
2471
2472 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2473 {
2474 struct device *dev = &pdev->dev;
2475 struct device *parent = dev->parent;
2476
2477 if (parent)
2478 pm_runtime_get_sync(parent);
2479 pm_runtime_get_noresume(dev);
2480 /*
2481 * pdev->current_state is set to PCI_D3cold during suspending,
2482 * so wait until suspending completes
2483 */
2484 pm_runtime_barrier(dev);
2485 /*
2486 * Only need to resume devices in D3cold, because config
2487 * registers are still accessible for devices suspended but
2488 * not in D3cold.
2489 */
2490 if (pdev->current_state == PCI_D3cold)
2491 pm_runtime_resume(dev);
2492 }
2493
2494 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2495 {
2496 struct device *dev = &pdev->dev;
2497 struct device *parent = dev->parent;
2498
2499 pm_runtime_put(dev);
2500 if (parent)
2501 pm_runtime_put_sync(parent);
2502 }
2503
2504 /**
2505 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2506 * @bridge: Bridge to check
2507 *
2508 * This function checks if it is possible to move the bridge to D3.
2509 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2510 */
2511 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2512 {
2513 if (!pci_is_pcie(bridge))
2514 return false;
2515
2516 switch (pci_pcie_type(bridge)) {
2517 case PCI_EXP_TYPE_ROOT_PORT:
2518 case PCI_EXP_TYPE_UPSTREAM:
2519 case PCI_EXP_TYPE_DOWNSTREAM:
2520 if (pci_bridge_d3_disable)
2521 return false;
2522
2523 /*
2524 * Hotplug ports handled by firmware in System Management Mode
2525 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2526 */
2527 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2528 return false;
2529
2530 if (pci_bridge_d3_force)
2531 return true;
2532
2533 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2534 if (bridge->is_thunderbolt)
2535 return true;
2536
2537 /* Platform might know better if the bridge supports D3 */
2538 if (platform_pci_bridge_d3(bridge))
2539 return true;
2540
2541 /*
2542 * Hotplug ports handled natively by the OS were not validated
2543 * by vendors for runtime D3 at least until 2018 because there
2544 * was no OS support.
2545 */
2546 if (bridge->is_hotplug_bridge)
2547 return false;
2548
2549 /*
2550 * It should be safe to put PCIe ports from 2015 or newer
2551 * to D3.
2552 */
2553 if (dmi_get_bios_year() >= 2015)
2554 return true;
2555 break;
2556 }
2557
2558 return false;
2559 }
2560
2561 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2562 {
2563 bool *d3cold_ok = data;
2564
2565 if (/* The device needs to be allowed to go D3cold ... */
2566 dev->no_d3cold || !dev->d3cold_allowed ||
2567
2568 /* ... and if it is wakeup capable to do so from D3cold. */
2569 (device_may_wakeup(&dev->dev) &&
2570 !pci_pme_capable(dev, PCI_D3cold)) ||
2571
2572 /* If it is a bridge it must be allowed to go to D3. */
2573 !pci_power_manageable(dev))
2574
2575 *d3cold_ok = false;
2576
2577 return !*d3cold_ok;
2578 }
2579
2580 /*
2581 * pci_bridge_d3_update - Update bridge D3 capabilities
2582 * @dev: PCI device which is changed
2583 *
2584 * Update upstream bridge PM capabilities accordingly depending on if the
2585 * device PM configuration was changed or the device is being removed. The
2586 * change is also propagated upstream.
2587 */
2588 void pci_bridge_d3_update(struct pci_dev *dev)
2589 {
2590 bool remove = !device_is_registered(&dev->dev);
2591 struct pci_dev *bridge;
2592 bool d3cold_ok = true;
2593
2594 bridge = pci_upstream_bridge(dev);
2595 if (!bridge || !pci_bridge_d3_possible(bridge))
2596 return;
2597
2598 /*
2599 * If D3 is currently allowed for the bridge, removing one of its
2600 * children won't change that.
2601 */
2602 if (remove && bridge->bridge_d3)
2603 return;
2604
2605 /*
2606 * If D3 is currently allowed for the bridge and a child is added or
2607 * changed, disallowance of D3 can only be caused by that child, so
2608 * we only need to check that single device, not any of its siblings.
2609 *
2610 * If D3 is currently not allowed for the bridge, checking the device
2611 * first may allow us to skip checking its siblings.
2612 */
2613 if (!remove)
2614 pci_dev_check_d3cold(dev, &d3cold_ok);
2615
2616 /*
2617 * If D3 is currently not allowed for the bridge, this may be caused
2618 * either by the device being changed/removed or any of its siblings,
2619 * so we need to go through all children to find out if one of them
2620 * continues to block D3.
2621 */
2622 if (d3cold_ok && !bridge->bridge_d3)
2623 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2624 &d3cold_ok);
2625
2626 if (bridge->bridge_d3 != d3cold_ok) {
2627 bridge->bridge_d3 = d3cold_ok;
2628 /* Propagate change to upstream bridges */
2629 pci_bridge_d3_update(bridge);
2630 }
2631 }
2632
2633 /**
2634 * pci_d3cold_enable - Enable D3cold for device
2635 * @dev: PCI device to handle
2636 *
2637 * This function can be used in drivers to enable D3cold from the device
2638 * they handle. It also updates upstream PCI bridge PM capabilities
2639 * accordingly.
2640 */
2641 void pci_d3cold_enable(struct pci_dev *dev)
2642 {
2643 if (dev->no_d3cold) {
2644 dev->no_d3cold = false;
2645 pci_bridge_d3_update(dev);
2646 }
2647 }
2648 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2649
2650 /**
2651 * pci_d3cold_disable - Disable D3cold for device
2652 * @dev: PCI device to handle
2653 *
2654 * This function can be used in drivers to disable D3cold from the device
2655 * they handle. It also updates upstream PCI bridge PM capabilities
2656 * accordingly.
2657 */
2658 void pci_d3cold_disable(struct pci_dev *dev)
2659 {
2660 if (!dev->no_d3cold) {
2661 dev->no_d3cold = true;
2662 pci_bridge_d3_update(dev);
2663 }
2664 }
2665 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2666
2667 /**
2668 * pci_pm_init - Initialize PM functions of given PCI device
2669 * @dev: PCI device to handle.
2670 */
2671 void pci_pm_init(struct pci_dev *dev)
2672 {
2673 int pm;
2674 u16 status;
2675 u16 pmc;
2676
2677 pm_runtime_forbid(&dev->dev);
2678 pm_runtime_set_active(&dev->dev);
2679 pm_runtime_enable(&dev->dev);
2680 device_enable_async_suspend(&dev->dev);
2681 dev->wakeup_prepared = false;
2682
2683 dev->pm_cap = 0;
2684 dev->pme_support = 0;
2685
2686 /* find PCI PM capability in list */
2687 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2688 if (!pm)
2689 return;
2690 /* Check device's ability to generate PME# */
2691 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2692
2693 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2694 pci_err(dev, "unsupported PM cap regs version (%u)\n",
2695 pmc & PCI_PM_CAP_VER_MASK);
2696 return;
2697 }
2698
2699 dev->pm_cap = pm;
2700 dev->d3_delay = PCI_PM_D3_WAIT;
2701 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2702 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2703 dev->d3cold_allowed = true;
2704
2705 dev->d1_support = false;
2706 dev->d2_support = false;
2707 if (!pci_no_d1d2(dev)) {
2708 if (pmc & PCI_PM_CAP_D1)
2709 dev->d1_support = true;
2710 if (pmc & PCI_PM_CAP_D2)
2711 dev->d2_support = true;
2712
2713 if (dev->d1_support || dev->d2_support)
2714 pci_printk(KERN_DEBUG, dev, "supports%s%s\n",
2715 dev->d1_support ? " D1" : "",
2716 dev->d2_support ? " D2" : "");
2717 }
2718
2719 pmc &= PCI_PM_CAP_PME_MASK;
2720 if (pmc) {
2721 pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n",
2722 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2723 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2724 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2725 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2726 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2727 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2728 dev->pme_poll = true;
2729 /*
2730 * Make device's PM flags reflect the wake-up capability, but
2731 * let the user space enable it to wake up the system as needed.
2732 */
2733 device_set_wakeup_capable(&dev->dev, true);
2734 /* Disable the PME# generation functionality */
2735 pci_pme_active(dev, false);
2736 }
2737
2738 pci_read_config_word(dev, PCI_STATUS, &status);
2739 if (status & PCI_STATUS_IMM_READY)
2740 dev->imm_ready = 1;
2741 }
2742
2743 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2744 {
2745 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2746
2747 switch (prop) {
2748 case PCI_EA_P_MEM:
2749 case PCI_EA_P_VF_MEM:
2750 flags |= IORESOURCE_MEM;
2751 break;
2752 case PCI_EA_P_MEM_PREFETCH:
2753 case PCI_EA_P_VF_MEM_PREFETCH:
2754 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2755 break;
2756 case PCI_EA_P_IO:
2757 flags |= IORESOURCE_IO;
2758 break;
2759 default:
2760 return 0;
2761 }
2762
2763 return flags;
2764 }
2765
2766 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2767 u8 prop)
2768 {
2769 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2770 return &dev->resource[bei];
2771 #ifdef CONFIG_PCI_IOV
2772 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2773 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2774 return &dev->resource[PCI_IOV_RESOURCES +
2775 bei - PCI_EA_BEI_VF_BAR0];
2776 #endif
2777 else if (bei == PCI_EA_BEI_ROM)
2778 return &dev->resource[PCI_ROM_RESOURCE];
2779 else
2780 return NULL;
2781 }
2782
2783 /* Read an Enhanced Allocation (EA) entry */
2784 static int pci_ea_read(struct pci_dev *dev, int offset)
2785 {
2786 struct resource *res;
2787 int ent_size, ent_offset = offset;
2788 resource_size_t start, end;
2789 unsigned long flags;
2790 u32 dw0, bei, base, max_offset;
2791 u8 prop;
2792 bool support_64 = (sizeof(resource_size_t) >= 8);
2793
2794 pci_read_config_dword(dev, ent_offset, &dw0);
2795 ent_offset += 4;
2796
2797 /* Entry size field indicates DWORDs after 1st */
2798 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2799
2800 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2801 goto out;
2802
2803 bei = (dw0 & PCI_EA_BEI) >> 4;
2804 prop = (dw0 & PCI_EA_PP) >> 8;
2805
2806 /*
2807 * If the Property is in the reserved range, try the Secondary
2808 * Property instead.
2809 */
2810 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2811 prop = (dw0 & PCI_EA_SP) >> 16;
2812 if (prop > PCI_EA_P_BRIDGE_IO)
2813 goto out;
2814
2815 res = pci_ea_get_resource(dev, bei, prop);
2816 if (!res) {
2817 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2818 goto out;
2819 }
2820
2821 flags = pci_ea_flags(dev, prop);
2822 if (!flags) {
2823 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2824 goto out;
2825 }
2826
2827 /* Read Base */
2828 pci_read_config_dword(dev, ent_offset, &base);
2829 start = (base & PCI_EA_FIELD_MASK);
2830 ent_offset += 4;
2831
2832 /* Read MaxOffset */
2833 pci_read_config_dword(dev, ent_offset, &max_offset);
2834 ent_offset += 4;
2835
2836 /* Read Base MSBs (if 64-bit entry) */
2837 if (base & PCI_EA_IS_64) {
2838 u32 base_upper;
2839
2840 pci_read_config_dword(dev, ent_offset, &base_upper);
2841 ent_offset += 4;
2842
2843 flags |= IORESOURCE_MEM_64;
2844
2845 /* entry starts above 32-bit boundary, can't use */
2846 if (!support_64 && base_upper)
2847 goto out;
2848
2849 if (support_64)
2850 start |= ((u64)base_upper << 32);
2851 }
2852
2853 end = start + (max_offset | 0x03);
2854
2855 /* Read MaxOffset MSBs (if 64-bit entry) */
2856 if (max_offset & PCI_EA_IS_64) {
2857 u32 max_offset_upper;
2858
2859 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2860 ent_offset += 4;
2861
2862 flags |= IORESOURCE_MEM_64;
2863
2864 /* entry too big, can't use */
2865 if (!support_64 && max_offset_upper)
2866 goto out;
2867
2868 if (support_64)
2869 end += ((u64)max_offset_upper << 32);
2870 }
2871
2872 if (end < start) {
2873 pci_err(dev, "EA Entry crosses address boundary\n");
2874 goto out;
2875 }
2876
2877 if (ent_size != ent_offset - offset) {
2878 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2879 ent_size, ent_offset - offset);
2880 goto out;
2881 }
2882
2883 res->name = pci_name(dev);
2884 res->start = start;
2885 res->end = end;
2886 res->flags = flags;
2887
2888 if (bei <= PCI_EA_BEI_BAR5)
2889 pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2890 bei, res, prop);
2891 else if (bei == PCI_EA_BEI_ROM)
2892 pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2893 res, prop);
2894 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2895 pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2896 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2897 else
2898 pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2899 bei, res, prop);
2900
2901 out:
2902 return offset + ent_size;
2903 }
2904
2905 /* Enhanced Allocation Initialization */
2906 void pci_ea_init(struct pci_dev *dev)
2907 {
2908 int ea;
2909 u8 num_ent;
2910 int offset;
2911 int i;
2912
2913 /* find PCI EA capability in list */
2914 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2915 if (!ea)
2916 return;
2917
2918 /* determine the number of entries */
2919 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2920 &num_ent);
2921 num_ent &= PCI_EA_NUM_ENT_MASK;
2922
2923 offset = ea + PCI_EA_FIRST_ENT;
2924
2925 /* Skip DWORD 2 for type 1 functions */
2926 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2927 offset += 4;
2928
2929 /* parse each EA entry */
2930 for (i = 0; i < num_ent; ++i)
2931 offset = pci_ea_read(dev, offset);
2932 }
2933
2934 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2935 struct pci_cap_saved_state *new_cap)
2936 {
2937 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2938 }
2939
2940 /**
2941 * _pci_add_cap_save_buffer - allocate buffer for saving given
2942 * capability registers
2943 * @dev: the PCI device
2944 * @cap: the capability to allocate the buffer for
2945 * @extended: Standard or Extended capability ID
2946 * @size: requested size of the buffer
2947 */
2948 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2949 bool extended, unsigned int size)
2950 {
2951 int pos;
2952 struct pci_cap_saved_state *save_state;
2953
2954 if (extended)
2955 pos = pci_find_ext_capability(dev, cap);
2956 else
2957 pos = pci_find_capability(dev, cap);
2958
2959 if (!pos)
2960 return 0;
2961
2962 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2963 if (!save_state)
2964 return -ENOMEM;
2965
2966 save_state->cap.cap_nr = cap;
2967 save_state->cap.cap_extended = extended;
2968 save_state->cap.size = size;
2969 pci_add_saved_cap(dev, save_state);
2970
2971 return 0;
2972 }
2973
2974 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2975 {
2976 return _pci_add_cap_save_buffer(dev, cap, false, size);
2977 }
2978
2979 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2980 {
2981 return _pci_add_cap_save_buffer(dev, cap, true, size);
2982 }
2983
2984 /**
2985 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2986 * @dev: the PCI device
2987 */
2988 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2989 {
2990 int error;
2991
2992 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2993 PCI_EXP_SAVE_REGS * sizeof(u16));
2994 if (error)
2995 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
2996
2997 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2998 if (error)
2999 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3000
3001 pci_allocate_vc_save_buffers(dev);
3002 }
3003
3004 void pci_free_cap_save_buffers(struct pci_dev *dev)
3005 {
3006 struct pci_cap_saved_state *tmp;
3007 struct hlist_node *n;
3008
3009 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3010 kfree(tmp);
3011 }
3012
3013 /**
3014 * pci_configure_ari - enable or disable ARI forwarding
3015 * @dev: the PCI device
3016 *
3017 * If @dev and its upstream bridge both support ARI, enable ARI in the
3018 * bridge. Otherwise, disable ARI in the bridge.
3019 */
3020 void pci_configure_ari(struct pci_dev *dev)
3021 {
3022 u32 cap;
3023 struct pci_dev *bridge;
3024
3025 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3026 return;
3027
3028 bridge = dev->bus->self;
3029 if (!bridge)
3030 return;
3031
3032 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3033 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3034 return;
3035
3036 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3037 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3038 PCI_EXP_DEVCTL2_ARI);
3039 bridge->ari_enabled = 1;
3040 } else {
3041 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3042 PCI_EXP_DEVCTL2_ARI);
3043 bridge->ari_enabled = 0;
3044 }
3045 }
3046
3047 static int pci_acs_enable;
3048
3049 /**
3050 * pci_request_acs - ask for ACS to be enabled if supported
3051 */
3052 void pci_request_acs(void)
3053 {
3054 pci_acs_enable = 1;
3055 }
3056
3057 static const char *disable_acs_redir_param;
3058
3059 /**
3060 * pci_disable_acs_redir - disable ACS redirect capabilities
3061 * @dev: the PCI device
3062 *
3063 * For only devices specified in the disable_acs_redir parameter.
3064 */
3065 static void pci_disable_acs_redir(struct pci_dev *dev)
3066 {
3067 int ret = 0;
3068 const char *p;
3069 int pos;
3070 u16 ctrl;
3071
3072 if (!disable_acs_redir_param)
3073 return;
3074
3075 p = disable_acs_redir_param;
3076 while (*p) {
3077 ret = pci_dev_str_match(dev, p, &p);
3078 if (ret < 0) {
3079 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3080 disable_acs_redir_param);
3081
3082 break;
3083 } else if (ret == 1) {
3084 /* Found a match */
3085 break;
3086 }
3087
3088 if (*p != ';' && *p != ',') {
3089 /* End of param or invalid format */
3090 break;
3091 }
3092 p++;
3093 }
3094
3095 if (ret != 1)
3096 return;
3097
3098 if (!pci_dev_specific_disable_acs_redir(dev))
3099 return;
3100
3101 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3102 if (!pos) {
3103 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3104 return;
3105 }
3106
3107 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3108
3109 /* P2P Request & Completion Redirect */
3110 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3111
3112 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3113
3114 pci_info(dev, "disabled ACS redirect\n");
3115 }
3116
3117 /**
3118 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
3119 * @dev: the PCI device
3120 */
3121 static void pci_std_enable_acs(struct pci_dev *dev)
3122 {
3123 int pos;
3124 u16 cap;
3125 u16 ctrl;
3126
3127 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3128 if (!pos)
3129 return;
3130
3131 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3132 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3133
3134 /* Source Validation */
3135 ctrl |= (cap & PCI_ACS_SV);
3136
3137 /* P2P Request Redirect */
3138 ctrl |= (cap & PCI_ACS_RR);
3139
3140 /* P2P Completion Redirect */
3141 ctrl |= (cap & PCI_ACS_CR);
3142
3143 /* Upstream Forwarding */
3144 ctrl |= (cap & PCI_ACS_UF);
3145
3146 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3147 }
3148
3149 /**
3150 * pci_enable_acs - enable ACS if hardware support it
3151 * @dev: the PCI device
3152 */
3153 void pci_enable_acs(struct pci_dev *dev)
3154 {
3155 if (!pci_acs_enable)
3156 goto disable_acs_redir;
3157
3158 if (!pci_dev_specific_enable_acs(dev))
3159 goto disable_acs_redir;
3160
3161 pci_std_enable_acs(dev);
3162
3163 disable_acs_redir:
3164 /*
3165 * Note: pci_disable_acs_redir() must be called even if ACS was not
3166 * enabled by the kernel because it may have been enabled by
3167 * platform firmware. So if we are told to disable it, we should
3168 * always disable it after setting the kernel's default
3169 * preferences.
3170 */
3171 pci_disable_acs_redir(dev);
3172 }
3173
3174 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3175 {
3176 int pos;
3177 u16 cap, ctrl;
3178
3179 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3180 if (!pos)
3181 return false;
3182
3183 /*
3184 * Except for egress control, capabilities are either required
3185 * or only required if controllable. Features missing from the
3186 * capability field can therefore be assumed as hard-wired enabled.
3187 */
3188 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3189 acs_flags &= (cap | PCI_ACS_EC);
3190
3191 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3192 return (ctrl & acs_flags) == acs_flags;
3193 }
3194
3195 /**
3196 * pci_acs_enabled - test ACS against required flags for a given device
3197 * @pdev: device to test
3198 * @acs_flags: required PCI ACS flags
3199 *
3200 * Return true if the device supports the provided flags. Automatically
3201 * filters out flags that are not implemented on multifunction devices.
3202 *
3203 * Note that this interface checks the effective ACS capabilities of the
3204 * device rather than the actual capabilities. For instance, most single
3205 * function endpoints are not required to support ACS because they have no
3206 * opportunity for peer-to-peer access. We therefore return 'true'
3207 * regardless of whether the device exposes an ACS capability. This makes
3208 * it much easier for callers of this function to ignore the actual type
3209 * or topology of the device when testing ACS support.
3210 */
3211 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3212 {
3213 int ret;
3214
3215 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3216 if (ret >= 0)
3217 return ret > 0;
3218
3219 /*
3220 * Conventional PCI and PCI-X devices never support ACS, either
3221 * effectively or actually. The shared bus topology implies that
3222 * any device on the bus can receive or snoop DMA.
3223 */
3224 if (!pci_is_pcie(pdev))
3225 return false;
3226
3227 switch (pci_pcie_type(pdev)) {
3228 /*
3229 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3230 * but since their primary interface is PCI/X, we conservatively
3231 * handle them as we would a non-PCIe device.
3232 */
3233 case PCI_EXP_TYPE_PCIE_BRIDGE:
3234 /*
3235 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3236 * applicable... must never implement an ACS Extended Capability...".
3237 * This seems arbitrary, but we take a conservative interpretation
3238 * of this statement.
3239 */
3240 case PCI_EXP_TYPE_PCI_BRIDGE:
3241 case PCI_EXP_TYPE_RC_EC:
3242 return false;
3243 /*
3244 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3245 * implement ACS in order to indicate their peer-to-peer capabilities,
3246 * regardless of whether they are single- or multi-function devices.
3247 */
3248 case PCI_EXP_TYPE_DOWNSTREAM:
3249 case PCI_EXP_TYPE_ROOT_PORT:
3250 return pci_acs_flags_enabled(pdev, acs_flags);
3251 /*
3252 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3253 * implemented by the remaining PCIe types to indicate peer-to-peer
3254 * capabilities, but only when they are part of a multifunction
3255 * device. The footnote for section 6.12 indicates the specific
3256 * PCIe types included here.
3257 */
3258 case PCI_EXP_TYPE_ENDPOINT:
3259 case PCI_EXP_TYPE_UPSTREAM:
3260 case PCI_EXP_TYPE_LEG_END:
3261 case PCI_EXP_TYPE_RC_END:
3262 if (!pdev->multifunction)
3263 break;
3264
3265 return pci_acs_flags_enabled(pdev, acs_flags);
3266 }
3267
3268 /*
3269 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3270 * to single function devices with the exception of downstream ports.
3271 */
3272 return true;
3273 }
3274
3275 /**
3276 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3277 * @start: starting downstream device
3278 * @end: ending upstream device or NULL to search to the root bus
3279 * @acs_flags: required flags
3280 *
3281 * Walk up a device tree from start to end testing PCI ACS support. If
3282 * any step along the way does not support the required flags, return false.
3283 */
3284 bool pci_acs_path_enabled(struct pci_dev *start,
3285 struct pci_dev *end, u16 acs_flags)
3286 {
3287 struct pci_dev *pdev, *parent = start;
3288
3289 do {
3290 pdev = parent;
3291
3292 if (!pci_acs_enabled(pdev, acs_flags))
3293 return false;
3294
3295 if (pci_is_root_bus(pdev->bus))
3296 return (end == NULL);
3297
3298 parent = pdev->bus->self;
3299 } while (pdev != end);
3300
3301 return true;
3302 }
3303
3304 /**
3305 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3306 * @pdev: PCI device
3307 * @bar: BAR to find
3308 *
3309 * Helper to find the position of the ctrl register for a BAR.
3310 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3311 * Returns -ENOENT if no ctrl register for the BAR could be found.
3312 */
3313 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3314 {
3315 unsigned int pos, nbars, i;
3316 u32 ctrl;
3317
3318 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3319 if (!pos)
3320 return -ENOTSUPP;
3321
3322 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3323 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3324 PCI_REBAR_CTRL_NBAR_SHIFT;
3325
3326 for (i = 0; i < nbars; i++, pos += 8) {
3327 int bar_idx;
3328
3329 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3330 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3331 if (bar_idx == bar)
3332 return pos;
3333 }
3334
3335 return -ENOENT;
3336 }
3337
3338 /**
3339 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3340 * @pdev: PCI device
3341 * @bar: BAR to query
3342 *
3343 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3344 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3345 */
3346 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3347 {
3348 int pos;
3349 u32 cap;
3350
3351 pos = pci_rebar_find_pos(pdev, bar);
3352 if (pos < 0)
3353 return 0;
3354
3355 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3356 return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3357 }
3358
3359 /**
3360 * pci_rebar_get_current_size - get the current size of a BAR
3361 * @pdev: PCI device
3362 * @bar: BAR to set size to
3363 *
3364 * Read the size of a BAR from the resizable BAR config.
3365 * Returns size if found or negative error code.
3366 */
3367 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3368 {
3369 int pos;
3370 u32 ctrl;
3371
3372 pos = pci_rebar_find_pos(pdev, bar);
3373 if (pos < 0)
3374 return pos;
3375
3376 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3377 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3378 }
3379
3380 /**
3381 * pci_rebar_set_size - set a new size for a BAR
3382 * @pdev: PCI device
3383 * @bar: BAR to set size to
3384 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3385 *
3386 * Set the new size of a BAR as defined in the spec.
3387 * Returns zero if resizing was successful, error code otherwise.
3388 */
3389 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3390 {
3391 int pos;
3392 u32 ctrl;
3393
3394 pos = pci_rebar_find_pos(pdev, bar);
3395 if (pos < 0)
3396 return pos;
3397
3398 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3399 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3400 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3401 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3402 return 0;
3403 }
3404
3405 /**
3406 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3407 * @dev: the PCI device
3408 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3409 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3410 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3411 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3412 *
3413 * Return 0 if all upstream bridges support AtomicOp routing, egress
3414 * blocking is disabled on all upstream ports, and the root port supports
3415 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3416 * AtomicOp completion), or negative otherwise.
3417 */
3418 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3419 {
3420 struct pci_bus *bus = dev->bus;
3421 struct pci_dev *bridge;
3422 u32 cap, ctl2;
3423
3424 if (!pci_is_pcie(dev))
3425 return -EINVAL;
3426
3427 /*
3428 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3429 * AtomicOp requesters. For now, we only support endpoints as
3430 * requesters and root ports as completers. No endpoints as
3431 * completers, and no peer-to-peer.
3432 */
3433
3434 switch (pci_pcie_type(dev)) {
3435 case PCI_EXP_TYPE_ENDPOINT:
3436 case PCI_EXP_TYPE_LEG_END:
3437 case PCI_EXP_TYPE_RC_END:
3438 break;
3439 default:
3440 return -EINVAL;
3441 }
3442
3443 while (bus->parent) {
3444 bridge = bus->self;
3445
3446 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3447
3448 switch (pci_pcie_type(bridge)) {
3449 /* Ensure switch ports support AtomicOp routing */
3450 case PCI_EXP_TYPE_UPSTREAM:
3451 case PCI_EXP_TYPE_DOWNSTREAM:
3452 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3453 return -EINVAL;
3454 break;
3455
3456 /* Ensure root port supports all the sizes we care about */
3457 case PCI_EXP_TYPE_ROOT_PORT:
3458 if ((cap & cap_mask) != cap_mask)
3459 return -EINVAL;
3460 break;
3461 }
3462
3463 /* Ensure upstream ports don't block AtomicOps on egress */
3464 if (!bridge->has_secondary_link) {
3465 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3466 &ctl2);
3467 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3468 return -EINVAL;
3469 }
3470
3471 bus = bus->parent;
3472 }
3473
3474 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3475 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3476 return 0;
3477 }
3478 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3479
3480 /**
3481 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3482 * @dev: the PCI device
3483 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3484 *
3485 * Perform INTx swizzling for a device behind one level of bridge. This is
3486 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3487 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3488 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3489 * the PCI Express Base Specification, Revision 2.1)
3490 */
3491 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3492 {
3493 int slot;
3494
3495 if (pci_ari_enabled(dev->bus))
3496 slot = 0;
3497 else
3498 slot = PCI_SLOT(dev->devfn);
3499
3500 return (((pin - 1) + slot) % 4) + 1;
3501 }
3502
3503 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3504 {
3505 u8 pin;
3506
3507 pin = dev->pin;
3508 if (!pin)
3509 return -1;
3510
3511 while (!pci_is_root_bus(dev->bus)) {
3512 pin = pci_swizzle_interrupt_pin(dev, pin);
3513 dev = dev->bus->self;
3514 }
3515 *bridge = dev;
3516 return pin;
3517 }
3518
3519 /**
3520 * pci_common_swizzle - swizzle INTx all the way to root bridge
3521 * @dev: the PCI device
3522 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3523 *
3524 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3525 * bridges all the way up to a PCI root bus.
3526 */
3527 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3528 {
3529 u8 pin = *pinp;
3530
3531 while (!pci_is_root_bus(dev->bus)) {
3532 pin = pci_swizzle_interrupt_pin(dev, pin);
3533 dev = dev->bus->self;
3534 }
3535 *pinp = pin;
3536 return PCI_SLOT(dev->devfn);
3537 }
3538 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3539
3540 /**
3541 * pci_release_region - Release a PCI bar
3542 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3543 * @bar: BAR to release
3544 *
3545 * Releases the PCI I/O and memory resources previously reserved by a
3546 * successful call to pci_request_region. Call this function only
3547 * after all use of the PCI regions has ceased.
3548 */
3549 void pci_release_region(struct pci_dev *pdev, int bar)
3550 {
3551 struct pci_devres *dr;
3552
3553 if (pci_resource_len(pdev, bar) == 0)
3554 return;
3555 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3556 release_region(pci_resource_start(pdev, bar),
3557 pci_resource_len(pdev, bar));
3558 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3559 release_mem_region(pci_resource_start(pdev, bar),
3560 pci_resource_len(pdev, bar));
3561
3562 dr = find_pci_dr(pdev);
3563 if (dr)
3564 dr->region_mask &= ~(1 << bar);
3565 }
3566 EXPORT_SYMBOL(pci_release_region);
3567
3568 /**
3569 * __pci_request_region - Reserved PCI I/O and memory resource
3570 * @pdev: PCI device whose resources are to be reserved
3571 * @bar: BAR to be reserved
3572 * @res_name: Name to be associated with resource.
3573 * @exclusive: whether the region access is exclusive or not
3574 *
3575 * Mark the PCI region associated with PCI device @pdev BR @bar as
3576 * being reserved by owner @res_name. Do not access any
3577 * address inside the PCI regions unless this call returns
3578 * successfully.
3579 *
3580 * If @exclusive is set, then the region is marked so that userspace
3581 * is explicitly not allowed to map the resource via /dev/mem or
3582 * sysfs MMIO access.
3583 *
3584 * Returns 0 on success, or %EBUSY on error. A warning
3585 * message is also printed on failure.
3586 */
3587 static int __pci_request_region(struct pci_dev *pdev, int bar,
3588 const char *res_name, int exclusive)
3589 {
3590 struct pci_devres *dr;
3591
3592 if (pci_resource_len(pdev, bar) == 0)
3593 return 0;
3594
3595 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3596 if (!request_region(pci_resource_start(pdev, bar),
3597 pci_resource_len(pdev, bar), res_name))
3598 goto err_out;
3599 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3600 if (!__request_mem_region(pci_resource_start(pdev, bar),
3601 pci_resource_len(pdev, bar), res_name,
3602 exclusive))
3603 goto err_out;
3604 }
3605
3606 dr = find_pci_dr(pdev);
3607 if (dr)
3608 dr->region_mask |= 1 << bar;
3609
3610 return 0;
3611
3612 err_out:
3613 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3614 &pdev->resource[bar]);
3615 return -EBUSY;
3616 }
3617
3618 /**
3619 * pci_request_region - Reserve PCI I/O and memory resource
3620 * @pdev: PCI device whose resources are to be reserved
3621 * @bar: BAR to be reserved
3622 * @res_name: Name to be associated with resource
3623 *
3624 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3625 * being reserved by owner @res_name. Do not access any
3626 * address inside the PCI regions unless this call returns
3627 * successfully.
3628 *
3629 * Returns 0 on success, or %EBUSY on error. A warning
3630 * message is also printed on failure.
3631 */
3632 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3633 {
3634 return __pci_request_region(pdev, bar, res_name, 0);
3635 }
3636 EXPORT_SYMBOL(pci_request_region);
3637
3638 /**
3639 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3640 * @pdev: PCI device whose resources are to be reserved
3641 * @bar: BAR to be reserved
3642 * @res_name: Name to be associated with resource.
3643 *
3644 * Mark the PCI region associated with PCI device @pdev BR @bar as
3645 * being reserved by owner @res_name. Do not access any
3646 * address inside the PCI regions unless this call returns
3647 * successfully.
3648 *
3649 * Returns 0 on success, or %EBUSY on error. A warning
3650 * message is also printed on failure.
3651 *
3652 * The key difference that _exclusive makes it that userspace is
3653 * explicitly not allowed to map the resource via /dev/mem or
3654 * sysfs.
3655 */
3656 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3657 const char *res_name)
3658 {
3659 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3660 }
3661 EXPORT_SYMBOL(pci_request_region_exclusive);
3662
3663 /**
3664 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3665 * @pdev: PCI device whose resources were previously reserved
3666 * @bars: Bitmask of BARs to be released
3667 *
3668 * Release selected PCI I/O and memory resources previously reserved.
3669 * Call this function only after all use of the PCI regions has ceased.
3670 */
3671 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3672 {
3673 int i;
3674
3675 for (i = 0; i < 6; i++)
3676 if (bars & (1 << i))
3677 pci_release_region(pdev, i);
3678 }
3679 EXPORT_SYMBOL(pci_release_selected_regions);
3680
3681 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3682 const char *res_name, int excl)
3683 {
3684 int i;
3685
3686 for (i = 0; i < 6; i++)
3687 if (bars & (1 << i))
3688 if (__pci_request_region(pdev, i, res_name, excl))
3689 goto err_out;
3690 return 0;
3691
3692 err_out:
3693 while (--i >= 0)
3694 if (bars & (1 << i))
3695 pci_release_region(pdev, i);
3696
3697 return -EBUSY;
3698 }
3699
3700
3701 /**
3702 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3703 * @pdev: PCI device whose resources are to be reserved
3704 * @bars: Bitmask of BARs to be requested
3705 * @res_name: Name to be associated with resource
3706 */
3707 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3708 const char *res_name)
3709 {
3710 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3711 }
3712 EXPORT_SYMBOL(pci_request_selected_regions);
3713
3714 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3715 const char *res_name)
3716 {
3717 return __pci_request_selected_regions(pdev, bars, res_name,
3718 IORESOURCE_EXCLUSIVE);
3719 }
3720 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3721
3722 /**
3723 * pci_release_regions - Release reserved PCI I/O and memory resources
3724 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3725 *
3726 * Releases all PCI I/O and memory resources previously reserved by a
3727 * successful call to pci_request_regions. Call this function only
3728 * after all use of the PCI regions has ceased.
3729 */
3730
3731 void pci_release_regions(struct pci_dev *pdev)
3732 {
3733 pci_release_selected_regions(pdev, (1 << 6) - 1);
3734 }
3735 EXPORT_SYMBOL(pci_release_regions);
3736
3737 /**
3738 * pci_request_regions - Reserved PCI I/O and memory resources
3739 * @pdev: PCI device whose resources are to be reserved
3740 * @res_name: Name to be associated with resource.
3741 *
3742 * Mark all PCI regions associated with PCI device @pdev as
3743 * being reserved by owner @res_name. Do not access any
3744 * address inside the PCI regions unless this call returns
3745 * successfully.
3746 *
3747 * Returns 0 on success, or %EBUSY on error. A warning
3748 * message is also printed on failure.
3749 */
3750 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3751 {
3752 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3753 }
3754 EXPORT_SYMBOL(pci_request_regions);
3755
3756 /**
3757 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3758 * @pdev: PCI device whose resources are to be reserved
3759 * @res_name: Name to be associated with resource.
3760 *
3761 * Mark all PCI regions associated with PCI device @pdev as
3762 * being reserved by owner @res_name. Do not access any
3763 * address inside the PCI regions unless this call returns
3764 * successfully.
3765 *
3766 * pci_request_regions_exclusive() will mark the region so that
3767 * /dev/mem and the sysfs MMIO access will not be allowed.
3768 *
3769 * Returns 0 on success, or %EBUSY on error. A warning
3770 * message is also printed on failure.
3771 */
3772 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3773 {
3774 return pci_request_selected_regions_exclusive(pdev,
3775 ((1 << 6) - 1), res_name);
3776 }
3777 EXPORT_SYMBOL(pci_request_regions_exclusive);
3778
3779 /*
3780 * Record the PCI IO range (expressed as CPU physical address + size).
3781 * Return a negative value if an error has occured, zero otherwise
3782 */
3783 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3784 resource_size_t size)
3785 {
3786 int ret = 0;
3787 #ifdef PCI_IOBASE
3788 struct logic_pio_hwaddr *range;
3789
3790 if (!size || addr + size < addr)
3791 return -EINVAL;
3792
3793 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3794 if (!range)
3795 return -ENOMEM;
3796
3797 range->fwnode = fwnode;
3798 range->size = size;
3799 range->hw_start = addr;
3800 range->flags = LOGIC_PIO_CPU_MMIO;
3801
3802 ret = logic_pio_register_range(range);
3803 if (ret)
3804 kfree(range);
3805 #endif
3806
3807 return ret;
3808 }
3809
3810 phys_addr_t pci_pio_to_address(unsigned long pio)
3811 {
3812 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3813
3814 #ifdef PCI_IOBASE
3815 if (pio >= MMIO_UPPER_LIMIT)
3816 return address;
3817
3818 address = logic_pio_to_hwaddr(pio);
3819 #endif
3820
3821 return address;
3822 }
3823
3824 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3825 {
3826 #ifdef PCI_IOBASE
3827 return logic_pio_trans_cpuaddr(address);
3828 #else
3829 if (address > IO_SPACE_LIMIT)
3830 return (unsigned long)-1;
3831
3832 return (unsigned long) address;
3833 #endif
3834 }
3835
3836 /**
3837 * pci_remap_iospace - Remap the memory mapped I/O space
3838 * @res: Resource describing the I/O space
3839 * @phys_addr: physical address of range to be mapped
3840 *
3841 * Remap the memory mapped I/O space described by the @res
3842 * and the CPU physical address @phys_addr into virtual address space.
3843 * Only architectures that have memory mapped IO functions defined
3844 * (and the PCI_IOBASE value defined) should call this function.
3845 */
3846 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3847 {
3848 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3849 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3850
3851 if (!(res->flags & IORESOURCE_IO))
3852 return -EINVAL;
3853
3854 if (res->end > IO_SPACE_LIMIT)
3855 return -EINVAL;
3856
3857 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3858 pgprot_device(PAGE_KERNEL));
3859 #else
3860 /* this architecture does not have memory mapped I/O space,
3861 so this function should never be called */
3862 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3863 return -ENODEV;
3864 #endif
3865 }
3866 EXPORT_SYMBOL(pci_remap_iospace);
3867
3868 /**
3869 * pci_unmap_iospace - Unmap the memory mapped I/O space
3870 * @res: resource to be unmapped
3871 *
3872 * Unmap the CPU virtual address @res from virtual address space.
3873 * Only architectures that have memory mapped IO functions defined
3874 * (and the PCI_IOBASE value defined) should call this function.
3875 */
3876 void pci_unmap_iospace(struct resource *res)
3877 {
3878 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3879 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3880
3881 unmap_kernel_range(vaddr, resource_size(res));
3882 #endif
3883 }
3884 EXPORT_SYMBOL(pci_unmap_iospace);
3885
3886 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
3887 {
3888 struct resource **res = ptr;
3889
3890 pci_unmap_iospace(*res);
3891 }
3892
3893 /**
3894 * devm_pci_remap_iospace - Managed pci_remap_iospace()
3895 * @dev: Generic device to remap IO address for
3896 * @res: Resource describing the I/O space
3897 * @phys_addr: physical address of range to be mapped
3898 *
3899 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
3900 * detach.
3901 */
3902 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
3903 phys_addr_t phys_addr)
3904 {
3905 const struct resource **ptr;
3906 int error;
3907
3908 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
3909 if (!ptr)
3910 return -ENOMEM;
3911
3912 error = pci_remap_iospace(res, phys_addr);
3913 if (error) {
3914 devres_free(ptr);
3915 } else {
3916 *ptr = res;
3917 devres_add(dev, ptr);
3918 }
3919
3920 return error;
3921 }
3922 EXPORT_SYMBOL(devm_pci_remap_iospace);
3923
3924 /**
3925 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3926 * @dev: Generic device to remap IO address for
3927 * @offset: Resource address to map
3928 * @size: Size of map
3929 *
3930 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
3931 * detach.
3932 */
3933 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3934 resource_size_t offset,
3935 resource_size_t size)
3936 {
3937 void __iomem **ptr, *addr;
3938
3939 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3940 if (!ptr)
3941 return NULL;
3942
3943 addr = pci_remap_cfgspace(offset, size);
3944 if (addr) {
3945 *ptr = addr;
3946 devres_add(dev, ptr);
3947 } else
3948 devres_free(ptr);
3949
3950 return addr;
3951 }
3952 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3953
3954 /**
3955 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3956 * @dev: generic device to handle the resource for
3957 * @res: configuration space resource to be handled
3958 *
3959 * Checks that a resource is a valid memory region, requests the memory
3960 * region and ioremaps with pci_remap_cfgspace() API that ensures the
3961 * proper PCI configuration space memory attributes are guaranteed.
3962 *
3963 * All operations are managed and will be undone on driver detach.
3964 *
3965 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3966 * on failure. Usage example::
3967 *
3968 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3969 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3970 * if (IS_ERR(base))
3971 * return PTR_ERR(base);
3972 */
3973 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3974 struct resource *res)
3975 {
3976 resource_size_t size;
3977 const char *name;
3978 void __iomem *dest_ptr;
3979
3980 BUG_ON(!dev);
3981
3982 if (!res || resource_type(res) != IORESOURCE_MEM) {
3983 dev_err(dev, "invalid resource\n");
3984 return IOMEM_ERR_PTR(-EINVAL);
3985 }
3986
3987 size = resource_size(res);
3988 name = res->name ?: dev_name(dev);
3989
3990 if (!devm_request_mem_region(dev, res->start, size, name)) {
3991 dev_err(dev, "can't request region for resource %pR\n", res);
3992 return IOMEM_ERR_PTR(-EBUSY);
3993 }
3994
3995 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3996 if (!dest_ptr) {
3997 dev_err(dev, "ioremap failed for resource %pR\n", res);
3998 devm_release_mem_region(dev, res->start, size);
3999 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4000 }
4001
4002 return dest_ptr;
4003 }
4004 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4005
4006 static void __pci_set_master(struct pci_dev *dev, bool enable)
4007 {
4008 u16 old_cmd, cmd;
4009
4010 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4011 if (enable)
4012 cmd = old_cmd | PCI_COMMAND_MASTER;
4013 else
4014 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4015 if (cmd != old_cmd) {
4016 pci_dbg(dev, "%s bus mastering\n",
4017 enable ? "enabling" : "disabling");
4018 pci_write_config_word(dev, PCI_COMMAND, cmd);
4019 }
4020 dev->is_busmaster = enable;
4021 }
4022
4023 /**
4024 * pcibios_setup - process "pci=" kernel boot arguments
4025 * @str: string used to pass in "pci=" kernel boot arguments
4026 *
4027 * Process kernel boot arguments. This is the default implementation.
4028 * Architecture specific implementations can override this as necessary.
4029 */
4030 char * __weak __init pcibios_setup(char *str)
4031 {
4032 return str;
4033 }
4034
4035 /**
4036 * pcibios_set_master - enable PCI bus-mastering for device dev
4037 * @dev: the PCI device to enable
4038 *
4039 * Enables PCI bus-mastering for the device. This is the default
4040 * implementation. Architecture specific implementations can override
4041 * this if necessary.
4042 */
4043 void __weak pcibios_set_master(struct pci_dev *dev)
4044 {
4045 u8 lat;
4046
4047 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4048 if (pci_is_pcie(dev))
4049 return;
4050
4051 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4052 if (lat < 16)
4053 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4054 else if (lat > pcibios_max_latency)
4055 lat = pcibios_max_latency;
4056 else
4057 return;
4058
4059 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4060 }
4061
4062 /**
4063 * pci_set_master - enables bus-mastering for device dev
4064 * @dev: the PCI device to enable
4065 *
4066 * Enables bus-mastering on the device and calls pcibios_set_master()
4067 * to do the needed arch specific settings.
4068 */
4069 void pci_set_master(struct pci_dev *dev)
4070 {
4071 __pci_set_master(dev, true);
4072 pcibios_set_master(dev);
4073 }
4074 EXPORT_SYMBOL(pci_set_master);
4075
4076 /**
4077 * pci_clear_master - disables bus-mastering for device dev
4078 * @dev: the PCI device to disable
4079 */
4080 void pci_clear_master(struct pci_dev *dev)
4081 {
4082 __pci_set_master(dev, false);
4083 }
4084 EXPORT_SYMBOL(pci_clear_master);
4085
4086 /**
4087 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4088 * @dev: the PCI device for which MWI is to be enabled
4089 *
4090 * Helper function for pci_set_mwi.
4091 * Originally copied from drivers/net/acenic.c.
4092 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4093 *
4094 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4095 */
4096 int pci_set_cacheline_size(struct pci_dev *dev)
4097 {
4098 u8 cacheline_size;
4099
4100 if (!pci_cache_line_size)
4101 return -EINVAL;
4102
4103 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4104 equal to or multiple of the right value. */
4105 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4106 if (cacheline_size >= pci_cache_line_size &&
4107 (cacheline_size % pci_cache_line_size) == 0)
4108 return 0;
4109
4110 /* Write the correct value. */
4111 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4112 /* Read it back. */
4113 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4114 if (cacheline_size == pci_cache_line_size)
4115 return 0;
4116
4117 pci_printk(KERN_DEBUG, dev, "cache line size of %d is not supported\n",
4118 pci_cache_line_size << 2);
4119
4120 return -EINVAL;
4121 }
4122 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4123
4124 /**
4125 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4126 * @dev: the PCI device for which MWI is enabled
4127 *
4128 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4129 *
4130 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4131 */
4132 int pci_set_mwi(struct pci_dev *dev)
4133 {
4134 #ifdef PCI_DISABLE_MWI
4135 return 0;
4136 #else
4137 int rc;
4138 u16 cmd;
4139
4140 rc = pci_set_cacheline_size(dev);
4141 if (rc)
4142 return rc;
4143
4144 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4145 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4146 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4147 cmd |= PCI_COMMAND_INVALIDATE;
4148 pci_write_config_word(dev, PCI_COMMAND, cmd);
4149 }
4150 return 0;
4151 #endif
4152 }
4153 EXPORT_SYMBOL(pci_set_mwi);
4154
4155 /**
4156 * pcim_set_mwi - a device-managed pci_set_mwi()
4157 * @dev: the PCI device for which MWI is enabled
4158 *
4159 * Managed pci_set_mwi().
4160 *
4161 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4162 */
4163 int pcim_set_mwi(struct pci_dev *dev)
4164 {
4165 struct pci_devres *dr;
4166
4167 dr = find_pci_dr(dev);
4168 if (!dr)
4169 return -ENOMEM;
4170
4171 dr->mwi = 1;
4172 return pci_set_mwi(dev);
4173 }
4174 EXPORT_SYMBOL(pcim_set_mwi);
4175
4176 /**
4177 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4178 * @dev: the PCI device for which MWI is enabled
4179 *
4180 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4181 * Callers are not required to check the return value.
4182 *
4183 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4184 */
4185 int pci_try_set_mwi(struct pci_dev *dev)
4186 {
4187 #ifdef PCI_DISABLE_MWI
4188 return 0;
4189 #else
4190 return pci_set_mwi(dev);
4191 #endif
4192 }
4193 EXPORT_SYMBOL(pci_try_set_mwi);
4194
4195 /**
4196 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4197 * @dev: the PCI device to disable
4198 *
4199 * Disables PCI Memory-Write-Invalidate transaction on the device
4200 */
4201 void pci_clear_mwi(struct pci_dev *dev)
4202 {
4203 #ifndef PCI_DISABLE_MWI
4204 u16 cmd;
4205
4206 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4207 if (cmd & PCI_COMMAND_INVALIDATE) {
4208 cmd &= ~PCI_COMMAND_INVALIDATE;
4209 pci_write_config_word(dev, PCI_COMMAND, cmd);
4210 }
4211 #endif
4212 }
4213 EXPORT_SYMBOL(pci_clear_mwi);
4214
4215 /**
4216 * pci_intx - enables/disables PCI INTx for device dev
4217 * @pdev: the PCI device to operate on
4218 * @enable: boolean: whether to enable or disable PCI INTx
4219 *
4220 * Enables/disables PCI INTx for device dev
4221 */
4222 void pci_intx(struct pci_dev *pdev, int enable)
4223 {
4224 u16 pci_command, new;
4225
4226 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4227
4228 if (enable)
4229 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4230 else
4231 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4232
4233 if (new != pci_command) {
4234 struct pci_devres *dr;
4235
4236 pci_write_config_word(pdev, PCI_COMMAND, new);
4237
4238 dr = find_pci_dr(pdev);
4239 if (dr && !dr->restore_intx) {
4240 dr->restore_intx = 1;
4241 dr->orig_intx = !enable;
4242 }
4243 }
4244 }
4245 EXPORT_SYMBOL_GPL(pci_intx);
4246
4247 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4248 {
4249 struct pci_bus *bus = dev->bus;
4250 bool mask_updated = true;
4251 u32 cmd_status_dword;
4252 u16 origcmd, newcmd;
4253 unsigned long flags;
4254 bool irq_pending;
4255
4256 /*
4257 * We do a single dword read to retrieve both command and status.
4258 * Document assumptions that make this possible.
4259 */
4260 BUILD_BUG_ON(PCI_COMMAND % 4);
4261 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4262
4263 raw_spin_lock_irqsave(&pci_lock, flags);
4264
4265 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4266
4267 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4268
4269 /*
4270 * Check interrupt status register to see whether our device
4271 * triggered the interrupt (when masking) or the next IRQ is
4272 * already pending (when unmasking).
4273 */
4274 if (mask != irq_pending) {
4275 mask_updated = false;
4276 goto done;
4277 }
4278
4279 origcmd = cmd_status_dword;
4280 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4281 if (mask)
4282 newcmd |= PCI_COMMAND_INTX_DISABLE;
4283 if (newcmd != origcmd)
4284 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4285
4286 done:
4287 raw_spin_unlock_irqrestore(&pci_lock, flags);
4288
4289 return mask_updated;
4290 }
4291
4292 /**
4293 * pci_check_and_mask_intx - mask INTx on pending interrupt
4294 * @dev: the PCI device to operate on
4295 *
4296 * Check if the device dev has its INTx line asserted, mask it and
4297 * return true in that case. False is returned if no interrupt was
4298 * pending.
4299 */
4300 bool pci_check_and_mask_intx(struct pci_dev *dev)
4301 {
4302 return pci_check_and_set_intx_mask(dev, true);
4303 }
4304 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4305
4306 /**
4307 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4308 * @dev: the PCI device to operate on
4309 *
4310 * Check if the device dev has its INTx line asserted, unmask it if not
4311 * and return true. False is returned and the mask remains active if
4312 * there was still an interrupt pending.
4313 */
4314 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4315 {
4316 return pci_check_and_set_intx_mask(dev, false);
4317 }
4318 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4319
4320 /**
4321 * pci_wait_for_pending_transaction - waits for pending transaction
4322 * @dev: the PCI device to operate on
4323 *
4324 * Return 0 if transaction is pending 1 otherwise.
4325 */
4326 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4327 {
4328 if (!pci_is_pcie(dev))
4329 return 1;
4330
4331 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4332 PCI_EXP_DEVSTA_TRPND);
4333 }
4334 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4335
4336 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
4337 {
4338 int delay = 1;
4339 u32 id;
4340
4341 /*
4342 * After reset, the device should not silently discard config
4343 * requests, but it may still indicate that it needs more time by
4344 * responding to them with CRS completions. The Root Port will
4345 * generally synthesize ~0 data to complete the read (except when
4346 * CRS SV is enabled and the read was for the Vendor ID; in that
4347 * case it synthesizes 0x0001 data).
4348 *
4349 * Wait for the device to return a non-CRS completion. Read the
4350 * Command register instead of Vendor ID so we don't have to
4351 * contend with the CRS SV value.
4352 */
4353 pci_read_config_dword(dev, PCI_COMMAND, &id);
4354 while (id == ~0) {
4355 if (delay > timeout) {
4356 pci_warn(dev, "not ready %dms after %s; giving up\n",
4357 delay - 1, reset_type);
4358 return -ENOTTY;
4359 }
4360
4361 if (delay > 1000)
4362 pci_info(dev, "not ready %dms after %s; waiting\n",
4363 delay - 1, reset_type);
4364
4365 msleep(delay);
4366 delay *= 2;
4367 pci_read_config_dword(dev, PCI_COMMAND, &id);
4368 }
4369
4370 if (delay > 1000)
4371 pci_info(dev, "ready %dms after %s\n", delay - 1,
4372 reset_type);
4373
4374 return 0;
4375 }
4376
4377 /**
4378 * pcie_has_flr - check if a device supports function level resets
4379 * @dev: device to check
4380 *
4381 * Returns true if the device advertises support for PCIe function level
4382 * resets.
4383 */
4384 bool pcie_has_flr(struct pci_dev *dev)
4385 {
4386 u32 cap;
4387
4388 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4389 return false;
4390
4391 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4392 return cap & PCI_EXP_DEVCAP_FLR;
4393 }
4394 EXPORT_SYMBOL_GPL(pcie_has_flr);
4395
4396 /**
4397 * pcie_flr - initiate a PCIe function level reset
4398 * @dev: device to reset
4399 *
4400 * Initiate a function level reset on @dev. The caller should ensure the
4401 * device supports FLR before calling this function, e.g. by using the
4402 * pcie_has_flr() helper.
4403 */
4404 int pcie_flr(struct pci_dev *dev)
4405 {
4406 if (!pci_wait_for_pending_transaction(dev))
4407 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4408
4409 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4410
4411 if (dev->imm_ready)
4412 return 0;
4413
4414 /*
4415 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4416 * 100ms, but may silently discard requests while the FLR is in
4417 * progress. Wait 100ms before trying to access the device.
4418 */
4419 msleep(100);
4420
4421 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4422 }
4423 EXPORT_SYMBOL_GPL(pcie_flr);
4424
4425 static int pci_af_flr(struct pci_dev *dev, int probe)
4426 {
4427 int pos;
4428 u8 cap;
4429
4430 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4431 if (!pos)
4432 return -ENOTTY;
4433
4434 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4435 return -ENOTTY;
4436
4437 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4438 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4439 return -ENOTTY;
4440
4441 if (probe)
4442 return 0;
4443
4444 /*
4445 * Wait for Transaction Pending bit to clear. A word-aligned test
4446 * is used, so we use the conrol offset rather than status and shift
4447 * the test bit to match.
4448 */
4449 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4450 PCI_AF_STATUS_TP << 8))
4451 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4452
4453 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4454
4455 if (dev->imm_ready)
4456 return 0;
4457
4458 /*
4459 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4460 * updated 27 July 2006; a device must complete an FLR within
4461 * 100ms, but may silently discard requests while the FLR is in
4462 * progress. Wait 100ms before trying to access the device.
4463 */
4464 msleep(100);
4465
4466 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4467 }
4468
4469 /**
4470 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4471 * @dev: Device to reset.
4472 * @probe: If set, only check if the device can be reset this way.
4473 *
4474 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4475 * unset, it will be reinitialized internally when going from PCI_D3hot to
4476 * PCI_D0. If that's the case and the device is not in a low-power state
4477 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4478 *
4479 * NOTE: This causes the caller to sleep for twice the device power transition
4480 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4481 * by default (i.e. unless the @dev's d3_delay field has a different value).
4482 * Moreover, only devices in D0 can be reset by this function.
4483 */
4484 static int pci_pm_reset(struct pci_dev *dev, int probe)
4485 {
4486 u16 csr;
4487
4488 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4489 return -ENOTTY;
4490
4491 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4492 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4493 return -ENOTTY;
4494
4495 if (probe)
4496 return 0;
4497
4498 if (dev->current_state != PCI_D0)
4499 return -EINVAL;
4500
4501 csr &= ~PCI_PM_CTRL_STATE_MASK;
4502 csr |= PCI_D3hot;
4503 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4504 pci_dev_d3_sleep(dev);
4505
4506 csr &= ~PCI_PM_CTRL_STATE_MASK;
4507 csr |= PCI_D0;
4508 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4509 pci_dev_d3_sleep(dev);
4510
4511 return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS);
4512 }
4513 /**
4514 * pcie_wait_for_link - Wait until link is active or inactive
4515 * @pdev: Bridge device
4516 * @active: waiting for active or inactive?
4517 *
4518 * Use this to wait till link becomes active or inactive.
4519 */
4520 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4521 {
4522 int timeout = 1000;
4523 bool ret;
4524 u16 lnk_status;
4525
4526 /*
4527 * Some controllers might not implement link active reporting. In this
4528 * case, we wait for 1000 + 100 ms.
4529 */
4530 if (!pdev->link_active_reporting) {
4531 msleep(1100);
4532 return true;
4533 }
4534
4535 /*
4536 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4537 * after which we should expect an link active if the reset was
4538 * successful. If so, software must wait a minimum 100ms before sending
4539 * configuration requests to devices downstream this port.
4540 *
4541 * If the link fails to activate, either the device was physically
4542 * removed or the link is permanently failed.
4543 */
4544 if (active)
4545 msleep(20);
4546 for (;;) {
4547 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4548 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4549 if (ret == active)
4550 break;
4551 if (timeout <= 0)
4552 break;
4553 msleep(10);
4554 timeout -= 10;
4555 }
4556 if (active && ret)
4557 msleep(100);
4558 else if (ret != active)
4559 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4560 active ? "set" : "cleared");
4561 return ret == active;
4562 }
4563
4564 void pci_reset_secondary_bus(struct pci_dev *dev)
4565 {
4566 u16 ctrl;
4567
4568 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4569 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4570 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4571
4572 /*
4573 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4574 * this to 2ms to ensure that we meet the minimum requirement.
4575 */
4576 msleep(2);
4577
4578 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4579 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4580
4581 /*
4582 * Trhfa for conventional PCI is 2^25 clock cycles.
4583 * Assuming a minimum 33MHz clock this results in a 1s
4584 * delay before we can consider subordinate devices to
4585 * be re-initialized. PCIe has some ways to shorten this,
4586 * but we don't make use of them yet.
4587 */
4588 ssleep(1);
4589 }
4590
4591 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4592 {
4593 pci_reset_secondary_bus(dev);
4594 }
4595
4596 /**
4597 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4598 * @dev: Bridge device
4599 *
4600 * Use the bridge control register to assert reset on the secondary bus.
4601 * Devices on the secondary bus are left in power-on state.
4602 */
4603 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4604 {
4605 pcibios_reset_secondary_bus(dev);
4606
4607 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4608 }
4609 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4610
4611 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4612 {
4613 struct pci_dev *pdev;
4614
4615 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4616 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4617 return -ENOTTY;
4618
4619 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4620 if (pdev != dev)
4621 return -ENOTTY;
4622
4623 if (probe)
4624 return 0;
4625
4626 return pci_bridge_secondary_bus_reset(dev->bus->self);
4627 }
4628
4629 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4630 {
4631 int rc = -ENOTTY;
4632
4633 if (!hotplug || !try_module_get(hotplug->owner))
4634 return rc;
4635
4636 if (hotplug->ops->reset_slot)
4637 rc = hotplug->ops->reset_slot(hotplug, probe);
4638
4639 module_put(hotplug->owner);
4640
4641 return rc;
4642 }
4643
4644 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4645 {
4646 struct pci_dev *pdev;
4647
4648 if (dev->subordinate || !dev->slot ||
4649 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4650 return -ENOTTY;
4651
4652 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4653 if (pdev != dev && pdev->slot == dev->slot)
4654 return -ENOTTY;
4655
4656 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4657 }
4658
4659 static void pci_dev_lock(struct pci_dev *dev)
4660 {
4661 pci_cfg_access_lock(dev);
4662 /* block PM suspend, driver probe, etc. */
4663 device_lock(&dev->dev);
4664 }
4665
4666 /* Return 1 on successful lock, 0 on contention */
4667 static int pci_dev_trylock(struct pci_dev *dev)
4668 {
4669 if (pci_cfg_access_trylock(dev)) {
4670 if (device_trylock(&dev->dev))
4671 return 1;
4672 pci_cfg_access_unlock(dev);
4673 }
4674
4675 return 0;
4676 }
4677
4678 static void pci_dev_unlock(struct pci_dev *dev)
4679 {
4680 device_unlock(&dev->dev);
4681 pci_cfg_access_unlock(dev);
4682 }
4683
4684 static void pci_dev_save_and_disable(struct pci_dev *dev)
4685 {
4686 const struct pci_error_handlers *err_handler =
4687 dev->driver ? dev->driver->err_handler : NULL;
4688
4689 /*
4690 * dev->driver->err_handler->reset_prepare() is protected against
4691 * races with ->remove() by the device lock, which must be held by
4692 * the caller.
4693 */
4694 if (err_handler && err_handler->reset_prepare)
4695 err_handler->reset_prepare(dev);
4696
4697 /*
4698 * Wake-up device prior to save. PM registers default to D0 after
4699 * reset and a simple register restore doesn't reliably return
4700 * to a non-D0 state anyway.
4701 */
4702 pci_set_power_state(dev, PCI_D0);
4703
4704 pci_save_state(dev);
4705 /*
4706 * Disable the device by clearing the Command register, except for
4707 * INTx-disable which is set. This not only disables MMIO and I/O port
4708 * BARs, but also prevents the device from being Bus Master, preventing
4709 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4710 * compliant devices, INTx-disable prevents legacy interrupts.
4711 */
4712 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4713 }
4714
4715 static void pci_dev_restore(struct pci_dev *dev)
4716 {
4717 const struct pci_error_handlers *err_handler =
4718 dev->driver ? dev->driver->err_handler : NULL;
4719
4720 pci_restore_state(dev);
4721
4722 /*
4723 * dev->driver->err_handler->reset_done() is protected against
4724 * races with ->remove() by the device lock, which must be held by
4725 * the caller.
4726 */
4727 if (err_handler && err_handler->reset_done)
4728 err_handler->reset_done(dev);
4729 }
4730
4731 /**
4732 * __pci_reset_function_locked - reset a PCI device function while holding
4733 * the @dev mutex lock.
4734 * @dev: PCI device to reset
4735 *
4736 * Some devices allow an individual function to be reset without affecting
4737 * other functions in the same device. The PCI device must be responsive
4738 * to PCI config space in order to use this function.
4739 *
4740 * The device function is presumed to be unused and the caller is holding
4741 * the device mutex lock when this function is called.
4742 * Resetting the device will make the contents of PCI configuration space
4743 * random, so any caller of this must be prepared to reinitialise the
4744 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4745 * etc.
4746 *
4747 * Returns 0 if the device function was successfully reset or negative if the
4748 * device doesn't support resetting a single function.
4749 */
4750 int __pci_reset_function_locked(struct pci_dev *dev)
4751 {
4752 int rc;
4753
4754 might_sleep();
4755
4756 /*
4757 * A reset method returns -ENOTTY if it doesn't support this device
4758 * and we should try the next method.
4759 *
4760 * If it returns 0 (success), we're finished. If it returns any
4761 * other error, we're also finished: this indicates that further
4762 * reset mechanisms might be broken on the device.
4763 */
4764 rc = pci_dev_specific_reset(dev, 0);
4765 if (rc != -ENOTTY)
4766 return rc;
4767 if (pcie_has_flr(dev)) {
4768 rc = pcie_flr(dev);
4769 if (rc != -ENOTTY)
4770 return rc;
4771 }
4772 rc = pci_af_flr(dev, 0);
4773 if (rc != -ENOTTY)
4774 return rc;
4775 rc = pci_pm_reset(dev, 0);
4776 if (rc != -ENOTTY)
4777 return rc;
4778 rc = pci_dev_reset_slot_function(dev, 0);
4779 if (rc != -ENOTTY)
4780 return rc;
4781 return pci_parent_bus_reset(dev, 0);
4782 }
4783 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4784
4785 /**
4786 * pci_probe_reset_function - check whether the device can be safely reset
4787 * @dev: PCI device to reset
4788 *
4789 * Some devices allow an individual function to be reset without affecting
4790 * other functions in the same device. The PCI device must be responsive
4791 * to PCI config space in order to use this function.
4792 *
4793 * Returns 0 if the device function can be reset or negative if the
4794 * device doesn't support resetting a single function.
4795 */
4796 int pci_probe_reset_function(struct pci_dev *dev)
4797 {
4798 int rc;
4799
4800 might_sleep();
4801
4802 rc = pci_dev_specific_reset(dev, 1);
4803 if (rc != -ENOTTY)
4804 return rc;
4805 if (pcie_has_flr(dev))
4806 return 0;
4807 rc = pci_af_flr(dev, 1);
4808 if (rc != -ENOTTY)
4809 return rc;
4810 rc = pci_pm_reset(dev, 1);
4811 if (rc != -ENOTTY)
4812 return rc;
4813 rc = pci_dev_reset_slot_function(dev, 1);
4814 if (rc != -ENOTTY)
4815 return rc;
4816
4817 return pci_parent_bus_reset(dev, 1);
4818 }
4819
4820 /**
4821 * pci_reset_function - quiesce and reset a PCI device function
4822 * @dev: PCI device to reset
4823 *
4824 * Some devices allow an individual function to be reset without affecting
4825 * other functions in the same device. The PCI device must be responsive
4826 * to PCI config space in order to use this function.
4827 *
4828 * This function does not just reset the PCI portion of a device, but
4829 * clears all the state associated with the device. This function differs
4830 * from __pci_reset_function_locked() in that it saves and restores device state
4831 * over the reset and takes the PCI device lock.
4832 *
4833 * Returns 0 if the device function was successfully reset or negative if the
4834 * device doesn't support resetting a single function.
4835 */
4836 int pci_reset_function(struct pci_dev *dev)
4837 {
4838 int rc;
4839
4840 if (!dev->reset_fn)
4841 return -ENOTTY;
4842
4843 pci_dev_lock(dev);
4844 pci_dev_save_and_disable(dev);
4845
4846 rc = __pci_reset_function_locked(dev);
4847
4848 pci_dev_restore(dev);
4849 pci_dev_unlock(dev);
4850
4851 return rc;
4852 }
4853 EXPORT_SYMBOL_GPL(pci_reset_function);
4854
4855 /**
4856 * pci_reset_function_locked - quiesce and reset a PCI device function
4857 * @dev: PCI device to reset
4858 *
4859 * Some devices allow an individual function to be reset without affecting
4860 * other functions in the same device. The PCI device must be responsive
4861 * to PCI config space in order to use this function.
4862 *
4863 * This function does not just reset the PCI portion of a device, but
4864 * clears all the state associated with the device. This function differs
4865 * from __pci_reset_function_locked() in that it saves and restores device state
4866 * over the reset. It also differs from pci_reset_function() in that it
4867 * requires the PCI device lock to be held.
4868 *
4869 * Returns 0 if the device function was successfully reset or negative if the
4870 * device doesn't support resetting a single function.
4871 */
4872 int pci_reset_function_locked(struct pci_dev *dev)
4873 {
4874 int rc;
4875
4876 if (!dev->reset_fn)
4877 return -ENOTTY;
4878
4879 pci_dev_save_and_disable(dev);
4880
4881 rc = __pci_reset_function_locked(dev);
4882
4883 pci_dev_restore(dev);
4884
4885 return rc;
4886 }
4887 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4888
4889 /**
4890 * pci_try_reset_function - quiesce and reset a PCI device function
4891 * @dev: PCI device to reset
4892 *
4893 * Same as above, except return -EAGAIN if unable to lock device.
4894 */
4895 int pci_try_reset_function(struct pci_dev *dev)
4896 {
4897 int rc;
4898
4899 if (!dev->reset_fn)
4900 return -ENOTTY;
4901
4902 if (!pci_dev_trylock(dev))
4903 return -EAGAIN;
4904
4905 pci_dev_save_and_disable(dev);
4906 rc = __pci_reset_function_locked(dev);
4907 pci_dev_restore(dev);
4908 pci_dev_unlock(dev);
4909
4910 return rc;
4911 }
4912 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4913
4914 /* Do any devices on or below this bus prevent a bus reset? */
4915 static bool pci_bus_resetable(struct pci_bus *bus)
4916 {
4917 struct pci_dev *dev;
4918
4919
4920 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4921 return false;
4922
4923 list_for_each_entry(dev, &bus->devices, bus_list) {
4924 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4925 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4926 return false;
4927 }
4928
4929 return true;
4930 }
4931
4932 /* Lock devices from the top of the tree down */
4933 static void pci_bus_lock(struct pci_bus *bus)
4934 {
4935 struct pci_dev *dev;
4936
4937 list_for_each_entry(dev, &bus->devices, bus_list) {
4938 pci_dev_lock(dev);
4939 if (dev->subordinate)
4940 pci_bus_lock(dev->subordinate);
4941 }
4942 }
4943
4944 /* Unlock devices from the bottom of the tree up */
4945 static void pci_bus_unlock(struct pci_bus *bus)
4946 {
4947 struct pci_dev *dev;
4948
4949 list_for_each_entry(dev, &bus->devices, bus_list) {
4950 if (dev->subordinate)
4951 pci_bus_unlock(dev->subordinate);
4952 pci_dev_unlock(dev);
4953 }
4954 }
4955
4956 /* Return 1 on successful lock, 0 on contention */
4957 static int pci_bus_trylock(struct pci_bus *bus)
4958 {
4959 struct pci_dev *dev;
4960
4961 list_for_each_entry(dev, &bus->devices, bus_list) {
4962 if (!pci_dev_trylock(dev))
4963 goto unlock;
4964 if (dev->subordinate) {
4965 if (!pci_bus_trylock(dev->subordinate)) {
4966 pci_dev_unlock(dev);
4967 goto unlock;
4968 }
4969 }
4970 }
4971 return 1;
4972
4973 unlock:
4974 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4975 if (dev->subordinate)
4976 pci_bus_unlock(dev->subordinate);
4977 pci_dev_unlock(dev);
4978 }
4979 return 0;
4980 }
4981
4982 /* Do any devices on or below this slot prevent a bus reset? */
4983 static bool pci_slot_resetable(struct pci_slot *slot)
4984 {
4985 struct pci_dev *dev;
4986
4987 if (slot->bus->self &&
4988 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4989 return false;
4990
4991 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4992 if (!dev->slot || dev->slot != slot)
4993 continue;
4994 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4995 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4996 return false;
4997 }
4998
4999 return true;
5000 }
5001
5002 /* Lock devices from the top of the tree down */
5003 static void pci_slot_lock(struct pci_slot *slot)
5004 {
5005 struct pci_dev *dev;
5006
5007 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5008 if (!dev->slot || dev->slot != slot)
5009 continue;
5010 pci_dev_lock(dev);
5011 if (dev->subordinate)
5012 pci_bus_lock(dev->subordinate);
5013 }
5014 }
5015
5016 /* Unlock devices from the bottom of the tree up */
5017 static void pci_slot_unlock(struct pci_slot *slot)
5018 {
5019 struct pci_dev *dev;
5020
5021 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5022 if (!dev->slot || dev->slot != slot)
5023 continue;
5024 if (dev->subordinate)
5025 pci_bus_unlock(dev->subordinate);
5026 pci_dev_unlock(dev);
5027 }
5028 }
5029
5030 /* Return 1 on successful lock, 0 on contention */
5031 static int pci_slot_trylock(struct pci_slot *slot)
5032 {
5033 struct pci_dev *dev;
5034
5035 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5036 if (!dev->slot || dev->slot != slot)
5037 continue;
5038 if (!pci_dev_trylock(dev))
5039 goto unlock;
5040 if (dev->subordinate) {
5041 if (!pci_bus_trylock(dev->subordinate)) {
5042 pci_dev_unlock(dev);
5043 goto unlock;
5044 }
5045 }
5046 }
5047 return 1;
5048
5049 unlock:
5050 list_for_each_entry_continue_reverse(dev,
5051 &slot->bus->devices, bus_list) {
5052 if (!dev->slot || dev->slot != slot)
5053 continue;
5054 if (dev->subordinate)
5055 pci_bus_unlock(dev->subordinate);
5056 pci_dev_unlock(dev);
5057 }
5058 return 0;
5059 }
5060
5061 /* Save and disable devices from the top of the tree down */
5062 static void pci_bus_save_and_disable(struct pci_bus *bus)
5063 {
5064 struct pci_dev *dev;
5065
5066 list_for_each_entry(dev, &bus->devices, bus_list) {
5067 pci_dev_lock(dev);
5068 pci_dev_save_and_disable(dev);
5069 pci_dev_unlock(dev);
5070 if (dev->subordinate)
5071 pci_bus_save_and_disable(dev->subordinate);
5072 }
5073 }
5074
5075 /*
5076 * Restore devices from top of the tree down - parent bridges need to be
5077 * restored before we can get to subordinate devices.
5078 */
5079 static void pci_bus_restore(struct pci_bus *bus)
5080 {
5081 struct pci_dev *dev;
5082
5083 list_for_each_entry(dev, &bus->devices, bus_list) {
5084 pci_dev_lock(dev);
5085 pci_dev_restore(dev);
5086 pci_dev_unlock(dev);
5087 if (dev->subordinate)
5088 pci_bus_restore(dev->subordinate);
5089 }
5090 }
5091
5092 /* Save and disable devices from the top of the tree down */
5093 static void pci_slot_save_and_disable(struct pci_slot *slot)
5094 {
5095 struct pci_dev *dev;
5096
5097 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5098 if (!dev->slot || dev->slot != slot)
5099 continue;
5100 pci_dev_save_and_disable(dev);
5101 if (dev->subordinate)
5102 pci_bus_save_and_disable(dev->subordinate);
5103 }
5104 }
5105
5106 /*
5107 * Restore devices from top of the tree down - parent bridges need to be
5108 * restored before we can get to subordinate devices.
5109 */
5110 static void pci_slot_restore(struct pci_slot *slot)
5111 {
5112 struct pci_dev *dev;
5113
5114 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5115 if (!dev->slot || dev->slot != slot)
5116 continue;
5117 pci_dev_lock(dev);
5118 pci_dev_restore(dev);
5119 pci_dev_unlock(dev);
5120 if (dev->subordinate)
5121 pci_bus_restore(dev->subordinate);
5122 }
5123 }
5124
5125 static int pci_slot_reset(struct pci_slot *slot, int probe)
5126 {
5127 int rc;
5128
5129 if (!slot || !pci_slot_resetable(slot))
5130 return -ENOTTY;
5131
5132 if (!probe)
5133 pci_slot_lock(slot);
5134
5135 might_sleep();
5136
5137 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5138
5139 if (!probe)
5140 pci_slot_unlock(slot);
5141
5142 return rc;
5143 }
5144
5145 /**
5146 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5147 * @slot: PCI slot to probe
5148 *
5149 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5150 */
5151 int pci_probe_reset_slot(struct pci_slot *slot)
5152 {
5153 return pci_slot_reset(slot, 1);
5154 }
5155 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5156
5157 /**
5158 * __pci_reset_slot - Try to reset a PCI slot
5159 * @slot: PCI slot to reset
5160 *
5161 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5162 * independent of other slots. For instance, some slots may support slot power
5163 * control. In the case of a 1:1 bus to slot architecture, this function may
5164 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5165 * Generally a slot reset should be attempted before a bus reset. All of the
5166 * function of the slot and any subordinate buses behind the slot are reset
5167 * through this function. PCI config space of all devices in the slot and
5168 * behind the slot is saved before and restored after reset.
5169 *
5170 * Same as above except return -EAGAIN if the slot cannot be locked
5171 */
5172 static int __pci_reset_slot(struct pci_slot *slot)
5173 {
5174 int rc;
5175
5176 rc = pci_slot_reset(slot, 1);
5177 if (rc)
5178 return rc;
5179
5180 pci_slot_save_and_disable(slot);
5181
5182 if (pci_slot_trylock(slot)) {
5183 might_sleep();
5184 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5185 pci_slot_unlock(slot);
5186 } else
5187 rc = -EAGAIN;
5188
5189 pci_slot_restore(slot);
5190
5191 return rc;
5192 }
5193
5194 static int pci_bus_reset(struct pci_bus *bus, int probe)
5195 {
5196 int ret;
5197
5198 if (!bus->self || !pci_bus_resetable(bus))
5199 return -ENOTTY;
5200
5201 if (probe)
5202 return 0;
5203
5204 pci_bus_lock(bus);
5205
5206 might_sleep();
5207
5208 ret = pci_bridge_secondary_bus_reset(bus->self);
5209
5210 pci_bus_unlock(bus);
5211
5212 return ret;
5213 }
5214
5215 /**
5216 * pci_bus_error_reset - reset the bridge's subordinate bus
5217 * @bridge: The parent device that connects to the bus to reset
5218 *
5219 * This function will first try to reset the slots on this bus if the method is
5220 * available. If slot reset fails or is not available, this will fall back to a
5221 * secondary bus reset.
5222 */
5223 int pci_bus_error_reset(struct pci_dev *bridge)
5224 {
5225 struct pci_bus *bus = bridge->subordinate;
5226 struct pci_slot *slot;
5227
5228 if (!bus)
5229 return -ENOTTY;
5230
5231 mutex_lock(&pci_slot_mutex);
5232 if (list_empty(&bus->slots))
5233 goto bus_reset;
5234
5235 list_for_each_entry(slot, &bus->slots, list)
5236 if (pci_probe_reset_slot(slot))
5237 goto bus_reset;
5238
5239 list_for_each_entry(slot, &bus->slots, list)
5240 if (pci_slot_reset(slot, 0))
5241 goto bus_reset;
5242
5243 mutex_unlock(&pci_slot_mutex);
5244 return 0;
5245 bus_reset:
5246 mutex_unlock(&pci_slot_mutex);
5247 return pci_bus_reset(bridge->subordinate, 0);
5248 }
5249
5250 /**
5251 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5252 * @bus: PCI bus to probe
5253 *
5254 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5255 */
5256 int pci_probe_reset_bus(struct pci_bus *bus)
5257 {
5258 return pci_bus_reset(bus, 1);
5259 }
5260 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5261
5262 /**
5263 * __pci_reset_bus - Try to reset a PCI bus
5264 * @bus: top level PCI bus to reset
5265 *
5266 * Same as above except return -EAGAIN if the bus cannot be locked
5267 */
5268 static int __pci_reset_bus(struct pci_bus *bus)
5269 {
5270 int rc;
5271
5272 rc = pci_bus_reset(bus, 1);
5273 if (rc)
5274 return rc;
5275
5276 pci_bus_save_and_disable(bus);
5277
5278 if (pci_bus_trylock(bus)) {
5279 might_sleep();
5280 rc = pci_bridge_secondary_bus_reset(bus->self);
5281 pci_bus_unlock(bus);
5282 } else
5283 rc = -EAGAIN;
5284
5285 pci_bus_restore(bus);
5286
5287 return rc;
5288 }
5289
5290 /**
5291 * pci_reset_bus - Try to reset a PCI bus
5292 * @pdev: top level PCI device to reset via slot/bus
5293 *
5294 * Same as above except return -EAGAIN if the bus cannot be locked
5295 */
5296 int pci_reset_bus(struct pci_dev *pdev)
5297 {
5298 return (!pci_probe_reset_slot(pdev->slot)) ?
5299 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5300 }
5301 EXPORT_SYMBOL_GPL(pci_reset_bus);
5302
5303 /**
5304 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5305 * @dev: PCI device to query
5306 *
5307 * Returns mmrbc: maximum designed memory read count in bytes
5308 * or appropriate error value.
5309 */
5310 int pcix_get_max_mmrbc(struct pci_dev *dev)
5311 {
5312 int cap;
5313 u32 stat;
5314
5315 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5316 if (!cap)
5317 return -EINVAL;
5318
5319 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5320 return -EINVAL;
5321
5322 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5323 }
5324 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5325
5326 /**
5327 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5328 * @dev: PCI device to query
5329 *
5330 * Returns mmrbc: maximum memory read count in bytes
5331 * or appropriate error value.
5332 */
5333 int pcix_get_mmrbc(struct pci_dev *dev)
5334 {
5335 int cap;
5336 u16 cmd;
5337
5338 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5339 if (!cap)
5340 return -EINVAL;
5341
5342 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5343 return -EINVAL;
5344
5345 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5346 }
5347 EXPORT_SYMBOL(pcix_get_mmrbc);
5348
5349 /**
5350 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5351 * @dev: PCI device to query
5352 * @mmrbc: maximum memory read count in bytes
5353 * valid values are 512, 1024, 2048, 4096
5354 *
5355 * If possible sets maximum memory read byte count, some bridges have erratas
5356 * that prevent this.
5357 */
5358 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5359 {
5360 int cap;
5361 u32 stat, v, o;
5362 u16 cmd;
5363
5364 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5365 return -EINVAL;
5366
5367 v = ffs(mmrbc) - 10;
5368
5369 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5370 if (!cap)
5371 return -EINVAL;
5372
5373 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5374 return -EINVAL;
5375
5376 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5377 return -E2BIG;
5378
5379 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5380 return -EINVAL;
5381
5382 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5383 if (o != v) {
5384 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5385 return -EIO;
5386
5387 cmd &= ~PCI_X_CMD_MAX_READ;
5388 cmd |= v << 2;
5389 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5390 return -EIO;
5391 }
5392 return 0;
5393 }
5394 EXPORT_SYMBOL(pcix_set_mmrbc);
5395
5396 /**
5397 * pcie_get_readrq - get PCI Express read request size
5398 * @dev: PCI device to query
5399 *
5400 * Returns maximum memory read request in bytes
5401 * or appropriate error value.
5402 */
5403 int pcie_get_readrq(struct pci_dev *dev)
5404 {
5405 u16 ctl;
5406
5407 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5408
5409 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5410 }
5411 EXPORT_SYMBOL(pcie_get_readrq);
5412
5413 /**
5414 * pcie_set_readrq - set PCI Express maximum memory read request
5415 * @dev: PCI device to query
5416 * @rq: maximum memory read count in bytes
5417 * valid values are 128, 256, 512, 1024, 2048, 4096
5418 *
5419 * If possible sets maximum memory read request in bytes
5420 */
5421 int pcie_set_readrq(struct pci_dev *dev, int rq)
5422 {
5423 u16 v;
5424
5425 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5426 return -EINVAL;
5427
5428 /*
5429 * If using the "performance" PCIe config, we clamp the
5430 * read rq size to the max packet size to prevent the
5431 * host bridge generating requests larger than we can
5432 * cope with
5433 */
5434 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5435 int mps = pcie_get_mps(dev);
5436
5437 if (mps < rq)
5438 rq = mps;
5439 }
5440
5441 v = (ffs(rq) - 8) << 12;
5442
5443 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5444 PCI_EXP_DEVCTL_READRQ, v);
5445 }
5446 EXPORT_SYMBOL(pcie_set_readrq);
5447
5448 /**
5449 * pcie_get_mps - get PCI Express maximum payload size
5450 * @dev: PCI device to query
5451 *
5452 * Returns maximum payload size in bytes
5453 */
5454 int pcie_get_mps(struct pci_dev *dev)
5455 {
5456 u16 ctl;
5457
5458 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5459
5460 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5461 }
5462 EXPORT_SYMBOL(pcie_get_mps);
5463
5464 /**
5465 * pcie_set_mps - set PCI Express maximum payload size
5466 * @dev: PCI device to query
5467 * @mps: maximum payload size in bytes
5468 * valid values are 128, 256, 512, 1024, 2048, 4096
5469 *
5470 * If possible sets maximum payload size
5471 */
5472 int pcie_set_mps(struct pci_dev *dev, int mps)
5473 {
5474 u16 v;
5475
5476 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5477 return -EINVAL;
5478
5479 v = ffs(mps) - 8;
5480 if (v > dev->pcie_mpss)
5481 return -EINVAL;
5482 v <<= 5;
5483
5484 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5485 PCI_EXP_DEVCTL_PAYLOAD, v);
5486 }
5487 EXPORT_SYMBOL(pcie_set_mps);
5488
5489 /**
5490 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5491 * device and its bandwidth limitation
5492 * @dev: PCI device to query
5493 * @limiting_dev: storage for device causing the bandwidth limitation
5494 * @speed: storage for speed of limiting device
5495 * @width: storage for width of limiting device
5496 *
5497 * Walk up the PCI device chain and find the point where the minimum
5498 * bandwidth is available. Return the bandwidth available there and (if
5499 * limiting_dev, speed, and width pointers are supplied) information about
5500 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5501 * raw bandwidth.
5502 */
5503 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5504 enum pci_bus_speed *speed,
5505 enum pcie_link_width *width)
5506 {
5507 u16 lnksta;
5508 enum pci_bus_speed next_speed;
5509 enum pcie_link_width next_width;
5510 u32 bw, next_bw;
5511
5512 if (speed)
5513 *speed = PCI_SPEED_UNKNOWN;
5514 if (width)
5515 *width = PCIE_LNK_WIDTH_UNKNOWN;
5516
5517 bw = 0;
5518
5519 while (dev) {
5520 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5521
5522 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5523 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5524 PCI_EXP_LNKSTA_NLW_SHIFT;
5525
5526 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5527
5528 /* Check if current device limits the total bandwidth */
5529 if (!bw || next_bw <= bw) {
5530 bw = next_bw;
5531
5532 if (limiting_dev)
5533 *limiting_dev = dev;
5534 if (speed)
5535 *speed = next_speed;
5536 if (width)
5537 *width = next_width;
5538 }
5539
5540 dev = pci_upstream_bridge(dev);
5541 }
5542
5543 return bw;
5544 }
5545 EXPORT_SYMBOL(pcie_bandwidth_available);
5546
5547 /**
5548 * pcie_get_speed_cap - query for the PCI device's link speed capability
5549 * @dev: PCI device to query
5550 *
5551 * Query the PCI device speed capability. Return the maximum link speed
5552 * supported by the device.
5553 */
5554 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5555 {
5556 u32 lnkcap2, lnkcap;
5557
5558 /*
5559 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5560 * implementation note there recommends using the Supported Link
5561 * Speeds Vector in Link Capabilities 2 when supported.
5562 *
5563 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5564 * should use the Supported Link Speeds field in Link Capabilities,
5565 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5566 */
5567 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5568 if (lnkcap2) { /* PCIe r3.0-compliant */
5569 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5570 return PCIE_SPEED_16_0GT;
5571 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5572 return PCIE_SPEED_8_0GT;
5573 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5574 return PCIE_SPEED_5_0GT;
5575 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5576 return PCIE_SPEED_2_5GT;
5577 return PCI_SPEED_UNKNOWN;
5578 }
5579
5580 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5581 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5582 return PCIE_SPEED_5_0GT;
5583 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5584 return PCIE_SPEED_2_5GT;
5585
5586 return PCI_SPEED_UNKNOWN;
5587 }
5588 EXPORT_SYMBOL(pcie_get_speed_cap);
5589
5590 /**
5591 * pcie_get_width_cap - query for the PCI device's link width capability
5592 * @dev: PCI device to query
5593 *
5594 * Query the PCI device width capability. Return the maximum link width
5595 * supported by the device.
5596 */
5597 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5598 {
5599 u32 lnkcap;
5600
5601 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5602 if (lnkcap)
5603 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5604
5605 return PCIE_LNK_WIDTH_UNKNOWN;
5606 }
5607 EXPORT_SYMBOL(pcie_get_width_cap);
5608
5609 /**
5610 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5611 * @dev: PCI device
5612 * @speed: storage for link speed
5613 * @width: storage for link width
5614 *
5615 * Calculate a PCI device's link bandwidth by querying for its link speed
5616 * and width, multiplying them, and applying encoding overhead. The result
5617 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5618 */
5619 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5620 enum pcie_link_width *width)
5621 {
5622 *speed = pcie_get_speed_cap(dev);
5623 *width = pcie_get_width_cap(dev);
5624
5625 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5626 return 0;
5627
5628 return *width * PCIE_SPEED2MBS_ENC(*speed);
5629 }
5630
5631 /**
5632 * __pcie_print_link_status - Report the PCI device's link speed and width
5633 * @dev: PCI device to query
5634 * @verbose: Print info even when enough bandwidth is available
5635 *
5636 * If the available bandwidth at the device is less than the device is
5637 * capable of, report the device's maximum possible bandwidth and the
5638 * upstream link that limits its performance. If @verbose, always print
5639 * the available bandwidth, even if the device isn't constrained.
5640 */
5641 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5642 {
5643 enum pcie_link_width width, width_cap;
5644 enum pci_bus_speed speed, speed_cap;
5645 struct pci_dev *limiting_dev = NULL;
5646 u32 bw_avail, bw_cap;
5647
5648 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5649 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5650
5651 if (bw_avail >= bw_cap && verbose)
5652 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5653 bw_cap / 1000, bw_cap % 1000,
5654 PCIE_SPEED2STR(speed_cap), width_cap);
5655 else if (bw_avail < bw_cap)
5656 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5657 bw_avail / 1000, bw_avail % 1000,
5658 PCIE_SPEED2STR(speed), width,
5659 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5660 bw_cap / 1000, bw_cap % 1000,
5661 PCIE_SPEED2STR(speed_cap), width_cap);
5662 }
5663
5664 /**
5665 * pcie_print_link_status - Report the PCI device's link speed and width
5666 * @dev: PCI device to query
5667 *
5668 * Report the available bandwidth at the device.
5669 */
5670 void pcie_print_link_status(struct pci_dev *dev)
5671 {
5672 __pcie_print_link_status(dev, true);
5673 }
5674 EXPORT_SYMBOL(pcie_print_link_status);
5675
5676 /**
5677 * pci_select_bars - Make BAR mask from the type of resource
5678 * @dev: the PCI device for which BAR mask is made
5679 * @flags: resource type mask to be selected
5680 *
5681 * This helper routine makes bar mask from the type of resource.
5682 */
5683 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5684 {
5685 int i, bars = 0;
5686 for (i = 0; i < PCI_NUM_RESOURCES; i++)
5687 if (pci_resource_flags(dev, i) & flags)
5688 bars |= (1 << i);
5689 return bars;
5690 }
5691 EXPORT_SYMBOL(pci_select_bars);
5692
5693 /* Some architectures require additional programming to enable VGA */
5694 static arch_set_vga_state_t arch_set_vga_state;
5695
5696 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5697 {
5698 arch_set_vga_state = func; /* NULL disables */
5699 }
5700
5701 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5702 unsigned int command_bits, u32 flags)
5703 {
5704 if (arch_set_vga_state)
5705 return arch_set_vga_state(dev, decode, command_bits,
5706 flags);
5707 return 0;
5708 }
5709
5710 /**
5711 * pci_set_vga_state - set VGA decode state on device and parents if requested
5712 * @dev: the PCI device
5713 * @decode: true = enable decoding, false = disable decoding
5714 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5715 * @flags: traverse ancestors and change bridges
5716 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5717 */
5718 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5719 unsigned int command_bits, u32 flags)
5720 {
5721 struct pci_bus *bus;
5722 struct pci_dev *bridge;
5723 u16 cmd;
5724 int rc;
5725
5726 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5727
5728 /* ARCH specific VGA enables */
5729 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5730 if (rc)
5731 return rc;
5732
5733 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5734 pci_read_config_word(dev, PCI_COMMAND, &cmd);
5735 if (decode == true)
5736 cmd |= command_bits;
5737 else
5738 cmd &= ~command_bits;
5739 pci_write_config_word(dev, PCI_COMMAND, cmd);
5740 }
5741
5742 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5743 return 0;
5744
5745 bus = dev->bus;
5746 while (bus) {
5747 bridge = bus->self;
5748 if (bridge) {
5749 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5750 &cmd);
5751 if (decode == true)
5752 cmd |= PCI_BRIDGE_CTL_VGA;
5753 else
5754 cmd &= ~PCI_BRIDGE_CTL_VGA;
5755 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5756 cmd);
5757 }
5758 bus = bus->parent;
5759 }
5760 return 0;
5761 }
5762
5763 /**
5764 * pci_add_dma_alias - Add a DMA devfn alias for a device
5765 * @dev: the PCI device for which alias is added
5766 * @devfn: alias slot and function
5767 *
5768 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
5769 * which is used to program permissible bus-devfn source addresses for DMA
5770 * requests in an IOMMU. These aliases factor into IOMMU group creation
5771 * and are useful for devices generating DMA requests beyond or different
5772 * from their logical bus-devfn. Examples include device quirks where the
5773 * device simply uses the wrong devfn, as well as non-transparent bridges
5774 * where the alias may be a proxy for devices in another domain.
5775 *
5776 * IOMMU group creation is performed during device discovery or addition,
5777 * prior to any potential DMA mapping and therefore prior to driver probing
5778 * (especially for userspace assigned devices where IOMMU group definition
5779 * cannot be left as a userspace activity). DMA aliases should therefore
5780 * be configured via quirks, such as the PCI fixup header quirk.
5781 */
5782 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5783 {
5784 if (!dev->dma_alias_mask)
5785 dev->dma_alias_mask = bitmap_zalloc(U8_MAX, GFP_KERNEL);
5786 if (!dev->dma_alias_mask) {
5787 pci_warn(dev, "Unable to allocate DMA alias mask\n");
5788 return;
5789 }
5790
5791 set_bit(devfn, dev->dma_alias_mask);
5792 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5793 PCI_SLOT(devfn), PCI_FUNC(devfn));
5794 }
5795
5796 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5797 {
5798 return (dev1->dma_alias_mask &&
5799 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5800 (dev2->dma_alias_mask &&
5801 test_bit(dev1->devfn, dev2->dma_alias_mask));
5802 }
5803
5804 bool pci_device_is_present(struct pci_dev *pdev)
5805 {
5806 u32 v;
5807
5808 if (pci_dev_is_disconnected(pdev))
5809 return false;
5810 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5811 }
5812 EXPORT_SYMBOL_GPL(pci_device_is_present);
5813
5814 void pci_ignore_hotplug(struct pci_dev *dev)
5815 {
5816 struct pci_dev *bridge = dev->bus->self;
5817
5818 dev->ignore_hotplug = 1;
5819 /* Propagate the "ignore hotplug" setting to the parent bridge. */
5820 if (bridge)
5821 bridge->ignore_hotplug = 1;
5822 }
5823 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5824
5825 resource_size_t __weak pcibios_default_alignment(void)
5826 {
5827 return 0;
5828 }
5829
5830 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5831 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5832 static DEFINE_SPINLOCK(resource_alignment_lock);
5833
5834 /**
5835 * pci_specified_resource_alignment - get resource alignment specified by user.
5836 * @dev: the PCI device to get
5837 * @resize: whether or not to change resources' size when reassigning alignment
5838 *
5839 * RETURNS: Resource alignment if it is specified.
5840 * Zero if it is not specified.
5841 */
5842 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5843 bool *resize)
5844 {
5845 int align_order, count;
5846 resource_size_t align = pcibios_default_alignment();
5847 const char *p;
5848 int ret;
5849
5850 spin_lock(&resource_alignment_lock);
5851 p = resource_alignment_param;
5852 if (!*p && !align)
5853 goto out;
5854 if (pci_has_flag(PCI_PROBE_ONLY)) {
5855 align = 0;
5856 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5857 goto out;
5858 }
5859
5860 while (*p) {
5861 count = 0;
5862 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5863 p[count] == '@') {
5864 p += count + 1;
5865 } else {
5866 align_order = -1;
5867 }
5868
5869 ret = pci_dev_str_match(dev, p, &p);
5870 if (ret == 1) {
5871 *resize = true;
5872 if (align_order == -1)
5873 align = PAGE_SIZE;
5874 else
5875 align = 1 << align_order;
5876 break;
5877 } else if (ret < 0) {
5878 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
5879 p);
5880 break;
5881 }
5882
5883 if (*p != ';' && *p != ',') {
5884 /* End of param or invalid format */
5885 break;
5886 }
5887 p++;
5888 }
5889 out:
5890 spin_unlock(&resource_alignment_lock);
5891 return align;
5892 }
5893
5894 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5895 resource_size_t align, bool resize)
5896 {
5897 struct resource *r = &dev->resource[bar];
5898 resource_size_t size;
5899
5900 if (!(r->flags & IORESOURCE_MEM))
5901 return;
5902
5903 if (r->flags & IORESOURCE_PCI_FIXED) {
5904 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5905 bar, r, (unsigned long long)align);
5906 return;
5907 }
5908
5909 size = resource_size(r);
5910 if (size >= align)
5911 return;
5912
5913 /*
5914 * Increase the alignment of the resource. There are two ways we
5915 * can do this:
5916 *
5917 * 1) Increase the size of the resource. BARs are aligned on their
5918 * size, so when we reallocate space for this resource, we'll
5919 * allocate it with the larger alignment. This also prevents
5920 * assignment of any other BARs inside the alignment region, so
5921 * if we're requesting page alignment, this means no other BARs
5922 * will share the page.
5923 *
5924 * The disadvantage is that this makes the resource larger than
5925 * the hardware BAR, which may break drivers that compute things
5926 * based on the resource size, e.g., to find registers at a
5927 * fixed offset before the end of the BAR.
5928 *
5929 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5930 * set r->start to the desired alignment. By itself this
5931 * doesn't prevent other BARs being put inside the alignment
5932 * region, but if we realign *every* resource of every device in
5933 * the system, none of them will share an alignment region.
5934 *
5935 * When the user has requested alignment for only some devices via
5936 * the "pci=resource_alignment" argument, "resize" is true and we
5937 * use the first method. Otherwise we assume we're aligning all
5938 * devices and we use the second.
5939 */
5940
5941 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
5942 bar, r, (unsigned long long)align);
5943
5944 if (resize) {
5945 r->start = 0;
5946 r->end = align - 1;
5947 } else {
5948 r->flags &= ~IORESOURCE_SIZEALIGN;
5949 r->flags |= IORESOURCE_STARTALIGN;
5950 r->start = align;
5951 r->end = r->start + size - 1;
5952 }
5953 r->flags |= IORESOURCE_UNSET;
5954 }
5955
5956 /*
5957 * This function disables memory decoding and releases memory resources
5958 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5959 * It also rounds up size to specified alignment.
5960 * Later on, the kernel will assign page-aligned memory resource back
5961 * to the device.
5962 */
5963 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5964 {
5965 int i;
5966 struct resource *r;
5967 resource_size_t align;
5968 u16 command;
5969 bool resize = false;
5970
5971 /*
5972 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5973 * 3.4.1.11. Their resources are allocated from the space
5974 * described by the VF BARx register in the PF's SR-IOV capability.
5975 * We can't influence their alignment here.
5976 */
5977 if (dev->is_virtfn)
5978 return;
5979
5980 /* check if specified PCI is target device to reassign */
5981 align = pci_specified_resource_alignment(dev, &resize);
5982 if (!align)
5983 return;
5984
5985 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5986 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5987 pci_warn(dev, "Can't reassign resources to host bridge\n");
5988 return;
5989 }
5990
5991 pci_read_config_word(dev, PCI_COMMAND, &command);
5992 command &= ~PCI_COMMAND_MEMORY;
5993 pci_write_config_word(dev, PCI_COMMAND, command);
5994
5995 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
5996 pci_request_resource_alignment(dev, i, align, resize);
5997
5998 /*
5999 * Need to disable bridge's resource window,
6000 * to enable the kernel to reassign new resource
6001 * window later on.
6002 */
6003 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
6004 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
6005 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6006 r = &dev->resource[i];
6007 if (!(r->flags & IORESOURCE_MEM))
6008 continue;
6009 r->flags |= IORESOURCE_UNSET;
6010 r->end = resource_size(r) - 1;
6011 r->start = 0;
6012 }
6013 pci_disable_bridge_window(dev);
6014 }
6015 }
6016
6017 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
6018 {
6019 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
6020 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
6021 spin_lock(&resource_alignment_lock);
6022 strncpy(resource_alignment_param, buf, count);
6023 resource_alignment_param[count] = '\0';
6024 spin_unlock(&resource_alignment_lock);
6025 return count;
6026 }
6027
6028 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
6029 {
6030 size_t count;
6031 spin_lock(&resource_alignment_lock);
6032 count = snprintf(buf, size, "%s", resource_alignment_param);
6033 spin_unlock(&resource_alignment_lock);
6034 return count;
6035 }
6036
6037 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6038 {
6039 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
6040 }
6041
6042 static ssize_t resource_alignment_store(struct bus_type *bus,
6043 const char *buf, size_t count)
6044 {
6045 return pci_set_resource_alignment_param(buf, count);
6046 }
6047
6048 static BUS_ATTR_RW(resource_alignment);
6049
6050 static int __init pci_resource_alignment_sysfs_init(void)
6051 {
6052 return bus_create_file(&pci_bus_type,
6053 &bus_attr_resource_alignment);
6054 }
6055 late_initcall(pci_resource_alignment_sysfs_init);
6056
6057 static void pci_no_domains(void)
6058 {
6059 #ifdef CONFIG_PCI_DOMAINS
6060 pci_domains_supported = 0;
6061 #endif
6062 }
6063
6064 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6065 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6066
6067 static int pci_get_new_domain_nr(void)
6068 {
6069 return atomic_inc_return(&__domain_nr);
6070 }
6071
6072 static int of_pci_bus_find_domain_nr(struct device *parent)
6073 {
6074 static int use_dt_domains = -1;
6075 int domain = -1;
6076
6077 if (parent)
6078 domain = of_get_pci_domain_nr(parent->of_node);
6079 /*
6080 * Check DT domain and use_dt_domains values.
6081 *
6082 * If DT domain property is valid (domain >= 0) and
6083 * use_dt_domains != 0, the DT assignment is valid since this means
6084 * we have not previously allocated a domain number by using
6085 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6086 * 1, to indicate that we have just assigned a domain number from
6087 * DT.
6088 *
6089 * If DT domain property value is not valid (ie domain < 0), and we
6090 * have not previously assigned a domain number from DT
6091 * (use_dt_domains != 1) we should assign a domain number by
6092 * using the:
6093 *
6094 * pci_get_new_domain_nr()
6095 *
6096 * API and update the use_dt_domains value to keep track of method we
6097 * are using to assign domain numbers (use_dt_domains = 0).
6098 *
6099 * All other combinations imply we have a platform that is trying
6100 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6101 * which is a recipe for domain mishandling and it is prevented by
6102 * invalidating the domain value (domain = -1) and printing a
6103 * corresponding error.
6104 */
6105 if (domain >= 0 && use_dt_domains) {
6106 use_dt_domains = 1;
6107 } else if (domain < 0 && use_dt_domains != 1) {
6108 use_dt_domains = 0;
6109 domain = pci_get_new_domain_nr();
6110 } else {
6111 if (parent)
6112 pr_err("Node %pOF has ", parent->of_node);
6113 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6114 domain = -1;
6115 }
6116
6117 return domain;
6118 }
6119
6120 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6121 {
6122 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6123 acpi_pci_bus_find_domain_nr(bus);
6124 }
6125 #endif
6126
6127 /**
6128 * pci_ext_cfg_avail - can we access extended PCI config space?
6129 *
6130 * Returns 1 if we can access PCI extended config space (offsets
6131 * greater than 0xff). This is the default implementation. Architecture
6132 * implementations can override this.
6133 */
6134 int __weak pci_ext_cfg_avail(void)
6135 {
6136 return 1;
6137 }
6138
6139 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6140 {
6141 }
6142 EXPORT_SYMBOL(pci_fixup_cardbus);
6143
6144 static int __init pci_setup(char *str)
6145 {
6146 while (str) {
6147 char *k = strchr(str, ',');
6148 if (k)
6149 *k++ = 0;
6150 if (*str && (str = pcibios_setup(str)) && *str) {
6151 if (!strcmp(str, "nomsi")) {
6152 pci_no_msi();
6153 } else if (!strncmp(str, "noats", 5)) {
6154 pr_info("PCIe: ATS is disabled\n");
6155 pcie_ats_disabled = true;
6156 } else if (!strcmp(str, "noaer")) {
6157 pci_no_aer();
6158 } else if (!strcmp(str, "earlydump")) {
6159 pci_early_dump = true;
6160 } else if (!strncmp(str, "realloc=", 8)) {
6161 pci_realloc_get_opt(str + 8);
6162 } else if (!strncmp(str, "realloc", 7)) {
6163 pci_realloc_get_opt("on");
6164 } else if (!strcmp(str, "nodomains")) {
6165 pci_no_domains();
6166 } else if (!strncmp(str, "noari", 5)) {
6167 pcie_ari_disabled = true;
6168 } else if (!strncmp(str, "cbiosize=", 9)) {
6169 pci_cardbus_io_size = memparse(str + 9, &str);
6170 } else if (!strncmp(str, "cbmemsize=", 10)) {
6171 pci_cardbus_mem_size = memparse(str + 10, &str);
6172 } else if (!strncmp(str, "resource_alignment=", 19)) {
6173 pci_set_resource_alignment_param(str + 19,
6174 strlen(str + 19));
6175 } else if (!strncmp(str, "ecrc=", 5)) {
6176 pcie_ecrc_get_policy(str + 5);
6177 } else if (!strncmp(str, "hpiosize=", 9)) {
6178 pci_hotplug_io_size = memparse(str + 9, &str);
6179 } else if (!strncmp(str, "hpmemsize=", 10)) {
6180 pci_hotplug_mem_size = memparse(str + 10, &str);
6181 } else if (!strncmp(str, "hpbussize=", 10)) {
6182 pci_hotplug_bus_size =
6183 simple_strtoul(str + 10, &str, 0);
6184 if (pci_hotplug_bus_size > 0xff)
6185 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6186 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6187 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6188 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6189 pcie_bus_config = PCIE_BUS_SAFE;
6190 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6191 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6192 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6193 pcie_bus_config = PCIE_BUS_PEER2PEER;
6194 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6195 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6196 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6197 disable_acs_redir_param =
6198 kstrdup(str + 18, GFP_KERNEL);
6199 } else {
6200 printk(KERN_ERR "PCI: Unknown option `%s'\n",
6201 str);
6202 }
6203 }
6204 str = k;
6205 }
6206 return 0;
6207 }
6208 early_param("pci", pci_setup);