]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/pci/pci.c
PCI: aardvark: Fix PCIe Max Read Request Size setting
[mirror_ubuntu-bionic-kernel.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/delay.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/of.h>
16 #include <linux/of_pci.h>
17 #include <linux/pci.h>
18 #include <linux/pm.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/spinlock.h>
22 #include <linux/string.h>
23 #include <linux/log2.h>
24 #include <linux/logic_pio.h>
25 #include <linux/pci-aspm.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pci-ats.h>
33 #include <asm/setup.h>
34 #include <asm/dma.h>
35 #include <linux/aer.h>
36 #include "pci.h"
37
38 const char *pci_power_names[] = {
39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40 };
41 EXPORT_SYMBOL_GPL(pci_power_names);
42
43 int isa_dma_bridge_buggy;
44 EXPORT_SYMBOL(isa_dma_bridge_buggy);
45
46 int pci_pci_problems;
47 EXPORT_SYMBOL(pci_pci_problems);
48
49 unsigned int pci_pm_d3_delay;
50
51 static void pci_pme_list_scan(struct work_struct *work);
52
53 static LIST_HEAD(pci_pme_list);
54 static DEFINE_MUTEX(pci_pme_list_mutex);
55 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
56
57 struct pci_pme_device {
58 struct list_head list;
59 struct pci_dev *dev;
60 };
61
62 #define PME_TIMEOUT 1000 /* How long between PME checks */
63
64 static void pci_dev_d3_sleep(struct pci_dev *dev)
65 {
66 unsigned int delay = dev->d3_delay;
67
68 if (delay < pci_pm_d3_delay)
69 delay = pci_pm_d3_delay;
70
71 if (delay)
72 msleep(delay);
73 }
74
75 #ifdef CONFIG_PCI_DOMAINS
76 int pci_domains_supported = 1;
77 #endif
78
79 #define DEFAULT_CARDBUS_IO_SIZE (256)
80 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
81 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
82 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
83 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
84
85 #define DEFAULT_HOTPLUG_IO_SIZE (256)
86 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
87 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
88 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
89 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
90
91 #define DEFAULT_HOTPLUG_BUS_SIZE 1
92 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
93
94 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
95
96 /*
97 * The default CLS is used if arch didn't set CLS explicitly and not
98 * all pci devices agree on the same value. Arch can override either
99 * the dfl or actual value as it sees fit. Don't forget this is
100 * measured in 32-bit words, not bytes.
101 */
102 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
103 u8 pci_cache_line_size;
104
105 /*
106 * If we set up a device for bus mastering, we need to check the latency
107 * timer as certain BIOSes forget to set it properly.
108 */
109 unsigned int pcibios_max_latency = 255;
110
111 /* If set, the PCIe ARI capability will not be used. */
112 static bool pcie_ari_disabled;
113
114 /* Disable bridge_d3 for all PCIe ports */
115 static bool pci_bridge_d3_disable;
116 /* Force bridge_d3 for all PCIe ports */
117 static bool pci_bridge_d3_force;
118
119 static int __init pcie_port_pm_setup(char *str)
120 {
121 if (!strcmp(str, "off"))
122 pci_bridge_d3_disable = true;
123 else if (!strcmp(str, "force"))
124 pci_bridge_d3_force = true;
125 return 1;
126 }
127 __setup("pcie_port_pm=", pcie_port_pm_setup);
128
129 /**
130 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
131 * @bus: pointer to PCI bus structure to search
132 *
133 * Given a PCI bus, returns the highest PCI bus number present in the set
134 * including the given PCI bus and its list of child PCI buses.
135 */
136 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
137 {
138 struct pci_bus *tmp;
139 unsigned char max, n;
140
141 max = bus->busn_res.end;
142 list_for_each_entry(tmp, &bus->children, node) {
143 n = pci_bus_max_busnr(tmp);
144 if (n > max)
145 max = n;
146 }
147 return max;
148 }
149 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
150
151 #ifdef CONFIG_HAS_IOMEM
152 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
153 {
154 struct resource *res = &pdev->resource[bar];
155
156 /*
157 * Make sure the BAR is actually a memory resource, not an IO resource
158 */
159 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
160 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
161 return NULL;
162 }
163 return ioremap_nocache(res->start, resource_size(res));
164 }
165 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
166
167 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
168 {
169 /*
170 * Make sure the BAR is actually a memory resource, not an IO resource
171 */
172 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
173 WARN_ON(1);
174 return NULL;
175 }
176 return ioremap_wc(pci_resource_start(pdev, bar),
177 pci_resource_len(pdev, bar));
178 }
179 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
180 #endif
181
182
183 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
184 u8 pos, int cap, int *ttl)
185 {
186 u8 id;
187 u16 ent;
188
189 pci_bus_read_config_byte(bus, devfn, pos, &pos);
190
191 while ((*ttl)--) {
192 if (pos < 0x40)
193 break;
194 pos &= ~3;
195 pci_bus_read_config_word(bus, devfn, pos, &ent);
196
197 id = ent & 0xff;
198 if (id == 0xff)
199 break;
200 if (id == cap)
201 return pos;
202 pos = (ent >> 8);
203 }
204 return 0;
205 }
206
207 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
208 u8 pos, int cap)
209 {
210 int ttl = PCI_FIND_CAP_TTL;
211
212 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
213 }
214
215 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
216 {
217 return __pci_find_next_cap(dev->bus, dev->devfn,
218 pos + PCI_CAP_LIST_NEXT, cap);
219 }
220 EXPORT_SYMBOL_GPL(pci_find_next_capability);
221
222 static int __pci_bus_find_cap_start(struct pci_bus *bus,
223 unsigned int devfn, u8 hdr_type)
224 {
225 u16 status;
226
227 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
228 if (!(status & PCI_STATUS_CAP_LIST))
229 return 0;
230
231 switch (hdr_type) {
232 case PCI_HEADER_TYPE_NORMAL:
233 case PCI_HEADER_TYPE_BRIDGE:
234 return PCI_CAPABILITY_LIST;
235 case PCI_HEADER_TYPE_CARDBUS:
236 return PCI_CB_CAPABILITY_LIST;
237 }
238
239 return 0;
240 }
241
242 /**
243 * pci_find_capability - query for devices' capabilities
244 * @dev: PCI device to query
245 * @cap: capability code
246 *
247 * Tell if a device supports a given PCI capability.
248 * Returns the address of the requested capability structure within the
249 * device's PCI configuration space or 0 in case the device does not
250 * support it. Possible values for @cap:
251 *
252 * %PCI_CAP_ID_PM Power Management
253 * %PCI_CAP_ID_AGP Accelerated Graphics Port
254 * %PCI_CAP_ID_VPD Vital Product Data
255 * %PCI_CAP_ID_SLOTID Slot Identification
256 * %PCI_CAP_ID_MSI Message Signalled Interrupts
257 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
258 * %PCI_CAP_ID_PCIX PCI-X
259 * %PCI_CAP_ID_EXP PCI Express
260 */
261 int pci_find_capability(struct pci_dev *dev, int cap)
262 {
263 int pos;
264
265 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
266 if (pos)
267 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
268
269 return pos;
270 }
271 EXPORT_SYMBOL(pci_find_capability);
272
273 /**
274 * pci_bus_find_capability - query for devices' capabilities
275 * @bus: the PCI bus to query
276 * @devfn: PCI device to query
277 * @cap: capability code
278 *
279 * Like pci_find_capability() but works for pci devices that do not have a
280 * pci_dev structure set up yet.
281 *
282 * Returns the address of the requested capability structure within the
283 * device's PCI configuration space or 0 in case the device does not
284 * support it.
285 */
286 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
287 {
288 int pos;
289 u8 hdr_type;
290
291 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
292
293 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
294 if (pos)
295 pos = __pci_find_next_cap(bus, devfn, pos, cap);
296
297 return pos;
298 }
299 EXPORT_SYMBOL(pci_bus_find_capability);
300
301 /**
302 * pci_find_next_ext_capability - Find an extended capability
303 * @dev: PCI device to query
304 * @start: address at which to start looking (0 to start at beginning of list)
305 * @cap: capability code
306 *
307 * Returns the address of the next matching extended capability structure
308 * within the device's PCI configuration space or 0 if the device does
309 * not support it. Some capabilities can occur several times, e.g., the
310 * vendor-specific capability, and this provides a way to find them all.
311 */
312 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
313 {
314 u32 header;
315 int ttl;
316 int pos = PCI_CFG_SPACE_SIZE;
317
318 /* minimum 8 bytes per capability */
319 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
320
321 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
322 return 0;
323
324 if (start)
325 pos = start;
326
327 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
328 return 0;
329
330 /*
331 * If we have no capabilities, this is indicated by cap ID,
332 * cap version and next pointer all being 0.
333 */
334 if (header == 0)
335 return 0;
336
337 while (ttl-- > 0) {
338 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
339 return pos;
340
341 pos = PCI_EXT_CAP_NEXT(header);
342 if (pos < PCI_CFG_SPACE_SIZE)
343 break;
344
345 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
346 break;
347 }
348
349 return 0;
350 }
351 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
352
353 /**
354 * pci_find_ext_capability - Find an extended capability
355 * @dev: PCI device to query
356 * @cap: capability code
357 *
358 * Returns the address of the requested extended capability structure
359 * within the device's PCI configuration space or 0 if the device does
360 * not support it. Possible values for @cap:
361 *
362 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
363 * %PCI_EXT_CAP_ID_VC Virtual Channel
364 * %PCI_EXT_CAP_ID_DSN Device Serial Number
365 * %PCI_EXT_CAP_ID_PWR Power Budgeting
366 */
367 int pci_find_ext_capability(struct pci_dev *dev, int cap)
368 {
369 return pci_find_next_ext_capability(dev, 0, cap);
370 }
371 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
372
373 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
374 {
375 int rc, ttl = PCI_FIND_CAP_TTL;
376 u8 cap, mask;
377
378 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
379 mask = HT_3BIT_CAP_MASK;
380 else
381 mask = HT_5BIT_CAP_MASK;
382
383 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
384 PCI_CAP_ID_HT, &ttl);
385 while (pos) {
386 rc = pci_read_config_byte(dev, pos + 3, &cap);
387 if (rc != PCIBIOS_SUCCESSFUL)
388 return 0;
389
390 if ((cap & mask) == ht_cap)
391 return pos;
392
393 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
394 pos + PCI_CAP_LIST_NEXT,
395 PCI_CAP_ID_HT, &ttl);
396 }
397
398 return 0;
399 }
400 /**
401 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
402 * @dev: PCI device to query
403 * @pos: Position from which to continue searching
404 * @ht_cap: Hypertransport capability code
405 *
406 * To be used in conjunction with pci_find_ht_capability() to search for
407 * all capabilities matching @ht_cap. @pos should always be a value returned
408 * from pci_find_ht_capability().
409 *
410 * NB. To be 100% safe against broken PCI devices, the caller should take
411 * steps to avoid an infinite loop.
412 */
413 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
414 {
415 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
416 }
417 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
418
419 /**
420 * pci_find_ht_capability - query a device's Hypertransport capabilities
421 * @dev: PCI device to query
422 * @ht_cap: Hypertransport capability code
423 *
424 * Tell if a device supports a given Hypertransport capability.
425 * Returns an address within the device's PCI configuration space
426 * or 0 in case the device does not support the request capability.
427 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
428 * which has a Hypertransport capability matching @ht_cap.
429 */
430 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
431 {
432 int pos;
433
434 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
435 if (pos)
436 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
437
438 return pos;
439 }
440 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
441
442 /**
443 * pci_find_parent_resource - return resource region of parent bus of given region
444 * @dev: PCI device structure contains resources to be searched
445 * @res: child resource record for which parent is sought
446 *
447 * For given resource region of given device, return the resource
448 * region of parent bus the given region is contained in.
449 */
450 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
451 struct resource *res)
452 {
453 const struct pci_bus *bus = dev->bus;
454 struct resource *r;
455 int i;
456
457 pci_bus_for_each_resource(bus, r, i) {
458 if (!r)
459 continue;
460 if (resource_contains(r, res)) {
461
462 /*
463 * If the window is prefetchable but the BAR is
464 * not, the allocator made a mistake.
465 */
466 if (r->flags & IORESOURCE_PREFETCH &&
467 !(res->flags & IORESOURCE_PREFETCH))
468 return NULL;
469
470 /*
471 * If we're below a transparent bridge, there may
472 * be both a positively-decoded aperture and a
473 * subtractively-decoded region that contain the BAR.
474 * We want the positively-decoded one, so this depends
475 * on pci_bus_for_each_resource() giving us those
476 * first.
477 */
478 return r;
479 }
480 }
481 return NULL;
482 }
483 EXPORT_SYMBOL(pci_find_parent_resource);
484
485 /**
486 * pci_find_resource - Return matching PCI device resource
487 * @dev: PCI device to query
488 * @res: Resource to look for
489 *
490 * Goes over standard PCI resources (BARs) and checks if the given resource
491 * is partially or fully contained in any of them. In that case the
492 * matching resource is returned, %NULL otherwise.
493 */
494 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
495 {
496 int i;
497
498 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
499 struct resource *r = &dev->resource[i];
500
501 if (r->start && resource_contains(r, res))
502 return r;
503 }
504
505 return NULL;
506 }
507 EXPORT_SYMBOL(pci_find_resource);
508
509 /**
510 * pci_find_pcie_root_port - return PCIe Root Port
511 * @dev: PCI device to query
512 *
513 * Traverse up the parent chain and return the PCIe Root Port PCI Device
514 * for a given PCI Device.
515 */
516 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
517 {
518 struct pci_dev *bridge, *highest_pcie_bridge = dev;
519
520 bridge = pci_upstream_bridge(dev);
521 while (bridge && pci_is_pcie(bridge)) {
522 highest_pcie_bridge = bridge;
523 bridge = pci_upstream_bridge(bridge);
524 }
525
526 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
527 return NULL;
528
529 return highest_pcie_bridge;
530 }
531 EXPORT_SYMBOL(pci_find_pcie_root_port);
532
533 /**
534 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
535 * @dev: the PCI device to operate on
536 * @pos: config space offset of status word
537 * @mask: mask of bit(s) to care about in status word
538 *
539 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
540 */
541 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
542 {
543 int i;
544
545 /* Wait for Transaction Pending bit clean */
546 for (i = 0; i < 4; i++) {
547 u16 status;
548 if (i)
549 msleep((1 << (i - 1)) * 100);
550
551 pci_read_config_word(dev, pos, &status);
552 if (!(status & mask))
553 return 1;
554 }
555
556 return 0;
557 }
558
559 /**
560 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
561 * @dev: PCI device to have its BARs restored
562 *
563 * Restore the BAR values for a given device, so as to make it
564 * accessible by its driver.
565 */
566 static void pci_restore_bars(struct pci_dev *dev)
567 {
568 int i;
569
570 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
571 pci_update_resource(dev, i);
572 }
573
574 static const struct pci_platform_pm_ops *pci_platform_pm;
575
576 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
577 {
578 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
579 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
580 return -EINVAL;
581 pci_platform_pm = ops;
582 return 0;
583 }
584
585 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
586 {
587 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
588 }
589
590 static inline int platform_pci_set_power_state(struct pci_dev *dev,
591 pci_power_t t)
592 {
593 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
594 }
595
596 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
597 {
598 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
599 }
600
601 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
602 {
603 return pci_platform_pm ?
604 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
605 }
606
607 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
608 {
609 return pci_platform_pm ?
610 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
611 }
612
613 static inline bool platform_pci_need_resume(struct pci_dev *dev)
614 {
615 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
616 }
617
618 /**
619 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
620 * given PCI device
621 * @dev: PCI device to handle.
622 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
623 *
624 * RETURN VALUE:
625 * -EINVAL if the requested state is invalid.
626 * -EIO if device does not support PCI PM or its PM capabilities register has a
627 * wrong version, or device doesn't support the requested state.
628 * 0 if device already is in the requested state.
629 * 0 if device's power state has been successfully changed.
630 */
631 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
632 {
633 u16 pmcsr;
634 bool need_restore = false;
635
636 /* Check if we're already there */
637 if (dev->current_state == state)
638 return 0;
639
640 if (!dev->pm_cap)
641 return -EIO;
642
643 if (state < PCI_D0 || state > PCI_D3hot)
644 return -EINVAL;
645
646 /* Validate current state:
647 * Can enter D0 from any state, but if we can only go deeper
648 * to sleep if we're already in a low power state
649 */
650 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
651 && dev->current_state > state) {
652 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
653 dev->current_state, state);
654 return -EINVAL;
655 }
656
657 /* check if this device supports the desired state */
658 if ((state == PCI_D1 && !dev->d1_support)
659 || (state == PCI_D2 && !dev->d2_support))
660 return -EIO;
661
662 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
663
664 /* If we're (effectively) in D3, force entire word to 0.
665 * This doesn't affect PME_Status, disables PME_En, and
666 * sets PowerState to 0.
667 */
668 switch (dev->current_state) {
669 case PCI_D0:
670 case PCI_D1:
671 case PCI_D2:
672 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
673 pmcsr |= state;
674 break;
675 case PCI_D3hot:
676 case PCI_D3cold:
677 case PCI_UNKNOWN: /* Boot-up */
678 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
679 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
680 need_restore = true;
681 /* Fall-through: force to D0 */
682 default:
683 pmcsr = 0;
684 break;
685 }
686
687 /* enter specified state */
688 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
689
690 /* Mandatory power management transition delays */
691 /* see PCI PM 1.1 5.6.1 table 18 */
692 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
693 pci_dev_d3_sleep(dev);
694 else if (state == PCI_D2 || dev->current_state == PCI_D2)
695 udelay(PCI_PM_D2_DELAY);
696
697 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
698 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
699 if (dev->current_state != state && printk_ratelimit())
700 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
701 dev->current_state);
702
703 /*
704 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
705 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
706 * from D3hot to D0 _may_ perform an internal reset, thereby
707 * going to "D0 Uninitialized" rather than "D0 Initialized".
708 * For example, at least some versions of the 3c905B and the
709 * 3c556B exhibit this behaviour.
710 *
711 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
712 * devices in a D3hot state at boot. Consequently, we need to
713 * restore at least the BARs so that the device will be
714 * accessible to its driver.
715 */
716 if (need_restore)
717 pci_restore_bars(dev);
718
719 if (dev->bus->self)
720 pcie_aspm_pm_state_change(dev->bus->self);
721
722 return 0;
723 }
724
725 /**
726 * pci_update_current_state - Read power state of given device and cache it
727 * @dev: PCI device to handle.
728 * @state: State to cache in case the device doesn't have the PM capability
729 *
730 * The power state is read from the PMCSR register, which however is
731 * inaccessible in D3cold. The platform firmware is therefore queried first
732 * to detect accessibility of the register. In case the platform firmware
733 * reports an incorrect state or the device isn't power manageable by the
734 * platform at all, we try to detect D3cold by testing accessibility of the
735 * vendor ID in config space.
736 */
737 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
738 {
739 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
740 !pci_device_is_present(dev)) {
741 dev->current_state = PCI_D3cold;
742 } else if (dev->pm_cap) {
743 u16 pmcsr;
744
745 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
746 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
747 } else {
748 dev->current_state = state;
749 }
750 }
751
752 /**
753 * pci_power_up - Put the given device into D0 forcibly
754 * @dev: PCI device to power up
755 */
756 void pci_power_up(struct pci_dev *dev)
757 {
758 if (platform_pci_power_manageable(dev))
759 platform_pci_set_power_state(dev, PCI_D0);
760
761 pci_raw_set_power_state(dev, PCI_D0);
762 pci_update_current_state(dev, PCI_D0);
763 }
764
765 /**
766 * pci_platform_power_transition - Use platform to change device power state
767 * @dev: PCI device to handle.
768 * @state: State to put the device into.
769 */
770 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
771 {
772 int error;
773
774 if (platform_pci_power_manageable(dev)) {
775 error = platform_pci_set_power_state(dev, state);
776 if (!error)
777 pci_update_current_state(dev, state);
778 } else
779 error = -ENODEV;
780
781 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
782 dev->current_state = PCI_D0;
783
784 return error;
785 }
786
787 /**
788 * pci_wakeup - Wake up a PCI device
789 * @pci_dev: Device to handle.
790 * @ign: ignored parameter
791 */
792 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
793 {
794 pci_wakeup_event(pci_dev);
795 pm_request_resume(&pci_dev->dev);
796 return 0;
797 }
798
799 /**
800 * pci_wakeup_bus - Walk given bus and wake up devices on it
801 * @bus: Top bus of the subtree to walk.
802 */
803 static void pci_wakeup_bus(struct pci_bus *bus)
804 {
805 if (bus)
806 pci_walk_bus(bus, pci_wakeup, NULL);
807 }
808
809 /**
810 * __pci_start_power_transition - Start power transition of a PCI device
811 * @dev: PCI device to handle.
812 * @state: State to put the device into.
813 */
814 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
815 {
816 if (state == PCI_D0) {
817 pci_platform_power_transition(dev, PCI_D0);
818 /*
819 * Mandatory power management transition delays, see
820 * PCI Express Base Specification Revision 2.0 Section
821 * 6.6.1: Conventional Reset. Do not delay for
822 * devices powered on/off by corresponding bridge,
823 * because have already delayed for the bridge.
824 */
825 if (dev->runtime_d3cold) {
826 if (dev->d3cold_delay)
827 msleep(dev->d3cold_delay);
828 /*
829 * When powering on a bridge from D3cold, the
830 * whole hierarchy may be powered on into
831 * D0uninitialized state, resume them to give
832 * them a chance to suspend again
833 */
834 pci_wakeup_bus(dev->subordinate);
835 }
836 }
837 }
838
839 /**
840 * __pci_dev_set_current_state - Set current state of a PCI device
841 * @dev: Device to handle
842 * @data: pointer to state to be set
843 */
844 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
845 {
846 pci_power_t state = *(pci_power_t *)data;
847
848 dev->current_state = state;
849 return 0;
850 }
851
852 /**
853 * __pci_bus_set_current_state - Walk given bus and set current state of devices
854 * @bus: Top bus of the subtree to walk.
855 * @state: state to be set
856 */
857 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
858 {
859 if (bus)
860 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
861 }
862
863 /**
864 * __pci_complete_power_transition - Complete power transition of a PCI device
865 * @dev: PCI device to handle.
866 * @state: State to put the device into.
867 *
868 * This function should not be called directly by device drivers.
869 */
870 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
871 {
872 int ret;
873
874 if (state <= PCI_D0)
875 return -EINVAL;
876 ret = pci_platform_power_transition(dev, state);
877 /* Power off the bridge may power off the whole hierarchy */
878 if (!ret && state == PCI_D3cold)
879 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
880 return ret;
881 }
882 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
883
884 /**
885 * pci_set_power_state - Set the power state of a PCI device
886 * @dev: PCI device to handle.
887 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
888 *
889 * Transition a device to a new power state, using the platform firmware and/or
890 * the device's PCI PM registers.
891 *
892 * RETURN VALUE:
893 * -EINVAL if the requested state is invalid.
894 * -EIO if device does not support PCI PM or its PM capabilities register has a
895 * wrong version, or device doesn't support the requested state.
896 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
897 * 0 if device already is in the requested state.
898 * 0 if the transition is to D3 but D3 is not supported.
899 * 0 if device's power state has been successfully changed.
900 */
901 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
902 {
903 int error;
904
905 /* bound the state we're entering */
906 if (state > PCI_D3cold)
907 state = PCI_D3cold;
908 else if (state < PCI_D0)
909 state = PCI_D0;
910 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
911 /*
912 * If the device or the parent bridge do not support PCI PM,
913 * ignore the request if we're doing anything other than putting
914 * it into D0 (which would only happen on boot).
915 */
916 return 0;
917
918 /* Check if we're already there */
919 if (dev->current_state == state)
920 return 0;
921
922 __pci_start_power_transition(dev, state);
923
924 /* This device is quirked not to be put into D3, so
925 don't put it in D3 */
926 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
927 return 0;
928
929 /*
930 * To put device in D3cold, we put device into D3hot in native
931 * way, then put device into D3cold with platform ops
932 */
933 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
934 PCI_D3hot : state);
935
936 if (!__pci_complete_power_transition(dev, state))
937 error = 0;
938
939 return error;
940 }
941 EXPORT_SYMBOL(pci_set_power_state);
942
943 /**
944 * pci_choose_state - Choose the power state of a PCI device
945 * @dev: PCI device to be suspended
946 * @state: target sleep state for the whole system. This is the value
947 * that is passed to suspend() function.
948 *
949 * Returns PCI power state suitable for given device and given system
950 * message.
951 */
952
953 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
954 {
955 pci_power_t ret;
956
957 if (!dev->pm_cap)
958 return PCI_D0;
959
960 ret = platform_pci_choose_state(dev);
961 if (ret != PCI_POWER_ERROR)
962 return ret;
963
964 switch (state.event) {
965 case PM_EVENT_ON:
966 return PCI_D0;
967 case PM_EVENT_FREEZE:
968 case PM_EVENT_PRETHAW:
969 /* REVISIT both freeze and pre-thaw "should" use D0 */
970 case PM_EVENT_SUSPEND:
971 case PM_EVENT_HIBERNATE:
972 return PCI_D3hot;
973 default:
974 dev_info(&dev->dev, "unrecognized suspend event %d\n",
975 state.event);
976 BUG();
977 }
978 return PCI_D0;
979 }
980 EXPORT_SYMBOL(pci_choose_state);
981
982 #define PCI_EXP_SAVE_REGS 7
983
984 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
985 u16 cap, bool extended)
986 {
987 struct pci_cap_saved_state *tmp;
988
989 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
990 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
991 return tmp;
992 }
993 return NULL;
994 }
995
996 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
997 {
998 return _pci_find_saved_cap(dev, cap, false);
999 }
1000
1001 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1002 {
1003 return _pci_find_saved_cap(dev, cap, true);
1004 }
1005
1006 static int pci_save_pcie_state(struct pci_dev *dev)
1007 {
1008 int i = 0;
1009 struct pci_cap_saved_state *save_state;
1010 u16 *cap;
1011
1012 if (!pci_is_pcie(dev))
1013 return 0;
1014
1015 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1016 if (!save_state) {
1017 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1018 return -ENOMEM;
1019 }
1020
1021 cap = (u16 *)&save_state->cap.data[0];
1022 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1023 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1024 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1025 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1026 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1027 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1028 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1029
1030 return 0;
1031 }
1032
1033 static void pci_restore_pcie_state(struct pci_dev *dev)
1034 {
1035 int i = 0;
1036 struct pci_cap_saved_state *save_state;
1037 u16 *cap;
1038
1039 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1040 if (!save_state)
1041 return;
1042
1043 cap = (u16 *)&save_state->cap.data[0];
1044 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1045 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1046 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1047 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1048 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1049 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1050 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1051 }
1052
1053
1054 static int pci_save_pcix_state(struct pci_dev *dev)
1055 {
1056 int pos;
1057 struct pci_cap_saved_state *save_state;
1058
1059 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1060 if (!pos)
1061 return 0;
1062
1063 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1064 if (!save_state) {
1065 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1066 return -ENOMEM;
1067 }
1068
1069 pci_read_config_word(dev, pos + PCI_X_CMD,
1070 (u16 *)save_state->cap.data);
1071
1072 return 0;
1073 }
1074
1075 static void pci_restore_pcix_state(struct pci_dev *dev)
1076 {
1077 int i = 0, pos;
1078 struct pci_cap_saved_state *save_state;
1079 u16 *cap;
1080
1081 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1082 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1083 if (!save_state || !pos)
1084 return;
1085 cap = (u16 *)&save_state->cap.data[0];
1086
1087 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1088 }
1089
1090
1091 /**
1092 * pci_save_state - save the PCI configuration space of a device before suspending
1093 * @dev: - PCI device that we're dealing with
1094 */
1095 int pci_save_state(struct pci_dev *dev)
1096 {
1097 int i;
1098 /* XXX: 100% dword access ok here? */
1099 for (i = 0; i < 16; i++)
1100 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1101 dev->state_saved = true;
1102
1103 i = pci_save_pcie_state(dev);
1104 if (i != 0)
1105 return i;
1106
1107 i = pci_save_pcix_state(dev);
1108 if (i != 0)
1109 return i;
1110
1111 return pci_save_vc_state(dev);
1112 }
1113 EXPORT_SYMBOL(pci_save_state);
1114
1115 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1116 u32 saved_val, int retry)
1117 {
1118 u32 val;
1119
1120 pci_read_config_dword(pdev, offset, &val);
1121 if (val == saved_val)
1122 return;
1123
1124 for (;;) {
1125 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1126 offset, val, saved_val);
1127 pci_write_config_dword(pdev, offset, saved_val);
1128 if (retry-- <= 0)
1129 return;
1130
1131 pci_read_config_dword(pdev, offset, &val);
1132 if (val == saved_val)
1133 return;
1134
1135 mdelay(1);
1136 }
1137 }
1138
1139 static void pci_restore_config_space_range(struct pci_dev *pdev,
1140 int start, int end, int retry)
1141 {
1142 int index;
1143
1144 for (index = end; index >= start; index--)
1145 pci_restore_config_dword(pdev, 4 * index,
1146 pdev->saved_config_space[index],
1147 retry);
1148 }
1149
1150 static void pci_restore_config_space(struct pci_dev *pdev)
1151 {
1152 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1153 pci_restore_config_space_range(pdev, 10, 15, 0);
1154 /* Restore BARs before the command register. */
1155 pci_restore_config_space_range(pdev, 4, 9, 10);
1156 pci_restore_config_space_range(pdev, 0, 3, 0);
1157 } else {
1158 pci_restore_config_space_range(pdev, 0, 15, 0);
1159 }
1160 }
1161
1162 /**
1163 * pci_restore_state - Restore the saved state of a PCI device
1164 * @dev: - PCI device that we're dealing with
1165 */
1166 void pci_restore_state(struct pci_dev *dev)
1167 {
1168 if (!dev->state_saved)
1169 return;
1170
1171 /* PCI Express register must be restored first */
1172 pci_restore_pcie_state(dev);
1173 pci_restore_pasid_state(dev);
1174 pci_restore_pri_state(dev);
1175 pci_restore_ats_state(dev);
1176 pci_restore_vc_state(dev);
1177
1178 pci_cleanup_aer_error_status_regs(dev);
1179
1180 pci_restore_config_space(dev);
1181
1182 pci_restore_pcix_state(dev);
1183 pci_restore_msi_state(dev);
1184
1185 /* Restore ACS and IOV configuration state */
1186 pci_enable_acs(dev);
1187 pci_restore_iov_state(dev);
1188
1189 dev->state_saved = false;
1190 }
1191 EXPORT_SYMBOL(pci_restore_state);
1192
1193 struct pci_saved_state {
1194 u32 config_space[16];
1195 struct pci_cap_saved_data cap[0];
1196 };
1197
1198 /**
1199 * pci_store_saved_state - Allocate and return an opaque struct containing
1200 * the device saved state.
1201 * @dev: PCI device that we're dealing with
1202 *
1203 * Return NULL if no state or error.
1204 */
1205 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1206 {
1207 struct pci_saved_state *state;
1208 struct pci_cap_saved_state *tmp;
1209 struct pci_cap_saved_data *cap;
1210 size_t size;
1211
1212 if (!dev->state_saved)
1213 return NULL;
1214
1215 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1216
1217 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1218 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1219
1220 state = kzalloc(size, GFP_KERNEL);
1221 if (!state)
1222 return NULL;
1223
1224 memcpy(state->config_space, dev->saved_config_space,
1225 sizeof(state->config_space));
1226
1227 cap = state->cap;
1228 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1229 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1230 memcpy(cap, &tmp->cap, len);
1231 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1232 }
1233 /* Empty cap_save terminates list */
1234
1235 return state;
1236 }
1237 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1238
1239 /**
1240 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1241 * @dev: PCI device that we're dealing with
1242 * @state: Saved state returned from pci_store_saved_state()
1243 */
1244 int pci_load_saved_state(struct pci_dev *dev,
1245 struct pci_saved_state *state)
1246 {
1247 struct pci_cap_saved_data *cap;
1248
1249 dev->state_saved = false;
1250
1251 if (!state)
1252 return 0;
1253
1254 memcpy(dev->saved_config_space, state->config_space,
1255 sizeof(state->config_space));
1256
1257 cap = state->cap;
1258 while (cap->size) {
1259 struct pci_cap_saved_state *tmp;
1260
1261 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1262 if (!tmp || tmp->cap.size != cap->size)
1263 return -EINVAL;
1264
1265 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1266 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1267 sizeof(struct pci_cap_saved_data) + cap->size);
1268 }
1269
1270 dev->state_saved = true;
1271 return 0;
1272 }
1273 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1274
1275 /**
1276 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1277 * and free the memory allocated for it.
1278 * @dev: PCI device that we're dealing with
1279 * @state: Pointer to saved state returned from pci_store_saved_state()
1280 */
1281 int pci_load_and_free_saved_state(struct pci_dev *dev,
1282 struct pci_saved_state **state)
1283 {
1284 int ret = pci_load_saved_state(dev, *state);
1285 kfree(*state);
1286 *state = NULL;
1287 return ret;
1288 }
1289 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1290
1291 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1292 {
1293 return pci_enable_resources(dev, bars);
1294 }
1295
1296 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1297 {
1298 int err;
1299 struct pci_dev *bridge;
1300 u16 cmd;
1301 u8 pin;
1302
1303 err = pci_set_power_state(dev, PCI_D0);
1304 if (err < 0 && err != -EIO)
1305 return err;
1306
1307 bridge = pci_upstream_bridge(dev);
1308 if (bridge)
1309 pcie_aspm_powersave_config_link(bridge);
1310
1311 err = pcibios_enable_device(dev, bars);
1312 if (err < 0)
1313 return err;
1314 pci_fixup_device(pci_fixup_enable, dev);
1315
1316 if (dev->msi_enabled || dev->msix_enabled)
1317 return 0;
1318
1319 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1320 if (pin) {
1321 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1322 if (cmd & PCI_COMMAND_INTX_DISABLE)
1323 pci_write_config_word(dev, PCI_COMMAND,
1324 cmd & ~PCI_COMMAND_INTX_DISABLE);
1325 }
1326
1327 return 0;
1328 }
1329
1330 /**
1331 * pci_reenable_device - Resume abandoned device
1332 * @dev: PCI device to be resumed
1333 *
1334 * Note this function is a backend of pci_default_resume and is not supposed
1335 * to be called by normal code, write proper resume handler and use it instead.
1336 */
1337 int pci_reenable_device(struct pci_dev *dev)
1338 {
1339 if (pci_is_enabled(dev))
1340 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1341 return 0;
1342 }
1343 EXPORT_SYMBOL(pci_reenable_device);
1344
1345 static void pci_enable_bridge(struct pci_dev *dev)
1346 {
1347 struct pci_dev *bridge;
1348 int retval;
1349
1350 bridge = pci_upstream_bridge(dev);
1351 if (bridge)
1352 pci_enable_bridge(bridge);
1353
1354 if (pci_is_enabled(dev)) {
1355 if (!dev->is_busmaster)
1356 pci_set_master(dev);
1357 return;
1358 }
1359
1360 retval = pci_enable_device(dev);
1361 if (retval)
1362 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1363 retval);
1364 pci_set_master(dev);
1365 }
1366
1367 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1368 {
1369 struct pci_dev *bridge;
1370 int err;
1371 int i, bars = 0;
1372
1373 /*
1374 * Power state could be unknown at this point, either due to a fresh
1375 * boot or a device removal call. So get the current power state
1376 * so that things like MSI message writing will behave as expected
1377 * (e.g. if the device really is in D0 at enable time).
1378 */
1379 if (dev->pm_cap) {
1380 u16 pmcsr;
1381 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1382 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1383 }
1384
1385 if (atomic_inc_return(&dev->enable_cnt) > 1)
1386 return 0; /* already enabled */
1387
1388 bridge = pci_upstream_bridge(dev);
1389 if (bridge)
1390 pci_enable_bridge(bridge);
1391
1392 /* only skip sriov related */
1393 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1394 if (dev->resource[i].flags & flags)
1395 bars |= (1 << i);
1396 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1397 if (dev->resource[i].flags & flags)
1398 bars |= (1 << i);
1399
1400 err = do_pci_enable_device(dev, bars);
1401 if (err < 0)
1402 atomic_dec(&dev->enable_cnt);
1403 return err;
1404 }
1405
1406 /**
1407 * pci_enable_device_io - Initialize a device for use with IO space
1408 * @dev: PCI device to be initialized
1409 *
1410 * Initialize device before it's used by a driver. Ask low-level code
1411 * to enable I/O resources. Wake up the device if it was suspended.
1412 * Beware, this function can fail.
1413 */
1414 int pci_enable_device_io(struct pci_dev *dev)
1415 {
1416 return pci_enable_device_flags(dev, IORESOURCE_IO);
1417 }
1418 EXPORT_SYMBOL(pci_enable_device_io);
1419
1420 /**
1421 * pci_enable_device_mem - Initialize a device for use with Memory space
1422 * @dev: PCI device to be initialized
1423 *
1424 * Initialize device before it's used by a driver. Ask low-level code
1425 * to enable Memory resources. Wake up the device if it was suspended.
1426 * Beware, this function can fail.
1427 */
1428 int pci_enable_device_mem(struct pci_dev *dev)
1429 {
1430 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1431 }
1432 EXPORT_SYMBOL(pci_enable_device_mem);
1433
1434 /**
1435 * pci_enable_device - Initialize device before it's used by a driver.
1436 * @dev: PCI device to be initialized
1437 *
1438 * Initialize device before it's used by a driver. Ask low-level code
1439 * to enable I/O and memory. Wake up the device if it was suspended.
1440 * Beware, this function can fail.
1441 *
1442 * Note we don't actually enable the device many times if we call
1443 * this function repeatedly (we just increment the count).
1444 */
1445 int pci_enable_device(struct pci_dev *dev)
1446 {
1447 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1448 }
1449 EXPORT_SYMBOL(pci_enable_device);
1450
1451 /*
1452 * Managed PCI resources. This manages device on/off, intx/msi/msix
1453 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1454 * there's no need to track it separately. pci_devres is initialized
1455 * when a device is enabled using managed PCI device enable interface.
1456 */
1457 struct pci_devres {
1458 unsigned int enabled:1;
1459 unsigned int pinned:1;
1460 unsigned int orig_intx:1;
1461 unsigned int restore_intx:1;
1462 unsigned int mwi:1;
1463 u32 region_mask;
1464 };
1465
1466 static void pcim_release(struct device *gendev, void *res)
1467 {
1468 struct pci_dev *dev = to_pci_dev(gendev);
1469 struct pci_devres *this = res;
1470 int i;
1471
1472 if (dev->msi_enabled)
1473 pci_disable_msi(dev);
1474 if (dev->msix_enabled)
1475 pci_disable_msix(dev);
1476
1477 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1478 if (this->region_mask & (1 << i))
1479 pci_release_region(dev, i);
1480
1481 if (this->mwi)
1482 pci_clear_mwi(dev);
1483
1484 if (this->restore_intx)
1485 pci_intx(dev, this->orig_intx);
1486
1487 if (this->enabled && !this->pinned)
1488 pci_disable_device(dev);
1489 }
1490
1491 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1492 {
1493 struct pci_devres *dr, *new_dr;
1494
1495 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1496 if (dr)
1497 return dr;
1498
1499 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1500 if (!new_dr)
1501 return NULL;
1502 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1503 }
1504
1505 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1506 {
1507 if (pci_is_managed(pdev))
1508 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1509 return NULL;
1510 }
1511
1512 /**
1513 * pcim_enable_device - Managed pci_enable_device()
1514 * @pdev: PCI device to be initialized
1515 *
1516 * Managed pci_enable_device().
1517 */
1518 int pcim_enable_device(struct pci_dev *pdev)
1519 {
1520 struct pci_devres *dr;
1521 int rc;
1522
1523 dr = get_pci_dr(pdev);
1524 if (unlikely(!dr))
1525 return -ENOMEM;
1526 if (dr->enabled)
1527 return 0;
1528
1529 rc = pci_enable_device(pdev);
1530 if (!rc) {
1531 pdev->is_managed = 1;
1532 dr->enabled = 1;
1533 }
1534 return rc;
1535 }
1536 EXPORT_SYMBOL(pcim_enable_device);
1537
1538 /**
1539 * pcim_pin_device - Pin managed PCI device
1540 * @pdev: PCI device to pin
1541 *
1542 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1543 * driver detach. @pdev must have been enabled with
1544 * pcim_enable_device().
1545 */
1546 void pcim_pin_device(struct pci_dev *pdev)
1547 {
1548 struct pci_devres *dr;
1549
1550 dr = find_pci_dr(pdev);
1551 WARN_ON(!dr || !dr->enabled);
1552 if (dr)
1553 dr->pinned = 1;
1554 }
1555 EXPORT_SYMBOL(pcim_pin_device);
1556
1557 /*
1558 * pcibios_add_device - provide arch specific hooks when adding device dev
1559 * @dev: the PCI device being added
1560 *
1561 * Permits the platform to provide architecture specific functionality when
1562 * devices are added. This is the default implementation. Architecture
1563 * implementations can override this.
1564 */
1565 int __weak pcibios_add_device(struct pci_dev *dev)
1566 {
1567 return 0;
1568 }
1569
1570 /**
1571 * pcibios_release_device - provide arch specific hooks when releasing device dev
1572 * @dev: the PCI device being released
1573 *
1574 * Permits the platform to provide architecture specific functionality when
1575 * devices are released. This is the default implementation. Architecture
1576 * implementations can override this.
1577 */
1578 void __weak pcibios_release_device(struct pci_dev *dev) {}
1579
1580 /**
1581 * pcibios_disable_device - disable arch specific PCI resources for device dev
1582 * @dev: the PCI device to disable
1583 *
1584 * Disables architecture specific PCI resources for the device. This
1585 * is the default implementation. Architecture implementations can
1586 * override this.
1587 */
1588 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1589
1590 /**
1591 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1592 * @irq: ISA IRQ to penalize
1593 * @active: IRQ active or not
1594 *
1595 * Permits the platform to provide architecture-specific functionality when
1596 * penalizing ISA IRQs. This is the default implementation. Architecture
1597 * implementations can override this.
1598 */
1599 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1600
1601 static void do_pci_disable_device(struct pci_dev *dev)
1602 {
1603 u16 pci_command;
1604
1605 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1606 if (pci_command & PCI_COMMAND_MASTER) {
1607 pci_command &= ~PCI_COMMAND_MASTER;
1608 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1609 }
1610
1611 pcibios_disable_device(dev);
1612 }
1613
1614 /**
1615 * pci_disable_enabled_device - Disable device without updating enable_cnt
1616 * @dev: PCI device to disable
1617 *
1618 * NOTE: This function is a backend of PCI power management routines and is
1619 * not supposed to be called drivers.
1620 */
1621 void pci_disable_enabled_device(struct pci_dev *dev)
1622 {
1623 if (pci_is_enabled(dev))
1624 do_pci_disable_device(dev);
1625 }
1626
1627 /**
1628 * pci_disable_device - Disable PCI device after use
1629 * @dev: PCI device to be disabled
1630 *
1631 * Signal to the system that the PCI device is not in use by the system
1632 * anymore. This only involves disabling PCI bus-mastering, if active.
1633 *
1634 * Note we don't actually disable the device until all callers of
1635 * pci_enable_device() have called pci_disable_device().
1636 */
1637 void pci_disable_device(struct pci_dev *dev)
1638 {
1639 struct pci_devres *dr;
1640
1641 dr = find_pci_dr(dev);
1642 if (dr)
1643 dr->enabled = 0;
1644
1645 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1646 "disabling already-disabled device");
1647
1648 if (atomic_dec_return(&dev->enable_cnt) != 0)
1649 return;
1650
1651 do_pci_disable_device(dev);
1652
1653 dev->is_busmaster = 0;
1654 }
1655 EXPORT_SYMBOL(pci_disable_device);
1656
1657 /**
1658 * pcibios_set_pcie_reset_state - set reset state for device dev
1659 * @dev: the PCIe device reset
1660 * @state: Reset state to enter into
1661 *
1662 *
1663 * Sets the PCIe reset state for the device. This is the default
1664 * implementation. Architecture implementations can override this.
1665 */
1666 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1667 enum pcie_reset_state state)
1668 {
1669 return -EINVAL;
1670 }
1671
1672 /**
1673 * pci_set_pcie_reset_state - set reset state for device dev
1674 * @dev: the PCIe device reset
1675 * @state: Reset state to enter into
1676 *
1677 *
1678 * Sets the PCI reset state for the device.
1679 */
1680 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1681 {
1682 return pcibios_set_pcie_reset_state(dev, state);
1683 }
1684 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1685
1686 /**
1687 * pci_check_pme_status - Check if given device has generated PME.
1688 * @dev: Device to check.
1689 *
1690 * Check the PME status of the device and if set, clear it and clear PME enable
1691 * (if set). Return 'true' if PME status and PME enable were both set or
1692 * 'false' otherwise.
1693 */
1694 bool pci_check_pme_status(struct pci_dev *dev)
1695 {
1696 int pmcsr_pos;
1697 u16 pmcsr;
1698 bool ret = false;
1699
1700 if (!dev->pm_cap)
1701 return false;
1702
1703 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1704 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1705 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1706 return false;
1707
1708 /* Clear PME status. */
1709 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1710 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1711 /* Disable PME to avoid interrupt flood. */
1712 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1713 ret = true;
1714 }
1715
1716 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1717
1718 return ret;
1719 }
1720
1721 /**
1722 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1723 * @dev: Device to handle.
1724 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1725 *
1726 * Check if @dev has generated PME and queue a resume request for it in that
1727 * case.
1728 */
1729 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1730 {
1731 if (pme_poll_reset && dev->pme_poll)
1732 dev->pme_poll = false;
1733
1734 if (pci_check_pme_status(dev)) {
1735 pci_wakeup_event(dev);
1736 pm_request_resume(&dev->dev);
1737 }
1738 return 0;
1739 }
1740
1741 /**
1742 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1743 * @bus: Top bus of the subtree to walk.
1744 */
1745 void pci_pme_wakeup_bus(struct pci_bus *bus)
1746 {
1747 if (bus)
1748 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1749 }
1750
1751
1752 /**
1753 * pci_pme_capable - check the capability of PCI device to generate PME#
1754 * @dev: PCI device to handle.
1755 * @state: PCI state from which device will issue PME#.
1756 */
1757 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1758 {
1759 if (!dev->pm_cap)
1760 return false;
1761
1762 return !!(dev->pme_support & (1 << state));
1763 }
1764 EXPORT_SYMBOL(pci_pme_capable);
1765
1766 static void pci_pme_list_scan(struct work_struct *work)
1767 {
1768 struct pci_pme_device *pme_dev, *n;
1769
1770 mutex_lock(&pci_pme_list_mutex);
1771 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1772 if (pme_dev->dev->pme_poll) {
1773 struct pci_dev *bridge;
1774
1775 bridge = pme_dev->dev->bus->self;
1776 /*
1777 * If bridge is in low power state, the
1778 * configuration space of subordinate devices
1779 * may be not accessible
1780 */
1781 if (bridge && bridge->current_state != PCI_D0)
1782 continue;
1783 pci_pme_wakeup(pme_dev->dev, NULL);
1784 } else {
1785 list_del(&pme_dev->list);
1786 kfree(pme_dev);
1787 }
1788 }
1789 if (!list_empty(&pci_pme_list))
1790 queue_delayed_work(system_freezable_wq, &pci_pme_work,
1791 msecs_to_jiffies(PME_TIMEOUT));
1792 mutex_unlock(&pci_pme_list_mutex);
1793 }
1794
1795 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1796 {
1797 u16 pmcsr;
1798
1799 if (!dev->pme_support)
1800 return;
1801
1802 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1803 /* Clear PME_Status by writing 1 to it and enable PME# */
1804 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1805 if (!enable)
1806 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1807
1808 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1809 }
1810
1811 /**
1812 * pci_pme_restore - Restore PME configuration after config space restore.
1813 * @dev: PCI device to update.
1814 */
1815 void pci_pme_restore(struct pci_dev *dev)
1816 {
1817 u16 pmcsr;
1818
1819 if (!dev->pme_support)
1820 return;
1821
1822 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1823 if (dev->wakeup_prepared) {
1824 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
1825 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
1826 } else {
1827 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1828 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1829 }
1830 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1831 }
1832
1833 /**
1834 * pci_pme_active - enable or disable PCI device's PME# function
1835 * @dev: PCI device to handle.
1836 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1837 *
1838 * The caller must verify that the device is capable of generating PME# before
1839 * calling this function with @enable equal to 'true'.
1840 */
1841 void pci_pme_active(struct pci_dev *dev, bool enable)
1842 {
1843 __pci_pme_active(dev, enable);
1844
1845 /*
1846 * PCI (as opposed to PCIe) PME requires that the device have
1847 * its PME# line hooked up correctly. Not all hardware vendors
1848 * do this, so the PME never gets delivered and the device
1849 * remains asleep. The easiest way around this is to
1850 * periodically walk the list of suspended devices and check
1851 * whether any have their PME flag set. The assumption is that
1852 * we'll wake up often enough anyway that this won't be a huge
1853 * hit, and the power savings from the devices will still be a
1854 * win.
1855 *
1856 * Although PCIe uses in-band PME message instead of PME# line
1857 * to report PME, PME does not work for some PCIe devices in
1858 * reality. For example, there are devices that set their PME
1859 * status bits, but don't really bother to send a PME message;
1860 * there are PCI Express Root Ports that don't bother to
1861 * trigger interrupts when they receive PME messages from the
1862 * devices below. So PME poll is used for PCIe devices too.
1863 */
1864
1865 if (dev->pme_poll) {
1866 struct pci_pme_device *pme_dev;
1867 if (enable) {
1868 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1869 GFP_KERNEL);
1870 if (!pme_dev) {
1871 dev_warn(&dev->dev, "can't enable PME#\n");
1872 return;
1873 }
1874 pme_dev->dev = dev;
1875 mutex_lock(&pci_pme_list_mutex);
1876 list_add(&pme_dev->list, &pci_pme_list);
1877 if (list_is_singular(&pci_pme_list))
1878 queue_delayed_work(system_freezable_wq,
1879 &pci_pme_work,
1880 msecs_to_jiffies(PME_TIMEOUT));
1881 mutex_unlock(&pci_pme_list_mutex);
1882 } else {
1883 mutex_lock(&pci_pme_list_mutex);
1884 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1885 if (pme_dev->dev == dev) {
1886 list_del(&pme_dev->list);
1887 kfree(pme_dev);
1888 break;
1889 }
1890 }
1891 mutex_unlock(&pci_pme_list_mutex);
1892 }
1893 }
1894
1895 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1896 }
1897 EXPORT_SYMBOL(pci_pme_active);
1898
1899 /**
1900 * __pci_enable_wake - enable PCI device as wakeup event source
1901 * @dev: PCI device affected
1902 * @state: PCI state from which device will issue wakeup events
1903 * @enable: True to enable event generation; false to disable
1904 *
1905 * This enables the device as a wakeup event source, or disables it.
1906 * When such events involves platform-specific hooks, those hooks are
1907 * called automatically by this routine.
1908 *
1909 * Devices with legacy power management (no standard PCI PM capabilities)
1910 * always require such platform hooks.
1911 *
1912 * RETURN VALUE:
1913 * 0 is returned on success
1914 * -EINVAL is returned if device is not supposed to wake up the system
1915 * Error code depending on the platform is returned if both the platform and
1916 * the native mechanism fail to enable the generation of wake-up events
1917 */
1918 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1919 {
1920 int ret = 0;
1921
1922 /*
1923 * Bridges can only signal wakeup on behalf of subordinate devices,
1924 * but that is set up elsewhere, so skip them.
1925 */
1926 if (pci_has_subordinate(dev))
1927 return 0;
1928
1929 /* Don't do the same thing twice in a row for one device. */
1930 if (!!enable == !!dev->wakeup_prepared)
1931 return 0;
1932
1933 /*
1934 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1935 * Anderson we should be doing PME# wake enable followed by ACPI wake
1936 * enable. To disable wake-up we call the platform first, for symmetry.
1937 */
1938
1939 if (enable) {
1940 int error;
1941
1942 if (pci_pme_capable(dev, state))
1943 pci_pme_active(dev, true);
1944 else
1945 ret = 1;
1946 error = platform_pci_set_wakeup(dev, true);
1947 if (ret)
1948 ret = error;
1949 if (!ret)
1950 dev->wakeup_prepared = true;
1951 } else {
1952 platform_pci_set_wakeup(dev, false);
1953 pci_pme_active(dev, false);
1954 dev->wakeup_prepared = false;
1955 }
1956
1957 return ret;
1958 }
1959
1960 /**
1961 * pci_enable_wake - change wakeup settings for a PCI device
1962 * @pci_dev: Target device
1963 * @state: PCI state from which device will issue wakeup events
1964 * @enable: Whether or not to enable event generation
1965 *
1966 * If @enable is set, check device_may_wakeup() for the device before calling
1967 * __pci_enable_wake() for it.
1968 */
1969 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
1970 {
1971 if (enable && !device_may_wakeup(&pci_dev->dev))
1972 return -EINVAL;
1973
1974 return __pci_enable_wake(pci_dev, state, enable);
1975 }
1976 EXPORT_SYMBOL(pci_enable_wake);
1977
1978 /**
1979 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1980 * @dev: PCI device to prepare
1981 * @enable: True to enable wake-up event generation; false to disable
1982 *
1983 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1984 * and this function allows them to set that up cleanly - pci_enable_wake()
1985 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1986 * ordering constraints.
1987 *
1988 * This function only returns error code if the device is not allowed to wake
1989 * up the system from sleep or it is not capable of generating PME# from both
1990 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
1991 */
1992 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1993 {
1994 return pci_pme_capable(dev, PCI_D3cold) ?
1995 pci_enable_wake(dev, PCI_D3cold, enable) :
1996 pci_enable_wake(dev, PCI_D3hot, enable);
1997 }
1998 EXPORT_SYMBOL(pci_wake_from_d3);
1999
2000 /**
2001 * pci_target_state - find an appropriate low power state for a given PCI dev
2002 * @dev: PCI device
2003 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2004 *
2005 * Use underlying platform code to find a supported low power state for @dev.
2006 * If the platform can't manage @dev, return the deepest state from which it
2007 * can generate wake events, based on any available PME info.
2008 */
2009 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2010 {
2011 pci_power_t target_state = PCI_D3hot;
2012
2013 if (platform_pci_power_manageable(dev)) {
2014 /*
2015 * Call the platform to choose the target state of the device
2016 * and enable wake-up from this state if supported.
2017 */
2018 pci_power_t state = platform_pci_choose_state(dev);
2019
2020 switch (state) {
2021 case PCI_POWER_ERROR:
2022 case PCI_UNKNOWN:
2023 break;
2024 case PCI_D1:
2025 case PCI_D2:
2026 if (pci_no_d1d2(dev))
2027 break;
2028 default:
2029 target_state = state;
2030 }
2031
2032 return target_state;
2033 }
2034
2035 if (!dev->pm_cap)
2036 target_state = PCI_D0;
2037
2038 /*
2039 * If the device is in D3cold even though it's not power-manageable by
2040 * the platform, it may have been powered down by non-standard means.
2041 * Best to let it slumber.
2042 */
2043 if (dev->current_state == PCI_D3cold)
2044 target_state = PCI_D3cold;
2045
2046 if (wakeup) {
2047 /*
2048 * Find the deepest state from which the device can generate
2049 * wake-up events, make it the target state and enable device
2050 * to generate PME#.
2051 */
2052 if (dev->pme_support) {
2053 while (target_state
2054 && !(dev->pme_support & (1 << target_state)))
2055 target_state--;
2056 }
2057 }
2058
2059 return target_state;
2060 }
2061
2062 /**
2063 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2064 * @dev: Device to handle.
2065 *
2066 * Choose the power state appropriate for the device depending on whether
2067 * it can wake up the system and/or is power manageable by the platform
2068 * (PCI_D3hot is the default) and put the device into that state.
2069 */
2070 int pci_prepare_to_sleep(struct pci_dev *dev)
2071 {
2072 bool wakeup = device_may_wakeup(&dev->dev);
2073 pci_power_t target_state = pci_target_state(dev, wakeup);
2074 int error;
2075
2076 if (target_state == PCI_POWER_ERROR)
2077 return -EIO;
2078
2079 pci_enable_wake(dev, target_state, wakeup);
2080
2081 error = pci_set_power_state(dev, target_state);
2082
2083 if (error)
2084 pci_enable_wake(dev, target_state, false);
2085
2086 return error;
2087 }
2088 EXPORT_SYMBOL(pci_prepare_to_sleep);
2089
2090 /**
2091 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2092 * @dev: Device to handle.
2093 *
2094 * Disable device's system wake-up capability and put it into D0.
2095 */
2096 int pci_back_from_sleep(struct pci_dev *dev)
2097 {
2098 pci_enable_wake(dev, PCI_D0, false);
2099 return pci_set_power_state(dev, PCI_D0);
2100 }
2101 EXPORT_SYMBOL(pci_back_from_sleep);
2102
2103 /**
2104 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2105 * @dev: PCI device being suspended.
2106 *
2107 * Prepare @dev to generate wake-up events at run time and put it into a low
2108 * power state.
2109 */
2110 int pci_finish_runtime_suspend(struct pci_dev *dev)
2111 {
2112 pci_power_t target_state;
2113 int error;
2114
2115 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2116 if (target_state == PCI_POWER_ERROR)
2117 return -EIO;
2118
2119 dev->runtime_d3cold = target_state == PCI_D3cold;
2120
2121 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2122
2123 error = pci_set_power_state(dev, target_state);
2124
2125 if (error) {
2126 pci_enable_wake(dev, target_state, false);
2127 dev->runtime_d3cold = false;
2128 }
2129
2130 return error;
2131 }
2132
2133 /**
2134 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2135 * @dev: Device to check.
2136 *
2137 * Return true if the device itself is capable of generating wake-up events
2138 * (through the platform or using the native PCIe PME) or if the device supports
2139 * PME and one of its upstream bridges can generate wake-up events.
2140 */
2141 bool pci_dev_run_wake(struct pci_dev *dev)
2142 {
2143 struct pci_bus *bus = dev->bus;
2144
2145 if (!dev->pme_support)
2146 return false;
2147
2148 /* PME-capable in principle, but not from the target power state */
2149 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2150 return false;
2151
2152 if (device_can_wakeup(&dev->dev))
2153 return true;
2154
2155 while (bus->parent) {
2156 struct pci_dev *bridge = bus->self;
2157
2158 if (device_can_wakeup(&bridge->dev))
2159 return true;
2160
2161 bus = bus->parent;
2162 }
2163
2164 /* We have reached the root bus. */
2165 if (bus->bridge)
2166 return device_can_wakeup(bus->bridge);
2167
2168 return false;
2169 }
2170 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2171
2172 /**
2173 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2174 * @pci_dev: Device to check.
2175 *
2176 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2177 * reconfigured due to wakeup settings difference between system and runtime
2178 * suspend and the current power state of it is suitable for the upcoming
2179 * (system) transition.
2180 *
2181 * If the device is not configured for system wakeup, disable PME for it before
2182 * returning 'true' to prevent it from waking up the system unnecessarily.
2183 */
2184 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2185 {
2186 struct device *dev = &pci_dev->dev;
2187 bool wakeup = device_may_wakeup(dev);
2188
2189 if (!pm_runtime_suspended(dev)
2190 || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2191 || platform_pci_need_resume(pci_dev))
2192 return false;
2193
2194 /*
2195 * At this point the device is good to go unless it's been configured
2196 * to generate PME at the runtime suspend time, but it is not supposed
2197 * to wake up the system. In that case, simply disable PME for it
2198 * (it will have to be re-enabled on exit from system resume).
2199 *
2200 * If the device's power state is D3cold and the platform check above
2201 * hasn't triggered, the device's configuration is suitable and we don't
2202 * need to manipulate it at all.
2203 */
2204 spin_lock_irq(&dev->power.lock);
2205
2206 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2207 !wakeup)
2208 __pci_pme_active(pci_dev, false);
2209
2210 spin_unlock_irq(&dev->power.lock);
2211 return true;
2212 }
2213
2214 /**
2215 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2216 * @pci_dev: Device to handle.
2217 *
2218 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2219 * it might have been disabled during the prepare phase of system suspend if
2220 * the device was not configured for system wakeup.
2221 */
2222 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2223 {
2224 struct device *dev = &pci_dev->dev;
2225
2226 if (!pci_dev_run_wake(pci_dev))
2227 return;
2228
2229 spin_lock_irq(&dev->power.lock);
2230
2231 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2232 __pci_pme_active(pci_dev, true);
2233
2234 spin_unlock_irq(&dev->power.lock);
2235 }
2236
2237 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2238 {
2239 struct device *dev = &pdev->dev;
2240 struct device *parent = dev->parent;
2241
2242 if (parent)
2243 pm_runtime_get_sync(parent);
2244 pm_runtime_get_noresume(dev);
2245 /*
2246 * pdev->current_state is set to PCI_D3cold during suspending,
2247 * so wait until suspending completes
2248 */
2249 pm_runtime_barrier(dev);
2250 /*
2251 * Only need to resume devices in D3cold, because config
2252 * registers are still accessible for devices suspended but
2253 * not in D3cold.
2254 */
2255 if (pdev->current_state == PCI_D3cold)
2256 pm_runtime_resume(dev);
2257 }
2258
2259 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2260 {
2261 struct device *dev = &pdev->dev;
2262 struct device *parent = dev->parent;
2263
2264 pm_runtime_put(dev);
2265 if (parent)
2266 pm_runtime_put_sync(parent);
2267 }
2268
2269 /**
2270 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2271 * @bridge: Bridge to check
2272 *
2273 * This function checks if it is possible to move the bridge to D3.
2274 * Currently we only allow D3 for recent enough PCIe ports.
2275 */
2276 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2277 {
2278 unsigned int year;
2279
2280 if (!pci_is_pcie(bridge))
2281 return false;
2282
2283 switch (pci_pcie_type(bridge)) {
2284 case PCI_EXP_TYPE_ROOT_PORT:
2285 case PCI_EXP_TYPE_UPSTREAM:
2286 case PCI_EXP_TYPE_DOWNSTREAM:
2287 if (pci_bridge_d3_disable)
2288 return false;
2289
2290 /*
2291 * Hotplug interrupts cannot be delivered if the link is down,
2292 * so parents of a hotplug port must stay awake. In addition,
2293 * hotplug ports handled by firmware in System Management Mode
2294 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2295 * For simplicity, disallow in general for now.
2296 */
2297 if (bridge->is_hotplug_bridge)
2298 return false;
2299
2300 if (pci_bridge_d3_force)
2301 return true;
2302
2303 /*
2304 * It should be safe to put PCIe ports from 2015 or newer
2305 * to D3.
2306 */
2307 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2308 year >= 2015) {
2309 return true;
2310 }
2311 break;
2312 }
2313
2314 return false;
2315 }
2316
2317 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2318 {
2319 bool *d3cold_ok = data;
2320
2321 if (/* The device needs to be allowed to go D3cold ... */
2322 dev->no_d3cold || !dev->d3cold_allowed ||
2323
2324 /* ... and if it is wakeup capable to do so from D3cold. */
2325 (device_may_wakeup(&dev->dev) &&
2326 !pci_pme_capable(dev, PCI_D3cold)) ||
2327
2328 /* If it is a bridge it must be allowed to go to D3. */
2329 !pci_power_manageable(dev))
2330
2331 *d3cold_ok = false;
2332
2333 return !*d3cold_ok;
2334 }
2335
2336 /*
2337 * pci_bridge_d3_update - Update bridge D3 capabilities
2338 * @dev: PCI device which is changed
2339 *
2340 * Update upstream bridge PM capabilities accordingly depending on if the
2341 * device PM configuration was changed or the device is being removed. The
2342 * change is also propagated upstream.
2343 */
2344 void pci_bridge_d3_update(struct pci_dev *dev)
2345 {
2346 bool remove = !device_is_registered(&dev->dev);
2347 struct pci_dev *bridge;
2348 bool d3cold_ok = true;
2349
2350 bridge = pci_upstream_bridge(dev);
2351 if (!bridge || !pci_bridge_d3_possible(bridge))
2352 return;
2353
2354 /*
2355 * If D3 is currently allowed for the bridge, removing one of its
2356 * children won't change that.
2357 */
2358 if (remove && bridge->bridge_d3)
2359 return;
2360
2361 /*
2362 * If D3 is currently allowed for the bridge and a child is added or
2363 * changed, disallowance of D3 can only be caused by that child, so
2364 * we only need to check that single device, not any of its siblings.
2365 *
2366 * If D3 is currently not allowed for the bridge, checking the device
2367 * first may allow us to skip checking its siblings.
2368 */
2369 if (!remove)
2370 pci_dev_check_d3cold(dev, &d3cold_ok);
2371
2372 /*
2373 * If D3 is currently not allowed for the bridge, this may be caused
2374 * either by the device being changed/removed or any of its siblings,
2375 * so we need to go through all children to find out if one of them
2376 * continues to block D3.
2377 */
2378 if (d3cold_ok && !bridge->bridge_d3)
2379 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2380 &d3cold_ok);
2381
2382 if (bridge->bridge_d3 != d3cold_ok) {
2383 bridge->bridge_d3 = d3cold_ok;
2384 /* Propagate change to upstream bridges */
2385 pci_bridge_d3_update(bridge);
2386 }
2387 }
2388
2389 /**
2390 * pci_d3cold_enable - Enable D3cold for device
2391 * @dev: PCI device to handle
2392 *
2393 * This function can be used in drivers to enable D3cold from the device
2394 * they handle. It also updates upstream PCI bridge PM capabilities
2395 * accordingly.
2396 */
2397 void pci_d3cold_enable(struct pci_dev *dev)
2398 {
2399 if (dev->no_d3cold) {
2400 dev->no_d3cold = false;
2401 pci_bridge_d3_update(dev);
2402 }
2403 }
2404 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2405
2406 /**
2407 * pci_d3cold_disable - Disable D3cold for device
2408 * @dev: PCI device to handle
2409 *
2410 * This function can be used in drivers to disable D3cold from the device
2411 * they handle. It also updates upstream PCI bridge PM capabilities
2412 * accordingly.
2413 */
2414 void pci_d3cold_disable(struct pci_dev *dev)
2415 {
2416 if (!dev->no_d3cold) {
2417 dev->no_d3cold = true;
2418 pci_bridge_d3_update(dev);
2419 }
2420 }
2421 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2422
2423 /**
2424 * pci_pm_init - Initialize PM functions of given PCI device
2425 * @dev: PCI device to handle.
2426 */
2427 void pci_pm_init(struct pci_dev *dev)
2428 {
2429 int pm;
2430 u16 pmc;
2431
2432 pm_runtime_forbid(&dev->dev);
2433 pm_runtime_set_active(&dev->dev);
2434 pm_runtime_enable(&dev->dev);
2435 device_enable_async_suspend(&dev->dev);
2436 dev->wakeup_prepared = false;
2437
2438 dev->pm_cap = 0;
2439 dev->pme_support = 0;
2440
2441 /* find PCI PM capability in list */
2442 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2443 if (!pm)
2444 return;
2445 /* Check device's ability to generate PME# */
2446 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2447
2448 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2449 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2450 pmc & PCI_PM_CAP_VER_MASK);
2451 return;
2452 }
2453
2454 dev->pm_cap = pm;
2455 dev->d3_delay = PCI_PM_D3_WAIT;
2456 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2457 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2458 dev->d3cold_allowed = true;
2459
2460 dev->d1_support = false;
2461 dev->d2_support = false;
2462 if (!pci_no_d1d2(dev)) {
2463 if (pmc & PCI_PM_CAP_D1)
2464 dev->d1_support = true;
2465 if (pmc & PCI_PM_CAP_D2)
2466 dev->d2_support = true;
2467
2468 if (dev->d1_support || dev->d2_support)
2469 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2470 dev->d1_support ? " D1" : "",
2471 dev->d2_support ? " D2" : "");
2472 }
2473
2474 pmc &= PCI_PM_CAP_PME_MASK;
2475 if (pmc) {
2476 dev_printk(KERN_DEBUG, &dev->dev,
2477 "PME# supported from%s%s%s%s%s\n",
2478 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2479 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2480 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2481 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2482 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2483 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2484 dev->pme_poll = true;
2485 /*
2486 * Make device's PM flags reflect the wake-up capability, but
2487 * let the user space enable it to wake up the system as needed.
2488 */
2489 device_set_wakeup_capable(&dev->dev, true);
2490 /* Disable the PME# generation functionality */
2491 pci_pme_active(dev, false);
2492 }
2493 }
2494
2495 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2496 {
2497 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2498
2499 switch (prop) {
2500 case PCI_EA_P_MEM:
2501 case PCI_EA_P_VF_MEM:
2502 flags |= IORESOURCE_MEM;
2503 break;
2504 case PCI_EA_P_MEM_PREFETCH:
2505 case PCI_EA_P_VF_MEM_PREFETCH:
2506 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2507 break;
2508 case PCI_EA_P_IO:
2509 flags |= IORESOURCE_IO;
2510 break;
2511 default:
2512 return 0;
2513 }
2514
2515 return flags;
2516 }
2517
2518 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2519 u8 prop)
2520 {
2521 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2522 return &dev->resource[bei];
2523 #ifdef CONFIG_PCI_IOV
2524 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2525 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2526 return &dev->resource[PCI_IOV_RESOURCES +
2527 bei - PCI_EA_BEI_VF_BAR0];
2528 #endif
2529 else if (bei == PCI_EA_BEI_ROM)
2530 return &dev->resource[PCI_ROM_RESOURCE];
2531 else
2532 return NULL;
2533 }
2534
2535 /* Read an Enhanced Allocation (EA) entry */
2536 static int pci_ea_read(struct pci_dev *dev, int offset)
2537 {
2538 struct resource *res;
2539 int ent_size, ent_offset = offset;
2540 resource_size_t start, end;
2541 unsigned long flags;
2542 u32 dw0, bei, base, max_offset;
2543 u8 prop;
2544 bool support_64 = (sizeof(resource_size_t) >= 8);
2545
2546 pci_read_config_dword(dev, ent_offset, &dw0);
2547 ent_offset += 4;
2548
2549 /* Entry size field indicates DWORDs after 1st */
2550 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2551
2552 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2553 goto out;
2554
2555 bei = (dw0 & PCI_EA_BEI) >> 4;
2556 prop = (dw0 & PCI_EA_PP) >> 8;
2557
2558 /*
2559 * If the Property is in the reserved range, try the Secondary
2560 * Property instead.
2561 */
2562 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2563 prop = (dw0 & PCI_EA_SP) >> 16;
2564 if (prop > PCI_EA_P_BRIDGE_IO)
2565 goto out;
2566
2567 res = pci_ea_get_resource(dev, bei, prop);
2568 if (!res) {
2569 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2570 goto out;
2571 }
2572
2573 flags = pci_ea_flags(dev, prop);
2574 if (!flags) {
2575 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2576 goto out;
2577 }
2578
2579 /* Read Base */
2580 pci_read_config_dword(dev, ent_offset, &base);
2581 start = (base & PCI_EA_FIELD_MASK);
2582 ent_offset += 4;
2583
2584 /* Read MaxOffset */
2585 pci_read_config_dword(dev, ent_offset, &max_offset);
2586 ent_offset += 4;
2587
2588 /* Read Base MSBs (if 64-bit entry) */
2589 if (base & PCI_EA_IS_64) {
2590 u32 base_upper;
2591
2592 pci_read_config_dword(dev, ent_offset, &base_upper);
2593 ent_offset += 4;
2594
2595 flags |= IORESOURCE_MEM_64;
2596
2597 /* entry starts above 32-bit boundary, can't use */
2598 if (!support_64 && base_upper)
2599 goto out;
2600
2601 if (support_64)
2602 start |= ((u64)base_upper << 32);
2603 }
2604
2605 end = start + (max_offset | 0x03);
2606
2607 /* Read MaxOffset MSBs (if 64-bit entry) */
2608 if (max_offset & PCI_EA_IS_64) {
2609 u32 max_offset_upper;
2610
2611 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2612 ent_offset += 4;
2613
2614 flags |= IORESOURCE_MEM_64;
2615
2616 /* entry too big, can't use */
2617 if (!support_64 && max_offset_upper)
2618 goto out;
2619
2620 if (support_64)
2621 end += ((u64)max_offset_upper << 32);
2622 }
2623
2624 if (end < start) {
2625 dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2626 goto out;
2627 }
2628
2629 if (ent_size != ent_offset - offset) {
2630 dev_err(&dev->dev,
2631 "EA Entry Size (%d) does not match length read (%d)\n",
2632 ent_size, ent_offset - offset);
2633 goto out;
2634 }
2635
2636 res->name = pci_name(dev);
2637 res->start = start;
2638 res->end = end;
2639 res->flags = flags;
2640
2641 if (bei <= PCI_EA_BEI_BAR5)
2642 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2643 bei, res, prop);
2644 else if (bei == PCI_EA_BEI_ROM)
2645 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2646 res, prop);
2647 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2648 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2649 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2650 else
2651 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2652 bei, res, prop);
2653
2654 out:
2655 return offset + ent_size;
2656 }
2657
2658 /* Enhanced Allocation Initialization */
2659 void pci_ea_init(struct pci_dev *dev)
2660 {
2661 int ea;
2662 u8 num_ent;
2663 int offset;
2664 int i;
2665
2666 /* find PCI EA capability in list */
2667 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2668 if (!ea)
2669 return;
2670
2671 /* determine the number of entries */
2672 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2673 &num_ent);
2674 num_ent &= PCI_EA_NUM_ENT_MASK;
2675
2676 offset = ea + PCI_EA_FIRST_ENT;
2677
2678 /* Skip DWORD 2 for type 1 functions */
2679 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2680 offset += 4;
2681
2682 /* parse each EA entry */
2683 for (i = 0; i < num_ent; ++i)
2684 offset = pci_ea_read(dev, offset);
2685 }
2686
2687 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2688 struct pci_cap_saved_state *new_cap)
2689 {
2690 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2691 }
2692
2693 /**
2694 * _pci_add_cap_save_buffer - allocate buffer for saving given
2695 * capability registers
2696 * @dev: the PCI device
2697 * @cap: the capability to allocate the buffer for
2698 * @extended: Standard or Extended capability ID
2699 * @size: requested size of the buffer
2700 */
2701 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2702 bool extended, unsigned int size)
2703 {
2704 int pos;
2705 struct pci_cap_saved_state *save_state;
2706
2707 if (extended)
2708 pos = pci_find_ext_capability(dev, cap);
2709 else
2710 pos = pci_find_capability(dev, cap);
2711
2712 if (!pos)
2713 return 0;
2714
2715 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2716 if (!save_state)
2717 return -ENOMEM;
2718
2719 save_state->cap.cap_nr = cap;
2720 save_state->cap.cap_extended = extended;
2721 save_state->cap.size = size;
2722 pci_add_saved_cap(dev, save_state);
2723
2724 return 0;
2725 }
2726
2727 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2728 {
2729 return _pci_add_cap_save_buffer(dev, cap, false, size);
2730 }
2731
2732 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2733 {
2734 return _pci_add_cap_save_buffer(dev, cap, true, size);
2735 }
2736
2737 /**
2738 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2739 * @dev: the PCI device
2740 */
2741 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2742 {
2743 int error;
2744
2745 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2746 PCI_EXP_SAVE_REGS * sizeof(u16));
2747 if (error)
2748 dev_err(&dev->dev,
2749 "unable to preallocate PCI Express save buffer\n");
2750
2751 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2752 if (error)
2753 dev_err(&dev->dev,
2754 "unable to preallocate PCI-X save buffer\n");
2755
2756 pci_allocate_vc_save_buffers(dev);
2757 }
2758
2759 void pci_free_cap_save_buffers(struct pci_dev *dev)
2760 {
2761 struct pci_cap_saved_state *tmp;
2762 struct hlist_node *n;
2763
2764 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2765 kfree(tmp);
2766 }
2767
2768 /**
2769 * pci_configure_ari - enable or disable ARI forwarding
2770 * @dev: the PCI device
2771 *
2772 * If @dev and its upstream bridge both support ARI, enable ARI in the
2773 * bridge. Otherwise, disable ARI in the bridge.
2774 */
2775 void pci_configure_ari(struct pci_dev *dev)
2776 {
2777 u32 cap;
2778 struct pci_dev *bridge;
2779
2780 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2781 return;
2782
2783 bridge = dev->bus->self;
2784 if (!bridge)
2785 return;
2786
2787 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2788 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2789 return;
2790
2791 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2792 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2793 PCI_EXP_DEVCTL2_ARI);
2794 bridge->ari_enabled = 1;
2795 } else {
2796 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2797 PCI_EXP_DEVCTL2_ARI);
2798 bridge->ari_enabled = 0;
2799 }
2800 }
2801
2802 static int pci_acs_enable;
2803
2804 /**
2805 * pci_request_acs - ask for ACS to be enabled if supported
2806 */
2807 void pci_request_acs(void)
2808 {
2809 pci_acs_enable = 1;
2810 }
2811
2812 /**
2813 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2814 * @dev: the PCI device
2815 */
2816 static void pci_std_enable_acs(struct pci_dev *dev)
2817 {
2818 int pos;
2819 u16 cap;
2820 u16 ctrl;
2821
2822 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2823 if (!pos)
2824 return;
2825
2826 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2827 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2828
2829 /* Source Validation */
2830 ctrl |= (cap & PCI_ACS_SV);
2831
2832 /* P2P Request Redirect */
2833 ctrl |= (cap & PCI_ACS_RR);
2834
2835 /* P2P Completion Redirect */
2836 ctrl |= (cap & PCI_ACS_CR);
2837
2838 /* Upstream Forwarding */
2839 ctrl |= (cap & PCI_ACS_UF);
2840
2841 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2842 }
2843
2844 /**
2845 * pci_enable_acs - enable ACS if hardware support it
2846 * @dev: the PCI device
2847 */
2848 void pci_enable_acs(struct pci_dev *dev)
2849 {
2850 if (!pci_acs_enable)
2851 return;
2852
2853 if (!pci_dev_specific_enable_acs(dev))
2854 return;
2855
2856 pci_std_enable_acs(dev);
2857 }
2858
2859 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2860 {
2861 int pos;
2862 u16 cap, ctrl;
2863
2864 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2865 if (!pos)
2866 return false;
2867
2868 /*
2869 * Except for egress control, capabilities are either required
2870 * or only required if controllable. Features missing from the
2871 * capability field can therefore be assumed as hard-wired enabled.
2872 */
2873 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2874 acs_flags &= (cap | PCI_ACS_EC);
2875
2876 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2877 return (ctrl & acs_flags) == acs_flags;
2878 }
2879
2880 /**
2881 * pci_acs_enabled - test ACS against required flags for a given device
2882 * @pdev: device to test
2883 * @acs_flags: required PCI ACS flags
2884 *
2885 * Return true if the device supports the provided flags. Automatically
2886 * filters out flags that are not implemented on multifunction devices.
2887 *
2888 * Note that this interface checks the effective ACS capabilities of the
2889 * device rather than the actual capabilities. For instance, most single
2890 * function endpoints are not required to support ACS because they have no
2891 * opportunity for peer-to-peer access. We therefore return 'true'
2892 * regardless of whether the device exposes an ACS capability. This makes
2893 * it much easier for callers of this function to ignore the actual type
2894 * or topology of the device when testing ACS support.
2895 */
2896 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2897 {
2898 int ret;
2899
2900 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2901 if (ret >= 0)
2902 return ret > 0;
2903
2904 /*
2905 * Conventional PCI and PCI-X devices never support ACS, either
2906 * effectively or actually. The shared bus topology implies that
2907 * any device on the bus can receive or snoop DMA.
2908 */
2909 if (!pci_is_pcie(pdev))
2910 return false;
2911
2912 switch (pci_pcie_type(pdev)) {
2913 /*
2914 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2915 * but since their primary interface is PCI/X, we conservatively
2916 * handle them as we would a non-PCIe device.
2917 */
2918 case PCI_EXP_TYPE_PCIE_BRIDGE:
2919 /*
2920 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2921 * applicable... must never implement an ACS Extended Capability...".
2922 * This seems arbitrary, but we take a conservative interpretation
2923 * of this statement.
2924 */
2925 case PCI_EXP_TYPE_PCI_BRIDGE:
2926 case PCI_EXP_TYPE_RC_EC:
2927 return false;
2928 /*
2929 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2930 * implement ACS in order to indicate their peer-to-peer capabilities,
2931 * regardless of whether they are single- or multi-function devices.
2932 */
2933 case PCI_EXP_TYPE_DOWNSTREAM:
2934 case PCI_EXP_TYPE_ROOT_PORT:
2935 return pci_acs_flags_enabled(pdev, acs_flags);
2936 /*
2937 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2938 * implemented by the remaining PCIe types to indicate peer-to-peer
2939 * capabilities, but only when they are part of a multifunction
2940 * device. The footnote for section 6.12 indicates the specific
2941 * PCIe types included here.
2942 */
2943 case PCI_EXP_TYPE_ENDPOINT:
2944 case PCI_EXP_TYPE_UPSTREAM:
2945 case PCI_EXP_TYPE_LEG_END:
2946 case PCI_EXP_TYPE_RC_END:
2947 if (!pdev->multifunction)
2948 break;
2949
2950 return pci_acs_flags_enabled(pdev, acs_flags);
2951 }
2952
2953 /*
2954 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2955 * to single function devices with the exception of downstream ports.
2956 */
2957 return true;
2958 }
2959
2960 /**
2961 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2962 * @start: starting downstream device
2963 * @end: ending upstream device or NULL to search to the root bus
2964 * @acs_flags: required flags
2965 *
2966 * Walk up a device tree from start to end testing PCI ACS support. If
2967 * any step along the way does not support the required flags, return false.
2968 */
2969 bool pci_acs_path_enabled(struct pci_dev *start,
2970 struct pci_dev *end, u16 acs_flags)
2971 {
2972 struct pci_dev *pdev, *parent = start;
2973
2974 do {
2975 pdev = parent;
2976
2977 if (!pci_acs_enabled(pdev, acs_flags))
2978 return false;
2979
2980 if (pci_is_root_bus(pdev->bus))
2981 return (end == NULL);
2982
2983 parent = pdev->bus->self;
2984 } while (pdev != end);
2985
2986 return true;
2987 }
2988
2989 /**
2990 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
2991 * @pdev: PCI device
2992 * @bar: BAR to find
2993 *
2994 * Helper to find the position of the ctrl register for a BAR.
2995 * Returns -ENOTSUPP if resizable BARs are not supported at all.
2996 * Returns -ENOENT if no ctrl register for the BAR could be found.
2997 */
2998 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
2999 {
3000 unsigned int pos, nbars, i;
3001 u32 ctrl;
3002
3003 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3004 if (!pos)
3005 return -ENOTSUPP;
3006
3007 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3008 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3009 PCI_REBAR_CTRL_NBAR_SHIFT;
3010
3011 for (i = 0; i < nbars; i++, pos += 8) {
3012 int bar_idx;
3013
3014 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3015 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3016 if (bar_idx == bar)
3017 return pos;
3018 }
3019
3020 return -ENOENT;
3021 }
3022
3023 /**
3024 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3025 * @pdev: PCI device
3026 * @bar: BAR to query
3027 *
3028 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3029 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3030 */
3031 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3032 {
3033 int pos;
3034 u32 cap;
3035
3036 pos = pci_rebar_find_pos(pdev, bar);
3037 if (pos < 0)
3038 return 0;
3039
3040 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3041 return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3042 }
3043
3044 /**
3045 * pci_rebar_get_current_size - get the current size of a BAR
3046 * @pdev: PCI device
3047 * @bar: BAR to set size to
3048 *
3049 * Read the size of a BAR from the resizable BAR config.
3050 * Returns size if found or negative error code.
3051 */
3052 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3053 {
3054 int pos;
3055 u32 ctrl;
3056
3057 pos = pci_rebar_find_pos(pdev, bar);
3058 if (pos < 0)
3059 return pos;
3060
3061 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3062 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> 8;
3063 }
3064
3065 /**
3066 * pci_rebar_set_size - set a new size for a BAR
3067 * @pdev: PCI device
3068 * @bar: BAR to set size to
3069 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3070 *
3071 * Set the new size of a BAR as defined in the spec.
3072 * Returns zero if resizing was successful, error code otherwise.
3073 */
3074 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3075 {
3076 int pos;
3077 u32 ctrl;
3078
3079 pos = pci_rebar_find_pos(pdev, bar);
3080 if (pos < 0)
3081 return pos;
3082
3083 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3084 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3085 ctrl |= size << 8;
3086 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3087 return 0;
3088 }
3089
3090 /**
3091 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3092 * @dev: the PCI device
3093 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3094 *
3095 * Perform INTx swizzling for a device behind one level of bridge. This is
3096 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3097 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3098 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3099 * the PCI Express Base Specification, Revision 2.1)
3100 */
3101 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3102 {
3103 int slot;
3104
3105 if (pci_ari_enabled(dev->bus))
3106 slot = 0;
3107 else
3108 slot = PCI_SLOT(dev->devfn);
3109
3110 return (((pin - 1) + slot) % 4) + 1;
3111 }
3112
3113 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3114 {
3115 u8 pin;
3116
3117 pin = dev->pin;
3118 if (!pin)
3119 return -1;
3120
3121 while (!pci_is_root_bus(dev->bus)) {
3122 pin = pci_swizzle_interrupt_pin(dev, pin);
3123 dev = dev->bus->self;
3124 }
3125 *bridge = dev;
3126 return pin;
3127 }
3128
3129 /**
3130 * pci_common_swizzle - swizzle INTx all the way to root bridge
3131 * @dev: the PCI device
3132 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3133 *
3134 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3135 * bridges all the way up to a PCI root bus.
3136 */
3137 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3138 {
3139 u8 pin = *pinp;
3140
3141 while (!pci_is_root_bus(dev->bus)) {
3142 pin = pci_swizzle_interrupt_pin(dev, pin);
3143 dev = dev->bus->self;
3144 }
3145 *pinp = pin;
3146 return PCI_SLOT(dev->devfn);
3147 }
3148 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3149
3150 /**
3151 * pci_release_region - Release a PCI bar
3152 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3153 * @bar: BAR to release
3154 *
3155 * Releases the PCI I/O and memory resources previously reserved by a
3156 * successful call to pci_request_region. Call this function only
3157 * after all use of the PCI regions has ceased.
3158 */
3159 void pci_release_region(struct pci_dev *pdev, int bar)
3160 {
3161 struct pci_devres *dr;
3162
3163 if (pci_resource_len(pdev, bar) == 0)
3164 return;
3165 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3166 release_region(pci_resource_start(pdev, bar),
3167 pci_resource_len(pdev, bar));
3168 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3169 release_mem_region(pci_resource_start(pdev, bar),
3170 pci_resource_len(pdev, bar));
3171
3172 dr = find_pci_dr(pdev);
3173 if (dr)
3174 dr->region_mask &= ~(1 << bar);
3175 }
3176 EXPORT_SYMBOL(pci_release_region);
3177
3178 /**
3179 * __pci_request_region - Reserved PCI I/O and memory resource
3180 * @pdev: PCI device whose resources are to be reserved
3181 * @bar: BAR to be reserved
3182 * @res_name: Name to be associated with resource.
3183 * @exclusive: whether the region access is exclusive or not
3184 *
3185 * Mark the PCI region associated with PCI device @pdev BR @bar as
3186 * being reserved by owner @res_name. Do not access any
3187 * address inside the PCI regions unless this call returns
3188 * successfully.
3189 *
3190 * If @exclusive is set, then the region is marked so that userspace
3191 * is explicitly not allowed to map the resource via /dev/mem or
3192 * sysfs MMIO access.
3193 *
3194 * Returns 0 on success, or %EBUSY on error. A warning
3195 * message is also printed on failure.
3196 */
3197 static int __pci_request_region(struct pci_dev *pdev, int bar,
3198 const char *res_name, int exclusive)
3199 {
3200 struct pci_devres *dr;
3201
3202 if (pci_resource_len(pdev, bar) == 0)
3203 return 0;
3204
3205 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3206 if (!request_region(pci_resource_start(pdev, bar),
3207 pci_resource_len(pdev, bar), res_name))
3208 goto err_out;
3209 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3210 if (!__request_mem_region(pci_resource_start(pdev, bar),
3211 pci_resource_len(pdev, bar), res_name,
3212 exclusive))
3213 goto err_out;
3214 }
3215
3216 dr = find_pci_dr(pdev);
3217 if (dr)
3218 dr->region_mask |= 1 << bar;
3219
3220 return 0;
3221
3222 err_out:
3223 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
3224 &pdev->resource[bar]);
3225 return -EBUSY;
3226 }
3227
3228 /**
3229 * pci_request_region - Reserve PCI I/O and memory resource
3230 * @pdev: PCI device whose resources are to be reserved
3231 * @bar: BAR to be reserved
3232 * @res_name: Name to be associated with resource
3233 *
3234 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3235 * being reserved by owner @res_name. Do not access any
3236 * address inside the PCI regions unless this call returns
3237 * successfully.
3238 *
3239 * Returns 0 on success, or %EBUSY on error. A warning
3240 * message is also printed on failure.
3241 */
3242 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3243 {
3244 return __pci_request_region(pdev, bar, res_name, 0);
3245 }
3246 EXPORT_SYMBOL(pci_request_region);
3247
3248 /**
3249 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3250 * @pdev: PCI device whose resources are to be reserved
3251 * @bar: BAR to be reserved
3252 * @res_name: Name to be associated with resource.
3253 *
3254 * Mark the PCI region associated with PCI device @pdev BR @bar as
3255 * being reserved by owner @res_name. Do not access any
3256 * address inside the PCI regions unless this call returns
3257 * successfully.
3258 *
3259 * Returns 0 on success, or %EBUSY on error. A warning
3260 * message is also printed on failure.
3261 *
3262 * The key difference that _exclusive makes it that userspace is
3263 * explicitly not allowed to map the resource via /dev/mem or
3264 * sysfs.
3265 */
3266 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3267 const char *res_name)
3268 {
3269 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3270 }
3271 EXPORT_SYMBOL(pci_request_region_exclusive);
3272
3273 /**
3274 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3275 * @pdev: PCI device whose resources were previously reserved
3276 * @bars: Bitmask of BARs to be released
3277 *
3278 * Release selected PCI I/O and memory resources previously reserved.
3279 * Call this function only after all use of the PCI regions has ceased.
3280 */
3281 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3282 {
3283 int i;
3284
3285 for (i = 0; i < 6; i++)
3286 if (bars & (1 << i))
3287 pci_release_region(pdev, i);
3288 }
3289 EXPORT_SYMBOL(pci_release_selected_regions);
3290
3291 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3292 const char *res_name, int excl)
3293 {
3294 int i;
3295
3296 for (i = 0; i < 6; i++)
3297 if (bars & (1 << i))
3298 if (__pci_request_region(pdev, i, res_name, excl))
3299 goto err_out;
3300 return 0;
3301
3302 err_out:
3303 while (--i >= 0)
3304 if (bars & (1 << i))
3305 pci_release_region(pdev, i);
3306
3307 return -EBUSY;
3308 }
3309
3310
3311 /**
3312 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3313 * @pdev: PCI device whose resources are to be reserved
3314 * @bars: Bitmask of BARs to be requested
3315 * @res_name: Name to be associated with resource
3316 */
3317 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3318 const char *res_name)
3319 {
3320 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3321 }
3322 EXPORT_SYMBOL(pci_request_selected_regions);
3323
3324 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3325 const char *res_name)
3326 {
3327 return __pci_request_selected_regions(pdev, bars, res_name,
3328 IORESOURCE_EXCLUSIVE);
3329 }
3330 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3331
3332 /**
3333 * pci_release_regions - Release reserved PCI I/O and memory resources
3334 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3335 *
3336 * Releases all PCI I/O and memory resources previously reserved by a
3337 * successful call to pci_request_regions. Call this function only
3338 * after all use of the PCI regions has ceased.
3339 */
3340
3341 void pci_release_regions(struct pci_dev *pdev)
3342 {
3343 pci_release_selected_regions(pdev, (1 << 6) - 1);
3344 }
3345 EXPORT_SYMBOL(pci_release_regions);
3346
3347 /**
3348 * pci_request_regions - Reserved PCI I/O and memory resources
3349 * @pdev: PCI device whose resources are to be reserved
3350 * @res_name: Name to be associated with resource.
3351 *
3352 * Mark all PCI regions associated with PCI device @pdev as
3353 * being reserved by owner @res_name. Do not access any
3354 * address inside the PCI regions unless this call returns
3355 * successfully.
3356 *
3357 * Returns 0 on success, or %EBUSY on error. A warning
3358 * message is also printed on failure.
3359 */
3360 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3361 {
3362 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3363 }
3364 EXPORT_SYMBOL(pci_request_regions);
3365
3366 /**
3367 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3368 * @pdev: PCI device whose resources are to be reserved
3369 * @res_name: Name to be associated with resource.
3370 *
3371 * Mark all PCI regions associated with PCI device @pdev as
3372 * being reserved by owner @res_name. Do not access any
3373 * address inside the PCI regions unless this call returns
3374 * successfully.
3375 *
3376 * pci_request_regions_exclusive() will mark the region so that
3377 * /dev/mem and the sysfs MMIO access will not be allowed.
3378 *
3379 * Returns 0 on success, or %EBUSY on error. A warning
3380 * message is also printed on failure.
3381 */
3382 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3383 {
3384 return pci_request_selected_regions_exclusive(pdev,
3385 ((1 << 6) - 1), res_name);
3386 }
3387 EXPORT_SYMBOL(pci_request_regions_exclusive);
3388
3389 /*
3390 * Record the PCI IO range (expressed as CPU physical address + size).
3391 * Return a negative value if an error has occured, zero otherwise
3392 */
3393 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3394 resource_size_t size)
3395 {
3396 int ret = 0;
3397 #ifdef PCI_IOBASE
3398 struct logic_pio_hwaddr *range;
3399
3400 if (!size || addr + size < addr)
3401 return -EINVAL;
3402
3403 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3404 if (!range)
3405 return -ENOMEM;
3406
3407 range->fwnode = fwnode;
3408 range->size = size;
3409 range->hw_start = addr;
3410 range->flags = LOGIC_PIO_CPU_MMIO;
3411
3412 ret = logic_pio_register_range(range);
3413 if (ret)
3414 kfree(range);
3415 #endif
3416
3417 return ret;
3418 }
3419
3420 phys_addr_t pci_pio_to_address(unsigned long pio)
3421 {
3422 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3423
3424 #ifdef PCI_IOBASE
3425 if (pio >= MMIO_UPPER_LIMIT)
3426 return address;
3427
3428 address = logic_pio_to_hwaddr(pio);
3429 #endif
3430
3431 return address;
3432 }
3433
3434 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3435 {
3436 #ifdef PCI_IOBASE
3437 return logic_pio_trans_cpuaddr(address);
3438 #else
3439 if (address > IO_SPACE_LIMIT)
3440 return (unsigned long)-1;
3441
3442 return (unsigned long) address;
3443 #endif
3444 }
3445
3446 /**
3447 * pci_remap_iospace - Remap the memory mapped I/O space
3448 * @res: Resource describing the I/O space
3449 * @phys_addr: physical address of range to be mapped
3450 *
3451 * Remap the memory mapped I/O space described by the @res
3452 * and the CPU physical address @phys_addr into virtual address space.
3453 * Only architectures that have memory mapped IO functions defined
3454 * (and the PCI_IOBASE value defined) should call this function.
3455 */
3456 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3457 {
3458 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3459 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3460
3461 if (!(res->flags & IORESOURCE_IO))
3462 return -EINVAL;
3463
3464 if (res->end > IO_SPACE_LIMIT)
3465 return -EINVAL;
3466
3467 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3468 pgprot_device(PAGE_KERNEL));
3469 #else
3470 /* this architecture does not have memory mapped I/O space,
3471 so this function should never be called */
3472 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3473 return -ENODEV;
3474 #endif
3475 }
3476 EXPORT_SYMBOL(pci_remap_iospace);
3477
3478 /**
3479 * pci_unmap_iospace - Unmap the memory mapped I/O space
3480 * @res: resource to be unmapped
3481 *
3482 * Unmap the CPU virtual address @res from virtual address space.
3483 * Only architectures that have memory mapped IO functions defined
3484 * (and the PCI_IOBASE value defined) should call this function.
3485 */
3486 void pci_unmap_iospace(struct resource *res)
3487 {
3488 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3489 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3490
3491 unmap_kernel_range(vaddr, resource_size(res));
3492 #endif
3493 }
3494 EXPORT_SYMBOL(pci_unmap_iospace);
3495
3496 /**
3497 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3498 * @dev: Generic device to remap IO address for
3499 * @offset: Resource address to map
3500 * @size: Size of map
3501 *
3502 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
3503 * detach.
3504 */
3505 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3506 resource_size_t offset,
3507 resource_size_t size)
3508 {
3509 void __iomem **ptr, *addr;
3510
3511 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3512 if (!ptr)
3513 return NULL;
3514
3515 addr = pci_remap_cfgspace(offset, size);
3516 if (addr) {
3517 *ptr = addr;
3518 devres_add(dev, ptr);
3519 } else
3520 devres_free(ptr);
3521
3522 return addr;
3523 }
3524 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3525
3526 /**
3527 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3528 * @dev: generic device to handle the resource for
3529 * @res: configuration space resource to be handled
3530 *
3531 * Checks that a resource is a valid memory region, requests the memory
3532 * region and ioremaps with pci_remap_cfgspace() API that ensures the
3533 * proper PCI configuration space memory attributes are guaranteed.
3534 *
3535 * All operations are managed and will be undone on driver detach.
3536 *
3537 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3538 * on failure. Usage example::
3539 *
3540 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3541 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3542 * if (IS_ERR(base))
3543 * return PTR_ERR(base);
3544 */
3545 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3546 struct resource *res)
3547 {
3548 resource_size_t size;
3549 const char *name;
3550 void __iomem *dest_ptr;
3551
3552 BUG_ON(!dev);
3553
3554 if (!res || resource_type(res) != IORESOURCE_MEM) {
3555 dev_err(dev, "invalid resource\n");
3556 return IOMEM_ERR_PTR(-EINVAL);
3557 }
3558
3559 size = resource_size(res);
3560 name = res->name ?: dev_name(dev);
3561
3562 if (!devm_request_mem_region(dev, res->start, size, name)) {
3563 dev_err(dev, "can't request region for resource %pR\n", res);
3564 return IOMEM_ERR_PTR(-EBUSY);
3565 }
3566
3567 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3568 if (!dest_ptr) {
3569 dev_err(dev, "ioremap failed for resource %pR\n", res);
3570 devm_release_mem_region(dev, res->start, size);
3571 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3572 }
3573
3574 return dest_ptr;
3575 }
3576 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3577
3578 static void __pci_set_master(struct pci_dev *dev, bool enable)
3579 {
3580 u16 old_cmd, cmd;
3581
3582 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3583 if (enable)
3584 cmd = old_cmd | PCI_COMMAND_MASTER;
3585 else
3586 cmd = old_cmd & ~PCI_COMMAND_MASTER;
3587 if (cmd != old_cmd) {
3588 dev_dbg(&dev->dev, "%s bus mastering\n",
3589 enable ? "enabling" : "disabling");
3590 pci_write_config_word(dev, PCI_COMMAND, cmd);
3591 }
3592 dev->is_busmaster = enable;
3593 }
3594
3595 /**
3596 * pcibios_setup - process "pci=" kernel boot arguments
3597 * @str: string used to pass in "pci=" kernel boot arguments
3598 *
3599 * Process kernel boot arguments. This is the default implementation.
3600 * Architecture specific implementations can override this as necessary.
3601 */
3602 char * __weak __init pcibios_setup(char *str)
3603 {
3604 return str;
3605 }
3606
3607 /**
3608 * pcibios_set_master - enable PCI bus-mastering for device dev
3609 * @dev: the PCI device to enable
3610 *
3611 * Enables PCI bus-mastering for the device. This is the default
3612 * implementation. Architecture specific implementations can override
3613 * this if necessary.
3614 */
3615 void __weak pcibios_set_master(struct pci_dev *dev)
3616 {
3617 u8 lat;
3618
3619 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3620 if (pci_is_pcie(dev))
3621 return;
3622
3623 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3624 if (lat < 16)
3625 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3626 else if (lat > pcibios_max_latency)
3627 lat = pcibios_max_latency;
3628 else
3629 return;
3630
3631 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3632 }
3633
3634 /**
3635 * pci_set_master - enables bus-mastering for device dev
3636 * @dev: the PCI device to enable
3637 *
3638 * Enables bus-mastering on the device and calls pcibios_set_master()
3639 * to do the needed arch specific settings.
3640 */
3641 void pci_set_master(struct pci_dev *dev)
3642 {
3643 __pci_set_master(dev, true);
3644 pcibios_set_master(dev);
3645 }
3646 EXPORT_SYMBOL(pci_set_master);
3647
3648 /**
3649 * pci_clear_master - disables bus-mastering for device dev
3650 * @dev: the PCI device to disable
3651 */
3652 void pci_clear_master(struct pci_dev *dev)
3653 {
3654 __pci_set_master(dev, false);
3655 }
3656 EXPORT_SYMBOL(pci_clear_master);
3657
3658 /**
3659 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3660 * @dev: the PCI device for which MWI is to be enabled
3661 *
3662 * Helper function for pci_set_mwi.
3663 * Originally copied from drivers/net/acenic.c.
3664 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3665 *
3666 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3667 */
3668 int pci_set_cacheline_size(struct pci_dev *dev)
3669 {
3670 u8 cacheline_size;
3671
3672 if (!pci_cache_line_size)
3673 return -EINVAL;
3674
3675 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3676 equal to or multiple of the right value. */
3677 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3678 if (cacheline_size >= pci_cache_line_size &&
3679 (cacheline_size % pci_cache_line_size) == 0)
3680 return 0;
3681
3682 /* Write the correct value. */
3683 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3684 /* Read it back. */
3685 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3686 if (cacheline_size == pci_cache_line_size)
3687 return 0;
3688
3689 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3690 pci_cache_line_size << 2);
3691
3692 return -EINVAL;
3693 }
3694 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3695
3696 /**
3697 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3698 * @dev: the PCI device for which MWI is enabled
3699 *
3700 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3701 *
3702 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3703 */
3704 int pci_set_mwi(struct pci_dev *dev)
3705 {
3706 #ifdef PCI_DISABLE_MWI
3707 return 0;
3708 #else
3709 int rc;
3710 u16 cmd;
3711
3712 rc = pci_set_cacheline_size(dev);
3713 if (rc)
3714 return rc;
3715
3716 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3717 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3718 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3719 cmd |= PCI_COMMAND_INVALIDATE;
3720 pci_write_config_word(dev, PCI_COMMAND, cmd);
3721 }
3722 return 0;
3723 #endif
3724 }
3725 EXPORT_SYMBOL(pci_set_mwi);
3726
3727 /**
3728 * pcim_set_mwi - a device-managed pci_set_mwi()
3729 * @dev: the PCI device for which MWI is enabled
3730 *
3731 * Managed pci_set_mwi().
3732 *
3733 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3734 */
3735 int pcim_set_mwi(struct pci_dev *dev)
3736 {
3737 struct pci_devres *dr;
3738
3739 dr = find_pci_dr(dev);
3740 if (!dr)
3741 return -ENOMEM;
3742
3743 dr->mwi = 1;
3744 return pci_set_mwi(dev);
3745 }
3746 EXPORT_SYMBOL(pcim_set_mwi);
3747
3748 /**
3749 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3750 * @dev: the PCI device for which MWI is enabled
3751 *
3752 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3753 * Callers are not required to check the return value.
3754 *
3755 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3756 */
3757 int pci_try_set_mwi(struct pci_dev *dev)
3758 {
3759 #ifdef PCI_DISABLE_MWI
3760 return 0;
3761 #else
3762 return pci_set_mwi(dev);
3763 #endif
3764 }
3765 EXPORT_SYMBOL(pci_try_set_mwi);
3766
3767 /**
3768 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3769 * @dev: the PCI device to disable
3770 *
3771 * Disables PCI Memory-Write-Invalidate transaction on the device
3772 */
3773 void pci_clear_mwi(struct pci_dev *dev)
3774 {
3775 #ifndef PCI_DISABLE_MWI
3776 u16 cmd;
3777
3778 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3779 if (cmd & PCI_COMMAND_INVALIDATE) {
3780 cmd &= ~PCI_COMMAND_INVALIDATE;
3781 pci_write_config_word(dev, PCI_COMMAND, cmd);
3782 }
3783 #endif
3784 }
3785 EXPORT_SYMBOL(pci_clear_mwi);
3786
3787 /**
3788 * pci_intx - enables/disables PCI INTx for device dev
3789 * @pdev: the PCI device to operate on
3790 * @enable: boolean: whether to enable or disable PCI INTx
3791 *
3792 * Enables/disables PCI INTx for device dev
3793 */
3794 void pci_intx(struct pci_dev *pdev, int enable)
3795 {
3796 u16 pci_command, new;
3797
3798 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3799
3800 if (enable)
3801 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3802 else
3803 new = pci_command | PCI_COMMAND_INTX_DISABLE;
3804
3805 if (new != pci_command) {
3806 struct pci_devres *dr;
3807
3808 pci_write_config_word(pdev, PCI_COMMAND, new);
3809
3810 dr = find_pci_dr(pdev);
3811 if (dr && !dr->restore_intx) {
3812 dr->restore_intx = 1;
3813 dr->orig_intx = !enable;
3814 }
3815 }
3816 }
3817 EXPORT_SYMBOL_GPL(pci_intx);
3818
3819 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3820 {
3821 struct pci_bus *bus = dev->bus;
3822 bool mask_updated = true;
3823 u32 cmd_status_dword;
3824 u16 origcmd, newcmd;
3825 unsigned long flags;
3826 bool irq_pending;
3827
3828 /*
3829 * We do a single dword read to retrieve both command and status.
3830 * Document assumptions that make this possible.
3831 */
3832 BUILD_BUG_ON(PCI_COMMAND % 4);
3833 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3834
3835 raw_spin_lock_irqsave(&pci_lock, flags);
3836
3837 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3838
3839 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3840
3841 /*
3842 * Check interrupt status register to see whether our device
3843 * triggered the interrupt (when masking) or the next IRQ is
3844 * already pending (when unmasking).
3845 */
3846 if (mask != irq_pending) {
3847 mask_updated = false;
3848 goto done;
3849 }
3850
3851 origcmd = cmd_status_dword;
3852 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3853 if (mask)
3854 newcmd |= PCI_COMMAND_INTX_DISABLE;
3855 if (newcmd != origcmd)
3856 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3857
3858 done:
3859 raw_spin_unlock_irqrestore(&pci_lock, flags);
3860
3861 return mask_updated;
3862 }
3863
3864 /**
3865 * pci_check_and_mask_intx - mask INTx on pending interrupt
3866 * @dev: the PCI device to operate on
3867 *
3868 * Check if the device dev has its INTx line asserted, mask it and
3869 * return true in that case. False is returned if no interrupt was
3870 * pending.
3871 */
3872 bool pci_check_and_mask_intx(struct pci_dev *dev)
3873 {
3874 return pci_check_and_set_intx_mask(dev, true);
3875 }
3876 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3877
3878 /**
3879 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3880 * @dev: the PCI device to operate on
3881 *
3882 * Check if the device dev has its INTx line asserted, unmask it if not
3883 * and return true. False is returned and the mask remains active if
3884 * there was still an interrupt pending.
3885 */
3886 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3887 {
3888 return pci_check_and_set_intx_mask(dev, false);
3889 }
3890 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3891
3892 /**
3893 * pci_wait_for_pending_transaction - waits for pending transaction
3894 * @dev: the PCI device to operate on
3895 *
3896 * Return 0 if transaction is pending 1 otherwise.
3897 */
3898 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3899 {
3900 if (!pci_is_pcie(dev))
3901 return 1;
3902
3903 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3904 PCI_EXP_DEVSTA_TRPND);
3905 }
3906 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3907
3908 static void pci_flr_wait(struct pci_dev *dev)
3909 {
3910 int delay = 1, timeout = 60000;
3911 u32 id;
3912
3913 /*
3914 * Per PCIe r3.1, sec 6.6.2, a device must complete an FLR within
3915 * 100ms, but may silently discard requests while the FLR is in
3916 * progress. Wait 100ms before trying to access the device.
3917 */
3918 msleep(100);
3919
3920 /*
3921 * After 100ms, the device should not silently discard config
3922 * requests, but it may still indicate that it needs more time by
3923 * responding to them with CRS completions. The Root Port will
3924 * generally synthesize ~0 data to complete the read (except when
3925 * CRS SV is enabled and the read was for the Vendor ID; in that
3926 * case it synthesizes 0x0001 data).
3927 *
3928 * Wait for the device to return a non-CRS completion. Read the
3929 * Command register instead of Vendor ID so we don't have to
3930 * contend with the CRS SV value.
3931 */
3932 pci_read_config_dword(dev, PCI_COMMAND, &id);
3933 while (id == ~0) {
3934 if (delay > timeout) {
3935 dev_warn(&dev->dev, "not ready %dms after FLR; giving up\n",
3936 100 + delay - 1);
3937 return;
3938 }
3939
3940 if (delay > 1000)
3941 dev_info(&dev->dev, "not ready %dms after FLR; waiting\n",
3942 100 + delay - 1);
3943
3944 msleep(delay);
3945 delay *= 2;
3946 pci_read_config_dword(dev, PCI_COMMAND, &id);
3947 }
3948
3949 if (delay > 1000)
3950 dev_info(&dev->dev, "ready %dms after FLR\n", 100 + delay - 1);
3951 }
3952
3953 /**
3954 * pcie_has_flr - check if a device supports function level resets
3955 * @dev: device to check
3956 *
3957 * Returns true if the device advertises support for PCIe function level
3958 * resets.
3959 */
3960 static bool pcie_has_flr(struct pci_dev *dev)
3961 {
3962 u32 cap;
3963
3964 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
3965 return false;
3966
3967 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3968 return cap & PCI_EXP_DEVCAP_FLR;
3969 }
3970
3971 /**
3972 * pcie_flr - initiate a PCIe function level reset
3973 * @dev: device to reset
3974 *
3975 * Initiate a function level reset on @dev. The caller should ensure the
3976 * device supports FLR before calling this function, e.g. by using the
3977 * pcie_has_flr() helper.
3978 */
3979 void pcie_flr(struct pci_dev *dev)
3980 {
3981 if (!pci_wait_for_pending_transaction(dev))
3982 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3983
3984 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3985 pci_flr_wait(dev);
3986 }
3987 EXPORT_SYMBOL_GPL(pcie_flr);
3988
3989 static int pci_af_flr(struct pci_dev *dev, int probe)
3990 {
3991 int pos;
3992 u8 cap;
3993
3994 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3995 if (!pos)
3996 return -ENOTTY;
3997
3998 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
3999 return -ENOTTY;
4000
4001 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4002 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4003 return -ENOTTY;
4004
4005 if (probe)
4006 return 0;
4007
4008 /*
4009 * Wait for Transaction Pending bit to clear. A word-aligned test
4010 * is used, so we use the conrol offset rather than status and shift
4011 * the test bit to match.
4012 */
4013 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4014 PCI_AF_STATUS_TP << 8))
4015 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4016
4017 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4018 pci_flr_wait(dev);
4019 return 0;
4020 }
4021
4022 /**
4023 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4024 * @dev: Device to reset.
4025 * @probe: If set, only check if the device can be reset this way.
4026 *
4027 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4028 * unset, it will be reinitialized internally when going from PCI_D3hot to
4029 * PCI_D0. If that's the case and the device is not in a low-power state
4030 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4031 *
4032 * NOTE: This causes the caller to sleep for twice the device power transition
4033 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4034 * by default (i.e. unless the @dev's d3_delay field has a different value).
4035 * Moreover, only devices in D0 can be reset by this function.
4036 */
4037 static int pci_pm_reset(struct pci_dev *dev, int probe)
4038 {
4039 u16 csr;
4040
4041 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4042 return -ENOTTY;
4043
4044 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4045 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4046 return -ENOTTY;
4047
4048 if (probe)
4049 return 0;
4050
4051 if (dev->current_state != PCI_D0)
4052 return -EINVAL;
4053
4054 csr &= ~PCI_PM_CTRL_STATE_MASK;
4055 csr |= PCI_D3hot;
4056 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4057 pci_dev_d3_sleep(dev);
4058
4059 csr &= ~PCI_PM_CTRL_STATE_MASK;
4060 csr |= PCI_D0;
4061 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4062 pci_dev_d3_sleep(dev);
4063
4064 return 0;
4065 }
4066
4067 void pci_reset_secondary_bus(struct pci_dev *dev)
4068 {
4069 u16 ctrl;
4070
4071 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4072 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4073 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4074 /*
4075 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4076 * this to 2ms to ensure that we meet the minimum requirement.
4077 */
4078 msleep(2);
4079
4080 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4081 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4082
4083 /*
4084 * Trhfa for conventional PCI is 2^25 clock cycles.
4085 * Assuming a minimum 33MHz clock this results in a 1s
4086 * delay before we can consider subordinate devices to
4087 * be re-initialized. PCIe has some ways to shorten this,
4088 * but we don't make use of them yet.
4089 */
4090 ssleep(1);
4091 }
4092
4093 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4094 {
4095 pci_reset_secondary_bus(dev);
4096 }
4097
4098 /**
4099 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
4100 * @dev: Bridge device
4101 *
4102 * Use the bridge control register to assert reset on the secondary bus.
4103 * Devices on the secondary bus are left in power-on state.
4104 */
4105 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
4106 {
4107 pcibios_reset_secondary_bus(dev);
4108 }
4109 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
4110
4111 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4112 {
4113 struct pci_dev *pdev;
4114
4115 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4116 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4117 return -ENOTTY;
4118
4119 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4120 if (pdev != dev)
4121 return -ENOTTY;
4122
4123 if (probe)
4124 return 0;
4125
4126 pci_reset_bridge_secondary_bus(dev->bus->self);
4127
4128 return 0;
4129 }
4130
4131 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4132 {
4133 int rc = -ENOTTY;
4134
4135 if (!hotplug || !try_module_get(hotplug->ops->owner))
4136 return rc;
4137
4138 if (hotplug->ops->reset_slot)
4139 rc = hotplug->ops->reset_slot(hotplug, probe);
4140
4141 module_put(hotplug->ops->owner);
4142
4143 return rc;
4144 }
4145
4146 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4147 {
4148 struct pci_dev *pdev;
4149
4150 if (dev->subordinate || !dev->slot ||
4151 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4152 return -ENOTTY;
4153
4154 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4155 if (pdev != dev && pdev->slot == dev->slot)
4156 return -ENOTTY;
4157
4158 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4159 }
4160
4161 static void pci_dev_lock(struct pci_dev *dev)
4162 {
4163 pci_cfg_access_lock(dev);
4164 /* block PM suspend, driver probe, etc. */
4165 device_lock(&dev->dev);
4166 }
4167
4168 /* Return 1 on successful lock, 0 on contention */
4169 static int pci_dev_trylock(struct pci_dev *dev)
4170 {
4171 if (pci_cfg_access_trylock(dev)) {
4172 if (device_trylock(&dev->dev))
4173 return 1;
4174 pci_cfg_access_unlock(dev);
4175 }
4176
4177 return 0;
4178 }
4179
4180 static void pci_dev_unlock(struct pci_dev *dev)
4181 {
4182 device_unlock(&dev->dev);
4183 pci_cfg_access_unlock(dev);
4184 }
4185
4186 static void pci_dev_save_and_disable(struct pci_dev *dev)
4187 {
4188 const struct pci_error_handlers *err_handler =
4189 dev->driver ? dev->driver->err_handler : NULL;
4190
4191 /*
4192 * dev->driver->err_handler->reset_prepare() is protected against
4193 * races with ->remove() by the device lock, which must be held by
4194 * the caller.
4195 */
4196 if (err_handler && err_handler->reset_prepare)
4197 err_handler->reset_prepare(dev);
4198
4199 /*
4200 * Wake-up device prior to save. PM registers default to D0 after
4201 * reset and a simple register restore doesn't reliably return
4202 * to a non-D0 state anyway.
4203 */
4204 pci_set_power_state(dev, PCI_D0);
4205
4206 pci_save_state(dev);
4207 /*
4208 * Disable the device by clearing the Command register, except for
4209 * INTx-disable which is set. This not only disables MMIO and I/O port
4210 * BARs, but also prevents the device from being Bus Master, preventing
4211 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4212 * compliant devices, INTx-disable prevents legacy interrupts.
4213 */
4214 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4215 }
4216
4217 static void pci_dev_restore(struct pci_dev *dev)
4218 {
4219 const struct pci_error_handlers *err_handler =
4220 dev->driver ? dev->driver->err_handler : NULL;
4221
4222 pci_restore_state(dev);
4223
4224 /*
4225 * dev->driver->err_handler->reset_done() is protected against
4226 * races with ->remove() by the device lock, which must be held by
4227 * the caller.
4228 */
4229 if (err_handler && err_handler->reset_done)
4230 err_handler->reset_done(dev);
4231 }
4232
4233 /**
4234 * __pci_reset_function_locked - reset a PCI device function while holding
4235 * the @dev mutex lock.
4236 * @dev: PCI device to reset
4237 *
4238 * Some devices allow an individual function to be reset without affecting
4239 * other functions in the same device. The PCI device must be responsive
4240 * to PCI config space in order to use this function.
4241 *
4242 * The device function is presumed to be unused and the caller is holding
4243 * the device mutex lock when this function is called.
4244 * Resetting the device will make the contents of PCI configuration space
4245 * random, so any caller of this must be prepared to reinitialise the
4246 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4247 * etc.
4248 *
4249 * Returns 0 if the device function was successfully reset or negative if the
4250 * device doesn't support resetting a single function.
4251 */
4252 int __pci_reset_function_locked(struct pci_dev *dev)
4253 {
4254 int rc;
4255
4256 might_sleep();
4257
4258 /*
4259 * A reset method returns -ENOTTY if it doesn't support this device
4260 * and we should try the next method.
4261 *
4262 * If it returns 0 (success), we're finished. If it returns any
4263 * other error, we're also finished: this indicates that further
4264 * reset mechanisms might be broken on the device.
4265 */
4266 rc = pci_dev_specific_reset(dev, 0);
4267 if (rc != -ENOTTY)
4268 return rc;
4269 if (pcie_has_flr(dev)) {
4270 pcie_flr(dev);
4271 return 0;
4272 }
4273 rc = pci_af_flr(dev, 0);
4274 if (rc != -ENOTTY)
4275 return rc;
4276 rc = pci_pm_reset(dev, 0);
4277 if (rc != -ENOTTY)
4278 return rc;
4279 rc = pci_dev_reset_slot_function(dev, 0);
4280 if (rc != -ENOTTY)
4281 return rc;
4282 return pci_parent_bus_reset(dev, 0);
4283 }
4284 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4285
4286 /**
4287 * pci_probe_reset_function - check whether the device can be safely reset
4288 * @dev: PCI device to reset
4289 *
4290 * Some devices allow an individual function to be reset without affecting
4291 * other functions in the same device. The PCI device must be responsive
4292 * to PCI config space in order to use this function.
4293 *
4294 * Returns 0 if the device function can be reset or negative if the
4295 * device doesn't support resetting a single function.
4296 */
4297 int pci_probe_reset_function(struct pci_dev *dev)
4298 {
4299 int rc;
4300
4301 might_sleep();
4302
4303 rc = pci_dev_specific_reset(dev, 1);
4304 if (rc != -ENOTTY)
4305 return rc;
4306 if (pcie_has_flr(dev))
4307 return 0;
4308 rc = pci_af_flr(dev, 1);
4309 if (rc != -ENOTTY)
4310 return rc;
4311 rc = pci_pm_reset(dev, 1);
4312 if (rc != -ENOTTY)
4313 return rc;
4314 rc = pci_dev_reset_slot_function(dev, 1);
4315 if (rc != -ENOTTY)
4316 return rc;
4317
4318 return pci_parent_bus_reset(dev, 1);
4319 }
4320
4321 /**
4322 * pci_reset_function - quiesce and reset a PCI device function
4323 * @dev: PCI device to reset
4324 *
4325 * Some devices allow an individual function to be reset without affecting
4326 * other functions in the same device. The PCI device must be responsive
4327 * to PCI config space in order to use this function.
4328 *
4329 * This function does not just reset the PCI portion of a device, but
4330 * clears all the state associated with the device. This function differs
4331 * from __pci_reset_function_locked() in that it saves and restores device state
4332 * over the reset and takes the PCI device lock.
4333 *
4334 * Returns 0 if the device function was successfully reset or negative if the
4335 * device doesn't support resetting a single function.
4336 */
4337 int pci_reset_function(struct pci_dev *dev)
4338 {
4339 int rc;
4340
4341 rc = pci_probe_reset_function(dev);
4342 if (rc)
4343 return rc;
4344
4345 pci_dev_lock(dev);
4346 pci_dev_save_and_disable(dev);
4347
4348 rc = __pci_reset_function_locked(dev);
4349
4350 pci_dev_restore(dev);
4351 pci_dev_unlock(dev);
4352
4353 return rc;
4354 }
4355 EXPORT_SYMBOL_GPL(pci_reset_function);
4356
4357 /**
4358 * pci_reset_function_locked - quiesce and reset a PCI device function
4359 * @dev: PCI device to reset
4360 *
4361 * Some devices allow an individual function to be reset without affecting
4362 * other functions in the same device. The PCI device must be responsive
4363 * to PCI config space in order to use this function.
4364 *
4365 * This function does not just reset the PCI portion of a device, but
4366 * clears all the state associated with the device. This function differs
4367 * from __pci_reset_function_locked() in that it saves and restores device state
4368 * over the reset. It also differs from pci_reset_function() in that it
4369 * requires the PCI device lock to be held.
4370 *
4371 * Returns 0 if the device function was successfully reset or negative if the
4372 * device doesn't support resetting a single function.
4373 */
4374 int pci_reset_function_locked(struct pci_dev *dev)
4375 {
4376 int rc;
4377
4378 rc = pci_probe_reset_function(dev);
4379 if (rc)
4380 return rc;
4381
4382 pci_dev_save_and_disable(dev);
4383
4384 rc = __pci_reset_function_locked(dev);
4385
4386 pci_dev_restore(dev);
4387
4388 return rc;
4389 }
4390 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4391
4392 /**
4393 * pci_try_reset_function - quiesce and reset a PCI device function
4394 * @dev: PCI device to reset
4395 *
4396 * Same as above, except return -EAGAIN if unable to lock device.
4397 */
4398 int pci_try_reset_function(struct pci_dev *dev)
4399 {
4400 int rc;
4401
4402 rc = pci_probe_reset_function(dev);
4403 if (rc)
4404 return rc;
4405
4406 if (!pci_dev_trylock(dev))
4407 return -EAGAIN;
4408
4409 pci_dev_save_and_disable(dev);
4410 rc = __pci_reset_function_locked(dev);
4411 pci_dev_unlock(dev);
4412
4413 pci_dev_restore(dev);
4414 return rc;
4415 }
4416 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4417
4418 /* Do any devices on or below this bus prevent a bus reset? */
4419 static bool pci_bus_resetable(struct pci_bus *bus)
4420 {
4421 struct pci_dev *dev;
4422
4423
4424 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4425 return false;
4426
4427 list_for_each_entry(dev, &bus->devices, bus_list) {
4428 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4429 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4430 return false;
4431 }
4432
4433 return true;
4434 }
4435
4436 /* Lock devices from the top of the tree down */
4437 static void pci_bus_lock(struct pci_bus *bus)
4438 {
4439 struct pci_dev *dev;
4440
4441 list_for_each_entry(dev, &bus->devices, bus_list) {
4442 pci_dev_lock(dev);
4443 if (dev->subordinate)
4444 pci_bus_lock(dev->subordinate);
4445 }
4446 }
4447
4448 /* Unlock devices from the bottom of the tree up */
4449 static void pci_bus_unlock(struct pci_bus *bus)
4450 {
4451 struct pci_dev *dev;
4452
4453 list_for_each_entry(dev, &bus->devices, bus_list) {
4454 if (dev->subordinate)
4455 pci_bus_unlock(dev->subordinate);
4456 pci_dev_unlock(dev);
4457 }
4458 }
4459
4460 /* Return 1 on successful lock, 0 on contention */
4461 static int pci_bus_trylock(struct pci_bus *bus)
4462 {
4463 struct pci_dev *dev;
4464
4465 list_for_each_entry(dev, &bus->devices, bus_list) {
4466 if (!pci_dev_trylock(dev))
4467 goto unlock;
4468 if (dev->subordinate) {
4469 if (!pci_bus_trylock(dev->subordinate)) {
4470 pci_dev_unlock(dev);
4471 goto unlock;
4472 }
4473 }
4474 }
4475 return 1;
4476
4477 unlock:
4478 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4479 if (dev->subordinate)
4480 pci_bus_unlock(dev->subordinate);
4481 pci_dev_unlock(dev);
4482 }
4483 return 0;
4484 }
4485
4486 /* Do any devices on or below this slot prevent a bus reset? */
4487 static bool pci_slot_resetable(struct pci_slot *slot)
4488 {
4489 struct pci_dev *dev;
4490
4491 if (slot->bus->self &&
4492 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4493 return false;
4494
4495 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4496 if (!dev->slot || dev->slot != slot)
4497 continue;
4498 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4499 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4500 return false;
4501 }
4502
4503 return true;
4504 }
4505
4506 /* Lock devices from the top of the tree down */
4507 static void pci_slot_lock(struct pci_slot *slot)
4508 {
4509 struct pci_dev *dev;
4510
4511 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4512 if (!dev->slot || dev->slot != slot)
4513 continue;
4514 pci_dev_lock(dev);
4515 if (dev->subordinate)
4516 pci_bus_lock(dev->subordinate);
4517 }
4518 }
4519
4520 /* Unlock devices from the bottom of the tree up */
4521 static void pci_slot_unlock(struct pci_slot *slot)
4522 {
4523 struct pci_dev *dev;
4524
4525 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4526 if (!dev->slot || dev->slot != slot)
4527 continue;
4528 if (dev->subordinate)
4529 pci_bus_unlock(dev->subordinate);
4530 pci_dev_unlock(dev);
4531 }
4532 }
4533
4534 /* Return 1 on successful lock, 0 on contention */
4535 static int pci_slot_trylock(struct pci_slot *slot)
4536 {
4537 struct pci_dev *dev;
4538
4539 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4540 if (!dev->slot || dev->slot != slot)
4541 continue;
4542 if (!pci_dev_trylock(dev))
4543 goto unlock;
4544 if (dev->subordinate) {
4545 if (!pci_bus_trylock(dev->subordinate)) {
4546 pci_dev_unlock(dev);
4547 goto unlock;
4548 }
4549 }
4550 }
4551 return 1;
4552
4553 unlock:
4554 list_for_each_entry_continue_reverse(dev,
4555 &slot->bus->devices, bus_list) {
4556 if (!dev->slot || dev->slot != slot)
4557 continue;
4558 if (dev->subordinate)
4559 pci_bus_unlock(dev->subordinate);
4560 pci_dev_unlock(dev);
4561 }
4562 return 0;
4563 }
4564
4565 /* Save and disable devices from the top of the tree down */
4566 static void pci_bus_save_and_disable(struct pci_bus *bus)
4567 {
4568 struct pci_dev *dev;
4569
4570 list_for_each_entry(dev, &bus->devices, bus_list) {
4571 pci_dev_lock(dev);
4572 pci_dev_save_and_disable(dev);
4573 pci_dev_unlock(dev);
4574 if (dev->subordinate)
4575 pci_bus_save_and_disable(dev->subordinate);
4576 }
4577 }
4578
4579 /*
4580 * Restore devices from top of the tree down - parent bridges need to be
4581 * restored before we can get to subordinate devices.
4582 */
4583 static void pci_bus_restore(struct pci_bus *bus)
4584 {
4585 struct pci_dev *dev;
4586
4587 list_for_each_entry(dev, &bus->devices, bus_list) {
4588 pci_dev_lock(dev);
4589 pci_dev_restore(dev);
4590 pci_dev_unlock(dev);
4591 if (dev->subordinate)
4592 pci_bus_restore(dev->subordinate);
4593 }
4594 }
4595
4596 /* Save and disable devices from the top of the tree down */
4597 static void pci_slot_save_and_disable(struct pci_slot *slot)
4598 {
4599 struct pci_dev *dev;
4600
4601 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4602 if (!dev->slot || dev->slot != slot)
4603 continue;
4604 pci_dev_save_and_disable(dev);
4605 if (dev->subordinate)
4606 pci_bus_save_and_disable(dev->subordinate);
4607 }
4608 }
4609
4610 /*
4611 * Restore devices from top of the tree down - parent bridges need to be
4612 * restored before we can get to subordinate devices.
4613 */
4614 static void pci_slot_restore(struct pci_slot *slot)
4615 {
4616 struct pci_dev *dev;
4617
4618 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4619 if (!dev->slot || dev->slot != slot)
4620 continue;
4621 pci_dev_restore(dev);
4622 if (dev->subordinate)
4623 pci_bus_restore(dev->subordinate);
4624 }
4625 }
4626
4627 static int pci_slot_reset(struct pci_slot *slot, int probe)
4628 {
4629 int rc;
4630
4631 if (!slot || !pci_slot_resetable(slot))
4632 return -ENOTTY;
4633
4634 if (!probe)
4635 pci_slot_lock(slot);
4636
4637 might_sleep();
4638
4639 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4640
4641 if (!probe)
4642 pci_slot_unlock(slot);
4643
4644 return rc;
4645 }
4646
4647 /**
4648 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4649 * @slot: PCI slot to probe
4650 *
4651 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4652 */
4653 int pci_probe_reset_slot(struct pci_slot *slot)
4654 {
4655 return pci_slot_reset(slot, 1);
4656 }
4657 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4658
4659 /**
4660 * pci_reset_slot - reset a PCI slot
4661 * @slot: PCI slot to reset
4662 *
4663 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4664 * independent of other slots. For instance, some slots may support slot power
4665 * control. In the case of a 1:1 bus to slot architecture, this function may
4666 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4667 * Generally a slot reset should be attempted before a bus reset. All of the
4668 * function of the slot and any subordinate buses behind the slot are reset
4669 * through this function. PCI config space of all devices in the slot and
4670 * behind the slot is saved before and restored after reset.
4671 *
4672 * Return 0 on success, non-zero on error.
4673 */
4674 int pci_reset_slot(struct pci_slot *slot)
4675 {
4676 int rc;
4677
4678 rc = pci_slot_reset(slot, 1);
4679 if (rc)
4680 return rc;
4681
4682 pci_slot_save_and_disable(slot);
4683
4684 rc = pci_slot_reset(slot, 0);
4685
4686 pci_slot_restore(slot);
4687
4688 return rc;
4689 }
4690 EXPORT_SYMBOL_GPL(pci_reset_slot);
4691
4692 /**
4693 * pci_try_reset_slot - Try to reset a PCI slot
4694 * @slot: PCI slot to reset
4695 *
4696 * Same as above except return -EAGAIN if the slot cannot be locked
4697 */
4698 int pci_try_reset_slot(struct pci_slot *slot)
4699 {
4700 int rc;
4701
4702 rc = pci_slot_reset(slot, 1);
4703 if (rc)
4704 return rc;
4705
4706 pci_slot_save_and_disable(slot);
4707
4708 if (pci_slot_trylock(slot)) {
4709 might_sleep();
4710 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4711 pci_slot_unlock(slot);
4712 } else
4713 rc = -EAGAIN;
4714
4715 pci_slot_restore(slot);
4716
4717 return rc;
4718 }
4719 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4720
4721 static int pci_bus_reset(struct pci_bus *bus, int probe)
4722 {
4723 if (!bus->self || !pci_bus_resetable(bus))
4724 return -ENOTTY;
4725
4726 if (probe)
4727 return 0;
4728
4729 pci_bus_lock(bus);
4730
4731 might_sleep();
4732
4733 pci_reset_bridge_secondary_bus(bus->self);
4734
4735 pci_bus_unlock(bus);
4736
4737 return 0;
4738 }
4739
4740 /**
4741 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4742 * @bus: PCI bus to probe
4743 *
4744 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4745 */
4746 int pci_probe_reset_bus(struct pci_bus *bus)
4747 {
4748 return pci_bus_reset(bus, 1);
4749 }
4750 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4751
4752 /**
4753 * pci_reset_bus - reset a PCI bus
4754 * @bus: top level PCI bus to reset
4755 *
4756 * Do a bus reset on the given bus and any subordinate buses, saving
4757 * and restoring state of all devices.
4758 *
4759 * Return 0 on success, non-zero on error.
4760 */
4761 int pci_reset_bus(struct pci_bus *bus)
4762 {
4763 int rc;
4764
4765 rc = pci_bus_reset(bus, 1);
4766 if (rc)
4767 return rc;
4768
4769 pci_bus_save_and_disable(bus);
4770
4771 rc = pci_bus_reset(bus, 0);
4772
4773 pci_bus_restore(bus);
4774
4775 return rc;
4776 }
4777 EXPORT_SYMBOL_GPL(pci_reset_bus);
4778
4779 /**
4780 * pci_try_reset_bus - Try to reset a PCI bus
4781 * @bus: top level PCI bus to reset
4782 *
4783 * Same as above except return -EAGAIN if the bus cannot be locked
4784 */
4785 int pci_try_reset_bus(struct pci_bus *bus)
4786 {
4787 int rc;
4788
4789 rc = pci_bus_reset(bus, 1);
4790 if (rc)
4791 return rc;
4792
4793 pci_bus_save_and_disable(bus);
4794
4795 if (pci_bus_trylock(bus)) {
4796 might_sleep();
4797 pci_reset_bridge_secondary_bus(bus->self);
4798 pci_bus_unlock(bus);
4799 } else
4800 rc = -EAGAIN;
4801
4802 pci_bus_restore(bus);
4803
4804 return rc;
4805 }
4806 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4807
4808 /**
4809 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4810 * @dev: PCI device to query
4811 *
4812 * Returns mmrbc: maximum designed memory read count in bytes
4813 * or appropriate error value.
4814 */
4815 int pcix_get_max_mmrbc(struct pci_dev *dev)
4816 {
4817 int cap;
4818 u32 stat;
4819
4820 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4821 if (!cap)
4822 return -EINVAL;
4823
4824 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4825 return -EINVAL;
4826
4827 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4828 }
4829 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4830
4831 /**
4832 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4833 * @dev: PCI device to query
4834 *
4835 * Returns mmrbc: maximum memory read count in bytes
4836 * or appropriate error value.
4837 */
4838 int pcix_get_mmrbc(struct pci_dev *dev)
4839 {
4840 int cap;
4841 u16 cmd;
4842
4843 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4844 if (!cap)
4845 return -EINVAL;
4846
4847 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4848 return -EINVAL;
4849
4850 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4851 }
4852 EXPORT_SYMBOL(pcix_get_mmrbc);
4853
4854 /**
4855 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4856 * @dev: PCI device to query
4857 * @mmrbc: maximum memory read count in bytes
4858 * valid values are 512, 1024, 2048, 4096
4859 *
4860 * If possible sets maximum memory read byte count, some bridges have erratas
4861 * that prevent this.
4862 */
4863 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4864 {
4865 int cap;
4866 u32 stat, v, o;
4867 u16 cmd;
4868
4869 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4870 return -EINVAL;
4871
4872 v = ffs(mmrbc) - 10;
4873
4874 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4875 if (!cap)
4876 return -EINVAL;
4877
4878 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4879 return -EINVAL;
4880
4881 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4882 return -E2BIG;
4883
4884 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4885 return -EINVAL;
4886
4887 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4888 if (o != v) {
4889 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4890 return -EIO;
4891
4892 cmd &= ~PCI_X_CMD_MAX_READ;
4893 cmd |= v << 2;
4894 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4895 return -EIO;
4896 }
4897 return 0;
4898 }
4899 EXPORT_SYMBOL(pcix_set_mmrbc);
4900
4901 /**
4902 * pcie_get_readrq - get PCI Express read request size
4903 * @dev: PCI device to query
4904 *
4905 * Returns maximum memory read request in bytes
4906 * or appropriate error value.
4907 */
4908 int pcie_get_readrq(struct pci_dev *dev)
4909 {
4910 u16 ctl;
4911
4912 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4913
4914 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4915 }
4916 EXPORT_SYMBOL(pcie_get_readrq);
4917
4918 /**
4919 * pcie_set_readrq - set PCI Express maximum memory read request
4920 * @dev: PCI device to query
4921 * @rq: maximum memory read count in bytes
4922 * valid values are 128, 256, 512, 1024, 2048, 4096
4923 *
4924 * If possible sets maximum memory read request in bytes
4925 */
4926 int pcie_set_readrq(struct pci_dev *dev, int rq)
4927 {
4928 u16 v;
4929
4930 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4931 return -EINVAL;
4932
4933 /*
4934 * If using the "performance" PCIe config, we clamp the
4935 * read rq size to the max packet size to prevent the
4936 * host bridge generating requests larger than we can
4937 * cope with
4938 */
4939 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4940 int mps = pcie_get_mps(dev);
4941
4942 if (mps < rq)
4943 rq = mps;
4944 }
4945
4946 v = (ffs(rq) - 8) << 12;
4947
4948 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4949 PCI_EXP_DEVCTL_READRQ, v);
4950 }
4951 EXPORT_SYMBOL(pcie_set_readrq);
4952
4953 /**
4954 * pcie_get_mps - get PCI Express maximum payload size
4955 * @dev: PCI device to query
4956 *
4957 * Returns maximum payload size in bytes
4958 */
4959 int pcie_get_mps(struct pci_dev *dev)
4960 {
4961 u16 ctl;
4962
4963 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4964
4965 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4966 }
4967 EXPORT_SYMBOL(pcie_get_mps);
4968
4969 /**
4970 * pcie_set_mps - set PCI Express maximum payload size
4971 * @dev: PCI device to query
4972 * @mps: maximum payload size in bytes
4973 * valid values are 128, 256, 512, 1024, 2048, 4096
4974 *
4975 * If possible sets maximum payload size
4976 */
4977 int pcie_set_mps(struct pci_dev *dev, int mps)
4978 {
4979 u16 v;
4980
4981 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4982 return -EINVAL;
4983
4984 v = ffs(mps) - 8;
4985 if (v > dev->pcie_mpss)
4986 return -EINVAL;
4987 v <<= 5;
4988
4989 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4990 PCI_EXP_DEVCTL_PAYLOAD, v);
4991 }
4992 EXPORT_SYMBOL(pcie_set_mps);
4993
4994 /**
4995 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4996 * @dev: PCI device to query
4997 * @speed: storage for minimum speed
4998 * @width: storage for minimum width
4999 *
5000 * This function will walk up the PCI device chain and determine the minimum
5001 * link width and speed of the device.
5002 */
5003 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
5004 enum pcie_link_width *width)
5005 {
5006 int ret;
5007
5008 *speed = PCI_SPEED_UNKNOWN;
5009 *width = PCIE_LNK_WIDTH_UNKNOWN;
5010
5011 while (dev) {
5012 u16 lnksta;
5013 enum pci_bus_speed next_speed;
5014 enum pcie_link_width next_width;
5015
5016 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5017 if (ret)
5018 return ret;
5019
5020 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5021 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5022 PCI_EXP_LNKSTA_NLW_SHIFT;
5023
5024 if (next_speed < *speed)
5025 *speed = next_speed;
5026
5027 if (next_width < *width)
5028 *width = next_width;
5029
5030 dev = dev->bus->self;
5031 }
5032
5033 return 0;
5034 }
5035 EXPORT_SYMBOL(pcie_get_minimum_link);
5036
5037 /**
5038 * pci_select_bars - Make BAR mask from the type of resource
5039 * @dev: the PCI device for which BAR mask is made
5040 * @flags: resource type mask to be selected
5041 *
5042 * This helper routine makes bar mask from the type of resource.
5043 */
5044 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5045 {
5046 int i, bars = 0;
5047 for (i = 0; i < PCI_NUM_RESOURCES; i++)
5048 if (pci_resource_flags(dev, i) & flags)
5049 bars |= (1 << i);
5050 return bars;
5051 }
5052 EXPORT_SYMBOL(pci_select_bars);
5053
5054 /* Some architectures require additional programming to enable VGA */
5055 static arch_set_vga_state_t arch_set_vga_state;
5056
5057 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5058 {
5059 arch_set_vga_state = func; /* NULL disables */
5060 }
5061
5062 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5063 unsigned int command_bits, u32 flags)
5064 {
5065 if (arch_set_vga_state)
5066 return arch_set_vga_state(dev, decode, command_bits,
5067 flags);
5068 return 0;
5069 }
5070
5071 /**
5072 * pci_set_vga_state - set VGA decode state on device and parents if requested
5073 * @dev: the PCI device
5074 * @decode: true = enable decoding, false = disable decoding
5075 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5076 * @flags: traverse ancestors and change bridges
5077 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5078 */
5079 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5080 unsigned int command_bits, u32 flags)
5081 {
5082 struct pci_bus *bus;
5083 struct pci_dev *bridge;
5084 u16 cmd;
5085 int rc;
5086
5087 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5088
5089 /* ARCH specific VGA enables */
5090 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5091 if (rc)
5092 return rc;
5093
5094 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5095 pci_read_config_word(dev, PCI_COMMAND, &cmd);
5096 if (decode == true)
5097 cmd |= command_bits;
5098 else
5099 cmd &= ~command_bits;
5100 pci_write_config_word(dev, PCI_COMMAND, cmd);
5101 }
5102
5103 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5104 return 0;
5105
5106 bus = dev->bus;
5107 while (bus) {
5108 bridge = bus->self;
5109 if (bridge) {
5110 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5111 &cmd);
5112 if (decode == true)
5113 cmd |= PCI_BRIDGE_CTL_VGA;
5114 else
5115 cmd &= ~PCI_BRIDGE_CTL_VGA;
5116 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5117 cmd);
5118 }
5119 bus = bus->parent;
5120 }
5121 return 0;
5122 }
5123
5124 /**
5125 * pci_add_dma_alias - Add a DMA devfn alias for a device
5126 * @dev: the PCI device for which alias is added
5127 * @devfn: alias slot and function
5128 *
5129 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
5130 * It should be called early, preferably as PCI fixup header quirk.
5131 */
5132 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5133 {
5134 if (!dev->dma_alias_mask)
5135 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5136 sizeof(long), GFP_KERNEL);
5137 if (!dev->dma_alias_mask) {
5138 dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n");
5139 return;
5140 }
5141
5142 set_bit(devfn, dev->dma_alias_mask);
5143 dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n",
5144 PCI_SLOT(devfn), PCI_FUNC(devfn));
5145 }
5146
5147 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5148 {
5149 return (dev1->dma_alias_mask &&
5150 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5151 (dev2->dma_alias_mask &&
5152 test_bit(dev1->devfn, dev2->dma_alias_mask));
5153 }
5154
5155 bool pci_device_is_present(struct pci_dev *pdev)
5156 {
5157 u32 v;
5158
5159 if (pci_dev_is_disconnected(pdev))
5160 return false;
5161 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5162 }
5163 EXPORT_SYMBOL_GPL(pci_device_is_present);
5164
5165 void pci_ignore_hotplug(struct pci_dev *dev)
5166 {
5167 struct pci_dev *bridge = dev->bus->self;
5168
5169 dev->ignore_hotplug = 1;
5170 /* Propagate the "ignore hotplug" setting to the parent bridge. */
5171 if (bridge)
5172 bridge->ignore_hotplug = 1;
5173 }
5174 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5175
5176 resource_size_t __weak pcibios_default_alignment(void)
5177 {
5178 return 0;
5179 }
5180
5181 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5182 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5183 static DEFINE_SPINLOCK(resource_alignment_lock);
5184
5185 /**
5186 * pci_specified_resource_alignment - get resource alignment specified by user.
5187 * @dev: the PCI device to get
5188 * @resize: whether or not to change resources' size when reassigning alignment
5189 *
5190 * RETURNS: Resource alignment if it is specified.
5191 * Zero if it is not specified.
5192 */
5193 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5194 bool *resize)
5195 {
5196 int seg, bus, slot, func, align_order, count;
5197 unsigned short vendor, device, subsystem_vendor, subsystem_device;
5198 resource_size_t align = pcibios_default_alignment();
5199 char *p;
5200
5201 spin_lock(&resource_alignment_lock);
5202 p = resource_alignment_param;
5203 if (!*p && !align)
5204 goto out;
5205 if (pci_has_flag(PCI_PROBE_ONLY)) {
5206 align = 0;
5207 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5208 goto out;
5209 }
5210
5211 while (*p) {
5212 count = 0;
5213 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5214 p[count] == '@') {
5215 p += count + 1;
5216 } else {
5217 align_order = -1;
5218 }
5219 if (strncmp(p, "pci:", 4) == 0) {
5220 /* PCI vendor/device (subvendor/subdevice) ids are specified */
5221 p += 4;
5222 if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5223 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5224 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5225 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5226 p);
5227 break;
5228 }
5229 subsystem_vendor = subsystem_device = 0;
5230 }
5231 p += count;
5232 if ((!vendor || (vendor == dev->vendor)) &&
5233 (!device || (device == dev->device)) &&
5234 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5235 (!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5236 *resize = true;
5237 if (align_order == -1)
5238 align = PAGE_SIZE;
5239 else
5240 align = 1 << align_order;
5241 /* Found */
5242 break;
5243 }
5244 }
5245 else {
5246 if (sscanf(p, "%x:%x:%x.%x%n",
5247 &seg, &bus, &slot, &func, &count) != 4) {
5248 seg = 0;
5249 if (sscanf(p, "%x:%x.%x%n",
5250 &bus, &slot, &func, &count) != 3) {
5251 /* Invalid format */
5252 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5253 p);
5254 break;
5255 }
5256 }
5257 p += count;
5258 if (seg == pci_domain_nr(dev->bus) &&
5259 bus == dev->bus->number &&
5260 slot == PCI_SLOT(dev->devfn) &&
5261 func == PCI_FUNC(dev->devfn)) {
5262 *resize = true;
5263 if (align_order == -1)
5264 align = PAGE_SIZE;
5265 else
5266 align = 1 << align_order;
5267 /* Found */
5268 break;
5269 }
5270 }
5271 if (*p != ';' && *p != ',') {
5272 /* End of param or invalid format */
5273 break;
5274 }
5275 p++;
5276 }
5277 out:
5278 spin_unlock(&resource_alignment_lock);
5279 return align;
5280 }
5281
5282 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5283 resource_size_t align, bool resize)
5284 {
5285 struct resource *r = &dev->resource[bar];
5286 resource_size_t size;
5287
5288 if (!(r->flags & IORESOURCE_MEM))
5289 return;
5290
5291 if (r->flags & IORESOURCE_PCI_FIXED) {
5292 dev_info(&dev->dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5293 bar, r, (unsigned long long)align);
5294 return;
5295 }
5296
5297 size = resource_size(r);
5298 if (size >= align)
5299 return;
5300
5301 /*
5302 * Increase the alignment of the resource. There are two ways we
5303 * can do this:
5304 *
5305 * 1) Increase the size of the resource. BARs are aligned on their
5306 * size, so when we reallocate space for this resource, we'll
5307 * allocate it with the larger alignment. This also prevents
5308 * assignment of any other BARs inside the alignment region, so
5309 * if we're requesting page alignment, this means no other BARs
5310 * will share the page.
5311 *
5312 * The disadvantage is that this makes the resource larger than
5313 * the hardware BAR, which may break drivers that compute things
5314 * based on the resource size, e.g., to find registers at a
5315 * fixed offset before the end of the BAR.
5316 *
5317 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5318 * set r->start to the desired alignment. By itself this
5319 * doesn't prevent other BARs being put inside the alignment
5320 * region, but if we realign *every* resource of every device in
5321 * the system, none of them will share an alignment region.
5322 *
5323 * When the user has requested alignment for only some devices via
5324 * the "pci=resource_alignment" argument, "resize" is true and we
5325 * use the first method. Otherwise we assume we're aligning all
5326 * devices and we use the second.
5327 */
5328
5329 dev_info(&dev->dev, "BAR%d %pR: requesting alignment to %#llx\n",
5330 bar, r, (unsigned long long)align);
5331
5332 if (resize) {
5333 r->start = 0;
5334 r->end = align - 1;
5335 } else {
5336 r->flags &= ~IORESOURCE_SIZEALIGN;
5337 r->flags |= IORESOURCE_STARTALIGN;
5338 r->start = align;
5339 r->end = r->start + size - 1;
5340 }
5341 r->flags |= IORESOURCE_UNSET;
5342 }
5343
5344 /*
5345 * This function disables memory decoding and releases memory resources
5346 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5347 * It also rounds up size to specified alignment.
5348 * Later on, the kernel will assign page-aligned memory resource back
5349 * to the device.
5350 */
5351 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5352 {
5353 int i;
5354 struct resource *r;
5355 resource_size_t align;
5356 u16 command;
5357 bool resize = false;
5358
5359 /*
5360 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5361 * 3.4.1.11. Their resources are allocated from the space
5362 * described by the VF BARx register in the PF's SR-IOV capability.
5363 * We can't influence their alignment here.
5364 */
5365 if (dev->is_virtfn)
5366 return;
5367
5368 /* check if specified PCI is target device to reassign */
5369 align = pci_specified_resource_alignment(dev, &resize);
5370 if (!align)
5371 return;
5372
5373 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5374 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5375 dev_warn(&dev->dev,
5376 "Can't reassign resources to host bridge.\n");
5377 return;
5378 }
5379
5380 dev_info(&dev->dev,
5381 "Disabling memory decoding and releasing memory resources.\n");
5382 pci_read_config_word(dev, PCI_COMMAND, &command);
5383 command &= ~PCI_COMMAND_MEMORY;
5384 pci_write_config_word(dev, PCI_COMMAND, command);
5385
5386 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
5387 pci_request_resource_alignment(dev, i, align, resize);
5388
5389 /*
5390 * Need to disable bridge's resource window,
5391 * to enable the kernel to reassign new resource
5392 * window later on.
5393 */
5394 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5395 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5396 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5397 r = &dev->resource[i];
5398 if (!(r->flags & IORESOURCE_MEM))
5399 continue;
5400 r->flags |= IORESOURCE_UNSET;
5401 r->end = resource_size(r) - 1;
5402 r->start = 0;
5403 }
5404 pci_disable_bridge_window(dev);
5405 }
5406 }
5407
5408 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5409 {
5410 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5411 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5412 spin_lock(&resource_alignment_lock);
5413 strncpy(resource_alignment_param, buf, count);
5414 resource_alignment_param[count] = '\0';
5415 spin_unlock(&resource_alignment_lock);
5416 return count;
5417 }
5418
5419 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5420 {
5421 size_t count;
5422 spin_lock(&resource_alignment_lock);
5423 count = snprintf(buf, size, "%s", resource_alignment_param);
5424 spin_unlock(&resource_alignment_lock);
5425 return count;
5426 }
5427
5428 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5429 {
5430 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5431 }
5432
5433 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5434 const char *buf, size_t count)
5435 {
5436 return pci_set_resource_alignment_param(buf, count);
5437 }
5438
5439 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5440 pci_resource_alignment_store);
5441
5442 static int __init pci_resource_alignment_sysfs_init(void)
5443 {
5444 return bus_create_file(&pci_bus_type,
5445 &bus_attr_resource_alignment);
5446 }
5447 late_initcall(pci_resource_alignment_sysfs_init);
5448
5449 static void pci_no_domains(void)
5450 {
5451 #ifdef CONFIG_PCI_DOMAINS
5452 pci_domains_supported = 0;
5453 #endif
5454 }
5455
5456 #ifdef CONFIG_PCI_DOMAINS
5457 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5458
5459 int pci_get_new_domain_nr(void)
5460 {
5461 return atomic_inc_return(&__domain_nr);
5462 }
5463
5464 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5465 static int of_pci_bus_find_domain_nr(struct device *parent)
5466 {
5467 static int use_dt_domains = -1;
5468 int domain = -1;
5469
5470 if (parent)
5471 domain = of_get_pci_domain_nr(parent->of_node);
5472 /*
5473 * Check DT domain and use_dt_domains values.
5474 *
5475 * If DT domain property is valid (domain >= 0) and
5476 * use_dt_domains != 0, the DT assignment is valid since this means
5477 * we have not previously allocated a domain number by using
5478 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5479 * 1, to indicate that we have just assigned a domain number from
5480 * DT.
5481 *
5482 * If DT domain property value is not valid (ie domain < 0), and we
5483 * have not previously assigned a domain number from DT
5484 * (use_dt_domains != 1) we should assign a domain number by
5485 * using the:
5486 *
5487 * pci_get_new_domain_nr()
5488 *
5489 * API and update the use_dt_domains value to keep track of method we
5490 * are using to assign domain numbers (use_dt_domains = 0).
5491 *
5492 * All other combinations imply we have a platform that is trying
5493 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5494 * which is a recipe for domain mishandling and it is prevented by
5495 * invalidating the domain value (domain = -1) and printing a
5496 * corresponding error.
5497 */
5498 if (domain >= 0 && use_dt_domains) {
5499 use_dt_domains = 1;
5500 } else if (domain < 0 && use_dt_domains != 1) {
5501 use_dt_domains = 0;
5502 domain = pci_get_new_domain_nr();
5503 } else {
5504 dev_err(parent, "Node %pOF has inconsistent \"linux,pci-domain\" property in DT\n",
5505 parent->of_node);
5506 domain = -1;
5507 }
5508
5509 return domain;
5510 }
5511
5512 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5513 {
5514 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5515 acpi_pci_bus_find_domain_nr(bus);
5516 }
5517 #endif
5518 #endif
5519
5520 /**
5521 * pci_ext_cfg_avail - can we access extended PCI config space?
5522 *
5523 * Returns 1 if we can access PCI extended config space (offsets
5524 * greater than 0xff). This is the default implementation. Architecture
5525 * implementations can override this.
5526 */
5527 int __weak pci_ext_cfg_avail(void)
5528 {
5529 return 1;
5530 }
5531
5532 void __weak pci_fixup_cardbus(struct pci_bus *bus)
5533 {
5534 }
5535 EXPORT_SYMBOL(pci_fixup_cardbus);
5536
5537 static int __init pci_setup(char *str)
5538 {
5539 while (str) {
5540 char *k = strchr(str, ',');
5541 if (k)
5542 *k++ = 0;
5543 if (*str && (str = pcibios_setup(str)) && *str) {
5544 if (!strcmp(str, "nomsi")) {
5545 pci_no_msi();
5546 } else if (!strcmp(str, "noaer")) {
5547 pci_no_aer();
5548 } else if (!strncmp(str, "realloc=", 8)) {
5549 pci_realloc_get_opt(str + 8);
5550 } else if (!strncmp(str, "realloc", 7)) {
5551 pci_realloc_get_opt("on");
5552 } else if (!strcmp(str, "nodomains")) {
5553 pci_no_domains();
5554 } else if (!strncmp(str, "noari", 5)) {
5555 pcie_ari_disabled = true;
5556 } else if (!strncmp(str, "cbiosize=", 9)) {
5557 pci_cardbus_io_size = memparse(str + 9, &str);
5558 } else if (!strncmp(str, "cbmemsize=", 10)) {
5559 pci_cardbus_mem_size = memparse(str + 10, &str);
5560 } else if (!strncmp(str, "resource_alignment=", 19)) {
5561 pci_set_resource_alignment_param(str + 19,
5562 strlen(str + 19));
5563 } else if (!strncmp(str, "ecrc=", 5)) {
5564 pcie_ecrc_get_policy(str + 5);
5565 } else if (!strncmp(str, "hpiosize=", 9)) {
5566 pci_hotplug_io_size = memparse(str + 9, &str);
5567 } else if (!strncmp(str, "hpmemsize=", 10)) {
5568 pci_hotplug_mem_size = memparse(str + 10, &str);
5569 } else if (!strncmp(str, "hpbussize=", 10)) {
5570 pci_hotplug_bus_size =
5571 simple_strtoul(str + 10, &str, 0);
5572 if (pci_hotplug_bus_size > 0xff)
5573 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5574 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5575 pcie_bus_config = PCIE_BUS_TUNE_OFF;
5576 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
5577 pcie_bus_config = PCIE_BUS_SAFE;
5578 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
5579 pcie_bus_config = PCIE_BUS_PERFORMANCE;
5580 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5581 pcie_bus_config = PCIE_BUS_PEER2PEER;
5582 } else if (!strncmp(str, "pcie_scan_all", 13)) {
5583 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5584 } else {
5585 printk(KERN_ERR "PCI: Unknown option `%s'\n",
5586 str);
5587 }
5588 }
5589 str = k;
5590 }
5591 return 0;
5592 }
5593 early_param("pci", pci_setup);