]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/pci/pci.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-zesty-kernel.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <linux/pm_wakeup.h>
21 #include <linux/interrupt.h>
22 #include <asm/dma.h> /* isa_dma_bridge_buggy */
23 #include <linux/device.h>
24 #include <asm/setup.h>
25 #include "pci.h"
26
27 const char *pci_power_names[] = {
28 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
29 };
30 EXPORT_SYMBOL_GPL(pci_power_names);
31
32 unsigned int pci_pm_d3_delay = PCI_PM_D3_WAIT;
33
34 #ifdef CONFIG_PCI_DOMAINS
35 int pci_domains_supported = 1;
36 #endif
37
38 #define DEFAULT_CARDBUS_IO_SIZE (256)
39 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
40 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
41 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
42 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
43
44 #define DEFAULT_HOTPLUG_IO_SIZE (256)
45 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
46 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
47 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
48 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
49
50 /**
51 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
52 * @bus: pointer to PCI bus structure to search
53 *
54 * Given a PCI bus, returns the highest PCI bus number present in the set
55 * including the given PCI bus and its list of child PCI buses.
56 */
57 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
58 {
59 struct list_head *tmp;
60 unsigned char max, n;
61
62 max = bus->subordinate;
63 list_for_each(tmp, &bus->children) {
64 n = pci_bus_max_busnr(pci_bus_b(tmp));
65 if(n > max)
66 max = n;
67 }
68 return max;
69 }
70 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
71
72 #ifdef CONFIG_HAS_IOMEM
73 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
74 {
75 /*
76 * Make sure the BAR is actually a memory resource, not an IO resource
77 */
78 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
79 WARN_ON(1);
80 return NULL;
81 }
82 return ioremap_nocache(pci_resource_start(pdev, bar),
83 pci_resource_len(pdev, bar));
84 }
85 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
86 #endif
87
88 #if 0
89 /**
90 * pci_max_busnr - returns maximum PCI bus number
91 *
92 * Returns the highest PCI bus number present in the system global list of
93 * PCI buses.
94 */
95 unsigned char __devinit
96 pci_max_busnr(void)
97 {
98 struct pci_bus *bus = NULL;
99 unsigned char max, n;
100
101 max = 0;
102 while ((bus = pci_find_next_bus(bus)) != NULL) {
103 n = pci_bus_max_busnr(bus);
104 if(n > max)
105 max = n;
106 }
107 return max;
108 }
109
110 #endif /* 0 */
111
112 #define PCI_FIND_CAP_TTL 48
113
114 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
115 u8 pos, int cap, int *ttl)
116 {
117 u8 id;
118
119 while ((*ttl)--) {
120 pci_bus_read_config_byte(bus, devfn, pos, &pos);
121 if (pos < 0x40)
122 break;
123 pos &= ~3;
124 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
125 &id);
126 if (id == 0xff)
127 break;
128 if (id == cap)
129 return pos;
130 pos += PCI_CAP_LIST_NEXT;
131 }
132 return 0;
133 }
134
135 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
136 u8 pos, int cap)
137 {
138 int ttl = PCI_FIND_CAP_TTL;
139
140 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
141 }
142
143 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
144 {
145 return __pci_find_next_cap(dev->bus, dev->devfn,
146 pos + PCI_CAP_LIST_NEXT, cap);
147 }
148 EXPORT_SYMBOL_GPL(pci_find_next_capability);
149
150 static int __pci_bus_find_cap_start(struct pci_bus *bus,
151 unsigned int devfn, u8 hdr_type)
152 {
153 u16 status;
154
155 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
156 if (!(status & PCI_STATUS_CAP_LIST))
157 return 0;
158
159 switch (hdr_type) {
160 case PCI_HEADER_TYPE_NORMAL:
161 case PCI_HEADER_TYPE_BRIDGE:
162 return PCI_CAPABILITY_LIST;
163 case PCI_HEADER_TYPE_CARDBUS:
164 return PCI_CB_CAPABILITY_LIST;
165 default:
166 return 0;
167 }
168
169 return 0;
170 }
171
172 /**
173 * pci_find_capability - query for devices' capabilities
174 * @dev: PCI device to query
175 * @cap: capability code
176 *
177 * Tell if a device supports a given PCI capability.
178 * Returns the address of the requested capability structure within the
179 * device's PCI configuration space or 0 in case the device does not
180 * support it. Possible values for @cap:
181 *
182 * %PCI_CAP_ID_PM Power Management
183 * %PCI_CAP_ID_AGP Accelerated Graphics Port
184 * %PCI_CAP_ID_VPD Vital Product Data
185 * %PCI_CAP_ID_SLOTID Slot Identification
186 * %PCI_CAP_ID_MSI Message Signalled Interrupts
187 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
188 * %PCI_CAP_ID_PCIX PCI-X
189 * %PCI_CAP_ID_EXP PCI Express
190 */
191 int pci_find_capability(struct pci_dev *dev, int cap)
192 {
193 int pos;
194
195 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
196 if (pos)
197 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
198
199 return pos;
200 }
201
202 /**
203 * pci_bus_find_capability - query for devices' capabilities
204 * @bus: the PCI bus to query
205 * @devfn: PCI device to query
206 * @cap: capability code
207 *
208 * Like pci_find_capability() but works for pci devices that do not have a
209 * pci_dev structure set up yet.
210 *
211 * Returns the address of the requested capability structure within the
212 * device's PCI configuration space or 0 in case the device does not
213 * support it.
214 */
215 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
216 {
217 int pos;
218 u8 hdr_type;
219
220 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
221
222 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
223 if (pos)
224 pos = __pci_find_next_cap(bus, devfn, pos, cap);
225
226 return pos;
227 }
228
229 /**
230 * pci_find_ext_capability - Find an extended capability
231 * @dev: PCI device to query
232 * @cap: capability code
233 *
234 * Returns the address of the requested extended capability structure
235 * within the device's PCI configuration space or 0 if the device does
236 * not support it. Possible values for @cap:
237 *
238 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
239 * %PCI_EXT_CAP_ID_VC Virtual Channel
240 * %PCI_EXT_CAP_ID_DSN Device Serial Number
241 * %PCI_EXT_CAP_ID_PWR Power Budgeting
242 */
243 int pci_find_ext_capability(struct pci_dev *dev, int cap)
244 {
245 u32 header;
246 int ttl;
247 int pos = PCI_CFG_SPACE_SIZE;
248
249 /* minimum 8 bytes per capability */
250 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
251
252 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
253 return 0;
254
255 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
256 return 0;
257
258 /*
259 * If we have no capabilities, this is indicated by cap ID,
260 * cap version and next pointer all being 0.
261 */
262 if (header == 0)
263 return 0;
264
265 while (ttl-- > 0) {
266 if (PCI_EXT_CAP_ID(header) == cap)
267 return pos;
268
269 pos = PCI_EXT_CAP_NEXT(header);
270 if (pos < PCI_CFG_SPACE_SIZE)
271 break;
272
273 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
274 break;
275 }
276
277 return 0;
278 }
279 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
280
281 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
282 {
283 int rc, ttl = PCI_FIND_CAP_TTL;
284 u8 cap, mask;
285
286 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
287 mask = HT_3BIT_CAP_MASK;
288 else
289 mask = HT_5BIT_CAP_MASK;
290
291 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
292 PCI_CAP_ID_HT, &ttl);
293 while (pos) {
294 rc = pci_read_config_byte(dev, pos + 3, &cap);
295 if (rc != PCIBIOS_SUCCESSFUL)
296 return 0;
297
298 if ((cap & mask) == ht_cap)
299 return pos;
300
301 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
302 pos + PCI_CAP_LIST_NEXT,
303 PCI_CAP_ID_HT, &ttl);
304 }
305
306 return 0;
307 }
308 /**
309 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
310 * @dev: PCI device to query
311 * @pos: Position from which to continue searching
312 * @ht_cap: Hypertransport capability code
313 *
314 * To be used in conjunction with pci_find_ht_capability() to search for
315 * all capabilities matching @ht_cap. @pos should always be a value returned
316 * from pci_find_ht_capability().
317 *
318 * NB. To be 100% safe against broken PCI devices, the caller should take
319 * steps to avoid an infinite loop.
320 */
321 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
322 {
323 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
324 }
325 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
326
327 /**
328 * pci_find_ht_capability - query a device's Hypertransport capabilities
329 * @dev: PCI device to query
330 * @ht_cap: Hypertransport capability code
331 *
332 * Tell if a device supports a given Hypertransport capability.
333 * Returns an address within the device's PCI configuration space
334 * or 0 in case the device does not support the request capability.
335 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
336 * which has a Hypertransport capability matching @ht_cap.
337 */
338 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
339 {
340 int pos;
341
342 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
343 if (pos)
344 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
345
346 return pos;
347 }
348 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
349
350 /**
351 * pci_find_parent_resource - return resource region of parent bus of given region
352 * @dev: PCI device structure contains resources to be searched
353 * @res: child resource record for which parent is sought
354 *
355 * For given resource region of given device, return the resource
356 * region of parent bus the given region is contained in or where
357 * it should be allocated from.
358 */
359 struct resource *
360 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
361 {
362 const struct pci_bus *bus = dev->bus;
363 int i;
364 struct resource *best = NULL;
365
366 for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
367 struct resource *r = bus->resource[i];
368 if (!r)
369 continue;
370 if (res->start && !(res->start >= r->start && res->end <= r->end))
371 continue; /* Not contained */
372 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
373 continue; /* Wrong type */
374 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
375 return r; /* Exact match */
376 if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH))
377 best = r; /* Approximating prefetchable by non-prefetchable */
378 }
379 return best;
380 }
381
382 /**
383 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
384 * @dev: PCI device to have its BARs restored
385 *
386 * Restore the BAR values for a given device, so as to make it
387 * accessible by its driver.
388 */
389 static void
390 pci_restore_bars(struct pci_dev *dev)
391 {
392 int i;
393
394 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
395 pci_update_resource(dev, i);
396 }
397
398 static struct pci_platform_pm_ops *pci_platform_pm;
399
400 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
401 {
402 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
403 || !ops->sleep_wake || !ops->can_wakeup)
404 return -EINVAL;
405 pci_platform_pm = ops;
406 return 0;
407 }
408
409 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
410 {
411 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
412 }
413
414 static inline int platform_pci_set_power_state(struct pci_dev *dev,
415 pci_power_t t)
416 {
417 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
418 }
419
420 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
421 {
422 return pci_platform_pm ?
423 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
424 }
425
426 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
427 {
428 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
429 }
430
431 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
432 {
433 return pci_platform_pm ?
434 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
435 }
436
437 /**
438 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
439 * given PCI device
440 * @dev: PCI device to handle.
441 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
442 *
443 * RETURN VALUE:
444 * -EINVAL if the requested state is invalid.
445 * -EIO if device does not support PCI PM or its PM capabilities register has a
446 * wrong version, or device doesn't support the requested state.
447 * 0 if device already is in the requested state.
448 * 0 if device's power state has been successfully changed.
449 */
450 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
451 {
452 u16 pmcsr;
453 bool need_restore = false;
454
455 /* Check if we're already there */
456 if (dev->current_state == state)
457 return 0;
458
459 if (!dev->pm_cap)
460 return -EIO;
461
462 if (state < PCI_D0 || state > PCI_D3hot)
463 return -EINVAL;
464
465 /* Validate current state:
466 * Can enter D0 from any state, but if we can only go deeper
467 * to sleep if we're already in a low power state
468 */
469 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
470 && dev->current_state > state) {
471 dev_err(&dev->dev, "invalid power transition "
472 "(from state %d to %d)\n", dev->current_state, state);
473 return -EINVAL;
474 }
475
476 /* check if this device supports the desired state */
477 if ((state == PCI_D1 && !dev->d1_support)
478 || (state == PCI_D2 && !dev->d2_support))
479 return -EIO;
480
481 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
482
483 /* If we're (effectively) in D3, force entire word to 0.
484 * This doesn't affect PME_Status, disables PME_En, and
485 * sets PowerState to 0.
486 */
487 switch (dev->current_state) {
488 case PCI_D0:
489 case PCI_D1:
490 case PCI_D2:
491 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
492 pmcsr |= state;
493 break;
494 case PCI_D3hot:
495 case PCI_D3cold:
496 case PCI_UNKNOWN: /* Boot-up */
497 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
498 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
499 need_restore = true;
500 /* Fall-through: force to D0 */
501 default:
502 pmcsr = 0;
503 break;
504 }
505
506 /* enter specified state */
507 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
508
509 /* Mandatory power management transition delays */
510 /* see PCI PM 1.1 5.6.1 table 18 */
511 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
512 msleep(pci_pm_d3_delay);
513 else if (state == PCI_D2 || dev->current_state == PCI_D2)
514 udelay(PCI_PM_D2_DELAY);
515
516 dev->current_state = state;
517
518 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
519 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
520 * from D3hot to D0 _may_ perform an internal reset, thereby
521 * going to "D0 Uninitialized" rather than "D0 Initialized".
522 * For example, at least some versions of the 3c905B and the
523 * 3c556B exhibit this behaviour.
524 *
525 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
526 * devices in a D3hot state at boot. Consequently, we need to
527 * restore at least the BARs so that the device will be
528 * accessible to its driver.
529 */
530 if (need_restore)
531 pci_restore_bars(dev);
532
533 if (dev->bus->self)
534 pcie_aspm_pm_state_change(dev->bus->self);
535
536 return 0;
537 }
538
539 /**
540 * pci_update_current_state - Read PCI power state of given device from its
541 * PCI PM registers and cache it
542 * @dev: PCI device to handle.
543 * @state: State to cache in case the device doesn't have the PM capability
544 */
545 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
546 {
547 if (dev->pm_cap) {
548 u16 pmcsr;
549
550 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
551 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
552 } else {
553 dev->current_state = state;
554 }
555 }
556
557 /**
558 * pci_platform_power_transition - Use platform to change device power state
559 * @dev: PCI device to handle.
560 * @state: State to put the device into.
561 */
562 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
563 {
564 int error;
565
566 if (platform_pci_power_manageable(dev)) {
567 error = platform_pci_set_power_state(dev, state);
568 if (!error)
569 pci_update_current_state(dev, state);
570 } else {
571 error = -ENODEV;
572 /* Fall back to PCI_D0 if native PM is not supported */
573 if (!dev->pm_cap)
574 dev->current_state = PCI_D0;
575 }
576
577 return error;
578 }
579
580 /**
581 * __pci_start_power_transition - Start power transition of a PCI device
582 * @dev: PCI device to handle.
583 * @state: State to put the device into.
584 */
585 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
586 {
587 if (state == PCI_D0)
588 pci_platform_power_transition(dev, PCI_D0);
589 }
590
591 /**
592 * __pci_complete_power_transition - Complete power transition of a PCI device
593 * @dev: PCI device to handle.
594 * @state: State to put the device into.
595 *
596 * This function should not be called directly by device drivers.
597 */
598 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
599 {
600 return state > PCI_D0 ?
601 pci_platform_power_transition(dev, state) : -EINVAL;
602 }
603 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
604
605 /**
606 * pci_set_power_state - Set the power state of a PCI device
607 * @dev: PCI device to handle.
608 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
609 *
610 * Transition a device to a new power state, using the platform firmware and/or
611 * the device's PCI PM registers.
612 *
613 * RETURN VALUE:
614 * -EINVAL if the requested state is invalid.
615 * -EIO if device does not support PCI PM or its PM capabilities register has a
616 * wrong version, or device doesn't support the requested state.
617 * 0 if device already is in the requested state.
618 * 0 if device's power state has been successfully changed.
619 */
620 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
621 {
622 int error;
623
624 /* bound the state we're entering */
625 if (state > PCI_D3hot)
626 state = PCI_D3hot;
627 else if (state < PCI_D0)
628 state = PCI_D0;
629 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
630 /*
631 * If the device or the parent bridge do not support PCI PM,
632 * ignore the request if we're doing anything other than putting
633 * it into D0 (which would only happen on boot).
634 */
635 return 0;
636
637 /* Check if we're already there */
638 if (dev->current_state == state)
639 return 0;
640
641 __pci_start_power_transition(dev, state);
642
643 /* This device is quirked not to be put into D3, so
644 don't put it in D3 */
645 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
646 return 0;
647
648 error = pci_raw_set_power_state(dev, state);
649
650 if (!__pci_complete_power_transition(dev, state))
651 error = 0;
652
653 return error;
654 }
655
656 /**
657 * pci_choose_state - Choose the power state of a PCI device
658 * @dev: PCI device to be suspended
659 * @state: target sleep state for the whole system. This is the value
660 * that is passed to suspend() function.
661 *
662 * Returns PCI power state suitable for given device and given system
663 * message.
664 */
665
666 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
667 {
668 pci_power_t ret;
669
670 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
671 return PCI_D0;
672
673 ret = platform_pci_choose_state(dev);
674 if (ret != PCI_POWER_ERROR)
675 return ret;
676
677 switch (state.event) {
678 case PM_EVENT_ON:
679 return PCI_D0;
680 case PM_EVENT_FREEZE:
681 case PM_EVENT_PRETHAW:
682 /* REVISIT both freeze and pre-thaw "should" use D0 */
683 case PM_EVENT_SUSPEND:
684 case PM_EVENT_HIBERNATE:
685 return PCI_D3hot;
686 default:
687 dev_info(&dev->dev, "unrecognized suspend event %d\n",
688 state.event);
689 BUG();
690 }
691 return PCI_D0;
692 }
693
694 EXPORT_SYMBOL(pci_choose_state);
695
696 #define PCI_EXP_SAVE_REGS 7
697
698 #define pcie_cap_has_devctl(type, flags) 1
699 #define pcie_cap_has_lnkctl(type, flags) \
700 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
701 (type == PCI_EXP_TYPE_ROOT_PORT || \
702 type == PCI_EXP_TYPE_ENDPOINT || \
703 type == PCI_EXP_TYPE_LEG_END))
704 #define pcie_cap_has_sltctl(type, flags) \
705 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
706 ((type == PCI_EXP_TYPE_ROOT_PORT) || \
707 (type == PCI_EXP_TYPE_DOWNSTREAM && \
708 (flags & PCI_EXP_FLAGS_SLOT))))
709 #define pcie_cap_has_rtctl(type, flags) \
710 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
711 (type == PCI_EXP_TYPE_ROOT_PORT || \
712 type == PCI_EXP_TYPE_RC_EC))
713 #define pcie_cap_has_devctl2(type, flags) \
714 ((flags & PCI_EXP_FLAGS_VERS) > 1)
715 #define pcie_cap_has_lnkctl2(type, flags) \
716 ((flags & PCI_EXP_FLAGS_VERS) > 1)
717 #define pcie_cap_has_sltctl2(type, flags) \
718 ((flags & PCI_EXP_FLAGS_VERS) > 1)
719
720 static int pci_save_pcie_state(struct pci_dev *dev)
721 {
722 int pos, i = 0;
723 struct pci_cap_saved_state *save_state;
724 u16 *cap;
725 u16 flags;
726
727 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
728 if (pos <= 0)
729 return 0;
730
731 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
732 if (!save_state) {
733 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
734 return -ENOMEM;
735 }
736 cap = (u16 *)&save_state->data[0];
737
738 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
739
740 if (pcie_cap_has_devctl(dev->pcie_type, flags))
741 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
742 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
743 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
744 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
745 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
746 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
747 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
748 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
749 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
750 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
751 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
752 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
753 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
754
755 return 0;
756 }
757
758 static void pci_restore_pcie_state(struct pci_dev *dev)
759 {
760 int i = 0, pos;
761 struct pci_cap_saved_state *save_state;
762 u16 *cap;
763 u16 flags;
764
765 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
766 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
767 if (!save_state || pos <= 0)
768 return;
769 cap = (u16 *)&save_state->data[0];
770
771 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
772
773 if (pcie_cap_has_devctl(dev->pcie_type, flags))
774 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
775 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
776 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
777 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
778 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
779 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
780 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
781 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
782 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
783 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
784 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
785 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
786 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
787 }
788
789
790 static int pci_save_pcix_state(struct pci_dev *dev)
791 {
792 int pos;
793 struct pci_cap_saved_state *save_state;
794
795 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
796 if (pos <= 0)
797 return 0;
798
799 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
800 if (!save_state) {
801 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
802 return -ENOMEM;
803 }
804
805 pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
806
807 return 0;
808 }
809
810 static void pci_restore_pcix_state(struct pci_dev *dev)
811 {
812 int i = 0, pos;
813 struct pci_cap_saved_state *save_state;
814 u16 *cap;
815
816 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
817 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
818 if (!save_state || pos <= 0)
819 return;
820 cap = (u16 *)&save_state->data[0];
821
822 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
823 }
824
825
826 /**
827 * pci_save_state - save the PCI configuration space of a device before suspending
828 * @dev: - PCI device that we're dealing with
829 */
830 int
831 pci_save_state(struct pci_dev *dev)
832 {
833 int i;
834 /* XXX: 100% dword access ok here? */
835 for (i = 0; i < 16; i++)
836 pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]);
837 dev->state_saved = true;
838 if ((i = pci_save_pcie_state(dev)) != 0)
839 return i;
840 if ((i = pci_save_pcix_state(dev)) != 0)
841 return i;
842 return 0;
843 }
844
845 /**
846 * pci_restore_state - Restore the saved state of a PCI device
847 * @dev: - PCI device that we're dealing with
848 */
849 int
850 pci_restore_state(struct pci_dev *dev)
851 {
852 int i;
853 u32 val;
854
855 if (!dev->state_saved)
856 return 0;
857
858 /* PCI Express register must be restored first */
859 pci_restore_pcie_state(dev);
860
861 /*
862 * The Base Address register should be programmed before the command
863 * register(s)
864 */
865 for (i = 15; i >= 0; i--) {
866 pci_read_config_dword(dev, i * 4, &val);
867 if (val != dev->saved_config_space[i]) {
868 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
869 "space at offset %#x (was %#x, writing %#x)\n",
870 i, val, (int)dev->saved_config_space[i]);
871 pci_write_config_dword(dev,i * 4,
872 dev->saved_config_space[i]);
873 }
874 }
875 pci_restore_pcix_state(dev);
876 pci_restore_msi_state(dev);
877 pci_restore_iov_state(dev);
878
879 dev->state_saved = false;
880
881 return 0;
882 }
883
884 static int do_pci_enable_device(struct pci_dev *dev, int bars)
885 {
886 int err;
887
888 err = pci_set_power_state(dev, PCI_D0);
889 if (err < 0 && err != -EIO)
890 return err;
891 err = pcibios_enable_device(dev, bars);
892 if (err < 0)
893 return err;
894 pci_fixup_device(pci_fixup_enable, dev);
895
896 return 0;
897 }
898
899 /**
900 * pci_reenable_device - Resume abandoned device
901 * @dev: PCI device to be resumed
902 *
903 * Note this function is a backend of pci_default_resume and is not supposed
904 * to be called by normal code, write proper resume handler and use it instead.
905 */
906 int pci_reenable_device(struct pci_dev *dev)
907 {
908 if (pci_is_enabled(dev))
909 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
910 return 0;
911 }
912
913 static int __pci_enable_device_flags(struct pci_dev *dev,
914 resource_size_t flags)
915 {
916 int err;
917 int i, bars = 0;
918
919 if (atomic_add_return(1, &dev->enable_cnt) > 1)
920 return 0; /* already enabled */
921
922 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
923 if (dev->resource[i].flags & flags)
924 bars |= (1 << i);
925
926 err = do_pci_enable_device(dev, bars);
927 if (err < 0)
928 atomic_dec(&dev->enable_cnt);
929 return err;
930 }
931
932 /**
933 * pci_enable_device_io - Initialize a device for use with IO space
934 * @dev: PCI device to be initialized
935 *
936 * Initialize device before it's used by a driver. Ask low-level code
937 * to enable I/O resources. Wake up the device if it was suspended.
938 * Beware, this function can fail.
939 */
940 int pci_enable_device_io(struct pci_dev *dev)
941 {
942 return __pci_enable_device_flags(dev, IORESOURCE_IO);
943 }
944
945 /**
946 * pci_enable_device_mem - Initialize a device for use with Memory space
947 * @dev: PCI device to be initialized
948 *
949 * Initialize device before it's used by a driver. Ask low-level code
950 * to enable Memory resources. Wake up the device if it was suspended.
951 * Beware, this function can fail.
952 */
953 int pci_enable_device_mem(struct pci_dev *dev)
954 {
955 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
956 }
957
958 /**
959 * pci_enable_device - Initialize device before it's used by a driver.
960 * @dev: PCI device to be initialized
961 *
962 * Initialize device before it's used by a driver. Ask low-level code
963 * to enable I/O and memory. Wake up the device if it was suspended.
964 * Beware, this function can fail.
965 *
966 * Note we don't actually enable the device many times if we call
967 * this function repeatedly (we just increment the count).
968 */
969 int pci_enable_device(struct pci_dev *dev)
970 {
971 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
972 }
973
974 /*
975 * Managed PCI resources. This manages device on/off, intx/msi/msix
976 * on/off and BAR regions. pci_dev itself records msi/msix status, so
977 * there's no need to track it separately. pci_devres is initialized
978 * when a device is enabled using managed PCI device enable interface.
979 */
980 struct pci_devres {
981 unsigned int enabled:1;
982 unsigned int pinned:1;
983 unsigned int orig_intx:1;
984 unsigned int restore_intx:1;
985 u32 region_mask;
986 };
987
988 static void pcim_release(struct device *gendev, void *res)
989 {
990 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
991 struct pci_devres *this = res;
992 int i;
993
994 if (dev->msi_enabled)
995 pci_disable_msi(dev);
996 if (dev->msix_enabled)
997 pci_disable_msix(dev);
998
999 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1000 if (this->region_mask & (1 << i))
1001 pci_release_region(dev, i);
1002
1003 if (this->restore_intx)
1004 pci_intx(dev, this->orig_intx);
1005
1006 if (this->enabled && !this->pinned)
1007 pci_disable_device(dev);
1008 }
1009
1010 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1011 {
1012 struct pci_devres *dr, *new_dr;
1013
1014 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1015 if (dr)
1016 return dr;
1017
1018 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1019 if (!new_dr)
1020 return NULL;
1021 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1022 }
1023
1024 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1025 {
1026 if (pci_is_managed(pdev))
1027 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1028 return NULL;
1029 }
1030
1031 /**
1032 * pcim_enable_device - Managed pci_enable_device()
1033 * @pdev: PCI device to be initialized
1034 *
1035 * Managed pci_enable_device().
1036 */
1037 int pcim_enable_device(struct pci_dev *pdev)
1038 {
1039 struct pci_devres *dr;
1040 int rc;
1041
1042 dr = get_pci_dr(pdev);
1043 if (unlikely(!dr))
1044 return -ENOMEM;
1045 if (dr->enabled)
1046 return 0;
1047
1048 rc = pci_enable_device(pdev);
1049 if (!rc) {
1050 pdev->is_managed = 1;
1051 dr->enabled = 1;
1052 }
1053 return rc;
1054 }
1055
1056 /**
1057 * pcim_pin_device - Pin managed PCI device
1058 * @pdev: PCI device to pin
1059 *
1060 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1061 * driver detach. @pdev must have been enabled with
1062 * pcim_enable_device().
1063 */
1064 void pcim_pin_device(struct pci_dev *pdev)
1065 {
1066 struct pci_devres *dr;
1067
1068 dr = find_pci_dr(pdev);
1069 WARN_ON(!dr || !dr->enabled);
1070 if (dr)
1071 dr->pinned = 1;
1072 }
1073
1074 /**
1075 * pcibios_disable_device - disable arch specific PCI resources for device dev
1076 * @dev: the PCI device to disable
1077 *
1078 * Disables architecture specific PCI resources for the device. This
1079 * is the default implementation. Architecture implementations can
1080 * override this.
1081 */
1082 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1083
1084 static void do_pci_disable_device(struct pci_dev *dev)
1085 {
1086 u16 pci_command;
1087
1088 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1089 if (pci_command & PCI_COMMAND_MASTER) {
1090 pci_command &= ~PCI_COMMAND_MASTER;
1091 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1092 }
1093
1094 pcibios_disable_device(dev);
1095 }
1096
1097 /**
1098 * pci_disable_enabled_device - Disable device without updating enable_cnt
1099 * @dev: PCI device to disable
1100 *
1101 * NOTE: This function is a backend of PCI power management routines and is
1102 * not supposed to be called drivers.
1103 */
1104 void pci_disable_enabled_device(struct pci_dev *dev)
1105 {
1106 if (pci_is_enabled(dev))
1107 do_pci_disable_device(dev);
1108 }
1109
1110 /**
1111 * pci_disable_device - Disable PCI device after use
1112 * @dev: PCI device to be disabled
1113 *
1114 * Signal to the system that the PCI device is not in use by the system
1115 * anymore. This only involves disabling PCI bus-mastering, if active.
1116 *
1117 * Note we don't actually disable the device until all callers of
1118 * pci_device_enable() have called pci_device_disable().
1119 */
1120 void
1121 pci_disable_device(struct pci_dev *dev)
1122 {
1123 struct pci_devres *dr;
1124
1125 dr = find_pci_dr(dev);
1126 if (dr)
1127 dr->enabled = 0;
1128
1129 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1130 return;
1131
1132 do_pci_disable_device(dev);
1133
1134 dev->is_busmaster = 0;
1135 }
1136
1137 /**
1138 * pcibios_set_pcie_reset_state - set reset state for device dev
1139 * @dev: the PCI-E device reset
1140 * @state: Reset state to enter into
1141 *
1142 *
1143 * Sets the PCI-E reset state for the device. This is the default
1144 * implementation. Architecture implementations can override this.
1145 */
1146 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1147 enum pcie_reset_state state)
1148 {
1149 return -EINVAL;
1150 }
1151
1152 /**
1153 * pci_set_pcie_reset_state - set reset state for device dev
1154 * @dev: the PCI-E device reset
1155 * @state: Reset state to enter into
1156 *
1157 *
1158 * Sets the PCI reset state for the device.
1159 */
1160 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1161 {
1162 return pcibios_set_pcie_reset_state(dev, state);
1163 }
1164
1165 /**
1166 * pci_pme_capable - check the capability of PCI device to generate PME#
1167 * @dev: PCI device to handle.
1168 * @state: PCI state from which device will issue PME#.
1169 */
1170 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1171 {
1172 if (!dev->pm_cap)
1173 return false;
1174
1175 return !!(dev->pme_support & (1 << state));
1176 }
1177
1178 /**
1179 * pci_pme_active - enable or disable PCI device's PME# function
1180 * @dev: PCI device to handle.
1181 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1182 *
1183 * The caller must verify that the device is capable of generating PME# before
1184 * calling this function with @enable equal to 'true'.
1185 */
1186 void pci_pme_active(struct pci_dev *dev, bool enable)
1187 {
1188 u16 pmcsr;
1189
1190 if (!dev->pm_cap)
1191 return;
1192
1193 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1194 /* Clear PME_Status by writing 1 to it and enable PME# */
1195 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1196 if (!enable)
1197 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1198
1199 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1200
1201 dev_printk(KERN_INFO, &dev->dev, "PME# %s\n",
1202 enable ? "enabled" : "disabled");
1203 }
1204
1205 /**
1206 * pci_enable_wake - enable PCI device as wakeup event source
1207 * @dev: PCI device affected
1208 * @state: PCI state from which device will issue wakeup events
1209 * @enable: True to enable event generation; false to disable
1210 *
1211 * This enables the device as a wakeup event source, or disables it.
1212 * When such events involves platform-specific hooks, those hooks are
1213 * called automatically by this routine.
1214 *
1215 * Devices with legacy power management (no standard PCI PM capabilities)
1216 * always require such platform hooks.
1217 *
1218 * RETURN VALUE:
1219 * 0 is returned on success
1220 * -EINVAL is returned if device is not supposed to wake up the system
1221 * Error code depending on the platform is returned if both the platform and
1222 * the native mechanism fail to enable the generation of wake-up events
1223 */
1224 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1225 {
1226 int ret = 0;
1227
1228 if (enable && !device_may_wakeup(&dev->dev))
1229 return -EINVAL;
1230
1231 /* Don't do the same thing twice in a row for one device. */
1232 if (!!enable == !!dev->wakeup_prepared)
1233 return 0;
1234
1235 /*
1236 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1237 * Anderson we should be doing PME# wake enable followed by ACPI wake
1238 * enable. To disable wake-up we call the platform first, for symmetry.
1239 */
1240
1241 if (enable) {
1242 int error;
1243
1244 if (pci_pme_capable(dev, state))
1245 pci_pme_active(dev, true);
1246 else
1247 ret = 1;
1248 error = platform_pci_sleep_wake(dev, true);
1249 if (ret)
1250 ret = error;
1251 if (!ret)
1252 dev->wakeup_prepared = true;
1253 } else {
1254 platform_pci_sleep_wake(dev, false);
1255 pci_pme_active(dev, false);
1256 dev->wakeup_prepared = false;
1257 }
1258
1259 return ret;
1260 }
1261
1262 /**
1263 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1264 * @dev: PCI device to prepare
1265 * @enable: True to enable wake-up event generation; false to disable
1266 *
1267 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1268 * and this function allows them to set that up cleanly - pci_enable_wake()
1269 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1270 * ordering constraints.
1271 *
1272 * This function only returns error code if the device is not capable of
1273 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1274 * enable wake-up power for it.
1275 */
1276 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1277 {
1278 return pci_pme_capable(dev, PCI_D3cold) ?
1279 pci_enable_wake(dev, PCI_D3cold, enable) :
1280 pci_enable_wake(dev, PCI_D3hot, enable);
1281 }
1282
1283 /**
1284 * pci_target_state - find an appropriate low power state for a given PCI dev
1285 * @dev: PCI device
1286 *
1287 * Use underlying platform code to find a supported low power state for @dev.
1288 * If the platform can't manage @dev, return the deepest state from which it
1289 * can generate wake events, based on any available PME info.
1290 */
1291 pci_power_t pci_target_state(struct pci_dev *dev)
1292 {
1293 pci_power_t target_state = PCI_D3hot;
1294
1295 if (platform_pci_power_manageable(dev)) {
1296 /*
1297 * Call the platform to choose the target state of the device
1298 * and enable wake-up from this state if supported.
1299 */
1300 pci_power_t state = platform_pci_choose_state(dev);
1301
1302 switch (state) {
1303 case PCI_POWER_ERROR:
1304 case PCI_UNKNOWN:
1305 break;
1306 case PCI_D1:
1307 case PCI_D2:
1308 if (pci_no_d1d2(dev))
1309 break;
1310 default:
1311 target_state = state;
1312 }
1313 } else if (!dev->pm_cap) {
1314 target_state = PCI_D0;
1315 } else if (device_may_wakeup(&dev->dev)) {
1316 /*
1317 * Find the deepest state from which the device can generate
1318 * wake-up events, make it the target state and enable device
1319 * to generate PME#.
1320 */
1321 if (dev->pme_support) {
1322 while (target_state
1323 && !(dev->pme_support & (1 << target_state)))
1324 target_state--;
1325 }
1326 }
1327
1328 return target_state;
1329 }
1330
1331 /**
1332 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1333 * @dev: Device to handle.
1334 *
1335 * Choose the power state appropriate for the device depending on whether
1336 * it can wake up the system and/or is power manageable by the platform
1337 * (PCI_D3hot is the default) and put the device into that state.
1338 */
1339 int pci_prepare_to_sleep(struct pci_dev *dev)
1340 {
1341 pci_power_t target_state = pci_target_state(dev);
1342 int error;
1343
1344 if (target_state == PCI_POWER_ERROR)
1345 return -EIO;
1346
1347 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1348
1349 error = pci_set_power_state(dev, target_state);
1350
1351 if (error)
1352 pci_enable_wake(dev, target_state, false);
1353
1354 return error;
1355 }
1356
1357 /**
1358 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1359 * @dev: Device to handle.
1360 *
1361 * Disable device's sytem wake-up capability and put it into D0.
1362 */
1363 int pci_back_from_sleep(struct pci_dev *dev)
1364 {
1365 pci_enable_wake(dev, PCI_D0, false);
1366 return pci_set_power_state(dev, PCI_D0);
1367 }
1368
1369 /**
1370 * pci_pm_init - Initialize PM functions of given PCI device
1371 * @dev: PCI device to handle.
1372 */
1373 void pci_pm_init(struct pci_dev *dev)
1374 {
1375 int pm;
1376 u16 pmc;
1377
1378 dev->wakeup_prepared = false;
1379 dev->pm_cap = 0;
1380
1381 /* find PCI PM capability in list */
1382 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1383 if (!pm)
1384 return;
1385 /* Check device's ability to generate PME# */
1386 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1387
1388 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1389 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1390 pmc & PCI_PM_CAP_VER_MASK);
1391 return;
1392 }
1393
1394 dev->pm_cap = pm;
1395
1396 dev->d1_support = false;
1397 dev->d2_support = false;
1398 if (!pci_no_d1d2(dev)) {
1399 if (pmc & PCI_PM_CAP_D1)
1400 dev->d1_support = true;
1401 if (pmc & PCI_PM_CAP_D2)
1402 dev->d2_support = true;
1403
1404 if (dev->d1_support || dev->d2_support)
1405 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1406 dev->d1_support ? " D1" : "",
1407 dev->d2_support ? " D2" : "");
1408 }
1409
1410 pmc &= PCI_PM_CAP_PME_MASK;
1411 if (pmc) {
1412 dev_info(&dev->dev, "PME# supported from%s%s%s%s%s\n",
1413 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1414 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1415 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1416 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1417 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1418 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1419 /*
1420 * Make device's PM flags reflect the wake-up capability, but
1421 * let the user space enable it to wake up the system as needed.
1422 */
1423 device_set_wakeup_capable(&dev->dev, true);
1424 device_set_wakeup_enable(&dev->dev, false);
1425 /* Disable the PME# generation functionality */
1426 pci_pme_active(dev, false);
1427 } else {
1428 dev->pme_support = 0;
1429 }
1430 }
1431
1432 /**
1433 * platform_pci_wakeup_init - init platform wakeup if present
1434 * @dev: PCI device
1435 *
1436 * Some devices don't have PCI PM caps but can still generate wakeup
1437 * events through platform methods (like ACPI events). If @dev supports
1438 * platform wakeup events, set the device flag to indicate as much. This
1439 * may be redundant if the device also supports PCI PM caps, but double
1440 * initialization should be safe in that case.
1441 */
1442 void platform_pci_wakeup_init(struct pci_dev *dev)
1443 {
1444 if (!platform_pci_can_wakeup(dev))
1445 return;
1446
1447 device_set_wakeup_capable(&dev->dev, true);
1448 device_set_wakeup_enable(&dev->dev, false);
1449 platform_pci_sleep_wake(dev, false);
1450 }
1451
1452 /**
1453 * pci_add_save_buffer - allocate buffer for saving given capability registers
1454 * @dev: the PCI device
1455 * @cap: the capability to allocate the buffer for
1456 * @size: requested size of the buffer
1457 */
1458 static int pci_add_cap_save_buffer(
1459 struct pci_dev *dev, char cap, unsigned int size)
1460 {
1461 int pos;
1462 struct pci_cap_saved_state *save_state;
1463
1464 pos = pci_find_capability(dev, cap);
1465 if (pos <= 0)
1466 return 0;
1467
1468 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1469 if (!save_state)
1470 return -ENOMEM;
1471
1472 save_state->cap_nr = cap;
1473 pci_add_saved_cap(dev, save_state);
1474
1475 return 0;
1476 }
1477
1478 /**
1479 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1480 * @dev: the PCI device
1481 */
1482 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1483 {
1484 int error;
1485
1486 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1487 PCI_EXP_SAVE_REGS * sizeof(u16));
1488 if (error)
1489 dev_err(&dev->dev,
1490 "unable to preallocate PCI Express save buffer\n");
1491
1492 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1493 if (error)
1494 dev_err(&dev->dev,
1495 "unable to preallocate PCI-X save buffer\n");
1496 }
1497
1498 /**
1499 * pci_enable_ari - enable ARI forwarding if hardware support it
1500 * @dev: the PCI device
1501 */
1502 void pci_enable_ari(struct pci_dev *dev)
1503 {
1504 int pos;
1505 u32 cap;
1506 u16 ctrl;
1507 struct pci_dev *bridge;
1508
1509 if (!dev->is_pcie || dev->devfn)
1510 return;
1511
1512 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1513 if (!pos)
1514 return;
1515
1516 bridge = dev->bus->self;
1517 if (!bridge || !bridge->is_pcie)
1518 return;
1519
1520 pos = pci_find_capability(bridge, PCI_CAP_ID_EXP);
1521 if (!pos)
1522 return;
1523
1524 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1525 if (!(cap & PCI_EXP_DEVCAP2_ARI))
1526 return;
1527
1528 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1529 ctrl |= PCI_EXP_DEVCTL2_ARI;
1530 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1531
1532 bridge->ari_enabled = 1;
1533 }
1534
1535 /**
1536 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1537 * @dev: the PCI device
1538 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1539 *
1540 * Perform INTx swizzling for a device behind one level of bridge. This is
1541 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1542 * behind bridges on add-in cards. For devices with ARI enabled, the slot
1543 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
1544 * the PCI Express Base Specification, Revision 2.1)
1545 */
1546 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1547 {
1548 int slot;
1549
1550 if (pci_ari_enabled(dev->bus))
1551 slot = 0;
1552 else
1553 slot = PCI_SLOT(dev->devfn);
1554
1555 return (((pin - 1) + slot) % 4) + 1;
1556 }
1557
1558 int
1559 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1560 {
1561 u8 pin;
1562
1563 pin = dev->pin;
1564 if (!pin)
1565 return -1;
1566
1567 while (!pci_is_root_bus(dev->bus)) {
1568 pin = pci_swizzle_interrupt_pin(dev, pin);
1569 dev = dev->bus->self;
1570 }
1571 *bridge = dev;
1572 return pin;
1573 }
1574
1575 /**
1576 * pci_common_swizzle - swizzle INTx all the way to root bridge
1577 * @dev: the PCI device
1578 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1579 *
1580 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
1581 * bridges all the way up to a PCI root bus.
1582 */
1583 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
1584 {
1585 u8 pin = *pinp;
1586
1587 while (!pci_is_root_bus(dev->bus)) {
1588 pin = pci_swizzle_interrupt_pin(dev, pin);
1589 dev = dev->bus->self;
1590 }
1591 *pinp = pin;
1592 return PCI_SLOT(dev->devfn);
1593 }
1594
1595 /**
1596 * pci_release_region - Release a PCI bar
1597 * @pdev: PCI device whose resources were previously reserved by pci_request_region
1598 * @bar: BAR to release
1599 *
1600 * Releases the PCI I/O and memory resources previously reserved by a
1601 * successful call to pci_request_region. Call this function only
1602 * after all use of the PCI regions has ceased.
1603 */
1604 void pci_release_region(struct pci_dev *pdev, int bar)
1605 {
1606 struct pci_devres *dr;
1607
1608 if (pci_resource_len(pdev, bar) == 0)
1609 return;
1610 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1611 release_region(pci_resource_start(pdev, bar),
1612 pci_resource_len(pdev, bar));
1613 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1614 release_mem_region(pci_resource_start(pdev, bar),
1615 pci_resource_len(pdev, bar));
1616
1617 dr = find_pci_dr(pdev);
1618 if (dr)
1619 dr->region_mask &= ~(1 << bar);
1620 }
1621
1622 /**
1623 * __pci_request_region - Reserved PCI I/O and memory resource
1624 * @pdev: PCI device whose resources are to be reserved
1625 * @bar: BAR to be reserved
1626 * @res_name: Name to be associated with resource.
1627 * @exclusive: whether the region access is exclusive or not
1628 *
1629 * Mark the PCI region associated with PCI device @pdev BR @bar as
1630 * being reserved by owner @res_name. Do not access any
1631 * address inside the PCI regions unless this call returns
1632 * successfully.
1633 *
1634 * If @exclusive is set, then the region is marked so that userspace
1635 * is explicitly not allowed to map the resource via /dev/mem or
1636 * sysfs MMIO access.
1637 *
1638 * Returns 0 on success, or %EBUSY on error. A warning
1639 * message is also printed on failure.
1640 */
1641 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1642 int exclusive)
1643 {
1644 struct pci_devres *dr;
1645
1646 if (pci_resource_len(pdev, bar) == 0)
1647 return 0;
1648
1649 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1650 if (!request_region(pci_resource_start(pdev, bar),
1651 pci_resource_len(pdev, bar), res_name))
1652 goto err_out;
1653 }
1654 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1655 if (!__request_mem_region(pci_resource_start(pdev, bar),
1656 pci_resource_len(pdev, bar), res_name,
1657 exclusive))
1658 goto err_out;
1659 }
1660
1661 dr = find_pci_dr(pdev);
1662 if (dr)
1663 dr->region_mask |= 1 << bar;
1664
1665 return 0;
1666
1667 err_out:
1668 dev_warn(&pdev->dev, "BAR %d: can't reserve %s region %pR\n",
1669 bar,
1670 pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem",
1671 &pdev->resource[bar]);
1672 return -EBUSY;
1673 }
1674
1675 /**
1676 * pci_request_region - Reserve PCI I/O and memory resource
1677 * @pdev: PCI device whose resources are to be reserved
1678 * @bar: BAR to be reserved
1679 * @res_name: Name to be associated with resource
1680 *
1681 * Mark the PCI region associated with PCI device @pdev BAR @bar as
1682 * being reserved by owner @res_name. Do not access any
1683 * address inside the PCI regions unless this call returns
1684 * successfully.
1685 *
1686 * Returns 0 on success, or %EBUSY on error. A warning
1687 * message is also printed on failure.
1688 */
1689 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1690 {
1691 return __pci_request_region(pdev, bar, res_name, 0);
1692 }
1693
1694 /**
1695 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
1696 * @pdev: PCI device whose resources are to be reserved
1697 * @bar: BAR to be reserved
1698 * @res_name: Name to be associated with resource.
1699 *
1700 * Mark the PCI region associated with PCI device @pdev BR @bar as
1701 * being reserved by owner @res_name. Do not access any
1702 * address inside the PCI regions unless this call returns
1703 * successfully.
1704 *
1705 * Returns 0 on success, or %EBUSY on error. A warning
1706 * message is also printed on failure.
1707 *
1708 * The key difference that _exclusive makes it that userspace is
1709 * explicitly not allowed to map the resource via /dev/mem or
1710 * sysfs.
1711 */
1712 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
1713 {
1714 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
1715 }
1716 /**
1717 * pci_release_selected_regions - Release selected PCI I/O and memory resources
1718 * @pdev: PCI device whose resources were previously reserved
1719 * @bars: Bitmask of BARs to be released
1720 *
1721 * Release selected PCI I/O and memory resources previously reserved.
1722 * Call this function only after all use of the PCI regions has ceased.
1723 */
1724 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1725 {
1726 int i;
1727
1728 for (i = 0; i < 6; i++)
1729 if (bars & (1 << i))
1730 pci_release_region(pdev, i);
1731 }
1732
1733 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
1734 const char *res_name, int excl)
1735 {
1736 int i;
1737
1738 for (i = 0; i < 6; i++)
1739 if (bars & (1 << i))
1740 if (__pci_request_region(pdev, i, res_name, excl))
1741 goto err_out;
1742 return 0;
1743
1744 err_out:
1745 while(--i >= 0)
1746 if (bars & (1 << i))
1747 pci_release_region(pdev, i);
1748
1749 return -EBUSY;
1750 }
1751
1752
1753 /**
1754 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1755 * @pdev: PCI device whose resources are to be reserved
1756 * @bars: Bitmask of BARs to be requested
1757 * @res_name: Name to be associated with resource
1758 */
1759 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1760 const char *res_name)
1761 {
1762 return __pci_request_selected_regions(pdev, bars, res_name, 0);
1763 }
1764
1765 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
1766 int bars, const char *res_name)
1767 {
1768 return __pci_request_selected_regions(pdev, bars, res_name,
1769 IORESOURCE_EXCLUSIVE);
1770 }
1771
1772 /**
1773 * pci_release_regions - Release reserved PCI I/O and memory resources
1774 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
1775 *
1776 * Releases all PCI I/O and memory resources previously reserved by a
1777 * successful call to pci_request_regions. Call this function only
1778 * after all use of the PCI regions has ceased.
1779 */
1780
1781 void pci_release_regions(struct pci_dev *pdev)
1782 {
1783 pci_release_selected_regions(pdev, (1 << 6) - 1);
1784 }
1785
1786 /**
1787 * pci_request_regions - Reserved PCI I/O and memory resources
1788 * @pdev: PCI device whose resources are to be reserved
1789 * @res_name: Name to be associated with resource.
1790 *
1791 * Mark all PCI regions associated with PCI device @pdev as
1792 * being reserved by owner @res_name. Do not access any
1793 * address inside the PCI regions unless this call returns
1794 * successfully.
1795 *
1796 * Returns 0 on success, or %EBUSY on error. A warning
1797 * message is also printed on failure.
1798 */
1799 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1800 {
1801 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1802 }
1803
1804 /**
1805 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
1806 * @pdev: PCI device whose resources are to be reserved
1807 * @res_name: Name to be associated with resource.
1808 *
1809 * Mark all PCI regions associated with PCI device @pdev as
1810 * being reserved by owner @res_name. Do not access any
1811 * address inside the PCI regions unless this call returns
1812 * successfully.
1813 *
1814 * pci_request_regions_exclusive() will mark the region so that
1815 * /dev/mem and the sysfs MMIO access will not be allowed.
1816 *
1817 * Returns 0 on success, or %EBUSY on error. A warning
1818 * message is also printed on failure.
1819 */
1820 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
1821 {
1822 return pci_request_selected_regions_exclusive(pdev,
1823 ((1 << 6) - 1), res_name);
1824 }
1825
1826 static void __pci_set_master(struct pci_dev *dev, bool enable)
1827 {
1828 u16 old_cmd, cmd;
1829
1830 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
1831 if (enable)
1832 cmd = old_cmd | PCI_COMMAND_MASTER;
1833 else
1834 cmd = old_cmd & ~PCI_COMMAND_MASTER;
1835 if (cmd != old_cmd) {
1836 dev_dbg(&dev->dev, "%s bus mastering\n",
1837 enable ? "enabling" : "disabling");
1838 pci_write_config_word(dev, PCI_COMMAND, cmd);
1839 }
1840 dev->is_busmaster = enable;
1841 }
1842
1843 /**
1844 * pci_set_master - enables bus-mastering for device dev
1845 * @dev: the PCI device to enable
1846 *
1847 * Enables bus-mastering on the device and calls pcibios_set_master()
1848 * to do the needed arch specific settings.
1849 */
1850 void pci_set_master(struct pci_dev *dev)
1851 {
1852 __pci_set_master(dev, true);
1853 pcibios_set_master(dev);
1854 }
1855
1856 /**
1857 * pci_clear_master - disables bus-mastering for device dev
1858 * @dev: the PCI device to disable
1859 */
1860 void pci_clear_master(struct pci_dev *dev)
1861 {
1862 __pci_set_master(dev, false);
1863 }
1864
1865 #ifdef PCI_DISABLE_MWI
1866 int pci_set_mwi(struct pci_dev *dev)
1867 {
1868 return 0;
1869 }
1870
1871 int pci_try_set_mwi(struct pci_dev *dev)
1872 {
1873 return 0;
1874 }
1875
1876 void pci_clear_mwi(struct pci_dev *dev)
1877 {
1878 }
1879
1880 #else
1881
1882 #ifndef PCI_CACHE_LINE_BYTES
1883 #define PCI_CACHE_LINE_BYTES L1_CACHE_BYTES
1884 #endif
1885
1886 /* This can be overridden by arch code. */
1887 /* Don't forget this is measured in 32-bit words, not bytes */
1888 u8 pci_cache_line_size = PCI_CACHE_LINE_BYTES / 4;
1889
1890 /**
1891 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
1892 * @dev: the PCI device for which MWI is to be enabled
1893 *
1894 * Helper function for pci_set_mwi.
1895 * Originally copied from drivers/net/acenic.c.
1896 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
1897 *
1898 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1899 */
1900 static int
1901 pci_set_cacheline_size(struct pci_dev *dev)
1902 {
1903 u8 cacheline_size;
1904
1905 if (!pci_cache_line_size)
1906 return -EINVAL; /* The system doesn't support MWI. */
1907
1908 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
1909 equal to or multiple of the right value. */
1910 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1911 if (cacheline_size >= pci_cache_line_size &&
1912 (cacheline_size % pci_cache_line_size) == 0)
1913 return 0;
1914
1915 /* Write the correct value. */
1916 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
1917 /* Read it back. */
1918 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1919 if (cacheline_size == pci_cache_line_size)
1920 return 0;
1921
1922 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
1923 "supported\n", pci_cache_line_size << 2);
1924
1925 return -EINVAL;
1926 }
1927
1928 /**
1929 * pci_set_mwi - enables memory-write-invalidate PCI transaction
1930 * @dev: the PCI device for which MWI is enabled
1931 *
1932 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1933 *
1934 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1935 */
1936 int
1937 pci_set_mwi(struct pci_dev *dev)
1938 {
1939 int rc;
1940 u16 cmd;
1941
1942 rc = pci_set_cacheline_size(dev);
1943 if (rc)
1944 return rc;
1945
1946 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1947 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
1948 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1949 cmd |= PCI_COMMAND_INVALIDATE;
1950 pci_write_config_word(dev, PCI_COMMAND, cmd);
1951 }
1952
1953 return 0;
1954 }
1955
1956 /**
1957 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
1958 * @dev: the PCI device for which MWI is enabled
1959 *
1960 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1961 * Callers are not required to check the return value.
1962 *
1963 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1964 */
1965 int pci_try_set_mwi(struct pci_dev *dev)
1966 {
1967 int rc = pci_set_mwi(dev);
1968 return rc;
1969 }
1970
1971 /**
1972 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
1973 * @dev: the PCI device to disable
1974 *
1975 * Disables PCI Memory-Write-Invalidate transaction on the device
1976 */
1977 void
1978 pci_clear_mwi(struct pci_dev *dev)
1979 {
1980 u16 cmd;
1981
1982 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1983 if (cmd & PCI_COMMAND_INVALIDATE) {
1984 cmd &= ~PCI_COMMAND_INVALIDATE;
1985 pci_write_config_word(dev, PCI_COMMAND, cmd);
1986 }
1987 }
1988 #endif /* ! PCI_DISABLE_MWI */
1989
1990 /**
1991 * pci_intx - enables/disables PCI INTx for device dev
1992 * @pdev: the PCI device to operate on
1993 * @enable: boolean: whether to enable or disable PCI INTx
1994 *
1995 * Enables/disables PCI INTx for device dev
1996 */
1997 void
1998 pci_intx(struct pci_dev *pdev, int enable)
1999 {
2000 u16 pci_command, new;
2001
2002 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2003
2004 if (enable) {
2005 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2006 } else {
2007 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2008 }
2009
2010 if (new != pci_command) {
2011 struct pci_devres *dr;
2012
2013 pci_write_config_word(pdev, PCI_COMMAND, new);
2014
2015 dr = find_pci_dr(pdev);
2016 if (dr && !dr->restore_intx) {
2017 dr->restore_intx = 1;
2018 dr->orig_intx = !enable;
2019 }
2020 }
2021 }
2022
2023 /**
2024 * pci_msi_off - disables any msi or msix capabilities
2025 * @dev: the PCI device to operate on
2026 *
2027 * If you want to use msi see pci_enable_msi and friends.
2028 * This is a lower level primitive that allows us to disable
2029 * msi operation at the device level.
2030 */
2031 void pci_msi_off(struct pci_dev *dev)
2032 {
2033 int pos;
2034 u16 control;
2035
2036 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2037 if (pos) {
2038 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2039 control &= ~PCI_MSI_FLAGS_ENABLE;
2040 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2041 }
2042 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2043 if (pos) {
2044 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2045 control &= ~PCI_MSIX_FLAGS_ENABLE;
2046 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2047 }
2048 }
2049
2050 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
2051 /*
2052 * These can be overridden by arch-specific implementations
2053 */
2054 int
2055 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
2056 {
2057 if (!pci_dma_supported(dev, mask))
2058 return -EIO;
2059
2060 dev->dma_mask = mask;
2061
2062 return 0;
2063 }
2064
2065 int
2066 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
2067 {
2068 if (!pci_dma_supported(dev, mask))
2069 return -EIO;
2070
2071 dev->dev.coherent_dma_mask = mask;
2072
2073 return 0;
2074 }
2075 #endif
2076
2077 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
2078 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2079 {
2080 return dma_set_max_seg_size(&dev->dev, size);
2081 }
2082 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2083 #endif
2084
2085 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
2086 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2087 {
2088 return dma_set_seg_boundary(&dev->dev, mask);
2089 }
2090 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2091 #endif
2092
2093 static int pcie_flr(struct pci_dev *dev, int probe)
2094 {
2095 int i;
2096 int pos;
2097 u32 cap;
2098 u16 status;
2099
2100 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
2101 if (!pos)
2102 return -ENOTTY;
2103
2104 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
2105 if (!(cap & PCI_EXP_DEVCAP_FLR))
2106 return -ENOTTY;
2107
2108 if (probe)
2109 return 0;
2110
2111 /* Wait for Transaction Pending bit clean */
2112 for (i = 0; i < 4; i++) {
2113 if (i)
2114 msleep((1 << (i - 1)) * 100);
2115
2116 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
2117 if (!(status & PCI_EXP_DEVSTA_TRPND))
2118 goto clear;
2119 }
2120
2121 dev_err(&dev->dev, "transaction is not cleared; "
2122 "proceeding with reset anyway\n");
2123
2124 clear:
2125 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL,
2126 PCI_EXP_DEVCTL_BCR_FLR);
2127 msleep(100);
2128
2129 return 0;
2130 }
2131
2132 static int pci_af_flr(struct pci_dev *dev, int probe)
2133 {
2134 int i;
2135 int pos;
2136 u8 cap;
2137 u8 status;
2138
2139 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
2140 if (!pos)
2141 return -ENOTTY;
2142
2143 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
2144 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2145 return -ENOTTY;
2146
2147 if (probe)
2148 return 0;
2149
2150 /* Wait for Transaction Pending bit clean */
2151 for (i = 0; i < 4; i++) {
2152 if (i)
2153 msleep((1 << (i - 1)) * 100);
2154
2155 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
2156 if (!(status & PCI_AF_STATUS_TP))
2157 goto clear;
2158 }
2159
2160 dev_err(&dev->dev, "transaction is not cleared; "
2161 "proceeding with reset anyway\n");
2162
2163 clear:
2164 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2165 msleep(100);
2166
2167 return 0;
2168 }
2169
2170 static int pci_pm_reset(struct pci_dev *dev, int probe)
2171 {
2172 u16 csr;
2173
2174 if (!dev->pm_cap)
2175 return -ENOTTY;
2176
2177 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
2178 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
2179 return -ENOTTY;
2180
2181 if (probe)
2182 return 0;
2183
2184 if (dev->current_state != PCI_D0)
2185 return -EINVAL;
2186
2187 csr &= ~PCI_PM_CTRL_STATE_MASK;
2188 csr |= PCI_D3hot;
2189 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2190 msleep(pci_pm_d3_delay);
2191
2192 csr &= ~PCI_PM_CTRL_STATE_MASK;
2193 csr |= PCI_D0;
2194 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2195 msleep(pci_pm_d3_delay);
2196
2197 return 0;
2198 }
2199
2200 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
2201 {
2202 u16 ctrl;
2203 struct pci_dev *pdev;
2204
2205 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
2206 return -ENOTTY;
2207
2208 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
2209 if (pdev != dev)
2210 return -ENOTTY;
2211
2212 if (probe)
2213 return 0;
2214
2215 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
2216 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
2217 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2218 msleep(100);
2219
2220 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
2221 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2222 msleep(100);
2223
2224 return 0;
2225 }
2226
2227 static int pci_dev_reset(struct pci_dev *dev, int probe)
2228 {
2229 int rc;
2230
2231 might_sleep();
2232
2233 if (!probe) {
2234 pci_block_user_cfg_access(dev);
2235 /* block PM suspend, driver probe, etc. */
2236 down(&dev->dev.sem);
2237 }
2238
2239 rc = pcie_flr(dev, probe);
2240 if (rc != -ENOTTY)
2241 goto done;
2242
2243 rc = pci_af_flr(dev, probe);
2244 if (rc != -ENOTTY)
2245 goto done;
2246
2247 rc = pci_pm_reset(dev, probe);
2248 if (rc != -ENOTTY)
2249 goto done;
2250
2251 rc = pci_parent_bus_reset(dev, probe);
2252 done:
2253 if (!probe) {
2254 up(&dev->dev.sem);
2255 pci_unblock_user_cfg_access(dev);
2256 }
2257
2258 return rc;
2259 }
2260
2261 /**
2262 * __pci_reset_function - reset a PCI device function
2263 * @dev: PCI device to reset
2264 *
2265 * Some devices allow an individual function to be reset without affecting
2266 * other functions in the same device. The PCI device must be responsive
2267 * to PCI config space in order to use this function.
2268 *
2269 * The device function is presumed to be unused when this function is called.
2270 * Resetting the device will make the contents of PCI configuration space
2271 * random, so any caller of this must be prepared to reinitialise the
2272 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
2273 * etc.
2274 *
2275 * Returns 0 if the device function was successfully reset or negative if the
2276 * device doesn't support resetting a single function.
2277 */
2278 int __pci_reset_function(struct pci_dev *dev)
2279 {
2280 return pci_dev_reset(dev, 0);
2281 }
2282 EXPORT_SYMBOL_GPL(__pci_reset_function);
2283
2284 /**
2285 * pci_probe_reset_function - check whether the device can be safely reset
2286 * @dev: PCI device to reset
2287 *
2288 * Some devices allow an individual function to be reset without affecting
2289 * other functions in the same device. The PCI device must be responsive
2290 * to PCI config space in order to use this function.
2291 *
2292 * Returns 0 if the device function can be reset or negative if the
2293 * device doesn't support resetting a single function.
2294 */
2295 int pci_probe_reset_function(struct pci_dev *dev)
2296 {
2297 return pci_dev_reset(dev, 1);
2298 }
2299
2300 /**
2301 * pci_reset_function - quiesce and reset a PCI device function
2302 * @dev: PCI device to reset
2303 *
2304 * Some devices allow an individual function to be reset without affecting
2305 * other functions in the same device. The PCI device must be responsive
2306 * to PCI config space in order to use this function.
2307 *
2308 * This function does not just reset the PCI portion of a device, but
2309 * clears all the state associated with the device. This function differs
2310 * from __pci_reset_function in that it saves and restores device state
2311 * over the reset.
2312 *
2313 * Returns 0 if the device function was successfully reset or negative if the
2314 * device doesn't support resetting a single function.
2315 */
2316 int pci_reset_function(struct pci_dev *dev)
2317 {
2318 int rc;
2319
2320 rc = pci_dev_reset(dev, 1);
2321 if (rc)
2322 return rc;
2323
2324 pci_save_state(dev);
2325
2326 /*
2327 * both INTx and MSI are disabled after the Interrupt Disable bit
2328 * is set and the Bus Master bit is cleared.
2329 */
2330 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2331
2332 rc = pci_dev_reset(dev, 0);
2333
2334 pci_restore_state(dev);
2335
2336 return rc;
2337 }
2338 EXPORT_SYMBOL_GPL(pci_reset_function);
2339
2340 /**
2341 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2342 * @dev: PCI device to query
2343 *
2344 * Returns mmrbc: maximum designed memory read count in bytes
2345 * or appropriate error value.
2346 */
2347 int pcix_get_max_mmrbc(struct pci_dev *dev)
2348 {
2349 int err, cap;
2350 u32 stat;
2351
2352 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2353 if (!cap)
2354 return -EINVAL;
2355
2356 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2357 if (err)
2358 return -EINVAL;
2359
2360 return (stat & PCI_X_STATUS_MAX_READ) >> 12;
2361 }
2362 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2363
2364 /**
2365 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2366 * @dev: PCI device to query
2367 *
2368 * Returns mmrbc: maximum memory read count in bytes
2369 * or appropriate error value.
2370 */
2371 int pcix_get_mmrbc(struct pci_dev *dev)
2372 {
2373 int ret, cap;
2374 u32 cmd;
2375
2376 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2377 if (!cap)
2378 return -EINVAL;
2379
2380 ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2381 if (!ret)
2382 ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2383
2384 return ret;
2385 }
2386 EXPORT_SYMBOL(pcix_get_mmrbc);
2387
2388 /**
2389 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2390 * @dev: PCI device to query
2391 * @mmrbc: maximum memory read count in bytes
2392 * valid values are 512, 1024, 2048, 4096
2393 *
2394 * If possible sets maximum memory read byte count, some bridges have erratas
2395 * that prevent this.
2396 */
2397 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2398 {
2399 int cap, err = -EINVAL;
2400 u32 stat, cmd, v, o;
2401
2402 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2403 goto out;
2404
2405 v = ffs(mmrbc) - 10;
2406
2407 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2408 if (!cap)
2409 goto out;
2410
2411 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2412 if (err)
2413 goto out;
2414
2415 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2416 return -E2BIG;
2417
2418 err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2419 if (err)
2420 goto out;
2421
2422 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2423 if (o != v) {
2424 if (v > o && dev->bus &&
2425 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2426 return -EIO;
2427
2428 cmd &= ~PCI_X_CMD_MAX_READ;
2429 cmd |= v << 2;
2430 err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
2431 }
2432 out:
2433 return err;
2434 }
2435 EXPORT_SYMBOL(pcix_set_mmrbc);
2436
2437 /**
2438 * pcie_get_readrq - get PCI Express read request size
2439 * @dev: PCI device to query
2440 *
2441 * Returns maximum memory read request in bytes
2442 * or appropriate error value.
2443 */
2444 int pcie_get_readrq(struct pci_dev *dev)
2445 {
2446 int ret, cap;
2447 u16 ctl;
2448
2449 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2450 if (!cap)
2451 return -EINVAL;
2452
2453 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2454 if (!ret)
2455 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2456
2457 return ret;
2458 }
2459 EXPORT_SYMBOL(pcie_get_readrq);
2460
2461 /**
2462 * pcie_set_readrq - set PCI Express maximum memory read request
2463 * @dev: PCI device to query
2464 * @rq: maximum memory read count in bytes
2465 * valid values are 128, 256, 512, 1024, 2048, 4096
2466 *
2467 * If possible sets maximum read byte count
2468 */
2469 int pcie_set_readrq(struct pci_dev *dev, int rq)
2470 {
2471 int cap, err = -EINVAL;
2472 u16 ctl, v;
2473
2474 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2475 goto out;
2476
2477 v = (ffs(rq) - 8) << 12;
2478
2479 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2480 if (!cap)
2481 goto out;
2482
2483 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2484 if (err)
2485 goto out;
2486
2487 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2488 ctl &= ~PCI_EXP_DEVCTL_READRQ;
2489 ctl |= v;
2490 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2491 }
2492
2493 out:
2494 return err;
2495 }
2496 EXPORT_SYMBOL(pcie_set_readrq);
2497
2498 /**
2499 * pci_select_bars - Make BAR mask from the type of resource
2500 * @dev: the PCI device for which BAR mask is made
2501 * @flags: resource type mask to be selected
2502 *
2503 * This helper routine makes bar mask from the type of resource.
2504 */
2505 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2506 {
2507 int i, bars = 0;
2508 for (i = 0; i < PCI_NUM_RESOURCES; i++)
2509 if (pci_resource_flags(dev, i) & flags)
2510 bars |= (1 << i);
2511 return bars;
2512 }
2513
2514 /**
2515 * pci_resource_bar - get position of the BAR associated with a resource
2516 * @dev: the PCI device
2517 * @resno: the resource number
2518 * @type: the BAR type to be filled in
2519 *
2520 * Returns BAR position in config space, or 0 if the BAR is invalid.
2521 */
2522 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2523 {
2524 int reg;
2525
2526 if (resno < PCI_ROM_RESOURCE) {
2527 *type = pci_bar_unknown;
2528 return PCI_BASE_ADDRESS_0 + 4 * resno;
2529 } else if (resno == PCI_ROM_RESOURCE) {
2530 *type = pci_bar_mem32;
2531 return dev->rom_base_reg;
2532 } else if (resno < PCI_BRIDGE_RESOURCES) {
2533 /* device specific resource */
2534 reg = pci_iov_resource_bar(dev, resno, type);
2535 if (reg)
2536 return reg;
2537 }
2538
2539 dev_err(&dev->dev, "BAR: invalid resource #%d\n", resno);
2540 return 0;
2541 }
2542
2543 /**
2544 * pci_set_vga_state - set VGA decode state on device and parents if requested
2545 * @dev the PCI device
2546 * @decode - true = enable decoding, false = disable decoding
2547 * @command_bits PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
2548 * @change_bridge - traverse ancestors and change bridges
2549 */
2550 int pci_set_vga_state(struct pci_dev *dev, bool decode,
2551 unsigned int command_bits, bool change_bridge)
2552 {
2553 struct pci_bus *bus;
2554 struct pci_dev *bridge;
2555 u16 cmd;
2556
2557 WARN_ON(command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY));
2558
2559 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2560 if (decode == true)
2561 cmd |= command_bits;
2562 else
2563 cmd &= ~command_bits;
2564 pci_write_config_word(dev, PCI_COMMAND, cmd);
2565
2566 if (change_bridge == false)
2567 return 0;
2568
2569 bus = dev->bus;
2570 while (bus) {
2571 bridge = bus->self;
2572 if (bridge) {
2573 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
2574 &cmd);
2575 if (decode == true)
2576 cmd |= PCI_BRIDGE_CTL_VGA;
2577 else
2578 cmd &= ~PCI_BRIDGE_CTL_VGA;
2579 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
2580 cmd);
2581 }
2582 bus = bus->parent;
2583 }
2584 return 0;
2585 }
2586
2587 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
2588 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
2589 spinlock_t resource_alignment_lock = SPIN_LOCK_UNLOCKED;
2590
2591 /**
2592 * pci_specified_resource_alignment - get resource alignment specified by user.
2593 * @dev: the PCI device to get
2594 *
2595 * RETURNS: Resource alignment if it is specified.
2596 * Zero if it is not specified.
2597 */
2598 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
2599 {
2600 int seg, bus, slot, func, align_order, count;
2601 resource_size_t align = 0;
2602 char *p;
2603
2604 spin_lock(&resource_alignment_lock);
2605 p = resource_alignment_param;
2606 while (*p) {
2607 count = 0;
2608 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
2609 p[count] == '@') {
2610 p += count + 1;
2611 } else {
2612 align_order = -1;
2613 }
2614 if (sscanf(p, "%x:%x:%x.%x%n",
2615 &seg, &bus, &slot, &func, &count) != 4) {
2616 seg = 0;
2617 if (sscanf(p, "%x:%x.%x%n",
2618 &bus, &slot, &func, &count) != 3) {
2619 /* Invalid format */
2620 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
2621 p);
2622 break;
2623 }
2624 }
2625 p += count;
2626 if (seg == pci_domain_nr(dev->bus) &&
2627 bus == dev->bus->number &&
2628 slot == PCI_SLOT(dev->devfn) &&
2629 func == PCI_FUNC(dev->devfn)) {
2630 if (align_order == -1) {
2631 align = PAGE_SIZE;
2632 } else {
2633 align = 1 << align_order;
2634 }
2635 /* Found */
2636 break;
2637 }
2638 if (*p != ';' && *p != ',') {
2639 /* End of param or invalid format */
2640 break;
2641 }
2642 p++;
2643 }
2644 spin_unlock(&resource_alignment_lock);
2645 return align;
2646 }
2647
2648 /**
2649 * pci_is_reassigndev - check if specified PCI is target device to reassign
2650 * @dev: the PCI device to check
2651 *
2652 * RETURNS: non-zero for PCI device is a target device to reassign,
2653 * or zero is not.
2654 */
2655 int pci_is_reassigndev(struct pci_dev *dev)
2656 {
2657 return (pci_specified_resource_alignment(dev) != 0);
2658 }
2659
2660 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
2661 {
2662 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
2663 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
2664 spin_lock(&resource_alignment_lock);
2665 strncpy(resource_alignment_param, buf, count);
2666 resource_alignment_param[count] = '\0';
2667 spin_unlock(&resource_alignment_lock);
2668 return count;
2669 }
2670
2671 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
2672 {
2673 size_t count;
2674 spin_lock(&resource_alignment_lock);
2675 count = snprintf(buf, size, "%s", resource_alignment_param);
2676 spin_unlock(&resource_alignment_lock);
2677 return count;
2678 }
2679
2680 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
2681 {
2682 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
2683 }
2684
2685 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
2686 const char *buf, size_t count)
2687 {
2688 return pci_set_resource_alignment_param(buf, count);
2689 }
2690
2691 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
2692 pci_resource_alignment_store);
2693
2694 static int __init pci_resource_alignment_sysfs_init(void)
2695 {
2696 return bus_create_file(&pci_bus_type,
2697 &bus_attr_resource_alignment);
2698 }
2699
2700 late_initcall(pci_resource_alignment_sysfs_init);
2701
2702 static void __devinit pci_no_domains(void)
2703 {
2704 #ifdef CONFIG_PCI_DOMAINS
2705 pci_domains_supported = 0;
2706 #endif
2707 }
2708
2709 /**
2710 * pci_ext_cfg_enabled - can we access extended PCI config space?
2711 * @dev: The PCI device of the root bridge.
2712 *
2713 * Returns 1 if we can access PCI extended config space (offsets
2714 * greater than 0xff). This is the default implementation. Architecture
2715 * implementations can override this.
2716 */
2717 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
2718 {
2719 return 1;
2720 }
2721
2722 static int __devinit pci_init(void)
2723 {
2724 struct pci_dev *dev = NULL;
2725
2726 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2727 pci_fixup_device(pci_fixup_final, dev);
2728 }
2729
2730 return 0;
2731 }
2732
2733 static int __init pci_setup(char *str)
2734 {
2735 while (str) {
2736 char *k = strchr(str, ',');
2737 if (k)
2738 *k++ = 0;
2739 if (*str && (str = pcibios_setup(str)) && *str) {
2740 if (!strcmp(str, "nomsi")) {
2741 pci_no_msi();
2742 } else if (!strcmp(str, "noaer")) {
2743 pci_no_aer();
2744 } else if (!strcmp(str, "nodomains")) {
2745 pci_no_domains();
2746 } else if (!strncmp(str, "cbiosize=", 9)) {
2747 pci_cardbus_io_size = memparse(str + 9, &str);
2748 } else if (!strncmp(str, "cbmemsize=", 10)) {
2749 pci_cardbus_mem_size = memparse(str + 10, &str);
2750 } else if (!strncmp(str, "resource_alignment=", 19)) {
2751 pci_set_resource_alignment_param(str + 19,
2752 strlen(str + 19));
2753 } else if (!strncmp(str, "ecrc=", 5)) {
2754 pcie_ecrc_get_policy(str + 5);
2755 } else if (!strncmp(str, "hpiosize=", 9)) {
2756 pci_hotplug_io_size = memparse(str + 9, &str);
2757 } else if (!strncmp(str, "hpmemsize=", 10)) {
2758 pci_hotplug_mem_size = memparse(str + 10, &str);
2759 } else {
2760 printk(KERN_ERR "PCI: Unknown option `%s'\n",
2761 str);
2762 }
2763 }
2764 str = k;
2765 }
2766 return 0;
2767 }
2768 early_param("pci", pci_setup);
2769
2770 device_initcall(pci_init);
2771
2772 EXPORT_SYMBOL(pci_reenable_device);
2773 EXPORT_SYMBOL(pci_enable_device_io);
2774 EXPORT_SYMBOL(pci_enable_device_mem);
2775 EXPORT_SYMBOL(pci_enable_device);
2776 EXPORT_SYMBOL(pcim_enable_device);
2777 EXPORT_SYMBOL(pcim_pin_device);
2778 EXPORT_SYMBOL(pci_disable_device);
2779 EXPORT_SYMBOL(pci_find_capability);
2780 EXPORT_SYMBOL(pci_bus_find_capability);
2781 EXPORT_SYMBOL(pci_release_regions);
2782 EXPORT_SYMBOL(pci_request_regions);
2783 EXPORT_SYMBOL(pci_request_regions_exclusive);
2784 EXPORT_SYMBOL(pci_release_region);
2785 EXPORT_SYMBOL(pci_request_region);
2786 EXPORT_SYMBOL(pci_request_region_exclusive);
2787 EXPORT_SYMBOL(pci_release_selected_regions);
2788 EXPORT_SYMBOL(pci_request_selected_regions);
2789 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2790 EXPORT_SYMBOL(pci_set_master);
2791 EXPORT_SYMBOL(pci_clear_master);
2792 EXPORT_SYMBOL(pci_set_mwi);
2793 EXPORT_SYMBOL(pci_try_set_mwi);
2794 EXPORT_SYMBOL(pci_clear_mwi);
2795 EXPORT_SYMBOL_GPL(pci_intx);
2796 EXPORT_SYMBOL(pci_set_dma_mask);
2797 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
2798 EXPORT_SYMBOL(pci_assign_resource);
2799 EXPORT_SYMBOL(pci_find_parent_resource);
2800 EXPORT_SYMBOL(pci_select_bars);
2801
2802 EXPORT_SYMBOL(pci_set_power_state);
2803 EXPORT_SYMBOL(pci_save_state);
2804 EXPORT_SYMBOL(pci_restore_state);
2805 EXPORT_SYMBOL(pci_pme_capable);
2806 EXPORT_SYMBOL(pci_pme_active);
2807 EXPORT_SYMBOL(pci_enable_wake);
2808 EXPORT_SYMBOL(pci_wake_from_d3);
2809 EXPORT_SYMBOL(pci_target_state);
2810 EXPORT_SYMBOL(pci_prepare_to_sleep);
2811 EXPORT_SYMBOL(pci_back_from_sleep);
2812 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2813