]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/pci/pci.c
Merge branch 'drm-next-4.11' of git://people.freedesktop.org/~agd5f/linux into drm...
[mirror_ubuntu-bionic-kernel.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/delay.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/of.h>
16 #include <linux/of_pci.h>
17 #include <linux/pci.h>
18 #include <linux/pm.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/spinlock.h>
22 #include <linux/string.h>
23 #include <linux/log2.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/pm_wakeup.h>
26 #include <linux/interrupt.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
31 #include <asm/setup.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include "pci.h"
35
36 const char *pci_power_names[] = {
37 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
38 };
39 EXPORT_SYMBOL_GPL(pci_power_names);
40
41 int isa_dma_bridge_buggy;
42 EXPORT_SYMBOL(isa_dma_bridge_buggy);
43
44 int pci_pci_problems;
45 EXPORT_SYMBOL(pci_pci_problems);
46
47 unsigned int pci_pm_d3_delay;
48
49 static void pci_pme_list_scan(struct work_struct *work);
50
51 static LIST_HEAD(pci_pme_list);
52 static DEFINE_MUTEX(pci_pme_list_mutex);
53 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
54
55 struct pci_pme_device {
56 struct list_head list;
57 struct pci_dev *dev;
58 };
59
60 #define PME_TIMEOUT 1000 /* How long between PME checks */
61
62 static void pci_dev_d3_sleep(struct pci_dev *dev)
63 {
64 unsigned int delay = dev->d3_delay;
65
66 if (delay < pci_pm_d3_delay)
67 delay = pci_pm_d3_delay;
68
69 msleep(delay);
70 }
71
72 #ifdef CONFIG_PCI_DOMAINS
73 int pci_domains_supported = 1;
74 #endif
75
76 #define DEFAULT_CARDBUS_IO_SIZE (256)
77 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
78 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
79 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
80 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
81
82 #define DEFAULT_HOTPLUG_IO_SIZE (256)
83 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
84 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
85 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
86 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
87
88 #define DEFAULT_HOTPLUG_BUS_SIZE 1
89 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
90
91 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
92
93 /*
94 * The default CLS is used if arch didn't set CLS explicitly and not
95 * all pci devices agree on the same value. Arch can override either
96 * the dfl or actual value as it sees fit. Don't forget this is
97 * measured in 32-bit words, not bytes.
98 */
99 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
100 u8 pci_cache_line_size;
101
102 /*
103 * If we set up a device for bus mastering, we need to check the latency
104 * timer as certain BIOSes forget to set it properly.
105 */
106 unsigned int pcibios_max_latency = 255;
107
108 /* If set, the PCIe ARI capability will not be used. */
109 static bool pcie_ari_disabled;
110
111 /* Disable bridge_d3 for all PCIe ports */
112 static bool pci_bridge_d3_disable;
113 /* Force bridge_d3 for all PCIe ports */
114 static bool pci_bridge_d3_force;
115
116 static int __init pcie_port_pm_setup(char *str)
117 {
118 if (!strcmp(str, "off"))
119 pci_bridge_d3_disable = true;
120 else if (!strcmp(str, "force"))
121 pci_bridge_d3_force = true;
122 return 1;
123 }
124 __setup("pcie_port_pm=", pcie_port_pm_setup);
125
126 /**
127 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
128 * @bus: pointer to PCI bus structure to search
129 *
130 * Given a PCI bus, returns the highest PCI bus number present in the set
131 * including the given PCI bus and its list of child PCI buses.
132 */
133 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
134 {
135 struct pci_bus *tmp;
136 unsigned char max, n;
137
138 max = bus->busn_res.end;
139 list_for_each_entry(tmp, &bus->children, node) {
140 n = pci_bus_max_busnr(tmp);
141 if (n > max)
142 max = n;
143 }
144 return max;
145 }
146 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
147
148 #ifdef CONFIG_HAS_IOMEM
149 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
150 {
151 struct resource *res = &pdev->resource[bar];
152
153 /*
154 * Make sure the BAR is actually a memory resource, not an IO resource
155 */
156 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
157 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
158 return NULL;
159 }
160 return ioremap_nocache(res->start, resource_size(res));
161 }
162 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
163
164 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
165 {
166 /*
167 * Make sure the BAR is actually a memory resource, not an IO resource
168 */
169 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
170 WARN_ON(1);
171 return NULL;
172 }
173 return ioremap_wc(pci_resource_start(pdev, bar),
174 pci_resource_len(pdev, bar));
175 }
176 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
177 #endif
178
179
180 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
181 u8 pos, int cap, int *ttl)
182 {
183 u8 id;
184 u16 ent;
185
186 pci_bus_read_config_byte(bus, devfn, pos, &pos);
187
188 while ((*ttl)--) {
189 if (pos < 0x40)
190 break;
191 pos &= ~3;
192 pci_bus_read_config_word(bus, devfn, pos, &ent);
193
194 id = ent & 0xff;
195 if (id == 0xff)
196 break;
197 if (id == cap)
198 return pos;
199 pos = (ent >> 8);
200 }
201 return 0;
202 }
203
204 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
205 u8 pos, int cap)
206 {
207 int ttl = PCI_FIND_CAP_TTL;
208
209 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
210 }
211
212 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
213 {
214 return __pci_find_next_cap(dev->bus, dev->devfn,
215 pos + PCI_CAP_LIST_NEXT, cap);
216 }
217 EXPORT_SYMBOL_GPL(pci_find_next_capability);
218
219 static int __pci_bus_find_cap_start(struct pci_bus *bus,
220 unsigned int devfn, u8 hdr_type)
221 {
222 u16 status;
223
224 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
225 if (!(status & PCI_STATUS_CAP_LIST))
226 return 0;
227
228 switch (hdr_type) {
229 case PCI_HEADER_TYPE_NORMAL:
230 case PCI_HEADER_TYPE_BRIDGE:
231 return PCI_CAPABILITY_LIST;
232 case PCI_HEADER_TYPE_CARDBUS:
233 return PCI_CB_CAPABILITY_LIST;
234 }
235
236 return 0;
237 }
238
239 /**
240 * pci_find_capability - query for devices' capabilities
241 * @dev: PCI device to query
242 * @cap: capability code
243 *
244 * Tell if a device supports a given PCI capability.
245 * Returns the address of the requested capability structure within the
246 * device's PCI configuration space or 0 in case the device does not
247 * support it. Possible values for @cap:
248 *
249 * %PCI_CAP_ID_PM Power Management
250 * %PCI_CAP_ID_AGP Accelerated Graphics Port
251 * %PCI_CAP_ID_VPD Vital Product Data
252 * %PCI_CAP_ID_SLOTID Slot Identification
253 * %PCI_CAP_ID_MSI Message Signalled Interrupts
254 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
255 * %PCI_CAP_ID_PCIX PCI-X
256 * %PCI_CAP_ID_EXP PCI Express
257 */
258 int pci_find_capability(struct pci_dev *dev, int cap)
259 {
260 int pos;
261
262 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
263 if (pos)
264 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
265
266 return pos;
267 }
268 EXPORT_SYMBOL(pci_find_capability);
269
270 /**
271 * pci_bus_find_capability - query for devices' capabilities
272 * @bus: the PCI bus to query
273 * @devfn: PCI device to query
274 * @cap: capability code
275 *
276 * Like pci_find_capability() but works for pci devices that do not have a
277 * pci_dev structure set up yet.
278 *
279 * Returns the address of the requested capability structure within the
280 * device's PCI configuration space or 0 in case the device does not
281 * support it.
282 */
283 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
284 {
285 int pos;
286 u8 hdr_type;
287
288 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
289
290 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
291 if (pos)
292 pos = __pci_find_next_cap(bus, devfn, pos, cap);
293
294 return pos;
295 }
296 EXPORT_SYMBOL(pci_bus_find_capability);
297
298 /**
299 * pci_find_next_ext_capability - Find an extended capability
300 * @dev: PCI device to query
301 * @start: address at which to start looking (0 to start at beginning of list)
302 * @cap: capability code
303 *
304 * Returns the address of the next matching extended capability structure
305 * within the device's PCI configuration space or 0 if the device does
306 * not support it. Some capabilities can occur several times, e.g., the
307 * vendor-specific capability, and this provides a way to find them all.
308 */
309 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
310 {
311 u32 header;
312 int ttl;
313 int pos = PCI_CFG_SPACE_SIZE;
314
315 /* minimum 8 bytes per capability */
316 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
317
318 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
319 return 0;
320
321 if (start)
322 pos = start;
323
324 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
325 return 0;
326
327 /*
328 * If we have no capabilities, this is indicated by cap ID,
329 * cap version and next pointer all being 0.
330 */
331 if (header == 0)
332 return 0;
333
334 while (ttl-- > 0) {
335 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
336 return pos;
337
338 pos = PCI_EXT_CAP_NEXT(header);
339 if (pos < PCI_CFG_SPACE_SIZE)
340 break;
341
342 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
343 break;
344 }
345
346 return 0;
347 }
348 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
349
350 /**
351 * pci_find_ext_capability - Find an extended capability
352 * @dev: PCI device to query
353 * @cap: capability code
354 *
355 * Returns the address of the requested extended capability structure
356 * within the device's PCI configuration space or 0 if the device does
357 * not support it. Possible values for @cap:
358 *
359 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
360 * %PCI_EXT_CAP_ID_VC Virtual Channel
361 * %PCI_EXT_CAP_ID_DSN Device Serial Number
362 * %PCI_EXT_CAP_ID_PWR Power Budgeting
363 */
364 int pci_find_ext_capability(struct pci_dev *dev, int cap)
365 {
366 return pci_find_next_ext_capability(dev, 0, cap);
367 }
368 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
369
370 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
371 {
372 int rc, ttl = PCI_FIND_CAP_TTL;
373 u8 cap, mask;
374
375 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
376 mask = HT_3BIT_CAP_MASK;
377 else
378 mask = HT_5BIT_CAP_MASK;
379
380 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
381 PCI_CAP_ID_HT, &ttl);
382 while (pos) {
383 rc = pci_read_config_byte(dev, pos + 3, &cap);
384 if (rc != PCIBIOS_SUCCESSFUL)
385 return 0;
386
387 if ((cap & mask) == ht_cap)
388 return pos;
389
390 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
391 pos + PCI_CAP_LIST_NEXT,
392 PCI_CAP_ID_HT, &ttl);
393 }
394
395 return 0;
396 }
397 /**
398 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
399 * @dev: PCI device to query
400 * @pos: Position from which to continue searching
401 * @ht_cap: Hypertransport capability code
402 *
403 * To be used in conjunction with pci_find_ht_capability() to search for
404 * all capabilities matching @ht_cap. @pos should always be a value returned
405 * from pci_find_ht_capability().
406 *
407 * NB. To be 100% safe against broken PCI devices, the caller should take
408 * steps to avoid an infinite loop.
409 */
410 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
411 {
412 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
413 }
414 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
415
416 /**
417 * pci_find_ht_capability - query a device's Hypertransport capabilities
418 * @dev: PCI device to query
419 * @ht_cap: Hypertransport capability code
420 *
421 * Tell if a device supports a given Hypertransport capability.
422 * Returns an address within the device's PCI configuration space
423 * or 0 in case the device does not support the request capability.
424 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
425 * which has a Hypertransport capability matching @ht_cap.
426 */
427 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
428 {
429 int pos;
430
431 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
432 if (pos)
433 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
434
435 return pos;
436 }
437 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
438
439 /**
440 * pci_find_parent_resource - return resource region of parent bus of given region
441 * @dev: PCI device structure contains resources to be searched
442 * @res: child resource record for which parent is sought
443 *
444 * For given resource region of given device, return the resource
445 * region of parent bus the given region is contained in.
446 */
447 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
448 struct resource *res)
449 {
450 const struct pci_bus *bus = dev->bus;
451 struct resource *r;
452 int i;
453
454 pci_bus_for_each_resource(bus, r, i) {
455 if (!r)
456 continue;
457 if (res->start && resource_contains(r, res)) {
458
459 /*
460 * If the window is prefetchable but the BAR is
461 * not, the allocator made a mistake.
462 */
463 if (r->flags & IORESOURCE_PREFETCH &&
464 !(res->flags & IORESOURCE_PREFETCH))
465 return NULL;
466
467 /*
468 * If we're below a transparent bridge, there may
469 * be both a positively-decoded aperture and a
470 * subtractively-decoded region that contain the BAR.
471 * We want the positively-decoded one, so this depends
472 * on pci_bus_for_each_resource() giving us those
473 * first.
474 */
475 return r;
476 }
477 }
478 return NULL;
479 }
480 EXPORT_SYMBOL(pci_find_parent_resource);
481
482 /**
483 * pci_find_resource - Return matching PCI device resource
484 * @dev: PCI device to query
485 * @res: Resource to look for
486 *
487 * Goes over standard PCI resources (BARs) and checks if the given resource
488 * is partially or fully contained in any of them. In that case the
489 * matching resource is returned, %NULL otherwise.
490 */
491 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
492 {
493 int i;
494
495 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
496 struct resource *r = &dev->resource[i];
497
498 if (r->start && resource_contains(r, res))
499 return r;
500 }
501
502 return NULL;
503 }
504 EXPORT_SYMBOL(pci_find_resource);
505
506 /**
507 * pci_find_pcie_root_port - return PCIe Root Port
508 * @dev: PCI device to query
509 *
510 * Traverse up the parent chain and return the PCIe Root Port PCI Device
511 * for a given PCI Device.
512 */
513 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
514 {
515 struct pci_dev *bridge, *highest_pcie_bridge = NULL;
516
517 bridge = pci_upstream_bridge(dev);
518 while (bridge && pci_is_pcie(bridge)) {
519 highest_pcie_bridge = bridge;
520 bridge = pci_upstream_bridge(bridge);
521 }
522
523 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
524 return NULL;
525
526 return highest_pcie_bridge;
527 }
528 EXPORT_SYMBOL(pci_find_pcie_root_port);
529
530 /**
531 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
532 * @dev: the PCI device to operate on
533 * @pos: config space offset of status word
534 * @mask: mask of bit(s) to care about in status word
535 *
536 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
537 */
538 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
539 {
540 int i;
541
542 /* Wait for Transaction Pending bit clean */
543 for (i = 0; i < 4; i++) {
544 u16 status;
545 if (i)
546 msleep((1 << (i - 1)) * 100);
547
548 pci_read_config_word(dev, pos, &status);
549 if (!(status & mask))
550 return 1;
551 }
552
553 return 0;
554 }
555
556 /**
557 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
558 * @dev: PCI device to have its BARs restored
559 *
560 * Restore the BAR values for a given device, so as to make it
561 * accessible by its driver.
562 */
563 static void pci_restore_bars(struct pci_dev *dev)
564 {
565 int i;
566
567 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
568 pci_update_resource(dev, i);
569 }
570
571 static const struct pci_platform_pm_ops *pci_platform_pm;
572
573 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
574 {
575 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
576 !ops->choose_state || !ops->sleep_wake || !ops->run_wake ||
577 !ops->need_resume)
578 return -EINVAL;
579 pci_platform_pm = ops;
580 return 0;
581 }
582
583 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
584 {
585 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
586 }
587
588 static inline int platform_pci_set_power_state(struct pci_dev *dev,
589 pci_power_t t)
590 {
591 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
592 }
593
594 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
595 {
596 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
597 }
598
599 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
600 {
601 return pci_platform_pm ?
602 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
603 }
604
605 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
606 {
607 return pci_platform_pm ?
608 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
609 }
610
611 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
612 {
613 return pci_platform_pm ?
614 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
615 }
616
617 static inline bool platform_pci_need_resume(struct pci_dev *dev)
618 {
619 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
620 }
621
622 /**
623 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
624 * given PCI device
625 * @dev: PCI device to handle.
626 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
627 *
628 * RETURN VALUE:
629 * -EINVAL if the requested state is invalid.
630 * -EIO if device does not support PCI PM or its PM capabilities register has a
631 * wrong version, or device doesn't support the requested state.
632 * 0 if device already is in the requested state.
633 * 0 if device's power state has been successfully changed.
634 */
635 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
636 {
637 u16 pmcsr;
638 bool need_restore = false;
639
640 /* Check if we're already there */
641 if (dev->current_state == state)
642 return 0;
643
644 if (!dev->pm_cap)
645 return -EIO;
646
647 if (state < PCI_D0 || state > PCI_D3hot)
648 return -EINVAL;
649
650 /* Validate current state:
651 * Can enter D0 from any state, but if we can only go deeper
652 * to sleep if we're already in a low power state
653 */
654 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
655 && dev->current_state > state) {
656 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
657 dev->current_state, state);
658 return -EINVAL;
659 }
660
661 /* check if this device supports the desired state */
662 if ((state == PCI_D1 && !dev->d1_support)
663 || (state == PCI_D2 && !dev->d2_support))
664 return -EIO;
665
666 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
667
668 /* If we're (effectively) in D3, force entire word to 0.
669 * This doesn't affect PME_Status, disables PME_En, and
670 * sets PowerState to 0.
671 */
672 switch (dev->current_state) {
673 case PCI_D0:
674 case PCI_D1:
675 case PCI_D2:
676 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
677 pmcsr |= state;
678 break;
679 case PCI_D3hot:
680 case PCI_D3cold:
681 case PCI_UNKNOWN: /* Boot-up */
682 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
683 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
684 need_restore = true;
685 /* Fall-through: force to D0 */
686 default:
687 pmcsr = 0;
688 break;
689 }
690
691 /* enter specified state */
692 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
693
694 /* Mandatory power management transition delays */
695 /* see PCI PM 1.1 5.6.1 table 18 */
696 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
697 pci_dev_d3_sleep(dev);
698 else if (state == PCI_D2 || dev->current_state == PCI_D2)
699 udelay(PCI_PM_D2_DELAY);
700
701 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
702 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
703 if (dev->current_state != state && printk_ratelimit())
704 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
705 dev->current_state);
706
707 /*
708 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
709 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
710 * from D3hot to D0 _may_ perform an internal reset, thereby
711 * going to "D0 Uninitialized" rather than "D0 Initialized".
712 * For example, at least some versions of the 3c905B and the
713 * 3c556B exhibit this behaviour.
714 *
715 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
716 * devices in a D3hot state at boot. Consequently, we need to
717 * restore at least the BARs so that the device will be
718 * accessible to its driver.
719 */
720 if (need_restore)
721 pci_restore_bars(dev);
722
723 if (dev->bus->self)
724 pcie_aspm_pm_state_change(dev->bus->self);
725
726 return 0;
727 }
728
729 /**
730 * pci_update_current_state - Read power state of given device and cache it
731 * @dev: PCI device to handle.
732 * @state: State to cache in case the device doesn't have the PM capability
733 *
734 * The power state is read from the PMCSR register, which however is
735 * inaccessible in D3cold. The platform firmware is therefore queried first
736 * to detect accessibility of the register. In case the platform firmware
737 * reports an incorrect state or the device isn't power manageable by the
738 * platform at all, we try to detect D3cold by testing accessibility of the
739 * vendor ID in config space.
740 */
741 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
742 {
743 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
744 !pci_device_is_present(dev)) {
745 dev->current_state = PCI_D3cold;
746 } else if (dev->pm_cap) {
747 u16 pmcsr;
748
749 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
750 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
751 } else {
752 dev->current_state = state;
753 }
754 }
755
756 /**
757 * pci_power_up - Put the given device into D0 forcibly
758 * @dev: PCI device to power up
759 */
760 void pci_power_up(struct pci_dev *dev)
761 {
762 if (platform_pci_power_manageable(dev))
763 platform_pci_set_power_state(dev, PCI_D0);
764
765 pci_raw_set_power_state(dev, PCI_D0);
766 pci_update_current_state(dev, PCI_D0);
767 }
768
769 /**
770 * pci_platform_power_transition - Use platform to change device power state
771 * @dev: PCI device to handle.
772 * @state: State to put the device into.
773 */
774 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
775 {
776 int error;
777
778 if (platform_pci_power_manageable(dev)) {
779 error = platform_pci_set_power_state(dev, state);
780 if (!error)
781 pci_update_current_state(dev, state);
782 } else
783 error = -ENODEV;
784
785 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
786 dev->current_state = PCI_D0;
787
788 return error;
789 }
790
791 /**
792 * pci_wakeup - Wake up a PCI device
793 * @pci_dev: Device to handle.
794 * @ign: ignored parameter
795 */
796 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
797 {
798 pci_wakeup_event(pci_dev);
799 pm_request_resume(&pci_dev->dev);
800 return 0;
801 }
802
803 /**
804 * pci_wakeup_bus - Walk given bus and wake up devices on it
805 * @bus: Top bus of the subtree to walk.
806 */
807 static void pci_wakeup_bus(struct pci_bus *bus)
808 {
809 if (bus)
810 pci_walk_bus(bus, pci_wakeup, NULL);
811 }
812
813 /**
814 * __pci_start_power_transition - Start power transition of a PCI device
815 * @dev: PCI device to handle.
816 * @state: State to put the device into.
817 */
818 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
819 {
820 if (state == PCI_D0) {
821 pci_platform_power_transition(dev, PCI_D0);
822 /*
823 * Mandatory power management transition delays, see
824 * PCI Express Base Specification Revision 2.0 Section
825 * 6.6.1: Conventional Reset. Do not delay for
826 * devices powered on/off by corresponding bridge,
827 * because have already delayed for the bridge.
828 */
829 if (dev->runtime_d3cold) {
830 msleep(dev->d3cold_delay);
831 /*
832 * When powering on a bridge from D3cold, the
833 * whole hierarchy may be powered on into
834 * D0uninitialized state, resume them to give
835 * them a chance to suspend again
836 */
837 pci_wakeup_bus(dev->subordinate);
838 }
839 }
840 }
841
842 /**
843 * __pci_dev_set_current_state - Set current state of a PCI device
844 * @dev: Device to handle
845 * @data: pointer to state to be set
846 */
847 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
848 {
849 pci_power_t state = *(pci_power_t *)data;
850
851 dev->current_state = state;
852 return 0;
853 }
854
855 /**
856 * __pci_bus_set_current_state - Walk given bus and set current state of devices
857 * @bus: Top bus of the subtree to walk.
858 * @state: state to be set
859 */
860 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
861 {
862 if (bus)
863 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
864 }
865
866 /**
867 * __pci_complete_power_transition - Complete power transition of a PCI device
868 * @dev: PCI device to handle.
869 * @state: State to put the device into.
870 *
871 * This function should not be called directly by device drivers.
872 */
873 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
874 {
875 int ret;
876
877 if (state <= PCI_D0)
878 return -EINVAL;
879 ret = pci_platform_power_transition(dev, state);
880 /* Power off the bridge may power off the whole hierarchy */
881 if (!ret && state == PCI_D3cold)
882 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
883 return ret;
884 }
885 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
886
887 /**
888 * pci_set_power_state - Set the power state of a PCI device
889 * @dev: PCI device to handle.
890 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
891 *
892 * Transition a device to a new power state, using the platform firmware and/or
893 * the device's PCI PM registers.
894 *
895 * RETURN VALUE:
896 * -EINVAL if the requested state is invalid.
897 * -EIO if device does not support PCI PM or its PM capabilities register has a
898 * wrong version, or device doesn't support the requested state.
899 * 0 if device already is in the requested state.
900 * 0 if device's power state has been successfully changed.
901 */
902 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
903 {
904 int error;
905
906 /* bound the state we're entering */
907 if (state > PCI_D3cold)
908 state = PCI_D3cold;
909 else if (state < PCI_D0)
910 state = PCI_D0;
911 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
912 /*
913 * If the device or the parent bridge do not support PCI PM,
914 * ignore the request if we're doing anything other than putting
915 * it into D0 (which would only happen on boot).
916 */
917 return 0;
918
919 /* Check if we're already there */
920 if (dev->current_state == state)
921 return 0;
922
923 __pci_start_power_transition(dev, state);
924
925 /* This device is quirked not to be put into D3, so
926 don't put it in D3 */
927 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
928 return 0;
929
930 /*
931 * To put device in D3cold, we put device into D3hot in native
932 * way, then put device into D3cold with platform ops
933 */
934 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
935 PCI_D3hot : state);
936
937 if (!__pci_complete_power_transition(dev, state))
938 error = 0;
939
940 return error;
941 }
942 EXPORT_SYMBOL(pci_set_power_state);
943
944 /**
945 * pci_choose_state - Choose the power state of a PCI device
946 * @dev: PCI device to be suspended
947 * @state: target sleep state for the whole system. This is the value
948 * that is passed to suspend() function.
949 *
950 * Returns PCI power state suitable for given device and given system
951 * message.
952 */
953
954 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
955 {
956 pci_power_t ret;
957
958 if (!dev->pm_cap)
959 return PCI_D0;
960
961 ret = platform_pci_choose_state(dev);
962 if (ret != PCI_POWER_ERROR)
963 return ret;
964
965 switch (state.event) {
966 case PM_EVENT_ON:
967 return PCI_D0;
968 case PM_EVENT_FREEZE:
969 case PM_EVENT_PRETHAW:
970 /* REVISIT both freeze and pre-thaw "should" use D0 */
971 case PM_EVENT_SUSPEND:
972 case PM_EVENT_HIBERNATE:
973 return PCI_D3hot;
974 default:
975 dev_info(&dev->dev, "unrecognized suspend event %d\n",
976 state.event);
977 BUG();
978 }
979 return PCI_D0;
980 }
981 EXPORT_SYMBOL(pci_choose_state);
982
983 #define PCI_EXP_SAVE_REGS 7
984
985 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
986 u16 cap, bool extended)
987 {
988 struct pci_cap_saved_state *tmp;
989
990 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
991 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
992 return tmp;
993 }
994 return NULL;
995 }
996
997 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
998 {
999 return _pci_find_saved_cap(dev, cap, false);
1000 }
1001
1002 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1003 {
1004 return _pci_find_saved_cap(dev, cap, true);
1005 }
1006
1007 static int pci_save_pcie_state(struct pci_dev *dev)
1008 {
1009 int i = 0;
1010 struct pci_cap_saved_state *save_state;
1011 u16 *cap;
1012
1013 if (!pci_is_pcie(dev))
1014 return 0;
1015
1016 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1017 if (!save_state) {
1018 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1019 return -ENOMEM;
1020 }
1021
1022 cap = (u16 *)&save_state->cap.data[0];
1023 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1024 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1025 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1026 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1027 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1028 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1029 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1030
1031 return 0;
1032 }
1033
1034 static void pci_restore_pcie_state(struct pci_dev *dev)
1035 {
1036 int i = 0;
1037 struct pci_cap_saved_state *save_state;
1038 u16 *cap;
1039
1040 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1041 if (!save_state)
1042 return;
1043
1044 cap = (u16 *)&save_state->cap.data[0];
1045 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1046 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1047 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1048 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1049 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1050 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1051 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1052 }
1053
1054
1055 static int pci_save_pcix_state(struct pci_dev *dev)
1056 {
1057 int pos;
1058 struct pci_cap_saved_state *save_state;
1059
1060 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1061 if (!pos)
1062 return 0;
1063
1064 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1065 if (!save_state) {
1066 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1067 return -ENOMEM;
1068 }
1069
1070 pci_read_config_word(dev, pos + PCI_X_CMD,
1071 (u16 *)save_state->cap.data);
1072
1073 return 0;
1074 }
1075
1076 static void pci_restore_pcix_state(struct pci_dev *dev)
1077 {
1078 int i = 0, pos;
1079 struct pci_cap_saved_state *save_state;
1080 u16 *cap;
1081
1082 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1083 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1084 if (!save_state || !pos)
1085 return;
1086 cap = (u16 *)&save_state->cap.data[0];
1087
1088 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1089 }
1090
1091
1092 /**
1093 * pci_save_state - save the PCI configuration space of a device before suspending
1094 * @dev: - PCI device that we're dealing with
1095 */
1096 int pci_save_state(struct pci_dev *dev)
1097 {
1098 int i;
1099 /* XXX: 100% dword access ok here? */
1100 for (i = 0; i < 16; i++)
1101 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1102 dev->state_saved = true;
1103
1104 i = pci_save_pcie_state(dev);
1105 if (i != 0)
1106 return i;
1107
1108 i = pci_save_pcix_state(dev);
1109 if (i != 0)
1110 return i;
1111
1112 return pci_save_vc_state(dev);
1113 }
1114 EXPORT_SYMBOL(pci_save_state);
1115
1116 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1117 u32 saved_val, int retry)
1118 {
1119 u32 val;
1120
1121 pci_read_config_dword(pdev, offset, &val);
1122 if (val == saved_val)
1123 return;
1124
1125 for (;;) {
1126 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1127 offset, val, saved_val);
1128 pci_write_config_dword(pdev, offset, saved_val);
1129 if (retry-- <= 0)
1130 return;
1131
1132 pci_read_config_dword(pdev, offset, &val);
1133 if (val == saved_val)
1134 return;
1135
1136 mdelay(1);
1137 }
1138 }
1139
1140 static void pci_restore_config_space_range(struct pci_dev *pdev,
1141 int start, int end, int retry)
1142 {
1143 int index;
1144
1145 for (index = end; index >= start; index--)
1146 pci_restore_config_dword(pdev, 4 * index,
1147 pdev->saved_config_space[index],
1148 retry);
1149 }
1150
1151 static void pci_restore_config_space(struct pci_dev *pdev)
1152 {
1153 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1154 pci_restore_config_space_range(pdev, 10, 15, 0);
1155 /* Restore BARs before the command register. */
1156 pci_restore_config_space_range(pdev, 4, 9, 10);
1157 pci_restore_config_space_range(pdev, 0, 3, 0);
1158 } else {
1159 pci_restore_config_space_range(pdev, 0, 15, 0);
1160 }
1161 }
1162
1163 /**
1164 * pci_restore_state - Restore the saved state of a PCI device
1165 * @dev: - PCI device that we're dealing with
1166 */
1167 void pci_restore_state(struct pci_dev *dev)
1168 {
1169 if (!dev->state_saved)
1170 return;
1171
1172 /* PCI Express register must be restored first */
1173 pci_restore_pcie_state(dev);
1174 pci_restore_ats_state(dev);
1175 pci_restore_vc_state(dev);
1176
1177 pci_cleanup_aer_error_status_regs(dev);
1178
1179 pci_restore_config_space(dev);
1180
1181 pci_restore_pcix_state(dev);
1182 pci_restore_msi_state(dev);
1183
1184 /* Restore ACS and IOV configuration state */
1185 pci_enable_acs(dev);
1186 pci_restore_iov_state(dev);
1187
1188 dev->state_saved = false;
1189 }
1190 EXPORT_SYMBOL(pci_restore_state);
1191
1192 struct pci_saved_state {
1193 u32 config_space[16];
1194 struct pci_cap_saved_data cap[0];
1195 };
1196
1197 /**
1198 * pci_store_saved_state - Allocate and return an opaque struct containing
1199 * the device saved state.
1200 * @dev: PCI device that we're dealing with
1201 *
1202 * Return NULL if no state or error.
1203 */
1204 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1205 {
1206 struct pci_saved_state *state;
1207 struct pci_cap_saved_state *tmp;
1208 struct pci_cap_saved_data *cap;
1209 size_t size;
1210
1211 if (!dev->state_saved)
1212 return NULL;
1213
1214 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1215
1216 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1217 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1218
1219 state = kzalloc(size, GFP_KERNEL);
1220 if (!state)
1221 return NULL;
1222
1223 memcpy(state->config_space, dev->saved_config_space,
1224 sizeof(state->config_space));
1225
1226 cap = state->cap;
1227 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1228 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1229 memcpy(cap, &tmp->cap, len);
1230 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1231 }
1232 /* Empty cap_save terminates list */
1233
1234 return state;
1235 }
1236 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1237
1238 /**
1239 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1240 * @dev: PCI device that we're dealing with
1241 * @state: Saved state returned from pci_store_saved_state()
1242 */
1243 int pci_load_saved_state(struct pci_dev *dev,
1244 struct pci_saved_state *state)
1245 {
1246 struct pci_cap_saved_data *cap;
1247
1248 dev->state_saved = false;
1249
1250 if (!state)
1251 return 0;
1252
1253 memcpy(dev->saved_config_space, state->config_space,
1254 sizeof(state->config_space));
1255
1256 cap = state->cap;
1257 while (cap->size) {
1258 struct pci_cap_saved_state *tmp;
1259
1260 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1261 if (!tmp || tmp->cap.size != cap->size)
1262 return -EINVAL;
1263
1264 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1265 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1266 sizeof(struct pci_cap_saved_data) + cap->size);
1267 }
1268
1269 dev->state_saved = true;
1270 return 0;
1271 }
1272 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1273
1274 /**
1275 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1276 * and free the memory allocated for it.
1277 * @dev: PCI device that we're dealing with
1278 * @state: Pointer to saved state returned from pci_store_saved_state()
1279 */
1280 int pci_load_and_free_saved_state(struct pci_dev *dev,
1281 struct pci_saved_state **state)
1282 {
1283 int ret = pci_load_saved_state(dev, *state);
1284 kfree(*state);
1285 *state = NULL;
1286 return ret;
1287 }
1288 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1289
1290 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1291 {
1292 return pci_enable_resources(dev, bars);
1293 }
1294
1295 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1296 {
1297 int err;
1298 struct pci_dev *bridge;
1299 u16 cmd;
1300 u8 pin;
1301
1302 err = pci_set_power_state(dev, PCI_D0);
1303 if (err < 0 && err != -EIO)
1304 return err;
1305
1306 bridge = pci_upstream_bridge(dev);
1307 if (bridge)
1308 pcie_aspm_powersave_config_link(bridge);
1309
1310 err = pcibios_enable_device(dev, bars);
1311 if (err < 0)
1312 return err;
1313 pci_fixup_device(pci_fixup_enable, dev);
1314
1315 if (dev->msi_enabled || dev->msix_enabled)
1316 return 0;
1317
1318 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1319 if (pin) {
1320 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1321 if (cmd & PCI_COMMAND_INTX_DISABLE)
1322 pci_write_config_word(dev, PCI_COMMAND,
1323 cmd & ~PCI_COMMAND_INTX_DISABLE);
1324 }
1325
1326 return 0;
1327 }
1328
1329 /**
1330 * pci_reenable_device - Resume abandoned device
1331 * @dev: PCI device to be resumed
1332 *
1333 * Note this function is a backend of pci_default_resume and is not supposed
1334 * to be called by normal code, write proper resume handler and use it instead.
1335 */
1336 int pci_reenable_device(struct pci_dev *dev)
1337 {
1338 if (pci_is_enabled(dev))
1339 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1340 return 0;
1341 }
1342 EXPORT_SYMBOL(pci_reenable_device);
1343
1344 static void pci_enable_bridge(struct pci_dev *dev)
1345 {
1346 struct pci_dev *bridge;
1347 int retval;
1348
1349 bridge = pci_upstream_bridge(dev);
1350 if (bridge)
1351 pci_enable_bridge(bridge);
1352
1353 if (pci_is_enabled(dev)) {
1354 if (!dev->is_busmaster)
1355 pci_set_master(dev);
1356 return;
1357 }
1358
1359 retval = pci_enable_device(dev);
1360 if (retval)
1361 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1362 retval);
1363 pci_set_master(dev);
1364 }
1365
1366 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1367 {
1368 struct pci_dev *bridge;
1369 int err;
1370 int i, bars = 0;
1371
1372 /*
1373 * Power state could be unknown at this point, either due to a fresh
1374 * boot or a device removal call. So get the current power state
1375 * so that things like MSI message writing will behave as expected
1376 * (e.g. if the device really is in D0 at enable time).
1377 */
1378 if (dev->pm_cap) {
1379 u16 pmcsr;
1380 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1381 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1382 }
1383
1384 if (atomic_inc_return(&dev->enable_cnt) > 1)
1385 return 0; /* already enabled */
1386
1387 bridge = pci_upstream_bridge(dev);
1388 if (bridge)
1389 pci_enable_bridge(bridge);
1390
1391 /* only skip sriov related */
1392 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1393 if (dev->resource[i].flags & flags)
1394 bars |= (1 << i);
1395 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1396 if (dev->resource[i].flags & flags)
1397 bars |= (1 << i);
1398
1399 err = do_pci_enable_device(dev, bars);
1400 if (err < 0)
1401 atomic_dec(&dev->enable_cnt);
1402 return err;
1403 }
1404
1405 /**
1406 * pci_enable_device_io - Initialize a device for use with IO space
1407 * @dev: PCI device to be initialized
1408 *
1409 * Initialize device before it's used by a driver. Ask low-level code
1410 * to enable I/O resources. Wake up the device if it was suspended.
1411 * Beware, this function can fail.
1412 */
1413 int pci_enable_device_io(struct pci_dev *dev)
1414 {
1415 return pci_enable_device_flags(dev, IORESOURCE_IO);
1416 }
1417 EXPORT_SYMBOL(pci_enable_device_io);
1418
1419 /**
1420 * pci_enable_device_mem - Initialize a device for use with Memory space
1421 * @dev: PCI device to be initialized
1422 *
1423 * Initialize device before it's used by a driver. Ask low-level code
1424 * to enable Memory resources. Wake up the device if it was suspended.
1425 * Beware, this function can fail.
1426 */
1427 int pci_enable_device_mem(struct pci_dev *dev)
1428 {
1429 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1430 }
1431 EXPORT_SYMBOL(pci_enable_device_mem);
1432
1433 /**
1434 * pci_enable_device - Initialize device before it's used by a driver.
1435 * @dev: PCI device to be initialized
1436 *
1437 * Initialize device before it's used by a driver. Ask low-level code
1438 * to enable I/O and memory. Wake up the device if it was suspended.
1439 * Beware, this function can fail.
1440 *
1441 * Note we don't actually enable the device many times if we call
1442 * this function repeatedly (we just increment the count).
1443 */
1444 int pci_enable_device(struct pci_dev *dev)
1445 {
1446 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1447 }
1448 EXPORT_SYMBOL(pci_enable_device);
1449
1450 /*
1451 * Managed PCI resources. This manages device on/off, intx/msi/msix
1452 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1453 * there's no need to track it separately. pci_devres is initialized
1454 * when a device is enabled using managed PCI device enable interface.
1455 */
1456 struct pci_devres {
1457 unsigned int enabled:1;
1458 unsigned int pinned:1;
1459 unsigned int orig_intx:1;
1460 unsigned int restore_intx:1;
1461 u32 region_mask;
1462 };
1463
1464 static void pcim_release(struct device *gendev, void *res)
1465 {
1466 struct pci_dev *dev = to_pci_dev(gendev);
1467 struct pci_devres *this = res;
1468 int i;
1469
1470 if (dev->msi_enabled)
1471 pci_disable_msi(dev);
1472 if (dev->msix_enabled)
1473 pci_disable_msix(dev);
1474
1475 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1476 if (this->region_mask & (1 << i))
1477 pci_release_region(dev, i);
1478
1479 if (this->restore_intx)
1480 pci_intx(dev, this->orig_intx);
1481
1482 if (this->enabled && !this->pinned)
1483 pci_disable_device(dev);
1484 }
1485
1486 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1487 {
1488 struct pci_devres *dr, *new_dr;
1489
1490 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1491 if (dr)
1492 return dr;
1493
1494 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1495 if (!new_dr)
1496 return NULL;
1497 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1498 }
1499
1500 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1501 {
1502 if (pci_is_managed(pdev))
1503 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1504 return NULL;
1505 }
1506
1507 /**
1508 * pcim_enable_device - Managed pci_enable_device()
1509 * @pdev: PCI device to be initialized
1510 *
1511 * Managed pci_enable_device().
1512 */
1513 int pcim_enable_device(struct pci_dev *pdev)
1514 {
1515 struct pci_devres *dr;
1516 int rc;
1517
1518 dr = get_pci_dr(pdev);
1519 if (unlikely(!dr))
1520 return -ENOMEM;
1521 if (dr->enabled)
1522 return 0;
1523
1524 rc = pci_enable_device(pdev);
1525 if (!rc) {
1526 pdev->is_managed = 1;
1527 dr->enabled = 1;
1528 }
1529 return rc;
1530 }
1531 EXPORT_SYMBOL(pcim_enable_device);
1532
1533 /**
1534 * pcim_pin_device - Pin managed PCI device
1535 * @pdev: PCI device to pin
1536 *
1537 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1538 * driver detach. @pdev must have been enabled with
1539 * pcim_enable_device().
1540 */
1541 void pcim_pin_device(struct pci_dev *pdev)
1542 {
1543 struct pci_devres *dr;
1544
1545 dr = find_pci_dr(pdev);
1546 WARN_ON(!dr || !dr->enabled);
1547 if (dr)
1548 dr->pinned = 1;
1549 }
1550 EXPORT_SYMBOL(pcim_pin_device);
1551
1552 /*
1553 * pcibios_add_device - provide arch specific hooks when adding device dev
1554 * @dev: the PCI device being added
1555 *
1556 * Permits the platform to provide architecture specific functionality when
1557 * devices are added. This is the default implementation. Architecture
1558 * implementations can override this.
1559 */
1560 int __weak pcibios_add_device(struct pci_dev *dev)
1561 {
1562 return 0;
1563 }
1564
1565 /**
1566 * pcibios_release_device - provide arch specific hooks when releasing device dev
1567 * @dev: the PCI device being released
1568 *
1569 * Permits the platform to provide architecture specific functionality when
1570 * devices are released. This is the default implementation. Architecture
1571 * implementations can override this.
1572 */
1573 void __weak pcibios_release_device(struct pci_dev *dev) {}
1574
1575 /**
1576 * pcibios_disable_device - disable arch specific PCI resources for device dev
1577 * @dev: the PCI device to disable
1578 *
1579 * Disables architecture specific PCI resources for the device. This
1580 * is the default implementation. Architecture implementations can
1581 * override this.
1582 */
1583 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1584
1585 /**
1586 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1587 * @irq: ISA IRQ to penalize
1588 * @active: IRQ active or not
1589 *
1590 * Permits the platform to provide architecture-specific functionality when
1591 * penalizing ISA IRQs. This is the default implementation. Architecture
1592 * implementations can override this.
1593 */
1594 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1595
1596 static void do_pci_disable_device(struct pci_dev *dev)
1597 {
1598 u16 pci_command;
1599
1600 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1601 if (pci_command & PCI_COMMAND_MASTER) {
1602 pci_command &= ~PCI_COMMAND_MASTER;
1603 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1604 }
1605
1606 pcibios_disable_device(dev);
1607 }
1608
1609 /**
1610 * pci_disable_enabled_device - Disable device without updating enable_cnt
1611 * @dev: PCI device to disable
1612 *
1613 * NOTE: This function is a backend of PCI power management routines and is
1614 * not supposed to be called drivers.
1615 */
1616 void pci_disable_enabled_device(struct pci_dev *dev)
1617 {
1618 if (pci_is_enabled(dev))
1619 do_pci_disable_device(dev);
1620 }
1621
1622 /**
1623 * pci_disable_device - Disable PCI device after use
1624 * @dev: PCI device to be disabled
1625 *
1626 * Signal to the system that the PCI device is not in use by the system
1627 * anymore. This only involves disabling PCI bus-mastering, if active.
1628 *
1629 * Note we don't actually disable the device until all callers of
1630 * pci_enable_device() have called pci_disable_device().
1631 */
1632 void pci_disable_device(struct pci_dev *dev)
1633 {
1634 struct pci_devres *dr;
1635
1636 dr = find_pci_dr(dev);
1637 if (dr)
1638 dr->enabled = 0;
1639
1640 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1641 "disabling already-disabled device");
1642
1643 if (atomic_dec_return(&dev->enable_cnt) != 0)
1644 return;
1645
1646 do_pci_disable_device(dev);
1647
1648 dev->is_busmaster = 0;
1649 }
1650 EXPORT_SYMBOL(pci_disable_device);
1651
1652 /**
1653 * pcibios_set_pcie_reset_state - set reset state for device dev
1654 * @dev: the PCIe device reset
1655 * @state: Reset state to enter into
1656 *
1657 *
1658 * Sets the PCIe reset state for the device. This is the default
1659 * implementation. Architecture implementations can override this.
1660 */
1661 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1662 enum pcie_reset_state state)
1663 {
1664 return -EINVAL;
1665 }
1666
1667 /**
1668 * pci_set_pcie_reset_state - set reset state for device dev
1669 * @dev: the PCIe device reset
1670 * @state: Reset state to enter into
1671 *
1672 *
1673 * Sets the PCI reset state for the device.
1674 */
1675 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1676 {
1677 return pcibios_set_pcie_reset_state(dev, state);
1678 }
1679 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1680
1681 /**
1682 * pci_check_pme_status - Check if given device has generated PME.
1683 * @dev: Device to check.
1684 *
1685 * Check the PME status of the device and if set, clear it and clear PME enable
1686 * (if set). Return 'true' if PME status and PME enable were both set or
1687 * 'false' otherwise.
1688 */
1689 bool pci_check_pme_status(struct pci_dev *dev)
1690 {
1691 int pmcsr_pos;
1692 u16 pmcsr;
1693 bool ret = false;
1694
1695 if (!dev->pm_cap)
1696 return false;
1697
1698 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1699 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1700 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1701 return false;
1702
1703 /* Clear PME status. */
1704 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1705 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1706 /* Disable PME to avoid interrupt flood. */
1707 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1708 ret = true;
1709 }
1710
1711 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1712
1713 return ret;
1714 }
1715
1716 /**
1717 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1718 * @dev: Device to handle.
1719 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1720 *
1721 * Check if @dev has generated PME and queue a resume request for it in that
1722 * case.
1723 */
1724 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1725 {
1726 if (pme_poll_reset && dev->pme_poll)
1727 dev->pme_poll = false;
1728
1729 if (pci_check_pme_status(dev)) {
1730 pci_wakeup_event(dev);
1731 pm_request_resume(&dev->dev);
1732 }
1733 return 0;
1734 }
1735
1736 /**
1737 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1738 * @bus: Top bus of the subtree to walk.
1739 */
1740 void pci_pme_wakeup_bus(struct pci_bus *bus)
1741 {
1742 if (bus)
1743 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1744 }
1745
1746
1747 /**
1748 * pci_pme_capable - check the capability of PCI device to generate PME#
1749 * @dev: PCI device to handle.
1750 * @state: PCI state from which device will issue PME#.
1751 */
1752 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1753 {
1754 if (!dev->pm_cap)
1755 return false;
1756
1757 return !!(dev->pme_support & (1 << state));
1758 }
1759 EXPORT_SYMBOL(pci_pme_capable);
1760
1761 static void pci_pme_list_scan(struct work_struct *work)
1762 {
1763 struct pci_pme_device *pme_dev, *n;
1764
1765 mutex_lock(&pci_pme_list_mutex);
1766 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1767 if (pme_dev->dev->pme_poll) {
1768 struct pci_dev *bridge;
1769
1770 bridge = pme_dev->dev->bus->self;
1771 /*
1772 * If bridge is in low power state, the
1773 * configuration space of subordinate devices
1774 * may be not accessible
1775 */
1776 if (bridge && bridge->current_state != PCI_D0)
1777 continue;
1778 pci_pme_wakeup(pme_dev->dev, NULL);
1779 } else {
1780 list_del(&pme_dev->list);
1781 kfree(pme_dev);
1782 }
1783 }
1784 if (!list_empty(&pci_pme_list))
1785 schedule_delayed_work(&pci_pme_work,
1786 msecs_to_jiffies(PME_TIMEOUT));
1787 mutex_unlock(&pci_pme_list_mutex);
1788 }
1789
1790 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1791 {
1792 u16 pmcsr;
1793
1794 if (!dev->pme_support)
1795 return;
1796
1797 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1798 /* Clear PME_Status by writing 1 to it and enable PME# */
1799 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1800 if (!enable)
1801 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1802
1803 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1804 }
1805
1806 /**
1807 * pci_pme_active - enable or disable PCI device's PME# function
1808 * @dev: PCI device to handle.
1809 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1810 *
1811 * The caller must verify that the device is capable of generating PME# before
1812 * calling this function with @enable equal to 'true'.
1813 */
1814 void pci_pme_active(struct pci_dev *dev, bool enable)
1815 {
1816 __pci_pme_active(dev, enable);
1817
1818 /*
1819 * PCI (as opposed to PCIe) PME requires that the device have
1820 * its PME# line hooked up correctly. Not all hardware vendors
1821 * do this, so the PME never gets delivered and the device
1822 * remains asleep. The easiest way around this is to
1823 * periodically walk the list of suspended devices and check
1824 * whether any have their PME flag set. The assumption is that
1825 * we'll wake up often enough anyway that this won't be a huge
1826 * hit, and the power savings from the devices will still be a
1827 * win.
1828 *
1829 * Although PCIe uses in-band PME message instead of PME# line
1830 * to report PME, PME does not work for some PCIe devices in
1831 * reality. For example, there are devices that set their PME
1832 * status bits, but don't really bother to send a PME message;
1833 * there are PCI Express Root Ports that don't bother to
1834 * trigger interrupts when they receive PME messages from the
1835 * devices below. So PME poll is used for PCIe devices too.
1836 */
1837
1838 if (dev->pme_poll) {
1839 struct pci_pme_device *pme_dev;
1840 if (enable) {
1841 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1842 GFP_KERNEL);
1843 if (!pme_dev) {
1844 dev_warn(&dev->dev, "can't enable PME#\n");
1845 return;
1846 }
1847 pme_dev->dev = dev;
1848 mutex_lock(&pci_pme_list_mutex);
1849 list_add(&pme_dev->list, &pci_pme_list);
1850 if (list_is_singular(&pci_pme_list))
1851 schedule_delayed_work(&pci_pme_work,
1852 msecs_to_jiffies(PME_TIMEOUT));
1853 mutex_unlock(&pci_pme_list_mutex);
1854 } else {
1855 mutex_lock(&pci_pme_list_mutex);
1856 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1857 if (pme_dev->dev == dev) {
1858 list_del(&pme_dev->list);
1859 kfree(pme_dev);
1860 break;
1861 }
1862 }
1863 mutex_unlock(&pci_pme_list_mutex);
1864 }
1865 }
1866
1867 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1868 }
1869 EXPORT_SYMBOL(pci_pme_active);
1870
1871 /**
1872 * __pci_enable_wake - enable PCI device as wakeup event source
1873 * @dev: PCI device affected
1874 * @state: PCI state from which device will issue wakeup events
1875 * @runtime: True if the events are to be generated at run time
1876 * @enable: True to enable event generation; false to disable
1877 *
1878 * This enables the device as a wakeup event source, or disables it.
1879 * When such events involves platform-specific hooks, those hooks are
1880 * called automatically by this routine.
1881 *
1882 * Devices with legacy power management (no standard PCI PM capabilities)
1883 * always require such platform hooks.
1884 *
1885 * RETURN VALUE:
1886 * 0 is returned on success
1887 * -EINVAL is returned if device is not supposed to wake up the system
1888 * Error code depending on the platform is returned if both the platform and
1889 * the native mechanism fail to enable the generation of wake-up events
1890 */
1891 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1892 bool runtime, bool enable)
1893 {
1894 int ret = 0;
1895
1896 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1897 return -EINVAL;
1898
1899 /* Don't do the same thing twice in a row for one device. */
1900 if (!!enable == !!dev->wakeup_prepared)
1901 return 0;
1902
1903 /*
1904 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1905 * Anderson we should be doing PME# wake enable followed by ACPI wake
1906 * enable. To disable wake-up we call the platform first, for symmetry.
1907 */
1908
1909 if (enable) {
1910 int error;
1911
1912 if (pci_pme_capable(dev, state))
1913 pci_pme_active(dev, true);
1914 else
1915 ret = 1;
1916 error = runtime ? platform_pci_run_wake(dev, true) :
1917 platform_pci_sleep_wake(dev, true);
1918 if (ret)
1919 ret = error;
1920 if (!ret)
1921 dev->wakeup_prepared = true;
1922 } else {
1923 if (runtime)
1924 platform_pci_run_wake(dev, false);
1925 else
1926 platform_pci_sleep_wake(dev, false);
1927 pci_pme_active(dev, false);
1928 dev->wakeup_prepared = false;
1929 }
1930
1931 return ret;
1932 }
1933 EXPORT_SYMBOL(__pci_enable_wake);
1934
1935 /**
1936 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1937 * @dev: PCI device to prepare
1938 * @enable: True to enable wake-up event generation; false to disable
1939 *
1940 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1941 * and this function allows them to set that up cleanly - pci_enable_wake()
1942 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1943 * ordering constraints.
1944 *
1945 * This function only returns error code if the device is not capable of
1946 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1947 * enable wake-up power for it.
1948 */
1949 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1950 {
1951 return pci_pme_capable(dev, PCI_D3cold) ?
1952 pci_enable_wake(dev, PCI_D3cold, enable) :
1953 pci_enable_wake(dev, PCI_D3hot, enable);
1954 }
1955 EXPORT_SYMBOL(pci_wake_from_d3);
1956
1957 /**
1958 * pci_target_state - find an appropriate low power state for a given PCI dev
1959 * @dev: PCI device
1960 *
1961 * Use underlying platform code to find a supported low power state for @dev.
1962 * If the platform can't manage @dev, return the deepest state from which it
1963 * can generate wake events, based on any available PME info.
1964 */
1965 static pci_power_t pci_target_state(struct pci_dev *dev)
1966 {
1967 pci_power_t target_state = PCI_D3hot;
1968
1969 if (platform_pci_power_manageable(dev)) {
1970 /*
1971 * Call the platform to choose the target state of the device
1972 * and enable wake-up from this state if supported.
1973 */
1974 pci_power_t state = platform_pci_choose_state(dev);
1975
1976 switch (state) {
1977 case PCI_POWER_ERROR:
1978 case PCI_UNKNOWN:
1979 break;
1980 case PCI_D1:
1981 case PCI_D2:
1982 if (pci_no_d1d2(dev))
1983 break;
1984 default:
1985 target_state = state;
1986 }
1987
1988 return target_state;
1989 }
1990
1991 if (!dev->pm_cap)
1992 target_state = PCI_D0;
1993
1994 /*
1995 * If the device is in D3cold even though it's not power-manageable by
1996 * the platform, it may have been powered down by non-standard means.
1997 * Best to let it slumber.
1998 */
1999 if (dev->current_state == PCI_D3cold)
2000 target_state = PCI_D3cold;
2001
2002 if (device_may_wakeup(&dev->dev)) {
2003 /*
2004 * Find the deepest state from which the device can generate
2005 * wake-up events, make it the target state and enable device
2006 * to generate PME#.
2007 */
2008 if (dev->pme_support) {
2009 while (target_state
2010 && !(dev->pme_support & (1 << target_state)))
2011 target_state--;
2012 }
2013 }
2014
2015 return target_state;
2016 }
2017
2018 /**
2019 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2020 * @dev: Device to handle.
2021 *
2022 * Choose the power state appropriate for the device depending on whether
2023 * it can wake up the system and/or is power manageable by the platform
2024 * (PCI_D3hot is the default) and put the device into that state.
2025 */
2026 int pci_prepare_to_sleep(struct pci_dev *dev)
2027 {
2028 pci_power_t target_state = pci_target_state(dev);
2029 int error;
2030
2031 if (target_state == PCI_POWER_ERROR)
2032 return -EIO;
2033
2034 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
2035
2036 error = pci_set_power_state(dev, target_state);
2037
2038 if (error)
2039 pci_enable_wake(dev, target_state, false);
2040
2041 return error;
2042 }
2043 EXPORT_SYMBOL(pci_prepare_to_sleep);
2044
2045 /**
2046 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2047 * @dev: Device to handle.
2048 *
2049 * Disable device's system wake-up capability and put it into D0.
2050 */
2051 int pci_back_from_sleep(struct pci_dev *dev)
2052 {
2053 pci_enable_wake(dev, PCI_D0, false);
2054 return pci_set_power_state(dev, PCI_D0);
2055 }
2056 EXPORT_SYMBOL(pci_back_from_sleep);
2057
2058 /**
2059 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2060 * @dev: PCI device being suspended.
2061 *
2062 * Prepare @dev to generate wake-up events at run time and put it into a low
2063 * power state.
2064 */
2065 int pci_finish_runtime_suspend(struct pci_dev *dev)
2066 {
2067 pci_power_t target_state = pci_target_state(dev);
2068 int error;
2069
2070 if (target_state == PCI_POWER_ERROR)
2071 return -EIO;
2072
2073 dev->runtime_d3cold = target_state == PCI_D3cold;
2074
2075 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
2076
2077 error = pci_set_power_state(dev, target_state);
2078
2079 if (error) {
2080 __pci_enable_wake(dev, target_state, true, false);
2081 dev->runtime_d3cold = false;
2082 }
2083
2084 return error;
2085 }
2086
2087 /**
2088 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2089 * @dev: Device to check.
2090 *
2091 * Return true if the device itself is capable of generating wake-up events
2092 * (through the platform or using the native PCIe PME) or if the device supports
2093 * PME and one of its upstream bridges can generate wake-up events.
2094 */
2095 bool pci_dev_run_wake(struct pci_dev *dev)
2096 {
2097 struct pci_bus *bus = dev->bus;
2098
2099 if (device_run_wake(&dev->dev))
2100 return true;
2101
2102 if (!dev->pme_support)
2103 return false;
2104
2105 /* PME-capable in principle, but not from the intended sleep state */
2106 if (!pci_pme_capable(dev, pci_target_state(dev)))
2107 return false;
2108
2109 while (bus->parent) {
2110 struct pci_dev *bridge = bus->self;
2111
2112 if (device_run_wake(&bridge->dev))
2113 return true;
2114
2115 bus = bus->parent;
2116 }
2117
2118 /* We have reached the root bus. */
2119 if (bus->bridge)
2120 return device_run_wake(bus->bridge);
2121
2122 return false;
2123 }
2124 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2125
2126 /**
2127 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2128 * @pci_dev: Device to check.
2129 *
2130 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2131 * reconfigured due to wakeup settings difference between system and runtime
2132 * suspend and the current power state of it is suitable for the upcoming
2133 * (system) transition.
2134 *
2135 * If the device is not configured for system wakeup, disable PME for it before
2136 * returning 'true' to prevent it from waking up the system unnecessarily.
2137 */
2138 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2139 {
2140 struct device *dev = &pci_dev->dev;
2141
2142 if (!pm_runtime_suspended(dev)
2143 || pci_target_state(pci_dev) != pci_dev->current_state
2144 || platform_pci_need_resume(pci_dev))
2145 return false;
2146
2147 /*
2148 * At this point the device is good to go unless it's been configured
2149 * to generate PME at the runtime suspend time, but it is not supposed
2150 * to wake up the system. In that case, simply disable PME for it
2151 * (it will have to be re-enabled on exit from system resume).
2152 *
2153 * If the device's power state is D3cold and the platform check above
2154 * hasn't triggered, the device's configuration is suitable and we don't
2155 * need to manipulate it at all.
2156 */
2157 spin_lock_irq(&dev->power.lock);
2158
2159 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2160 !device_may_wakeup(dev))
2161 __pci_pme_active(pci_dev, false);
2162
2163 spin_unlock_irq(&dev->power.lock);
2164 return true;
2165 }
2166
2167 /**
2168 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2169 * @pci_dev: Device to handle.
2170 *
2171 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2172 * it might have been disabled during the prepare phase of system suspend if
2173 * the device was not configured for system wakeup.
2174 */
2175 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2176 {
2177 struct device *dev = &pci_dev->dev;
2178
2179 if (!pci_dev_run_wake(pci_dev))
2180 return;
2181
2182 spin_lock_irq(&dev->power.lock);
2183
2184 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2185 __pci_pme_active(pci_dev, true);
2186
2187 spin_unlock_irq(&dev->power.lock);
2188 }
2189
2190 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2191 {
2192 struct device *dev = &pdev->dev;
2193 struct device *parent = dev->parent;
2194
2195 if (parent)
2196 pm_runtime_get_sync(parent);
2197 pm_runtime_get_noresume(dev);
2198 /*
2199 * pdev->current_state is set to PCI_D3cold during suspending,
2200 * so wait until suspending completes
2201 */
2202 pm_runtime_barrier(dev);
2203 /*
2204 * Only need to resume devices in D3cold, because config
2205 * registers are still accessible for devices suspended but
2206 * not in D3cold.
2207 */
2208 if (pdev->current_state == PCI_D3cold)
2209 pm_runtime_resume(dev);
2210 }
2211
2212 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2213 {
2214 struct device *dev = &pdev->dev;
2215 struct device *parent = dev->parent;
2216
2217 pm_runtime_put(dev);
2218 if (parent)
2219 pm_runtime_put_sync(parent);
2220 }
2221
2222 /**
2223 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2224 * @bridge: Bridge to check
2225 *
2226 * This function checks if it is possible to move the bridge to D3.
2227 * Currently we only allow D3 for recent enough PCIe ports.
2228 */
2229 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2230 {
2231 unsigned int year;
2232
2233 if (!pci_is_pcie(bridge))
2234 return false;
2235
2236 switch (pci_pcie_type(bridge)) {
2237 case PCI_EXP_TYPE_ROOT_PORT:
2238 case PCI_EXP_TYPE_UPSTREAM:
2239 case PCI_EXP_TYPE_DOWNSTREAM:
2240 if (pci_bridge_d3_disable)
2241 return false;
2242
2243 /*
2244 * Hotplug interrupts cannot be delivered if the link is down,
2245 * so parents of a hotplug port must stay awake. In addition,
2246 * hotplug ports handled by firmware in System Management Mode
2247 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2248 * For simplicity, disallow in general for now.
2249 */
2250 if (bridge->is_hotplug_bridge)
2251 return false;
2252
2253 if (pci_bridge_d3_force)
2254 return true;
2255
2256 /*
2257 * It should be safe to put PCIe ports from 2015 or newer
2258 * to D3.
2259 */
2260 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2261 year >= 2015) {
2262 return true;
2263 }
2264 break;
2265 }
2266
2267 return false;
2268 }
2269
2270 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2271 {
2272 bool *d3cold_ok = data;
2273
2274 if (/* The device needs to be allowed to go D3cold ... */
2275 dev->no_d3cold || !dev->d3cold_allowed ||
2276
2277 /* ... and if it is wakeup capable to do so from D3cold. */
2278 (device_may_wakeup(&dev->dev) &&
2279 !pci_pme_capable(dev, PCI_D3cold)) ||
2280
2281 /* If it is a bridge it must be allowed to go to D3. */
2282 !pci_power_manageable(dev))
2283
2284 *d3cold_ok = false;
2285
2286 return !*d3cold_ok;
2287 }
2288
2289 /*
2290 * pci_bridge_d3_update - Update bridge D3 capabilities
2291 * @dev: PCI device which is changed
2292 *
2293 * Update upstream bridge PM capabilities accordingly depending on if the
2294 * device PM configuration was changed or the device is being removed. The
2295 * change is also propagated upstream.
2296 */
2297 void pci_bridge_d3_update(struct pci_dev *dev)
2298 {
2299 bool remove = !device_is_registered(&dev->dev);
2300 struct pci_dev *bridge;
2301 bool d3cold_ok = true;
2302
2303 bridge = pci_upstream_bridge(dev);
2304 if (!bridge || !pci_bridge_d3_possible(bridge))
2305 return;
2306
2307 /*
2308 * If D3 is currently allowed for the bridge, removing one of its
2309 * children won't change that.
2310 */
2311 if (remove && bridge->bridge_d3)
2312 return;
2313
2314 /*
2315 * If D3 is currently allowed for the bridge and a child is added or
2316 * changed, disallowance of D3 can only be caused by that child, so
2317 * we only need to check that single device, not any of its siblings.
2318 *
2319 * If D3 is currently not allowed for the bridge, checking the device
2320 * first may allow us to skip checking its siblings.
2321 */
2322 if (!remove)
2323 pci_dev_check_d3cold(dev, &d3cold_ok);
2324
2325 /*
2326 * If D3 is currently not allowed for the bridge, this may be caused
2327 * either by the device being changed/removed or any of its siblings,
2328 * so we need to go through all children to find out if one of them
2329 * continues to block D3.
2330 */
2331 if (d3cold_ok && !bridge->bridge_d3)
2332 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2333 &d3cold_ok);
2334
2335 if (bridge->bridge_d3 != d3cold_ok) {
2336 bridge->bridge_d3 = d3cold_ok;
2337 /* Propagate change to upstream bridges */
2338 pci_bridge_d3_update(bridge);
2339 }
2340 }
2341
2342 /**
2343 * pci_d3cold_enable - Enable D3cold for device
2344 * @dev: PCI device to handle
2345 *
2346 * This function can be used in drivers to enable D3cold from the device
2347 * they handle. It also updates upstream PCI bridge PM capabilities
2348 * accordingly.
2349 */
2350 void pci_d3cold_enable(struct pci_dev *dev)
2351 {
2352 if (dev->no_d3cold) {
2353 dev->no_d3cold = false;
2354 pci_bridge_d3_update(dev);
2355 }
2356 }
2357 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2358
2359 /**
2360 * pci_d3cold_disable - Disable D3cold for device
2361 * @dev: PCI device to handle
2362 *
2363 * This function can be used in drivers to disable D3cold from the device
2364 * they handle. It also updates upstream PCI bridge PM capabilities
2365 * accordingly.
2366 */
2367 void pci_d3cold_disable(struct pci_dev *dev)
2368 {
2369 if (!dev->no_d3cold) {
2370 dev->no_d3cold = true;
2371 pci_bridge_d3_update(dev);
2372 }
2373 }
2374 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2375
2376 /**
2377 * pci_pm_init - Initialize PM functions of given PCI device
2378 * @dev: PCI device to handle.
2379 */
2380 void pci_pm_init(struct pci_dev *dev)
2381 {
2382 int pm;
2383 u16 pmc;
2384
2385 pm_runtime_forbid(&dev->dev);
2386 pm_runtime_set_active(&dev->dev);
2387 pm_runtime_enable(&dev->dev);
2388 device_enable_async_suspend(&dev->dev);
2389 dev->wakeup_prepared = false;
2390
2391 dev->pm_cap = 0;
2392 dev->pme_support = 0;
2393
2394 /* find PCI PM capability in list */
2395 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2396 if (!pm)
2397 return;
2398 /* Check device's ability to generate PME# */
2399 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2400
2401 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2402 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2403 pmc & PCI_PM_CAP_VER_MASK);
2404 return;
2405 }
2406
2407 dev->pm_cap = pm;
2408 dev->d3_delay = PCI_PM_D3_WAIT;
2409 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2410 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2411 dev->d3cold_allowed = true;
2412
2413 dev->d1_support = false;
2414 dev->d2_support = false;
2415 if (!pci_no_d1d2(dev)) {
2416 if (pmc & PCI_PM_CAP_D1)
2417 dev->d1_support = true;
2418 if (pmc & PCI_PM_CAP_D2)
2419 dev->d2_support = true;
2420
2421 if (dev->d1_support || dev->d2_support)
2422 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2423 dev->d1_support ? " D1" : "",
2424 dev->d2_support ? " D2" : "");
2425 }
2426
2427 pmc &= PCI_PM_CAP_PME_MASK;
2428 if (pmc) {
2429 dev_printk(KERN_DEBUG, &dev->dev,
2430 "PME# supported from%s%s%s%s%s\n",
2431 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2432 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2433 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2434 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2435 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2436 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2437 dev->pme_poll = true;
2438 /*
2439 * Make device's PM flags reflect the wake-up capability, but
2440 * let the user space enable it to wake up the system as needed.
2441 */
2442 device_set_wakeup_capable(&dev->dev, true);
2443 /* Disable the PME# generation functionality */
2444 pci_pme_active(dev, false);
2445 }
2446 }
2447
2448 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2449 {
2450 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2451
2452 switch (prop) {
2453 case PCI_EA_P_MEM:
2454 case PCI_EA_P_VF_MEM:
2455 flags |= IORESOURCE_MEM;
2456 break;
2457 case PCI_EA_P_MEM_PREFETCH:
2458 case PCI_EA_P_VF_MEM_PREFETCH:
2459 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2460 break;
2461 case PCI_EA_P_IO:
2462 flags |= IORESOURCE_IO;
2463 break;
2464 default:
2465 return 0;
2466 }
2467
2468 return flags;
2469 }
2470
2471 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2472 u8 prop)
2473 {
2474 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2475 return &dev->resource[bei];
2476 #ifdef CONFIG_PCI_IOV
2477 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2478 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2479 return &dev->resource[PCI_IOV_RESOURCES +
2480 bei - PCI_EA_BEI_VF_BAR0];
2481 #endif
2482 else if (bei == PCI_EA_BEI_ROM)
2483 return &dev->resource[PCI_ROM_RESOURCE];
2484 else
2485 return NULL;
2486 }
2487
2488 /* Read an Enhanced Allocation (EA) entry */
2489 static int pci_ea_read(struct pci_dev *dev, int offset)
2490 {
2491 struct resource *res;
2492 int ent_size, ent_offset = offset;
2493 resource_size_t start, end;
2494 unsigned long flags;
2495 u32 dw0, bei, base, max_offset;
2496 u8 prop;
2497 bool support_64 = (sizeof(resource_size_t) >= 8);
2498
2499 pci_read_config_dword(dev, ent_offset, &dw0);
2500 ent_offset += 4;
2501
2502 /* Entry size field indicates DWORDs after 1st */
2503 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2504
2505 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2506 goto out;
2507
2508 bei = (dw0 & PCI_EA_BEI) >> 4;
2509 prop = (dw0 & PCI_EA_PP) >> 8;
2510
2511 /*
2512 * If the Property is in the reserved range, try the Secondary
2513 * Property instead.
2514 */
2515 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2516 prop = (dw0 & PCI_EA_SP) >> 16;
2517 if (prop > PCI_EA_P_BRIDGE_IO)
2518 goto out;
2519
2520 res = pci_ea_get_resource(dev, bei, prop);
2521 if (!res) {
2522 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2523 goto out;
2524 }
2525
2526 flags = pci_ea_flags(dev, prop);
2527 if (!flags) {
2528 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2529 goto out;
2530 }
2531
2532 /* Read Base */
2533 pci_read_config_dword(dev, ent_offset, &base);
2534 start = (base & PCI_EA_FIELD_MASK);
2535 ent_offset += 4;
2536
2537 /* Read MaxOffset */
2538 pci_read_config_dword(dev, ent_offset, &max_offset);
2539 ent_offset += 4;
2540
2541 /* Read Base MSBs (if 64-bit entry) */
2542 if (base & PCI_EA_IS_64) {
2543 u32 base_upper;
2544
2545 pci_read_config_dword(dev, ent_offset, &base_upper);
2546 ent_offset += 4;
2547
2548 flags |= IORESOURCE_MEM_64;
2549
2550 /* entry starts above 32-bit boundary, can't use */
2551 if (!support_64 && base_upper)
2552 goto out;
2553
2554 if (support_64)
2555 start |= ((u64)base_upper << 32);
2556 }
2557
2558 end = start + (max_offset | 0x03);
2559
2560 /* Read MaxOffset MSBs (if 64-bit entry) */
2561 if (max_offset & PCI_EA_IS_64) {
2562 u32 max_offset_upper;
2563
2564 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2565 ent_offset += 4;
2566
2567 flags |= IORESOURCE_MEM_64;
2568
2569 /* entry too big, can't use */
2570 if (!support_64 && max_offset_upper)
2571 goto out;
2572
2573 if (support_64)
2574 end += ((u64)max_offset_upper << 32);
2575 }
2576
2577 if (end < start) {
2578 dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2579 goto out;
2580 }
2581
2582 if (ent_size != ent_offset - offset) {
2583 dev_err(&dev->dev,
2584 "EA Entry Size (%d) does not match length read (%d)\n",
2585 ent_size, ent_offset - offset);
2586 goto out;
2587 }
2588
2589 res->name = pci_name(dev);
2590 res->start = start;
2591 res->end = end;
2592 res->flags = flags;
2593
2594 if (bei <= PCI_EA_BEI_BAR5)
2595 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2596 bei, res, prop);
2597 else if (bei == PCI_EA_BEI_ROM)
2598 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2599 res, prop);
2600 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2601 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2602 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2603 else
2604 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2605 bei, res, prop);
2606
2607 out:
2608 return offset + ent_size;
2609 }
2610
2611 /* Enhanced Allocation Initialization */
2612 void pci_ea_init(struct pci_dev *dev)
2613 {
2614 int ea;
2615 u8 num_ent;
2616 int offset;
2617 int i;
2618
2619 /* find PCI EA capability in list */
2620 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2621 if (!ea)
2622 return;
2623
2624 /* determine the number of entries */
2625 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2626 &num_ent);
2627 num_ent &= PCI_EA_NUM_ENT_MASK;
2628
2629 offset = ea + PCI_EA_FIRST_ENT;
2630
2631 /* Skip DWORD 2 for type 1 functions */
2632 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2633 offset += 4;
2634
2635 /* parse each EA entry */
2636 for (i = 0; i < num_ent; ++i)
2637 offset = pci_ea_read(dev, offset);
2638 }
2639
2640 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2641 struct pci_cap_saved_state *new_cap)
2642 {
2643 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2644 }
2645
2646 /**
2647 * _pci_add_cap_save_buffer - allocate buffer for saving given
2648 * capability registers
2649 * @dev: the PCI device
2650 * @cap: the capability to allocate the buffer for
2651 * @extended: Standard or Extended capability ID
2652 * @size: requested size of the buffer
2653 */
2654 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2655 bool extended, unsigned int size)
2656 {
2657 int pos;
2658 struct pci_cap_saved_state *save_state;
2659
2660 if (extended)
2661 pos = pci_find_ext_capability(dev, cap);
2662 else
2663 pos = pci_find_capability(dev, cap);
2664
2665 if (!pos)
2666 return 0;
2667
2668 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2669 if (!save_state)
2670 return -ENOMEM;
2671
2672 save_state->cap.cap_nr = cap;
2673 save_state->cap.cap_extended = extended;
2674 save_state->cap.size = size;
2675 pci_add_saved_cap(dev, save_state);
2676
2677 return 0;
2678 }
2679
2680 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2681 {
2682 return _pci_add_cap_save_buffer(dev, cap, false, size);
2683 }
2684
2685 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2686 {
2687 return _pci_add_cap_save_buffer(dev, cap, true, size);
2688 }
2689
2690 /**
2691 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2692 * @dev: the PCI device
2693 */
2694 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2695 {
2696 int error;
2697
2698 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2699 PCI_EXP_SAVE_REGS * sizeof(u16));
2700 if (error)
2701 dev_err(&dev->dev,
2702 "unable to preallocate PCI Express save buffer\n");
2703
2704 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2705 if (error)
2706 dev_err(&dev->dev,
2707 "unable to preallocate PCI-X save buffer\n");
2708
2709 pci_allocate_vc_save_buffers(dev);
2710 }
2711
2712 void pci_free_cap_save_buffers(struct pci_dev *dev)
2713 {
2714 struct pci_cap_saved_state *tmp;
2715 struct hlist_node *n;
2716
2717 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2718 kfree(tmp);
2719 }
2720
2721 /**
2722 * pci_configure_ari - enable or disable ARI forwarding
2723 * @dev: the PCI device
2724 *
2725 * If @dev and its upstream bridge both support ARI, enable ARI in the
2726 * bridge. Otherwise, disable ARI in the bridge.
2727 */
2728 void pci_configure_ari(struct pci_dev *dev)
2729 {
2730 u32 cap;
2731 struct pci_dev *bridge;
2732
2733 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2734 return;
2735
2736 bridge = dev->bus->self;
2737 if (!bridge)
2738 return;
2739
2740 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2741 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2742 return;
2743
2744 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2745 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2746 PCI_EXP_DEVCTL2_ARI);
2747 bridge->ari_enabled = 1;
2748 } else {
2749 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2750 PCI_EXP_DEVCTL2_ARI);
2751 bridge->ari_enabled = 0;
2752 }
2753 }
2754
2755 static int pci_acs_enable;
2756
2757 /**
2758 * pci_request_acs - ask for ACS to be enabled if supported
2759 */
2760 void pci_request_acs(void)
2761 {
2762 pci_acs_enable = 1;
2763 }
2764
2765 /**
2766 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2767 * @dev: the PCI device
2768 */
2769 static void pci_std_enable_acs(struct pci_dev *dev)
2770 {
2771 int pos;
2772 u16 cap;
2773 u16 ctrl;
2774
2775 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2776 if (!pos)
2777 return;
2778
2779 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2780 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2781
2782 /* Source Validation */
2783 ctrl |= (cap & PCI_ACS_SV);
2784
2785 /* P2P Request Redirect */
2786 ctrl |= (cap & PCI_ACS_RR);
2787
2788 /* P2P Completion Redirect */
2789 ctrl |= (cap & PCI_ACS_CR);
2790
2791 /* Upstream Forwarding */
2792 ctrl |= (cap & PCI_ACS_UF);
2793
2794 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2795 }
2796
2797 /**
2798 * pci_enable_acs - enable ACS if hardware support it
2799 * @dev: the PCI device
2800 */
2801 void pci_enable_acs(struct pci_dev *dev)
2802 {
2803 if (!pci_acs_enable)
2804 return;
2805
2806 if (!pci_dev_specific_enable_acs(dev))
2807 return;
2808
2809 pci_std_enable_acs(dev);
2810 }
2811
2812 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2813 {
2814 int pos;
2815 u16 cap, ctrl;
2816
2817 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2818 if (!pos)
2819 return false;
2820
2821 /*
2822 * Except for egress control, capabilities are either required
2823 * or only required if controllable. Features missing from the
2824 * capability field can therefore be assumed as hard-wired enabled.
2825 */
2826 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2827 acs_flags &= (cap | PCI_ACS_EC);
2828
2829 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2830 return (ctrl & acs_flags) == acs_flags;
2831 }
2832
2833 /**
2834 * pci_acs_enabled - test ACS against required flags for a given device
2835 * @pdev: device to test
2836 * @acs_flags: required PCI ACS flags
2837 *
2838 * Return true if the device supports the provided flags. Automatically
2839 * filters out flags that are not implemented on multifunction devices.
2840 *
2841 * Note that this interface checks the effective ACS capabilities of the
2842 * device rather than the actual capabilities. For instance, most single
2843 * function endpoints are not required to support ACS because they have no
2844 * opportunity for peer-to-peer access. We therefore return 'true'
2845 * regardless of whether the device exposes an ACS capability. This makes
2846 * it much easier for callers of this function to ignore the actual type
2847 * or topology of the device when testing ACS support.
2848 */
2849 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2850 {
2851 int ret;
2852
2853 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2854 if (ret >= 0)
2855 return ret > 0;
2856
2857 /*
2858 * Conventional PCI and PCI-X devices never support ACS, either
2859 * effectively or actually. The shared bus topology implies that
2860 * any device on the bus can receive or snoop DMA.
2861 */
2862 if (!pci_is_pcie(pdev))
2863 return false;
2864
2865 switch (pci_pcie_type(pdev)) {
2866 /*
2867 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2868 * but since their primary interface is PCI/X, we conservatively
2869 * handle them as we would a non-PCIe device.
2870 */
2871 case PCI_EXP_TYPE_PCIE_BRIDGE:
2872 /*
2873 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2874 * applicable... must never implement an ACS Extended Capability...".
2875 * This seems arbitrary, but we take a conservative interpretation
2876 * of this statement.
2877 */
2878 case PCI_EXP_TYPE_PCI_BRIDGE:
2879 case PCI_EXP_TYPE_RC_EC:
2880 return false;
2881 /*
2882 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2883 * implement ACS in order to indicate their peer-to-peer capabilities,
2884 * regardless of whether they are single- or multi-function devices.
2885 */
2886 case PCI_EXP_TYPE_DOWNSTREAM:
2887 case PCI_EXP_TYPE_ROOT_PORT:
2888 return pci_acs_flags_enabled(pdev, acs_flags);
2889 /*
2890 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2891 * implemented by the remaining PCIe types to indicate peer-to-peer
2892 * capabilities, but only when they are part of a multifunction
2893 * device. The footnote for section 6.12 indicates the specific
2894 * PCIe types included here.
2895 */
2896 case PCI_EXP_TYPE_ENDPOINT:
2897 case PCI_EXP_TYPE_UPSTREAM:
2898 case PCI_EXP_TYPE_LEG_END:
2899 case PCI_EXP_TYPE_RC_END:
2900 if (!pdev->multifunction)
2901 break;
2902
2903 return pci_acs_flags_enabled(pdev, acs_flags);
2904 }
2905
2906 /*
2907 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2908 * to single function devices with the exception of downstream ports.
2909 */
2910 return true;
2911 }
2912
2913 /**
2914 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2915 * @start: starting downstream device
2916 * @end: ending upstream device or NULL to search to the root bus
2917 * @acs_flags: required flags
2918 *
2919 * Walk up a device tree from start to end testing PCI ACS support. If
2920 * any step along the way does not support the required flags, return false.
2921 */
2922 bool pci_acs_path_enabled(struct pci_dev *start,
2923 struct pci_dev *end, u16 acs_flags)
2924 {
2925 struct pci_dev *pdev, *parent = start;
2926
2927 do {
2928 pdev = parent;
2929
2930 if (!pci_acs_enabled(pdev, acs_flags))
2931 return false;
2932
2933 if (pci_is_root_bus(pdev->bus))
2934 return (end == NULL);
2935
2936 parent = pdev->bus->self;
2937 } while (pdev != end);
2938
2939 return true;
2940 }
2941
2942 /**
2943 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2944 * @dev: the PCI device
2945 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2946 *
2947 * Perform INTx swizzling for a device behind one level of bridge. This is
2948 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2949 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2950 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2951 * the PCI Express Base Specification, Revision 2.1)
2952 */
2953 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2954 {
2955 int slot;
2956
2957 if (pci_ari_enabled(dev->bus))
2958 slot = 0;
2959 else
2960 slot = PCI_SLOT(dev->devfn);
2961
2962 return (((pin - 1) + slot) % 4) + 1;
2963 }
2964
2965 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2966 {
2967 u8 pin;
2968
2969 pin = dev->pin;
2970 if (!pin)
2971 return -1;
2972
2973 while (!pci_is_root_bus(dev->bus)) {
2974 pin = pci_swizzle_interrupt_pin(dev, pin);
2975 dev = dev->bus->self;
2976 }
2977 *bridge = dev;
2978 return pin;
2979 }
2980
2981 /**
2982 * pci_common_swizzle - swizzle INTx all the way to root bridge
2983 * @dev: the PCI device
2984 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2985 *
2986 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2987 * bridges all the way up to a PCI root bus.
2988 */
2989 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2990 {
2991 u8 pin = *pinp;
2992
2993 while (!pci_is_root_bus(dev->bus)) {
2994 pin = pci_swizzle_interrupt_pin(dev, pin);
2995 dev = dev->bus->self;
2996 }
2997 *pinp = pin;
2998 return PCI_SLOT(dev->devfn);
2999 }
3000 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3001
3002 /**
3003 * pci_release_region - Release a PCI bar
3004 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3005 * @bar: BAR to release
3006 *
3007 * Releases the PCI I/O and memory resources previously reserved by a
3008 * successful call to pci_request_region. Call this function only
3009 * after all use of the PCI regions has ceased.
3010 */
3011 void pci_release_region(struct pci_dev *pdev, int bar)
3012 {
3013 struct pci_devres *dr;
3014
3015 if (pci_resource_len(pdev, bar) == 0)
3016 return;
3017 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3018 release_region(pci_resource_start(pdev, bar),
3019 pci_resource_len(pdev, bar));
3020 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3021 release_mem_region(pci_resource_start(pdev, bar),
3022 pci_resource_len(pdev, bar));
3023
3024 dr = find_pci_dr(pdev);
3025 if (dr)
3026 dr->region_mask &= ~(1 << bar);
3027 }
3028 EXPORT_SYMBOL(pci_release_region);
3029
3030 /**
3031 * __pci_request_region - Reserved PCI I/O and memory resource
3032 * @pdev: PCI device whose resources are to be reserved
3033 * @bar: BAR to be reserved
3034 * @res_name: Name to be associated with resource.
3035 * @exclusive: whether the region access is exclusive or not
3036 *
3037 * Mark the PCI region associated with PCI device @pdev BR @bar as
3038 * being reserved by owner @res_name. Do not access any
3039 * address inside the PCI regions unless this call returns
3040 * successfully.
3041 *
3042 * If @exclusive is set, then the region is marked so that userspace
3043 * is explicitly not allowed to map the resource via /dev/mem or
3044 * sysfs MMIO access.
3045 *
3046 * Returns 0 on success, or %EBUSY on error. A warning
3047 * message is also printed on failure.
3048 */
3049 static int __pci_request_region(struct pci_dev *pdev, int bar,
3050 const char *res_name, int exclusive)
3051 {
3052 struct pci_devres *dr;
3053
3054 if (pci_resource_len(pdev, bar) == 0)
3055 return 0;
3056
3057 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3058 if (!request_region(pci_resource_start(pdev, bar),
3059 pci_resource_len(pdev, bar), res_name))
3060 goto err_out;
3061 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3062 if (!__request_mem_region(pci_resource_start(pdev, bar),
3063 pci_resource_len(pdev, bar), res_name,
3064 exclusive))
3065 goto err_out;
3066 }
3067
3068 dr = find_pci_dr(pdev);
3069 if (dr)
3070 dr->region_mask |= 1 << bar;
3071
3072 return 0;
3073
3074 err_out:
3075 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
3076 &pdev->resource[bar]);
3077 return -EBUSY;
3078 }
3079
3080 /**
3081 * pci_request_region - Reserve PCI I/O and memory resource
3082 * @pdev: PCI device whose resources are to be reserved
3083 * @bar: BAR to be reserved
3084 * @res_name: Name to be associated with resource
3085 *
3086 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3087 * being reserved by owner @res_name. Do not access any
3088 * address inside the PCI regions unless this call returns
3089 * successfully.
3090 *
3091 * Returns 0 on success, or %EBUSY on error. A warning
3092 * message is also printed on failure.
3093 */
3094 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3095 {
3096 return __pci_request_region(pdev, bar, res_name, 0);
3097 }
3098 EXPORT_SYMBOL(pci_request_region);
3099
3100 /**
3101 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3102 * @pdev: PCI device whose resources are to be reserved
3103 * @bar: BAR to be reserved
3104 * @res_name: Name to be associated with resource.
3105 *
3106 * Mark the PCI region associated with PCI device @pdev BR @bar as
3107 * being reserved by owner @res_name. Do not access any
3108 * address inside the PCI regions unless this call returns
3109 * successfully.
3110 *
3111 * Returns 0 on success, or %EBUSY on error. A warning
3112 * message is also printed on failure.
3113 *
3114 * The key difference that _exclusive makes it that userspace is
3115 * explicitly not allowed to map the resource via /dev/mem or
3116 * sysfs.
3117 */
3118 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3119 const char *res_name)
3120 {
3121 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3122 }
3123 EXPORT_SYMBOL(pci_request_region_exclusive);
3124
3125 /**
3126 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3127 * @pdev: PCI device whose resources were previously reserved
3128 * @bars: Bitmask of BARs to be released
3129 *
3130 * Release selected PCI I/O and memory resources previously reserved.
3131 * Call this function only after all use of the PCI regions has ceased.
3132 */
3133 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3134 {
3135 int i;
3136
3137 for (i = 0; i < 6; i++)
3138 if (bars & (1 << i))
3139 pci_release_region(pdev, i);
3140 }
3141 EXPORT_SYMBOL(pci_release_selected_regions);
3142
3143 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3144 const char *res_name, int excl)
3145 {
3146 int i;
3147
3148 for (i = 0; i < 6; i++)
3149 if (bars & (1 << i))
3150 if (__pci_request_region(pdev, i, res_name, excl))
3151 goto err_out;
3152 return 0;
3153
3154 err_out:
3155 while (--i >= 0)
3156 if (bars & (1 << i))
3157 pci_release_region(pdev, i);
3158
3159 return -EBUSY;
3160 }
3161
3162
3163 /**
3164 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3165 * @pdev: PCI device whose resources are to be reserved
3166 * @bars: Bitmask of BARs to be requested
3167 * @res_name: Name to be associated with resource
3168 */
3169 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3170 const char *res_name)
3171 {
3172 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3173 }
3174 EXPORT_SYMBOL(pci_request_selected_regions);
3175
3176 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3177 const char *res_name)
3178 {
3179 return __pci_request_selected_regions(pdev, bars, res_name,
3180 IORESOURCE_EXCLUSIVE);
3181 }
3182 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3183
3184 /**
3185 * pci_release_regions - Release reserved PCI I/O and memory resources
3186 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3187 *
3188 * Releases all PCI I/O and memory resources previously reserved by a
3189 * successful call to pci_request_regions. Call this function only
3190 * after all use of the PCI regions has ceased.
3191 */
3192
3193 void pci_release_regions(struct pci_dev *pdev)
3194 {
3195 pci_release_selected_regions(pdev, (1 << 6) - 1);
3196 }
3197 EXPORT_SYMBOL(pci_release_regions);
3198
3199 /**
3200 * pci_request_regions - Reserved PCI I/O and memory resources
3201 * @pdev: PCI device whose resources are to be reserved
3202 * @res_name: Name to be associated with resource.
3203 *
3204 * Mark all PCI regions associated with PCI device @pdev as
3205 * being reserved by owner @res_name. Do not access any
3206 * address inside the PCI regions unless this call returns
3207 * successfully.
3208 *
3209 * Returns 0 on success, or %EBUSY on error. A warning
3210 * message is also printed on failure.
3211 */
3212 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3213 {
3214 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3215 }
3216 EXPORT_SYMBOL(pci_request_regions);
3217
3218 /**
3219 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3220 * @pdev: PCI device whose resources are to be reserved
3221 * @res_name: Name to be associated with resource.
3222 *
3223 * Mark all PCI regions associated with PCI device @pdev as
3224 * being reserved by owner @res_name. Do not access any
3225 * address inside the PCI regions unless this call returns
3226 * successfully.
3227 *
3228 * pci_request_regions_exclusive() will mark the region so that
3229 * /dev/mem and the sysfs MMIO access will not be allowed.
3230 *
3231 * Returns 0 on success, or %EBUSY on error. A warning
3232 * message is also printed on failure.
3233 */
3234 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3235 {
3236 return pci_request_selected_regions_exclusive(pdev,
3237 ((1 << 6) - 1), res_name);
3238 }
3239 EXPORT_SYMBOL(pci_request_regions_exclusive);
3240
3241 #ifdef PCI_IOBASE
3242 struct io_range {
3243 struct list_head list;
3244 phys_addr_t start;
3245 resource_size_t size;
3246 };
3247
3248 static LIST_HEAD(io_range_list);
3249 static DEFINE_SPINLOCK(io_range_lock);
3250 #endif
3251
3252 /*
3253 * Record the PCI IO range (expressed as CPU physical address + size).
3254 * Return a negative value if an error has occured, zero otherwise
3255 */
3256 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
3257 {
3258 int err = 0;
3259
3260 #ifdef PCI_IOBASE
3261 struct io_range *range;
3262 resource_size_t allocated_size = 0;
3263
3264 /* check if the range hasn't been previously recorded */
3265 spin_lock(&io_range_lock);
3266 list_for_each_entry(range, &io_range_list, list) {
3267 if (addr >= range->start && addr + size <= range->start + size) {
3268 /* range already registered, bail out */
3269 goto end_register;
3270 }
3271 allocated_size += range->size;
3272 }
3273
3274 /* range not registed yet, check for available space */
3275 if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
3276 /* if it's too big check if 64K space can be reserved */
3277 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
3278 err = -E2BIG;
3279 goto end_register;
3280 }
3281
3282 size = SZ_64K;
3283 pr_warn("Requested IO range too big, new size set to 64K\n");
3284 }
3285
3286 /* add the range to the list */
3287 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3288 if (!range) {
3289 err = -ENOMEM;
3290 goto end_register;
3291 }
3292
3293 range->start = addr;
3294 range->size = size;
3295
3296 list_add_tail(&range->list, &io_range_list);
3297
3298 end_register:
3299 spin_unlock(&io_range_lock);
3300 #endif
3301
3302 return err;
3303 }
3304
3305 phys_addr_t pci_pio_to_address(unsigned long pio)
3306 {
3307 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3308
3309 #ifdef PCI_IOBASE
3310 struct io_range *range;
3311 resource_size_t allocated_size = 0;
3312
3313 if (pio > IO_SPACE_LIMIT)
3314 return address;
3315
3316 spin_lock(&io_range_lock);
3317 list_for_each_entry(range, &io_range_list, list) {
3318 if (pio >= allocated_size && pio < allocated_size + range->size) {
3319 address = range->start + pio - allocated_size;
3320 break;
3321 }
3322 allocated_size += range->size;
3323 }
3324 spin_unlock(&io_range_lock);
3325 #endif
3326
3327 return address;
3328 }
3329
3330 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3331 {
3332 #ifdef PCI_IOBASE
3333 struct io_range *res;
3334 resource_size_t offset = 0;
3335 unsigned long addr = -1;
3336
3337 spin_lock(&io_range_lock);
3338 list_for_each_entry(res, &io_range_list, list) {
3339 if (address >= res->start && address < res->start + res->size) {
3340 addr = address - res->start + offset;
3341 break;
3342 }
3343 offset += res->size;
3344 }
3345 spin_unlock(&io_range_lock);
3346
3347 return addr;
3348 #else
3349 if (address > IO_SPACE_LIMIT)
3350 return (unsigned long)-1;
3351
3352 return (unsigned long) address;
3353 #endif
3354 }
3355
3356 /**
3357 * pci_remap_iospace - Remap the memory mapped I/O space
3358 * @res: Resource describing the I/O space
3359 * @phys_addr: physical address of range to be mapped
3360 *
3361 * Remap the memory mapped I/O space described by the @res
3362 * and the CPU physical address @phys_addr into virtual address space.
3363 * Only architectures that have memory mapped IO functions defined
3364 * (and the PCI_IOBASE value defined) should call this function.
3365 */
3366 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3367 {
3368 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3369 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3370
3371 if (!(res->flags & IORESOURCE_IO))
3372 return -EINVAL;
3373
3374 if (res->end > IO_SPACE_LIMIT)
3375 return -EINVAL;
3376
3377 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3378 pgprot_device(PAGE_KERNEL));
3379 #else
3380 /* this architecture does not have memory mapped I/O space,
3381 so this function should never be called */
3382 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3383 return -ENODEV;
3384 #endif
3385 }
3386
3387 /**
3388 * pci_unmap_iospace - Unmap the memory mapped I/O space
3389 * @res: resource to be unmapped
3390 *
3391 * Unmap the CPU virtual address @res from virtual address space.
3392 * Only architectures that have memory mapped IO functions defined
3393 * (and the PCI_IOBASE value defined) should call this function.
3394 */
3395 void pci_unmap_iospace(struct resource *res)
3396 {
3397 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3398 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3399
3400 unmap_kernel_range(vaddr, resource_size(res));
3401 #endif
3402 }
3403
3404 static void __pci_set_master(struct pci_dev *dev, bool enable)
3405 {
3406 u16 old_cmd, cmd;
3407
3408 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3409 if (enable)
3410 cmd = old_cmd | PCI_COMMAND_MASTER;
3411 else
3412 cmd = old_cmd & ~PCI_COMMAND_MASTER;
3413 if (cmd != old_cmd) {
3414 dev_dbg(&dev->dev, "%s bus mastering\n",
3415 enable ? "enabling" : "disabling");
3416 pci_write_config_word(dev, PCI_COMMAND, cmd);
3417 }
3418 dev->is_busmaster = enable;
3419 }
3420
3421 /**
3422 * pcibios_setup - process "pci=" kernel boot arguments
3423 * @str: string used to pass in "pci=" kernel boot arguments
3424 *
3425 * Process kernel boot arguments. This is the default implementation.
3426 * Architecture specific implementations can override this as necessary.
3427 */
3428 char * __weak __init pcibios_setup(char *str)
3429 {
3430 return str;
3431 }
3432
3433 /**
3434 * pcibios_set_master - enable PCI bus-mastering for device dev
3435 * @dev: the PCI device to enable
3436 *
3437 * Enables PCI bus-mastering for the device. This is the default
3438 * implementation. Architecture specific implementations can override
3439 * this if necessary.
3440 */
3441 void __weak pcibios_set_master(struct pci_dev *dev)
3442 {
3443 u8 lat;
3444
3445 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3446 if (pci_is_pcie(dev))
3447 return;
3448
3449 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3450 if (lat < 16)
3451 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3452 else if (lat > pcibios_max_latency)
3453 lat = pcibios_max_latency;
3454 else
3455 return;
3456
3457 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3458 }
3459
3460 /**
3461 * pci_set_master - enables bus-mastering for device dev
3462 * @dev: the PCI device to enable
3463 *
3464 * Enables bus-mastering on the device and calls pcibios_set_master()
3465 * to do the needed arch specific settings.
3466 */
3467 void pci_set_master(struct pci_dev *dev)
3468 {
3469 __pci_set_master(dev, true);
3470 pcibios_set_master(dev);
3471 }
3472 EXPORT_SYMBOL(pci_set_master);
3473
3474 /**
3475 * pci_clear_master - disables bus-mastering for device dev
3476 * @dev: the PCI device to disable
3477 */
3478 void pci_clear_master(struct pci_dev *dev)
3479 {
3480 __pci_set_master(dev, false);
3481 }
3482 EXPORT_SYMBOL(pci_clear_master);
3483
3484 /**
3485 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3486 * @dev: the PCI device for which MWI is to be enabled
3487 *
3488 * Helper function for pci_set_mwi.
3489 * Originally copied from drivers/net/acenic.c.
3490 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3491 *
3492 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3493 */
3494 int pci_set_cacheline_size(struct pci_dev *dev)
3495 {
3496 u8 cacheline_size;
3497
3498 if (!pci_cache_line_size)
3499 return -EINVAL;
3500
3501 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3502 equal to or multiple of the right value. */
3503 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3504 if (cacheline_size >= pci_cache_line_size &&
3505 (cacheline_size % pci_cache_line_size) == 0)
3506 return 0;
3507
3508 /* Write the correct value. */
3509 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3510 /* Read it back. */
3511 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3512 if (cacheline_size == pci_cache_line_size)
3513 return 0;
3514
3515 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3516 pci_cache_line_size << 2);
3517
3518 return -EINVAL;
3519 }
3520 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3521
3522 /**
3523 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3524 * @dev: the PCI device for which MWI is enabled
3525 *
3526 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3527 *
3528 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3529 */
3530 int pci_set_mwi(struct pci_dev *dev)
3531 {
3532 #ifdef PCI_DISABLE_MWI
3533 return 0;
3534 #else
3535 int rc;
3536 u16 cmd;
3537
3538 rc = pci_set_cacheline_size(dev);
3539 if (rc)
3540 return rc;
3541
3542 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3543 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3544 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3545 cmd |= PCI_COMMAND_INVALIDATE;
3546 pci_write_config_word(dev, PCI_COMMAND, cmd);
3547 }
3548 return 0;
3549 #endif
3550 }
3551 EXPORT_SYMBOL(pci_set_mwi);
3552
3553 /**
3554 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3555 * @dev: the PCI device for which MWI is enabled
3556 *
3557 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3558 * Callers are not required to check the return value.
3559 *
3560 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3561 */
3562 int pci_try_set_mwi(struct pci_dev *dev)
3563 {
3564 #ifdef PCI_DISABLE_MWI
3565 return 0;
3566 #else
3567 return pci_set_mwi(dev);
3568 #endif
3569 }
3570 EXPORT_SYMBOL(pci_try_set_mwi);
3571
3572 /**
3573 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3574 * @dev: the PCI device to disable
3575 *
3576 * Disables PCI Memory-Write-Invalidate transaction on the device
3577 */
3578 void pci_clear_mwi(struct pci_dev *dev)
3579 {
3580 #ifndef PCI_DISABLE_MWI
3581 u16 cmd;
3582
3583 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3584 if (cmd & PCI_COMMAND_INVALIDATE) {
3585 cmd &= ~PCI_COMMAND_INVALIDATE;
3586 pci_write_config_word(dev, PCI_COMMAND, cmd);
3587 }
3588 #endif
3589 }
3590 EXPORT_SYMBOL(pci_clear_mwi);
3591
3592 /**
3593 * pci_intx - enables/disables PCI INTx for device dev
3594 * @pdev: the PCI device to operate on
3595 * @enable: boolean: whether to enable or disable PCI INTx
3596 *
3597 * Enables/disables PCI INTx for device dev
3598 */
3599 void pci_intx(struct pci_dev *pdev, int enable)
3600 {
3601 u16 pci_command, new;
3602
3603 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3604
3605 if (enable)
3606 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3607 else
3608 new = pci_command | PCI_COMMAND_INTX_DISABLE;
3609
3610 if (new != pci_command) {
3611 struct pci_devres *dr;
3612
3613 pci_write_config_word(pdev, PCI_COMMAND, new);
3614
3615 dr = find_pci_dr(pdev);
3616 if (dr && !dr->restore_intx) {
3617 dr->restore_intx = 1;
3618 dr->orig_intx = !enable;
3619 }
3620 }
3621 }
3622 EXPORT_SYMBOL_GPL(pci_intx);
3623
3624 /**
3625 * pci_intx_mask_supported - probe for INTx masking support
3626 * @dev: the PCI device to operate on
3627 *
3628 * Check if the device dev support INTx masking via the config space
3629 * command word.
3630 */
3631 bool pci_intx_mask_supported(struct pci_dev *dev)
3632 {
3633 bool mask_supported = false;
3634 u16 orig, new;
3635
3636 if (dev->broken_intx_masking)
3637 return false;
3638
3639 pci_cfg_access_lock(dev);
3640
3641 pci_read_config_word(dev, PCI_COMMAND, &orig);
3642 pci_write_config_word(dev, PCI_COMMAND,
3643 orig ^ PCI_COMMAND_INTX_DISABLE);
3644 pci_read_config_word(dev, PCI_COMMAND, &new);
3645
3646 /*
3647 * There's no way to protect against hardware bugs or detect them
3648 * reliably, but as long as we know what the value should be, let's
3649 * go ahead and check it.
3650 */
3651 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3652 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3653 orig, new);
3654 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3655 mask_supported = true;
3656 pci_write_config_word(dev, PCI_COMMAND, orig);
3657 }
3658
3659 pci_cfg_access_unlock(dev);
3660 return mask_supported;
3661 }
3662 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3663
3664 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3665 {
3666 struct pci_bus *bus = dev->bus;
3667 bool mask_updated = true;
3668 u32 cmd_status_dword;
3669 u16 origcmd, newcmd;
3670 unsigned long flags;
3671 bool irq_pending;
3672
3673 /*
3674 * We do a single dword read to retrieve both command and status.
3675 * Document assumptions that make this possible.
3676 */
3677 BUILD_BUG_ON(PCI_COMMAND % 4);
3678 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3679
3680 raw_spin_lock_irqsave(&pci_lock, flags);
3681
3682 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3683
3684 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3685
3686 /*
3687 * Check interrupt status register to see whether our device
3688 * triggered the interrupt (when masking) or the next IRQ is
3689 * already pending (when unmasking).
3690 */
3691 if (mask != irq_pending) {
3692 mask_updated = false;
3693 goto done;
3694 }
3695
3696 origcmd = cmd_status_dword;
3697 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3698 if (mask)
3699 newcmd |= PCI_COMMAND_INTX_DISABLE;
3700 if (newcmd != origcmd)
3701 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3702
3703 done:
3704 raw_spin_unlock_irqrestore(&pci_lock, flags);
3705
3706 return mask_updated;
3707 }
3708
3709 /**
3710 * pci_check_and_mask_intx - mask INTx on pending interrupt
3711 * @dev: the PCI device to operate on
3712 *
3713 * Check if the device dev has its INTx line asserted, mask it and
3714 * return true in that case. False is returned if not interrupt was
3715 * pending.
3716 */
3717 bool pci_check_and_mask_intx(struct pci_dev *dev)
3718 {
3719 return pci_check_and_set_intx_mask(dev, true);
3720 }
3721 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3722
3723 /**
3724 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3725 * @dev: the PCI device to operate on
3726 *
3727 * Check if the device dev has its INTx line asserted, unmask it if not
3728 * and return true. False is returned and the mask remains active if
3729 * there was still an interrupt pending.
3730 */
3731 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3732 {
3733 return pci_check_and_set_intx_mask(dev, false);
3734 }
3735 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3736
3737 /**
3738 * pci_wait_for_pending_transaction - waits for pending transaction
3739 * @dev: the PCI device to operate on
3740 *
3741 * Return 0 if transaction is pending 1 otherwise.
3742 */
3743 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3744 {
3745 if (!pci_is_pcie(dev))
3746 return 1;
3747
3748 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3749 PCI_EXP_DEVSTA_TRPND);
3750 }
3751 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3752
3753 /*
3754 * We should only need to wait 100ms after FLR, but some devices take longer.
3755 * Wait for up to 1000ms for config space to return something other than -1.
3756 * Intel IGD requires this when an LCD panel is attached. We read the 2nd
3757 * dword because VFs don't implement the 1st dword.
3758 */
3759 static void pci_flr_wait(struct pci_dev *dev)
3760 {
3761 int i = 0;
3762 u32 id;
3763
3764 do {
3765 msleep(100);
3766 pci_read_config_dword(dev, PCI_COMMAND, &id);
3767 } while (i++ < 10 && id == ~0);
3768
3769 if (id == ~0)
3770 dev_warn(&dev->dev, "Failed to return from FLR\n");
3771 else if (i > 1)
3772 dev_info(&dev->dev, "Required additional %dms to return from FLR\n",
3773 (i - 1) * 100);
3774 }
3775
3776 static int pcie_flr(struct pci_dev *dev, int probe)
3777 {
3778 u32 cap;
3779
3780 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3781 if (!(cap & PCI_EXP_DEVCAP_FLR))
3782 return -ENOTTY;
3783
3784 if (probe)
3785 return 0;
3786
3787 if (!pci_wait_for_pending_transaction(dev))
3788 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3789
3790 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3791 pci_flr_wait(dev);
3792 return 0;
3793 }
3794
3795 static int pci_af_flr(struct pci_dev *dev, int probe)
3796 {
3797 int pos;
3798 u8 cap;
3799
3800 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3801 if (!pos)
3802 return -ENOTTY;
3803
3804 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3805 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3806 return -ENOTTY;
3807
3808 if (probe)
3809 return 0;
3810
3811 /*
3812 * Wait for Transaction Pending bit to clear. A word-aligned test
3813 * is used, so we use the conrol offset rather than status and shift
3814 * the test bit to match.
3815 */
3816 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3817 PCI_AF_STATUS_TP << 8))
3818 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3819
3820 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3821 pci_flr_wait(dev);
3822 return 0;
3823 }
3824
3825 /**
3826 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3827 * @dev: Device to reset.
3828 * @probe: If set, only check if the device can be reset this way.
3829 *
3830 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3831 * unset, it will be reinitialized internally when going from PCI_D3hot to
3832 * PCI_D0. If that's the case and the device is not in a low-power state
3833 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3834 *
3835 * NOTE: This causes the caller to sleep for twice the device power transition
3836 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3837 * by default (i.e. unless the @dev's d3_delay field has a different value).
3838 * Moreover, only devices in D0 can be reset by this function.
3839 */
3840 static int pci_pm_reset(struct pci_dev *dev, int probe)
3841 {
3842 u16 csr;
3843
3844 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3845 return -ENOTTY;
3846
3847 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3848 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3849 return -ENOTTY;
3850
3851 if (probe)
3852 return 0;
3853
3854 if (dev->current_state != PCI_D0)
3855 return -EINVAL;
3856
3857 csr &= ~PCI_PM_CTRL_STATE_MASK;
3858 csr |= PCI_D3hot;
3859 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3860 pci_dev_d3_sleep(dev);
3861
3862 csr &= ~PCI_PM_CTRL_STATE_MASK;
3863 csr |= PCI_D0;
3864 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3865 pci_dev_d3_sleep(dev);
3866
3867 return 0;
3868 }
3869
3870 void pci_reset_secondary_bus(struct pci_dev *dev)
3871 {
3872 u16 ctrl;
3873
3874 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3875 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3876 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3877 /*
3878 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3879 * this to 2ms to ensure that we meet the minimum requirement.
3880 */
3881 msleep(2);
3882
3883 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3884 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3885
3886 /*
3887 * Trhfa for conventional PCI is 2^25 clock cycles.
3888 * Assuming a minimum 33MHz clock this results in a 1s
3889 * delay before we can consider subordinate devices to
3890 * be re-initialized. PCIe has some ways to shorten this,
3891 * but we don't make use of them yet.
3892 */
3893 ssleep(1);
3894 }
3895
3896 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3897 {
3898 pci_reset_secondary_bus(dev);
3899 }
3900
3901 /**
3902 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3903 * @dev: Bridge device
3904 *
3905 * Use the bridge control register to assert reset on the secondary bus.
3906 * Devices on the secondary bus are left in power-on state.
3907 */
3908 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3909 {
3910 pcibios_reset_secondary_bus(dev);
3911 }
3912 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3913
3914 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3915 {
3916 struct pci_dev *pdev;
3917
3918 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
3919 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3920 return -ENOTTY;
3921
3922 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3923 if (pdev != dev)
3924 return -ENOTTY;
3925
3926 if (probe)
3927 return 0;
3928
3929 pci_reset_bridge_secondary_bus(dev->bus->self);
3930
3931 return 0;
3932 }
3933
3934 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3935 {
3936 int rc = -ENOTTY;
3937
3938 if (!hotplug || !try_module_get(hotplug->ops->owner))
3939 return rc;
3940
3941 if (hotplug->ops->reset_slot)
3942 rc = hotplug->ops->reset_slot(hotplug, probe);
3943
3944 module_put(hotplug->ops->owner);
3945
3946 return rc;
3947 }
3948
3949 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3950 {
3951 struct pci_dev *pdev;
3952
3953 if (dev->subordinate || !dev->slot ||
3954 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3955 return -ENOTTY;
3956
3957 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3958 if (pdev != dev && pdev->slot == dev->slot)
3959 return -ENOTTY;
3960
3961 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3962 }
3963
3964 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3965 {
3966 int rc;
3967
3968 might_sleep();
3969
3970 rc = pci_dev_specific_reset(dev, probe);
3971 if (rc != -ENOTTY)
3972 goto done;
3973
3974 rc = pcie_flr(dev, probe);
3975 if (rc != -ENOTTY)
3976 goto done;
3977
3978 rc = pci_af_flr(dev, probe);
3979 if (rc != -ENOTTY)
3980 goto done;
3981
3982 rc = pci_pm_reset(dev, probe);
3983 if (rc != -ENOTTY)
3984 goto done;
3985
3986 rc = pci_dev_reset_slot_function(dev, probe);
3987 if (rc != -ENOTTY)
3988 goto done;
3989
3990 rc = pci_parent_bus_reset(dev, probe);
3991 done:
3992 return rc;
3993 }
3994
3995 static void pci_dev_lock(struct pci_dev *dev)
3996 {
3997 pci_cfg_access_lock(dev);
3998 /* block PM suspend, driver probe, etc. */
3999 device_lock(&dev->dev);
4000 }
4001
4002 /* Return 1 on successful lock, 0 on contention */
4003 static int pci_dev_trylock(struct pci_dev *dev)
4004 {
4005 if (pci_cfg_access_trylock(dev)) {
4006 if (device_trylock(&dev->dev))
4007 return 1;
4008 pci_cfg_access_unlock(dev);
4009 }
4010
4011 return 0;
4012 }
4013
4014 static void pci_dev_unlock(struct pci_dev *dev)
4015 {
4016 device_unlock(&dev->dev);
4017 pci_cfg_access_unlock(dev);
4018 }
4019
4020 /**
4021 * pci_reset_notify - notify device driver of reset
4022 * @dev: device to be notified of reset
4023 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
4024 * completed
4025 *
4026 * Must be called prior to device access being disabled and after device
4027 * access is restored.
4028 */
4029 static void pci_reset_notify(struct pci_dev *dev, bool prepare)
4030 {
4031 const struct pci_error_handlers *err_handler =
4032 dev->driver ? dev->driver->err_handler : NULL;
4033 if (err_handler && err_handler->reset_notify)
4034 err_handler->reset_notify(dev, prepare);
4035 }
4036
4037 static void pci_dev_save_and_disable(struct pci_dev *dev)
4038 {
4039 pci_reset_notify(dev, true);
4040
4041 /*
4042 * Wake-up device prior to save. PM registers default to D0 after
4043 * reset and a simple register restore doesn't reliably return
4044 * to a non-D0 state anyway.
4045 */
4046 pci_set_power_state(dev, PCI_D0);
4047
4048 pci_save_state(dev);
4049 /*
4050 * Disable the device by clearing the Command register, except for
4051 * INTx-disable which is set. This not only disables MMIO and I/O port
4052 * BARs, but also prevents the device from being Bus Master, preventing
4053 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4054 * compliant devices, INTx-disable prevents legacy interrupts.
4055 */
4056 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4057 }
4058
4059 static void pci_dev_restore(struct pci_dev *dev)
4060 {
4061 pci_restore_state(dev);
4062 pci_reset_notify(dev, false);
4063 }
4064
4065 static int pci_dev_reset(struct pci_dev *dev, int probe)
4066 {
4067 int rc;
4068
4069 if (!probe)
4070 pci_dev_lock(dev);
4071
4072 rc = __pci_dev_reset(dev, probe);
4073
4074 if (!probe)
4075 pci_dev_unlock(dev);
4076
4077 return rc;
4078 }
4079
4080 /**
4081 * __pci_reset_function - reset a PCI device function
4082 * @dev: PCI device to reset
4083 *
4084 * Some devices allow an individual function to be reset without affecting
4085 * other functions in the same device. The PCI device must be responsive
4086 * to PCI config space in order to use this function.
4087 *
4088 * The device function is presumed to be unused when this function is called.
4089 * Resetting the device will make the contents of PCI configuration space
4090 * random, so any caller of this must be prepared to reinitialise the
4091 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4092 * etc.
4093 *
4094 * Returns 0 if the device function was successfully reset or negative if the
4095 * device doesn't support resetting a single function.
4096 */
4097 int __pci_reset_function(struct pci_dev *dev)
4098 {
4099 return pci_dev_reset(dev, 0);
4100 }
4101 EXPORT_SYMBOL_GPL(__pci_reset_function);
4102
4103 /**
4104 * __pci_reset_function_locked - reset a PCI device function while holding
4105 * the @dev mutex lock.
4106 * @dev: PCI device to reset
4107 *
4108 * Some devices allow an individual function to be reset without affecting
4109 * other functions in the same device. The PCI device must be responsive
4110 * to PCI config space in order to use this function.
4111 *
4112 * The device function is presumed to be unused and the caller is holding
4113 * the device mutex lock when this function is called.
4114 * Resetting the device will make the contents of PCI configuration space
4115 * random, so any caller of this must be prepared to reinitialise the
4116 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4117 * etc.
4118 *
4119 * Returns 0 if the device function was successfully reset or negative if the
4120 * device doesn't support resetting a single function.
4121 */
4122 int __pci_reset_function_locked(struct pci_dev *dev)
4123 {
4124 return __pci_dev_reset(dev, 0);
4125 }
4126 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4127
4128 /**
4129 * pci_probe_reset_function - check whether the device can be safely reset
4130 * @dev: PCI device to reset
4131 *
4132 * Some devices allow an individual function to be reset without affecting
4133 * other functions in the same device. The PCI device must be responsive
4134 * to PCI config space in order to use this function.
4135 *
4136 * Returns 0 if the device function can be reset or negative if the
4137 * device doesn't support resetting a single function.
4138 */
4139 int pci_probe_reset_function(struct pci_dev *dev)
4140 {
4141 return pci_dev_reset(dev, 1);
4142 }
4143
4144 /**
4145 * pci_reset_function - quiesce and reset a PCI device function
4146 * @dev: PCI device to reset
4147 *
4148 * Some devices allow an individual function to be reset without affecting
4149 * other functions in the same device. The PCI device must be responsive
4150 * to PCI config space in order to use this function.
4151 *
4152 * This function does not just reset the PCI portion of a device, but
4153 * clears all the state associated with the device. This function differs
4154 * from __pci_reset_function in that it saves and restores device state
4155 * over the reset.
4156 *
4157 * Returns 0 if the device function was successfully reset or negative if the
4158 * device doesn't support resetting a single function.
4159 */
4160 int pci_reset_function(struct pci_dev *dev)
4161 {
4162 int rc;
4163
4164 rc = pci_dev_reset(dev, 1);
4165 if (rc)
4166 return rc;
4167
4168 pci_dev_save_and_disable(dev);
4169
4170 rc = pci_dev_reset(dev, 0);
4171
4172 pci_dev_restore(dev);
4173
4174 return rc;
4175 }
4176 EXPORT_SYMBOL_GPL(pci_reset_function);
4177
4178 /**
4179 * pci_try_reset_function - quiesce and reset a PCI device function
4180 * @dev: PCI device to reset
4181 *
4182 * Same as above, except return -EAGAIN if unable to lock device.
4183 */
4184 int pci_try_reset_function(struct pci_dev *dev)
4185 {
4186 int rc;
4187
4188 rc = pci_dev_reset(dev, 1);
4189 if (rc)
4190 return rc;
4191
4192 pci_dev_save_and_disable(dev);
4193
4194 if (pci_dev_trylock(dev)) {
4195 rc = __pci_dev_reset(dev, 0);
4196 pci_dev_unlock(dev);
4197 } else
4198 rc = -EAGAIN;
4199
4200 pci_dev_restore(dev);
4201
4202 return rc;
4203 }
4204 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4205
4206 /* Do any devices on or below this bus prevent a bus reset? */
4207 static bool pci_bus_resetable(struct pci_bus *bus)
4208 {
4209 struct pci_dev *dev;
4210
4211 list_for_each_entry(dev, &bus->devices, bus_list) {
4212 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4213 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4214 return false;
4215 }
4216
4217 return true;
4218 }
4219
4220 /* Lock devices from the top of the tree down */
4221 static void pci_bus_lock(struct pci_bus *bus)
4222 {
4223 struct pci_dev *dev;
4224
4225 list_for_each_entry(dev, &bus->devices, bus_list) {
4226 pci_dev_lock(dev);
4227 if (dev->subordinate)
4228 pci_bus_lock(dev->subordinate);
4229 }
4230 }
4231
4232 /* Unlock devices from the bottom of the tree up */
4233 static void pci_bus_unlock(struct pci_bus *bus)
4234 {
4235 struct pci_dev *dev;
4236
4237 list_for_each_entry(dev, &bus->devices, bus_list) {
4238 if (dev->subordinate)
4239 pci_bus_unlock(dev->subordinate);
4240 pci_dev_unlock(dev);
4241 }
4242 }
4243
4244 /* Return 1 on successful lock, 0 on contention */
4245 static int pci_bus_trylock(struct pci_bus *bus)
4246 {
4247 struct pci_dev *dev;
4248
4249 list_for_each_entry(dev, &bus->devices, bus_list) {
4250 if (!pci_dev_trylock(dev))
4251 goto unlock;
4252 if (dev->subordinate) {
4253 if (!pci_bus_trylock(dev->subordinate)) {
4254 pci_dev_unlock(dev);
4255 goto unlock;
4256 }
4257 }
4258 }
4259 return 1;
4260
4261 unlock:
4262 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4263 if (dev->subordinate)
4264 pci_bus_unlock(dev->subordinate);
4265 pci_dev_unlock(dev);
4266 }
4267 return 0;
4268 }
4269
4270 /* Do any devices on or below this slot prevent a bus reset? */
4271 static bool pci_slot_resetable(struct pci_slot *slot)
4272 {
4273 struct pci_dev *dev;
4274
4275 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4276 if (!dev->slot || dev->slot != slot)
4277 continue;
4278 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4279 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4280 return false;
4281 }
4282
4283 return true;
4284 }
4285
4286 /* Lock devices from the top of the tree down */
4287 static void pci_slot_lock(struct pci_slot *slot)
4288 {
4289 struct pci_dev *dev;
4290
4291 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4292 if (!dev->slot || dev->slot != slot)
4293 continue;
4294 pci_dev_lock(dev);
4295 if (dev->subordinate)
4296 pci_bus_lock(dev->subordinate);
4297 }
4298 }
4299
4300 /* Unlock devices from the bottom of the tree up */
4301 static void pci_slot_unlock(struct pci_slot *slot)
4302 {
4303 struct pci_dev *dev;
4304
4305 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4306 if (!dev->slot || dev->slot != slot)
4307 continue;
4308 if (dev->subordinate)
4309 pci_bus_unlock(dev->subordinate);
4310 pci_dev_unlock(dev);
4311 }
4312 }
4313
4314 /* Return 1 on successful lock, 0 on contention */
4315 static int pci_slot_trylock(struct pci_slot *slot)
4316 {
4317 struct pci_dev *dev;
4318
4319 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4320 if (!dev->slot || dev->slot != slot)
4321 continue;
4322 if (!pci_dev_trylock(dev))
4323 goto unlock;
4324 if (dev->subordinate) {
4325 if (!pci_bus_trylock(dev->subordinate)) {
4326 pci_dev_unlock(dev);
4327 goto unlock;
4328 }
4329 }
4330 }
4331 return 1;
4332
4333 unlock:
4334 list_for_each_entry_continue_reverse(dev,
4335 &slot->bus->devices, bus_list) {
4336 if (!dev->slot || dev->slot != slot)
4337 continue;
4338 if (dev->subordinate)
4339 pci_bus_unlock(dev->subordinate);
4340 pci_dev_unlock(dev);
4341 }
4342 return 0;
4343 }
4344
4345 /* Save and disable devices from the top of the tree down */
4346 static void pci_bus_save_and_disable(struct pci_bus *bus)
4347 {
4348 struct pci_dev *dev;
4349
4350 list_for_each_entry(dev, &bus->devices, bus_list) {
4351 pci_dev_save_and_disable(dev);
4352 if (dev->subordinate)
4353 pci_bus_save_and_disable(dev->subordinate);
4354 }
4355 }
4356
4357 /*
4358 * Restore devices from top of the tree down - parent bridges need to be
4359 * restored before we can get to subordinate devices.
4360 */
4361 static void pci_bus_restore(struct pci_bus *bus)
4362 {
4363 struct pci_dev *dev;
4364
4365 list_for_each_entry(dev, &bus->devices, bus_list) {
4366 pci_dev_restore(dev);
4367 if (dev->subordinate)
4368 pci_bus_restore(dev->subordinate);
4369 }
4370 }
4371
4372 /* Save and disable devices from the top of the tree down */
4373 static void pci_slot_save_and_disable(struct pci_slot *slot)
4374 {
4375 struct pci_dev *dev;
4376
4377 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4378 if (!dev->slot || dev->slot != slot)
4379 continue;
4380 pci_dev_save_and_disable(dev);
4381 if (dev->subordinate)
4382 pci_bus_save_and_disable(dev->subordinate);
4383 }
4384 }
4385
4386 /*
4387 * Restore devices from top of the tree down - parent bridges need to be
4388 * restored before we can get to subordinate devices.
4389 */
4390 static void pci_slot_restore(struct pci_slot *slot)
4391 {
4392 struct pci_dev *dev;
4393
4394 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4395 if (!dev->slot || dev->slot != slot)
4396 continue;
4397 pci_dev_restore(dev);
4398 if (dev->subordinate)
4399 pci_bus_restore(dev->subordinate);
4400 }
4401 }
4402
4403 static int pci_slot_reset(struct pci_slot *slot, int probe)
4404 {
4405 int rc;
4406
4407 if (!slot || !pci_slot_resetable(slot))
4408 return -ENOTTY;
4409
4410 if (!probe)
4411 pci_slot_lock(slot);
4412
4413 might_sleep();
4414
4415 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4416
4417 if (!probe)
4418 pci_slot_unlock(slot);
4419
4420 return rc;
4421 }
4422
4423 /**
4424 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4425 * @slot: PCI slot to probe
4426 *
4427 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4428 */
4429 int pci_probe_reset_slot(struct pci_slot *slot)
4430 {
4431 return pci_slot_reset(slot, 1);
4432 }
4433 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4434
4435 /**
4436 * pci_reset_slot - reset a PCI slot
4437 * @slot: PCI slot to reset
4438 *
4439 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4440 * independent of other slots. For instance, some slots may support slot power
4441 * control. In the case of a 1:1 bus to slot architecture, this function may
4442 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4443 * Generally a slot reset should be attempted before a bus reset. All of the
4444 * function of the slot and any subordinate buses behind the slot are reset
4445 * through this function. PCI config space of all devices in the slot and
4446 * behind the slot is saved before and restored after reset.
4447 *
4448 * Return 0 on success, non-zero on error.
4449 */
4450 int pci_reset_slot(struct pci_slot *slot)
4451 {
4452 int rc;
4453
4454 rc = pci_slot_reset(slot, 1);
4455 if (rc)
4456 return rc;
4457
4458 pci_slot_save_and_disable(slot);
4459
4460 rc = pci_slot_reset(slot, 0);
4461
4462 pci_slot_restore(slot);
4463
4464 return rc;
4465 }
4466 EXPORT_SYMBOL_GPL(pci_reset_slot);
4467
4468 /**
4469 * pci_try_reset_slot - Try to reset a PCI slot
4470 * @slot: PCI slot to reset
4471 *
4472 * Same as above except return -EAGAIN if the slot cannot be locked
4473 */
4474 int pci_try_reset_slot(struct pci_slot *slot)
4475 {
4476 int rc;
4477
4478 rc = pci_slot_reset(slot, 1);
4479 if (rc)
4480 return rc;
4481
4482 pci_slot_save_and_disable(slot);
4483
4484 if (pci_slot_trylock(slot)) {
4485 might_sleep();
4486 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4487 pci_slot_unlock(slot);
4488 } else
4489 rc = -EAGAIN;
4490
4491 pci_slot_restore(slot);
4492
4493 return rc;
4494 }
4495 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4496
4497 static int pci_bus_reset(struct pci_bus *bus, int probe)
4498 {
4499 if (!bus->self || !pci_bus_resetable(bus))
4500 return -ENOTTY;
4501
4502 if (probe)
4503 return 0;
4504
4505 pci_bus_lock(bus);
4506
4507 might_sleep();
4508
4509 pci_reset_bridge_secondary_bus(bus->self);
4510
4511 pci_bus_unlock(bus);
4512
4513 return 0;
4514 }
4515
4516 /**
4517 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4518 * @bus: PCI bus to probe
4519 *
4520 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4521 */
4522 int pci_probe_reset_bus(struct pci_bus *bus)
4523 {
4524 return pci_bus_reset(bus, 1);
4525 }
4526 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4527
4528 /**
4529 * pci_reset_bus - reset a PCI bus
4530 * @bus: top level PCI bus to reset
4531 *
4532 * Do a bus reset on the given bus and any subordinate buses, saving
4533 * and restoring state of all devices.
4534 *
4535 * Return 0 on success, non-zero on error.
4536 */
4537 int pci_reset_bus(struct pci_bus *bus)
4538 {
4539 int rc;
4540
4541 rc = pci_bus_reset(bus, 1);
4542 if (rc)
4543 return rc;
4544
4545 pci_bus_save_and_disable(bus);
4546
4547 rc = pci_bus_reset(bus, 0);
4548
4549 pci_bus_restore(bus);
4550
4551 return rc;
4552 }
4553 EXPORT_SYMBOL_GPL(pci_reset_bus);
4554
4555 /**
4556 * pci_try_reset_bus - Try to reset a PCI bus
4557 * @bus: top level PCI bus to reset
4558 *
4559 * Same as above except return -EAGAIN if the bus cannot be locked
4560 */
4561 int pci_try_reset_bus(struct pci_bus *bus)
4562 {
4563 int rc;
4564
4565 rc = pci_bus_reset(bus, 1);
4566 if (rc)
4567 return rc;
4568
4569 pci_bus_save_and_disable(bus);
4570
4571 if (pci_bus_trylock(bus)) {
4572 might_sleep();
4573 pci_reset_bridge_secondary_bus(bus->self);
4574 pci_bus_unlock(bus);
4575 } else
4576 rc = -EAGAIN;
4577
4578 pci_bus_restore(bus);
4579
4580 return rc;
4581 }
4582 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4583
4584 /**
4585 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4586 * @dev: PCI device to query
4587 *
4588 * Returns mmrbc: maximum designed memory read count in bytes
4589 * or appropriate error value.
4590 */
4591 int pcix_get_max_mmrbc(struct pci_dev *dev)
4592 {
4593 int cap;
4594 u32 stat;
4595
4596 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4597 if (!cap)
4598 return -EINVAL;
4599
4600 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4601 return -EINVAL;
4602
4603 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4604 }
4605 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4606
4607 /**
4608 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4609 * @dev: PCI device to query
4610 *
4611 * Returns mmrbc: maximum memory read count in bytes
4612 * or appropriate error value.
4613 */
4614 int pcix_get_mmrbc(struct pci_dev *dev)
4615 {
4616 int cap;
4617 u16 cmd;
4618
4619 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4620 if (!cap)
4621 return -EINVAL;
4622
4623 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4624 return -EINVAL;
4625
4626 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4627 }
4628 EXPORT_SYMBOL(pcix_get_mmrbc);
4629
4630 /**
4631 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4632 * @dev: PCI device to query
4633 * @mmrbc: maximum memory read count in bytes
4634 * valid values are 512, 1024, 2048, 4096
4635 *
4636 * If possible sets maximum memory read byte count, some bridges have erratas
4637 * that prevent this.
4638 */
4639 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4640 {
4641 int cap;
4642 u32 stat, v, o;
4643 u16 cmd;
4644
4645 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4646 return -EINVAL;
4647
4648 v = ffs(mmrbc) - 10;
4649
4650 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4651 if (!cap)
4652 return -EINVAL;
4653
4654 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4655 return -EINVAL;
4656
4657 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4658 return -E2BIG;
4659
4660 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4661 return -EINVAL;
4662
4663 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4664 if (o != v) {
4665 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4666 return -EIO;
4667
4668 cmd &= ~PCI_X_CMD_MAX_READ;
4669 cmd |= v << 2;
4670 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4671 return -EIO;
4672 }
4673 return 0;
4674 }
4675 EXPORT_SYMBOL(pcix_set_mmrbc);
4676
4677 /**
4678 * pcie_get_readrq - get PCI Express read request size
4679 * @dev: PCI device to query
4680 *
4681 * Returns maximum memory read request in bytes
4682 * or appropriate error value.
4683 */
4684 int pcie_get_readrq(struct pci_dev *dev)
4685 {
4686 u16 ctl;
4687
4688 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4689
4690 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4691 }
4692 EXPORT_SYMBOL(pcie_get_readrq);
4693
4694 /**
4695 * pcie_set_readrq - set PCI Express maximum memory read request
4696 * @dev: PCI device to query
4697 * @rq: maximum memory read count in bytes
4698 * valid values are 128, 256, 512, 1024, 2048, 4096
4699 *
4700 * If possible sets maximum memory read request in bytes
4701 */
4702 int pcie_set_readrq(struct pci_dev *dev, int rq)
4703 {
4704 u16 v;
4705
4706 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4707 return -EINVAL;
4708
4709 /*
4710 * If using the "performance" PCIe config, we clamp the
4711 * read rq size to the max packet size to prevent the
4712 * host bridge generating requests larger than we can
4713 * cope with
4714 */
4715 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4716 int mps = pcie_get_mps(dev);
4717
4718 if (mps < rq)
4719 rq = mps;
4720 }
4721
4722 v = (ffs(rq) - 8) << 12;
4723
4724 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4725 PCI_EXP_DEVCTL_READRQ, v);
4726 }
4727 EXPORT_SYMBOL(pcie_set_readrq);
4728
4729 /**
4730 * pcie_get_mps - get PCI Express maximum payload size
4731 * @dev: PCI device to query
4732 *
4733 * Returns maximum payload size in bytes
4734 */
4735 int pcie_get_mps(struct pci_dev *dev)
4736 {
4737 u16 ctl;
4738
4739 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4740
4741 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4742 }
4743 EXPORT_SYMBOL(pcie_get_mps);
4744
4745 /**
4746 * pcie_set_mps - set PCI Express maximum payload size
4747 * @dev: PCI device to query
4748 * @mps: maximum payload size in bytes
4749 * valid values are 128, 256, 512, 1024, 2048, 4096
4750 *
4751 * If possible sets maximum payload size
4752 */
4753 int pcie_set_mps(struct pci_dev *dev, int mps)
4754 {
4755 u16 v;
4756
4757 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4758 return -EINVAL;
4759
4760 v = ffs(mps) - 8;
4761 if (v > dev->pcie_mpss)
4762 return -EINVAL;
4763 v <<= 5;
4764
4765 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4766 PCI_EXP_DEVCTL_PAYLOAD, v);
4767 }
4768 EXPORT_SYMBOL(pcie_set_mps);
4769
4770 /**
4771 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4772 * @dev: PCI device to query
4773 * @speed: storage for minimum speed
4774 * @width: storage for minimum width
4775 *
4776 * This function will walk up the PCI device chain and determine the minimum
4777 * link width and speed of the device.
4778 */
4779 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4780 enum pcie_link_width *width)
4781 {
4782 int ret;
4783
4784 *speed = PCI_SPEED_UNKNOWN;
4785 *width = PCIE_LNK_WIDTH_UNKNOWN;
4786
4787 while (dev) {
4788 u16 lnksta;
4789 enum pci_bus_speed next_speed;
4790 enum pcie_link_width next_width;
4791
4792 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4793 if (ret)
4794 return ret;
4795
4796 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4797 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4798 PCI_EXP_LNKSTA_NLW_SHIFT;
4799
4800 if (next_speed < *speed)
4801 *speed = next_speed;
4802
4803 if (next_width < *width)
4804 *width = next_width;
4805
4806 dev = dev->bus->self;
4807 }
4808
4809 return 0;
4810 }
4811 EXPORT_SYMBOL(pcie_get_minimum_link);
4812
4813 /**
4814 * pci_select_bars - Make BAR mask from the type of resource
4815 * @dev: the PCI device for which BAR mask is made
4816 * @flags: resource type mask to be selected
4817 *
4818 * This helper routine makes bar mask from the type of resource.
4819 */
4820 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4821 {
4822 int i, bars = 0;
4823 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4824 if (pci_resource_flags(dev, i) & flags)
4825 bars |= (1 << i);
4826 return bars;
4827 }
4828 EXPORT_SYMBOL(pci_select_bars);
4829
4830 /* Some architectures require additional programming to enable VGA */
4831 static arch_set_vga_state_t arch_set_vga_state;
4832
4833 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4834 {
4835 arch_set_vga_state = func; /* NULL disables */
4836 }
4837
4838 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4839 unsigned int command_bits, u32 flags)
4840 {
4841 if (arch_set_vga_state)
4842 return arch_set_vga_state(dev, decode, command_bits,
4843 flags);
4844 return 0;
4845 }
4846
4847 /**
4848 * pci_set_vga_state - set VGA decode state on device and parents if requested
4849 * @dev: the PCI device
4850 * @decode: true = enable decoding, false = disable decoding
4851 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4852 * @flags: traverse ancestors and change bridges
4853 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4854 */
4855 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4856 unsigned int command_bits, u32 flags)
4857 {
4858 struct pci_bus *bus;
4859 struct pci_dev *bridge;
4860 u16 cmd;
4861 int rc;
4862
4863 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4864
4865 /* ARCH specific VGA enables */
4866 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4867 if (rc)
4868 return rc;
4869
4870 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4871 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4872 if (decode == true)
4873 cmd |= command_bits;
4874 else
4875 cmd &= ~command_bits;
4876 pci_write_config_word(dev, PCI_COMMAND, cmd);
4877 }
4878
4879 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4880 return 0;
4881
4882 bus = dev->bus;
4883 while (bus) {
4884 bridge = bus->self;
4885 if (bridge) {
4886 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4887 &cmd);
4888 if (decode == true)
4889 cmd |= PCI_BRIDGE_CTL_VGA;
4890 else
4891 cmd &= ~PCI_BRIDGE_CTL_VGA;
4892 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4893 cmd);
4894 }
4895 bus = bus->parent;
4896 }
4897 return 0;
4898 }
4899
4900 /**
4901 * pci_add_dma_alias - Add a DMA devfn alias for a device
4902 * @dev: the PCI device for which alias is added
4903 * @devfn: alias slot and function
4904 *
4905 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
4906 * It should be called early, preferably as PCI fixup header quirk.
4907 */
4908 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
4909 {
4910 if (!dev->dma_alias_mask)
4911 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
4912 sizeof(long), GFP_KERNEL);
4913 if (!dev->dma_alias_mask) {
4914 dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n");
4915 return;
4916 }
4917
4918 set_bit(devfn, dev->dma_alias_mask);
4919 dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n",
4920 PCI_SLOT(devfn), PCI_FUNC(devfn));
4921 }
4922
4923 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
4924 {
4925 return (dev1->dma_alias_mask &&
4926 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
4927 (dev2->dma_alias_mask &&
4928 test_bit(dev1->devfn, dev2->dma_alias_mask));
4929 }
4930
4931 bool pci_device_is_present(struct pci_dev *pdev)
4932 {
4933 u32 v;
4934
4935 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4936 }
4937 EXPORT_SYMBOL_GPL(pci_device_is_present);
4938
4939 void pci_ignore_hotplug(struct pci_dev *dev)
4940 {
4941 struct pci_dev *bridge = dev->bus->self;
4942
4943 dev->ignore_hotplug = 1;
4944 /* Propagate the "ignore hotplug" setting to the parent bridge. */
4945 if (bridge)
4946 bridge->ignore_hotplug = 1;
4947 }
4948 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
4949
4950 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4951 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4952 static DEFINE_SPINLOCK(resource_alignment_lock);
4953
4954 /**
4955 * pci_specified_resource_alignment - get resource alignment specified by user.
4956 * @dev: the PCI device to get
4957 *
4958 * RETURNS: Resource alignment if it is specified.
4959 * Zero if it is not specified.
4960 */
4961 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4962 {
4963 int seg, bus, slot, func, align_order, count;
4964 unsigned short vendor, device, subsystem_vendor, subsystem_device;
4965 resource_size_t align = 0;
4966 char *p;
4967
4968 spin_lock(&resource_alignment_lock);
4969 p = resource_alignment_param;
4970 if (!*p)
4971 goto out;
4972 if (pci_has_flag(PCI_PROBE_ONLY)) {
4973 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
4974 goto out;
4975 }
4976
4977 while (*p) {
4978 count = 0;
4979 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4980 p[count] == '@') {
4981 p += count + 1;
4982 } else {
4983 align_order = -1;
4984 }
4985 if (strncmp(p, "pci:", 4) == 0) {
4986 /* PCI vendor/device (subvendor/subdevice) ids are specified */
4987 p += 4;
4988 if (sscanf(p, "%hx:%hx:%hx:%hx%n",
4989 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
4990 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
4991 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
4992 p);
4993 break;
4994 }
4995 subsystem_vendor = subsystem_device = 0;
4996 }
4997 p += count;
4998 if ((!vendor || (vendor == dev->vendor)) &&
4999 (!device || (device == dev->device)) &&
5000 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5001 (!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5002 if (align_order == -1)
5003 align = PAGE_SIZE;
5004 else
5005 align = 1 << align_order;
5006 /* Found */
5007 break;
5008 }
5009 }
5010 else {
5011 if (sscanf(p, "%x:%x:%x.%x%n",
5012 &seg, &bus, &slot, &func, &count) != 4) {
5013 seg = 0;
5014 if (sscanf(p, "%x:%x.%x%n",
5015 &bus, &slot, &func, &count) != 3) {
5016 /* Invalid format */
5017 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5018 p);
5019 break;
5020 }
5021 }
5022 p += count;
5023 if (seg == pci_domain_nr(dev->bus) &&
5024 bus == dev->bus->number &&
5025 slot == PCI_SLOT(dev->devfn) &&
5026 func == PCI_FUNC(dev->devfn)) {
5027 if (align_order == -1)
5028 align = PAGE_SIZE;
5029 else
5030 align = 1 << align_order;
5031 /* Found */
5032 break;
5033 }
5034 }
5035 if (*p != ';' && *p != ',') {
5036 /* End of param or invalid format */
5037 break;
5038 }
5039 p++;
5040 }
5041 out:
5042 spin_unlock(&resource_alignment_lock);
5043 return align;
5044 }
5045
5046 /*
5047 * This function disables memory decoding and releases memory resources
5048 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5049 * It also rounds up size to specified alignment.
5050 * Later on, the kernel will assign page-aligned memory resource back
5051 * to the device.
5052 */
5053 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5054 {
5055 int i;
5056 struct resource *r;
5057 resource_size_t align, size;
5058 u16 command;
5059
5060 /*
5061 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5062 * 3.4.1.11. Their resources are allocated from the space
5063 * described by the VF BARx register in the PF's SR-IOV capability.
5064 * We can't influence their alignment here.
5065 */
5066 if (dev->is_virtfn)
5067 return;
5068
5069 /* check if specified PCI is target device to reassign */
5070 align = pci_specified_resource_alignment(dev);
5071 if (!align)
5072 return;
5073
5074 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5075 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5076 dev_warn(&dev->dev,
5077 "Can't reassign resources to host bridge.\n");
5078 return;
5079 }
5080
5081 dev_info(&dev->dev,
5082 "Disabling memory decoding and releasing memory resources.\n");
5083 pci_read_config_word(dev, PCI_COMMAND, &command);
5084 command &= ~PCI_COMMAND_MEMORY;
5085 pci_write_config_word(dev, PCI_COMMAND, command);
5086
5087 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
5088 r = &dev->resource[i];
5089 if (!(r->flags & IORESOURCE_MEM))
5090 continue;
5091 if (r->flags & IORESOURCE_PCI_FIXED) {
5092 dev_info(&dev->dev, "Ignoring requested alignment for BAR%d: %pR\n",
5093 i, r);
5094 continue;
5095 }
5096
5097 size = resource_size(r);
5098 if (size < align) {
5099 size = align;
5100 dev_info(&dev->dev,
5101 "Rounding up size of resource #%d to %#llx.\n",
5102 i, (unsigned long long)size);
5103 }
5104 r->flags |= IORESOURCE_UNSET;
5105 r->end = size - 1;
5106 r->start = 0;
5107 }
5108 /* Need to disable bridge's resource window,
5109 * to enable the kernel to reassign new resource
5110 * window later on.
5111 */
5112 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5113 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5114 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5115 r = &dev->resource[i];
5116 if (!(r->flags & IORESOURCE_MEM))
5117 continue;
5118 r->flags |= IORESOURCE_UNSET;
5119 r->end = resource_size(r) - 1;
5120 r->start = 0;
5121 }
5122 pci_disable_bridge_window(dev);
5123 }
5124 }
5125
5126 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5127 {
5128 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5129 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5130 spin_lock(&resource_alignment_lock);
5131 strncpy(resource_alignment_param, buf, count);
5132 resource_alignment_param[count] = '\0';
5133 spin_unlock(&resource_alignment_lock);
5134 return count;
5135 }
5136
5137 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5138 {
5139 size_t count;
5140 spin_lock(&resource_alignment_lock);
5141 count = snprintf(buf, size, "%s", resource_alignment_param);
5142 spin_unlock(&resource_alignment_lock);
5143 return count;
5144 }
5145
5146 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5147 {
5148 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5149 }
5150
5151 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5152 const char *buf, size_t count)
5153 {
5154 return pci_set_resource_alignment_param(buf, count);
5155 }
5156
5157 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5158 pci_resource_alignment_store);
5159
5160 static int __init pci_resource_alignment_sysfs_init(void)
5161 {
5162 return bus_create_file(&pci_bus_type,
5163 &bus_attr_resource_alignment);
5164 }
5165 late_initcall(pci_resource_alignment_sysfs_init);
5166
5167 static void pci_no_domains(void)
5168 {
5169 #ifdef CONFIG_PCI_DOMAINS
5170 pci_domains_supported = 0;
5171 #endif
5172 }
5173
5174 #ifdef CONFIG_PCI_DOMAINS
5175 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5176
5177 int pci_get_new_domain_nr(void)
5178 {
5179 return atomic_inc_return(&__domain_nr);
5180 }
5181
5182 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5183 static int of_pci_bus_find_domain_nr(struct device *parent)
5184 {
5185 static int use_dt_domains = -1;
5186 int domain = -1;
5187
5188 if (parent)
5189 domain = of_get_pci_domain_nr(parent->of_node);
5190 /*
5191 * Check DT domain and use_dt_domains values.
5192 *
5193 * If DT domain property is valid (domain >= 0) and
5194 * use_dt_domains != 0, the DT assignment is valid since this means
5195 * we have not previously allocated a domain number by using
5196 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5197 * 1, to indicate that we have just assigned a domain number from
5198 * DT.
5199 *
5200 * If DT domain property value is not valid (ie domain < 0), and we
5201 * have not previously assigned a domain number from DT
5202 * (use_dt_domains != 1) we should assign a domain number by
5203 * using the:
5204 *
5205 * pci_get_new_domain_nr()
5206 *
5207 * API and update the use_dt_domains value to keep track of method we
5208 * are using to assign domain numbers (use_dt_domains = 0).
5209 *
5210 * All other combinations imply we have a platform that is trying
5211 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5212 * which is a recipe for domain mishandling and it is prevented by
5213 * invalidating the domain value (domain = -1) and printing a
5214 * corresponding error.
5215 */
5216 if (domain >= 0 && use_dt_domains) {
5217 use_dt_domains = 1;
5218 } else if (domain < 0 && use_dt_domains != 1) {
5219 use_dt_domains = 0;
5220 domain = pci_get_new_domain_nr();
5221 } else {
5222 dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
5223 parent->of_node->full_name);
5224 domain = -1;
5225 }
5226
5227 return domain;
5228 }
5229
5230 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5231 {
5232 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5233 acpi_pci_bus_find_domain_nr(bus);
5234 }
5235 #endif
5236 #endif
5237
5238 /**
5239 * pci_ext_cfg_avail - can we access extended PCI config space?
5240 *
5241 * Returns 1 if we can access PCI extended config space (offsets
5242 * greater than 0xff). This is the default implementation. Architecture
5243 * implementations can override this.
5244 */
5245 int __weak pci_ext_cfg_avail(void)
5246 {
5247 return 1;
5248 }
5249
5250 void __weak pci_fixup_cardbus(struct pci_bus *bus)
5251 {
5252 }
5253 EXPORT_SYMBOL(pci_fixup_cardbus);
5254
5255 static int __init pci_setup(char *str)
5256 {
5257 while (str) {
5258 char *k = strchr(str, ',');
5259 if (k)
5260 *k++ = 0;
5261 if (*str && (str = pcibios_setup(str)) && *str) {
5262 if (!strcmp(str, "nomsi")) {
5263 pci_no_msi();
5264 } else if (!strcmp(str, "noaer")) {
5265 pci_no_aer();
5266 } else if (!strncmp(str, "realloc=", 8)) {
5267 pci_realloc_get_opt(str + 8);
5268 } else if (!strncmp(str, "realloc", 7)) {
5269 pci_realloc_get_opt("on");
5270 } else if (!strcmp(str, "nodomains")) {
5271 pci_no_domains();
5272 } else if (!strncmp(str, "noari", 5)) {
5273 pcie_ari_disabled = true;
5274 } else if (!strncmp(str, "cbiosize=", 9)) {
5275 pci_cardbus_io_size = memparse(str + 9, &str);
5276 } else if (!strncmp(str, "cbmemsize=", 10)) {
5277 pci_cardbus_mem_size = memparse(str + 10, &str);
5278 } else if (!strncmp(str, "resource_alignment=", 19)) {
5279 pci_set_resource_alignment_param(str + 19,
5280 strlen(str + 19));
5281 } else if (!strncmp(str, "ecrc=", 5)) {
5282 pcie_ecrc_get_policy(str + 5);
5283 } else if (!strncmp(str, "hpiosize=", 9)) {
5284 pci_hotplug_io_size = memparse(str + 9, &str);
5285 } else if (!strncmp(str, "hpmemsize=", 10)) {
5286 pci_hotplug_mem_size = memparse(str + 10, &str);
5287 } else if (!strncmp(str, "hpbussize=", 10)) {
5288 pci_hotplug_bus_size =
5289 simple_strtoul(str + 10, &str, 0);
5290 if (pci_hotplug_bus_size > 0xff)
5291 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5292 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5293 pcie_bus_config = PCIE_BUS_TUNE_OFF;
5294 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
5295 pcie_bus_config = PCIE_BUS_SAFE;
5296 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
5297 pcie_bus_config = PCIE_BUS_PERFORMANCE;
5298 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5299 pcie_bus_config = PCIE_BUS_PEER2PEER;
5300 } else if (!strncmp(str, "pcie_scan_all", 13)) {
5301 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5302 } else {
5303 printk(KERN_ERR "PCI: Unknown option `%s'\n",
5304 str);
5305 }
5306 }
5307 str = k;
5308 }
5309 return 0;
5310 }
5311 early_param("pci", pci_setup);