]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/perf/arm_pmu.c
powerpc/mm/books3s: Add new pte bit to mark pte temporarily invalid.
[mirror_ubuntu-bionic-kernel.git] / drivers / perf / arm_pmu.c
1 #undef DEBUG
2
3 /*
4 * ARM performance counter support.
5 *
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8 *
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code.
11 */
12 #define pr_fmt(fmt) "hw perfevents: " fmt
13
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/perf/arm_pmu.h>
20 #include <linux/platform_device.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
26
27 #include <asm/irq_regs.h>
28
29 static int
30 armpmu_map_cache_event(const unsigned (*cache_map)
31 [PERF_COUNT_HW_CACHE_MAX]
32 [PERF_COUNT_HW_CACHE_OP_MAX]
33 [PERF_COUNT_HW_CACHE_RESULT_MAX],
34 u64 config)
35 {
36 unsigned int cache_type, cache_op, cache_result, ret;
37
38 cache_type = (config >> 0) & 0xff;
39 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
40 return -EINVAL;
41
42 cache_op = (config >> 8) & 0xff;
43 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
44 return -EINVAL;
45
46 cache_result = (config >> 16) & 0xff;
47 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
48 return -EINVAL;
49
50 if (!cache_map)
51 return -ENOENT;
52
53 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
54
55 if (ret == CACHE_OP_UNSUPPORTED)
56 return -ENOENT;
57
58 return ret;
59 }
60
61 static int
62 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
63 {
64 int mapping;
65
66 if (config >= PERF_COUNT_HW_MAX)
67 return -EINVAL;
68
69 if (!event_map)
70 return -ENOENT;
71
72 mapping = (*event_map)[config];
73 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
74 }
75
76 static int
77 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
78 {
79 return (int)(config & raw_event_mask);
80 }
81
82 int
83 armpmu_map_event(struct perf_event *event,
84 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
85 const unsigned (*cache_map)
86 [PERF_COUNT_HW_CACHE_MAX]
87 [PERF_COUNT_HW_CACHE_OP_MAX]
88 [PERF_COUNT_HW_CACHE_RESULT_MAX],
89 u32 raw_event_mask)
90 {
91 u64 config = event->attr.config;
92 int type = event->attr.type;
93
94 if (type == event->pmu->type)
95 return armpmu_map_raw_event(raw_event_mask, config);
96
97 switch (type) {
98 case PERF_TYPE_HARDWARE:
99 return armpmu_map_hw_event(event_map, config);
100 case PERF_TYPE_HW_CACHE:
101 return armpmu_map_cache_event(cache_map, config);
102 case PERF_TYPE_RAW:
103 return armpmu_map_raw_event(raw_event_mask, config);
104 }
105
106 return -ENOENT;
107 }
108
109 int armpmu_event_set_period(struct perf_event *event)
110 {
111 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
112 struct hw_perf_event *hwc = &event->hw;
113 s64 left = local64_read(&hwc->period_left);
114 s64 period = hwc->sample_period;
115 int ret = 0;
116
117 if (unlikely(left <= -period)) {
118 left = period;
119 local64_set(&hwc->period_left, left);
120 hwc->last_period = period;
121 ret = 1;
122 }
123
124 if (unlikely(left <= 0)) {
125 left += period;
126 local64_set(&hwc->period_left, left);
127 hwc->last_period = period;
128 ret = 1;
129 }
130
131 /*
132 * Limit the maximum period to prevent the counter value
133 * from overtaking the one we are about to program. In
134 * effect we are reducing max_period to account for
135 * interrupt latency (and we are being very conservative).
136 */
137 if (left > (armpmu->max_period >> 1))
138 left = armpmu->max_period >> 1;
139
140 local64_set(&hwc->prev_count, (u64)-left);
141
142 armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
143
144 perf_event_update_userpage(event);
145
146 return ret;
147 }
148
149 u64 armpmu_event_update(struct perf_event *event)
150 {
151 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
152 struct hw_perf_event *hwc = &event->hw;
153 u64 delta, prev_raw_count, new_raw_count;
154
155 again:
156 prev_raw_count = local64_read(&hwc->prev_count);
157 new_raw_count = armpmu->read_counter(event);
158
159 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
160 new_raw_count) != prev_raw_count)
161 goto again;
162
163 delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
164
165 local64_add(delta, &event->count);
166 local64_sub(delta, &hwc->period_left);
167
168 return new_raw_count;
169 }
170
171 static void
172 armpmu_read(struct perf_event *event)
173 {
174 armpmu_event_update(event);
175 }
176
177 static void
178 armpmu_stop(struct perf_event *event, int flags)
179 {
180 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
181 struct hw_perf_event *hwc = &event->hw;
182
183 /*
184 * ARM pmu always has to update the counter, so ignore
185 * PERF_EF_UPDATE, see comments in armpmu_start().
186 */
187 if (!(hwc->state & PERF_HES_STOPPED)) {
188 armpmu->disable(event);
189 armpmu_event_update(event);
190 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
191 }
192 }
193
194 static void armpmu_start(struct perf_event *event, int flags)
195 {
196 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
197 struct hw_perf_event *hwc = &event->hw;
198
199 /*
200 * ARM pmu always has to reprogram the period, so ignore
201 * PERF_EF_RELOAD, see the comment below.
202 */
203 if (flags & PERF_EF_RELOAD)
204 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
205
206 hwc->state = 0;
207 /*
208 * Set the period again. Some counters can't be stopped, so when we
209 * were stopped we simply disabled the IRQ source and the counter
210 * may have been left counting. If we don't do this step then we may
211 * get an interrupt too soon or *way* too late if the overflow has
212 * happened since disabling.
213 */
214 armpmu_event_set_period(event);
215 armpmu->enable(event);
216 }
217
218 static void
219 armpmu_del(struct perf_event *event, int flags)
220 {
221 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
222 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
223 struct hw_perf_event *hwc = &event->hw;
224 int idx = hwc->idx;
225
226 armpmu_stop(event, PERF_EF_UPDATE);
227 hw_events->events[idx] = NULL;
228 clear_bit(idx, hw_events->used_mask);
229 if (armpmu->clear_event_idx)
230 armpmu->clear_event_idx(hw_events, event);
231
232 perf_event_update_userpage(event);
233 }
234
235 static int
236 armpmu_add(struct perf_event *event, int flags)
237 {
238 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
239 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
240 struct hw_perf_event *hwc = &event->hw;
241 int idx;
242
243 /* An event following a process won't be stopped earlier */
244 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
245 return -ENOENT;
246
247 /* If we don't have a space for the counter then finish early. */
248 idx = armpmu->get_event_idx(hw_events, event);
249 if (idx < 0)
250 return idx;
251
252 /*
253 * If there is an event in the counter we are going to use then make
254 * sure it is disabled.
255 */
256 event->hw.idx = idx;
257 armpmu->disable(event);
258 hw_events->events[idx] = event;
259
260 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
261 if (flags & PERF_EF_START)
262 armpmu_start(event, PERF_EF_RELOAD);
263
264 /* Propagate our changes to the userspace mapping. */
265 perf_event_update_userpage(event);
266
267 return 0;
268 }
269
270 static int
271 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
272 struct perf_event *event)
273 {
274 struct arm_pmu *armpmu;
275
276 if (is_software_event(event))
277 return 1;
278
279 /*
280 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
281 * core perf code won't check that the pmu->ctx == leader->ctx
282 * until after pmu->event_init(event).
283 */
284 if (event->pmu != pmu)
285 return 0;
286
287 if (event->state < PERF_EVENT_STATE_OFF)
288 return 1;
289
290 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
291 return 1;
292
293 armpmu = to_arm_pmu(event->pmu);
294 return armpmu->get_event_idx(hw_events, event) >= 0;
295 }
296
297 static int
298 validate_group(struct perf_event *event)
299 {
300 struct perf_event *sibling, *leader = event->group_leader;
301 struct pmu_hw_events fake_pmu;
302
303 /*
304 * Initialise the fake PMU. We only need to populate the
305 * used_mask for the purposes of validation.
306 */
307 memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
308
309 if (!validate_event(event->pmu, &fake_pmu, leader))
310 return -EINVAL;
311
312 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
313 if (!validate_event(event->pmu, &fake_pmu, sibling))
314 return -EINVAL;
315 }
316
317 if (!validate_event(event->pmu, &fake_pmu, event))
318 return -EINVAL;
319
320 return 0;
321 }
322
323 static struct arm_pmu_platdata *armpmu_get_platdata(struct arm_pmu *armpmu)
324 {
325 struct platform_device *pdev = armpmu->plat_device;
326
327 return pdev ? dev_get_platdata(&pdev->dev) : NULL;
328 }
329
330 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
331 {
332 struct arm_pmu *armpmu;
333 struct arm_pmu_platdata *plat;
334 int ret;
335 u64 start_clock, finish_clock;
336
337 /*
338 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
339 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
340 * do any necessary shifting, we just need to perform the first
341 * dereference.
342 */
343 armpmu = *(void **)dev;
344
345 plat = armpmu_get_platdata(armpmu);
346
347 start_clock = sched_clock();
348 if (plat && plat->handle_irq)
349 ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
350 else
351 ret = armpmu->handle_irq(irq, armpmu);
352 finish_clock = sched_clock();
353
354 perf_sample_event_took(finish_clock - start_clock);
355 return ret;
356 }
357
358 static int
359 event_requires_mode_exclusion(struct perf_event_attr *attr)
360 {
361 return attr->exclude_idle || attr->exclude_user ||
362 attr->exclude_kernel || attr->exclude_hv;
363 }
364
365 static int
366 __hw_perf_event_init(struct perf_event *event)
367 {
368 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
369 struct hw_perf_event *hwc = &event->hw;
370 int mapping;
371
372 mapping = armpmu->map_event(event);
373
374 if (mapping < 0) {
375 pr_debug("event %x:%llx not supported\n", event->attr.type,
376 event->attr.config);
377 return mapping;
378 }
379
380 /*
381 * We don't assign an index until we actually place the event onto
382 * hardware. Use -1 to signify that we haven't decided where to put it
383 * yet. For SMP systems, each core has it's own PMU so we can't do any
384 * clever allocation or constraints checking at this point.
385 */
386 hwc->idx = -1;
387 hwc->config_base = 0;
388 hwc->config = 0;
389 hwc->event_base = 0;
390
391 /*
392 * Check whether we need to exclude the counter from certain modes.
393 */
394 if ((!armpmu->set_event_filter ||
395 armpmu->set_event_filter(hwc, &event->attr)) &&
396 event_requires_mode_exclusion(&event->attr)) {
397 pr_debug("ARM performance counters do not support "
398 "mode exclusion\n");
399 return -EOPNOTSUPP;
400 }
401
402 /*
403 * Store the event encoding into the config_base field.
404 */
405 hwc->config_base |= (unsigned long)mapping;
406
407 if (!is_sampling_event(event)) {
408 /*
409 * For non-sampling runs, limit the sample_period to half
410 * of the counter width. That way, the new counter value
411 * is far less likely to overtake the previous one unless
412 * you have some serious IRQ latency issues.
413 */
414 hwc->sample_period = armpmu->max_period >> 1;
415 hwc->last_period = hwc->sample_period;
416 local64_set(&hwc->period_left, hwc->sample_period);
417 }
418
419 if (event->group_leader != event) {
420 if (validate_group(event) != 0)
421 return -EINVAL;
422 }
423
424 return 0;
425 }
426
427 static int armpmu_event_init(struct perf_event *event)
428 {
429 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
430
431 /*
432 * Reject CPU-affine events for CPUs that are of a different class to
433 * that which this PMU handles. Process-following events (where
434 * event->cpu == -1) can be migrated between CPUs, and thus we have to
435 * reject them later (in armpmu_add) if they're scheduled on a
436 * different class of CPU.
437 */
438 if (event->cpu != -1 &&
439 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
440 return -ENOENT;
441
442 /* does not support taken branch sampling */
443 if (has_branch_stack(event))
444 return -EOPNOTSUPP;
445
446 if (armpmu->map_event(event) == -ENOENT)
447 return -ENOENT;
448
449 return __hw_perf_event_init(event);
450 }
451
452 static void armpmu_enable(struct pmu *pmu)
453 {
454 struct arm_pmu *armpmu = to_arm_pmu(pmu);
455 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
456 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
457
458 /* For task-bound events we may be called on other CPUs */
459 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
460 return;
461
462 if (enabled)
463 armpmu->start(armpmu);
464 }
465
466 static void armpmu_disable(struct pmu *pmu)
467 {
468 struct arm_pmu *armpmu = to_arm_pmu(pmu);
469
470 /* For task-bound events we may be called on other CPUs */
471 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
472 return;
473
474 armpmu->stop(armpmu);
475 }
476
477 /*
478 * In heterogeneous systems, events are specific to a particular
479 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
480 * the same microarchitecture.
481 */
482 static int armpmu_filter_match(struct perf_event *event)
483 {
484 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
485 unsigned int cpu = smp_processor_id();
486 return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
487 }
488
489 static ssize_t armpmu_cpumask_show(struct device *dev,
490 struct device_attribute *attr, char *buf)
491 {
492 struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
493 return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
494 }
495
496 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
497
498 static struct attribute *armpmu_common_attrs[] = {
499 &dev_attr_cpus.attr,
500 NULL,
501 };
502
503 static struct attribute_group armpmu_common_attr_group = {
504 .attrs = armpmu_common_attrs,
505 };
506
507 /* Set at runtime when we know what CPU type we are. */
508 static struct arm_pmu *__oprofile_cpu_pmu;
509
510 /*
511 * Despite the names, these two functions are CPU-specific and are used
512 * by the OProfile/perf code.
513 */
514 const char *perf_pmu_name(void)
515 {
516 if (!__oprofile_cpu_pmu)
517 return NULL;
518
519 return __oprofile_cpu_pmu->name;
520 }
521 EXPORT_SYMBOL_GPL(perf_pmu_name);
522
523 int perf_num_counters(void)
524 {
525 int max_events = 0;
526
527 if (__oprofile_cpu_pmu != NULL)
528 max_events = __oprofile_cpu_pmu->num_events;
529
530 return max_events;
531 }
532 EXPORT_SYMBOL_GPL(perf_num_counters);
533
534 void armpmu_free_irq(struct arm_pmu *armpmu, int cpu)
535 {
536 struct pmu_hw_events __percpu *hw_events = armpmu->hw_events;
537 int irq = per_cpu(hw_events->irq, cpu);
538
539 if (!cpumask_test_and_clear_cpu(cpu, &armpmu->active_irqs))
540 return;
541
542 if (irq_is_percpu_devid(irq)) {
543 free_percpu_irq(irq, &hw_events->percpu_pmu);
544 cpumask_clear(&armpmu->active_irqs);
545 return;
546 }
547
548 free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu));
549 }
550
551 void armpmu_free_irqs(struct arm_pmu *armpmu)
552 {
553 int cpu;
554
555 for_each_cpu(cpu, &armpmu->supported_cpus)
556 armpmu_free_irq(armpmu, cpu);
557 }
558
559 int armpmu_request_irq(struct arm_pmu *armpmu, int cpu)
560 {
561 int err = 0;
562 struct pmu_hw_events __percpu *hw_events = armpmu->hw_events;
563 const irq_handler_t handler = armpmu_dispatch_irq;
564 int irq = per_cpu(hw_events->irq, cpu);
565 if (!irq)
566 return 0;
567
568 if (irq_is_percpu_devid(irq) && cpumask_empty(&armpmu->active_irqs)) {
569 err = request_percpu_irq(irq, handler, "arm-pmu",
570 &hw_events->percpu_pmu);
571 } else if (irq_is_percpu_devid(irq)) {
572 int other_cpu = cpumask_first(&armpmu->active_irqs);
573 int other_irq = per_cpu(hw_events->irq, other_cpu);
574
575 if (irq != other_irq) {
576 pr_warn("mismatched PPIs detected.\n");
577 err = -EINVAL;
578 goto err_out;
579 }
580 } else {
581 struct arm_pmu_platdata *platdata = armpmu_get_platdata(armpmu);
582 unsigned long irq_flags;
583
584 err = irq_force_affinity(irq, cpumask_of(cpu));
585
586 if (err && num_possible_cpus() > 1) {
587 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
588 irq, cpu);
589 goto err_out;
590 }
591
592 if (platdata && platdata->irq_flags) {
593 irq_flags = platdata->irq_flags;
594 } else {
595 irq_flags = IRQF_PERCPU |
596 IRQF_NOBALANCING |
597 IRQF_NO_THREAD;
598 }
599
600 err = request_irq(irq, handler, irq_flags, "arm-pmu",
601 per_cpu_ptr(&hw_events->percpu_pmu, cpu));
602 }
603
604 if (err)
605 goto err_out;
606
607 cpumask_set_cpu(cpu, &armpmu->active_irqs);
608 return 0;
609
610 err_out:
611 pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
612 return err;
613 }
614
615 int armpmu_request_irqs(struct arm_pmu *armpmu)
616 {
617 int cpu, err;
618
619 for_each_cpu(cpu, &armpmu->supported_cpus) {
620 err = armpmu_request_irq(armpmu, cpu);
621 if (err)
622 break;
623 }
624
625 return err;
626 }
627
628 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
629 {
630 struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
631 return per_cpu(hw_events->irq, cpu);
632 }
633
634 /*
635 * PMU hardware loses all context when a CPU goes offline.
636 * When a CPU is hotplugged back in, since some hardware registers are
637 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
638 * junk values out of them.
639 */
640 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
641 {
642 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
643 int irq;
644
645 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
646 return 0;
647 if (pmu->reset)
648 pmu->reset(pmu);
649
650 irq = armpmu_get_cpu_irq(pmu, cpu);
651 if (irq) {
652 if (irq_is_percpu_devid(irq)) {
653 enable_percpu_irq(irq, IRQ_TYPE_NONE);
654 return 0;
655 }
656 }
657
658 return 0;
659 }
660
661 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
662 {
663 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
664 int irq;
665
666 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
667 return 0;
668
669 irq = armpmu_get_cpu_irq(pmu, cpu);
670 if (irq && irq_is_percpu_devid(irq))
671 disable_percpu_irq(irq);
672
673 return 0;
674 }
675
676 #ifdef CONFIG_CPU_PM
677 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
678 {
679 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
680 struct perf_event *event;
681 int idx;
682
683 for (idx = 0; idx < armpmu->num_events; idx++) {
684 /*
685 * If the counter is not used skip it, there is no
686 * need of stopping/restarting it.
687 */
688 if (!test_bit(idx, hw_events->used_mask))
689 continue;
690
691 event = hw_events->events[idx];
692
693 switch (cmd) {
694 case CPU_PM_ENTER:
695 /*
696 * Stop and update the counter
697 */
698 armpmu_stop(event, PERF_EF_UPDATE);
699 break;
700 case CPU_PM_EXIT:
701 case CPU_PM_ENTER_FAILED:
702 /*
703 * Restore and enable the counter.
704 * armpmu_start() indirectly calls
705 *
706 * perf_event_update_userpage()
707 *
708 * that requires RCU read locking to be functional,
709 * wrap the call within RCU_NONIDLE to make the
710 * RCU subsystem aware this cpu is not idle from
711 * an RCU perspective for the armpmu_start() call
712 * duration.
713 */
714 RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
715 break;
716 default:
717 break;
718 }
719 }
720 }
721
722 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
723 void *v)
724 {
725 struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
726 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
727 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
728
729 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
730 return NOTIFY_DONE;
731
732 /*
733 * Always reset the PMU registers on power-up even if
734 * there are no events running.
735 */
736 if (cmd == CPU_PM_EXIT && armpmu->reset)
737 armpmu->reset(armpmu);
738
739 if (!enabled)
740 return NOTIFY_OK;
741
742 switch (cmd) {
743 case CPU_PM_ENTER:
744 armpmu->stop(armpmu);
745 cpu_pm_pmu_setup(armpmu, cmd);
746 break;
747 case CPU_PM_EXIT:
748 cpu_pm_pmu_setup(armpmu, cmd);
749 case CPU_PM_ENTER_FAILED:
750 armpmu->start(armpmu);
751 break;
752 default:
753 return NOTIFY_DONE;
754 }
755
756 return NOTIFY_OK;
757 }
758
759 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
760 {
761 cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
762 return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
763 }
764
765 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
766 {
767 cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
768 }
769 #else
770 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
771 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
772 #endif
773
774 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
775 {
776 int err;
777
778 err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
779 &cpu_pmu->node);
780 if (err)
781 goto out;
782
783 err = cpu_pm_pmu_register(cpu_pmu);
784 if (err)
785 goto out_unregister;
786
787 return 0;
788
789 out_unregister:
790 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
791 &cpu_pmu->node);
792 out:
793 return err;
794 }
795
796 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
797 {
798 cpu_pm_pmu_unregister(cpu_pmu);
799 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
800 &cpu_pmu->node);
801 }
802
803 struct arm_pmu *armpmu_alloc(void)
804 {
805 struct arm_pmu *pmu;
806 int cpu;
807
808 pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
809 if (!pmu) {
810 pr_info("failed to allocate PMU device!\n");
811 goto out;
812 }
813
814 pmu->hw_events = alloc_percpu(struct pmu_hw_events);
815 if (!pmu->hw_events) {
816 pr_info("failed to allocate per-cpu PMU data.\n");
817 goto out_free_pmu;
818 }
819
820 pmu->pmu = (struct pmu) {
821 .pmu_enable = armpmu_enable,
822 .pmu_disable = armpmu_disable,
823 .event_init = armpmu_event_init,
824 .add = armpmu_add,
825 .del = armpmu_del,
826 .start = armpmu_start,
827 .stop = armpmu_stop,
828 .read = armpmu_read,
829 .filter_match = armpmu_filter_match,
830 .attr_groups = pmu->attr_groups,
831 /*
832 * This is a CPU PMU potentially in a heterogeneous
833 * configuration (e.g. big.LITTLE). This is not an uncore PMU,
834 * and we have taken ctx sharing into account (e.g. with our
835 * pmu::filter_match callback and pmu::event_init group
836 * validation).
837 */
838 .capabilities = PERF_PMU_CAP_HETEROGENEOUS_CPUS,
839 };
840
841 pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
842 &armpmu_common_attr_group;
843
844 for_each_possible_cpu(cpu) {
845 struct pmu_hw_events *events;
846
847 events = per_cpu_ptr(pmu->hw_events, cpu);
848 raw_spin_lock_init(&events->pmu_lock);
849 events->percpu_pmu = pmu;
850 }
851
852 return pmu;
853
854 out_free_pmu:
855 kfree(pmu);
856 out:
857 return NULL;
858 }
859
860 void armpmu_free(struct arm_pmu *pmu)
861 {
862 free_percpu(pmu->hw_events);
863 kfree(pmu);
864 }
865
866 int armpmu_register(struct arm_pmu *pmu)
867 {
868 int ret;
869
870 ret = cpu_pmu_init(pmu);
871 if (ret)
872 return ret;
873
874 ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
875 if (ret)
876 goto out_destroy;
877
878 if (!__oprofile_cpu_pmu)
879 __oprofile_cpu_pmu = pmu;
880
881 pr_info("enabled with %s PMU driver, %d counters available\n",
882 pmu->name, pmu->num_events);
883
884 return 0;
885
886 out_destroy:
887 cpu_pmu_destroy(pmu);
888 return ret;
889 }
890
891 static int arm_pmu_hp_init(void)
892 {
893 int ret;
894
895 ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
896 "perf/arm/pmu:starting",
897 arm_perf_starting_cpu,
898 arm_perf_teardown_cpu);
899 if (ret)
900 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
901 ret);
902 return ret;
903 }
904 subsys_initcall(arm_pmu_hp_init);