]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/perf/arm_pmu.c
IB/hfi1, IB/rdmavt: Move r_adefered to r_lock cache line
[mirror_ubuntu-bionic-kernel.git] / drivers / perf / arm_pmu.c
1 #undef DEBUG
2
3 /*
4 * ARM performance counter support.
5 *
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8 *
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code.
11 */
12 #define pr_fmt(fmt) "hw perfevents: " fmt
13
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/of_device.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
23 #include <linux/sched/clock.h>
24 #include <linux/spinlock.h>
25 #include <linux/irq.h>
26 #include <linux/irqdesc.h>
27
28 #include <asm/cputype.h>
29 #include <asm/irq_regs.h>
30
31 static int
32 armpmu_map_cache_event(const unsigned (*cache_map)
33 [PERF_COUNT_HW_CACHE_MAX]
34 [PERF_COUNT_HW_CACHE_OP_MAX]
35 [PERF_COUNT_HW_CACHE_RESULT_MAX],
36 u64 config)
37 {
38 unsigned int cache_type, cache_op, cache_result, ret;
39
40 cache_type = (config >> 0) & 0xff;
41 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
42 return -EINVAL;
43
44 cache_op = (config >> 8) & 0xff;
45 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
46 return -EINVAL;
47
48 cache_result = (config >> 16) & 0xff;
49 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
50 return -EINVAL;
51
52 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
53
54 if (ret == CACHE_OP_UNSUPPORTED)
55 return -ENOENT;
56
57 return ret;
58 }
59
60 static int
61 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
62 {
63 int mapping;
64
65 if (config >= PERF_COUNT_HW_MAX)
66 return -EINVAL;
67
68 mapping = (*event_map)[config];
69 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
70 }
71
72 static int
73 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
74 {
75 return (int)(config & raw_event_mask);
76 }
77
78 int
79 armpmu_map_event(struct perf_event *event,
80 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
81 const unsigned (*cache_map)
82 [PERF_COUNT_HW_CACHE_MAX]
83 [PERF_COUNT_HW_CACHE_OP_MAX]
84 [PERF_COUNT_HW_CACHE_RESULT_MAX],
85 u32 raw_event_mask)
86 {
87 u64 config = event->attr.config;
88 int type = event->attr.type;
89
90 if (type == event->pmu->type)
91 return armpmu_map_raw_event(raw_event_mask, config);
92
93 switch (type) {
94 case PERF_TYPE_HARDWARE:
95 return armpmu_map_hw_event(event_map, config);
96 case PERF_TYPE_HW_CACHE:
97 return armpmu_map_cache_event(cache_map, config);
98 case PERF_TYPE_RAW:
99 return armpmu_map_raw_event(raw_event_mask, config);
100 }
101
102 return -ENOENT;
103 }
104
105 int armpmu_event_set_period(struct perf_event *event)
106 {
107 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
108 struct hw_perf_event *hwc = &event->hw;
109 s64 left = local64_read(&hwc->period_left);
110 s64 period = hwc->sample_period;
111 int ret = 0;
112
113 if (unlikely(left <= -period)) {
114 left = period;
115 local64_set(&hwc->period_left, left);
116 hwc->last_period = period;
117 ret = 1;
118 }
119
120 if (unlikely(left <= 0)) {
121 left += period;
122 local64_set(&hwc->period_left, left);
123 hwc->last_period = period;
124 ret = 1;
125 }
126
127 /*
128 * Limit the maximum period to prevent the counter value
129 * from overtaking the one we are about to program. In
130 * effect we are reducing max_period to account for
131 * interrupt latency (and we are being very conservative).
132 */
133 if (left > (armpmu->max_period >> 1))
134 left = armpmu->max_period >> 1;
135
136 local64_set(&hwc->prev_count, (u64)-left);
137
138 armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
139
140 perf_event_update_userpage(event);
141
142 return ret;
143 }
144
145 u64 armpmu_event_update(struct perf_event *event)
146 {
147 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
148 struct hw_perf_event *hwc = &event->hw;
149 u64 delta, prev_raw_count, new_raw_count;
150
151 again:
152 prev_raw_count = local64_read(&hwc->prev_count);
153 new_raw_count = armpmu->read_counter(event);
154
155 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
156 new_raw_count) != prev_raw_count)
157 goto again;
158
159 delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
160
161 local64_add(delta, &event->count);
162 local64_sub(delta, &hwc->period_left);
163
164 return new_raw_count;
165 }
166
167 static void
168 armpmu_read(struct perf_event *event)
169 {
170 armpmu_event_update(event);
171 }
172
173 static void
174 armpmu_stop(struct perf_event *event, int flags)
175 {
176 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
177 struct hw_perf_event *hwc = &event->hw;
178
179 /*
180 * ARM pmu always has to update the counter, so ignore
181 * PERF_EF_UPDATE, see comments in armpmu_start().
182 */
183 if (!(hwc->state & PERF_HES_STOPPED)) {
184 armpmu->disable(event);
185 armpmu_event_update(event);
186 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
187 }
188 }
189
190 static void armpmu_start(struct perf_event *event, int flags)
191 {
192 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
193 struct hw_perf_event *hwc = &event->hw;
194
195 /*
196 * ARM pmu always has to reprogram the period, so ignore
197 * PERF_EF_RELOAD, see the comment below.
198 */
199 if (flags & PERF_EF_RELOAD)
200 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
201
202 hwc->state = 0;
203 /*
204 * Set the period again. Some counters can't be stopped, so when we
205 * were stopped we simply disabled the IRQ source and the counter
206 * may have been left counting. If we don't do this step then we may
207 * get an interrupt too soon or *way* too late if the overflow has
208 * happened since disabling.
209 */
210 armpmu_event_set_period(event);
211 armpmu->enable(event);
212 }
213
214 static void
215 armpmu_del(struct perf_event *event, int flags)
216 {
217 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
218 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
219 struct hw_perf_event *hwc = &event->hw;
220 int idx = hwc->idx;
221
222 armpmu_stop(event, PERF_EF_UPDATE);
223 hw_events->events[idx] = NULL;
224 clear_bit(idx, hw_events->used_mask);
225 if (armpmu->clear_event_idx)
226 armpmu->clear_event_idx(hw_events, event);
227
228 perf_event_update_userpage(event);
229 }
230
231 static int
232 armpmu_add(struct perf_event *event, int flags)
233 {
234 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
235 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
236 struct hw_perf_event *hwc = &event->hw;
237 int idx;
238 int err = 0;
239
240 /* An event following a process won't be stopped earlier */
241 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
242 return -ENOENT;
243
244 perf_pmu_disable(event->pmu);
245
246 /* If we don't have a space for the counter then finish early. */
247 idx = armpmu->get_event_idx(hw_events, event);
248 if (idx < 0) {
249 err = idx;
250 goto out;
251 }
252
253 /*
254 * If there is an event in the counter we are going to use then make
255 * sure it is disabled.
256 */
257 event->hw.idx = idx;
258 armpmu->disable(event);
259 hw_events->events[idx] = event;
260
261 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
262 if (flags & PERF_EF_START)
263 armpmu_start(event, PERF_EF_RELOAD);
264
265 /* Propagate our changes to the userspace mapping. */
266 perf_event_update_userpage(event);
267
268 out:
269 perf_pmu_enable(event->pmu);
270 return err;
271 }
272
273 static int
274 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
275 struct perf_event *event)
276 {
277 struct arm_pmu *armpmu;
278
279 if (is_software_event(event))
280 return 1;
281
282 /*
283 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
284 * core perf code won't check that the pmu->ctx == leader->ctx
285 * until after pmu->event_init(event).
286 */
287 if (event->pmu != pmu)
288 return 0;
289
290 if (event->state < PERF_EVENT_STATE_OFF)
291 return 1;
292
293 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
294 return 1;
295
296 armpmu = to_arm_pmu(event->pmu);
297 return armpmu->get_event_idx(hw_events, event) >= 0;
298 }
299
300 static int
301 validate_group(struct perf_event *event)
302 {
303 struct perf_event *sibling, *leader = event->group_leader;
304 struct pmu_hw_events fake_pmu;
305
306 /*
307 * Initialise the fake PMU. We only need to populate the
308 * used_mask for the purposes of validation.
309 */
310 memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
311
312 if (!validate_event(event->pmu, &fake_pmu, leader))
313 return -EINVAL;
314
315 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
316 if (!validate_event(event->pmu, &fake_pmu, sibling))
317 return -EINVAL;
318 }
319
320 if (!validate_event(event->pmu, &fake_pmu, event))
321 return -EINVAL;
322
323 return 0;
324 }
325
326 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
327 {
328 struct arm_pmu *armpmu;
329 struct platform_device *plat_device;
330 struct arm_pmu_platdata *plat;
331 int ret;
332 u64 start_clock, finish_clock;
333
334 /*
335 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
336 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
337 * do any necessary shifting, we just need to perform the first
338 * dereference.
339 */
340 armpmu = *(void **)dev;
341 plat_device = armpmu->plat_device;
342 plat = dev_get_platdata(&plat_device->dev);
343
344 start_clock = sched_clock();
345 if (plat && plat->handle_irq)
346 ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
347 else
348 ret = armpmu->handle_irq(irq, armpmu);
349 finish_clock = sched_clock();
350
351 perf_sample_event_took(finish_clock - start_clock);
352 return ret;
353 }
354
355 static void
356 armpmu_release_hardware(struct arm_pmu *armpmu)
357 {
358 armpmu->free_irq(armpmu);
359 }
360
361 static int
362 armpmu_reserve_hardware(struct arm_pmu *armpmu)
363 {
364 int err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
365 if (err) {
366 armpmu_release_hardware(armpmu);
367 return err;
368 }
369
370 return 0;
371 }
372
373 static void
374 hw_perf_event_destroy(struct perf_event *event)
375 {
376 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
377 atomic_t *active_events = &armpmu->active_events;
378 struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
379
380 if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
381 armpmu_release_hardware(armpmu);
382 mutex_unlock(pmu_reserve_mutex);
383 }
384 }
385
386 static int
387 event_requires_mode_exclusion(struct perf_event_attr *attr)
388 {
389 return attr->exclude_idle || attr->exclude_user ||
390 attr->exclude_kernel || attr->exclude_hv;
391 }
392
393 static int
394 __hw_perf_event_init(struct perf_event *event)
395 {
396 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
397 struct hw_perf_event *hwc = &event->hw;
398 int mapping;
399
400 mapping = armpmu->map_event(event);
401
402 if (mapping < 0) {
403 pr_debug("event %x:%llx not supported\n", event->attr.type,
404 event->attr.config);
405 return mapping;
406 }
407
408 /*
409 * We don't assign an index until we actually place the event onto
410 * hardware. Use -1 to signify that we haven't decided where to put it
411 * yet. For SMP systems, each core has it's own PMU so we can't do any
412 * clever allocation or constraints checking at this point.
413 */
414 hwc->idx = -1;
415 hwc->config_base = 0;
416 hwc->config = 0;
417 hwc->event_base = 0;
418
419 /*
420 * Check whether we need to exclude the counter from certain modes.
421 */
422 if ((!armpmu->set_event_filter ||
423 armpmu->set_event_filter(hwc, &event->attr)) &&
424 event_requires_mode_exclusion(&event->attr)) {
425 pr_debug("ARM performance counters do not support "
426 "mode exclusion\n");
427 return -EOPNOTSUPP;
428 }
429
430 /*
431 * Store the event encoding into the config_base field.
432 */
433 hwc->config_base |= (unsigned long)mapping;
434
435 if (!is_sampling_event(event)) {
436 /*
437 * For non-sampling runs, limit the sample_period to half
438 * of the counter width. That way, the new counter value
439 * is far less likely to overtake the previous one unless
440 * you have some serious IRQ latency issues.
441 */
442 hwc->sample_period = armpmu->max_period >> 1;
443 hwc->last_period = hwc->sample_period;
444 local64_set(&hwc->period_left, hwc->sample_period);
445 }
446
447 if (event->group_leader != event) {
448 if (validate_group(event) != 0)
449 return -EINVAL;
450 }
451
452 return 0;
453 }
454
455 static int armpmu_event_init(struct perf_event *event)
456 {
457 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
458 int err = 0;
459 atomic_t *active_events = &armpmu->active_events;
460
461 /*
462 * Reject CPU-affine events for CPUs that are of a different class to
463 * that which this PMU handles. Process-following events (where
464 * event->cpu == -1) can be migrated between CPUs, and thus we have to
465 * reject them later (in armpmu_add) if they're scheduled on a
466 * different class of CPU.
467 */
468 if (event->cpu != -1 &&
469 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
470 return -ENOENT;
471
472 /* does not support taken branch sampling */
473 if (has_branch_stack(event))
474 return -EOPNOTSUPP;
475
476 if (armpmu->map_event(event) == -ENOENT)
477 return -ENOENT;
478
479 event->destroy = hw_perf_event_destroy;
480
481 if (!atomic_inc_not_zero(active_events)) {
482 mutex_lock(&armpmu->reserve_mutex);
483 if (atomic_read(active_events) == 0)
484 err = armpmu_reserve_hardware(armpmu);
485
486 if (!err)
487 atomic_inc(active_events);
488 mutex_unlock(&armpmu->reserve_mutex);
489 }
490
491 if (err)
492 return err;
493
494 err = __hw_perf_event_init(event);
495 if (err)
496 hw_perf_event_destroy(event);
497
498 return err;
499 }
500
501 static void armpmu_enable(struct pmu *pmu)
502 {
503 struct arm_pmu *armpmu = to_arm_pmu(pmu);
504 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
505 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
506
507 /* For task-bound events we may be called on other CPUs */
508 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
509 return;
510
511 if (enabled)
512 armpmu->start(armpmu);
513 }
514
515 static void armpmu_disable(struct pmu *pmu)
516 {
517 struct arm_pmu *armpmu = to_arm_pmu(pmu);
518
519 /* For task-bound events we may be called on other CPUs */
520 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
521 return;
522
523 armpmu->stop(armpmu);
524 }
525
526 /*
527 * In heterogeneous systems, events are specific to a particular
528 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
529 * the same microarchitecture.
530 */
531 static int armpmu_filter_match(struct perf_event *event)
532 {
533 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
534 unsigned int cpu = smp_processor_id();
535 return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
536 }
537
538 static ssize_t armpmu_cpumask_show(struct device *dev,
539 struct device_attribute *attr, char *buf)
540 {
541 struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
542 return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
543 }
544
545 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
546
547 static struct attribute *armpmu_common_attrs[] = {
548 &dev_attr_cpus.attr,
549 NULL,
550 };
551
552 static struct attribute_group armpmu_common_attr_group = {
553 .attrs = armpmu_common_attrs,
554 };
555
556 static void armpmu_init(struct arm_pmu *armpmu)
557 {
558 atomic_set(&armpmu->active_events, 0);
559 mutex_init(&armpmu->reserve_mutex);
560
561 armpmu->pmu = (struct pmu) {
562 .pmu_enable = armpmu_enable,
563 .pmu_disable = armpmu_disable,
564 .event_init = armpmu_event_init,
565 .add = armpmu_add,
566 .del = armpmu_del,
567 .start = armpmu_start,
568 .stop = armpmu_stop,
569 .read = armpmu_read,
570 .filter_match = armpmu_filter_match,
571 .attr_groups = armpmu->attr_groups,
572 };
573 armpmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
574 &armpmu_common_attr_group;
575 }
576
577 /* Set at runtime when we know what CPU type we are. */
578 static struct arm_pmu *__oprofile_cpu_pmu;
579
580 /*
581 * Despite the names, these two functions are CPU-specific and are used
582 * by the OProfile/perf code.
583 */
584 const char *perf_pmu_name(void)
585 {
586 if (!__oprofile_cpu_pmu)
587 return NULL;
588
589 return __oprofile_cpu_pmu->name;
590 }
591 EXPORT_SYMBOL_GPL(perf_pmu_name);
592
593 int perf_num_counters(void)
594 {
595 int max_events = 0;
596
597 if (__oprofile_cpu_pmu != NULL)
598 max_events = __oprofile_cpu_pmu->num_events;
599
600 return max_events;
601 }
602 EXPORT_SYMBOL_GPL(perf_num_counters);
603
604 static void cpu_pmu_enable_percpu_irq(void *data)
605 {
606 int irq = *(int *)data;
607
608 enable_percpu_irq(irq, IRQ_TYPE_NONE);
609 }
610
611 static void cpu_pmu_disable_percpu_irq(void *data)
612 {
613 int irq = *(int *)data;
614
615 disable_percpu_irq(irq);
616 }
617
618 static void cpu_pmu_free_irq(struct arm_pmu *cpu_pmu)
619 {
620 int i, irq, irqs;
621 struct platform_device *pmu_device = cpu_pmu->plat_device;
622 struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
623
624 irqs = min(pmu_device->num_resources, num_possible_cpus());
625
626 irq = platform_get_irq(pmu_device, 0);
627 if (irq > 0 && irq_is_percpu(irq)) {
628 on_each_cpu_mask(&cpu_pmu->supported_cpus,
629 cpu_pmu_disable_percpu_irq, &irq, 1);
630 free_percpu_irq(irq, &hw_events->percpu_pmu);
631 } else {
632 for (i = 0; i < irqs; ++i) {
633 int cpu = i;
634
635 if (cpu_pmu->irq_affinity)
636 cpu = cpu_pmu->irq_affinity[i];
637
638 if (!cpumask_test_and_clear_cpu(cpu, &cpu_pmu->active_irqs))
639 continue;
640 irq = platform_get_irq(pmu_device, i);
641 if (irq > 0)
642 free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu));
643 }
644 }
645 }
646
647 static int cpu_pmu_request_irq(struct arm_pmu *cpu_pmu, irq_handler_t handler)
648 {
649 int i, err, irq, irqs;
650 struct platform_device *pmu_device = cpu_pmu->plat_device;
651 struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
652
653 if (!pmu_device)
654 return -ENODEV;
655
656 irqs = min(pmu_device->num_resources, num_possible_cpus());
657 if (irqs < 1) {
658 pr_warn_once("perf/ARM: No irqs for PMU defined, sampling events not supported\n");
659 return 0;
660 }
661
662 irq = platform_get_irq(pmu_device, 0);
663 if (irq > 0 && irq_is_percpu(irq)) {
664 err = request_percpu_irq(irq, handler, "arm-pmu",
665 &hw_events->percpu_pmu);
666 if (err) {
667 pr_err("unable to request IRQ%d for ARM PMU counters\n",
668 irq);
669 return err;
670 }
671
672 on_each_cpu_mask(&cpu_pmu->supported_cpus,
673 cpu_pmu_enable_percpu_irq, &irq, 1);
674 } else {
675 for (i = 0; i < irqs; ++i) {
676 int cpu = i;
677
678 err = 0;
679 irq = platform_get_irq(pmu_device, i);
680 if (irq < 0)
681 continue;
682
683 if (cpu_pmu->irq_affinity)
684 cpu = cpu_pmu->irq_affinity[i];
685
686 /*
687 * If we have a single PMU interrupt that we can't shift,
688 * assume that we're running on a uniprocessor machine and
689 * continue. Otherwise, continue without this interrupt.
690 */
691 if (irq_set_affinity(irq, cpumask_of(cpu)) && irqs > 1) {
692 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
693 irq, cpu);
694 continue;
695 }
696
697 err = request_irq(irq, handler,
698 IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu",
699 per_cpu_ptr(&hw_events->percpu_pmu, cpu));
700 if (err) {
701 pr_err("unable to request IRQ%d for ARM PMU counters\n",
702 irq);
703 return err;
704 }
705
706 cpumask_set_cpu(cpu, &cpu_pmu->active_irqs);
707 }
708 }
709
710 return 0;
711 }
712
713 /*
714 * PMU hardware loses all context when a CPU goes offline.
715 * When a CPU is hotplugged back in, since some hardware registers are
716 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
717 * junk values out of them.
718 */
719 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
720 {
721 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
722
723 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
724 return 0;
725 if (pmu->reset)
726 pmu->reset(pmu);
727 return 0;
728 }
729
730 #ifdef CONFIG_CPU_PM
731 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
732 {
733 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
734 struct perf_event *event;
735 int idx;
736
737 for (idx = 0; idx < armpmu->num_events; idx++) {
738 /*
739 * If the counter is not used skip it, there is no
740 * need of stopping/restarting it.
741 */
742 if (!test_bit(idx, hw_events->used_mask))
743 continue;
744
745 event = hw_events->events[idx];
746
747 switch (cmd) {
748 case CPU_PM_ENTER:
749 /*
750 * Stop and update the counter
751 */
752 armpmu_stop(event, PERF_EF_UPDATE);
753 break;
754 case CPU_PM_EXIT:
755 case CPU_PM_ENTER_FAILED:
756 /*
757 * Restore and enable the counter.
758 * armpmu_start() indirectly calls
759 *
760 * perf_event_update_userpage()
761 *
762 * that requires RCU read locking to be functional,
763 * wrap the call within RCU_NONIDLE to make the
764 * RCU subsystem aware this cpu is not idle from
765 * an RCU perspective for the armpmu_start() call
766 * duration.
767 */
768 RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
769 break;
770 default:
771 break;
772 }
773 }
774 }
775
776 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
777 void *v)
778 {
779 struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
780 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
781 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
782
783 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
784 return NOTIFY_DONE;
785
786 /*
787 * Always reset the PMU registers on power-up even if
788 * there are no events running.
789 */
790 if (cmd == CPU_PM_EXIT && armpmu->reset)
791 armpmu->reset(armpmu);
792
793 if (!enabled)
794 return NOTIFY_OK;
795
796 switch (cmd) {
797 case CPU_PM_ENTER:
798 armpmu->stop(armpmu);
799 cpu_pm_pmu_setup(armpmu, cmd);
800 break;
801 case CPU_PM_EXIT:
802 cpu_pm_pmu_setup(armpmu, cmd);
803 case CPU_PM_ENTER_FAILED:
804 armpmu->start(armpmu);
805 break;
806 default:
807 return NOTIFY_DONE;
808 }
809
810 return NOTIFY_OK;
811 }
812
813 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
814 {
815 cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
816 return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
817 }
818
819 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
820 {
821 cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
822 }
823 #else
824 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
825 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
826 #endif
827
828 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
829 {
830 int err;
831 int cpu;
832 struct pmu_hw_events __percpu *cpu_hw_events;
833
834 cpu_hw_events = alloc_percpu(struct pmu_hw_events);
835 if (!cpu_hw_events)
836 return -ENOMEM;
837
838 err = cpuhp_state_add_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
839 &cpu_pmu->node);
840 if (err)
841 goto out_free;
842
843 err = cpu_pm_pmu_register(cpu_pmu);
844 if (err)
845 goto out_unregister;
846
847 for_each_possible_cpu(cpu) {
848 struct pmu_hw_events *events = per_cpu_ptr(cpu_hw_events, cpu);
849 raw_spin_lock_init(&events->pmu_lock);
850 events->percpu_pmu = cpu_pmu;
851 }
852
853 cpu_pmu->hw_events = cpu_hw_events;
854 cpu_pmu->request_irq = cpu_pmu_request_irq;
855 cpu_pmu->free_irq = cpu_pmu_free_irq;
856
857 /* Ensure the PMU has sane values out of reset. */
858 if (cpu_pmu->reset)
859 on_each_cpu_mask(&cpu_pmu->supported_cpus, cpu_pmu->reset,
860 cpu_pmu, 1);
861
862 /* If no interrupts available, set the corresponding capability flag */
863 if (!platform_get_irq(cpu_pmu->plat_device, 0))
864 cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
865
866 /*
867 * This is a CPU PMU potentially in a heterogeneous configuration (e.g.
868 * big.LITTLE). This is not an uncore PMU, and we have taken ctx
869 * sharing into account (e.g. with our pmu::filter_match callback and
870 * pmu::event_init group validation).
871 */
872 cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;
873
874 return 0;
875
876 out_unregister:
877 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
878 &cpu_pmu->node);
879 out_free:
880 free_percpu(cpu_hw_events);
881 return err;
882 }
883
884 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
885 {
886 cpu_pm_pmu_unregister(cpu_pmu);
887 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
888 &cpu_pmu->node);
889 free_percpu(cpu_pmu->hw_events);
890 }
891
892 /*
893 * CPU PMU identification and probing.
894 */
895 static int probe_current_pmu(struct arm_pmu *pmu,
896 const struct pmu_probe_info *info)
897 {
898 int cpu = get_cpu();
899 unsigned int cpuid = read_cpuid_id();
900 int ret = -ENODEV;
901
902 pr_info("probing PMU on CPU %d\n", cpu);
903
904 for (; info->init != NULL; info++) {
905 if ((cpuid & info->mask) != info->cpuid)
906 continue;
907 ret = info->init(pmu);
908 break;
909 }
910
911 put_cpu();
912 return ret;
913 }
914
915 static int of_pmu_irq_cfg(struct arm_pmu *pmu)
916 {
917 int *irqs, i = 0;
918 bool using_spi = false;
919 struct platform_device *pdev = pmu->plat_device;
920
921 irqs = kcalloc(pdev->num_resources, sizeof(*irqs), GFP_KERNEL);
922 if (!irqs)
923 return -ENOMEM;
924
925 do {
926 struct device_node *dn;
927 int cpu, irq;
928
929 /* See if we have an affinity entry */
930 dn = of_parse_phandle(pdev->dev.of_node, "interrupt-affinity", i);
931 if (!dn)
932 break;
933
934 /* Check the IRQ type and prohibit a mix of PPIs and SPIs */
935 irq = platform_get_irq(pdev, i);
936 if (irq > 0) {
937 bool spi = !irq_is_percpu(irq);
938
939 if (i > 0 && spi != using_spi) {
940 pr_err("PPI/SPI IRQ type mismatch for %s!\n",
941 dn->name);
942 of_node_put(dn);
943 kfree(irqs);
944 return -EINVAL;
945 }
946
947 using_spi = spi;
948 }
949
950 /* Now look up the logical CPU number */
951 for_each_possible_cpu(cpu) {
952 struct device_node *cpu_dn;
953
954 cpu_dn = of_cpu_device_node_get(cpu);
955 of_node_put(cpu_dn);
956
957 if (dn == cpu_dn)
958 break;
959 }
960
961 if (cpu >= nr_cpu_ids) {
962 pr_warn("Failed to find logical CPU for %s\n",
963 dn->name);
964 of_node_put(dn);
965 cpumask_setall(&pmu->supported_cpus);
966 break;
967 }
968 of_node_put(dn);
969
970 /* For SPIs, we need to track the affinity per IRQ */
971 if (using_spi) {
972 if (i >= pdev->num_resources)
973 break;
974
975 irqs[i] = cpu;
976 }
977
978 /* Keep track of the CPUs containing this PMU type */
979 cpumask_set_cpu(cpu, &pmu->supported_cpus);
980 i++;
981 } while (1);
982
983 /* If we didn't manage to parse anything, try the interrupt affinity */
984 if (cpumask_weight(&pmu->supported_cpus) == 0) {
985 int irq = platform_get_irq(pdev, 0);
986
987 if (irq > 0 && irq_is_percpu(irq)) {
988 /* If using PPIs, check the affinity of the partition */
989 int ret;
990
991 ret = irq_get_percpu_devid_partition(irq, &pmu->supported_cpus);
992 if (ret) {
993 kfree(irqs);
994 return ret;
995 }
996 } else {
997 /* Otherwise default to all CPUs */
998 cpumask_setall(&pmu->supported_cpus);
999 }
1000 }
1001
1002 /* If we matched up the IRQ affinities, use them to route the SPIs */
1003 if (using_spi && i == pdev->num_resources)
1004 pmu->irq_affinity = irqs;
1005 else
1006 kfree(irqs);
1007
1008 return 0;
1009 }
1010
1011 int arm_pmu_device_probe(struct platform_device *pdev,
1012 const struct of_device_id *of_table,
1013 const struct pmu_probe_info *probe_table)
1014 {
1015 const struct of_device_id *of_id;
1016 const int (*init_fn)(struct arm_pmu *);
1017 struct device_node *node = pdev->dev.of_node;
1018 struct arm_pmu *pmu;
1019 int ret = -ENODEV;
1020
1021 pmu = kzalloc(sizeof(struct arm_pmu), GFP_KERNEL);
1022 if (!pmu) {
1023 pr_info("failed to allocate PMU device!\n");
1024 return -ENOMEM;
1025 }
1026
1027 armpmu_init(pmu);
1028
1029 pmu->plat_device = pdev;
1030
1031 if (node && (of_id = of_match_node(of_table, pdev->dev.of_node))) {
1032 init_fn = of_id->data;
1033
1034 pmu->secure_access = of_property_read_bool(pdev->dev.of_node,
1035 "secure-reg-access");
1036
1037 /* arm64 systems boot only as non-secure */
1038 if (IS_ENABLED(CONFIG_ARM64) && pmu->secure_access) {
1039 pr_warn("ignoring \"secure-reg-access\" property for arm64\n");
1040 pmu->secure_access = false;
1041 }
1042
1043 ret = of_pmu_irq_cfg(pmu);
1044 if (!ret)
1045 ret = init_fn(pmu);
1046 } else if (probe_table) {
1047 cpumask_setall(&pmu->supported_cpus);
1048 ret = probe_current_pmu(pmu, probe_table);
1049 }
1050
1051 if (ret) {
1052 pr_info("%s: failed to probe PMU!\n", of_node_full_name(node));
1053 goto out_free;
1054 }
1055
1056
1057 ret = cpu_pmu_init(pmu);
1058 if (ret)
1059 goto out_free;
1060
1061 ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
1062 if (ret)
1063 goto out_destroy;
1064
1065 if (!__oprofile_cpu_pmu)
1066 __oprofile_cpu_pmu = pmu;
1067
1068 pr_info("enabled with %s PMU driver, %d counters available\n",
1069 pmu->name, pmu->num_events);
1070
1071 return 0;
1072
1073 out_destroy:
1074 cpu_pmu_destroy(pmu);
1075 out_free:
1076 pr_info("%s: failed to register PMU devices!\n",
1077 of_node_full_name(node));
1078 kfree(pmu->irq_affinity);
1079 kfree(pmu);
1080 return ret;
1081 }
1082
1083 static int arm_pmu_hp_init(void)
1084 {
1085 int ret;
1086
1087 ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
1088 "perf/arm/pmu:starting",
1089 arm_perf_starting_cpu, NULL);
1090 if (ret)
1091 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
1092 ret);
1093 return ret;
1094 }
1095 subsys_initcall(arm_pmu_hp_init);