]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/perf/arm_spe_pmu.c
Merge tag 'for-linus-5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rw/uml
[mirror_ubuntu-jammy-kernel.git] / drivers / perf / arm_spe_pmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Perf support for the Statistical Profiling Extension, introduced as
4 * part of ARMv8.2.
5 *
6 * Copyright (C) 2016 ARM Limited
7 *
8 * Author: Will Deacon <will.deacon@arm.com>
9 */
10
11 #define PMUNAME "arm_spe"
12 #define DRVNAME PMUNAME "_pmu"
13 #define pr_fmt(fmt) DRVNAME ": " fmt
14
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/capability.h>
18 #include <linux/cpuhotplug.h>
19 #include <linux/cpumask.h>
20 #include <linux/device.h>
21 #include <linux/errno.h>
22 #include <linux/interrupt.h>
23 #include <linux/irq.h>
24 #include <linux/kernel.h>
25 #include <linux/list.h>
26 #include <linux/module.h>
27 #include <linux/of_address.h>
28 #include <linux/of_device.h>
29 #include <linux/perf_event.h>
30 #include <linux/perf/arm_pmu.h>
31 #include <linux/platform_device.h>
32 #include <linux/printk.h>
33 #include <linux/slab.h>
34 #include <linux/smp.h>
35 #include <linux/vmalloc.h>
36
37 #include <asm/barrier.h>
38 #include <asm/cpufeature.h>
39 #include <asm/mmu.h>
40 #include <asm/sysreg.h>
41
42 #define ARM_SPE_BUF_PAD_BYTE 0
43
44 struct arm_spe_pmu_buf {
45 int nr_pages;
46 bool snapshot;
47 void *base;
48 };
49
50 struct arm_spe_pmu {
51 struct pmu pmu;
52 struct platform_device *pdev;
53 cpumask_t supported_cpus;
54 struct hlist_node hotplug_node;
55
56 int irq; /* PPI */
57 u16 pmsver;
58 u16 min_period;
59 u16 counter_sz;
60
61 #define SPE_PMU_FEAT_FILT_EVT (1UL << 0)
62 #define SPE_PMU_FEAT_FILT_TYP (1UL << 1)
63 #define SPE_PMU_FEAT_FILT_LAT (1UL << 2)
64 #define SPE_PMU_FEAT_ARCH_INST (1UL << 3)
65 #define SPE_PMU_FEAT_LDS (1UL << 4)
66 #define SPE_PMU_FEAT_ERND (1UL << 5)
67 #define SPE_PMU_FEAT_DEV_PROBED (1UL << 63)
68 u64 features;
69
70 u16 max_record_sz;
71 u16 align;
72 struct perf_output_handle __percpu *handle;
73 };
74
75 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
76
77 /* Convert a free-running index from perf into an SPE buffer offset */
78 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
79
80 /* Keep track of our dynamic hotplug state */
81 static enum cpuhp_state arm_spe_pmu_online;
82
83 enum arm_spe_pmu_buf_fault_action {
84 SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
85 SPE_PMU_BUF_FAULT_ACT_FATAL,
86 SPE_PMU_BUF_FAULT_ACT_OK,
87 };
88
89 /* This sysfs gunk was really good fun to write. */
90 enum arm_spe_pmu_capabilities {
91 SPE_PMU_CAP_ARCH_INST = 0,
92 SPE_PMU_CAP_ERND,
93 SPE_PMU_CAP_FEAT_MAX,
94 SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
95 SPE_PMU_CAP_MIN_IVAL,
96 };
97
98 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
99 [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST,
100 [SPE_PMU_CAP_ERND] = SPE_PMU_FEAT_ERND,
101 };
102
103 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
104 {
105 if (cap < SPE_PMU_CAP_FEAT_MAX)
106 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
107
108 switch (cap) {
109 case SPE_PMU_CAP_CNT_SZ:
110 return spe_pmu->counter_sz;
111 case SPE_PMU_CAP_MIN_IVAL:
112 return spe_pmu->min_period;
113 default:
114 WARN(1, "unknown cap %d\n", cap);
115 }
116
117 return 0;
118 }
119
120 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
121 struct device_attribute *attr,
122 char *buf)
123 {
124 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
125 struct dev_ext_attribute *ea =
126 container_of(attr, struct dev_ext_attribute, attr);
127 int cap = (long)ea->var;
128
129 return sysfs_emit(buf, "%u\n", arm_spe_pmu_cap_get(spe_pmu, cap));
130 }
131
132 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \
133 &((struct dev_ext_attribute[]) { \
134 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \
135 })[0].attr.attr
136
137 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \
138 SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
139
140 static struct attribute *arm_spe_pmu_cap_attr[] = {
141 SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
142 SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
143 SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
144 SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
145 NULL,
146 };
147
148 static const struct attribute_group arm_spe_pmu_cap_group = {
149 .name = "caps",
150 .attrs = arm_spe_pmu_cap_attr,
151 };
152
153 /* User ABI */
154 #define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */
155 #define ATTR_CFG_FLD_ts_enable_LO 0
156 #define ATTR_CFG_FLD_ts_enable_HI 0
157 #define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */
158 #define ATTR_CFG_FLD_pa_enable_LO 1
159 #define ATTR_CFG_FLD_pa_enable_HI 1
160 #define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */
161 #define ATTR_CFG_FLD_pct_enable_LO 2
162 #define ATTR_CFG_FLD_pct_enable_HI 2
163 #define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */
164 #define ATTR_CFG_FLD_jitter_LO 16
165 #define ATTR_CFG_FLD_jitter_HI 16
166 #define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */
167 #define ATTR_CFG_FLD_branch_filter_LO 32
168 #define ATTR_CFG_FLD_branch_filter_HI 32
169 #define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */
170 #define ATTR_CFG_FLD_load_filter_LO 33
171 #define ATTR_CFG_FLD_load_filter_HI 33
172 #define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */
173 #define ATTR_CFG_FLD_store_filter_LO 34
174 #define ATTR_CFG_FLD_store_filter_HI 34
175
176 #define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */
177 #define ATTR_CFG_FLD_event_filter_LO 0
178 #define ATTR_CFG_FLD_event_filter_HI 63
179
180 #define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */
181 #define ATTR_CFG_FLD_min_latency_LO 0
182 #define ATTR_CFG_FLD_min_latency_HI 11
183
184 /* Why does everything I do descend into this? */
185 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
186 (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
187
188 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
189 __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
190
191 #define GEN_PMU_FORMAT_ATTR(name) \
192 PMU_FORMAT_ATTR(name, \
193 _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG, \
194 ATTR_CFG_FLD_##name##_LO, \
195 ATTR_CFG_FLD_##name##_HI))
196
197 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi) \
198 ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
199
200 #define ATTR_CFG_GET_FLD(attr, name) \
201 _ATTR_CFG_GET_FLD(attr, \
202 ATTR_CFG_FLD_##name##_CFG, \
203 ATTR_CFG_FLD_##name##_LO, \
204 ATTR_CFG_FLD_##name##_HI)
205
206 GEN_PMU_FORMAT_ATTR(ts_enable);
207 GEN_PMU_FORMAT_ATTR(pa_enable);
208 GEN_PMU_FORMAT_ATTR(pct_enable);
209 GEN_PMU_FORMAT_ATTR(jitter);
210 GEN_PMU_FORMAT_ATTR(branch_filter);
211 GEN_PMU_FORMAT_ATTR(load_filter);
212 GEN_PMU_FORMAT_ATTR(store_filter);
213 GEN_PMU_FORMAT_ATTR(event_filter);
214 GEN_PMU_FORMAT_ATTR(min_latency);
215
216 static struct attribute *arm_spe_pmu_formats_attr[] = {
217 &format_attr_ts_enable.attr,
218 &format_attr_pa_enable.attr,
219 &format_attr_pct_enable.attr,
220 &format_attr_jitter.attr,
221 &format_attr_branch_filter.attr,
222 &format_attr_load_filter.attr,
223 &format_attr_store_filter.attr,
224 &format_attr_event_filter.attr,
225 &format_attr_min_latency.attr,
226 NULL,
227 };
228
229 static const struct attribute_group arm_spe_pmu_format_group = {
230 .name = "format",
231 .attrs = arm_spe_pmu_formats_attr,
232 };
233
234 static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev,
235 struct device_attribute *attr,
236 char *buf)
237 {
238 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
239
240 return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
241 }
242 static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL);
243
244 static struct attribute *arm_spe_pmu_attrs[] = {
245 &dev_attr_cpumask.attr,
246 NULL,
247 };
248
249 static const struct attribute_group arm_spe_pmu_group = {
250 .attrs = arm_spe_pmu_attrs,
251 };
252
253 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
254 &arm_spe_pmu_group,
255 &arm_spe_pmu_cap_group,
256 &arm_spe_pmu_format_group,
257 NULL,
258 };
259
260 /* Convert between user ABI and register values */
261 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
262 {
263 struct perf_event_attr *attr = &event->attr;
264 u64 reg = 0;
265
266 reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT;
267 reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT;
268 reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT;
269
270 if (!attr->exclude_user)
271 reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT);
272
273 if (!attr->exclude_kernel)
274 reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT);
275
276 if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && perfmon_capable())
277 reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT);
278
279 return reg;
280 }
281
282 static void arm_spe_event_sanitise_period(struct perf_event *event)
283 {
284 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
285 u64 period = event->hw.sample_period;
286 u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK
287 << SYS_PMSIRR_EL1_INTERVAL_SHIFT;
288
289 if (period < spe_pmu->min_period)
290 period = spe_pmu->min_period;
291 else if (period > max_period)
292 period = max_period;
293 else
294 period &= max_period;
295
296 event->hw.sample_period = period;
297 }
298
299 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
300 {
301 struct perf_event_attr *attr = &event->attr;
302 u64 reg = 0;
303
304 arm_spe_event_sanitise_period(event);
305
306 reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT;
307 reg |= event->hw.sample_period;
308
309 return reg;
310 }
311
312 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
313 {
314 struct perf_event_attr *attr = &event->attr;
315 u64 reg = 0;
316
317 reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT;
318 reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT;
319 reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT;
320
321 if (reg)
322 reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT);
323
324 if (ATTR_CFG_GET_FLD(attr, event_filter))
325 reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT);
326
327 if (ATTR_CFG_GET_FLD(attr, min_latency))
328 reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT);
329
330 return reg;
331 }
332
333 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
334 {
335 struct perf_event_attr *attr = &event->attr;
336 return ATTR_CFG_GET_FLD(attr, event_filter);
337 }
338
339 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
340 {
341 struct perf_event_attr *attr = &event->attr;
342 return ATTR_CFG_GET_FLD(attr, min_latency)
343 << SYS_PMSLATFR_EL1_MINLAT_SHIFT;
344 }
345
346 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
347 {
348 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
349 u64 head = PERF_IDX2OFF(handle->head, buf);
350
351 memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
352 if (!buf->snapshot)
353 perf_aux_output_skip(handle, len);
354 }
355
356 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
357 {
358 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
359 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
360 u64 head = PERF_IDX2OFF(handle->head, buf);
361 u64 limit = buf->nr_pages * PAGE_SIZE;
362
363 /*
364 * The trace format isn't parseable in reverse, so clamp
365 * the limit to half of the buffer size in snapshot mode
366 * so that the worst case is half a buffer of records, as
367 * opposed to a single record.
368 */
369 if (head < limit >> 1)
370 limit >>= 1;
371
372 /*
373 * If we're within max_record_sz of the limit, we must
374 * pad, move the head index and recompute the limit.
375 */
376 if (limit - head < spe_pmu->max_record_sz) {
377 arm_spe_pmu_pad_buf(handle, limit - head);
378 handle->head = PERF_IDX2OFF(limit, buf);
379 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
380 }
381
382 return limit;
383 }
384
385 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
386 {
387 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
388 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
389 const u64 bufsize = buf->nr_pages * PAGE_SIZE;
390 u64 limit = bufsize;
391 u64 head, tail, wakeup;
392
393 /*
394 * The head can be misaligned for two reasons:
395 *
396 * 1. The hardware left PMBPTR pointing to the first byte after
397 * a record when generating a buffer management event.
398 *
399 * 2. We used perf_aux_output_skip to consume handle->size bytes
400 * and CIRC_SPACE was used to compute the size, which always
401 * leaves one entry free.
402 *
403 * Deal with this by padding to the next alignment boundary and
404 * moving the head index. If we run out of buffer space, we'll
405 * reduce handle->size to zero and end up reporting truncation.
406 */
407 head = PERF_IDX2OFF(handle->head, buf);
408 if (!IS_ALIGNED(head, spe_pmu->align)) {
409 unsigned long delta = roundup(head, spe_pmu->align) - head;
410
411 delta = min(delta, handle->size);
412 arm_spe_pmu_pad_buf(handle, delta);
413 head = PERF_IDX2OFF(handle->head, buf);
414 }
415
416 /* If we've run out of free space, then nothing more to do */
417 if (!handle->size)
418 goto no_space;
419
420 /* Compute the tail and wakeup indices now that we've aligned head */
421 tail = PERF_IDX2OFF(handle->head + handle->size, buf);
422 wakeup = PERF_IDX2OFF(handle->wakeup, buf);
423
424 /*
425 * Avoid clobbering unconsumed data. We know we have space, so
426 * if we see head == tail we know that the buffer is empty. If
427 * head > tail, then there's nothing to clobber prior to
428 * wrapping.
429 */
430 if (head < tail)
431 limit = round_down(tail, PAGE_SIZE);
432
433 /*
434 * Wakeup may be arbitrarily far into the future. If it's not in
435 * the current generation, either we'll wrap before hitting it,
436 * or it's in the past and has been handled already.
437 *
438 * If there's a wakeup before we wrap, arrange to be woken up by
439 * the page boundary following it. Keep the tail boundary if
440 * that's lower.
441 */
442 if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
443 limit = min(limit, round_up(wakeup, PAGE_SIZE));
444
445 if (limit > head)
446 return limit;
447
448 arm_spe_pmu_pad_buf(handle, handle->size);
449 no_space:
450 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
451 perf_aux_output_end(handle, 0);
452 return 0;
453 }
454
455 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
456 {
457 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
458 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
459 u64 limit = __arm_spe_pmu_next_off(handle);
460 u64 head = PERF_IDX2OFF(handle->head, buf);
461
462 /*
463 * If the head has come too close to the end of the buffer,
464 * then pad to the end and recompute the limit.
465 */
466 if (limit && (limit - head < spe_pmu->max_record_sz)) {
467 arm_spe_pmu_pad_buf(handle, limit - head);
468 limit = __arm_spe_pmu_next_off(handle);
469 }
470
471 return limit;
472 }
473
474 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
475 struct perf_event *event)
476 {
477 u64 base, limit;
478 struct arm_spe_pmu_buf *buf;
479
480 /* Start a new aux session */
481 buf = perf_aux_output_begin(handle, event);
482 if (!buf) {
483 event->hw.state |= PERF_HES_STOPPED;
484 /*
485 * We still need to clear the limit pointer, since the
486 * profiler might only be disabled by virtue of a fault.
487 */
488 limit = 0;
489 goto out_write_limit;
490 }
491
492 limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
493 : arm_spe_pmu_next_off(handle);
494 if (limit)
495 limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT);
496
497 limit += (u64)buf->base;
498 base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
499 write_sysreg_s(base, SYS_PMBPTR_EL1);
500
501 out_write_limit:
502 write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
503 }
504
505 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
506 {
507 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
508 u64 offset, size;
509
510 offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
511 size = offset - PERF_IDX2OFF(handle->head, buf);
512
513 if (buf->snapshot)
514 handle->head = offset;
515
516 perf_aux_output_end(handle, size);
517 }
518
519 static void arm_spe_pmu_disable_and_drain_local(void)
520 {
521 /* Disable profiling at EL0 and EL1 */
522 write_sysreg_s(0, SYS_PMSCR_EL1);
523 isb();
524
525 /* Drain any buffered data */
526 psb_csync();
527 dsb(nsh);
528
529 /* Disable the profiling buffer */
530 write_sysreg_s(0, SYS_PMBLIMITR_EL1);
531 isb();
532 }
533
534 /* IRQ handling */
535 static enum arm_spe_pmu_buf_fault_action
536 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
537 {
538 const char *err_str;
539 u64 pmbsr;
540 enum arm_spe_pmu_buf_fault_action ret;
541
542 /*
543 * Ensure new profiling data is visible to the CPU and any external
544 * aborts have been resolved.
545 */
546 psb_csync();
547 dsb(nsh);
548
549 /* Ensure hardware updates to PMBPTR_EL1 are visible */
550 isb();
551
552 /* Service required? */
553 pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
554 if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT)))
555 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
556
557 /*
558 * If we've lost data, disable profiling and also set the PARTIAL
559 * flag to indicate that the last record is corrupted.
560 */
561 if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT))
562 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
563 PERF_AUX_FLAG_PARTIAL);
564
565 /* Report collisions to userspace so that it can up the period */
566 if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT))
567 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
568
569 /* We only expect buffer management events */
570 switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) {
571 case SYS_PMBSR_EL1_EC_BUF:
572 /* Handled below */
573 break;
574 case SYS_PMBSR_EL1_EC_FAULT_S1:
575 case SYS_PMBSR_EL1_EC_FAULT_S2:
576 err_str = "Unexpected buffer fault";
577 goto out_err;
578 default:
579 err_str = "Unknown error code";
580 goto out_err;
581 }
582
583 /* Buffer management event */
584 switch (pmbsr &
585 (SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) {
586 case SYS_PMBSR_EL1_BUF_BSC_FULL:
587 ret = SPE_PMU_BUF_FAULT_ACT_OK;
588 goto out_stop;
589 default:
590 err_str = "Unknown buffer status code";
591 }
592
593 out_err:
594 pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
595 err_str, smp_processor_id(), pmbsr,
596 read_sysreg_s(SYS_PMBPTR_EL1),
597 read_sysreg_s(SYS_PMBLIMITR_EL1));
598 ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
599
600 out_stop:
601 arm_spe_perf_aux_output_end(handle);
602 return ret;
603 }
604
605 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
606 {
607 struct perf_output_handle *handle = dev;
608 struct perf_event *event = handle->event;
609 enum arm_spe_pmu_buf_fault_action act;
610
611 if (!perf_get_aux(handle))
612 return IRQ_NONE;
613
614 act = arm_spe_pmu_buf_get_fault_act(handle);
615 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
616 return IRQ_NONE;
617
618 /*
619 * Ensure perf callbacks have completed, which may disable the
620 * profiling buffer in response to a TRUNCATION flag.
621 */
622 irq_work_run();
623
624 switch (act) {
625 case SPE_PMU_BUF_FAULT_ACT_FATAL:
626 /*
627 * If a fatal exception occurred then leaving the profiling
628 * buffer enabled is a recipe waiting to happen. Since
629 * fatal faults don't always imply truncation, make sure
630 * that the profiling buffer is disabled explicitly before
631 * clearing the syndrome register.
632 */
633 arm_spe_pmu_disable_and_drain_local();
634 break;
635 case SPE_PMU_BUF_FAULT_ACT_OK:
636 /*
637 * We handled the fault (the buffer was full), so resume
638 * profiling as long as we didn't detect truncation.
639 * PMBPTR might be misaligned, but we'll burn that bridge
640 * when we get to it.
641 */
642 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
643 arm_spe_perf_aux_output_begin(handle, event);
644 isb();
645 }
646 break;
647 case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
648 /* We've seen you before, but GCC has the memory of a sieve. */
649 break;
650 }
651
652 /* The buffer pointers are now sane, so resume profiling. */
653 write_sysreg_s(0, SYS_PMBSR_EL1);
654 return IRQ_HANDLED;
655 }
656
657 static u64 arm_spe_pmsevfr_res0(u16 pmsver)
658 {
659 switch (pmsver) {
660 case ID_AA64DFR0_PMSVER_8_2:
661 return SYS_PMSEVFR_EL1_RES0_8_2;
662 case ID_AA64DFR0_PMSVER_8_3:
663 /* Return the highest version we support in default */
664 default:
665 return SYS_PMSEVFR_EL1_RES0_8_3;
666 }
667 }
668
669 /* Perf callbacks */
670 static int arm_spe_pmu_event_init(struct perf_event *event)
671 {
672 u64 reg;
673 struct perf_event_attr *attr = &event->attr;
674 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
675
676 /* This is, of course, deeply driver-specific */
677 if (attr->type != event->pmu->type)
678 return -ENOENT;
679
680 if (event->cpu >= 0 &&
681 !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
682 return -ENOENT;
683
684 if (arm_spe_event_to_pmsevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
685 return -EOPNOTSUPP;
686
687 if (attr->exclude_idle)
688 return -EOPNOTSUPP;
689
690 /*
691 * Feedback-directed frequency throttling doesn't work when we
692 * have a buffer of samples. We'd need to manually count the
693 * samples in the buffer when it fills up and adjust the event
694 * count to reflect that. Instead, just force the user to specify
695 * a sample period.
696 */
697 if (attr->freq)
698 return -EINVAL;
699
700 reg = arm_spe_event_to_pmsfcr(event);
701 if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) &&
702 !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
703 return -EOPNOTSUPP;
704
705 if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) &&
706 !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
707 return -EOPNOTSUPP;
708
709 if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) &&
710 !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
711 return -EOPNOTSUPP;
712
713 reg = arm_spe_event_to_pmscr(event);
714 if (!perfmon_capable() &&
715 (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) |
716 BIT(SYS_PMSCR_EL1_CX_SHIFT) |
717 BIT(SYS_PMSCR_EL1_PCT_SHIFT))))
718 return -EACCES;
719
720 return 0;
721 }
722
723 static void arm_spe_pmu_start(struct perf_event *event, int flags)
724 {
725 u64 reg;
726 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
727 struct hw_perf_event *hwc = &event->hw;
728 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
729
730 hwc->state = 0;
731 arm_spe_perf_aux_output_begin(handle, event);
732 if (hwc->state)
733 return;
734
735 reg = arm_spe_event_to_pmsfcr(event);
736 write_sysreg_s(reg, SYS_PMSFCR_EL1);
737
738 reg = arm_spe_event_to_pmsevfr(event);
739 write_sysreg_s(reg, SYS_PMSEVFR_EL1);
740
741 reg = arm_spe_event_to_pmslatfr(event);
742 write_sysreg_s(reg, SYS_PMSLATFR_EL1);
743
744 if (flags & PERF_EF_RELOAD) {
745 reg = arm_spe_event_to_pmsirr(event);
746 write_sysreg_s(reg, SYS_PMSIRR_EL1);
747 isb();
748 reg = local64_read(&hwc->period_left);
749 write_sysreg_s(reg, SYS_PMSICR_EL1);
750 }
751
752 reg = arm_spe_event_to_pmscr(event);
753 isb();
754 write_sysreg_s(reg, SYS_PMSCR_EL1);
755 }
756
757 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
758 {
759 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
760 struct hw_perf_event *hwc = &event->hw;
761 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
762
763 /* If we're already stopped, then nothing to do */
764 if (hwc->state & PERF_HES_STOPPED)
765 return;
766
767 /* Stop all trace generation */
768 arm_spe_pmu_disable_and_drain_local();
769
770 if (flags & PERF_EF_UPDATE) {
771 /*
772 * If there's a fault pending then ensure we contain it
773 * to this buffer, since we might be on the context-switch
774 * path.
775 */
776 if (perf_get_aux(handle)) {
777 enum arm_spe_pmu_buf_fault_action act;
778
779 act = arm_spe_pmu_buf_get_fault_act(handle);
780 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
781 arm_spe_perf_aux_output_end(handle);
782 else
783 write_sysreg_s(0, SYS_PMBSR_EL1);
784 }
785
786 /*
787 * This may also contain ECOUNT, but nobody else should
788 * be looking at period_left, since we forbid frequency
789 * based sampling.
790 */
791 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
792 hwc->state |= PERF_HES_UPTODATE;
793 }
794
795 hwc->state |= PERF_HES_STOPPED;
796 }
797
798 static int arm_spe_pmu_add(struct perf_event *event, int flags)
799 {
800 int ret = 0;
801 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
802 struct hw_perf_event *hwc = &event->hw;
803 int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
804
805 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
806 return -ENOENT;
807
808 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
809
810 if (flags & PERF_EF_START) {
811 arm_spe_pmu_start(event, PERF_EF_RELOAD);
812 if (hwc->state & PERF_HES_STOPPED)
813 ret = -EINVAL;
814 }
815
816 return ret;
817 }
818
819 static void arm_spe_pmu_del(struct perf_event *event, int flags)
820 {
821 arm_spe_pmu_stop(event, PERF_EF_UPDATE);
822 }
823
824 static void arm_spe_pmu_read(struct perf_event *event)
825 {
826 }
827
828 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
829 int nr_pages, bool snapshot)
830 {
831 int i, cpu = event->cpu;
832 struct page **pglist;
833 struct arm_spe_pmu_buf *buf;
834
835 /* We need at least two pages for this to work. */
836 if (nr_pages < 2)
837 return NULL;
838
839 /*
840 * We require an even number of pages for snapshot mode, so that
841 * we can effectively treat the buffer as consisting of two equal
842 * parts and give userspace a fighting chance of getting some
843 * useful data out of it.
844 */
845 if (snapshot && (nr_pages & 1))
846 return NULL;
847
848 if (cpu == -1)
849 cpu = raw_smp_processor_id();
850
851 buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
852 if (!buf)
853 return NULL;
854
855 pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
856 if (!pglist)
857 goto out_free_buf;
858
859 for (i = 0; i < nr_pages; ++i)
860 pglist[i] = virt_to_page(pages[i]);
861
862 buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
863 if (!buf->base)
864 goto out_free_pglist;
865
866 buf->nr_pages = nr_pages;
867 buf->snapshot = snapshot;
868
869 kfree(pglist);
870 return buf;
871
872 out_free_pglist:
873 kfree(pglist);
874 out_free_buf:
875 kfree(buf);
876 return NULL;
877 }
878
879 static void arm_spe_pmu_free_aux(void *aux)
880 {
881 struct arm_spe_pmu_buf *buf = aux;
882
883 vunmap(buf->base);
884 kfree(buf);
885 }
886
887 /* Initialisation and teardown functions */
888 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
889 {
890 static atomic_t pmu_idx = ATOMIC_INIT(-1);
891
892 int idx;
893 char *name;
894 struct device *dev = &spe_pmu->pdev->dev;
895
896 spe_pmu->pmu = (struct pmu) {
897 .module = THIS_MODULE,
898 .capabilities = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
899 .attr_groups = arm_spe_pmu_attr_groups,
900 /*
901 * We hitch a ride on the software context here, so that
902 * we can support per-task profiling (which is not possible
903 * with the invalid context as it doesn't get sched callbacks).
904 * This requires that userspace either uses a dummy event for
905 * perf_event_open, since the aux buffer is not setup until
906 * a subsequent mmap, or creates the profiling event in a
907 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
908 * once the buffer has been created.
909 */
910 .task_ctx_nr = perf_sw_context,
911 .event_init = arm_spe_pmu_event_init,
912 .add = arm_spe_pmu_add,
913 .del = arm_spe_pmu_del,
914 .start = arm_spe_pmu_start,
915 .stop = arm_spe_pmu_stop,
916 .read = arm_spe_pmu_read,
917 .setup_aux = arm_spe_pmu_setup_aux,
918 .free_aux = arm_spe_pmu_free_aux,
919 };
920
921 idx = atomic_inc_return(&pmu_idx);
922 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
923 if (!name) {
924 dev_err(dev, "failed to allocate name for pmu %d\n", idx);
925 return -ENOMEM;
926 }
927
928 return perf_pmu_register(&spe_pmu->pmu, name, -1);
929 }
930
931 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
932 {
933 perf_pmu_unregister(&spe_pmu->pmu);
934 }
935
936 static void __arm_spe_pmu_dev_probe(void *info)
937 {
938 int fld;
939 u64 reg;
940 struct arm_spe_pmu *spe_pmu = info;
941 struct device *dev = &spe_pmu->pdev->dev;
942
943 fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
944 ID_AA64DFR0_PMSVER_SHIFT);
945 if (!fld) {
946 dev_err(dev,
947 "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
948 fld, smp_processor_id());
949 return;
950 }
951 spe_pmu->pmsver = (u16)fld;
952
953 /* Read PMBIDR first to determine whether or not we have access */
954 reg = read_sysreg_s(SYS_PMBIDR_EL1);
955 if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) {
956 dev_err(dev,
957 "profiling buffer owned by higher exception level\n");
958 return;
959 }
960
961 /* Minimum alignment. If it's out-of-range, then fail the probe */
962 fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK;
963 spe_pmu->align = 1 << fld;
964 if (spe_pmu->align > SZ_2K) {
965 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
966 fld, smp_processor_id());
967 return;
968 }
969
970 /* It's now safe to read PMSIDR and figure out what we've got */
971 reg = read_sysreg_s(SYS_PMSIDR_EL1);
972 if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT))
973 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
974
975 if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT))
976 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
977
978 if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT))
979 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
980
981 if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT))
982 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
983
984 if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT))
985 spe_pmu->features |= SPE_PMU_FEAT_LDS;
986
987 if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT))
988 spe_pmu->features |= SPE_PMU_FEAT_ERND;
989
990 /* This field has a spaced out encoding, so just use a look-up */
991 fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK;
992 switch (fld) {
993 case 0:
994 spe_pmu->min_period = 256;
995 break;
996 case 2:
997 spe_pmu->min_period = 512;
998 break;
999 case 3:
1000 spe_pmu->min_period = 768;
1001 break;
1002 case 4:
1003 spe_pmu->min_period = 1024;
1004 break;
1005 case 5:
1006 spe_pmu->min_period = 1536;
1007 break;
1008 case 6:
1009 spe_pmu->min_period = 2048;
1010 break;
1011 case 7:
1012 spe_pmu->min_period = 3072;
1013 break;
1014 default:
1015 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1016 fld);
1017 fallthrough;
1018 case 8:
1019 spe_pmu->min_period = 4096;
1020 }
1021
1022 /* Maximum record size. If it's out-of-range, then fail the probe */
1023 fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK;
1024 spe_pmu->max_record_sz = 1 << fld;
1025 if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1026 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1027 fld, smp_processor_id());
1028 return;
1029 }
1030
1031 fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK;
1032 switch (fld) {
1033 default:
1034 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1035 fld);
1036 fallthrough;
1037 case 2:
1038 spe_pmu->counter_sz = 12;
1039 }
1040
1041 dev_info(dev,
1042 "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1043 cpumask_pr_args(&spe_pmu->supported_cpus),
1044 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1045
1046 spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1047 return;
1048 }
1049
1050 static void __arm_spe_pmu_reset_local(void)
1051 {
1052 /*
1053 * This is probably overkill, as we have no idea where we're
1054 * draining any buffered data to...
1055 */
1056 arm_spe_pmu_disable_and_drain_local();
1057
1058 /* Reset the buffer base pointer */
1059 write_sysreg_s(0, SYS_PMBPTR_EL1);
1060 isb();
1061
1062 /* Clear any pending management interrupts */
1063 write_sysreg_s(0, SYS_PMBSR_EL1);
1064 isb();
1065 }
1066
1067 static void __arm_spe_pmu_setup_one(void *info)
1068 {
1069 struct arm_spe_pmu *spe_pmu = info;
1070
1071 __arm_spe_pmu_reset_local();
1072 enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1073 }
1074
1075 static void __arm_spe_pmu_stop_one(void *info)
1076 {
1077 struct arm_spe_pmu *spe_pmu = info;
1078
1079 disable_percpu_irq(spe_pmu->irq);
1080 __arm_spe_pmu_reset_local();
1081 }
1082
1083 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1084 {
1085 struct arm_spe_pmu *spe_pmu;
1086
1087 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1088 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1089 return 0;
1090
1091 __arm_spe_pmu_setup_one(spe_pmu);
1092 return 0;
1093 }
1094
1095 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1096 {
1097 struct arm_spe_pmu *spe_pmu;
1098
1099 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1100 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1101 return 0;
1102
1103 __arm_spe_pmu_stop_one(spe_pmu);
1104 return 0;
1105 }
1106
1107 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1108 {
1109 int ret;
1110 cpumask_t *mask = &spe_pmu->supported_cpus;
1111
1112 /* Make sure we probe the hardware on a relevant CPU */
1113 ret = smp_call_function_any(mask, __arm_spe_pmu_dev_probe, spe_pmu, 1);
1114 if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1115 return -ENXIO;
1116
1117 /* Request our PPIs (note that the IRQ is still disabled) */
1118 ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1119 spe_pmu->handle);
1120 if (ret)
1121 return ret;
1122
1123 /*
1124 * Register our hotplug notifier now so we don't miss any events.
1125 * This will enable the IRQ for any supported CPUs that are already
1126 * up.
1127 */
1128 ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1129 &spe_pmu->hotplug_node);
1130 if (ret)
1131 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1132
1133 return ret;
1134 }
1135
1136 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1137 {
1138 cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1139 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1140 }
1141
1142 /* Driver and device probing */
1143 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1144 {
1145 struct platform_device *pdev = spe_pmu->pdev;
1146 int irq = platform_get_irq(pdev, 0);
1147
1148 if (irq < 0)
1149 return -ENXIO;
1150
1151 if (!irq_is_percpu(irq)) {
1152 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1153 return -EINVAL;
1154 }
1155
1156 if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1157 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1158 return -EINVAL;
1159 }
1160
1161 spe_pmu->irq = irq;
1162 return 0;
1163 }
1164
1165 static const struct of_device_id arm_spe_pmu_of_match[] = {
1166 { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1167 { /* Sentinel */ },
1168 };
1169 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
1170
1171 static const struct platform_device_id arm_spe_match[] = {
1172 { ARMV8_SPE_PDEV_NAME, 0},
1173 { }
1174 };
1175 MODULE_DEVICE_TABLE(platform, arm_spe_match);
1176
1177 static int arm_spe_pmu_device_probe(struct platform_device *pdev)
1178 {
1179 int ret;
1180 struct arm_spe_pmu *spe_pmu;
1181 struct device *dev = &pdev->dev;
1182
1183 /*
1184 * If kernelspace is unmapped when running at EL0, then the SPE
1185 * buffer will fault and prematurely terminate the AUX session.
1186 */
1187 if (arm64_kernel_unmapped_at_el0()) {
1188 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1189 return -EPERM;
1190 }
1191
1192 spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1193 if (!spe_pmu) {
1194 dev_err(dev, "failed to allocate spe_pmu\n");
1195 return -ENOMEM;
1196 }
1197
1198 spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1199 if (!spe_pmu->handle)
1200 return -ENOMEM;
1201
1202 spe_pmu->pdev = pdev;
1203 platform_set_drvdata(pdev, spe_pmu);
1204
1205 ret = arm_spe_pmu_irq_probe(spe_pmu);
1206 if (ret)
1207 goto out_free_handle;
1208
1209 ret = arm_spe_pmu_dev_init(spe_pmu);
1210 if (ret)
1211 goto out_free_handle;
1212
1213 ret = arm_spe_pmu_perf_init(spe_pmu);
1214 if (ret)
1215 goto out_teardown_dev;
1216
1217 return 0;
1218
1219 out_teardown_dev:
1220 arm_spe_pmu_dev_teardown(spe_pmu);
1221 out_free_handle:
1222 free_percpu(spe_pmu->handle);
1223 return ret;
1224 }
1225
1226 static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1227 {
1228 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1229
1230 arm_spe_pmu_perf_destroy(spe_pmu);
1231 arm_spe_pmu_dev_teardown(spe_pmu);
1232 free_percpu(spe_pmu->handle);
1233 return 0;
1234 }
1235
1236 static struct platform_driver arm_spe_pmu_driver = {
1237 .id_table = arm_spe_match,
1238 .driver = {
1239 .name = DRVNAME,
1240 .of_match_table = of_match_ptr(arm_spe_pmu_of_match),
1241 .suppress_bind_attrs = true,
1242 },
1243 .probe = arm_spe_pmu_device_probe,
1244 .remove = arm_spe_pmu_device_remove,
1245 };
1246
1247 static int __init arm_spe_pmu_init(void)
1248 {
1249 int ret;
1250
1251 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1252 arm_spe_pmu_cpu_startup,
1253 arm_spe_pmu_cpu_teardown);
1254 if (ret < 0)
1255 return ret;
1256 arm_spe_pmu_online = ret;
1257
1258 ret = platform_driver_register(&arm_spe_pmu_driver);
1259 if (ret)
1260 cpuhp_remove_multi_state(arm_spe_pmu_online);
1261
1262 return ret;
1263 }
1264
1265 static void __exit arm_spe_pmu_exit(void)
1266 {
1267 platform_driver_unregister(&arm_spe_pmu_driver);
1268 cpuhp_remove_multi_state(arm_spe_pmu_online);
1269 }
1270
1271 module_init(arm_spe_pmu_init);
1272 module_exit(arm_spe_pmu_exit);
1273
1274 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1275 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1276 MODULE_LICENSE("GPL v2");