]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/perf/arm_spe_pmu.c
Merge remote-tracking branch 'regmap/for-5.7' into regmap-linus
[mirror_ubuntu-jammy-kernel.git] / drivers / perf / arm_spe_pmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Perf support for the Statistical Profiling Extension, introduced as
4 * part of ARMv8.2.
5 *
6 * Copyright (C) 2016 ARM Limited
7 *
8 * Author: Will Deacon <will.deacon@arm.com>
9 */
10
11 #define PMUNAME "arm_spe"
12 #define DRVNAME PMUNAME "_pmu"
13 #define pr_fmt(fmt) DRVNAME ": " fmt
14
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/capability.h>
18 #include <linux/cpuhotplug.h>
19 #include <linux/cpumask.h>
20 #include <linux/device.h>
21 #include <linux/errno.h>
22 #include <linux/interrupt.h>
23 #include <linux/irq.h>
24 #include <linux/kernel.h>
25 #include <linux/list.h>
26 #include <linux/module.h>
27 #include <linux/of_address.h>
28 #include <linux/of_device.h>
29 #include <linux/perf_event.h>
30 #include <linux/perf/arm_pmu.h>
31 #include <linux/platform_device.h>
32 #include <linux/printk.h>
33 #include <linux/slab.h>
34 #include <linux/smp.h>
35 #include <linux/vmalloc.h>
36
37 #include <asm/barrier.h>
38 #include <asm/cpufeature.h>
39 #include <asm/mmu.h>
40 #include <asm/sysreg.h>
41
42 #define ARM_SPE_BUF_PAD_BYTE 0
43
44 struct arm_spe_pmu_buf {
45 int nr_pages;
46 bool snapshot;
47 void *base;
48 };
49
50 struct arm_spe_pmu {
51 struct pmu pmu;
52 struct platform_device *pdev;
53 cpumask_t supported_cpus;
54 struct hlist_node hotplug_node;
55
56 int irq; /* PPI */
57
58 u16 min_period;
59 u16 counter_sz;
60
61 #define SPE_PMU_FEAT_FILT_EVT (1UL << 0)
62 #define SPE_PMU_FEAT_FILT_TYP (1UL << 1)
63 #define SPE_PMU_FEAT_FILT_LAT (1UL << 2)
64 #define SPE_PMU_FEAT_ARCH_INST (1UL << 3)
65 #define SPE_PMU_FEAT_LDS (1UL << 4)
66 #define SPE_PMU_FEAT_ERND (1UL << 5)
67 #define SPE_PMU_FEAT_DEV_PROBED (1UL << 63)
68 u64 features;
69
70 u16 max_record_sz;
71 u16 align;
72 struct perf_output_handle __percpu *handle;
73 };
74
75 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
76
77 /* Convert a free-running index from perf into an SPE buffer offset */
78 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
79
80 /* Keep track of our dynamic hotplug state */
81 static enum cpuhp_state arm_spe_pmu_online;
82
83 enum arm_spe_pmu_buf_fault_action {
84 SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
85 SPE_PMU_BUF_FAULT_ACT_FATAL,
86 SPE_PMU_BUF_FAULT_ACT_OK,
87 };
88
89 /* This sysfs gunk was really good fun to write. */
90 enum arm_spe_pmu_capabilities {
91 SPE_PMU_CAP_ARCH_INST = 0,
92 SPE_PMU_CAP_ERND,
93 SPE_PMU_CAP_FEAT_MAX,
94 SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
95 SPE_PMU_CAP_MIN_IVAL,
96 };
97
98 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
99 [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST,
100 [SPE_PMU_CAP_ERND] = SPE_PMU_FEAT_ERND,
101 };
102
103 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
104 {
105 if (cap < SPE_PMU_CAP_FEAT_MAX)
106 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
107
108 switch (cap) {
109 case SPE_PMU_CAP_CNT_SZ:
110 return spe_pmu->counter_sz;
111 case SPE_PMU_CAP_MIN_IVAL:
112 return spe_pmu->min_period;
113 default:
114 WARN(1, "unknown cap %d\n", cap);
115 }
116
117 return 0;
118 }
119
120 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
121 struct device_attribute *attr,
122 char *buf)
123 {
124 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
125 struct dev_ext_attribute *ea =
126 container_of(attr, struct dev_ext_attribute, attr);
127 int cap = (long)ea->var;
128
129 return snprintf(buf, PAGE_SIZE, "%u\n",
130 arm_spe_pmu_cap_get(spe_pmu, cap));
131 }
132
133 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \
134 &((struct dev_ext_attribute[]) { \
135 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \
136 })[0].attr.attr
137
138 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \
139 SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
140
141 static struct attribute *arm_spe_pmu_cap_attr[] = {
142 SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
143 SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
144 SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
145 SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
146 NULL,
147 };
148
149 static struct attribute_group arm_spe_pmu_cap_group = {
150 .name = "caps",
151 .attrs = arm_spe_pmu_cap_attr,
152 };
153
154 /* User ABI */
155 #define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */
156 #define ATTR_CFG_FLD_ts_enable_LO 0
157 #define ATTR_CFG_FLD_ts_enable_HI 0
158 #define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */
159 #define ATTR_CFG_FLD_pa_enable_LO 1
160 #define ATTR_CFG_FLD_pa_enable_HI 1
161 #define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */
162 #define ATTR_CFG_FLD_pct_enable_LO 2
163 #define ATTR_CFG_FLD_pct_enable_HI 2
164 #define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */
165 #define ATTR_CFG_FLD_jitter_LO 16
166 #define ATTR_CFG_FLD_jitter_HI 16
167 #define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */
168 #define ATTR_CFG_FLD_branch_filter_LO 32
169 #define ATTR_CFG_FLD_branch_filter_HI 32
170 #define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */
171 #define ATTR_CFG_FLD_load_filter_LO 33
172 #define ATTR_CFG_FLD_load_filter_HI 33
173 #define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */
174 #define ATTR_CFG_FLD_store_filter_LO 34
175 #define ATTR_CFG_FLD_store_filter_HI 34
176
177 #define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */
178 #define ATTR_CFG_FLD_event_filter_LO 0
179 #define ATTR_CFG_FLD_event_filter_HI 63
180
181 #define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */
182 #define ATTR_CFG_FLD_min_latency_LO 0
183 #define ATTR_CFG_FLD_min_latency_HI 11
184
185 /* Why does everything I do descend into this? */
186 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
187 (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
188
189 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
190 __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
191
192 #define GEN_PMU_FORMAT_ATTR(name) \
193 PMU_FORMAT_ATTR(name, \
194 _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG, \
195 ATTR_CFG_FLD_##name##_LO, \
196 ATTR_CFG_FLD_##name##_HI))
197
198 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi) \
199 ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
200
201 #define ATTR_CFG_GET_FLD(attr, name) \
202 _ATTR_CFG_GET_FLD(attr, \
203 ATTR_CFG_FLD_##name##_CFG, \
204 ATTR_CFG_FLD_##name##_LO, \
205 ATTR_CFG_FLD_##name##_HI)
206
207 GEN_PMU_FORMAT_ATTR(ts_enable);
208 GEN_PMU_FORMAT_ATTR(pa_enable);
209 GEN_PMU_FORMAT_ATTR(pct_enable);
210 GEN_PMU_FORMAT_ATTR(jitter);
211 GEN_PMU_FORMAT_ATTR(branch_filter);
212 GEN_PMU_FORMAT_ATTR(load_filter);
213 GEN_PMU_FORMAT_ATTR(store_filter);
214 GEN_PMU_FORMAT_ATTR(event_filter);
215 GEN_PMU_FORMAT_ATTR(min_latency);
216
217 static struct attribute *arm_spe_pmu_formats_attr[] = {
218 &format_attr_ts_enable.attr,
219 &format_attr_pa_enable.attr,
220 &format_attr_pct_enable.attr,
221 &format_attr_jitter.attr,
222 &format_attr_branch_filter.attr,
223 &format_attr_load_filter.attr,
224 &format_attr_store_filter.attr,
225 &format_attr_event_filter.attr,
226 &format_attr_min_latency.attr,
227 NULL,
228 };
229
230 static struct attribute_group arm_spe_pmu_format_group = {
231 .name = "format",
232 .attrs = arm_spe_pmu_formats_attr,
233 };
234
235 static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev,
236 struct device_attribute *attr,
237 char *buf)
238 {
239 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
240
241 return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
242 }
243 static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL);
244
245 static struct attribute *arm_spe_pmu_attrs[] = {
246 &dev_attr_cpumask.attr,
247 NULL,
248 };
249
250 static struct attribute_group arm_spe_pmu_group = {
251 .attrs = arm_spe_pmu_attrs,
252 };
253
254 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
255 &arm_spe_pmu_group,
256 &arm_spe_pmu_cap_group,
257 &arm_spe_pmu_format_group,
258 NULL,
259 };
260
261 /* Convert between user ABI and register values */
262 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
263 {
264 struct perf_event_attr *attr = &event->attr;
265 u64 reg = 0;
266
267 reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT;
268 reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT;
269 reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT;
270
271 if (!attr->exclude_user)
272 reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT);
273
274 if (!attr->exclude_kernel)
275 reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT);
276
277 if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && capable(CAP_SYS_ADMIN))
278 reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT);
279
280 return reg;
281 }
282
283 static void arm_spe_event_sanitise_period(struct perf_event *event)
284 {
285 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
286 u64 period = event->hw.sample_period;
287 u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK
288 << SYS_PMSIRR_EL1_INTERVAL_SHIFT;
289
290 if (period < spe_pmu->min_period)
291 period = spe_pmu->min_period;
292 else if (period > max_period)
293 period = max_period;
294 else
295 period &= max_period;
296
297 event->hw.sample_period = period;
298 }
299
300 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
301 {
302 struct perf_event_attr *attr = &event->attr;
303 u64 reg = 0;
304
305 arm_spe_event_sanitise_period(event);
306
307 reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT;
308 reg |= event->hw.sample_period;
309
310 return reg;
311 }
312
313 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
314 {
315 struct perf_event_attr *attr = &event->attr;
316 u64 reg = 0;
317
318 reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT;
319 reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT;
320 reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT;
321
322 if (reg)
323 reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT);
324
325 if (ATTR_CFG_GET_FLD(attr, event_filter))
326 reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT);
327
328 if (ATTR_CFG_GET_FLD(attr, min_latency))
329 reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT);
330
331 return reg;
332 }
333
334 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
335 {
336 struct perf_event_attr *attr = &event->attr;
337 return ATTR_CFG_GET_FLD(attr, event_filter);
338 }
339
340 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
341 {
342 struct perf_event_attr *attr = &event->attr;
343 return ATTR_CFG_GET_FLD(attr, min_latency)
344 << SYS_PMSLATFR_EL1_MINLAT_SHIFT;
345 }
346
347 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
348 {
349 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
350 u64 head = PERF_IDX2OFF(handle->head, buf);
351
352 memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
353 if (!buf->snapshot)
354 perf_aux_output_skip(handle, len);
355 }
356
357 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
358 {
359 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
360 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
361 u64 head = PERF_IDX2OFF(handle->head, buf);
362 u64 limit = buf->nr_pages * PAGE_SIZE;
363
364 /*
365 * The trace format isn't parseable in reverse, so clamp
366 * the limit to half of the buffer size in snapshot mode
367 * so that the worst case is half a buffer of records, as
368 * opposed to a single record.
369 */
370 if (head < limit >> 1)
371 limit >>= 1;
372
373 /*
374 * If we're within max_record_sz of the limit, we must
375 * pad, move the head index and recompute the limit.
376 */
377 if (limit - head < spe_pmu->max_record_sz) {
378 arm_spe_pmu_pad_buf(handle, limit - head);
379 handle->head = PERF_IDX2OFF(limit, buf);
380 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
381 }
382
383 return limit;
384 }
385
386 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
387 {
388 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
389 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
390 const u64 bufsize = buf->nr_pages * PAGE_SIZE;
391 u64 limit = bufsize;
392 u64 head, tail, wakeup;
393
394 /*
395 * The head can be misaligned for two reasons:
396 *
397 * 1. The hardware left PMBPTR pointing to the first byte after
398 * a record when generating a buffer management event.
399 *
400 * 2. We used perf_aux_output_skip to consume handle->size bytes
401 * and CIRC_SPACE was used to compute the size, which always
402 * leaves one entry free.
403 *
404 * Deal with this by padding to the next alignment boundary and
405 * moving the head index. If we run out of buffer space, we'll
406 * reduce handle->size to zero and end up reporting truncation.
407 */
408 head = PERF_IDX2OFF(handle->head, buf);
409 if (!IS_ALIGNED(head, spe_pmu->align)) {
410 unsigned long delta = roundup(head, spe_pmu->align) - head;
411
412 delta = min(delta, handle->size);
413 arm_spe_pmu_pad_buf(handle, delta);
414 head = PERF_IDX2OFF(handle->head, buf);
415 }
416
417 /* If we've run out of free space, then nothing more to do */
418 if (!handle->size)
419 goto no_space;
420
421 /* Compute the tail and wakeup indices now that we've aligned head */
422 tail = PERF_IDX2OFF(handle->head + handle->size, buf);
423 wakeup = PERF_IDX2OFF(handle->wakeup, buf);
424
425 /*
426 * Avoid clobbering unconsumed data. We know we have space, so
427 * if we see head == tail we know that the buffer is empty. If
428 * head > tail, then there's nothing to clobber prior to
429 * wrapping.
430 */
431 if (head < tail)
432 limit = round_down(tail, PAGE_SIZE);
433
434 /*
435 * Wakeup may be arbitrarily far into the future. If it's not in
436 * the current generation, either we'll wrap before hitting it,
437 * or it's in the past and has been handled already.
438 *
439 * If there's a wakeup before we wrap, arrange to be woken up by
440 * the page boundary following it. Keep the tail boundary if
441 * that's lower.
442 */
443 if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
444 limit = min(limit, round_up(wakeup, PAGE_SIZE));
445
446 if (limit > head)
447 return limit;
448
449 arm_spe_pmu_pad_buf(handle, handle->size);
450 no_space:
451 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
452 perf_aux_output_end(handle, 0);
453 return 0;
454 }
455
456 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
457 {
458 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
459 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
460 u64 limit = __arm_spe_pmu_next_off(handle);
461 u64 head = PERF_IDX2OFF(handle->head, buf);
462
463 /*
464 * If the head has come too close to the end of the buffer,
465 * then pad to the end and recompute the limit.
466 */
467 if (limit && (limit - head < spe_pmu->max_record_sz)) {
468 arm_spe_pmu_pad_buf(handle, limit - head);
469 limit = __arm_spe_pmu_next_off(handle);
470 }
471
472 return limit;
473 }
474
475 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
476 struct perf_event *event)
477 {
478 u64 base, limit;
479 struct arm_spe_pmu_buf *buf;
480
481 /* Start a new aux session */
482 buf = perf_aux_output_begin(handle, event);
483 if (!buf) {
484 event->hw.state |= PERF_HES_STOPPED;
485 /*
486 * We still need to clear the limit pointer, since the
487 * profiler might only be disabled by virtue of a fault.
488 */
489 limit = 0;
490 goto out_write_limit;
491 }
492
493 limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
494 : arm_spe_pmu_next_off(handle);
495 if (limit)
496 limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT);
497
498 limit += (u64)buf->base;
499 base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
500 write_sysreg_s(base, SYS_PMBPTR_EL1);
501
502 out_write_limit:
503 write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
504 }
505
506 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
507 {
508 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
509 u64 offset, size;
510
511 offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
512 size = offset - PERF_IDX2OFF(handle->head, buf);
513
514 if (buf->snapshot)
515 handle->head = offset;
516
517 perf_aux_output_end(handle, size);
518 }
519
520 static void arm_spe_pmu_disable_and_drain_local(void)
521 {
522 /* Disable profiling at EL0 and EL1 */
523 write_sysreg_s(0, SYS_PMSCR_EL1);
524 isb();
525
526 /* Drain any buffered data */
527 psb_csync();
528 dsb(nsh);
529
530 /* Disable the profiling buffer */
531 write_sysreg_s(0, SYS_PMBLIMITR_EL1);
532 isb();
533 }
534
535 /* IRQ handling */
536 static enum arm_spe_pmu_buf_fault_action
537 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
538 {
539 const char *err_str;
540 u64 pmbsr;
541 enum arm_spe_pmu_buf_fault_action ret;
542
543 /*
544 * Ensure new profiling data is visible to the CPU and any external
545 * aborts have been resolved.
546 */
547 psb_csync();
548 dsb(nsh);
549
550 /* Ensure hardware updates to PMBPTR_EL1 are visible */
551 isb();
552
553 /* Service required? */
554 pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
555 if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT)))
556 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
557
558 /*
559 * If we've lost data, disable profiling and also set the PARTIAL
560 * flag to indicate that the last record is corrupted.
561 */
562 if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT))
563 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
564 PERF_AUX_FLAG_PARTIAL);
565
566 /* Report collisions to userspace so that it can up the period */
567 if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT))
568 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
569
570 /* We only expect buffer management events */
571 switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) {
572 case SYS_PMBSR_EL1_EC_BUF:
573 /* Handled below */
574 break;
575 case SYS_PMBSR_EL1_EC_FAULT_S1:
576 case SYS_PMBSR_EL1_EC_FAULT_S2:
577 err_str = "Unexpected buffer fault";
578 goto out_err;
579 default:
580 err_str = "Unknown error code";
581 goto out_err;
582 }
583
584 /* Buffer management event */
585 switch (pmbsr &
586 (SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) {
587 case SYS_PMBSR_EL1_BUF_BSC_FULL:
588 ret = SPE_PMU_BUF_FAULT_ACT_OK;
589 goto out_stop;
590 default:
591 err_str = "Unknown buffer status code";
592 }
593
594 out_err:
595 pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
596 err_str, smp_processor_id(), pmbsr,
597 read_sysreg_s(SYS_PMBPTR_EL1),
598 read_sysreg_s(SYS_PMBLIMITR_EL1));
599 ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
600
601 out_stop:
602 arm_spe_perf_aux_output_end(handle);
603 return ret;
604 }
605
606 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
607 {
608 struct perf_output_handle *handle = dev;
609 struct perf_event *event = handle->event;
610 enum arm_spe_pmu_buf_fault_action act;
611
612 if (!perf_get_aux(handle))
613 return IRQ_NONE;
614
615 act = arm_spe_pmu_buf_get_fault_act(handle);
616 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
617 return IRQ_NONE;
618
619 /*
620 * Ensure perf callbacks have completed, which may disable the
621 * profiling buffer in response to a TRUNCATION flag.
622 */
623 irq_work_run();
624
625 switch (act) {
626 case SPE_PMU_BUF_FAULT_ACT_FATAL:
627 /*
628 * If a fatal exception occurred then leaving the profiling
629 * buffer enabled is a recipe waiting to happen. Since
630 * fatal faults don't always imply truncation, make sure
631 * that the profiling buffer is disabled explicitly before
632 * clearing the syndrome register.
633 */
634 arm_spe_pmu_disable_and_drain_local();
635 break;
636 case SPE_PMU_BUF_FAULT_ACT_OK:
637 /*
638 * We handled the fault (the buffer was full), so resume
639 * profiling as long as we didn't detect truncation.
640 * PMBPTR might be misaligned, but we'll burn that bridge
641 * when we get to it.
642 */
643 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
644 arm_spe_perf_aux_output_begin(handle, event);
645 isb();
646 }
647 break;
648 case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
649 /* We've seen you before, but GCC has the memory of a sieve. */
650 break;
651 }
652
653 /* The buffer pointers are now sane, so resume profiling. */
654 write_sysreg_s(0, SYS_PMBSR_EL1);
655 return IRQ_HANDLED;
656 }
657
658 /* Perf callbacks */
659 static int arm_spe_pmu_event_init(struct perf_event *event)
660 {
661 u64 reg;
662 struct perf_event_attr *attr = &event->attr;
663 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
664
665 /* This is, of course, deeply driver-specific */
666 if (attr->type != event->pmu->type)
667 return -ENOENT;
668
669 if (event->cpu >= 0 &&
670 !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
671 return -ENOENT;
672
673 if (arm_spe_event_to_pmsevfr(event) & SYS_PMSEVFR_EL1_RES0)
674 return -EOPNOTSUPP;
675
676 if (attr->exclude_idle)
677 return -EOPNOTSUPP;
678
679 /*
680 * Feedback-directed frequency throttling doesn't work when we
681 * have a buffer of samples. We'd need to manually count the
682 * samples in the buffer when it fills up and adjust the event
683 * count to reflect that. Instead, just force the user to specify
684 * a sample period.
685 */
686 if (attr->freq)
687 return -EINVAL;
688
689 reg = arm_spe_event_to_pmsfcr(event);
690 if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) &&
691 !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
692 return -EOPNOTSUPP;
693
694 if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) &&
695 !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
696 return -EOPNOTSUPP;
697
698 if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) &&
699 !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
700 return -EOPNOTSUPP;
701
702 reg = arm_spe_event_to_pmscr(event);
703 if (!capable(CAP_SYS_ADMIN) &&
704 (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) |
705 BIT(SYS_PMSCR_EL1_CX_SHIFT) |
706 BIT(SYS_PMSCR_EL1_PCT_SHIFT))))
707 return -EACCES;
708
709 return 0;
710 }
711
712 static void arm_spe_pmu_start(struct perf_event *event, int flags)
713 {
714 u64 reg;
715 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
716 struct hw_perf_event *hwc = &event->hw;
717 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
718
719 hwc->state = 0;
720 arm_spe_perf_aux_output_begin(handle, event);
721 if (hwc->state)
722 return;
723
724 reg = arm_spe_event_to_pmsfcr(event);
725 write_sysreg_s(reg, SYS_PMSFCR_EL1);
726
727 reg = arm_spe_event_to_pmsevfr(event);
728 write_sysreg_s(reg, SYS_PMSEVFR_EL1);
729
730 reg = arm_spe_event_to_pmslatfr(event);
731 write_sysreg_s(reg, SYS_PMSLATFR_EL1);
732
733 if (flags & PERF_EF_RELOAD) {
734 reg = arm_spe_event_to_pmsirr(event);
735 write_sysreg_s(reg, SYS_PMSIRR_EL1);
736 isb();
737 reg = local64_read(&hwc->period_left);
738 write_sysreg_s(reg, SYS_PMSICR_EL1);
739 }
740
741 reg = arm_spe_event_to_pmscr(event);
742 isb();
743 write_sysreg_s(reg, SYS_PMSCR_EL1);
744 }
745
746 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
747 {
748 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
749 struct hw_perf_event *hwc = &event->hw;
750 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
751
752 /* If we're already stopped, then nothing to do */
753 if (hwc->state & PERF_HES_STOPPED)
754 return;
755
756 /* Stop all trace generation */
757 arm_spe_pmu_disable_and_drain_local();
758
759 if (flags & PERF_EF_UPDATE) {
760 /*
761 * If there's a fault pending then ensure we contain it
762 * to this buffer, since we might be on the context-switch
763 * path.
764 */
765 if (perf_get_aux(handle)) {
766 enum arm_spe_pmu_buf_fault_action act;
767
768 act = arm_spe_pmu_buf_get_fault_act(handle);
769 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
770 arm_spe_perf_aux_output_end(handle);
771 else
772 write_sysreg_s(0, SYS_PMBSR_EL1);
773 }
774
775 /*
776 * This may also contain ECOUNT, but nobody else should
777 * be looking at period_left, since we forbid frequency
778 * based sampling.
779 */
780 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
781 hwc->state |= PERF_HES_UPTODATE;
782 }
783
784 hwc->state |= PERF_HES_STOPPED;
785 }
786
787 static int arm_spe_pmu_add(struct perf_event *event, int flags)
788 {
789 int ret = 0;
790 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
791 struct hw_perf_event *hwc = &event->hw;
792 int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
793
794 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
795 return -ENOENT;
796
797 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
798
799 if (flags & PERF_EF_START) {
800 arm_spe_pmu_start(event, PERF_EF_RELOAD);
801 if (hwc->state & PERF_HES_STOPPED)
802 ret = -EINVAL;
803 }
804
805 return ret;
806 }
807
808 static void arm_spe_pmu_del(struct perf_event *event, int flags)
809 {
810 arm_spe_pmu_stop(event, PERF_EF_UPDATE);
811 }
812
813 static void arm_spe_pmu_read(struct perf_event *event)
814 {
815 }
816
817 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
818 int nr_pages, bool snapshot)
819 {
820 int i, cpu = event->cpu;
821 struct page **pglist;
822 struct arm_spe_pmu_buf *buf;
823
824 /* We need at least two pages for this to work. */
825 if (nr_pages < 2)
826 return NULL;
827
828 /*
829 * We require an even number of pages for snapshot mode, so that
830 * we can effectively treat the buffer as consisting of two equal
831 * parts and give userspace a fighting chance of getting some
832 * useful data out of it.
833 */
834 if (snapshot && (nr_pages & 1))
835 return NULL;
836
837 if (cpu == -1)
838 cpu = raw_smp_processor_id();
839
840 buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
841 if (!buf)
842 return NULL;
843
844 pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
845 if (!pglist)
846 goto out_free_buf;
847
848 for (i = 0; i < nr_pages; ++i)
849 pglist[i] = virt_to_page(pages[i]);
850
851 buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
852 if (!buf->base)
853 goto out_free_pglist;
854
855 buf->nr_pages = nr_pages;
856 buf->snapshot = snapshot;
857
858 kfree(pglist);
859 return buf;
860
861 out_free_pglist:
862 kfree(pglist);
863 out_free_buf:
864 kfree(buf);
865 return NULL;
866 }
867
868 static void arm_spe_pmu_free_aux(void *aux)
869 {
870 struct arm_spe_pmu_buf *buf = aux;
871
872 vunmap(buf->base);
873 kfree(buf);
874 }
875
876 /* Initialisation and teardown functions */
877 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
878 {
879 static atomic_t pmu_idx = ATOMIC_INIT(-1);
880
881 int idx;
882 char *name;
883 struct device *dev = &spe_pmu->pdev->dev;
884
885 spe_pmu->pmu = (struct pmu) {
886 .module = THIS_MODULE,
887 .capabilities = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
888 .attr_groups = arm_spe_pmu_attr_groups,
889 /*
890 * We hitch a ride on the software context here, so that
891 * we can support per-task profiling (which is not possible
892 * with the invalid context as it doesn't get sched callbacks).
893 * This requires that userspace either uses a dummy event for
894 * perf_event_open, since the aux buffer is not setup until
895 * a subsequent mmap, or creates the profiling event in a
896 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
897 * once the buffer has been created.
898 */
899 .task_ctx_nr = perf_sw_context,
900 .event_init = arm_spe_pmu_event_init,
901 .add = arm_spe_pmu_add,
902 .del = arm_spe_pmu_del,
903 .start = arm_spe_pmu_start,
904 .stop = arm_spe_pmu_stop,
905 .read = arm_spe_pmu_read,
906 .setup_aux = arm_spe_pmu_setup_aux,
907 .free_aux = arm_spe_pmu_free_aux,
908 };
909
910 idx = atomic_inc_return(&pmu_idx);
911 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
912 if (!name) {
913 dev_err(dev, "failed to allocate name for pmu %d\n", idx);
914 return -ENOMEM;
915 }
916
917 return perf_pmu_register(&spe_pmu->pmu, name, -1);
918 }
919
920 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
921 {
922 perf_pmu_unregister(&spe_pmu->pmu);
923 }
924
925 static void __arm_spe_pmu_dev_probe(void *info)
926 {
927 int fld;
928 u64 reg;
929 struct arm_spe_pmu *spe_pmu = info;
930 struct device *dev = &spe_pmu->pdev->dev;
931
932 fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
933 ID_AA64DFR0_PMSVER_SHIFT);
934 if (!fld) {
935 dev_err(dev,
936 "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
937 fld, smp_processor_id());
938 return;
939 }
940
941 /* Read PMBIDR first to determine whether or not we have access */
942 reg = read_sysreg_s(SYS_PMBIDR_EL1);
943 if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) {
944 dev_err(dev,
945 "profiling buffer owned by higher exception level\n");
946 return;
947 }
948
949 /* Minimum alignment. If it's out-of-range, then fail the probe */
950 fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK;
951 spe_pmu->align = 1 << fld;
952 if (spe_pmu->align > SZ_2K) {
953 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
954 fld, smp_processor_id());
955 return;
956 }
957
958 /* It's now safe to read PMSIDR and figure out what we've got */
959 reg = read_sysreg_s(SYS_PMSIDR_EL1);
960 if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT))
961 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
962
963 if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT))
964 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
965
966 if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT))
967 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
968
969 if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT))
970 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
971
972 if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT))
973 spe_pmu->features |= SPE_PMU_FEAT_LDS;
974
975 if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT))
976 spe_pmu->features |= SPE_PMU_FEAT_ERND;
977
978 /* This field has a spaced out encoding, so just use a look-up */
979 fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK;
980 switch (fld) {
981 case 0:
982 spe_pmu->min_period = 256;
983 break;
984 case 2:
985 spe_pmu->min_period = 512;
986 break;
987 case 3:
988 spe_pmu->min_period = 768;
989 break;
990 case 4:
991 spe_pmu->min_period = 1024;
992 break;
993 case 5:
994 spe_pmu->min_period = 1536;
995 break;
996 case 6:
997 spe_pmu->min_period = 2048;
998 break;
999 case 7:
1000 spe_pmu->min_period = 3072;
1001 break;
1002 default:
1003 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1004 fld);
1005 /* Fallthrough */
1006 case 8:
1007 spe_pmu->min_period = 4096;
1008 }
1009
1010 /* Maximum record size. If it's out-of-range, then fail the probe */
1011 fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK;
1012 spe_pmu->max_record_sz = 1 << fld;
1013 if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1014 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1015 fld, smp_processor_id());
1016 return;
1017 }
1018
1019 fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK;
1020 switch (fld) {
1021 default:
1022 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1023 fld);
1024 /* Fallthrough */
1025 case 2:
1026 spe_pmu->counter_sz = 12;
1027 }
1028
1029 dev_info(dev,
1030 "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1031 cpumask_pr_args(&spe_pmu->supported_cpus),
1032 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1033
1034 spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1035 return;
1036 }
1037
1038 static void __arm_spe_pmu_reset_local(void)
1039 {
1040 /*
1041 * This is probably overkill, as we have no idea where we're
1042 * draining any buffered data to...
1043 */
1044 arm_spe_pmu_disable_and_drain_local();
1045
1046 /* Reset the buffer base pointer */
1047 write_sysreg_s(0, SYS_PMBPTR_EL1);
1048 isb();
1049
1050 /* Clear any pending management interrupts */
1051 write_sysreg_s(0, SYS_PMBSR_EL1);
1052 isb();
1053 }
1054
1055 static void __arm_spe_pmu_setup_one(void *info)
1056 {
1057 struct arm_spe_pmu *spe_pmu = info;
1058
1059 __arm_spe_pmu_reset_local();
1060 enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1061 }
1062
1063 static void __arm_spe_pmu_stop_one(void *info)
1064 {
1065 struct arm_spe_pmu *spe_pmu = info;
1066
1067 disable_percpu_irq(spe_pmu->irq);
1068 __arm_spe_pmu_reset_local();
1069 }
1070
1071 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1072 {
1073 struct arm_spe_pmu *spe_pmu;
1074
1075 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1076 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1077 return 0;
1078
1079 __arm_spe_pmu_setup_one(spe_pmu);
1080 return 0;
1081 }
1082
1083 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1084 {
1085 struct arm_spe_pmu *spe_pmu;
1086
1087 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1088 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1089 return 0;
1090
1091 __arm_spe_pmu_stop_one(spe_pmu);
1092 return 0;
1093 }
1094
1095 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1096 {
1097 int ret;
1098 cpumask_t *mask = &spe_pmu->supported_cpus;
1099
1100 /* Make sure we probe the hardware on a relevant CPU */
1101 ret = smp_call_function_any(mask, __arm_spe_pmu_dev_probe, spe_pmu, 1);
1102 if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1103 return -ENXIO;
1104
1105 /* Request our PPIs (note that the IRQ is still disabled) */
1106 ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1107 spe_pmu->handle);
1108 if (ret)
1109 return ret;
1110
1111 /*
1112 * Register our hotplug notifier now so we don't miss any events.
1113 * This will enable the IRQ for any supported CPUs that are already
1114 * up.
1115 */
1116 ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1117 &spe_pmu->hotplug_node);
1118 if (ret)
1119 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1120
1121 return ret;
1122 }
1123
1124 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1125 {
1126 cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1127 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1128 }
1129
1130 /* Driver and device probing */
1131 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1132 {
1133 struct platform_device *pdev = spe_pmu->pdev;
1134 int irq = platform_get_irq(pdev, 0);
1135
1136 if (irq < 0) {
1137 dev_err(&pdev->dev, "failed to get IRQ (%d)\n", irq);
1138 return -ENXIO;
1139 }
1140
1141 if (!irq_is_percpu(irq)) {
1142 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1143 return -EINVAL;
1144 }
1145
1146 if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1147 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1148 return -EINVAL;
1149 }
1150
1151 spe_pmu->irq = irq;
1152 return 0;
1153 }
1154
1155 static const struct of_device_id arm_spe_pmu_of_match[] = {
1156 { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1157 { /* Sentinel */ },
1158 };
1159 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
1160
1161 static const struct platform_device_id arm_spe_match[] = {
1162 { ARMV8_SPE_PDEV_NAME, 0},
1163 { }
1164 };
1165 MODULE_DEVICE_TABLE(platform, arm_spe_match);
1166
1167 static int arm_spe_pmu_device_probe(struct platform_device *pdev)
1168 {
1169 int ret;
1170 struct arm_spe_pmu *spe_pmu;
1171 struct device *dev = &pdev->dev;
1172
1173 /*
1174 * If kernelspace is unmapped when running at EL0, then the SPE
1175 * buffer will fault and prematurely terminate the AUX session.
1176 */
1177 if (arm64_kernel_unmapped_at_el0()) {
1178 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1179 return -EPERM;
1180 }
1181
1182 spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1183 if (!spe_pmu) {
1184 dev_err(dev, "failed to allocate spe_pmu\n");
1185 return -ENOMEM;
1186 }
1187
1188 spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1189 if (!spe_pmu->handle)
1190 return -ENOMEM;
1191
1192 spe_pmu->pdev = pdev;
1193 platform_set_drvdata(pdev, spe_pmu);
1194
1195 ret = arm_spe_pmu_irq_probe(spe_pmu);
1196 if (ret)
1197 goto out_free_handle;
1198
1199 ret = arm_spe_pmu_dev_init(spe_pmu);
1200 if (ret)
1201 goto out_free_handle;
1202
1203 ret = arm_spe_pmu_perf_init(spe_pmu);
1204 if (ret)
1205 goto out_teardown_dev;
1206
1207 return 0;
1208
1209 out_teardown_dev:
1210 arm_spe_pmu_dev_teardown(spe_pmu);
1211 out_free_handle:
1212 free_percpu(spe_pmu->handle);
1213 return ret;
1214 }
1215
1216 static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1217 {
1218 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1219
1220 arm_spe_pmu_perf_destroy(spe_pmu);
1221 arm_spe_pmu_dev_teardown(spe_pmu);
1222 free_percpu(spe_pmu->handle);
1223 return 0;
1224 }
1225
1226 static struct platform_driver arm_spe_pmu_driver = {
1227 .id_table = arm_spe_match,
1228 .driver = {
1229 .name = DRVNAME,
1230 .of_match_table = of_match_ptr(arm_spe_pmu_of_match),
1231 },
1232 .probe = arm_spe_pmu_device_probe,
1233 .remove = arm_spe_pmu_device_remove,
1234 };
1235
1236 static int __init arm_spe_pmu_init(void)
1237 {
1238 int ret;
1239
1240 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1241 arm_spe_pmu_cpu_startup,
1242 arm_spe_pmu_cpu_teardown);
1243 if (ret < 0)
1244 return ret;
1245 arm_spe_pmu_online = ret;
1246
1247 ret = platform_driver_register(&arm_spe_pmu_driver);
1248 if (ret)
1249 cpuhp_remove_multi_state(arm_spe_pmu_online);
1250
1251 return ret;
1252 }
1253
1254 static void __exit arm_spe_pmu_exit(void)
1255 {
1256 platform_driver_unregister(&arm_spe_pmu_driver);
1257 cpuhp_remove_multi_state(arm_spe_pmu_online);
1258 }
1259
1260 module_init(arm_spe_pmu_init);
1261 module_exit(arm_spe_pmu_exit);
1262
1263 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1264 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1265 MODULE_LICENSE("GPL v2");