]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/perf/arm_spe_pmu.c
Merge tag 'tegra-for-5.14-rc3-arm64-dt' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / drivers / perf / arm_spe_pmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Perf support for the Statistical Profiling Extension, introduced as
4 * part of ARMv8.2.
5 *
6 * Copyright (C) 2016 ARM Limited
7 *
8 * Author: Will Deacon <will.deacon@arm.com>
9 */
10
11 #define PMUNAME "arm_spe"
12 #define DRVNAME PMUNAME "_pmu"
13 #define pr_fmt(fmt) DRVNAME ": " fmt
14
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/capability.h>
18 #include <linux/cpuhotplug.h>
19 #include <linux/cpumask.h>
20 #include <linux/device.h>
21 #include <linux/errno.h>
22 #include <linux/interrupt.h>
23 #include <linux/irq.h>
24 #include <linux/kernel.h>
25 #include <linux/list.h>
26 #include <linux/module.h>
27 #include <linux/of_address.h>
28 #include <linux/of_device.h>
29 #include <linux/perf_event.h>
30 #include <linux/perf/arm_pmu.h>
31 #include <linux/platform_device.h>
32 #include <linux/printk.h>
33 #include <linux/slab.h>
34 #include <linux/smp.h>
35 #include <linux/vmalloc.h>
36
37 #include <asm/barrier.h>
38 #include <asm/cpufeature.h>
39 #include <asm/mmu.h>
40 #include <asm/sysreg.h>
41
42 #define ARM_SPE_BUF_PAD_BYTE 0
43
44 struct arm_spe_pmu_buf {
45 int nr_pages;
46 bool snapshot;
47 void *base;
48 };
49
50 struct arm_spe_pmu {
51 struct pmu pmu;
52 struct platform_device *pdev;
53 cpumask_t supported_cpus;
54 struct hlist_node hotplug_node;
55
56 int irq; /* PPI */
57 u16 pmsver;
58 u16 min_period;
59 u16 counter_sz;
60
61 #define SPE_PMU_FEAT_FILT_EVT (1UL << 0)
62 #define SPE_PMU_FEAT_FILT_TYP (1UL << 1)
63 #define SPE_PMU_FEAT_FILT_LAT (1UL << 2)
64 #define SPE_PMU_FEAT_ARCH_INST (1UL << 3)
65 #define SPE_PMU_FEAT_LDS (1UL << 4)
66 #define SPE_PMU_FEAT_ERND (1UL << 5)
67 #define SPE_PMU_FEAT_DEV_PROBED (1UL << 63)
68 u64 features;
69
70 u16 max_record_sz;
71 u16 align;
72 struct perf_output_handle __percpu *handle;
73 };
74
75 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
76
77 /* Convert a free-running index from perf into an SPE buffer offset */
78 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
79
80 /* Keep track of our dynamic hotplug state */
81 static enum cpuhp_state arm_spe_pmu_online;
82
83 enum arm_spe_pmu_buf_fault_action {
84 SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
85 SPE_PMU_BUF_FAULT_ACT_FATAL,
86 SPE_PMU_BUF_FAULT_ACT_OK,
87 };
88
89 /* This sysfs gunk was really good fun to write. */
90 enum arm_spe_pmu_capabilities {
91 SPE_PMU_CAP_ARCH_INST = 0,
92 SPE_PMU_CAP_ERND,
93 SPE_PMU_CAP_FEAT_MAX,
94 SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
95 SPE_PMU_CAP_MIN_IVAL,
96 };
97
98 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
99 [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST,
100 [SPE_PMU_CAP_ERND] = SPE_PMU_FEAT_ERND,
101 };
102
103 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
104 {
105 if (cap < SPE_PMU_CAP_FEAT_MAX)
106 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
107
108 switch (cap) {
109 case SPE_PMU_CAP_CNT_SZ:
110 return spe_pmu->counter_sz;
111 case SPE_PMU_CAP_MIN_IVAL:
112 return spe_pmu->min_period;
113 default:
114 WARN(1, "unknown cap %d\n", cap);
115 }
116
117 return 0;
118 }
119
120 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
121 struct device_attribute *attr,
122 char *buf)
123 {
124 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
125 struct dev_ext_attribute *ea =
126 container_of(attr, struct dev_ext_attribute, attr);
127 int cap = (long)ea->var;
128
129 return sysfs_emit(buf, "%u\n", arm_spe_pmu_cap_get(spe_pmu, cap));
130 }
131
132 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \
133 &((struct dev_ext_attribute[]) { \
134 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \
135 })[0].attr.attr
136
137 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \
138 SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
139
140 static struct attribute *arm_spe_pmu_cap_attr[] = {
141 SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
142 SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
143 SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
144 SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
145 NULL,
146 };
147
148 static const struct attribute_group arm_spe_pmu_cap_group = {
149 .name = "caps",
150 .attrs = arm_spe_pmu_cap_attr,
151 };
152
153 /* User ABI */
154 #define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */
155 #define ATTR_CFG_FLD_ts_enable_LO 0
156 #define ATTR_CFG_FLD_ts_enable_HI 0
157 #define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */
158 #define ATTR_CFG_FLD_pa_enable_LO 1
159 #define ATTR_CFG_FLD_pa_enable_HI 1
160 #define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */
161 #define ATTR_CFG_FLD_pct_enable_LO 2
162 #define ATTR_CFG_FLD_pct_enable_HI 2
163 #define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */
164 #define ATTR_CFG_FLD_jitter_LO 16
165 #define ATTR_CFG_FLD_jitter_HI 16
166 #define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */
167 #define ATTR_CFG_FLD_branch_filter_LO 32
168 #define ATTR_CFG_FLD_branch_filter_HI 32
169 #define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */
170 #define ATTR_CFG_FLD_load_filter_LO 33
171 #define ATTR_CFG_FLD_load_filter_HI 33
172 #define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */
173 #define ATTR_CFG_FLD_store_filter_LO 34
174 #define ATTR_CFG_FLD_store_filter_HI 34
175
176 #define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */
177 #define ATTR_CFG_FLD_event_filter_LO 0
178 #define ATTR_CFG_FLD_event_filter_HI 63
179
180 #define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */
181 #define ATTR_CFG_FLD_min_latency_LO 0
182 #define ATTR_CFG_FLD_min_latency_HI 11
183
184 /* Why does everything I do descend into this? */
185 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
186 (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
187
188 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
189 __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
190
191 #define GEN_PMU_FORMAT_ATTR(name) \
192 PMU_FORMAT_ATTR(name, \
193 _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG, \
194 ATTR_CFG_FLD_##name##_LO, \
195 ATTR_CFG_FLD_##name##_HI))
196
197 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi) \
198 ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
199
200 #define ATTR_CFG_GET_FLD(attr, name) \
201 _ATTR_CFG_GET_FLD(attr, \
202 ATTR_CFG_FLD_##name##_CFG, \
203 ATTR_CFG_FLD_##name##_LO, \
204 ATTR_CFG_FLD_##name##_HI)
205
206 GEN_PMU_FORMAT_ATTR(ts_enable);
207 GEN_PMU_FORMAT_ATTR(pa_enable);
208 GEN_PMU_FORMAT_ATTR(pct_enable);
209 GEN_PMU_FORMAT_ATTR(jitter);
210 GEN_PMU_FORMAT_ATTR(branch_filter);
211 GEN_PMU_FORMAT_ATTR(load_filter);
212 GEN_PMU_FORMAT_ATTR(store_filter);
213 GEN_PMU_FORMAT_ATTR(event_filter);
214 GEN_PMU_FORMAT_ATTR(min_latency);
215
216 static struct attribute *arm_spe_pmu_formats_attr[] = {
217 &format_attr_ts_enable.attr,
218 &format_attr_pa_enable.attr,
219 &format_attr_pct_enable.attr,
220 &format_attr_jitter.attr,
221 &format_attr_branch_filter.attr,
222 &format_attr_load_filter.attr,
223 &format_attr_store_filter.attr,
224 &format_attr_event_filter.attr,
225 &format_attr_min_latency.attr,
226 NULL,
227 };
228
229 static const struct attribute_group arm_spe_pmu_format_group = {
230 .name = "format",
231 .attrs = arm_spe_pmu_formats_attr,
232 };
233
234 static ssize_t cpumask_show(struct device *dev,
235 struct device_attribute *attr, char *buf)
236 {
237 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
238
239 return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
240 }
241 static DEVICE_ATTR_RO(cpumask);
242
243 static struct attribute *arm_spe_pmu_attrs[] = {
244 &dev_attr_cpumask.attr,
245 NULL,
246 };
247
248 static const struct attribute_group arm_spe_pmu_group = {
249 .attrs = arm_spe_pmu_attrs,
250 };
251
252 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
253 &arm_spe_pmu_group,
254 &arm_spe_pmu_cap_group,
255 &arm_spe_pmu_format_group,
256 NULL,
257 };
258
259 /* Convert between user ABI and register values */
260 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
261 {
262 struct perf_event_attr *attr = &event->attr;
263 u64 reg = 0;
264
265 reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT;
266 reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT;
267 reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT;
268
269 if (!attr->exclude_user)
270 reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT);
271
272 if (!attr->exclude_kernel)
273 reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT);
274
275 if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && perfmon_capable())
276 reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT);
277
278 return reg;
279 }
280
281 static void arm_spe_event_sanitise_period(struct perf_event *event)
282 {
283 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
284 u64 period = event->hw.sample_period;
285 u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK
286 << SYS_PMSIRR_EL1_INTERVAL_SHIFT;
287
288 if (period < spe_pmu->min_period)
289 period = spe_pmu->min_period;
290 else if (period > max_period)
291 period = max_period;
292 else
293 period &= max_period;
294
295 event->hw.sample_period = period;
296 }
297
298 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
299 {
300 struct perf_event_attr *attr = &event->attr;
301 u64 reg = 0;
302
303 arm_spe_event_sanitise_period(event);
304
305 reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT;
306 reg |= event->hw.sample_period;
307
308 return reg;
309 }
310
311 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
312 {
313 struct perf_event_attr *attr = &event->attr;
314 u64 reg = 0;
315
316 reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT;
317 reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT;
318 reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT;
319
320 if (reg)
321 reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT);
322
323 if (ATTR_CFG_GET_FLD(attr, event_filter))
324 reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT);
325
326 if (ATTR_CFG_GET_FLD(attr, min_latency))
327 reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT);
328
329 return reg;
330 }
331
332 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
333 {
334 struct perf_event_attr *attr = &event->attr;
335 return ATTR_CFG_GET_FLD(attr, event_filter);
336 }
337
338 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
339 {
340 struct perf_event_attr *attr = &event->attr;
341 return ATTR_CFG_GET_FLD(attr, min_latency)
342 << SYS_PMSLATFR_EL1_MINLAT_SHIFT;
343 }
344
345 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
346 {
347 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
348 u64 head = PERF_IDX2OFF(handle->head, buf);
349
350 memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
351 if (!buf->snapshot)
352 perf_aux_output_skip(handle, len);
353 }
354
355 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
356 {
357 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
358 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
359 u64 head = PERF_IDX2OFF(handle->head, buf);
360 u64 limit = buf->nr_pages * PAGE_SIZE;
361
362 /*
363 * The trace format isn't parseable in reverse, so clamp
364 * the limit to half of the buffer size in snapshot mode
365 * so that the worst case is half a buffer of records, as
366 * opposed to a single record.
367 */
368 if (head < limit >> 1)
369 limit >>= 1;
370
371 /*
372 * If we're within max_record_sz of the limit, we must
373 * pad, move the head index and recompute the limit.
374 */
375 if (limit - head < spe_pmu->max_record_sz) {
376 arm_spe_pmu_pad_buf(handle, limit - head);
377 handle->head = PERF_IDX2OFF(limit, buf);
378 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
379 }
380
381 return limit;
382 }
383
384 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
385 {
386 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
387 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
388 const u64 bufsize = buf->nr_pages * PAGE_SIZE;
389 u64 limit = bufsize;
390 u64 head, tail, wakeup;
391
392 /*
393 * The head can be misaligned for two reasons:
394 *
395 * 1. The hardware left PMBPTR pointing to the first byte after
396 * a record when generating a buffer management event.
397 *
398 * 2. We used perf_aux_output_skip to consume handle->size bytes
399 * and CIRC_SPACE was used to compute the size, which always
400 * leaves one entry free.
401 *
402 * Deal with this by padding to the next alignment boundary and
403 * moving the head index. If we run out of buffer space, we'll
404 * reduce handle->size to zero and end up reporting truncation.
405 */
406 head = PERF_IDX2OFF(handle->head, buf);
407 if (!IS_ALIGNED(head, spe_pmu->align)) {
408 unsigned long delta = roundup(head, spe_pmu->align) - head;
409
410 delta = min(delta, handle->size);
411 arm_spe_pmu_pad_buf(handle, delta);
412 head = PERF_IDX2OFF(handle->head, buf);
413 }
414
415 /* If we've run out of free space, then nothing more to do */
416 if (!handle->size)
417 goto no_space;
418
419 /* Compute the tail and wakeup indices now that we've aligned head */
420 tail = PERF_IDX2OFF(handle->head + handle->size, buf);
421 wakeup = PERF_IDX2OFF(handle->wakeup, buf);
422
423 /*
424 * Avoid clobbering unconsumed data. We know we have space, so
425 * if we see head == tail we know that the buffer is empty. If
426 * head > tail, then there's nothing to clobber prior to
427 * wrapping.
428 */
429 if (head < tail)
430 limit = round_down(tail, PAGE_SIZE);
431
432 /*
433 * Wakeup may be arbitrarily far into the future. If it's not in
434 * the current generation, either we'll wrap before hitting it,
435 * or it's in the past and has been handled already.
436 *
437 * If there's a wakeup before we wrap, arrange to be woken up by
438 * the page boundary following it. Keep the tail boundary if
439 * that's lower.
440 */
441 if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
442 limit = min(limit, round_up(wakeup, PAGE_SIZE));
443
444 if (limit > head)
445 return limit;
446
447 arm_spe_pmu_pad_buf(handle, handle->size);
448 no_space:
449 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
450 perf_aux_output_end(handle, 0);
451 return 0;
452 }
453
454 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
455 {
456 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
457 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
458 u64 limit = __arm_spe_pmu_next_off(handle);
459 u64 head = PERF_IDX2OFF(handle->head, buf);
460
461 /*
462 * If the head has come too close to the end of the buffer,
463 * then pad to the end and recompute the limit.
464 */
465 if (limit && (limit - head < spe_pmu->max_record_sz)) {
466 arm_spe_pmu_pad_buf(handle, limit - head);
467 limit = __arm_spe_pmu_next_off(handle);
468 }
469
470 return limit;
471 }
472
473 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
474 struct perf_event *event)
475 {
476 u64 base, limit;
477 struct arm_spe_pmu_buf *buf;
478
479 /* Start a new aux session */
480 buf = perf_aux_output_begin(handle, event);
481 if (!buf) {
482 event->hw.state |= PERF_HES_STOPPED;
483 /*
484 * We still need to clear the limit pointer, since the
485 * profiler might only be disabled by virtue of a fault.
486 */
487 limit = 0;
488 goto out_write_limit;
489 }
490
491 limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
492 : arm_spe_pmu_next_off(handle);
493 if (limit)
494 limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT);
495
496 limit += (u64)buf->base;
497 base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
498 write_sysreg_s(base, SYS_PMBPTR_EL1);
499
500 out_write_limit:
501 write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
502 }
503
504 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
505 {
506 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
507 u64 offset, size;
508
509 offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
510 size = offset - PERF_IDX2OFF(handle->head, buf);
511
512 if (buf->snapshot)
513 handle->head = offset;
514
515 perf_aux_output_end(handle, size);
516 }
517
518 static void arm_spe_pmu_disable_and_drain_local(void)
519 {
520 /* Disable profiling at EL0 and EL1 */
521 write_sysreg_s(0, SYS_PMSCR_EL1);
522 isb();
523
524 /* Drain any buffered data */
525 psb_csync();
526 dsb(nsh);
527
528 /* Disable the profiling buffer */
529 write_sysreg_s(0, SYS_PMBLIMITR_EL1);
530 isb();
531 }
532
533 /* IRQ handling */
534 static enum arm_spe_pmu_buf_fault_action
535 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
536 {
537 const char *err_str;
538 u64 pmbsr;
539 enum arm_spe_pmu_buf_fault_action ret;
540
541 /*
542 * Ensure new profiling data is visible to the CPU and any external
543 * aborts have been resolved.
544 */
545 psb_csync();
546 dsb(nsh);
547
548 /* Ensure hardware updates to PMBPTR_EL1 are visible */
549 isb();
550
551 /* Service required? */
552 pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
553 if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT)))
554 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
555
556 /*
557 * If we've lost data, disable profiling and also set the PARTIAL
558 * flag to indicate that the last record is corrupted.
559 */
560 if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT))
561 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
562 PERF_AUX_FLAG_PARTIAL);
563
564 /* Report collisions to userspace so that it can up the period */
565 if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT))
566 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
567
568 /* We only expect buffer management events */
569 switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) {
570 case SYS_PMBSR_EL1_EC_BUF:
571 /* Handled below */
572 break;
573 case SYS_PMBSR_EL1_EC_FAULT_S1:
574 case SYS_PMBSR_EL1_EC_FAULT_S2:
575 err_str = "Unexpected buffer fault";
576 goto out_err;
577 default:
578 err_str = "Unknown error code";
579 goto out_err;
580 }
581
582 /* Buffer management event */
583 switch (pmbsr &
584 (SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) {
585 case SYS_PMBSR_EL1_BUF_BSC_FULL:
586 ret = SPE_PMU_BUF_FAULT_ACT_OK;
587 goto out_stop;
588 default:
589 err_str = "Unknown buffer status code";
590 }
591
592 out_err:
593 pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
594 err_str, smp_processor_id(), pmbsr,
595 read_sysreg_s(SYS_PMBPTR_EL1),
596 read_sysreg_s(SYS_PMBLIMITR_EL1));
597 ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
598
599 out_stop:
600 arm_spe_perf_aux_output_end(handle);
601 return ret;
602 }
603
604 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
605 {
606 struct perf_output_handle *handle = dev;
607 struct perf_event *event = handle->event;
608 enum arm_spe_pmu_buf_fault_action act;
609
610 if (!perf_get_aux(handle))
611 return IRQ_NONE;
612
613 act = arm_spe_pmu_buf_get_fault_act(handle);
614 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
615 return IRQ_NONE;
616
617 /*
618 * Ensure perf callbacks have completed, which may disable the
619 * profiling buffer in response to a TRUNCATION flag.
620 */
621 irq_work_run();
622
623 switch (act) {
624 case SPE_PMU_BUF_FAULT_ACT_FATAL:
625 /*
626 * If a fatal exception occurred then leaving the profiling
627 * buffer enabled is a recipe waiting to happen. Since
628 * fatal faults don't always imply truncation, make sure
629 * that the profiling buffer is disabled explicitly before
630 * clearing the syndrome register.
631 */
632 arm_spe_pmu_disable_and_drain_local();
633 break;
634 case SPE_PMU_BUF_FAULT_ACT_OK:
635 /*
636 * We handled the fault (the buffer was full), so resume
637 * profiling as long as we didn't detect truncation.
638 * PMBPTR might be misaligned, but we'll burn that bridge
639 * when we get to it.
640 */
641 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
642 arm_spe_perf_aux_output_begin(handle, event);
643 isb();
644 }
645 break;
646 case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
647 /* We've seen you before, but GCC has the memory of a sieve. */
648 break;
649 }
650
651 /* The buffer pointers are now sane, so resume profiling. */
652 write_sysreg_s(0, SYS_PMBSR_EL1);
653 return IRQ_HANDLED;
654 }
655
656 static u64 arm_spe_pmsevfr_res0(u16 pmsver)
657 {
658 switch (pmsver) {
659 case ID_AA64DFR0_PMSVER_8_2:
660 return SYS_PMSEVFR_EL1_RES0_8_2;
661 case ID_AA64DFR0_PMSVER_8_3:
662 /* Return the highest version we support in default */
663 default:
664 return SYS_PMSEVFR_EL1_RES0_8_3;
665 }
666 }
667
668 /* Perf callbacks */
669 static int arm_spe_pmu_event_init(struct perf_event *event)
670 {
671 u64 reg;
672 struct perf_event_attr *attr = &event->attr;
673 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
674
675 /* This is, of course, deeply driver-specific */
676 if (attr->type != event->pmu->type)
677 return -ENOENT;
678
679 if (event->cpu >= 0 &&
680 !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
681 return -ENOENT;
682
683 if (arm_spe_event_to_pmsevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
684 return -EOPNOTSUPP;
685
686 if (attr->exclude_idle)
687 return -EOPNOTSUPP;
688
689 /*
690 * Feedback-directed frequency throttling doesn't work when we
691 * have a buffer of samples. We'd need to manually count the
692 * samples in the buffer when it fills up and adjust the event
693 * count to reflect that. Instead, just force the user to specify
694 * a sample period.
695 */
696 if (attr->freq)
697 return -EINVAL;
698
699 reg = arm_spe_event_to_pmsfcr(event);
700 if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) &&
701 !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
702 return -EOPNOTSUPP;
703
704 if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) &&
705 !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
706 return -EOPNOTSUPP;
707
708 if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) &&
709 !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
710 return -EOPNOTSUPP;
711
712 reg = arm_spe_event_to_pmscr(event);
713 if (!perfmon_capable() &&
714 (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) |
715 BIT(SYS_PMSCR_EL1_CX_SHIFT) |
716 BIT(SYS_PMSCR_EL1_PCT_SHIFT))))
717 return -EACCES;
718
719 return 0;
720 }
721
722 static void arm_spe_pmu_start(struct perf_event *event, int flags)
723 {
724 u64 reg;
725 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
726 struct hw_perf_event *hwc = &event->hw;
727 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
728
729 hwc->state = 0;
730 arm_spe_perf_aux_output_begin(handle, event);
731 if (hwc->state)
732 return;
733
734 reg = arm_spe_event_to_pmsfcr(event);
735 write_sysreg_s(reg, SYS_PMSFCR_EL1);
736
737 reg = arm_spe_event_to_pmsevfr(event);
738 write_sysreg_s(reg, SYS_PMSEVFR_EL1);
739
740 reg = arm_spe_event_to_pmslatfr(event);
741 write_sysreg_s(reg, SYS_PMSLATFR_EL1);
742
743 if (flags & PERF_EF_RELOAD) {
744 reg = arm_spe_event_to_pmsirr(event);
745 write_sysreg_s(reg, SYS_PMSIRR_EL1);
746 isb();
747 reg = local64_read(&hwc->period_left);
748 write_sysreg_s(reg, SYS_PMSICR_EL1);
749 }
750
751 reg = arm_spe_event_to_pmscr(event);
752 isb();
753 write_sysreg_s(reg, SYS_PMSCR_EL1);
754 }
755
756 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
757 {
758 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
759 struct hw_perf_event *hwc = &event->hw;
760 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
761
762 /* If we're already stopped, then nothing to do */
763 if (hwc->state & PERF_HES_STOPPED)
764 return;
765
766 /* Stop all trace generation */
767 arm_spe_pmu_disable_and_drain_local();
768
769 if (flags & PERF_EF_UPDATE) {
770 /*
771 * If there's a fault pending then ensure we contain it
772 * to this buffer, since we might be on the context-switch
773 * path.
774 */
775 if (perf_get_aux(handle)) {
776 enum arm_spe_pmu_buf_fault_action act;
777
778 act = arm_spe_pmu_buf_get_fault_act(handle);
779 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
780 arm_spe_perf_aux_output_end(handle);
781 else
782 write_sysreg_s(0, SYS_PMBSR_EL1);
783 }
784
785 /*
786 * This may also contain ECOUNT, but nobody else should
787 * be looking at period_left, since we forbid frequency
788 * based sampling.
789 */
790 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
791 hwc->state |= PERF_HES_UPTODATE;
792 }
793
794 hwc->state |= PERF_HES_STOPPED;
795 }
796
797 static int arm_spe_pmu_add(struct perf_event *event, int flags)
798 {
799 int ret = 0;
800 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
801 struct hw_perf_event *hwc = &event->hw;
802 int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
803
804 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
805 return -ENOENT;
806
807 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
808
809 if (flags & PERF_EF_START) {
810 arm_spe_pmu_start(event, PERF_EF_RELOAD);
811 if (hwc->state & PERF_HES_STOPPED)
812 ret = -EINVAL;
813 }
814
815 return ret;
816 }
817
818 static void arm_spe_pmu_del(struct perf_event *event, int flags)
819 {
820 arm_spe_pmu_stop(event, PERF_EF_UPDATE);
821 }
822
823 static void arm_spe_pmu_read(struct perf_event *event)
824 {
825 }
826
827 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
828 int nr_pages, bool snapshot)
829 {
830 int i, cpu = event->cpu;
831 struct page **pglist;
832 struct arm_spe_pmu_buf *buf;
833
834 /* We need at least two pages for this to work. */
835 if (nr_pages < 2)
836 return NULL;
837
838 /*
839 * We require an even number of pages for snapshot mode, so that
840 * we can effectively treat the buffer as consisting of two equal
841 * parts and give userspace a fighting chance of getting some
842 * useful data out of it.
843 */
844 if (snapshot && (nr_pages & 1))
845 return NULL;
846
847 if (cpu == -1)
848 cpu = raw_smp_processor_id();
849
850 buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
851 if (!buf)
852 return NULL;
853
854 pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
855 if (!pglist)
856 goto out_free_buf;
857
858 for (i = 0; i < nr_pages; ++i)
859 pglist[i] = virt_to_page(pages[i]);
860
861 buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
862 if (!buf->base)
863 goto out_free_pglist;
864
865 buf->nr_pages = nr_pages;
866 buf->snapshot = snapshot;
867
868 kfree(pglist);
869 return buf;
870
871 out_free_pglist:
872 kfree(pglist);
873 out_free_buf:
874 kfree(buf);
875 return NULL;
876 }
877
878 static void arm_spe_pmu_free_aux(void *aux)
879 {
880 struct arm_spe_pmu_buf *buf = aux;
881
882 vunmap(buf->base);
883 kfree(buf);
884 }
885
886 /* Initialisation and teardown functions */
887 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
888 {
889 static atomic_t pmu_idx = ATOMIC_INIT(-1);
890
891 int idx;
892 char *name;
893 struct device *dev = &spe_pmu->pdev->dev;
894
895 spe_pmu->pmu = (struct pmu) {
896 .module = THIS_MODULE,
897 .capabilities = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
898 .attr_groups = arm_spe_pmu_attr_groups,
899 /*
900 * We hitch a ride on the software context here, so that
901 * we can support per-task profiling (which is not possible
902 * with the invalid context as it doesn't get sched callbacks).
903 * This requires that userspace either uses a dummy event for
904 * perf_event_open, since the aux buffer is not setup until
905 * a subsequent mmap, or creates the profiling event in a
906 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
907 * once the buffer has been created.
908 */
909 .task_ctx_nr = perf_sw_context,
910 .event_init = arm_spe_pmu_event_init,
911 .add = arm_spe_pmu_add,
912 .del = arm_spe_pmu_del,
913 .start = arm_spe_pmu_start,
914 .stop = arm_spe_pmu_stop,
915 .read = arm_spe_pmu_read,
916 .setup_aux = arm_spe_pmu_setup_aux,
917 .free_aux = arm_spe_pmu_free_aux,
918 };
919
920 idx = atomic_inc_return(&pmu_idx);
921 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
922 if (!name) {
923 dev_err(dev, "failed to allocate name for pmu %d\n", idx);
924 return -ENOMEM;
925 }
926
927 return perf_pmu_register(&spe_pmu->pmu, name, -1);
928 }
929
930 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
931 {
932 perf_pmu_unregister(&spe_pmu->pmu);
933 }
934
935 static void __arm_spe_pmu_dev_probe(void *info)
936 {
937 int fld;
938 u64 reg;
939 struct arm_spe_pmu *spe_pmu = info;
940 struct device *dev = &spe_pmu->pdev->dev;
941
942 fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
943 ID_AA64DFR0_PMSVER_SHIFT);
944 if (!fld) {
945 dev_err(dev,
946 "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
947 fld, smp_processor_id());
948 return;
949 }
950 spe_pmu->pmsver = (u16)fld;
951
952 /* Read PMBIDR first to determine whether or not we have access */
953 reg = read_sysreg_s(SYS_PMBIDR_EL1);
954 if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) {
955 dev_err(dev,
956 "profiling buffer owned by higher exception level\n");
957 return;
958 }
959
960 /* Minimum alignment. If it's out-of-range, then fail the probe */
961 fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK;
962 spe_pmu->align = 1 << fld;
963 if (spe_pmu->align > SZ_2K) {
964 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
965 fld, smp_processor_id());
966 return;
967 }
968
969 /* It's now safe to read PMSIDR and figure out what we've got */
970 reg = read_sysreg_s(SYS_PMSIDR_EL1);
971 if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT))
972 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
973
974 if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT))
975 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
976
977 if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT))
978 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
979
980 if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT))
981 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
982
983 if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT))
984 spe_pmu->features |= SPE_PMU_FEAT_LDS;
985
986 if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT))
987 spe_pmu->features |= SPE_PMU_FEAT_ERND;
988
989 /* This field has a spaced out encoding, so just use a look-up */
990 fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK;
991 switch (fld) {
992 case 0:
993 spe_pmu->min_period = 256;
994 break;
995 case 2:
996 spe_pmu->min_period = 512;
997 break;
998 case 3:
999 spe_pmu->min_period = 768;
1000 break;
1001 case 4:
1002 spe_pmu->min_period = 1024;
1003 break;
1004 case 5:
1005 spe_pmu->min_period = 1536;
1006 break;
1007 case 6:
1008 spe_pmu->min_period = 2048;
1009 break;
1010 case 7:
1011 spe_pmu->min_period = 3072;
1012 break;
1013 default:
1014 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1015 fld);
1016 fallthrough;
1017 case 8:
1018 spe_pmu->min_period = 4096;
1019 }
1020
1021 /* Maximum record size. If it's out-of-range, then fail the probe */
1022 fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK;
1023 spe_pmu->max_record_sz = 1 << fld;
1024 if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1025 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1026 fld, smp_processor_id());
1027 return;
1028 }
1029
1030 fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK;
1031 switch (fld) {
1032 default:
1033 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1034 fld);
1035 fallthrough;
1036 case 2:
1037 spe_pmu->counter_sz = 12;
1038 }
1039
1040 dev_info(dev,
1041 "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1042 cpumask_pr_args(&spe_pmu->supported_cpus),
1043 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1044
1045 spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1046 }
1047
1048 static void __arm_spe_pmu_reset_local(void)
1049 {
1050 /*
1051 * This is probably overkill, as we have no idea where we're
1052 * draining any buffered data to...
1053 */
1054 arm_spe_pmu_disable_and_drain_local();
1055
1056 /* Reset the buffer base pointer */
1057 write_sysreg_s(0, SYS_PMBPTR_EL1);
1058 isb();
1059
1060 /* Clear any pending management interrupts */
1061 write_sysreg_s(0, SYS_PMBSR_EL1);
1062 isb();
1063 }
1064
1065 static void __arm_spe_pmu_setup_one(void *info)
1066 {
1067 struct arm_spe_pmu *spe_pmu = info;
1068
1069 __arm_spe_pmu_reset_local();
1070 enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1071 }
1072
1073 static void __arm_spe_pmu_stop_one(void *info)
1074 {
1075 struct arm_spe_pmu *spe_pmu = info;
1076
1077 disable_percpu_irq(spe_pmu->irq);
1078 __arm_spe_pmu_reset_local();
1079 }
1080
1081 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1082 {
1083 struct arm_spe_pmu *spe_pmu;
1084
1085 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1086 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1087 return 0;
1088
1089 __arm_spe_pmu_setup_one(spe_pmu);
1090 return 0;
1091 }
1092
1093 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1094 {
1095 struct arm_spe_pmu *spe_pmu;
1096
1097 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1098 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1099 return 0;
1100
1101 __arm_spe_pmu_stop_one(spe_pmu);
1102 return 0;
1103 }
1104
1105 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1106 {
1107 int ret;
1108 cpumask_t *mask = &spe_pmu->supported_cpus;
1109
1110 /* Make sure we probe the hardware on a relevant CPU */
1111 ret = smp_call_function_any(mask, __arm_spe_pmu_dev_probe, spe_pmu, 1);
1112 if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1113 return -ENXIO;
1114
1115 /* Request our PPIs (note that the IRQ is still disabled) */
1116 ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1117 spe_pmu->handle);
1118 if (ret)
1119 return ret;
1120
1121 /*
1122 * Register our hotplug notifier now so we don't miss any events.
1123 * This will enable the IRQ for any supported CPUs that are already
1124 * up.
1125 */
1126 ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1127 &spe_pmu->hotplug_node);
1128 if (ret)
1129 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1130
1131 return ret;
1132 }
1133
1134 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1135 {
1136 cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1137 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1138 }
1139
1140 /* Driver and device probing */
1141 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1142 {
1143 struct platform_device *pdev = spe_pmu->pdev;
1144 int irq = platform_get_irq(pdev, 0);
1145
1146 if (irq < 0)
1147 return -ENXIO;
1148
1149 if (!irq_is_percpu(irq)) {
1150 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1151 return -EINVAL;
1152 }
1153
1154 if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1155 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1156 return -EINVAL;
1157 }
1158
1159 spe_pmu->irq = irq;
1160 return 0;
1161 }
1162
1163 static const struct of_device_id arm_spe_pmu_of_match[] = {
1164 { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1165 { /* Sentinel */ },
1166 };
1167 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
1168
1169 static const struct platform_device_id arm_spe_match[] = {
1170 { ARMV8_SPE_PDEV_NAME, 0},
1171 { }
1172 };
1173 MODULE_DEVICE_TABLE(platform, arm_spe_match);
1174
1175 static int arm_spe_pmu_device_probe(struct platform_device *pdev)
1176 {
1177 int ret;
1178 struct arm_spe_pmu *spe_pmu;
1179 struct device *dev = &pdev->dev;
1180
1181 /*
1182 * If kernelspace is unmapped when running at EL0, then the SPE
1183 * buffer will fault and prematurely terminate the AUX session.
1184 */
1185 if (arm64_kernel_unmapped_at_el0()) {
1186 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1187 return -EPERM;
1188 }
1189
1190 spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1191 if (!spe_pmu)
1192 return -ENOMEM;
1193
1194 spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1195 if (!spe_pmu->handle)
1196 return -ENOMEM;
1197
1198 spe_pmu->pdev = pdev;
1199 platform_set_drvdata(pdev, spe_pmu);
1200
1201 ret = arm_spe_pmu_irq_probe(spe_pmu);
1202 if (ret)
1203 goto out_free_handle;
1204
1205 ret = arm_spe_pmu_dev_init(spe_pmu);
1206 if (ret)
1207 goto out_free_handle;
1208
1209 ret = arm_spe_pmu_perf_init(spe_pmu);
1210 if (ret)
1211 goto out_teardown_dev;
1212
1213 return 0;
1214
1215 out_teardown_dev:
1216 arm_spe_pmu_dev_teardown(spe_pmu);
1217 out_free_handle:
1218 free_percpu(spe_pmu->handle);
1219 return ret;
1220 }
1221
1222 static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1223 {
1224 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1225
1226 arm_spe_pmu_perf_destroy(spe_pmu);
1227 arm_spe_pmu_dev_teardown(spe_pmu);
1228 free_percpu(spe_pmu->handle);
1229 return 0;
1230 }
1231
1232 static struct platform_driver arm_spe_pmu_driver = {
1233 .id_table = arm_spe_match,
1234 .driver = {
1235 .name = DRVNAME,
1236 .of_match_table = of_match_ptr(arm_spe_pmu_of_match),
1237 .suppress_bind_attrs = true,
1238 },
1239 .probe = arm_spe_pmu_device_probe,
1240 .remove = arm_spe_pmu_device_remove,
1241 };
1242
1243 static int __init arm_spe_pmu_init(void)
1244 {
1245 int ret;
1246
1247 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1248 arm_spe_pmu_cpu_startup,
1249 arm_spe_pmu_cpu_teardown);
1250 if (ret < 0)
1251 return ret;
1252 arm_spe_pmu_online = ret;
1253
1254 ret = platform_driver_register(&arm_spe_pmu_driver);
1255 if (ret)
1256 cpuhp_remove_multi_state(arm_spe_pmu_online);
1257
1258 return ret;
1259 }
1260
1261 static void __exit arm_spe_pmu_exit(void)
1262 {
1263 platform_driver_unregister(&arm_spe_pmu_driver);
1264 cpuhp_remove_multi_state(arm_spe_pmu_online);
1265 }
1266
1267 module_init(arm_spe_pmu_init);
1268 module_exit(arm_spe_pmu_exit);
1269
1270 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1271 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1272 MODULE_LICENSE("GPL v2");