]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/perf/arm_spe_pmu.c
Merge tag 'keys-next-20171123' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowe...
[mirror_ubuntu-bionic-kernel.git] / drivers / perf / arm_spe_pmu.c
1 /*
2 * Perf support for the Statistical Profiling Extension, introduced as
3 * part of ARMv8.2.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 *
17 * Copyright (C) 2016 ARM Limited
18 *
19 * Author: Will Deacon <will.deacon@arm.com>
20 */
21
22 #define PMUNAME "arm_spe"
23 #define DRVNAME PMUNAME "_pmu"
24 #define pr_fmt(fmt) DRVNAME ": " fmt
25
26 #include <linux/cpuhotplug.h>
27 #include <linux/interrupt.h>
28 #include <linux/irq.h>
29 #include <linux/module.h>
30 #include <linux/of_address.h>
31 #include <linux/of_device.h>
32 #include <linux/perf_event.h>
33 #include <linux/platform_device.h>
34 #include <linux/slab.h>
35
36 #include <asm/sysreg.h>
37
38 #define ARM_SPE_BUF_PAD_BYTE 0
39
40 struct arm_spe_pmu_buf {
41 int nr_pages;
42 bool snapshot;
43 void *base;
44 };
45
46 struct arm_spe_pmu {
47 struct pmu pmu;
48 struct platform_device *pdev;
49 cpumask_t supported_cpus;
50 struct hlist_node hotplug_node;
51
52 int irq; /* PPI */
53
54 u16 min_period;
55 u16 counter_sz;
56
57 #define SPE_PMU_FEAT_FILT_EVT (1UL << 0)
58 #define SPE_PMU_FEAT_FILT_TYP (1UL << 1)
59 #define SPE_PMU_FEAT_FILT_LAT (1UL << 2)
60 #define SPE_PMU_FEAT_ARCH_INST (1UL << 3)
61 #define SPE_PMU_FEAT_LDS (1UL << 4)
62 #define SPE_PMU_FEAT_ERND (1UL << 5)
63 #define SPE_PMU_FEAT_DEV_PROBED (1UL << 63)
64 u64 features;
65
66 u16 max_record_sz;
67 u16 align;
68 struct perf_output_handle __percpu *handle;
69 };
70
71 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
72
73 /* Convert a free-running index from perf into an SPE buffer offset */
74 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
75
76 /* Keep track of our dynamic hotplug state */
77 static enum cpuhp_state arm_spe_pmu_online;
78
79 enum arm_spe_pmu_buf_fault_action {
80 SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
81 SPE_PMU_BUF_FAULT_ACT_FATAL,
82 SPE_PMU_BUF_FAULT_ACT_OK,
83 };
84
85 /* This sysfs gunk was really good fun to write. */
86 enum arm_spe_pmu_capabilities {
87 SPE_PMU_CAP_ARCH_INST = 0,
88 SPE_PMU_CAP_ERND,
89 SPE_PMU_CAP_FEAT_MAX,
90 SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
91 SPE_PMU_CAP_MIN_IVAL,
92 };
93
94 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
95 [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST,
96 [SPE_PMU_CAP_ERND] = SPE_PMU_FEAT_ERND,
97 };
98
99 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
100 {
101 if (cap < SPE_PMU_CAP_FEAT_MAX)
102 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
103
104 switch (cap) {
105 case SPE_PMU_CAP_CNT_SZ:
106 return spe_pmu->counter_sz;
107 case SPE_PMU_CAP_MIN_IVAL:
108 return spe_pmu->min_period;
109 default:
110 WARN(1, "unknown cap %d\n", cap);
111 }
112
113 return 0;
114 }
115
116 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
117 struct device_attribute *attr,
118 char *buf)
119 {
120 struct platform_device *pdev = to_platform_device(dev);
121 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
122 struct dev_ext_attribute *ea =
123 container_of(attr, struct dev_ext_attribute, attr);
124 int cap = (long)ea->var;
125
126 return snprintf(buf, PAGE_SIZE, "%u\n",
127 arm_spe_pmu_cap_get(spe_pmu, cap));
128 }
129
130 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \
131 &((struct dev_ext_attribute[]) { \
132 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \
133 })[0].attr.attr
134
135 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \
136 SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
137
138 static struct attribute *arm_spe_pmu_cap_attr[] = {
139 SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
140 SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
141 SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
142 SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
143 NULL,
144 };
145
146 static struct attribute_group arm_spe_pmu_cap_group = {
147 .name = "caps",
148 .attrs = arm_spe_pmu_cap_attr,
149 };
150
151 /* User ABI */
152 #define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */
153 #define ATTR_CFG_FLD_ts_enable_LO 0
154 #define ATTR_CFG_FLD_ts_enable_HI 0
155 #define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */
156 #define ATTR_CFG_FLD_pa_enable_LO 1
157 #define ATTR_CFG_FLD_pa_enable_HI 1
158 #define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */
159 #define ATTR_CFG_FLD_pct_enable_LO 2
160 #define ATTR_CFG_FLD_pct_enable_HI 2
161 #define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */
162 #define ATTR_CFG_FLD_jitter_LO 16
163 #define ATTR_CFG_FLD_jitter_HI 16
164 #define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */
165 #define ATTR_CFG_FLD_branch_filter_LO 32
166 #define ATTR_CFG_FLD_branch_filter_HI 32
167 #define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */
168 #define ATTR_CFG_FLD_load_filter_LO 33
169 #define ATTR_CFG_FLD_load_filter_HI 33
170 #define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */
171 #define ATTR_CFG_FLD_store_filter_LO 34
172 #define ATTR_CFG_FLD_store_filter_HI 34
173
174 #define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */
175 #define ATTR_CFG_FLD_event_filter_LO 0
176 #define ATTR_CFG_FLD_event_filter_HI 63
177
178 #define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */
179 #define ATTR_CFG_FLD_min_latency_LO 0
180 #define ATTR_CFG_FLD_min_latency_HI 11
181
182 /* Why does everything I do descend into this? */
183 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
184 (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
185
186 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
187 __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
188
189 #define GEN_PMU_FORMAT_ATTR(name) \
190 PMU_FORMAT_ATTR(name, \
191 _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG, \
192 ATTR_CFG_FLD_##name##_LO, \
193 ATTR_CFG_FLD_##name##_HI))
194
195 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi) \
196 ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
197
198 #define ATTR_CFG_GET_FLD(attr, name) \
199 _ATTR_CFG_GET_FLD(attr, \
200 ATTR_CFG_FLD_##name##_CFG, \
201 ATTR_CFG_FLD_##name##_LO, \
202 ATTR_CFG_FLD_##name##_HI)
203
204 GEN_PMU_FORMAT_ATTR(ts_enable);
205 GEN_PMU_FORMAT_ATTR(pa_enable);
206 GEN_PMU_FORMAT_ATTR(pct_enable);
207 GEN_PMU_FORMAT_ATTR(jitter);
208 GEN_PMU_FORMAT_ATTR(branch_filter);
209 GEN_PMU_FORMAT_ATTR(load_filter);
210 GEN_PMU_FORMAT_ATTR(store_filter);
211 GEN_PMU_FORMAT_ATTR(event_filter);
212 GEN_PMU_FORMAT_ATTR(min_latency);
213
214 static struct attribute *arm_spe_pmu_formats_attr[] = {
215 &format_attr_ts_enable.attr,
216 &format_attr_pa_enable.attr,
217 &format_attr_pct_enable.attr,
218 &format_attr_jitter.attr,
219 &format_attr_branch_filter.attr,
220 &format_attr_load_filter.attr,
221 &format_attr_store_filter.attr,
222 &format_attr_event_filter.attr,
223 &format_attr_min_latency.attr,
224 NULL,
225 };
226
227 static struct attribute_group arm_spe_pmu_format_group = {
228 .name = "format",
229 .attrs = arm_spe_pmu_formats_attr,
230 };
231
232 static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev,
233 struct device_attribute *attr,
234 char *buf)
235 {
236 struct platform_device *pdev = to_platform_device(dev);
237 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
238
239 return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
240 }
241 static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL);
242
243 static struct attribute *arm_spe_pmu_attrs[] = {
244 &dev_attr_cpumask.attr,
245 NULL,
246 };
247
248 static struct attribute_group arm_spe_pmu_group = {
249 .attrs = arm_spe_pmu_attrs,
250 };
251
252 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
253 &arm_spe_pmu_group,
254 &arm_spe_pmu_cap_group,
255 &arm_spe_pmu_format_group,
256 NULL,
257 };
258
259 /* Convert between user ABI and register values */
260 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
261 {
262 struct perf_event_attr *attr = &event->attr;
263 u64 reg = 0;
264
265 reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT;
266 reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT;
267 reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT;
268
269 if (!attr->exclude_user)
270 reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT);
271
272 if (!attr->exclude_kernel)
273 reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT);
274
275 if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && capable(CAP_SYS_ADMIN))
276 reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT);
277
278 return reg;
279 }
280
281 static void arm_spe_event_sanitise_period(struct perf_event *event)
282 {
283 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
284 u64 period = event->hw.sample_period;
285 u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK
286 << SYS_PMSIRR_EL1_INTERVAL_SHIFT;
287
288 if (period < spe_pmu->min_period)
289 period = spe_pmu->min_period;
290 else if (period > max_period)
291 period = max_period;
292 else
293 period &= max_period;
294
295 event->hw.sample_period = period;
296 }
297
298 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
299 {
300 struct perf_event_attr *attr = &event->attr;
301 u64 reg = 0;
302
303 arm_spe_event_sanitise_period(event);
304
305 reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT;
306 reg |= event->hw.sample_period;
307
308 return reg;
309 }
310
311 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
312 {
313 struct perf_event_attr *attr = &event->attr;
314 u64 reg = 0;
315
316 reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT;
317 reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT;
318 reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT;
319
320 if (reg)
321 reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT);
322
323 if (ATTR_CFG_GET_FLD(attr, event_filter))
324 reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT);
325
326 if (ATTR_CFG_GET_FLD(attr, min_latency))
327 reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT);
328
329 return reg;
330 }
331
332 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
333 {
334 struct perf_event_attr *attr = &event->attr;
335 return ATTR_CFG_GET_FLD(attr, event_filter);
336 }
337
338 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
339 {
340 struct perf_event_attr *attr = &event->attr;
341 return ATTR_CFG_GET_FLD(attr, min_latency)
342 << SYS_PMSLATFR_EL1_MINLAT_SHIFT;
343 }
344
345 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
346 {
347 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
348 u64 head = PERF_IDX2OFF(handle->head, buf);
349
350 memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
351 if (!buf->snapshot)
352 perf_aux_output_skip(handle, len);
353 }
354
355 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
356 {
357 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
358 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
359 u64 head = PERF_IDX2OFF(handle->head, buf);
360 u64 limit = buf->nr_pages * PAGE_SIZE;
361
362 /*
363 * The trace format isn't parseable in reverse, so clamp
364 * the limit to half of the buffer size in snapshot mode
365 * so that the worst case is half a buffer of records, as
366 * opposed to a single record.
367 */
368 if (head < limit >> 1)
369 limit >>= 1;
370
371 /*
372 * If we're within max_record_sz of the limit, we must
373 * pad, move the head index and recompute the limit.
374 */
375 if (limit - head < spe_pmu->max_record_sz) {
376 arm_spe_pmu_pad_buf(handle, limit - head);
377 handle->head = PERF_IDX2OFF(limit, buf);
378 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
379 }
380
381 return limit;
382 }
383
384 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
385 {
386 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
387 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
388 const u64 bufsize = buf->nr_pages * PAGE_SIZE;
389 u64 limit = bufsize;
390 u64 head, tail, wakeup;
391
392 /*
393 * The head can be misaligned for two reasons:
394 *
395 * 1. The hardware left PMBPTR pointing to the first byte after
396 * a record when generating a buffer management event.
397 *
398 * 2. We used perf_aux_output_skip to consume handle->size bytes
399 * and CIRC_SPACE was used to compute the size, which always
400 * leaves one entry free.
401 *
402 * Deal with this by padding to the next alignment boundary and
403 * moving the head index. If we run out of buffer space, we'll
404 * reduce handle->size to zero and end up reporting truncation.
405 */
406 head = PERF_IDX2OFF(handle->head, buf);
407 if (!IS_ALIGNED(head, spe_pmu->align)) {
408 unsigned long delta = roundup(head, spe_pmu->align) - head;
409
410 delta = min(delta, handle->size);
411 arm_spe_pmu_pad_buf(handle, delta);
412 head = PERF_IDX2OFF(handle->head, buf);
413 }
414
415 /* If we've run out of free space, then nothing more to do */
416 if (!handle->size)
417 goto no_space;
418
419 /* Compute the tail and wakeup indices now that we've aligned head */
420 tail = PERF_IDX2OFF(handle->head + handle->size, buf);
421 wakeup = PERF_IDX2OFF(handle->wakeup, buf);
422
423 /*
424 * Avoid clobbering unconsumed data. We know we have space, so
425 * if we see head == tail we know that the buffer is empty. If
426 * head > tail, then there's nothing to clobber prior to
427 * wrapping.
428 */
429 if (head < tail)
430 limit = round_down(tail, PAGE_SIZE);
431
432 /*
433 * Wakeup may be arbitrarily far into the future. If it's not in
434 * the current generation, either we'll wrap before hitting it,
435 * or it's in the past and has been handled already.
436 *
437 * If there's a wakeup before we wrap, arrange to be woken up by
438 * the page boundary following it. Keep the tail boundary if
439 * that's lower.
440 */
441 if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
442 limit = min(limit, round_up(wakeup, PAGE_SIZE));
443
444 if (limit > head)
445 return limit;
446
447 arm_spe_pmu_pad_buf(handle, handle->size);
448 no_space:
449 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
450 perf_aux_output_end(handle, 0);
451 return 0;
452 }
453
454 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
455 {
456 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
457 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
458 u64 limit = __arm_spe_pmu_next_off(handle);
459 u64 head = PERF_IDX2OFF(handle->head, buf);
460
461 /*
462 * If the head has come too close to the end of the buffer,
463 * then pad to the end and recompute the limit.
464 */
465 if (limit && (limit - head < spe_pmu->max_record_sz)) {
466 arm_spe_pmu_pad_buf(handle, limit - head);
467 limit = __arm_spe_pmu_next_off(handle);
468 }
469
470 return limit;
471 }
472
473 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
474 struct perf_event *event)
475 {
476 u64 base, limit;
477 struct arm_spe_pmu_buf *buf;
478
479 /* Start a new aux session */
480 buf = perf_aux_output_begin(handle, event);
481 if (!buf) {
482 event->hw.state |= PERF_HES_STOPPED;
483 /*
484 * We still need to clear the limit pointer, since the
485 * profiler might only be disabled by virtue of a fault.
486 */
487 limit = 0;
488 goto out_write_limit;
489 }
490
491 limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
492 : arm_spe_pmu_next_off(handle);
493 if (limit)
494 limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT);
495
496 limit += (u64)buf->base;
497 base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
498 write_sysreg_s(base, SYS_PMBPTR_EL1);
499
500 out_write_limit:
501 write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
502 }
503
504 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
505 {
506 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
507 u64 offset, size;
508
509 offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
510 size = offset - PERF_IDX2OFF(handle->head, buf);
511
512 if (buf->snapshot)
513 handle->head = offset;
514
515 perf_aux_output_end(handle, size);
516 }
517
518 static void arm_spe_pmu_disable_and_drain_local(void)
519 {
520 /* Disable profiling at EL0 and EL1 */
521 write_sysreg_s(0, SYS_PMSCR_EL1);
522 isb();
523
524 /* Drain any buffered data */
525 psb_csync();
526 dsb(nsh);
527
528 /* Disable the profiling buffer */
529 write_sysreg_s(0, SYS_PMBLIMITR_EL1);
530 isb();
531 }
532
533 /* IRQ handling */
534 static enum arm_spe_pmu_buf_fault_action
535 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
536 {
537 const char *err_str;
538 u64 pmbsr;
539 enum arm_spe_pmu_buf_fault_action ret;
540
541 /*
542 * Ensure new profiling data is visible to the CPU and any external
543 * aborts have been resolved.
544 */
545 psb_csync();
546 dsb(nsh);
547
548 /* Ensure hardware updates to PMBPTR_EL1 are visible */
549 isb();
550
551 /* Service required? */
552 pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
553 if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT)))
554 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
555
556 /*
557 * If we've lost data, disable profiling and also set the PARTIAL
558 * flag to indicate that the last record is corrupted.
559 */
560 if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT))
561 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
562 PERF_AUX_FLAG_PARTIAL);
563
564 /* Report collisions to userspace so that it can up the period */
565 if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT))
566 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
567
568 /* We only expect buffer management events */
569 switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) {
570 case SYS_PMBSR_EL1_EC_BUF:
571 /* Handled below */
572 break;
573 case SYS_PMBSR_EL1_EC_FAULT_S1:
574 case SYS_PMBSR_EL1_EC_FAULT_S2:
575 err_str = "Unexpected buffer fault";
576 goto out_err;
577 default:
578 err_str = "Unknown error code";
579 goto out_err;
580 }
581
582 /* Buffer management event */
583 switch (pmbsr &
584 (SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) {
585 case SYS_PMBSR_EL1_BUF_BSC_FULL:
586 ret = SPE_PMU_BUF_FAULT_ACT_OK;
587 goto out_stop;
588 default:
589 err_str = "Unknown buffer status code";
590 }
591
592 out_err:
593 pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
594 err_str, smp_processor_id(), pmbsr,
595 read_sysreg_s(SYS_PMBPTR_EL1),
596 read_sysreg_s(SYS_PMBLIMITR_EL1));
597 ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
598
599 out_stop:
600 arm_spe_perf_aux_output_end(handle);
601 return ret;
602 }
603
604 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
605 {
606 struct perf_output_handle *handle = dev;
607 struct perf_event *event = handle->event;
608 enum arm_spe_pmu_buf_fault_action act;
609
610 if (!perf_get_aux(handle))
611 return IRQ_NONE;
612
613 act = arm_spe_pmu_buf_get_fault_act(handle);
614 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
615 return IRQ_NONE;
616
617 /*
618 * Ensure perf callbacks have completed, which may disable the
619 * profiling buffer in response to a TRUNCATION flag.
620 */
621 irq_work_run();
622
623 switch (act) {
624 case SPE_PMU_BUF_FAULT_ACT_FATAL:
625 /*
626 * If a fatal exception occurred then leaving the profiling
627 * buffer enabled is a recipe waiting to happen. Since
628 * fatal faults don't always imply truncation, make sure
629 * that the profiling buffer is disabled explicitly before
630 * clearing the syndrome register.
631 */
632 arm_spe_pmu_disable_and_drain_local();
633 break;
634 case SPE_PMU_BUF_FAULT_ACT_OK:
635 /*
636 * We handled the fault (the buffer was full), so resume
637 * profiling as long as we didn't detect truncation.
638 * PMBPTR might be misaligned, but we'll burn that bridge
639 * when we get to it.
640 */
641 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
642 arm_spe_perf_aux_output_begin(handle, event);
643 isb();
644 }
645 break;
646 case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
647 /* We've seen you before, but GCC has the memory of a sieve. */
648 break;
649 }
650
651 /* The buffer pointers are now sane, so resume profiling. */
652 write_sysreg_s(0, SYS_PMBSR_EL1);
653 return IRQ_HANDLED;
654 }
655
656 /* Perf callbacks */
657 static int arm_spe_pmu_event_init(struct perf_event *event)
658 {
659 u64 reg;
660 struct perf_event_attr *attr = &event->attr;
661 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
662
663 /* This is, of course, deeply driver-specific */
664 if (attr->type != event->pmu->type)
665 return -ENOENT;
666
667 if (event->cpu >= 0 &&
668 !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
669 return -ENOENT;
670
671 if (arm_spe_event_to_pmsevfr(event) & SYS_PMSEVFR_EL1_RES0)
672 return -EOPNOTSUPP;
673
674 if (attr->exclude_idle)
675 return -EOPNOTSUPP;
676
677 /*
678 * Feedback-directed frequency throttling doesn't work when we
679 * have a buffer of samples. We'd need to manually count the
680 * samples in the buffer when it fills up and adjust the event
681 * count to reflect that. Instead, just force the user to specify
682 * a sample period.
683 */
684 if (attr->freq)
685 return -EINVAL;
686
687 reg = arm_spe_event_to_pmsfcr(event);
688 if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) &&
689 !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
690 return -EOPNOTSUPP;
691
692 if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) &&
693 !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
694 return -EOPNOTSUPP;
695
696 if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) &&
697 !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
698 return -EOPNOTSUPP;
699
700 reg = arm_spe_event_to_pmscr(event);
701 if (!capable(CAP_SYS_ADMIN) &&
702 (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) |
703 BIT(SYS_PMSCR_EL1_CX_SHIFT) |
704 BIT(SYS_PMSCR_EL1_PCT_SHIFT))))
705 return -EACCES;
706
707 return 0;
708 }
709
710 static void arm_spe_pmu_start(struct perf_event *event, int flags)
711 {
712 u64 reg;
713 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
714 struct hw_perf_event *hwc = &event->hw;
715 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
716
717 hwc->state = 0;
718 arm_spe_perf_aux_output_begin(handle, event);
719 if (hwc->state)
720 return;
721
722 reg = arm_spe_event_to_pmsfcr(event);
723 write_sysreg_s(reg, SYS_PMSFCR_EL1);
724
725 reg = arm_spe_event_to_pmsevfr(event);
726 write_sysreg_s(reg, SYS_PMSEVFR_EL1);
727
728 reg = arm_spe_event_to_pmslatfr(event);
729 write_sysreg_s(reg, SYS_PMSLATFR_EL1);
730
731 if (flags & PERF_EF_RELOAD) {
732 reg = arm_spe_event_to_pmsirr(event);
733 write_sysreg_s(reg, SYS_PMSIRR_EL1);
734 isb();
735 reg = local64_read(&hwc->period_left);
736 write_sysreg_s(reg, SYS_PMSICR_EL1);
737 }
738
739 reg = arm_spe_event_to_pmscr(event);
740 isb();
741 write_sysreg_s(reg, SYS_PMSCR_EL1);
742 }
743
744 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
745 {
746 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
747 struct hw_perf_event *hwc = &event->hw;
748 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
749
750 /* If we're already stopped, then nothing to do */
751 if (hwc->state & PERF_HES_STOPPED)
752 return;
753
754 /* Stop all trace generation */
755 arm_spe_pmu_disable_and_drain_local();
756
757 if (flags & PERF_EF_UPDATE) {
758 /*
759 * If there's a fault pending then ensure we contain it
760 * to this buffer, since we might be on the context-switch
761 * path.
762 */
763 if (perf_get_aux(handle)) {
764 enum arm_spe_pmu_buf_fault_action act;
765
766 act = arm_spe_pmu_buf_get_fault_act(handle);
767 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
768 arm_spe_perf_aux_output_end(handle);
769 else
770 write_sysreg_s(0, SYS_PMBSR_EL1);
771 }
772
773 /*
774 * This may also contain ECOUNT, but nobody else should
775 * be looking at period_left, since we forbid frequency
776 * based sampling.
777 */
778 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
779 hwc->state |= PERF_HES_UPTODATE;
780 }
781
782 hwc->state |= PERF_HES_STOPPED;
783 }
784
785 static int arm_spe_pmu_add(struct perf_event *event, int flags)
786 {
787 int ret = 0;
788 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
789 struct hw_perf_event *hwc = &event->hw;
790 int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
791
792 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
793 return -ENOENT;
794
795 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
796
797 if (flags & PERF_EF_START) {
798 arm_spe_pmu_start(event, PERF_EF_RELOAD);
799 if (hwc->state & PERF_HES_STOPPED)
800 ret = -EINVAL;
801 }
802
803 return ret;
804 }
805
806 static void arm_spe_pmu_del(struct perf_event *event, int flags)
807 {
808 arm_spe_pmu_stop(event, PERF_EF_UPDATE);
809 }
810
811 static void arm_spe_pmu_read(struct perf_event *event)
812 {
813 }
814
815 static void *arm_spe_pmu_setup_aux(int cpu, void **pages, int nr_pages,
816 bool snapshot)
817 {
818 int i;
819 struct page **pglist;
820 struct arm_spe_pmu_buf *buf;
821
822 /* We need at least two pages for this to work. */
823 if (nr_pages < 2)
824 return NULL;
825
826 /*
827 * We require an even number of pages for snapshot mode, so that
828 * we can effectively treat the buffer as consisting of two equal
829 * parts and give userspace a fighting chance of getting some
830 * useful data out of it.
831 */
832 if (!nr_pages || (snapshot && (nr_pages & 1)))
833 return NULL;
834
835 if (cpu == -1)
836 cpu = raw_smp_processor_id();
837
838 buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
839 if (!buf)
840 return NULL;
841
842 pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
843 if (!pglist)
844 goto out_free_buf;
845
846 for (i = 0; i < nr_pages; ++i) {
847 struct page *page = virt_to_page(pages[i]);
848
849 if (PagePrivate(page)) {
850 pr_warn("unexpected high-order page for auxbuf!");
851 goto out_free_pglist;
852 }
853
854 pglist[i] = virt_to_page(pages[i]);
855 }
856
857 buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
858 if (!buf->base)
859 goto out_free_pglist;
860
861 buf->nr_pages = nr_pages;
862 buf->snapshot = snapshot;
863
864 kfree(pglist);
865 return buf;
866
867 out_free_pglist:
868 kfree(pglist);
869 out_free_buf:
870 kfree(buf);
871 return NULL;
872 }
873
874 static void arm_spe_pmu_free_aux(void *aux)
875 {
876 struct arm_spe_pmu_buf *buf = aux;
877
878 vunmap(buf->base);
879 kfree(buf);
880 }
881
882 /* Initialisation and teardown functions */
883 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
884 {
885 static atomic_t pmu_idx = ATOMIC_INIT(-1);
886
887 int idx;
888 char *name;
889 struct device *dev = &spe_pmu->pdev->dev;
890
891 spe_pmu->pmu = (struct pmu) {
892 .module = THIS_MODULE,
893 .capabilities = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
894 .attr_groups = arm_spe_pmu_attr_groups,
895 /*
896 * We hitch a ride on the software context here, so that
897 * we can support per-task profiling (which is not possible
898 * with the invalid context as it doesn't get sched callbacks).
899 * This requires that userspace either uses a dummy event for
900 * perf_event_open, since the aux buffer is not setup until
901 * a subsequent mmap, or creates the profiling event in a
902 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
903 * once the buffer has been created.
904 */
905 .task_ctx_nr = perf_sw_context,
906 .event_init = arm_spe_pmu_event_init,
907 .add = arm_spe_pmu_add,
908 .del = arm_spe_pmu_del,
909 .start = arm_spe_pmu_start,
910 .stop = arm_spe_pmu_stop,
911 .read = arm_spe_pmu_read,
912 .setup_aux = arm_spe_pmu_setup_aux,
913 .free_aux = arm_spe_pmu_free_aux,
914 };
915
916 idx = atomic_inc_return(&pmu_idx);
917 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
918 return perf_pmu_register(&spe_pmu->pmu, name, -1);
919 }
920
921 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
922 {
923 perf_pmu_unregister(&spe_pmu->pmu);
924 }
925
926 static void __arm_spe_pmu_dev_probe(void *info)
927 {
928 int fld;
929 u64 reg;
930 struct arm_spe_pmu *spe_pmu = info;
931 struct device *dev = &spe_pmu->pdev->dev;
932
933 fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
934 ID_AA64DFR0_PMSVER_SHIFT);
935 if (!fld) {
936 dev_err(dev,
937 "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
938 fld, smp_processor_id());
939 return;
940 }
941
942 /* Read PMBIDR first to determine whether or not we have access */
943 reg = read_sysreg_s(SYS_PMBIDR_EL1);
944 if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) {
945 dev_err(dev,
946 "profiling buffer owned by higher exception level\n");
947 return;
948 }
949
950 /* Minimum alignment. If it's out-of-range, then fail the probe */
951 fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK;
952 spe_pmu->align = 1 << fld;
953 if (spe_pmu->align > SZ_2K) {
954 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
955 fld, smp_processor_id());
956 return;
957 }
958
959 /* It's now safe to read PMSIDR and figure out what we've got */
960 reg = read_sysreg_s(SYS_PMSIDR_EL1);
961 if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT))
962 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
963
964 if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT))
965 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
966
967 if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT))
968 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
969
970 if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT))
971 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
972
973 if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT))
974 spe_pmu->features |= SPE_PMU_FEAT_LDS;
975
976 if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT))
977 spe_pmu->features |= SPE_PMU_FEAT_ERND;
978
979 /* This field has a spaced out encoding, so just use a look-up */
980 fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK;
981 switch (fld) {
982 case 0:
983 spe_pmu->min_period = 256;
984 break;
985 case 2:
986 spe_pmu->min_period = 512;
987 break;
988 case 3:
989 spe_pmu->min_period = 768;
990 break;
991 case 4:
992 spe_pmu->min_period = 1024;
993 break;
994 case 5:
995 spe_pmu->min_period = 1536;
996 break;
997 case 6:
998 spe_pmu->min_period = 2048;
999 break;
1000 case 7:
1001 spe_pmu->min_period = 3072;
1002 break;
1003 default:
1004 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1005 fld);
1006 /* Fallthrough */
1007 case 8:
1008 spe_pmu->min_period = 4096;
1009 }
1010
1011 /* Maximum record size. If it's out-of-range, then fail the probe */
1012 fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK;
1013 spe_pmu->max_record_sz = 1 << fld;
1014 if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1015 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1016 fld, smp_processor_id());
1017 return;
1018 }
1019
1020 fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK;
1021 switch (fld) {
1022 default:
1023 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1024 fld);
1025 /* Fallthrough */
1026 case 2:
1027 spe_pmu->counter_sz = 12;
1028 }
1029
1030 dev_info(dev,
1031 "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1032 cpumask_pr_args(&spe_pmu->supported_cpus),
1033 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1034
1035 spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1036 return;
1037 }
1038
1039 static void __arm_spe_pmu_reset_local(void)
1040 {
1041 /*
1042 * This is probably overkill, as we have no idea where we're
1043 * draining any buffered data to...
1044 */
1045 arm_spe_pmu_disable_and_drain_local();
1046
1047 /* Reset the buffer base pointer */
1048 write_sysreg_s(0, SYS_PMBPTR_EL1);
1049 isb();
1050
1051 /* Clear any pending management interrupts */
1052 write_sysreg_s(0, SYS_PMBSR_EL1);
1053 isb();
1054 }
1055
1056 static void __arm_spe_pmu_setup_one(void *info)
1057 {
1058 struct arm_spe_pmu *spe_pmu = info;
1059
1060 __arm_spe_pmu_reset_local();
1061 enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1062 }
1063
1064 static void __arm_spe_pmu_stop_one(void *info)
1065 {
1066 struct arm_spe_pmu *spe_pmu = info;
1067
1068 disable_percpu_irq(spe_pmu->irq);
1069 __arm_spe_pmu_reset_local();
1070 }
1071
1072 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1073 {
1074 struct arm_spe_pmu *spe_pmu;
1075
1076 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1077 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1078 return 0;
1079
1080 __arm_spe_pmu_setup_one(spe_pmu);
1081 return 0;
1082 }
1083
1084 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1085 {
1086 struct arm_spe_pmu *spe_pmu;
1087
1088 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1089 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1090 return 0;
1091
1092 __arm_spe_pmu_stop_one(spe_pmu);
1093 return 0;
1094 }
1095
1096 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1097 {
1098 int ret;
1099 cpumask_t *mask = &spe_pmu->supported_cpus;
1100
1101 /* Make sure we probe the hardware on a relevant CPU */
1102 ret = smp_call_function_any(mask, __arm_spe_pmu_dev_probe, spe_pmu, 1);
1103 if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1104 return -ENXIO;
1105
1106 /* Request our PPIs (note that the IRQ is still disabled) */
1107 ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1108 spe_pmu->handle);
1109 if (ret)
1110 return ret;
1111
1112 /*
1113 * Register our hotplug notifier now so we don't miss any events.
1114 * This will enable the IRQ for any supported CPUs that are already
1115 * up.
1116 */
1117 ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1118 &spe_pmu->hotplug_node);
1119 if (ret)
1120 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1121
1122 return ret;
1123 }
1124
1125 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1126 {
1127 cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1128 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1129 }
1130
1131 /* Driver and device probing */
1132 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1133 {
1134 struct platform_device *pdev = spe_pmu->pdev;
1135 int irq = platform_get_irq(pdev, 0);
1136
1137 if (irq < 0) {
1138 dev_err(&pdev->dev, "failed to get IRQ (%d)\n", irq);
1139 return -ENXIO;
1140 }
1141
1142 if (!irq_is_percpu(irq)) {
1143 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1144 return -EINVAL;
1145 }
1146
1147 if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1148 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1149 return -EINVAL;
1150 }
1151
1152 spe_pmu->irq = irq;
1153 return 0;
1154 }
1155
1156 static const struct of_device_id arm_spe_pmu_of_match[] = {
1157 { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1158 { /* Sentinel */ },
1159 };
1160
1161 static int arm_spe_pmu_device_dt_probe(struct platform_device *pdev)
1162 {
1163 int ret;
1164 struct arm_spe_pmu *spe_pmu;
1165 struct device *dev = &pdev->dev;
1166
1167 spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1168 if (!spe_pmu) {
1169 dev_err(dev, "failed to allocate spe_pmu\n");
1170 return -ENOMEM;
1171 }
1172
1173 spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1174 if (!spe_pmu->handle)
1175 return -ENOMEM;
1176
1177 spe_pmu->pdev = pdev;
1178 platform_set_drvdata(pdev, spe_pmu);
1179
1180 ret = arm_spe_pmu_irq_probe(spe_pmu);
1181 if (ret)
1182 goto out_free_handle;
1183
1184 ret = arm_spe_pmu_dev_init(spe_pmu);
1185 if (ret)
1186 goto out_free_handle;
1187
1188 ret = arm_spe_pmu_perf_init(spe_pmu);
1189 if (ret)
1190 goto out_teardown_dev;
1191
1192 return 0;
1193
1194 out_teardown_dev:
1195 arm_spe_pmu_dev_teardown(spe_pmu);
1196 out_free_handle:
1197 free_percpu(spe_pmu->handle);
1198 return ret;
1199 }
1200
1201 static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1202 {
1203 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1204
1205 arm_spe_pmu_perf_destroy(spe_pmu);
1206 arm_spe_pmu_dev_teardown(spe_pmu);
1207 free_percpu(spe_pmu->handle);
1208 return 0;
1209 }
1210
1211 static struct platform_driver arm_spe_pmu_driver = {
1212 .driver = {
1213 .name = DRVNAME,
1214 .of_match_table = of_match_ptr(arm_spe_pmu_of_match),
1215 },
1216 .probe = arm_spe_pmu_device_dt_probe,
1217 .remove = arm_spe_pmu_device_remove,
1218 };
1219
1220 static int __init arm_spe_pmu_init(void)
1221 {
1222 int ret;
1223
1224 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1225 arm_spe_pmu_cpu_startup,
1226 arm_spe_pmu_cpu_teardown);
1227 if (ret < 0)
1228 return ret;
1229 arm_spe_pmu_online = ret;
1230
1231 ret = platform_driver_register(&arm_spe_pmu_driver);
1232 if (ret)
1233 cpuhp_remove_multi_state(arm_spe_pmu_online);
1234
1235 return ret;
1236 }
1237
1238 static void __exit arm_spe_pmu_exit(void)
1239 {
1240 platform_driver_unregister(&arm_spe_pmu_driver);
1241 cpuhp_remove_multi_state(arm_spe_pmu_online);
1242 }
1243
1244 module_init(arm_spe_pmu_init);
1245 module_exit(arm_spe_pmu_exit);
1246
1247 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1248 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1249 MODULE_LICENSE("GPL v2");