]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/pinctrl/aspeed/pinctrl-aspeed.h
Merge branches 'for-4.11/upstream-fixes', 'for-4.12/accutouch', 'for-4.12/cp2112...
[mirror_ubuntu-artful-kernel.git] / drivers / pinctrl / aspeed / pinctrl-aspeed.h
1 /*
2 * Copyright (C) 2016 IBM Corp.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 */
9
10 #ifndef PINCTRL_ASPEED
11 #define PINCTRL_ASPEED
12
13 #include <linux/pinctrl/pinctrl.h>
14 #include <linux/pinctrl/pinmux.h>
15 #include <linux/pinctrl/pinconf.h>
16 #include <linux/pinctrl/pinconf-generic.h>
17 #include <linux/regmap.h>
18
19 /*
20 * The ASPEED SoCs provide typically more than 200 pins for GPIO and other
21 * functions. The SoC function enabled on a pin is determined on a priority
22 * basis where a given pin can provide a number of different signal types.
23 *
24 * The signal active on a pin is described by both a priority level and
25 * compound logical expressions involving multiple operators, registers and
26 * bits. Some difficulty arises as the pin's function bit masks for each
27 * priority level are frequently not the same (i.e. cannot just flip a bit to
28 * change from a high to low priority signal), or even in the same register.
29 * Further, not all signals can be unmuxed, as some expressions depend on
30 * values in the hardware strapping register (which is treated as read-only).
31 *
32 * SoC Multi-function Pin Expression Examples
33 * ------------------------------------------
34 *
35 * Here are some sample mux configurations from the AST2400 and AST2500
36 * datasheets to illustrate the corner cases, roughly in order of least to most
37 * corner. The signal priorities are in decending order from P0 (highest).
38 *
39 * D6 is a pin with a single function (beside GPIO); a high priority signal
40 * that participates in one function:
41 *
42 * Ball | Default | P0 Signal | P0 Expression | P1 Signal | P1 Expression | Other
43 * -----+---------+-----------+-----------------------------+-----------+---------------+----------
44 * D6 GPIOA0 MAC1LINK SCU80[0]=1 GPIOA0
45 * -----+---------+-----------+-----------------------------+-----------+---------------+----------
46 *
47 * C5 is a multi-signal pin (high and low priority signals). Here we touch
48 * different registers for the different functions that enable each signal:
49 *
50 * -----+---------+-----------+-----------------------------+-----------+---------------+----------
51 * C5 GPIOA4 SCL9 SCU90[22]=1 TIMER5 SCU80[4]=1 GPIOA4
52 * -----+---------+-----------+-----------------------------+-----------+---------------+----------
53 *
54 * E19 is a single-signal pin with two functions that influence the active
55 * signal. In this case both bits have the same meaning - enable a dedicated
56 * LPC reset pin. However it's not always the case that the bits in the
57 * OR-relationship have the same meaning.
58 *
59 * -----+---------+-----------+-----------------------------+-----------+---------------+----------
60 * E19 GPIOB4 LPCRST# SCU80[12]=1 | Strap[14]=1 GPIOB4
61 * -----+---------+-----------+-----------------------------+-----------+---------------+----------
62 *
63 * For example, pin B19 has a low-priority signal that's enabled by two
64 * distinct SoC functions: A specific SIOPBI bit in register SCUA4, and an ACPI
65 * bit in the STRAP register. The ACPI bit configures signals on pins in
66 * addition to B19. Both of the low priority functions as well as the high
67 * priority function must be disabled for GPIOF1 to be used.
68 *
69 * Ball | Default | P0 Signal | P0 Expression | P1 Signal | P1 Expression | Other
70 * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+----------
71 * B19 GPIOF1 NDCD4 SCU80[25]=1 SIOPBI# SCUA4[12]=1 | Strap[19]=0 GPIOF1
72 * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+----------
73 *
74 * For pin E18, the SoC ANDs the expected state of three bits to determine the
75 * pin's active signal:
76 *
77 * * SCU3C[3]: Enable external SOC reset function
78 * * SCU80[15]: Enable SPICS1# or EXTRST# function pin
79 * * SCU90[31]: Select SPI interface CS# output
80 *
81 * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+----------
82 * E18 GPIOB7 EXTRST# SCU3C[3]=1 & SCU80[15]=1 & SCU90[31]=0 SPICS1# SCU3C[3]=1 & SCU80[15]=1 & SCU90[31]=1 GPIOB7
83 * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+----------
84 *
85 * (Bits SCU3C[3] and SCU80[15] appear to only be used in the expressions for
86 * selecting the signals on pin E18)
87 *
88 * Pin T5 is a multi-signal pin with a more complex configuration:
89 *
90 * Ball | Default | P0 Signal | P0 Expression | P1 Signal | P1 Expression | Other
91 * -----+---------+-----------+------------------------------+-----------+---------------+----------
92 * T5 GPIOL1 VPIDE SCU90[5:4]!=0 & SCU84[17]=1 NDCD1 SCU84[17]=1 GPIOL1
93 * -----+---------+-----------+------------------------------+-----------+---------------+----------
94 *
95 * The high priority signal configuration is best thought of in terms of its
96 * exploded form, with reference to the SCU90[5:4] bits:
97 *
98 * * SCU90[5:4]=00: disable
99 * * SCU90[5:4]=01: 18 bits (R6/G6/B6) video mode.
100 * * SCU90[5:4]=10: 24 bits (R8/G8/B8) video mode.
101 * * SCU90[5:4]=11: 30 bits (R10/G10/B10) video mode.
102 *
103 * Re-writing:
104 *
105 * -----+---------+-----------+------------------------------+-----------+---------------+----------
106 * T5 GPIOL1 VPIDE (SCU90[5:4]=1 & SCU84[17]=1) NDCD1 SCU84[17]=1 GPIOL1
107 * | (SCU90[5:4]=2 & SCU84[17]=1)
108 * | (SCU90[5:4]=3 & SCU84[17]=1)
109 * -----+---------+-----------+------------------------------+-----------+---------------+----------
110 *
111 * For reference the SCU84[17] bit configure the "UART1 NDCD1 or Video VPIDE
112 * function pin", where the signal itself is determined by whether SCU94[5:4]
113 * is disabled or in one of the 18, 24 or 30bit video modes.
114 *
115 * Other video-input-related pins require an explicit state in SCU90[5:4], e.g.
116 * W1 and U5:
117 *
118 * -----+---------+-----------+------------------------------+-----------+---------------+----------
119 * W1 GPIOL6 VPIB0 SCU90[5:4]=3 & SCU84[22]=1 TXD1 SCU84[22]=1 GPIOL6
120 * U5 GPIOL7 VPIB1 SCU90[5:4]=3 & SCU84[23]=1 RXD1 SCU84[23]=1 GPIOL7
121 * -----+---------+-----------+------------------------------+-----------+---------------+----------
122 *
123 * The examples of T5 and W1 are particularly fertile, as they also demonstrate
124 * that despite operating as part of the video input bus each signal needs to
125 * be enabled individually via it's own SCU84 (in the cases of T5 and W1)
126 * register bit. This is a little crazy if the bus doesn't have optional
127 * signals, but is used to decent effect with some of the UARTs where not all
128 * signals are required. However, this isn't done consistently - UART1 is
129 * enabled on a per-pin basis, and by contrast, all signals for UART6 are
130 * enabled by a single bit.
131 *
132 * Further, the high and low priority signals listed in the table above share
133 * a configuration bit. The VPI signals should operate in concert in a single
134 * function, but the UART signals should retain the ability to be configured
135 * independently. This pushes the implementation down the path of tagging a
136 * signal's expressions with the function they participate in, rather than
137 * defining masks affecting multiple signals per function. The latter approach
138 * fails in this instance where applying the configuration for the UART pin of
139 * interest will stomp on the state of other UART signals when disabling the
140 * VPI functions on the current pin.
141 *
142 * Ball | Default | P0 Signal | P0 Expression | P1 Signal | P1 Expression | Other
143 * -----+------------+-----------+---------------------------+-----------+---------------+------------
144 * A12 RGMII1TXCK GPIOT0 SCUA0[0]=1 RMII1TXEN Strap[6]=0 RGMII1TXCK
145 * B12 RGMII1TXCTL GPIOT1 SCUA0[1]=1 – Strap[6]=0 RGMII1TXCTL
146 * -----+------------+-----------+---------------------------+-----------+---------------+------------
147 *
148 * A12 demonstrates that the "Other" signal isn't always GPIO - in this case
149 * GPIOT0 is a high-priority signal and RGMII1TXCK is Other. Thus, GPIO
150 * should be treated like any other signal type with full function expression
151 * requirements, and not assumed to be the default case. Separately, GPIOT0 and
152 * GPIOT1's signal descriptor bits are distinct, therefore we must iterate all
153 * pins in the function's group to disable the higher-priority signals such
154 * that the signal for the function of interest is correctly enabled.
155 *
156 * Finally, three priority levels aren't always enough; the AST2500 brings with
157 * it 18 pins of five priority levels, however the 18 pins only use three of
158 * the five priority levels.
159 *
160 * Ultimately the requirement to control pins in the examples above drive the
161 * design:
162 *
163 * * Pins provide signals according to functions activated in the mux
164 * configuration
165 *
166 * * Pins provide up to five signal types in a priority order
167 *
168 * * For priorities levels defined on a pin, each priority provides one signal
169 *
170 * * Enabling lower priority signals requires higher priority signals be
171 * disabled
172 *
173 * * A function represents a set of signals; functions are distinct if their
174 * sets of signals are not equal
175 *
176 * * Signals participate in one or more functions
177 *
178 * * A function is described by an expression of one or more signal
179 * descriptors, which compare bit values in a register
180 *
181 * * A signal expression is the smallest set of signal descriptors whose
182 * comparisons must evaluate 'true' for a signal to be enabled on a pin.
183 *
184 * * A function's signal is active on a pin if evaluating all signal
185 * descriptors in the pin's signal expression for the function yields a 'true'
186 * result
187 *
188 * * A signal at a given priority on a given pin is active if any of the
189 * functions in which the signal participates are active, and no higher
190 * priority signal on the pin is active
191 *
192 * * GPIO is configured per-pin
193 *
194 * And so:
195 *
196 * * To disable a signal, any function(s) activating the signal must be
197 * disabled
198 *
199 * * Each pin must know the signal expressions of functions in which it
200 * participates, for the purpose of enabling the Other function. This is done
201 * by deactivating all functions that activate higher priority signals on the
202 * pin.
203 *
204 * As a concrete example:
205 *
206 * * T5 provides three signals types: VPIDE, NDCD1 and GPIO
207 *
208 * * The VPIDE signal participates in 3 functions: VPI18, VPI24 and VPI30
209 *
210 * * The NDCD1 signal participates in just its own NDCD1 function
211 *
212 * * VPIDE is high priority, NDCD1 is low priority, and GPIOL1 is the least
213 * prioritised
214 *
215 * * The prerequisit for activating the NDCD1 signal is that the VPI18, VPI24
216 * and VPI30 functions all be disabled
217 *
218 * * Similarly, all of VPI18, VPI24, VPI30 and NDCD1 functions must be disabled
219 * to provide GPIOL6
220 *
221 * Considerations
222 * --------------
223 *
224 * If pinctrl allows us to allocate a pin we can configure a function without
225 * concern for the function of already allocated pins, if pin groups are
226 * created with respect to the SoC functions in which they participate. This is
227 * intuitive, but it did not feel obvious from the bit/pin relationships.
228 *
229 * Conversely, failing to allocate all pins in a group indicates some bits (as
230 * well as pins) required for the group's configuration will already be in use,
231 * likely in a way that's inconsistent with the requirements of the failed
232 * group.
233 */
234
235 #define ASPEED_IP_SCU 0
236 #define ASPEED_IP_GFX 1
237 #define ASPEED_IP_LPC 2
238 #define ASPEED_NR_PINMUX_IPS 3
239
240 /*
241 * The "Multi-function Pins Mapping and Control" table in the SoC datasheet
242 * references registers by the device/offset mnemonic. The register macros
243 * below are named the same way to ease transcription and verification (as
244 * opposed to naming them e.g. PINMUX_CTRL_[0-9]). Further, signal expressions
245 * reference registers beyond those dedicated to pinmux, such as the system
246 * reset control and MAC clock configuration registers. The AST2500 goes a step
247 * further and references registers in the graphics IP block, but that isn't
248 * handled yet.
249 */
250 #define SCU2C 0x2C /* Misc. Control Register */
251 #define SCU3C 0x3C /* System Reset Control/Status Register */
252 #define SCU48 0x48 /* MAC Interface Clock Delay Setting */
253 #define HW_STRAP1 0x70 /* AST2400 strapping is 33 bits, is split */
254 #define SCU80 0x80 /* Multi-function Pin Control #1 */
255 #define SCU84 0x84 /* Multi-function Pin Control #2 */
256 #define SCU88 0x88 /* Multi-function Pin Control #3 */
257 #define SCU8C 0x8C /* Multi-function Pin Control #4 */
258 #define SCU90 0x90 /* Multi-function Pin Control #5 */
259 #define SCU94 0x94 /* Multi-function Pin Control #6 */
260 #define SCUA0 0xA0 /* Multi-function Pin Control #7 */
261 #define SCUA4 0xA4 /* Multi-function Pin Control #8 */
262 #define SCUA8 0xA8 /* Multi-function Pin Control #9 */
263 #define SCUAC 0xAC /* Multi-function Pin Control #10 */
264 #define HW_STRAP2 0xD0 /* Strapping */
265
266 /**
267 * A signal descriptor, which describes the register, bits and the
268 * enable/disable values that should be compared or written.
269 *
270 * @ip: The IP block identifier, used as an index into the regmap array in
271 * struct aspeed_pinctrl_data
272 * @reg: The register offset with respect to the base address of the IP block
273 * @mask: The mask to apply to the register. The lowest set bit of the mask is
274 * used to derive the shift value.
275 * @enable: The value that enables the function. Value should be in the LSBs,
276 * not at the position of the mask.
277 * @disable: The value that disables the function. Value should be in the
278 * LSBs, not at the position of the mask.
279 */
280 struct aspeed_sig_desc {
281 unsigned int ip;
282 unsigned int reg;
283 u32 mask;
284 u32 enable;
285 u32 disable;
286 };
287
288 /**
289 * Describes a signal expression. The expression is evaluated by ANDing the
290 * evaluation of the descriptors.
291 *
292 * @signal: The signal name for the priority level on the pin. If the signal
293 * type is GPIO, then the signal name must begin with the string
294 * "GPIO", e.g. GPIOA0, GPIOT4 etc.
295 * @function: The name of the function the signal participates in for the
296 * associated expression
297 * @ndescs: The number of signal descriptors in the expression
298 * @descs: Pointer to an array of signal descriptors that comprise the
299 * function expression
300 */
301 struct aspeed_sig_expr {
302 const char *signal;
303 const char *function;
304 int ndescs;
305 const struct aspeed_sig_desc *descs;
306 };
307
308 /**
309 * A struct capturing the list of expressions enabling signals at each priority
310 * for a given pin. The signal configuration for a priority level is evaluated
311 * by ORing the evaluation of the signal expressions in the respective
312 * priority's list.
313 *
314 * @name: A name for the pin
315 * @prios: A pointer to an array of expression list pointers
316 *
317 */
318 struct aspeed_pin_desc {
319 const char *name;
320 const struct aspeed_sig_expr ***prios;
321 };
322
323 /* Macro hell */
324
325 #define SIG_DESC_IP_BIT(ip, reg, idx, val) \
326 { ip, reg, BIT_MASK(idx), val, (((val) + 1) & 1) }
327
328 /**
329 * Short-hand macro for describing an SCU descriptor enabled by the state of
330 * one bit. The disable value is derived.
331 *
332 * @reg: The signal's associated register, offset from base
333 * @idx: The signal's bit index in the register
334 * @val: The value (0 or 1) that enables the function
335 */
336 #define SIG_DESC_BIT(reg, idx, val) \
337 SIG_DESC_IP_BIT(ASPEED_IP_SCU, reg, idx, val)
338
339 #define SIG_DESC_IP_SET(ip, reg, idx) SIG_DESC_IP_BIT(ip, reg, idx, 1)
340
341 /**
342 * A further short-hand macro expanding to an SCU descriptor enabled by a set
343 * bit.
344 *
345 * @reg: The register, offset from base
346 * @idx: The bit index in the register
347 */
348 #define SIG_DESC_SET(reg, idx) SIG_DESC_IP_BIT(ASPEED_IP_SCU, reg, idx, 1)
349
350 #define SIG_DESC_LIST_SYM(sig, func) sig_descs_ ## sig ## _ ## func
351 #define SIG_DESC_LIST_DECL(sig, func, ...) \
352 static const struct aspeed_sig_desc SIG_DESC_LIST_SYM(sig, func)[] = \
353 { __VA_ARGS__ }
354
355 #define SIG_EXPR_SYM(sig, func) sig_expr_ ## sig ## _ ## func
356 #define SIG_EXPR_DECL_(sig, func) \
357 static const struct aspeed_sig_expr SIG_EXPR_SYM(sig, func) = \
358 { \
359 .signal = #sig, \
360 .function = #func, \
361 .ndescs = ARRAY_SIZE(SIG_DESC_LIST_SYM(sig, func)), \
362 .descs = &(SIG_DESC_LIST_SYM(sig, func))[0], \
363 }
364
365 /**
366 * Declare a signal expression.
367 *
368 * @sig: A macro symbol name for the signal (is subjected to stringification
369 * and token pasting)
370 * @func: The function in which the signal is participating
371 * @...: Signal descriptors that define the signal expression
372 *
373 * For example, the following declares the ROMD8 signal for the ROM16 function:
374 *
375 * SIG_EXPR_DECL(ROMD8, ROM16, SIG_DESC_SET(SCU90, 6));
376 *
377 * And with multiple signal descriptors:
378 *
379 * SIG_EXPR_DECL(ROMD8, ROM16S, SIG_DESC_SET(HW_STRAP1, 4),
380 * { HW_STRAP1, GENMASK(1, 0), 0, 0 });
381 */
382 #define SIG_EXPR_DECL(sig, func, ...) \
383 SIG_DESC_LIST_DECL(sig, func, __VA_ARGS__); \
384 SIG_EXPR_DECL_(sig, func)
385
386 /**
387 * Declare a pointer to a signal expression
388 *
389 * @sig: The macro symbol name for the signal (subjected to token pasting)
390 * @func: The macro symbol name for the function (subjected to token pasting)
391 */
392 #define SIG_EXPR_PTR(sig, func) (&SIG_EXPR_SYM(sig, func))
393
394 #define SIG_EXPR_LIST_SYM(sig) sig_exprs_ ## sig
395
396 /**
397 * Declare a signal expression list for reference in a struct aspeed_pin_prio.
398 *
399 * @sig: A macro symbol name for the signal (is subjected to token pasting)
400 * @...: Signal expression structure pointers (use SIG_EXPR_PTR())
401 *
402 * For example, the 16-bit ROM bus can be enabled by one of two possible signal
403 * expressions:
404 *
405 * SIG_EXPR_DECL(ROMD8, ROM16, SIG_DESC_SET(SCU90, 6));
406 * SIG_EXPR_DECL(ROMD8, ROM16S, SIG_DESC_SET(HW_STRAP1, 4),
407 * { HW_STRAP1, GENMASK(1, 0), 0, 0 });
408 * SIG_EXPR_LIST_DECL(ROMD8, SIG_EXPR_PTR(ROMD8, ROM16),
409 * SIG_EXPR_PTR(ROMD8, ROM16S));
410 */
411 #define SIG_EXPR_LIST_DECL(sig, ...) \
412 static const struct aspeed_sig_expr *SIG_EXPR_LIST_SYM(sig)[] = \
413 { __VA_ARGS__, NULL }
414
415 /**
416 * A short-hand macro for declaring a function expression and an expression
417 * list with a single function.
418 *
419 * @func: A macro symbol name for the function (is subjected to token pasting)
420 * @...: Function descriptors that define the function expression
421 *
422 * For example, signal NCTS6 participates in its own function with one group:
423 *
424 * SIG_EXPR_LIST_DECL_SINGLE(NCTS6, NCTS6, SIG_DESC_SET(SCU90, 7));
425 */
426 #define SIG_EXPR_LIST_DECL_SINGLE(sig, func, ...) \
427 SIG_DESC_LIST_DECL(sig, func, __VA_ARGS__); \
428 SIG_EXPR_DECL_(sig, func); \
429 SIG_EXPR_LIST_DECL(sig, SIG_EXPR_PTR(sig, func))
430
431 #define SIG_EXPR_LIST_DECL_DUAL(sig, f0, f1) \
432 SIG_EXPR_LIST_DECL(sig, SIG_EXPR_PTR(sig, f0), SIG_EXPR_PTR(sig, f1))
433
434 #define SIG_EXPR_LIST_PTR(sig) (&SIG_EXPR_LIST_SYM(sig)[0])
435
436 #define PIN_EXPRS_SYM(pin) pin_exprs_ ## pin
437 #define PIN_EXPRS_PTR(pin) (&PIN_EXPRS_SYM(pin)[0])
438 #define PIN_SYM(pin) pin_ ## pin
439
440 #define MS_PIN_DECL_(pin, ...) \
441 static const struct aspeed_sig_expr **PIN_EXPRS_SYM(pin)[] = \
442 { __VA_ARGS__, NULL }; \
443 static const struct aspeed_pin_desc PIN_SYM(pin) = \
444 { #pin, PIN_EXPRS_PTR(pin) }
445
446 /**
447 * Declare a multi-signal pin
448 *
449 * @pin: The pin number
450 * @other: Macro name for "other" functionality (subjected to stringification)
451 * @high: Macro name for the highest priority signal functions
452 * @low: Macro name for the low signal functions
453 *
454 * For example:
455 *
456 * #define A8 56
457 * SIG_EXPR_DECL(ROMD8, ROM16, SIG_DESC_SET(SCU90, 6));
458 * SIG_EXPR_DECL(ROMD8, ROM16S, SIG_DESC_SET(HW_STRAP1, 4),
459 * { HW_STRAP1, GENMASK(1, 0), 0, 0 });
460 * SIG_EXPR_LIST_DECL(ROMD8, SIG_EXPR_PTR(ROMD8, ROM16),
461 * SIG_EXPR_PTR(ROMD8, ROM16S));
462 * SIG_EXPR_LIST_DECL_SINGLE(NCTS6, NCTS6, SIG_DESC_SET(SCU90, 7));
463 * MS_PIN_DECL(A8, GPIOH0, ROMD8, NCTS6);
464 */
465 #define MS_PIN_DECL(pin, other, high, low) \
466 SIG_EXPR_LIST_DECL_SINGLE(other, other); \
467 MS_PIN_DECL_(pin, \
468 SIG_EXPR_LIST_PTR(high), \
469 SIG_EXPR_LIST_PTR(low), \
470 SIG_EXPR_LIST_PTR(other))
471
472 #define PIN_GROUP_SYM(func) pins_ ## func
473 #define FUNC_GROUP_SYM(func) groups_ ## func
474 #define FUNC_GROUP_DECL(func, ...) \
475 static const int PIN_GROUP_SYM(func)[] = { __VA_ARGS__ }; \
476 static const char *FUNC_GROUP_SYM(func)[] = { #func }
477
478 /**
479 * Declare a single signal pin
480 *
481 * @pin: The pin number
482 * @other: Macro name for "other" functionality (subjected to stringification)
483 * @sig: Macro name for the signal (subjected to stringification)
484 *
485 * For example:
486 *
487 * #define E3 80
488 * SIG_EXPR_LIST_DECL_SINGLE(SCL5, I2C5, I2C5_DESC);
489 * SS_PIN_DECL(E3, GPIOK0, SCL5);
490 */
491 #define SS_PIN_DECL(pin, other, sig) \
492 SIG_EXPR_LIST_DECL_SINGLE(other, other); \
493 MS_PIN_DECL_(pin, SIG_EXPR_LIST_PTR(sig), SIG_EXPR_LIST_PTR(other))
494
495 /**
496 * Single signal, single function pin declaration
497 *
498 * @pin: The pin number
499 * @other: Macro name for "other" functionality (subjected to stringification)
500 * @sig: Macro name for the signal (subjected to stringification)
501 * @...: Signal descriptors that define the function expression
502 *
503 * For example:
504 *
505 * SSSF_PIN_DECL(A4, GPIOA2, TIMER3, SIG_DESC_SET(SCU80, 2));
506 */
507 #define SSSF_PIN_DECL(pin, other, sig, ...) \
508 SIG_EXPR_LIST_DECL_SINGLE(sig, sig, __VA_ARGS__); \
509 SIG_EXPR_LIST_DECL_SINGLE(other, other); \
510 MS_PIN_DECL_(pin, SIG_EXPR_LIST_PTR(sig), SIG_EXPR_LIST_PTR(other)); \
511 FUNC_GROUP_DECL(sig, pin)
512
513 #define GPIO_PIN_DECL(pin, gpio) \
514 SIG_EXPR_LIST_DECL_SINGLE(gpio, gpio); \
515 MS_PIN_DECL_(pin, SIG_EXPR_LIST_PTR(gpio))
516
517 struct aspeed_pinctrl_data {
518 struct regmap *maps[ASPEED_NR_PINMUX_IPS];
519
520 const struct pinctrl_pin_desc *pins;
521 const unsigned int npins;
522
523 const struct aspeed_pin_group *groups;
524 const unsigned int ngroups;
525
526 const struct aspeed_pin_function *functions;
527 const unsigned int nfunctions;
528 };
529
530 #define ASPEED_PINCTRL_PIN(name_) \
531 [name_] = { \
532 .number = name_, \
533 .name = #name_, \
534 .drv_data = (void *) &(PIN_SYM(name_)) \
535 }
536
537 struct aspeed_pin_group {
538 const char *name;
539 const unsigned int *pins;
540 const unsigned int npins;
541 };
542
543 #define ASPEED_PINCTRL_GROUP(name_) { \
544 .name = #name_, \
545 .pins = &(PIN_GROUP_SYM(name_))[0], \
546 .npins = ARRAY_SIZE(PIN_GROUP_SYM(name_)), \
547 }
548
549 struct aspeed_pin_function {
550 const char *name;
551 const char *const *groups;
552 unsigned int ngroups;
553 };
554
555 #define ASPEED_PINCTRL_FUNC(name_, ...) { \
556 .name = #name_, \
557 .groups = &FUNC_GROUP_SYM(name_)[0], \
558 .ngroups = ARRAY_SIZE(FUNC_GROUP_SYM(name_)), \
559 }
560
561 int aspeed_pinctrl_get_groups_count(struct pinctrl_dev *pctldev);
562 const char *aspeed_pinctrl_get_group_name(struct pinctrl_dev *pctldev,
563 unsigned int group);
564 int aspeed_pinctrl_get_group_pins(struct pinctrl_dev *pctldev,
565 unsigned int group, const unsigned int **pins,
566 unsigned int *npins);
567 void aspeed_pinctrl_pin_dbg_show(struct pinctrl_dev *pctldev,
568 struct seq_file *s, unsigned int offset);
569 int aspeed_pinmux_get_fn_count(struct pinctrl_dev *pctldev);
570 const char *aspeed_pinmux_get_fn_name(struct pinctrl_dev *pctldev,
571 unsigned int function);
572 int aspeed_pinmux_get_fn_groups(struct pinctrl_dev *pctldev,
573 unsigned int function, const char * const **groups,
574 unsigned int * const num_groups);
575 int aspeed_pinmux_set_mux(struct pinctrl_dev *pctldev, unsigned int function,
576 unsigned int group);
577 int aspeed_gpio_request_enable(struct pinctrl_dev *pctldev,
578 struct pinctrl_gpio_range *range,
579 unsigned int offset);
580 int aspeed_pinctrl_probe(struct platform_device *pdev,
581 struct pinctrl_desc *pdesc,
582 struct aspeed_pinctrl_data *pdata);
583
584 #endif /* PINCTRL_ASPEED */