]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/pinctrl/core.c
pinctrl: do not care about blank pin name
[mirror_ubuntu-bionic-kernel.git] / drivers / pinctrl / core.c
1 /*
2 * Core driver for the pin control subsystem
3 *
4 * Copyright (C) 2011-2012 ST-Ericsson SA
5 * Written on behalf of Linaro for ST-Ericsson
6 * Based on bits of regulator core, gpio core and clk core
7 *
8 * Author: Linus Walleij <linus.walleij@linaro.org>
9 *
10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
11 *
12 * License terms: GNU General Public License (GPL) version 2
13 */
14 #define pr_fmt(fmt) "pinctrl core: " fmt
15
16 #include <linux/kernel.h>
17 #include <linux/kref.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/list.h>
24 #include <linux/sysfs.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pinctrl/pinctrl.h>
29 #include <linux/pinctrl/machine.h>
30
31 #ifdef CONFIG_GPIOLIB
32 #include <asm-generic/gpio.h>
33 #endif
34
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinmux.h"
38 #include "pinconf.h"
39
40
41 static bool pinctrl_dummy_state;
42
43 /* Mutex taken to protect pinctrl_list */
44 static DEFINE_MUTEX(pinctrl_list_mutex);
45
46 /* Mutex taken to protect pinctrl_maps */
47 DEFINE_MUTEX(pinctrl_maps_mutex);
48
49 /* Mutex taken to protect pinctrldev_list */
50 static DEFINE_MUTEX(pinctrldev_list_mutex);
51
52 /* Global list of pin control devices (struct pinctrl_dev) */
53 static LIST_HEAD(pinctrldev_list);
54
55 /* List of pin controller handles (struct pinctrl) */
56 static LIST_HEAD(pinctrl_list);
57
58 /* List of pinctrl maps (struct pinctrl_maps) */
59 LIST_HEAD(pinctrl_maps);
60
61
62 /**
63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
64 *
65 * Usually this function is called by platforms without pinctrl driver support
66 * but run with some shared drivers using pinctrl APIs.
67 * After calling this function, the pinctrl core will return successfully
68 * with creating a dummy state for the driver to keep going smoothly.
69 */
70 void pinctrl_provide_dummies(void)
71 {
72 pinctrl_dummy_state = true;
73 }
74
75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
76 {
77 /* We're not allowed to register devices without name */
78 return pctldev->desc->name;
79 }
80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
81
82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
83 {
84 return dev_name(pctldev->dev);
85 }
86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
87
88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
89 {
90 return pctldev->driver_data;
91 }
92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
93
94 /**
95 * get_pinctrl_dev_from_devname() - look up pin controller device
96 * @devname: the name of a device instance, as returned by dev_name()
97 *
98 * Looks up a pin control device matching a certain device name or pure device
99 * pointer, the pure device pointer will take precedence.
100 */
101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102 {
103 struct pinctrl_dev *pctldev = NULL;
104
105 if (!devname)
106 return NULL;
107
108 mutex_lock(&pinctrldev_list_mutex);
109
110 list_for_each_entry(pctldev, &pinctrldev_list, node) {
111 if (!strcmp(dev_name(pctldev->dev), devname)) {
112 /* Matched on device name */
113 mutex_unlock(&pinctrldev_list_mutex);
114 return pctldev;
115 }
116 }
117
118 mutex_unlock(&pinctrldev_list_mutex);
119
120 return NULL;
121 }
122
123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
124 {
125 struct pinctrl_dev *pctldev;
126
127 mutex_lock(&pinctrldev_list_mutex);
128
129 list_for_each_entry(pctldev, &pinctrldev_list, node)
130 if (pctldev->dev->of_node == np) {
131 mutex_unlock(&pinctrldev_list_mutex);
132 return pctldev;
133 }
134
135 mutex_unlock(&pinctrldev_list_mutex);
136
137 return NULL;
138 }
139
140 /**
141 * pin_get_from_name() - look up a pin number from a name
142 * @pctldev: the pin control device to lookup the pin on
143 * @name: the name of the pin to look up
144 */
145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
146 {
147 unsigned i, pin;
148
149 /* The pin number can be retrived from the pin controller descriptor */
150 for (i = 0; i < pctldev->desc->npins; i++) {
151 struct pin_desc *desc;
152
153 pin = pctldev->desc->pins[i].number;
154 desc = pin_desc_get(pctldev, pin);
155 /* Pin space may be sparse */
156 if (desc && !strcmp(name, desc->name))
157 return pin;
158 }
159
160 return -EINVAL;
161 }
162
163 /**
164 * pin_get_name_from_id() - look up a pin name from a pin id
165 * @pctldev: the pin control device to lookup the pin on
166 * @name: the name of the pin to look up
167 */
168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
169 {
170 const struct pin_desc *desc;
171
172 desc = pin_desc_get(pctldev, pin);
173 if (desc == NULL) {
174 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
175 pin);
176 return NULL;
177 }
178
179 return desc->name;
180 }
181
182 /**
183 * pin_is_valid() - check if pin exists on controller
184 * @pctldev: the pin control device to check the pin on
185 * @pin: pin to check, use the local pin controller index number
186 *
187 * This tells us whether a certain pin exist on a certain pin controller or
188 * not. Pin lists may be sparse, so some pins may not exist.
189 */
190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
191 {
192 struct pin_desc *pindesc;
193
194 if (pin < 0)
195 return false;
196
197 mutex_lock(&pctldev->mutex);
198 pindesc = pin_desc_get(pctldev, pin);
199 mutex_unlock(&pctldev->mutex);
200
201 return pindesc != NULL;
202 }
203 EXPORT_SYMBOL_GPL(pin_is_valid);
204
205 /* Deletes a range of pin descriptors */
206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
207 const struct pinctrl_pin_desc *pins,
208 unsigned num_pins)
209 {
210 int i;
211
212 for (i = 0; i < num_pins; i++) {
213 struct pin_desc *pindesc;
214
215 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
216 pins[i].number);
217 if (pindesc != NULL) {
218 radix_tree_delete(&pctldev->pin_desc_tree,
219 pins[i].number);
220 if (pindesc->dynamic_name)
221 kfree(pindesc->name);
222 }
223 kfree(pindesc);
224 }
225 }
226
227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
228 unsigned number, const char *name)
229 {
230 struct pin_desc *pindesc;
231
232 pindesc = pin_desc_get(pctldev, number);
233 if (pindesc != NULL) {
234 dev_err(pctldev->dev, "pin %d already registered\n", number);
235 return -EINVAL;
236 }
237
238 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
239 if (pindesc == NULL) {
240 dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
241 return -ENOMEM;
242 }
243
244 /* Set owner */
245 pindesc->pctldev = pctldev;
246
247 /* Copy basic pin info */
248 if (name) {
249 pindesc->name = name;
250 } else {
251 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
252 if (pindesc->name == NULL) {
253 kfree(pindesc);
254 return -ENOMEM;
255 }
256 pindesc->dynamic_name = true;
257 }
258
259 radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
260 pr_debug("registered pin %d (%s) on %s\n",
261 number, pindesc->name, pctldev->desc->name);
262 return 0;
263 }
264
265 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
266 struct pinctrl_pin_desc const *pins,
267 unsigned num_descs)
268 {
269 unsigned i;
270 int ret = 0;
271
272 for (i = 0; i < num_descs; i++) {
273 ret = pinctrl_register_one_pin(pctldev,
274 pins[i].number, pins[i].name);
275 if (ret)
276 return ret;
277 }
278
279 return 0;
280 }
281
282 /**
283 * gpio_to_pin() - GPIO range GPIO number to pin number translation
284 * @range: GPIO range used for the translation
285 * @gpio: gpio pin to translate to a pin number
286 *
287 * Finds the pin number for a given GPIO using the specified GPIO range
288 * as a base for translation. The distinction between linear GPIO ranges
289 * and pin list based GPIO ranges is managed correctly by this function.
290 *
291 * This function assumes the gpio is part of the specified GPIO range, use
292 * only after making sure this is the case (e.g. by calling it on the
293 * result of successful pinctrl_get_device_gpio_range calls)!
294 */
295 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
296 unsigned int gpio)
297 {
298 unsigned int offset = gpio - range->base;
299 if (range->pins)
300 return range->pins[offset];
301 else
302 return range->pin_base + offset;
303 }
304
305 /**
306 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
307 * @pctldev: pin controller device to check
308 * @gpio: gpio pin to check taken from the global GPIO pin space
309 *
310 * Tries to match a GPIO pin number to the ranges handled by a certain pin
311 * controller, return the range or NULL
312 */
313 static struct pinctrl_gpio_range *
314 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
315 {
316 struct pinctrl_gpio_range *range = NULL;
317
318 mutex_lock(&pctldev->mutex);
319 /* Loop over the ranges */
320 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
321 /* Check if we're in the valid range */
322 if (gpio >= range->base &&
323 gpio < range->base + range->npins) {
324 mutex_unlock(&pctldev->mutex);
325 return range;
326 }
327 }
328 mutex_unlock(&pctldev->mutex);
329 return NULL;
330 }
331
332 /**
333 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
334 * the same GPIO chip are in range
335 * @gpio: gpio pin to check taken from the global GPIO pin space
336 *
337 * This function is complement of pinctrl_match_gpio_range(). If the return
338 * value of pinctrl_match_gpio_range() is NULL, this function could be used
339 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
340 * of the same GPIO chip don't have back-end pinctrl interface.
341 * If the return value is true, it means that pinctrl device is ready & the
342 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
343 * is false, it means that pinctrl device may not be ready.
344 */
345 #ifdef CONFIG_GPIOLIB
346 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
347 {
348 struct pinctrl_dev *pctldev;
349 struct pinctrl_gpio_range *range = NULL;
350 struct gpio_chip *chip = gpio_to_chip(gpio);
351
352 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
353 return false;
354
355 mutex_lock(&pinctrldev_list_mutex);
356
357 /* Loop over the pin controllers */
358 list_for_each_entry(pctldev, &pinctrldev_list, node) {
359 /* Loop over the ranges */
360 mutex_lock(&pctldev->mutex);
361 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
362 /* Check if any gpio range overlapped with gpio chip */
363 if (range->base + range->npins - 1 < chip->base ||
364 range->base > chip->base + chip->ngpio - 1)
365 continue;
366 mutex_unlock(&pctldev->mutex);
367 mutex_unlock(&pinctrldev_list_mutex);
368 return true;
369 }
370 mutex_unlock(&pctldev->mutex);
371 }
372
373 mutex_unlock(&pinctrldev_list_mutex);
374
375 return false;
376 }
377 #else
378 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
379 #endif
380
381 /**
382 * pinctrl_get_device_gpio_range() - find device for GPIO range
383 * @gpio: the pin to locate the pin controller for
384 * @outdev: the pin control device if found
385 * @outrange: the GPIO range if found
386 *
387 * Find the pin controller handling a certain GPIO pin from the pinspace of
388 * the GPIO subsystem, return the device and the matching GPIO range. Returns
389 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
390 * may still have not been registered.
391 */
392 static int pinctrl_get_device_gpio_range(unsigned gpio,
393 struct pinctrl_dev **outdev,
394 struct pinctrl_gpio_range **outrange)
395 {
396 struct pinctrl_dev *pctldev = NULL;
397
398 mutex_lock(&pinctrldev_list_mutex);
399
400 /* Loop over the pin controllers */
401 list_for_each_entry(pctldev, &pinctrldev_list, node) {
402 struct pinctrl_gpio_range *range;
403
404 range = pinctrl_match_gpio_range(pctldev, gpio);
405 if (range != NULL) {
406 *outdev = pctldev;
407 *outrange = range;
408 mutex_unlock(&pinctrldev_list_mutex);
409 return 0;
410 }
411 }
412
413 mutex_unlock(&pinctrldev_list_mutex);
414
415 return -EPROBE_DEFER;
416 }
417
418 /**
419 * pinctrl_add_gpio_range() - register a GPIO range for a controller
420 * @pctldev: pin controller device to add the range to
421 * @range: the GPIO range to add
422 *
423 * This adds a range of GPIOs to be handled by a certain pin controller. Call
424 * this to register handled ranges after registering your pin controller.
425 */
426 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
427 struct pinctrl_gpio_range *range)
428 {
429 mutex_lock(&pctldev->mutex);
430 list_add_tail(&range->node, &pctldev->gpio_ranges);
431 mutex_unlock(&pctldev->mutex);
432 }
433 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
434
435 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
436 struct pinctrl_gpio_range *ranges,
437 unsigned nranges)
438 {
439 int i;
440
441 for (i = 0; i < nranges; i++)
442 pinctrl_add_gpio_range(pctldev, &ranges[i]);
443 }
444 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
445
446 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
447 struct pinctrl_gpio_range *range)
448 {
449 struct pinctrl_dev *pctldev;
450
451 pctldev = get_pinctrl_dev_from_devname(devname);
452
453 /*
454 * If we can't find this device, let's assume that is because
455 * it has not probed yet, so the driver trying to register this
456 * range need to defer probing.
457 */
458 if (!pctldev) {
459 return ERR_PTR(-EPROBE_DEFER);
460 }
461 pinctrl_add_gpio_range(pctldev, range);
462
463 return pctldev;
464 }
465 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
466
467 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
468 const unsigned **pins, unsigned *num_pins)
469 {
470 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
471 int gs;
472
473 if (!pctlops->get_group_pins)
474 return -EINVAL;
475
476 gs = pinctrl_get_group_selector(pctldev, pin_group);
477 if (gs < 0)
478 return gs;
479
480 return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
481 }
482 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
483
484 struct pinctrl_gpio_range *
485 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
486 unsigned int pin)
487 {
488 struct pinctrl_gpio_range *range;
489
490 /* Loop over the ranges */
491 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
492 /* Check if we're in the valid range */
493 if (range->pins) {
494 int a;
495 for (a = 0; a < range->npins; a++) {
496 if (range->pins[a] == pin)
497 return range;
498 }
499 } else if (pin >= range->pin_base &&
500 pin < range->pin_base + range->npins)
501 return range;
502 }
503
504 return NULL;
505 }
506 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
507
508 /**
509 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
510 * @pctldev: the pin controller device to look in
511 * @pin: a controller-local number to find the range for
512 */
513 struct pinctrl_gpio_range *
514 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
515 unsigned int pin)
516 {
517 struct pinctrl_gpio_range *range;
518
519 mutex_lock(&pctldev->mutex);
520 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
521 mutex_unlock(&pctldev->mutex);
522
523 return range;
524 }
525 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
526
527 /**
528 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
529 * @pctldev: pin controller device to remove the range from
530 * @range: the GPIO range to remove
531 */
532 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
533 struct pinctrl_gpio_range *range)
534 {
535 mutex_lock(&pctldev->mutex);
536 list_del(&range->node);
537 mutex_unlock(&pctldev->mutex);
538 }
539 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
540
541 /**
542 * pinctrl_get_group_selector() - returns the group selector for a group
543 * @pctldev: the pin controller handling the group
544 * @pin_group: the pin group to look up
545 */
546 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
547 const char *pin_group)
548 {
549 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
550 unsigned ngroups = pctlops->get_groups_count(pctldev);
551 unsigned group_selector = 0;
552
553 while (group_selector < ngroups) {
554 const char *gname = pctlops->get_group_name(pctldev,
555 group_selector);
556 if (!strcmp(gname, pin_group)) {
557 dev_dbg(pctldev->dev,
558 "found group selector %u for %s\n",
559 group_selector,
560 pin_group);
561 return group_selector;
562 }
563
564 group_selector++;
565 }
566
567 dev_err(pctldev->dev, "does not have pin group %s\n",
568 pin_group);
569
570 return -EINVAL;
571 }
572
573 /**
574 * pinctrl_request_gpio() - request a single pin to be used as GPIO
575 * @gpio: the GPIO pin number from the GPIO subsystem number space
576 *
577 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
578 * as part of their gpio_request() semantics, platforms and individual drivers
579 * shall *NOT* request GPIO pins to be muxed in.
580 */
581 int pinctrl_request_gpio(unsigned gpio)
582 {
583 struct pinctrl_dev *pctldev;
584 struct pinctrl_gpio_range *range;
585 int ret;
586 int pin;
587
588 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
589 if (ret) {
590 if (pinctrl_ready_for_gpio_range(gpio))
591 ret = 0;
592 return ret;
593 }
594
595 mutex_lock(&pctldev->mutex);
596
597 /* Convert to the pin controllers number space */
598 pin = gpio_to_pin(range, gpio);
599
600 ret = pinmux_request_gpio(pctldev, range, pin, gpio);
601
602 mutex_unlock(&pctldev->mutex);
603
604 return ret;
605 }
606 EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
607
608 /**
609 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
610 * @gpio: the GPIO pin number from the GPIO subsystem number space
611 *
612 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
613 * as part of their gpio_free() semantics, platforms and individual drivers
614 * shall *NOT* request GPIO pins to be muxed out.
615 */
616 void pinctrl_free_gpio(unsigned gpio)
617 {
618 struct pinctrl_dev *pctldev;
619 struct pinctrl_gpio_range *range;
620 int ret;
621 int pin;
622
623 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
624 if (ret) {
625 return;
626 }
627 mutex_lock(&pctldev->mutex);
628
629 /* Convert to the pin controllers number space */
630 pin = gpio_to_pin(range, gpio);
631
632 pinmux_free_gpio(pctldev, pin, range);
633
634 mutex_unlock(&pctldev->mutex);
635 }
636 EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
637
638 static int pinctrl_gpio_direction(unsigned gpio, bool input)
639 {
640 struct pinctrl_dev *pctldev;
641 struct pinctrl_gpio_range *range;
642 int ret;
643 int pin;
644
645 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
646 if (ret) {
647 return ret;
648 }
649
650 mutex_lock(&pctldev->mutex);
651
652 /* Convert to the pin controllers number space */
653 pin = gpio_to_pin(range, gpio);
654 ret = pinmux_gpio_direction(pctldev, range, pin, input);
655
656 mutex_unlock(&pctldev->mutex);
657
658 return ret;
659 }
660
661 /**
662 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
663 * @gpio: the GPIO pin number from the GPIO subsystem number space
664 *
665 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
666 * as part of their gpio_direction_input() semantics, platforms and individual
667 * drivers shall *NOT* touch pin control GPIO calls.
668 */
669 int pinctrl_gpio_direction_input(unsigned gpio)
670 {
671 return pinctrl_gpio_direction(gpio, true);
672 }
673 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
674
675 /**
676 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
677 * @gpio: the GPIO pin number from the GPIO subsystem number space
678 *
679 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
680 * as part of their gpio_direction_output() semantics, platforms and individual
681 * drivers shall *NOT* touch pin control GPIO calls.
682 */
683 int pinctrl_gpio_direction_output(unsigned gpio)
684 {
685 return pinctrl_gpio_direction(gpio, false);
686 }
687 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
688
689 static struct pinctrl_state *find_state(struct pinctrl *p,
690 const char *name)
691 {
692 struct pinctrl_state *state;
693
694 list_for_each_entry(state, &p->states, node)
695 if (!strcmp(state->name, name))
696 return state;
697
698 return NULL;
699 }
700
701 static struct pinctrl_state *create_state(struct pinctrl *p,
702 const char *name)
703 {
704 struct pinctrl_state *state;
705
706 state = kzalloc(sizeof(*state), GFP_KERNEL);
707 if (state == NULL) {
708 dev_err(p->dev,
709 "failed to alloc struct pinctrl_state\n");
710 return ERR_PTR(-ENOMEM);
711 }
712
713 state->name = name;
714 INIT_LIST_HEAD(&state->settings);
715
716 list_add_tail(&state->node, &p->states);
717
718 return state;
719 }
720
721 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
722 {
723 struct pinctrl_state *state;
724 struct pinctrl_setting *setting;
725 int ret;
726
727 state = find_state(p, map->name);
728 if (!state)
729 state = create_state(p, map->name);
730 if (IS_ERR(state))
731 return PTR_ERR(state);
732
733 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
734 return 0;
735
736 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
737 if (setting == NULL) {
738 dev_err(p->dev,
739 "failed to alloc struct pinctrl_setting\n");
740 return -ENOMEM;
741 }
742
743 setting->type = map->type;
744
745 setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
746 if (setting->pctldev == NULL) {
747 kfree(setting);
748 /* Do not defer probing of hogs (circular loop) */
749 if (!strcmp(map->ctrl_dev_name, map->dev_name))
750 return -ENODEV;
751 /*
752 * OK let us guess that the driver is not there yet, and
753 * let's defer obtaining this pinctrl handle to later...
754 */
755 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
756 map->ctrl_dev_name);
757 return -EPROBE_DEFER;
758 }
759
760 setting->dev_name = map->dev_name;
761
762 switch (map->type) {
763 case PIN_MAP_TYPE_MUX_GROUP:
764 ret = pinmux_map_to_setting(map, setting);
765 break;
766 case PIN_MAP_TYPE_CONFIGS_PIN:
767 case PIN_MAP_TYPE_CONFIGS_GROUP:
768 ret = pinconf_map_to_setting(map, setting);
769 break;
770 default:
771 ret = -EINVAL;
772 break;
773 }
774 if (ret < 0) {
775 kfree(setting);
776 return ret;
777 }
778
779 list_add_tail(&setting->node, &state->settings);
780
781 return 0;
782 }
783
784 static struct pinctrl *find_pinctrl(struct device *dev)
785 {
786 struct pinctrl *p;
787
788 mutex_lock(&pinctrl_list_mutex);
789 list_for_each_entry(p, &pinctrl_list, node)
790 if (p->dev == dev) {
791 mutex_unlock(&pinctrl_list_mutex);
792 return p;
793 }
794
795 mutex_unlock(&pinctrl_list_mutex);
796 return NULL;
797 }
798
799 static void pinctrl_free(struct pinctrl *p, bool inlist);
800
801 static struct pinctrl *create_pinctrl(struct device *dev)
802 {
803 struct pinctrl *p;
804 const char *devname;
805 struct pinctrl_maps *maps_node;
806 int i;
807 struct pinctrl_map const *map;
808 int ret;
809
810 /*
811 * create the state cookie holder struct pinctrl for each
812 * mapping, this is what consumers will get when requesting
813 * a pin control handle with pinctrl_get()
814 */
815 p = kzalloc(sizeof(*p), GFP_KERNEL);
816 if (p == NULL) {
817 dev_err(dev, "failed to alloc struct pinctrl\n");
818 return ERR_PTR(-ENOMEM);
819 }
820 p->dev = dev;
821 INIT_LIST_HEAD(&p->states);
822 INIT_LIST_HEAD(&p->dt_maps);
823
824 ret = pinctrl_dt_to_map(p);
825 if (ret < 0) {
826 kfree(p);
827 return ERR_PTR(ret);
828 }
829
830 devname = dev_name(dev);
831
832 mutex_lock(&pinctrl_maps_mutex);
833 /* Iterate over the pin control maps to locate the right ones */
834 for_each_maps(maps_node, i, map) {
835 /* Map must be for this device */
836 if (strcmp(map->dev_name, devname))
837 continue;
838
839 ret = add_setting(p, map);
840 /*
841 * At this point the adding of a setting may:
842 *
843 * - Defer, if the pinctrl device is not yet available
844 * - Fail, if the pinctrl device is not yet available,
845 * AND the setting is a hog. We cannot defer that, since
846 * the hog will kick in immediately after the device
847 * is registered.
848 *
849 * If the error returned was not -EPROBE_DEFER then we
850 * accumulate the errors to see if we end up with
851 * an -EPROBE_DEFER later, as that is the worst case.
852 */
853 if (ret == -EPROBE_DEFER) {
854 pinctrl_free(p, false);
855 mutex_unlock(&pinctrl_maps_mutex);
856 return ERR_PTR(ret);
857 }
858 }
859 mutex_unlock(&pinctrl_maps_mutex);
860
861 if (ret < 0) {
862 /* If some other error than deferral occured, return here */
863 pinctrl_free(p, false);
864 return ERR_PTR(ret);
865 }
866
867 kref_init(&p->users);
868
869 /* Add the pinctrl handle to the global list */
870 mutex_lock(&pinctrl_list_mutex);
871 list_add_tail(&p->node, &pinctrl_list);
872 mutex_unlock(&pinctrl_list_mutex);
873
874 return p;
875 }
876
877 /**
878 * pinctrl_get() - retrieves the pinctrl handle for a device
879 * @dev: the device to obtain the handle for
880 */
881 struct pinctrl *pinctrl_get(struct device *dev)
882 {
883 struct pinctrl *p;
884
885 if (WARN_ON(!dev))
886 return ERR_PTR(-EINVAL);
887
888 /*
889 * See if somebody else (such as the device core) has already
890 * obtained a handle to the pinctrl for this device. In that case,
891 * return another pointer to it.
892 */
893 p = find_pinctrl(dev);
894 if (p != NULL) {
895 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
896 kref_get(&p->users);
897 return p;
898 }
899
900 return create_pinctrl(dev);
901 }
902 EXPORT_SYMBOL_GPL(pinctrl_get);
903
904 static void pinctrl_free_setting(bool disable_setting,
905 struct pinctrl_setting *setting)
906 {
907 switch (setting->type) {
908 case PIN_MAP_TYPE_MUX_GROUP:
909 if (disable_setting)
910 pinmux_disable_setting(setting);
911 pinmux_free_setting(setting);
912 break;
913 case PIN_MAP_TYPE_CONFIGS_PIN:
914 case PIN_MAP_TYPE_CONFIGS_GROUP:
915 pinconf_free_setting(setting);
916 break;
917 default:
918 break;
919 }
920 }
921
922 static void pinctrl_free(struct pinctrl *p, bool inlist)
923 {
924 struct pinctrl_state *state, *n1;
925 struct pinctrl_setting *setting, *n2;
926
927 mutex_lock(&pinctrl_list_mutex);
928 list_for_each_entry_safe(state, n1, &p->states, node) {
929 list_for_each_entry_safe(setting, n2, &state->settings, node) {
930 pinctrl_free_setting(state == p->state, setting);
931 list_del(&setting->node);
932 kfree(setting);
933 }
934 list_del(&state->node);
935 kfree(state);
936 }
937
938 pinctrl_dt_free_maps(p);
939
940 if (inlist)
941 list_del(&p->node);
942 kfree(p);
943 mutex_unlock(&pinctrl_list_mutex);
944 }
945
946 /**
947 * pinctrl_release() - release the pinctrl handle
948 * @kref: the kref in the pinctrl being released
949 */
950 static void pinctrl_release(struct kref *kref)
951 {
952 struct pinctrl *p = container_of(kref, struct pinctrl, users);
953
954 pinctrl_free(p, true);
955 }
956
957 /**
958 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
959 * @p: the pinctrl handle to release
960 */
961 void pinctrl_put(struct pinctrl *p)
962 {
963 kref_put(&p->users, pinctrl_release);
964 }
965 EXPORT_SYMBOL_GPL(pinctrl_put);
966
967 /**
968 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
969 * @p: the pinctrl handle to retrieve the state from
970 * @name: the state name to retrieve
971 */
972 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
973 const char *name)
974 {
975 struct pinctrl_state *state;
976
977 state = find_state(p, name);
978 if (!state) {
979 if (pinctrl_dummy_state) {
980 /* create dummy state */
981 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
982 name);
983 state = create_state(p, name);
984 } else
985 state = ERR_PTR(-ENODEV);
986 }
987
988 return state;
989 }
990 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
991
992 /**
993 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
994 * @p: the pinctrl handle for the device that requests configuration
995 * @state: the state handle to select/activate/program
996 */
997 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
998 {
999 struct pinctrl_setting *setting, *setting2;
1000 struct pinctrl_state *old_state = p->state;
1001 int ret;
1002
1003 if (p->state == state)
1004 return 0;
1005
1006 if (p->state) {
1007 /*
1008 * For each pinmux setting in the old state, forget SW's record
1009 * of mux owner for that pingroup. Any pingroups which are
1010 * still owned by the new state will be re-acquired by the call
1011 * to pinmux_enable_setting() in the loop below.
1012 */
1013 list_for_each_entry(setting, &p->state->settings, node) {
1014 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1015 continue;
1016 pinmux_disable_setting(setting);
1017 }
1018 }
1019
1020 p->state = NULL;
1021
1022 /* Apply all the settings for the new state */
1023 list_for_each_entry(setting, &state->settings, node) {
1024 switch (setting->type) {
1025 case PIN_MAP_TYPE_MUX_GROUP:
1026 ret = pinmux_enable_setting(setting);
1027 break;
1028 case PIN_MAP_TYPE_CONFIGS_PIN:
1029 case PIN_MAP_TYPE_CONFIGS_GROUP:
1030 ret = pinconf_apply_setting(setting);
1031 break;
1032 default:
1033 ret = -EINVAL;
1034 break;
1035 }
1036
1037 if (ret < 0) {
1038 goto unapply_new_state;
1039 }
1040 }
1041
1042 p->state = state;
1043
1044 return 0;
1045
1046 unapply_new_state:
1047 dev_err(p->dev, "Error applying setting, reverse things back\n");
1048
1049 list_for_each_entry(setting2, &state->settings, node) {
1050 if (&setting2->node == &setting->node)
1051 break;
1052 /*
1053 * All we can do here is pinmux_disable_setting.
1054 * That means that some pins are muxed differently now
1055 * than they were before applying the setting (We can't
1056 * "unmux a pin"!), but it's not a big deal since the pins
1057 * are free to be muxed by another apply_setting.
1058 */
1059 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1060 pinmux_disable_setting(setting2);
1061 }
1062
1063 /* There's no infinite recursive loop here because p->state is NULL */
1064 if (old_state)
1065 pinctrl_select_state(p, old_state);
1066
1067 return ret;
1068 }
1069 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1070
1071 static void devm_pinctrl_release(struct device *dev, void *res)
1072 {
1073 pinctrl_put(*(struct pinctrl **)res);
1074 }
1075
1076 /**
1077 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1078 * @dev: the device to obtain the handle for
1079 *
1080 * If there is a need to explicitly destroy the returned struct pinctrl,
1081 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1082 */
1083 struct pinctrl *devm_pinctrl_get(struct device *dev)
1084 {
1085 struct pinctrl **ptr, *p;
1086
1087 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1088 if (!ptr)
1089 return ERR_PTR(-ENOMEM);
1090
1091 p = pinctrl_get(dev);
1092 if (!IS_ERR(p)) {
1093 *ptr = p;
1094 devres_add(dev, ptr);
1095 } else {
1096 devres_free(ptr);
1097 }
1098
1099 return p;
1100 }
1101 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1102
1103 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1104 {
1105 struct pinctrl **p = res;
1106
1107 return *p == data;
1108 }
1109
1110 /**
1111 * devm_pinctrl_put() - Resource managed pinctrl_put()
1112 * @p: the pinctrl handle to release
1113 *
1114 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1115 * this function will not need to be called and the resource management
1116 * code will ensure that the resource is freed.
1117 */
1118 void devm_pinctrl_put(struct pinctrl *p)
1119 {
1120 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1121 devm_pinctrl_match, p));
1122 }
1123 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1124
1125 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1126 bool dup)
1127 {
1128 int i, ret;
1129 struct pinctrl_maps *maps_node;
1130
1131 pr_debug("add %u pinctrl maps\n", num_maps);
1132
1133 /* First sanity check the new mapping */
1134 for (i = 0; i < num_maps; i++) {
1135 if (!maps[i].dev_name) {
1136 pr_err("failed to register map %s (%d): no device given\n",
1137 maps[i].name, i);
1138 return -EINVAL;
1139 }
1140
1141 if (!maps[i].name) {
1142 pr_err("failed to register map %d: no map name given\n",
1143 i);
1144 return -EINVAL;
1145 }
1146
1147 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1148 !maps[i].ctrl_dev_name) {
1149 pr_err("failed to register map %s (%d): no pin control device given\n",
1150 maps[i].name, i);
1151 return -EINVAL;
1152 }
1153
1154 switch (maps[i].type) {
1155 case PIN_MAP_TYPE_DUMMY_STATE:
1156 break;
1157 case PIN_MAP_TYPE_MUX_GROUP:
1158 ret = pinmux_validate_map(&maps[i], i);
1159 if (ret < 0)
1160 return ret;
1161 break;
1162 case PIN_MAP_TYPE_CONFIGS_PIN:
1163 case PIN_MAP_TYPE_CONFIGS_GROUP:
1164 ret = pinconf_validate_map(&maps[i], i);
1165 if (ret < 0)
1166 return ret;
1167 break;
1168 default:
1169 pr_err("failed to register map %s (%d): invalid type given\n",
1170 maps[i].name, i);
1171 return -EINVAL;
1172 }
1173 }
1174
1175 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1176 if (!maps_node) {
1177 pr_err("failed to alloc struct pinctrl_maps\n");
1178 return -ENOMEM;
1179 }
1180
1181 maps_node->num_maps = num_maps;
1182 if (dup) {
1183 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1184 GFP_KERNEL);
1185 if (!maps_node->maps) {
1186 pr_err("failed to duplicate mapping table\n");
1187 kfree(maps_node);
1188 return -ENOMEM;
1189 }
1190 } else {
1191 maps_node->maps = maps;
1192 }
1193
1194 mutex_lock(&pinctrl_maps_mutex);
1195 list_add_tail(&maps_node->node, &pinctrl_maps);
1196 mutex_unlock(&pinctrl_maps_mutex);
1197
1198 return 0;
1199 }
1200
1201 /**
1202 * pinctrl_register_mappings() - register a set of pin controller mappings
1203 * @maps: the pincontrol mappings table to register. This should probably be
1204 * marked with __initdata so it can be discarded after boot. This
1205 * function will perform a shallow copy for the mapping entries.
1206 * @num_maps: the number of maps in the mapping table
1207 */
1208 int pinctrl_register_mappings(struct pinctrl_map const *maps,
1209 unsigned num_maps)
1210 {
1211 return pinctrl_register_map(maps, num_maps, true);
1212 }
1213
1214 void pinctrl_unregister_map(struct pinctrl_map const *map)
1215 {
1216 struct pinctrl_maps *maps_node;
1217
1218 mutex_lock(&pinctrl_maps_mutex);
1219 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1220 if (maps_node->maps == map) {
1221 list_del(&maps_node->node);
1222 kfree(maps_node);
1223 mutex_unlock(&pinctrl_maps_mutex);
1224 return;
1225 }
1226 }
1227 mutex_unlock(&pinctrl_maps_mutex);
1228 }
1229
1230 /**
1231 * pinctrl_force_sleep() - turn a given controller device into sleep state
1232 * @pctldev: pin controller device
1233 */
1234 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1235 {
1236 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1237 return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1238 return 0;
1239 }
1240 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1241
1242 /**
1243 * pinctrl_force_default() - turn a given controller device into default state
1244 * @pctldev: pin controller device
1245 */
1246 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1247 {
1248 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1249 return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1250 return 0;
1251 }
1252 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1253
1254 /**
1255 * pinctrl_init_done() - tell pinctrl probe is done
1256 *
1257 * We'll use this time to switch the pins from "init" to "default" unless the
1258 * driver selected some other state.
1259 *
1260 * @dev: device to that's done probing
1261 */
1262 int pinctrl_init_done(struct device *dev)
1263 {
1264 struct dev_pin_info *pins = dev->pins;
1265 int ret;
1266
1267 if (!pins)
1268 return 0;
1269
1270 if (IS_ERR(pins->init_state))
1271 return 0; /* No such state */
1272
1273 if (pins->p->state != pins->init_state)
1274 return 0; /* Not at init anyway */
1275
1276 if (IS_ERR(pins->default_state))
1277 return 0; /* No default state */
1278
1279 ret = pinctrl_select_state(pins->p, pins->default_state);
1280 if (ret)
1281 dev_err(dev, "failed to activate default pinctrl state\n");
1282
1283 return ret;
1284 }
1285
1286 #ifdef CONFIG_PM
1287
1288 /**
1289 * pinctrl_pm_select_state() - select pinctrl state for PM
1290 * @dev: device to select default state for
1291 * @state: state to set
1292 */
1293 static int pinctrl_pm_select_state(struct device *dev,
1294 struct pinctrl_state *state)
1295 {
1296 struct dev_pin_info *pins = dev->pins;
1297 int ret;
1298
1299 if (IS_ERR(state))
1300 return 0; /* No such state */
1301 ret = pinctrl_select_state(pins->p, state);
1302 if (ret)
1303 dev_err(dev, "failed to activate pinctrl state %s\n",
1304 state->name);
1305 return ret;
1306 }
1307
1308 /**
1309 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1310 * @dev: device to select default state for
1311 */
1312 int pinctrl_pm_select_default_state(struct device *dev)
1313 {
1314 if (!dev->pins)
1315 return 0;
1316
1317 return pinctrl_pm_select_state(dev, dev->pins->default_state);
1318 }
1319 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1320
1321 /**
1322 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1323 * @dev: device to select sleep state for
1324 */
1325 int pinctrl_pm_select_sleep_state(struct device *dev)
1326 {
1327 if (!dev->pins)
1328 return 0;
1329
1330 return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1331 }
1332 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1333
1334 /**
1335 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1336 * @dev: device to select idle state for
1337 */
1338 int pinctrl_pm_select_idle_state(struct device *dev)
1339 {
1340 if (!dev->pins)
1341 return 0;
1342
1343 return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1344 }
1345 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1346 #endif
1347
1348 #ifdef CONFIG_DEBUG_FS
1349
1350 static int pinctrl_pins_show(struct seq_file *s, void *what)
1351 {
1352 struct pinctrl_dev *pctldev = s->private;
1353 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1354 unsigned i, pin;
1355
1356 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1357
1358 mutex_lock(&pctldev->mutex);
1359
1360 /* The pin number can be retrived from the pin controller descriptor */
1361 for (i = 0; i < pctldev->desc->npins; i++) {
1362 struct pin_desc *desc;
1363
1364 pin = pctldev->desc->pins[i].number;
1365 desc = pin_desc_get(pctldev, pin);
1366 /* Pin space may be sparse */
1367 if (desc == NULL)
1368 continue;
1369
1370 seq_printf(s, "pin %d (%s) ", pin, desc->name);
1371
1372 /* Driver-specific info per pin */
1373 if (ops->pin_dbg_show)
1374 ops->pin_dbg_show(pctldev, s, pin);
1375
1376 seq_puts(s, "\n");
1377 }
1378
1379 mutex_unlock(&pctldev->mutex);
1380
1381 return 0;
1382 }
1383
1384 static int pinctrl_groups_show(struct seq_file *s, void *what)
1385 {
1386 struct pinctrl_dev *pctldev = s->private;
1387 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1388 unsigned ngroups, selector = 0;
1389
1390 mutex_lock(&pctldev->mutex);
1391
1392 ngroups = ops->get_groups_count(pctldev);
1393
1394 seq_puts(s, "registered pin groups:\n");
1395 while (selector < ngroups) {
1396 const unsigned *pins = NULL;
1397 unsigned num_pins = 0;
1398 const char *gname = ops->get_group_name(pctldev, selector);
1399 const char *pname;
1400 int ret = 0;
1401 int i;
1402
1403 if (ops->get_group_pins)
1404 ret = ops->get_group_pins(pctldev, selector,
1405 &pins, &num_pins);
1406 if (ret)
1407 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1408 gname);
1409 else {
1410 seq_printf(s, "group: %s\n", gname);
1411 for (i = 0; i < num_pins; i++) {
1412 pname = pin_get_name(pctldev, pins[i]);
1413 if (WARN_ON(!pname)) {
1414 mutex_unlock(&pctldev->mutex);
1415 return -EINVAL;
1416 }
1417 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1418 }
1419 seq_puts(s, "\n");
1420 }
1421 selector++;
1422 }
1423
1424 mutex_unlock(&pctldev->mutex);
1425
1426 return 0;
1427 }
1428
1429 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1430 {
1431 struct pinctrl_dev *pctldev = s->private;
1432 struct pinctrl_gpio_range *range = NULL;
1433
1434 seq_puts(s, "GPIO ranges handled:\n");
1435
1436 mutex_lock(&pctldev->mutex);
1437
1438 /* Loop over the ranges */
1439 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1440 if (range->pins) {
1441 int a;
1442 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1443 range->id, range->name,
1444 range->base, (range->base + range->npins - 1));
1445 for (a = 0; a < range->npins - 1; a++)
1446 seq_printf(s, "%u, ", range->pins[a]);
1447 seq_printf(s, "%u}\n", range->pins[a]);
1448 }
1449 else
1450 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1451 range->id, range->name,
1452 range->base, (range->base + range->npins - 1),
1453 range->pin_base,
1454 (range->pin_base + range->npins - 1));
1455 }
1456
1457 mutex_unlock(&pctldev->mutex);
1458
1459 return 0;
1460 }
1461
1462 static int pinctrl_devices_show(struct seq_file *s, void *what)
1463 {
1464 struct pinctrl_dev *pctldev;
1465
1466 seq_puts(s, "name [pinmux] [pinconf]\n");
1467
1468 mutex_lock(&pinctrldev_list_mutex);
1469
1470 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1471 seq_printf(s, "%s ", pctldev->desc->name);
1472 if (pctldev->desc->pmxops)
1473 seq_puts(s, "yes ");
1474 else
1475 seq_puts(s, "no ");
1476 if (pctldev->desc->confops)
1477 seq_puts(s, "yes");
1478 else
1479 seq_puts(s, "no");
1480 seq_puts(s, "\n");
1481 }
1482
1483 mutex_unlock(&pinctrldev_list_mutex);
1484
1485 return 0;
1486 }
1487
1488 static inline const char *map_type(enum pinctrl_map_type type)
1489 {
1490 static const char * const names[] = {
1491 "INVALID",
1492 "DUMMY_STATE",
1493 "MUX_GROUP",
1494 "CONFIGS_PIN",
1495 "CONFIGS_GROUP",
1496 };
1497
1498 if (type >= ARRAY_SIZE(names))
1499 return "UNKNOWN";
1500
1501 return names[type];
1502 }
1503
1504 static int pinctrl_maps_show(struct seq_file *s, void *what)
1505 {
1506 struct pinctrl_maps *maps_node;
1507 int i;
1508 struct pinctrl_map const *map;
1509
1510 seq_puts(s, "Pinctrl maps:\n");
1511
1512 mutex_lock(&pinctrl_maps_mutex);
1513 for_each_maps(maps_node, i, map) {
1514 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1515 map->dev_name, map->name, map_type(map->type),
1516 map->type);
1517
1518 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1519 seq_printf(s, "controlling device %s\n",
1520 map->ctrl_dev_name);
1521
1522 switch (map->type) {
1523 case PIN_MAP_TYPE_MUX_GROUP:
1524 pinmux_show_map(s, map);
1525 break;
1526 case PIN_MAP_TYPE_CONFIGS_PIN:
1527 case PIN_MAP_TYPE_CONFIGS_GROUP:
1528 pinconf_show_map(s, map);
1529 break;
1530 default:
1531 break;
1532 }
1533
1534 seq_printf(s, "\n");
1535 }
1536 mutex_unlock(&pinctrl_maps_mutex);
1537
1538 return 0;
1539 }
1540
1541 static int pinctrl_show(struct seq_file *s, void *what)
1542 {
1543 struct pinctrl *p;
1544 struct pinctrl_state *state;
1545 struct pinctrl_setting *setting;
1546
1547 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1548
1549 mutex_lock(&pinctrl_list_mutex);
1550
1551 list_for_each_entry(p, &pinctrl_list, node) {
1552 seq_printf(s, "device: %s current state: %s\n",
1553 dev_name(p->dev),
1554 p->state ? p->state->name : "none");
1555
1556 list_for_each_entry(state, &p->states, node) {
1557 seq_printf(s, " state: %s\n", state->name);
1558
1559 list_for_each_entry(setting, &state->settings, node) {
1560 struct pinctrl_dev *pctldev = setting->pctldev;
1561
1562 seq_printf(s, " type: %s controller %s ",
1563 map_type(setting->type),
1564 pinctrl_dev_get_name(pctldev));
1565
1566 switch (setting->type) {
1567 case PIN_MAP_TYPE_MUX_GROUP:
1568 pinmux_show_setting(s, setting);
1569 break;
1570 case PIN_MAP_TYPE_CONFIGS_PIN:
1571 case PIN_MAP_TYPE_CONFIGS_GROUP:
1572 pinconf_show_setting(s, setting);
1573 break;
1574 default:
1575 break;
1576 }
1577 }
1578 }
1579 }
1580
1581 mutex_unlock(&pinctrl_list_mutex);
1582
1583 return 0;
1584 }
1585
1586 static int pinctrl_pins_open(struct inode *inode, struct file *file)
1587 {
1588 return single_open(file, pinctrl_pins_show, inode->i_private);
1589 }
1590
1591 static int pinctrl_groups_open(struct inode *inode, struct file *file)
1592 {
1593 return single_open(file, pinctrl_groups_show, inode->i_private);
1594 }
1595
1596 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1597 {
1598 return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1599 }
1600
1601 static int pinctrl_devices_open(struct inode *inode, struct file *file)
1602 {
1603 return single_open(file, pinctrl_devices_show, NULL);
1604 }
1605
1606 static int pinctrl_maps_open(struct inode *inode, struct file *file)
1607 {
1608 return single_open(file, pinctrl_maps_show, NULL);
1609 }
1610
1611 static int pinctrl_open(struct inode *inode, struct file *file)
1612 {
1613 return single_open(file, pinctrl_show, NULL);
1614 }
1615
1616 static const struct file_operations pinctrl_pins_ops = {
1617 .open = pinctrl_pins_open,
1618 .read = seq_read,
1619 .llseek = seq_lseek,
1620 .release = single_release,
1621 };
1622
1623 static const struct file_operations pinctrl_groups_ops = {
1624 .open = pinctrl_groups_open,
1625 .read = seq_read,
1626 .llseek = seq_lseek,
1627 .release = single_release,
1628 };
1629
1630 static const struct file_operations pinctrl_gpioranges_ops = {
1631 .open = pinctrl_gpioranges_open,
1632 .read = seq_read,
1633 .llseek = seq_lseek,
1634 .release = single_release,
1635 };
1636
1637 static const struct file_operations pinctrl_devices_ops = {
1638 .open = pinctrl_devices_open,
1639 .read = seq_read,
1640 .llseek = seq_lseek,
1641 .release = single_release,
1642 };
1643
1644 static const struct file_operations pinctrl_maps_ops = {
1645 .open = pinctrl_maps_open,
1646 .read = seq_read,
1647 .llseek = seq_lseek,
1648 .release = single_release,
1649 };
1650
1651 static const struct file_operations pinctrl_ops = {
1652 .open = pinctrl_open,
1653 .read = seq_read,
1654 .llseek = seq_lseek,
1655 .release = single_release,
1656 };
1657
1658 static struct dentry *debugfs_root;
1659
1660 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1661 {
1662 struct dentry *device_root;
1663
1664 device_root = debugfs_create_dir(dev_name(pctldev->dev),
1665 debugfs_root);
1666 pctldev->device_root = device_root;
1667
1668 if (IS_ERR(device_root) || !device_root) {
1669 pr_warn("failed to create debugfs directory for %s\n",
1670 dev_name(pctldev->dev));
1671 return;
1672 }
1673 debugfs_create_file("pins", S_IFREG | S_IRUGO,
1674 device_root, pctldev, &pinctrl_pins_ops);
1675 debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1676 device_root, pctldev, &pinctrl_groups_ops);
1677 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1678 device_root, pctldev, &pinctrl_gpioranges_ops);
1679 if (pctldev->desc->pmxops)
1680 pinmux_init_device_debugfs(device_root, pctldev);
1681 if (pctldev->desc->confops)
1682 pinconf_init_device_debugfs(device_root, pctldev);
1683 }
1684
1685 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1686 {
1687 debugfs_remove_recursive(pctldev->device_root);
1688 }
1689
1690 static void pinctrl_init_debugfs(void)
1691 {
1692 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1693 if (IS_ERR(debugfs_root) || !debugfs_root) {
1694 pr_warn("failed to create debugfs directory\n");
1695 debugfs_root = NULL;
1696 return;
1697 }
1698
1699 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1700 debugfs_root, NULL, &pinctrl_devices_ops);
1701 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1702 debugfs_root, NULL, &pinctrl_maps_ops);
1703 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1704 debugfs_root, NULL, &pinctrl_ops);
1705 }
1706
1707 #else /* CONFIG_DEBUG_FS */
1708
1709 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1710 {
1711 }
1712
1713 static void pinctrl_init_debugfs(void)
1714 {
1715 }
1716
1717 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1718 {
1719 }
1720
1721 #endif
1722
1723 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1724 {
1725 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1726
1727 if (!ops ||
1728 !ops->get_groups_count ||
1729 !ops->get_group_name)
1730 return -EINVAL;
1731
1732 if (ops->dt_node_to_map && !ops->dt_free_map)
1733 return -EINVAL;
1734
1735 return 0;
1736 }
1737
1738 /**
1739 * pinctrl_register() - register a pin controller device
1740 * @pctldesc: descriptor for this pin controller
1741 * @dev: parent device for this pin controller
1742 * @driver_data: private pin controller data for this pin controller
1743 */
1744 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
1745 struct device *dev, void *driver_data)
1746 {
1747 struct pinctrl_dev *pctldev;
1748 int ret;
1749
1750 if (!pctldesc)
1751 return ERR_PTR(-EINVAL);
1752 if (!pctldesc->name)
1753 return ERR_PTR(-EINVAL);
1754
1755 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1756 if (pctldev == NULL) {
1757 dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1758 return ERR_PTR(-ENOMEM);
1759 }
1760
1761 /* Initialize pin control device struct */
1762 pctldev->owner = pctldesc->owner;
1763 pctldev->desc = pctldesc;
1764 pctldev->driver_data = driver_data;
1765 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1766 INIT_LIST_HEAD(&pctldev->gpio_ranges);
1767 pctldev->dev = dev;
1768 mutex_init(&pctldev->mutex);
1769
1770 /* check core ops for sanity */
1771 ret = pinctrl_check_ops(pctldev);
1772 if (ret) {
1773 dev_err(dev, "pinctrl ops lacks necessary functions\n");
1774 goto out_err;
1775 }
1776
1777 /* If we're implementing pinmuxing, check the ops for sanity */
1778 if (pctldesc->pmxops) {
1779 ret = pinmux_check_ops(pctldev);
1780 if (ret)
1781 goto out_err;
1782 }
1783
1784 /* If we're implementing pinconfig, check the ops for sanity */
1785 if (pctldesc->confops) {
1786 ret = pinconf_check_ops(pctldev);
1787 if (ret)
1788 goto out_err;
1789 }
1790
1791 /* Register all the pins */
1792 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
1793 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1794 if (ret) {
1795 dev_err(dev, "error during pin registration\n");
1796 pinctrl_free_pindescs(pctldev, pctldesc->pins,
1797 pctldesc->npins);
1798 goto out_err;
1799 }
1800
1801 mutex_lock(&pinctrldev_list_mutex);
1802 list_add_tail(&pctldev->node, &pinctrldev_list);
1803 mutex_unlock(&pinctrldev_list_mutex);
1804
1805 pctldev->p = pinctrl_get(pctldev->dev);
1806
1807 if (!IS_ERR(pctldev->p)) {
1808 pctldev->hog_default =
1809 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1810 if (IS_ERR(pctldev->hog_default)) {
1811 dev_dbg(dev, "failed to lookup the default state\n");
1812 } else {
1813 if (pinctrl_select_state(pctldev->p,
1814 pctldev->hog_default))
1815 dev_err(dev,
1816 "failed to select default state\n");
1817 }
1818
1819 pctldev->hog_sleep =
1820 pinctrl_lookup_state(pctldev->p,
1821 PINCTRL_STATE_SLEEP);
1822 if (IS_ERR(pctldev->hog_sleep))
1823 dev_dbg(dev, "failed to lookup the sleep state\n");
1824 }
1825
1826 pinctrl_init_device_debugfs(pctldev);
1827
1828 return pctldev;
1829
1830 out_err:
1831 mutex_destroy(&pctldev->mutex);
1832 kfree(pctldev);
1833 return ERR_PTR(ret);
1834 }
1835 EXPORT_SYMBOL_GPL(pinctrl_register);
1836
1837 /**
1838 * pinctrl_unregister() - unregister pinmux
1839 * @pctldev: pin controller to unregister
1840 *
1841 * Called by pinmux drivers to unregister a pinmux.
1842 */
1843 void pinctrl_unregister(struct pinctrl_dev *pctldev)
1844 {
1845 struct pinctrl_gpio_range *range, *n;
1846 if (pctldev == NULL)
1847 return;
1848
1849 mutex_lock(&pctldev->mutex);
1850 pinctrl_remove_device_debugfs(pctldev);
1851 mutex_unlock(&pctldev->mutex);
1852
1853 if (!IS_ERR(pctldev->p))
1854 pinctrl_put(pctldev->p);
1855
1856 mutex_lock(&pinctrldev_list_mutex);
1857 mutex_lock(&pctldev->mutex);
1858 /* TODO: check that no pinmuxes are still active? */
1859 list_del(&pctldev->node);
1860 /* Destroy descriptor tree */
1861 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
1862 pctldev->desc->npins);
1863 /* remove gpio ranges map */
1864 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
1865 list_del(&range->node);
1866
1867 mutex_unlock(&pctldev->mutex);
1868 mutex_destroy(&pctldev->mutex);
1869 kfree(pctldev);
1870 mutex_unlock(&pinctrldev_list_mutex);
1871 }
1872 EXPORT_SYMBOL_GPL(pinctrl_unregister);
1873
1874 static void devm_pinctrl_dev_release(struct device *dev, void *res)
1875 {
1876 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
1877
1878 pinctrl_unregister(pctldev);
1879 }
1880
1881 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
1882 {
1883 struct pctldev **r = res;
1884
1885 if (WARN_ON(!r || !*r))
1886 return 0;
1887
1888 return *r == data;
1889 }
1890
1891 /**
1892 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
1893 * @dev: parent device for this pin controller
1894 * @pctldesc: descriptor for this pin controller
1895 * @driver_data: private pin controller data for this pin controller
1896 *
1897 * Returns an error pointer if pincontrol register failed. Otherwise
1898 * it returns valid pinctrl handle.
1899 *
1900 * The pinctrl device will be automatically released when the device is unbound.
1901 */
1902 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
1903 struct pinctrl_desc *pctldesc,
1904 void *driver_data)
1905 {
1906 struct pinctrl_dev **ptr, *pctldev;
1907
1908 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
1909 if (!ptr)
1910 return ERR_PTR(-ENOMEM);
1911
1912 pctldev = pinctrl_register(pctldesc, dev, driver_data);
1913 if (IS_ERR(pctldev)) {
1914 devres_free(ptr);
1915 return pctldev;
1916 }
1917
1918 *ptr = pctldev;
1919 devres_add(dev, ptr);
1920
1921 return pctldev;
1922 }
1923 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
1924
1925 /**
1926 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
1927 * @dev: device for which which resource was allocated
1928 * @pctldev: the pinctrl device to unregister.
1929 */
1930 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
1931 {
1932 WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
1933 devm_pinctrl_dev_match, pctldev));
1934 }
1935 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
1936
1937 static int __init pinctrl_init(void)
1938 {
1939 pr_info("initialized pinctrl subsystem\n");
1940 pinctrl_init_debugfs();
1941 return 0;
1942 }
1943
1944 /* init early since many drivers really need to initialized pinmux early */
1945 core_initcall(pinctrl_init);