]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/pinctrl/core.c
iio: imu: inv_mpu6050: test whoami first and against all known values
[mirror_ubuntu-artful-kernel.git] / drivers / pinctrl / core.c
1 /*
2 * Core driver for the pin control subsystem
3 *
4 * Copyright (C) 2011-2012 ST-Ericsson SA
5 * Written on behalf of Linaro for ST-Ericsson
6 * Based on bits of regulator core, gpio core and clk core
7 *
8 * Author: Linus Walleij <linus.walleij@linaro.org>
9 *
10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
11 *
12 * License terms: GNU General Public License (GPL) version 2
13 */
14 #define pr_fmt(fmt) "pinctrl core: " fmt
15
16 #include <linux/kernel.h>
17 #include <linux/kref.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/list.h>
24 #include <linux/sysfs.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pinctrl/pinctrl.h>
29 #include <linux/pinctrl/machine.h>
30
31 #ifdef CONFIG_GPIOLIB
32 #include <asm-generic/gpio.h>
33 #endif
34
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinmux.h"
38 #include "pinconf.h"
39
40
41 static bool pinctrl_dummy_state;
42
43 /* Mutex taken to protect pinctrl_list */
44 static DEFINE_MUTEX(pinctrl_list_mutex);
45
46 /* Mutex taken to protect pinctrl_maps */
47 DEFINE_MUTEX(pinctrl_maps_mutex);
48
49 /* Mutex taken to protect pinctrldev_list */
50 static DEFINE_MUTEX(pinctrldev_list_mutex);
51
52 /* Global list of pin control devices (struct pinctrl_dev) */
53 static LIST_HEAD(pinctrldev_list);
54
55 /* List of pin controller handles (struct pinctrl) */
56 static LIST_HEAD(pinctrl_list);
57
58 /* List of pinctrl maps (struct pinctrl_maps) */
59 LIST_HEAD(pinctrl_maps);
60
61
62 /**
63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
64 *
65 * Usually this function is called by platforms without pinctrl driver support
66 * but run with some shared drivers using pinctrl APIs.
67 * After calling this function, the pinctrl core will return successfully
68 * with creating a dummy state for the driver to keep going smoothly.
69 */
70 void pinctrl_provide_dummies(void)
71 {
72 pinctrl_dummy_state = true;
73 }
74
75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
76 {
77 /* We're not allowed to register devices without name */
78 return pctldev->desc->name;
79 }
80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
81
82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
83 {
84 return dev_name(pctldev->dev);
85 }
86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
87
88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
89 {
90 return pctldev->driver_data;
91 }
92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
93
94 /**
95 * get_pinctrl_dev_from_devname() - look up pin controller device
96 * @devname: the name of a device instance, as returned by dev_name()
97 *
98 * Looks up a pin control device matching a certain device name or pure device
99 * pointer, the pure device pointer will take precedence.
100 */
101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102 {
103 struct pinctrl_dev *pctldev = NULL;
104
105 if (!devname)
106 return NULL;
107
108 mutex_lock(&pinctrldev_list_mutex);
109
110 list_for_each_entry(pctldev, &pinctrldev_list, node) {
111 if (!strcmp(dev_name(pctldev->dev), devname)) {
112 /* Matched on device name */
113 mutex_unlock(&pinctrldev_list_mutex);
114 return pctldev;
115 }
116 }
117
118 mutex_unlock(&pinctrldev_list_mutex);
119
120 return NULL;
121 }
122
123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
124 {
125 struct pinctrl_dev *pctldev;
126
127 mutex_lock(&pinctrldev_list_mutex);
128
129 list_for_each_entry(pctldev, &pinctrldev_list, node)
130 if (pctldev->dev->of_node == np) {
131 mutex_unlock(&pinctrldev_list_mutex);
132 return pctldev;
133 }
134
135 mutex_unlock(&pinctrldev_list_mutex);
136
137 return NULL;
138 }
139
140 /**
141 * pin_get_from_name() - look up a pin number from a name
142 * @pctldev: the pin control device to lookup the pin on
143 * @name: the name of the pin to look up
144 */
145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
146 {
147 unsigned i, pin;
148
149 /* The pin number can be retrived from the pin controller descriptor */
150 for (i = 0; i < pctldev->desc->npins; i++) {
151 struct pin_desc *desc;
152
153 pin = pctldev->desc->pins[i].number;
154 desc = pin_desc_get(pctldev, pin);
155 /* Pin space may be sparse */
156 if (desc && !strcmp(name, desc->name))
157 return pin;
158 }
159
160 return -EINVAL;
161 }
162
163 /**
164 * pin_get_name_from_id() - look up a pin name from a pin id
165 * @pctldev: the pin control device to lookup the pin on
166 * @name: the name of the pin to look up
167 */
168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
169 {
170 const struct pin_desc *desc;
171
172 desc = pin_desc_get(pctldev, pin);
173 if (desc == NULL) {
174 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
175 pin);
176 return NULL;
177 }
178
179 return desc->name;
180 }
181
182 /**
183 * pin_is_valid() - check if pin exists on controller
184 * @pctldev: the pin control device to check the pin on
185 * @pin: pin to check, use the local pin controller index number
186 *
187 * This tells us whether a certain pin exist on a certain pin controller or
188 * not. Pin lists may be sparse, so some pins may not exist.
189 */
190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
191 {
192 struct pin_desc *pindesc;
193
194 if (pin < 0)
195 return false;
196
197 mutex_lock(&pctldev->mutex);
198 pindesc = pin_desc_get(pctldev, pin);
199 mutex_unlock(&pctldev->mutex);
200
201 return pindesc != NULL;
202 }
203 EXPORT_SYMBOL_GPL(pin_is_valid);
204
205 /* Deletes a range of pin descriptors */
206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
207 const struct pinctrl_pin_desc *pins,
208 unsigned num_pins)
209 {
210 int i;
211
212 for (i = 0; i < num_pins; i++) {
213 struct pin_desc *pindesc;
214
215 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
216 pins[i].number);
217 if (pindesc != NULL) {
218 radix_tree_delete(&pctldev->pin_desc_tree,
219 pins[i].number);
220 if (pindesc->dynamic_name)
221 kfree(pindesc->name);
222 }
223 kfree(pindesc);
224 }
225 }
226
227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
228 const struct pinctrl_pin_desc *pin)
229 {
230 struct pin_desc *pindesc;
231
232 pindesc = pin_desc_get(pctldev, pin->number);
233 if (pindesc != NULL) {
234 dev_err(pctldev->dev, "pin %d already registered\n",
235 pin->number);
236 return -EINVAL;
237 }
238
239 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
240 if (!pindesc)
241 return -ENOMEM;
242
243 /* Set owner */
244 pindesc->pctldev = pctldev;
245
246 /* Copy basic pin info */
247 if (pin->name) {
248 pindesc->name = pin->name;
249 } else {
250 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
251 if (pindesc->name == NULL) {
252 kfree(pindesc);
253 return -ENOMEM;
254 }
255 pindesc->dynamic_name = true;
256 }
257
258 pindesc->drv_data = pin->drv_data;
259
260 radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
261 pr_debug("registered pin %d (%s) on %s\n",
262 pin->number, pindesc->name, pctldev->desc->name);
263 return 0;
264 }
265
266 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
267 struct pinctrl_pin_desc const *pins,
268 unsigned num_descs)
269 {
270 unsigned i;
271 int ret = 0;
272
273 for (i = 0; i < num_descs; i++) {
274 ret = pinctrl_register_one_pin(pctldev, &pins[i]);
275 if (ret)
276 return ret;
277 }
278
279 return 0;
280 }
281
282 /**
283 * gpio_to_pin() - GPIO range GPIO number to pin number translation
284 * @range: GPIO range used for the translation
285 * @gpio: gpio pin to translate to a pin number
286 *
287 * Finds the pin number for a given GPIO using the specified GPIO range
288 * as a base for translation. The distinction between linear GPIO ranges
289 * and pin list based GPIO ranges is managed correctly by this function.
290 *
291 * This function assumes the gpio is part of the specified GPIO range, use
292 * only after making sure this is the case (e.g. by calling it on the
293 * result of successful pinctrl_get_device_gpio_range calls)!
294 */
295 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
296 unsigned int gpio)
297 {
298 unsigned int offset = gpio - range->base;
299 if (range->pins)
300 return range->pins[offset];
301 else
302 return range->pin_base + offset;
303 }
304
305 /**
306 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
307 * @pctldev: pin controller device to check
308 * @gpio: gpio pin to check taken from the global GPIO pin space
309 *
310 * Tries to match a GPIO pin number to the ranges handled by a certain pin
311 * controller, return the range or NULL
312 */
313 static struct pinctrl_gpio_range *
314 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
315 {
316 struct pinctrl_gpio_range *range = NULL;
317
318 mutex_lock(&pctldev->mutex);
319 /* Loop over the ranges */
320 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
321 /* Check if we're in the valid range */
322 if (gpio >= range->base &&
323 gpio < range->base + range->npins) {
324 mutex_unlock(&pctldev->mutex);
325 return range;
326 }
327 }
328 mutex_unlock(&pctldev->mutex);
329 return NULL;
330 }
331
332 /**
333 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
334 * the same GPIO chip are in range
335 * @gpio: gpio pin to check taken from the global GPIO pin space
336 *
337 * This function is complement of pinctrl_match_gpio_range(). If the return
338 * value of pinctrl_match_gpio_range() is NULL, this function could be used
339 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
340 * of the same GPIO chip don't have back-end pinctrl interface.
341 * If the return value is true, it means that pinctrl device is ready & the
342 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
343 * is false, it means that pinctrl device may not be ready.
344 */
345 #ifdef CONFIG_GPIOLIB
346 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
347 {
348 struct pinctrl_dev *pctldev;
349 struct pinctrl_gpio_range *range = NULL;
350 struct gpio_chip *chip = gpio_to_chip(gpio);
351
352 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
353 return false;
354
355 mutex_lock(&pinctrldev_list_mutex);
356
357 /* Loop over the pin controllers */
358 list_for_each_entry(pctldev, &pinctrldev_list, node) {
359 /* Loop over the ranges */
360 mutex_lock(&pctldev->mutex);
361 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
362 /* Check if any gpio range overlapped with gpio chip */
363 if (range->base + range->npins - 1 < chip->base ||
364 range->base > chip->base + chip->ngpio - 1)
365 continue;
366 mutex_unlock(&pctldev->mutex);
367 mutex_unlock(&pinctrldev_list_mutex);
368 return true;
369 }
370 mutex_unlock(&pctldev->mutex);
371 }
372
373 mutex_unlock(&pinctrldev_list_mutex);
374
375 return false;
376 }
377 #else
378 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
379 #endif
380
381 /**
382 * pinctrl_get_device_gpio_range() - find device for GPIO range
383 * @gpio: the pin to locate the pin controller for
384 * @outdev: the pin control device if found
385 * @outrange: the GPIO range if found
386 *
387 * Find the pin controller handling a certain GPIO pin from the pinspace of
388 * the GPIO subsystem, return the device and the matching GPIO range. Returns
389 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
390 * may still have not been registered.
391 */
392 static int pinctrl_get_device_gpio_range(unsigned gpio,
393 struct pinctrl_dev **outdev,
394 struct pinctrl_gpio_range **outrange)
395 {
396 struct pinctrl_dev *pctldev = NULL;
397
398 mutex_lock(&pinctrldev_list_mutex);
399
400 /* Loop over the pin controllers */
401 list_for_each_entry(pctldev, &pinctrldev_list, node) {
402 struct pinctrl_gpio_range *range;
403
404 range = pinctrl_match_gpio_range(pctldev, gpio);
405 if (range != NULL) {
406 *outdev = pctldev;
407 *outrange = range;
408 mutex_unlock(&pinctrldev_list_mutex);
409 return 0;
410 }
411 }
412
413 mutex_unlock(&pinctrldev_list_mutex);
414
415 return -EPROBE_DEFER;
416 }
417
418 /**
419 * pinctrl_add_gpio_range() - register a GPIO range for a controller
420 * @pctldev: pin controller device to add the range to
421 * @range: the GPIO range to add
422 *
423 * This adds a range of GPIOs to be handled by a certain pin controller. Call
424 * this to register handled ranges after registering your pin controller.
425 */
426 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
427 struct pinctrl_gpio_range *range)
428 {
429 mutex_lock(&pctldev->mutex);
430 list_add_tail(&range->node, &pctldev->gpio_ranges);
431 mutex_unlock(&pctldev->mutex);
432 }
433 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
434
435 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
436 struct pinctrl_gpio_range *ranges,
437 unsigned nranges)
438 {
439 int i;
440
441 for (i = 0; i < nranges; i++)
442 pinctrl_add_gpio_range(pctldev, &ranges[i]);
443 }
444 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
445
446 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
447 struct pinctrl_gpio_range *range)
448 {
449 struct pinctrl_dev *pctldev;
450
451 pctldev = get_pinctrl_dev_from_devname(devname);
452
453 /*
454 * If we can't find this device, let's assume that is because
455 * it has not probed yet, so the driver trying to register this
456 * range need to defer probing.
457 */
458 if (!pctldev) {
459 return ERR_PTR(-EPROBE_DEFER);
460 }
461 pinctrl_add_gpio_range(pctldev, range);
462
463 return pctldev;
464 }
465 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
466
467 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
468 const unsigned **pins, unsigned *num_pins)
469 {
470 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
471 int gs;
472
473 if (!pctlops->get_group_pins)
474 return -EINVAL;
475
476 gs = pinctrl_get_group_selector(pctldev, pin_group);
477 if (gs < 0)
478 return gs;
479
480 return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
481 }
482 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
483
484 struct pinctrl_gpio_range *
485 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
486 unsigned int pin)
487 {
488 struct pinctrl_gpio_range *range;
489
490 /* Loop over the ranges */
491 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
492 /* Check if we're in the valid range */
493 if (range->pins) {
494 int a;
495 for (a = 0; a < range->npins; a++) {
496 if (range->pins[a] == pin)
497 return range;
498 }
499 } else if (pin >= range->pin_base &&
500 pin < range->pin_base + range->npins)
501 return range;
502 }
503
504 return NULL;
505 }
506 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
507
508 /**
509 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
510 * @pctldev: the pin controller device to look in
511 * @pin: a controller-local number to find the range for
512 */
513 struct pinctrl_gpio_range *
514 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
515 unsigned int pin)
516 {
517 struct pinctrl_gpio_range *range;
518
519 mutex_lock(&pctldev->mutex);
520 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
521 mutex_unlock(&pctldev->mutex);
522
523 return range;
524 }
525 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
526
527 /**
528 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
529 * @pctldev: pin controller device to remove the range from
530 * @range: the GPIO range to remove
531 */
532 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
533 struct pinctrl_gpio_range *range)
534 {
535 mutex_lock(&pctldev->mutex);
536 list_del(&range->node);
537 mutex_unlock(&pctldev->mutex);
538 }
539 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
540
541 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
542
543 /**
544 * pinctrl_generic_get_group_count() - returns the number of pin groups
545 * @pctldev: pin controller device
546 */
547 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
548 {
549 return pctldev->num_groups;
550 }
551 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
552
553 /**
554 * pinctrl_generic_get_group_name() - returns the name of a pin group
555 * @pctldev: pin controller device
556 * @selector: group number
557 */
558 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
559 unsigned int selector)
560 {
561 struct group_desc *group;
562
563 group = radix_tree_lookup(&pctldev->pin_group_tree,
564 selector);
565 if (!group)
566 return NULL;
567
568 return group->name;
569 }
570 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
571
572 /**
573 * pinctrl_generic_get_group_pins() - gets the pin group pins
574 * @pctldev: pin controller device
575 * @selector: group number
576 * @pins: pins in the group
577 * @num_pins: number of pins in the group
578 */
579 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
580 unsigned int selector,
581 const unsigned int **pins,
582 unsigned int *num_pins)
583 {
584 struct group_desc *group;
585
586 group = radix_tree_lookup(&pctldev->pin_group_tree,
587 selector);
588 if (!group) {
589 dev_err(pctldev->dev, "%s could not find pingroup%i\n",
590 __func__, selector);
591 return -EINVAL;
592 }
593
594 *pins = group->pins;
595 *num_pins = group->num_pins;
596
597 return 0;
598 }
599 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
600
601 /**
602 * pinctrl_generic_get_group() - returns a pin group based on the number
603 * @pctldev: pin controller device
604 * @gselector: group number
605 */
606 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
607 unsigned int selector)
608 {
609 struct group_desc *group;
610
611 group = radix_tree_lookup(&pctldev->pin_group_tree,
612 selector);
613 if (!group)
614 return NULL;
615
616 return group;
617 }
618 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
619
620 /**
621 * pinctrl_generic_add_group() - adds a new pin group
622 * @pctldev: pin controller device
623 * @name: name of the pin group
624 * @pins: pins in the pin group
625 * @num_pins: number of pins in the pin group
626 * @data: pin controller driver specific data
627 *
628 * Note that the caller must take care of locking.
629 */
630 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
631 int *pins, int num_pins, void *data)
632 {
633 struct group_desc *group;
634
635 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
636 if (!group)
637 return -ENOMEM;
638
639 group->name = name;
640 group->pins = pins;
641 group->num_pins = num_pins;
642 group->data = data;
643
644 radix_tree_insert(&pctldev->pin_group_tree, pctldev->num_groups,
645 group);
646
647 pctldev->num_groups++;
648
649 return 0;
650 }
651 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
652
653 /**
654 * pinctrl_generic_remove_group() - removes a numbered pin group
655 * @pctldev: pin controller device
656 * @selector: group number
657 *
658 * Note that the caller must take care of locking.
659 */
660 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
661 unsigned int selector)
662 {
663 struct group_desc *group;
664
665 group = radix_tree_lookup(&pctldev->pin_group_tree,
666 selector);
667 if (!group)
668 return -ENOENT;
669
670 radix_tree_delete(&pctldev->pin_group_tree, selector);
671 devm_kfree(pctldev->dev, group);
672
673 pctldev->num_groups--;
674
675 return 0;
676 }
677 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
678
679 /**
680 * pinctrl_generic_free_groups() - removes all pin groups
681 * @pctldev: pin controller device
682 *
683 * Note that the caller must take care of locking.
684 */
685 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
686 {
687 struct radix_tree_iter iter;
688 struct group_desc *group;
689 unsigned long *indices;
690 void **slot;
691 int i = 0;
692
693 indices = devm_kzalloc(pctldev->dev, sizeof(*indices) *
694 pctldev->num_groups, GFP_KERNEL);
695 if (!indices)
696 return;
697
698 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
699 indices[i++] = iter.index;
700
701 for (i = 0; i < pctldev->num_groups; i++) {
702 group = radix_tree_lookup(&pctldev->pin_group_tree,
703 indices[i]);
704 radix_tree_delete(&pctldev->pin_group_tree, indices[i]);
705 devm_kfree(pctldev->dev, group);
706 }
707
708 pctldev->num_groups = 0;
709 }
710
711 #else
712 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
713 {
714 }
715 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
716
717 /**
718 * pinctrl_get_group_selector() - returns the group selector for a group
719 * @pctldev: the pin controller handling the group
720 * @pin_group: the pin group to look up
721 */
722 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
723 const char *pin_group)
724 {
725 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
726 unsigned ngroups = pctlops->get_groups_count(pctldev);
727 unsigned group_selector = 0;
728
729 while (group_selector < ngroups) {
730 const char *gname = pctlops->get_group_name(pctldev,
731 group_selector);
732 if (!strcmp(gname, pin_group)) {
733 dev_dbg(pctldev->dev,
734 "found group selector %u for %s\n",
735 group_selector,
736 pin_group);
737 return group_selector;
738 }
739
740 group_selector++;
741 }
742
743 dev_err(pctldev->dev, "does not have pin group %s\n",
744 pin_group);
745
746 return -EINVAL;
747 }
748
749 /**
750 * pinctrl_request_gpio() - request a single pin to be used as GPIO
751 * @gpio: the GPIO pin number from the GPIO subsystem number space
752 *
753 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
754 * as part of their gpio_request() semantics, platforms and individual drivers
755 * shall *NOT* request GPIO pins to be muxed in.
756 */
757 int pinctrl_request_gpio(unsigned gpio)
758 {
759 struct pinctrl_dev *pctldev;
760 struct pinctrl_gpio_range *range;
761 int ret;
762 int pin;
763
764 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
765 if (ret) {
766 if (pinctrl_ready_for_gpio_range(gpio))
767 ret = 0;
768 return ret;
769 }
770
771 mutex_lock(&pctldev->mutex);
772
773 /* Convert to the pin controllers number space */
774 pin = gpio_to_pin(range, gpio);
775
776 ret = pinmux_request_gpio(pctldev, range, pin, gpio);
777
778 mutex_unlock(&pctldev->mutex);
779
780 return ret;
781 }
782 EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
783
784 /**
785 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
786 * @gpio: the GPIO pin number from the GPIO subsystem number space
787 *
788 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
789 * as part of their gpio_free() semantics, platforms and individual drivers
790 * shall *NOT* request GPIO pins to be muxed out.
791 */
792 void pinctrl_free_gpio(unsigned gpio)
793 {
794 struct pinctrl_dev *pctldev;
795 struct pinctrl_gpio_range *range;
796 int ret;
797 int pin;
798
799 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
800 if (ret) {
801 return;
802 }
803 mutex_lock(&pctldev->mutex);
804
805 /* Convert to the pin controllers number space */
806 pin = gpio_to_pin(range, gpio);
807
808 pinmux_free_gpio(pctldev, pin, range);
809
810 mutex_unlock(&pctldev->mutex);
811 }
812 EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
813
814 static int pinctrl_gpio_direction(unsigned gpio, bool input)
815 {
816 struct pinctrl_dev *pctldev;
817 struct pinctrl_gpio_range *range;
818 int ret;
819 int pin;
820
821 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
822 if (ret) {
823 return ret;
824 }
825
826 mutex_lock(&pctldev->mutex);
827
828 /* Convert to the pin controllers number space */
829 pin = gpio_to_pin(range, gpio);
830 ret = pinmux_gpio_direction(pctldev, range, pin, input);
831
832 mutex_unlock(&pctldev->mutex);
833
834 return ret;
835 }
836
837 /**
838 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
839 * @gpio: the GPIO pin number from the GPIO subsystem number space
840 *
841 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
842 * as part of their gpio_direction_input() semantics, platforms and individual
843 * drivers shall *NOT* touch pin control GPIO calls.
844 */
845 int pinctrl_gpio_direction_input(unsigned gpio)
846 {
847 return pinctrl_gpio_direction(gpio, true);
848 }
849 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
850
851 /**
852 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
853 * @gpio: the GPIO pin number from the GPIO subsystem number space
854 *
855 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
856 * as part of their gpio_direction_output() semantics, platforms and individual
857 * drivers shall *NOT* touch pin control GPIO calls.
858 */
859 int pinctrl_gpio_direction_output(unsigned gpio)
860 {
861 return pinctrl_gpio_direction(gpio, false);
862 }
863 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
864
865 /**
866 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
867 * @gpio: the GPIO pin number from the GPIO subsystem number space
868 * @config: the configuration to apply to the GPIO
869 *
870 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
871 * they need to call the underlying pin controller to change GPIO config
872 * (for example set debounce time).
873 */
874 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
875 {
876 unsigned long configs[] = { config };
877 struct pinctrl_gpio_range *range;
878 struct pinctrl_dev *pctldev;
879 int ret, pin;
880
881 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
882 if (ret)
883 return ret;
884
885 mutex_lock(&pctldev->mutex);
886 pin = gpio_to_pin(range, gpio);
887 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
888 mutex_unlock(&pctldev->mutex);
889
890 return ret;
891 }
892 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
893
894 static struct pinctrl_state *find_state(struct pinctrl *p,
895 const char *name)
896 {
897 struct pinctrl_state *state;
898
899 list_for_each_entry(state, &p->states, node)
900 if (!strcmp(state->name, name))
901 return state;
902
903 return NULL;
904 }
905
906 static struct pinctrl_state *create_state(struct pinctrl *p,
907 const char *name)
908 {
909 struct pinctrl_state *state;
910
911 state = kzalloc(sizeof(*state), GFP_KERNEL);
912 if (!state)
913 return ERR_PTR(-ENOMEM);
914
915 state->name = name;
916 INIT_LIST_HEAD(&state->settings);
917
918 list_add_tail(&state->node, &p->states);
919
920 return state;
921 }
922
923 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
924 struct pinctrl_map const *map)
925 {
926 struct pinctrl_state *state;
927 struct pinctrl_setting *setting;
928 int ret;
929
930 state = find_state(p, map->name);
931 if (!state)
932 state = create_state(p, map->name);
933 if (IS_ERR(state))
934 return PTR_ERR(state);
935
936 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
937 return 0;
938
939 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
940 if (!setting)
941 return -ENOMEM;
942
943 setting->type = map->type;
944
945 if (pctldev)
946 setting->pctldev = pctldev;
947 else
948 setting->pctldev =
949 get_pinctrl_dev_from_devname(map->ctrl_dev_name);
950 if (setting->pctldev == NULL) {
951 kfree(setting);
952 /* Do not defer probing of hogs (circular loop) */
953 if (!strcmp(map->ctrl_dev_name, map->dev_name))
954 return -ENODEV;
955 /*
956 * OK let us guess that the driver is not there yet, and
957 * let's defer obtaining this pinctrl handle to later...
958 */
959 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
960 map->ctrl_dev_name);
961 return -EPROBE_DEFER;
962 }
963
964 setting->dev_name = map->dev_name;
965
966 switch (map->type) {
967 case PIN_MAP_TYPE_MUX_GROUP:
968 ret = pinmux_map_to_setting(map, setting);
969 break;
970 case PIN_MAP_TYPE_CONFIGS_PIN:
971 case PIN_MAP_TYPE_CONFIGS_GROUP:
972 ret = pinconf_map_to_setting(map, setting);
973 break;
974 default:
975 ret = -EINVAL;
976 break;
977 }
978 if (ret < 0) {
979 kfree(setting);
980 return ret;
981 }
982
983 list_add_tail(&setting->node, &state->settings);
984
985 return 0;
986 }
987
988 static struct pinctrl *find_pinctrl(struct device *dev)
989 {
990 struct pinctrl *p;
991
992 mutex_lock(&pinctrl_list_mutex);
993 list_for_each_entry(p, &pinctrl_list, node)
994 if (p->dev == dev) {
995 mutex_unlock(&pinctrl_list_mutex);
996 return p;
997 }
998
999 mutex_unlock(&pinctrl_list_mutex);
1000 return NULL;
1001 }
1002
1003 static void pinctrl_free(struct pinctrl *p, bool inlist);
1004
1005 static struct pinctrl *create_pinctrl(struct device *dev,
1006 struct pinctrl_dev *pctldev)
1007 {
1008 struct pinctrl *p;
1009 const char *devname;
1010 struct pinctrl_maps *maps_node;
1011 int i;
1012 struct pinctrl_map const *map;
1013 int ret;
1014
1015 /*
1016 * create the state cookie holder struct pinctrl for each
1017 * mapping, this is what consumers will get when requesting
1018 * a pin control handle with pinctrl_get()
1019 */
1020 p = kzalloc(sizeof(*p), GFP_KERNEL);
1021 if (!p)
1022 return ERR_PTR(-ENOMEM);
1023 p->dev = dev;
1024 INIT_LIST_HEAD(&p->states);
1025 INIT_LIST_HEAD(&p->dt_maps);
1026
1027 ret = pinctrl_dt_to_map(p, pctldev);
1028 if (ret < 0) {
1029 kfree(p);
1030 return ERR_PTR(ret);
1031 }
1032
1033 devname = dev_name(dev);
1034
1035 mutex_lock(&pinctrl_maps_mutex);
1036 /* Iterate over the pin control maps to locate the right ones */
1037 for_each_maps(maps_node, i, map) {
1038 /* Map must be for this device */
1039 if (strcmp(map->dev_name, devname))
1040 continue;
1041
1042 ret = add_setting(p, pctldev, map);
1043 /*
1044 * At this point the adding of a setting may:
1045 *
1046 * - Defer, if the pinctrl device is not yet available
1047 * - Fail, if the pinctrl device is not yet available,
1048 * AND the setting is a hog. We cannot defer that, since
1049 * the hog will kick in immediately after the device
1050 * is registered.
1051 *
1052 * If the error returned was not -EPROBE_DEFER then we
1053 * accumulate the errors to see if we end up with
1054 * an -EPROBE_DEFER later, as that is the worst case.
1055 */
1056 if (ret == -EPROBE_DEFER) {
1057 pinctrl_free(p, false);
1058 mutex_unlock(&pinctrl_maps_mutex);
1059 return ERR_PTR(ret);
1060 }
1061 }
1062 mutex_unlock(&pinctrl_maps_mutex);
1063
1064 if (ret < 0) {
1065 /* If some other error than deferral occurred, return here */
1066 pinctrl_free(p, false);
1067 return ERR_PTR(ret);
1068 }
1069
1070 kref_init(&p->users);
1071
1072 /* Add the pinctrl handle to the global list */
1073 mutex_lock(&pinctrl_list_mutex);
1074 list_add_tail(&p->node, &pinctrl_list);
1075 mutex_unlock(&pinctrl_list_mutex);
1076
1077 return p;
1078 }
1079
1080 /**
1081 * pinctrl_get() - retrieves the pinctrl handle for a device
1082 * @dev: the device to obtain the handle for
1083 */
1084 struct pinctrl *pinctrl_get(struct device *dev)
1085 {
1086 struct pinctrl *p;
1087
1088 if (WARN_ON(!dev))
1089 return ERR_PTR(-EINVAL);
1090
1091 /*
1092 * See if somebody else (such as the device core) has already
1093 * obtained a handle to the pinctrl for this device. In that case,
1094 * return another pointer to it.
1095 */
1096 p = find_pinctrl(dev);
1097 if (p != NULL) {
1098 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1099 kref_get(&p->users);
1100 return p;
1101 }
1102
1103 return create_pinctrl(dev, NULL);
1104 }
1105 EXPORT_SYMBOL_GPL(pinctrl_get);
1106
1107 static void pinctrl_free_setting(bool disable_setting,
1108 struct pinctrl_setting *setting)
1109 {
1110 switch (setting->type) {
1111 case PIN_MAP_TYPE_MUX_GROUP:
1112 if (disable_setting)
1113 pinmux_disable_setting(setting);
1114 pinmux_free_setting(setting);
1115 break;
1116 case PIN_MAP_TYPE_CONFIGS_PIN:
1117 case PIN_MAP_TYPE_CONFIGS_GROUP:
1118 pinconf_free_setting(setting);
1119 break;
1120 default:
1121 break;
1122 }
1123 }
1124
1125 static void pinctrl_free(struct pinctrl *p, bool inlist)
1126 {
1127 struct pinctrl_state *state, *n1;
1128 struct pinctrl_setting *setting, *n2;
1129
1130 mutex_lock(&pinctrl_list_mutex);
1131 list_for_each_entry_safe(state, n1, &p->states, node) {
1132 list_for_each_entry_safe(setting, n2, &state->settings, node) {
1133 pinctrl_free_setting(state == p->state, setting);
1134 list_del(&setting->node);
1135 kfree(setting);
1136 }
1137 list_del(&state->node);
1138 kfree(state);
1139 }
1140
1141 pinctrl_dt_free_maps(p);
1142
1143 if (inlist)
1144 list_del(&p->node);
1145 kfree(p);
1146 mutex_unlock(&pinctrl_list_mutex);
1147 }
1148
1149 /**
1150 * pinctrl_release() - release the pinctrl handle
1151 * @kref: the kref in the pinctrl being released
1152 */
1153 static void pinctrl_release(struct kref *kref)
1154 {
1155 struct pinctrl *p = container_of(kref, struct pinctrl, users);
1156
1157 pinctrl_free(p, true);
1158 }
1159
1160 /**
1161 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1162 * @p: the pinctrl handle to release
1163 */
1164 void pinctrl_put(struct pinctrl *p)
1165 {
1166 kref_put(&p->users, pinctrl_release);
1167 }
1168 EXPORT_SYMBOL_GPL(pinctrl_put);
1169
1170 /**
1171 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1172 * @p: the pinctrl handle to retrieve the state from
1173 * @name: the state name to retrieve
1174 */
1175 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1176 const char *name)
1177 {
1178 struct pinctrl_state *state;
1179
1180 state = find_state(p, name);
1181 if (!state) {
1182 if (pinctrl_dummy_state) {
1183 /* create dummy state */
1184 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1185 name);
1186 state = create_state(p, name);
1187 } else
1188 state = ERR_PTR(-ENODEV);
1189 }
1190
1191 return state;
1192 }
1193 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1194
1195 /**
1196 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1197 * @p: the pinctrl handle for the device that requests configuration
1198 * @state: the state handle to select/activate/program
1199 */
1200 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1201 {
1202 struct pinctrl_setting *setting, *setting2;
1203 struct pinctrl_state *old_state = p->state;
1204 int ret;
1205
1206 if (p->state == state)
1207 return 0;
1208
1209 if (p->state) {
1210 /*
1211 * For each pinmux setting in the old state, forget SW's record
1212 * of mux owner for that pingroup. Any pingroups which are
1213 * still owned by the new state will be re-acquired by the call
1214 * to pinmux_enable_setting() in the loop below.
1215 */
1216 list_for_each_entry(setting, &p->state->settings, node) {
1217 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1218 continue;
1219 pinmux_disable_setting(setting);
1220 }
1221 }
1222
1223 p->state = NULL;
1224
1225 /* Apply all the settings for the new state */
1226 list_for_each_entry(setting, &state->settings, node) {
1227 switch (setting->type) {
1228 case PIN_MAP_TYPE_MUX_GROUP:
1229 ret = pinmux_enable_setting(setting);
1230 break;
1231 case PIN_MAP_TYPE_CONFIGS_PIN:
1232 case PIN_MAP_TYPE_CONFIGS_GROUP:
1233 ret = pinconf_apply_setting(setting);
1234 break;
1235 default:
1236 ret = -EINVAL;
1237 break;
1238 }
1239
1240 if (ret < 0) {
1241 goto unapply_new_state;
1242 }
1243 }
1244
1245 p->state = state;
1246
1247 return 0;
1248
1249 unapply_new_state:
1250 dev_err(p->dev, "Error applying setting, reverse things back\n");
1251
1252 list_for_each_entry(setting2, &state->settings, node) {
1253 if (&setting2->node == &setting->node)
1254 break;
1255 /*
1256 * All we can do here is pinmux_disable_setting.
1257 * That means that some pins are muxed differently now
1258 * than they were before applying the setting (We can't
1259 * "unmux a pin"!), but it's not a big deal since the pins
1260 * are free to be muxed by another apply_setting.
1261 */
1262 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1263 pinmux_disable_setting(setting2);
1264 }
1265
1266 /* There's no infinite recursive loop here because p->state is NULL */
1267 if (old_state)
1268 pinctrl_select_state(p, old_state);
1269
1270 return ret;
1271 }
1272 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1273
1274 static void devm_pinctrl_release(struct device *dev, void *res)
1275 {
1276 pinctrl_put(*(struct pinctrl **)res);
1277 }
1278
1279 /**
1280 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1281 * @dev: the device to obtain the handle for
1282 *
1283 * If there is a need to explicitly destroy the returned struct pinctrl,
1284 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1285 */
1286 struct pinctrl *devm_pinctrl_get(struct device *dev)
1287 {
1288 struct pinctrl **ptr, *p;
1289
1290 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1291 if (!ptr)
1292 return ERR_PTR(-ENOMEM);
1293
1294 p = pinctrl_get(dev);
1295 if (!IS_ERR(p)) {
1296 *ptr = p;
1297 devres_add(dev, ptr);
1298 } else {
1299 devres_free(ptr);
1300 }
1301
1302 return p;
1303 }
1304 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1305
1306 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1307 {
1308 struct pinctrl **p = res;
1309
1310 return *p == data;
1311 }
1312
1313 /**
1314 * devm_pinctrl_put() - Resource managed pinctrl_put()
1315 * @p: the pinctrl handle to release
1316 *
1317 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1318 * this function will not need to be called and the resource management
1319 * code will ensure that the resource is freed.
1320 */
1321 void devm_pinctrl_put(struct pinctrl *p)
1322 {
1323 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1324 devm_pinctrl_match, p));
1325 }
1326 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1327
1328 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1329 bool dup)
1330 {
1331 int i, ret;
1332 struct pinctrl_maps *maps_node;
1333
1334 pr_debug("add %u pinctrl maps\n", num_maps);
1335
1336 /* First sanity check the new mapping */
1337 for (i = 0; i < num_maps; i++) {
1338 if (!maps[i].dev_name) {
1339 pr_err("failed to register map %s (%d): no device given\n",
1340 maps[i].name, i);
1341 return -EINVAL;
1342 }
1343
1344 if (!maps[i].name) {
1345 pr_err("failed to register map %d: no map name given\n",
1346 i);
1347 return -EINVAL;
1348 }
1349
1350 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1351 !maps[i].ctrl_dev_name) {
1352 pr_err("failed to register map %s (%d): no pin control device given\n",
1353 maps[i].name, i);
1354 return -EINVAL;
1355 }
1356
1357 switch (maps[i].type) {
1358 case PIN_MAP_TYPE_DUMMY_STATE:
1359 break;
1360 case PIN_MAP_TYPE_MUX_GROUP:
1361 ret = pinmux_validate_map(&maps[i], i);
1362 if (ret < 0)
1363 return ret;
1364 break;
1365 case PIN_MAP_TYPE_CONFIGS_PIN:
1366 case PIN_MAP_TYPE_CONFIGS_GROUP:
1367 ret = pinconf_validate_map(&maps[i], i);
1368 if (ret < 0)
1369 return ret;
1370 break;
1371 default:
1372 pr_err("failed to register map %s (%d): invalid type given\n",
1373 maps[i].name, i);
1374 return -EINVAL;
1375 }
1376 }
1377
1378 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1379 if (!maps_node)
1380 return -ENOMEM;
1381
1382 maps_node->num_maps = num_maps;
1383 if (dup) {
1384 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1385 GFP_KERNEL);
1386 if (!maps_node->maps) {
1387 pr_err("failed to duplicate mapping table\n");
1388 kfree(maps_node);
1389 return -ENOMEM;
1390 }
1391 } else {
1392 maps_node->maps = maps;
1393 }
1394
1395 mutex_lock(&pinctrl_maps_mutex);
1396 list_add_tail(&maps_node->node, &pinctrl_maps);
1397 mutex_unlock(&pinctrl_maps_mutex);
1398
1399 return 0;
1400 }
1401
1402 /**
1403 * pinctrl_register_mappings() - register a set of pin controller mappings
1404 * @maps: the pincontrol mappings table to register. This should probably be
1405 * marked with __initdata so it can be discarded after boot. This
1406 * function will perform a shallow copy for the mapping entries.
1407 * @num_maps: the number of maps in the mapping table
1408 */
1409 int pinctrl_register_mappings(struct pinctrl_map const *maps,
1410 unsigned num_maps)
1411 {
1412 return pinctrl_register_map(maps, num_maps, true);
1413 }
1414
1415 void pinctrl_unregister_map(struct pinctrl_map const *map)
1416 {
1417 struct pinctrl_maps *maps_node;
1418
1419 mutex_lock(&pinctrl_maps_mutex);
1420 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1421 if (maps_node->maps == map) {
1422 list_del(&maps_node->node);
1423 kfree(maps_node);
1424 mutex_unlock(&pinctrl_maps_mutex);
1425 return;
1426 }
1427 }
1428 mutex_unlock(&pinctrl_maps_mutex);
1429 }
1430
1431 /**
1432 * pinctrl_force_sleep() - turn a given controller device into sleep state
1433 * @pctldev: pin controller device
1434 */
1435 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1436 {
1437 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1438 return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1439 return 0;
1440 }
1441 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1442
1443 /**
1444 * pinctrl_force_default() - turn a given controller device into default state
1445 * @pctldev: pin controller device
1446 */
1447 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1448 {
1449 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1450 return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1451 return 0;
1452 }
1453 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1454
1455 /**
1456 * pinctrl_init_done() - tell pinctrl probe is done
1457 *
1458 * We'll use this time to switch the pins from "init" to "default" unless the
1459 * driver selected some other state.
1460 *
1461 * @dev: device to that's done probing
1462 */
1463 int pinctrl_init_done(struct device *dev)
1464 {
1465 struct dev_pin_info *pins = dev->pins;
1466 int ret;
1467
1468 if (!pins)
1469 return 0;
1470
1471 if (IS_ERR(pins->init_state))
1472 return 0; /* No such state */
1473
1474 if (pins->p->state != pins->init_state)
1475 return 0; /* Not at init anyway */
1476
1477 if (IS_ERR(pins->default_state))
1478 return 0; /* No default state */
1479
1480 ret = pinctrl_select_state(pins->p, pins->default_state);
1481 if (ret)
1482 dev_err(dev, "failed to activate default pinctrl state\n");
1483
1484 return ret;
1485 }
1486
1487 #ifdef CONFIG_PM
1488
1489 /**
1490 * pinctrl_pm_select_state() - select pinctrl state for PM
1491 * @dev: device to select default state for
1492 * @state: state to set
1493 */
1494 static int pinctrl_pm_select_state(struct device *dev,
1495 struct pinctrl_state *state)
1496 {
1497 struct dev_pin_info *pins = dev->pins;
1498 int ret;
1499
1500 if (IS_ERR(state))
1501 return 0; /* No such state */
1502 ret = pinctrl_select_state(pins->p, state);
1503 if (ret)
1504 dev_err(dev, "failed to activate pinctrl state %s\n",
1505 state->name);
1506 return ret;
1507 }
1508
1509 /**
1510 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1511 * @dev: device to select default state for
1512 */
1513 int pinctrl_pm_select_default_state(struct device *dev)
1514 {
1515 if (!dev->pins)
1516 return 0;
1517
1518 return pinctrl_pm_select_state(dev, dev->pins->default_state);
1519 }
1520 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1521
1522 /**
1523 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1524 * @dev: device to select sleep state for
1525 */
1526 int pinctrl_pm_select_sleep_state(struct device *dev)
1527 {
1528 if (!dev->pins)
1529 return 0;
1530
1531 return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1532 }
1533 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1534
1535 /**
1536 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1537 * @dev: device to select idle state for
1538 */
1539 int pinctrl_pm_select_idle_state(struct device *dev)
1540 {
1541 if (!dev->pins)
1542 return 0;
1543
1544 return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1545 }
1546 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1547 #endif
1548
1549 #ifdef CONFIG_DEBUG_FS
1550
1551 static int pinctrl_pins_show(struct seq_file *s, void *what)
1552 {
1553 struct pinctrl_dev *pctldev = s->private;
1554 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1555 unsigned i, pin;
1556
1557 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1558
1559 mutex_lock(&pctldev->mutex);
1560
1561 /* The pin number can be retrived from the pin controller descriptor */
1562 for (i = 0; i < pctldev->desc->npins; i++) {
1563 struct pin_desc *desc;
1564
1565 pin = pctldev->desc->pins[i].number;
1566 desc = pin_desc_get(pctldev, pin);
1567 /* Pin space may be sparse */
1568 if (desc == NULL)
1569 continue;
1570
1571 seq_printf(s, "pin %d (%s) ", pin, desc->name);
1572
1573 /* Driver-specific info per pin */
1574 if (ops->pin_dbg_show)
1575 ops->pin_dbg_show(pctldev, s, pin);
1576
1577 seq_puts(s, "\n");
1578 }
1579
1580 mutex_unlock(&pctldev->mutex);
1581
1582 return 0;
1583 }
1584
1585 static int pinctrl_groups_show(struct seq_file *s, void *what)
1586 {
1587 struct pinctrl_dev *pctldev = s->private;
1588 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1589 unsigned ngroups, selector = 0;
1590
1591 mutex_lock(&pctldev->mutex);
1592
1593 ngroups = ops->get_groups_count(pctldev);
1594
1595 seq_puts(s, "registered pin groups:\n");
1596 while (selector < ngroups) {
1597 const unsigned *pins = NULL;
1598 unsigned num_pins = 0;
1599 const char *gname = ops->get_group_name(pctldev, selector);
1600 const char *pname;
1601 int ret = 0;
1602 int i;
1603
1604 if (ops->get_group_pins)
1605 ret = ops->get_group_pins(pctldev, selector,
1606 &pins, &num_pins);
1607 if (ret)
1608 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1609 gname);
1610 else {
1611 seq_printf(s, "group: %s\n", gname);
1612 for (i = 0; i < num_pins; i++) {
1613 pname = pin_get_name(pctldev, pins[i]);
1614 if (WARN_ON(!pname)) {
1615 mutex_unlock(&pctldev->mutex);
1616 return -EINVAL;
1617 }
1618 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1619 }
1620 seq_puts(s, "\n");
1621 }
1622 selector++;
1623 }
1624
1625 mutex_unlock(&pctldev->mutex);
1626
1627 return 0;
1628 }
1629
1630 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1631 {
1632 struct pinctrl_dev *pctldev = s->private;
1633 struct pinctrl_gpio_range *range = NULL;
1634
1635 seq_puts(s, "GPIO ranges handled:\n");
1636
1637 mutex_lock(&pctldev->mutex);
1638
1639 /* Loop over the ranges */
1640 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1641 if (range->pins) {
1642 int a;
1643 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1644 range->id, range->name,
1645 range->base, (range->base + range->npins - 1));
1646 for (a = 0; a < range->npins - 1; a++)
1647 seq_printf(s, "%u, ", range->pins[a]);
1648 seq_printf(s, "%u}\n", range->pins[a]);
1649 }
1650 else
1651 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1652 range->id, range->name,
1653 range->base, (range->base + range->npins - 1),
1654 range->pin_base,
1655 (range->pin_base + range->npins - 1));
1656 }
1657
1658 mutex_unlock(&pctldev->mutex);
1659
1660 return 0;
1661 }
1662
1663 static int pinctrl_devices_show(struct seq_file *s, void *what)
1664 {
1665 struct pinctrl_dev *pctldev;
1666
1667 seq_puts(s, "name [pinmux] [pinconf]\n");
1668
1669 mutex_lock(&pinctrldev_list_mutex);
1670
1671 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1672 seq_printf(s, "%s ", pctldev->desc->name);
1673 if (pctldev->desc->pmxops)
1674 seq_puts(s, "yes ");
1675 else
1676 seq_puts(s, "no ");
1677 if (pctldev->desc->confops)
1678 seq_puts(s, "yes");
1679 else
1680 seq_puts(s, "no");
1681 seq_puts(s, "\n");
1682 }
1683
1684 mutex_unlock(&pinctrldev_list_mutex);
1685
1686 return 0;
1687 }
1688
1689 static inline const char *map_type(enum pinctrl_map_type type)
1690 {
1691 static const char * const names[] = {
1692 "INVALID",
1693 "DUMMY_STATE",
1694 "MUX_GROUP",
1695 "CONFIGS_PIN",
1696 "CONFIGS_GROUP",
1697 };
1698
1699 if (type >= ARRAY_SIZE(names))
1700 return "UNKNOWN";
1701
1702 return names[type];
1703 }
1704
1705 static int pinctrl_maps_show(struct seq_file *s, void *what)
1706 {
1707 struct pinctrl_maps *maps_node;
1708 int i;
1709 struct pinctrl_map const *map;
1710
1711 seq_puts(s, "Pinctrl maps:\n");
1712
1713 mutex_lock(&pinctrl_maps_mutex);
1714 for_each_maps(maps_node, i, map) {
1715 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1716 map->dev_name, map->name, map_type(map->type),
1717 map->type);
1718
1719 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1720 seq_printf(s, "controlling device %s\n",
1721 map->ctrl_dev_name);
1722
1723 switch (map->type) {
1724 case PIN_MAP_TYPE_MUX_GROUP:
1725 pinmux_show_map(s, map);
1726 break;
1727 case PIN_MAP_TYPE_CONFIGS_PIN:
1728 case PIN_MAP_TYPE_CONFIGS_GROUP:
1729 pinconf_show_map(s, map);
1730 break;
1731 default:
1732 break;
1733 }
1734
1735 seq_printf(s, "\n");
1736 }
1737 mutex_unlock(&pinctrl_maps_mutex);
1738
1739 return 0;
1740 }
1741
1742 static int pinctrl_show(struct seq_file *s, void *what)
1743 {
1744 struct pinctrl *p;
1745 struct pinctrl_state *state;
1746 struct pinctrl_setting *setting;
1747
1748 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1749
1750 mutex_lock(&pinctrl_list_mutex);
1751
1752 list_for_each_entry(p, &pinctrl_list, node) {
1753 seq_printf(s, "device: %s current state: %s\n",
1754 dev_name(p->dev),
1755 p->state ? p->state->name : "none");
1756
1757 list_for_each_entry(state, &p->states, node) {
1758 seq_printf(s, " state: %s\n", state->name);
1759
1760 list_for_each_entry(setting, &state->settings, node) {
1761 struct pinctrl_dev *pctldev = setting->pctldev;
1762
1763 seq_printf(s, " type: %s controller %s ",
1764 map_type(setting->type),
1765 pinctrl_dev_get_name(pctldev));
1766
1767 switch (setting->type) {
1768 case PIN_MAP_TYPE_MUX_GROUP:
1769 pinmux_show_setting(s, setting);
1770 break;
1771 case PIN_MAP_TYPE_CONFIGS_PIN:
1772 case PIN_MAP_TYPE_CONFIGS_GROUP:
1773 pinconf_show_setting(s, setting);
1774 break;
1775 default:
1776 break;
1777 }
1778 }
1779 }
1780 }
1781
1782 mutex_unlock(&pinctrl_list_mutex);
1783
1784 return 0;
1785 }
1786
1787 static int pinctrl_pins_open(struct inode *inode, struct file *file)
1788 {
1789 return single_open(file, pinctrl_pins_show, inode->i_private);
1790 }
1791
1792 static int pinctrl_groups_open(struct inode *inode, struct file *file)
1793 {
1794 return single_open(file, pinctrl_groups_show, inode->i_private);
1795 }
1796
1797 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1798 {
1799 return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1800 }
1801
1802 static int pinctrl_devices_open(struct inode *inode, struct file *file)
1803 {
1804 return single_open(file, pinctrl_devices_show, NULL);
1805 }
1806
1807 static int pinctrl_maps_open(struct inode *inode, struct file *file)
1808 {
1809 return single_open(file, pinctrl_maps_show, NULL);
1810 }
1811
1812 static int pinctrl_open(struct inode *inode, struct file *file)
1813 {
1814 return single_open(file, pinctrl_show, NULL);
1815 }
1816
1817 static const struct file_operations pinctrl_pins_ops = {
1818 .open = pinctrl_pins_open,
1819 .read = seq_read,
1820 .llseek = seq_lseek,
1821 .release = single_release,
1822 };
1823
1824 static const struct file_operations pinctrl_groups_ops = {
1825 .open = pinctrl_groups_open,
1826 .read = seq_read,
1827 .llseek = seq_lseek,
1828 .release = single_release,
1829 };
1830
1831 static const struct file_operations pinctrl_gpioranges_ops = {
1832 .open = pinctrl_gpioranges_open,
1833 .read = seq_read,
1834 .llseek = seq_lseek,
1835 .release = single_release,
1836 };
1837
1838 static const struct file_operations pinctrl_devices_ops = {
1839 .open = pinctrl_devices_open,
1840 .read = seq_read,
1841 .llseek = seq_lseek,
1842 .release = single_release,
1843 };
1844
1845 static const struct file_operations pinctrl_maps_ops = {
1846 .open = pinctrl_maps_open,
1847 .read = seq_read,
1848 .llseek = seq_lseek,
1849 .release = single_release,
1850 };
1851
1852 static const struct file_operations pinctrl_ops = {
1853 .open = pinctrl_open,
1854 .read = seq_read,
1855 .llseek = seq_lseek,
1856 .release = single_release,
1857 };
1858
1859 static struct dentry *debugfs_root;
1860
1861 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1862 {
1863 struct dentry *device_root;
1864
1865 device_root = debugfs_create_dir(dev_name(pctldev->dev),
1866 debugfs_root);
1867 pctldev->device_root = device_root;
1868
1869 if (IS_ERR(device_root) || !device_root) {
1870 pr_warn("failed to create debugfs directory for %s\n",
1871 dev_name(pctldev->dev));
1872 return;
1873 }
1874 debugfs_create_file("pins", S_IFREG | S_IRUGO,
1875 device_root, pctldev, &pinctrl_pins_ops);
1876 debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1877 device_root, pctldev, &pinctrl_groups_ops);
1878 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1879 device_root, pctldev, &pinctrl_gpioranges_ops);
1880 if (pctldev->desc->pmxops)
1881 pinmux_init_device_debugfs(device_root, pctldev);
1882 if (pctldev->desc->confops)
1883 pinconf_init_device_debugfs(device_root, pctldev);
1884 }
1885
1886 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1887 {
1888 debugfs_remove_recursive(pctldev->device_root);
1889 }
1890
1891 static void pinctrl_init_debugfs(void)
1892 {
1893 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1894 if (IS_ERR(debugfs_root) || !debugfs_root) {
1895 pr_warn("failed to create debugfs directory\n");
1896 debugfs_root = NULL;
1897 return;
1898 }
1899
1900 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1901 debugfs_root, NULL, &pinctrl_devices_ops);
1902 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1903 debugfs_root, NULL, &pinctrl_maps_ops);
1904 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1905 debugfs_root, NULL, &pinctrl_ops);
1906 }
1907
1908 #else /* CONFIG_DEBUG_FS */
1909
1910 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1911 {
1912 }
1913
1914 static void pinctrl_init_debugfs(void)
1915 {
1916 }
1917
1918 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1919 {
1920 }
1921
1922 #endif
1923
1924 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1925 {
1926 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1927
1928 if (!ops ||
1929 !ops->get_groups_count ||
1930 !ops->get_group_name)
1931 return -EINVAL;
1932
1933 return 0;
1934 }
1935
1936 /**
1937 * pinctrl_init_controller() - init a pin controller device
1938 * @pctldesc: descriptor for this pin controller
1939 * @dev: parent device for this pin controller
1940 * @driver_data: private pin controller data for this pin controller
1941 */
1942 static struct pinctrl_dev *
1943 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
1944 void *driver_data)
1945 {
1946 struct pinctrl_dev *pctldev;
1947 int ret;
1948
1949 if (!pctldesc)
1950 return ERR_PTR(-EINVAL);
1951 if (!pctldesc->name)
1952 return ERR_PTR(-EINVAL);
1953
1954 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1955 if (!pctldev)
1956 return ERR_PTR(-ENOMEM);
1957
1958 /* Initialize pin control device struct */
1959 pctldev->owner = pctldesc->owner;
1960 pctldev->desc = pctldesc;
1961 pctldev->driver_data = driver_data;
1962 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1963 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
1964 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
1965 #endif
1966 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
1967 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
1968 #endif
1969 INIT_LIST_HEAD(&pctldev->gpio_ranges);
1970 INIT_LIST_HEAD(&pctldev->node);
1971 pctldev->dev = dev;
1972 mutex_init(&pctldev->mutex);
1973
1974 /* check core ops for sanity */
1975 ret = pinctrl_check_ops(pctldev);
1976 if (ret) {
1977 dev_err(dev, "pinctrl ops lacks necessary functions\n");
1978 goto out_err;
1979 }
1980
1981 /* If we're implementing pinmuxing, check the ops for sanity */
1982 if (pctldesc->pmxops) {
1983 ret = pinmux_check_ops(pctldev);
1984 if (ret)
1985 goto out_err;
1986 }
1987
1988 /* If we're implementing pinconfig, check the ops for sanity */
1989 if (pctldesc->confops) {
1990 ret = pinconf_check_ops(pctldev);
1991 if (ret)
1992 goto out_err;
1993 }
1994
1995 /* Register all the pins */
1996 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
1997 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1998 if (ret) {
1999 dev_err(dev, "error during pin registration\n");
2000 pinctrl_free_pindescs(pctldev, pctldesc->pins,
2001 pctldesc->npins);
2002 goto out_err;
2003 }
2004
2005 return pctldev;
2006
2007 out_err:
2008 mutex_destroy(&pctldev->mutex);
2009 kfree(pctldev);
2010 return ERR_PTR(ret);
2011 }
2012
2013 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2014 {
2015 pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2016 if (PTR_ERR(pctldev->p) == -ENODEV) {
2017 dev_dbg(pctldev->dev, "no hogs found\n");
2018
2019 return 0;
2020 }
2021
2022 if (IS_ERR(pctldev->p)) {
2023 dev_err(pctldev->dev, "error claiming hogs: %li\n",
2024 PTR_ERR(pctldev->p));
2025
2026 return PTR_ERR(pctldev->p);
2027 }
2028
2029 kref_get(&pctldev->p->users);
2030 pctldev->hog_default =
2031 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2032 if (IS_ERR(pctldev->hog_default)) {
2033 dev_dbg(pctldev->dev,
2034 "failed to lookup the default state\n");
2035 } else {
2036 if (pinctrl_select_state(pctldev->p,
2037 pctldev->hog_default))
2038 dev_err(pctldev->dev,
2039 "failed to select default state\n");
2040 }
2041
2042 pctldev->hog_sleep =
2043 pinctrl_lookup_state(pctldev->p,
2044 PINCTRL_STATE_SLEEP);
2045 if (IS_ERR(pctldev->hog_sleep))
2046 dev_dbg(pctldev->dev,
2047 "failed to lookup the sleep state\n");
2048
2049 return 0;
2050 }
2051
2052 int pinctrl_enable(struct pinctrl_dev *pctldev)
2053 {
2054 int error;
2055
2056 error = pinctrl_claim_hogs(pctldev);
2057 if (error) {
2058 dev_err(pctldev->dev, "could not claim hogs: %i\n",
2059 error);
2060 mutex_destroy(&pctldev->mutex);
2061 kfree(pctldev);
2062
2063 return error;
2064 }
2065
2066 mutex_lock(&pinctrldev_list_mutex);
2067 list_add_tail(&pctldev->node, &pinctrldev_list);
2068 mutex_unlock(&pinctrldev_list_mutex);
2069
2070 pinctrl_init_device_debugfs(pctldev);
2071
2072 return 0;
2073 }
2074 EXPORT_SYMBOL_GPL(pinctrl_enable);
2075
2076 /**
2077 * pinctrl_register() - register a pin controller device
2078 * @pctldesc: descriptor for this pin controller
2079 * @dev: parent device for this pin controller
2080 * @driver_data: private pin controller data for this pin controller
2081 *
2082 * Note that pinctrl_register() is known to have problems as the pin
2083 * controller driver functions are called before the driver has a
2084 * struct pinctrl_dev handle. To avoid issues later on, please use the
2085 * new pinctrl_register_and_init() below instead.
2086 */
2087 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2088 struct device *dev, void *driver_data)
2089 {
2090 struct pinctrl_dev *pctldev;
2091 int error;
2092
2093 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2094 if (IS_ERR(pctldev))
2095 return pctldev;
2096
2097 error = pinctrl_enable(pctldev);
2098 if (error)
2099 return ERR_PTR(error);
2100
2101 return pctldev;
2102
2103 }
2104 EXPORT_SYMBOL_GPL(pinctrl_register);
2105
2106 /**
2107 * pinctrl_register_and_init() - register and init pin controller device
2108 * @pctldesc: descriptor for this pin controller
2109 * @dev: parent device for this pin controller
2110 * @driver_data: private pin controller data for this pin controller
2111 * @pctldev: pin controller device
2112 *
2113 * Note that pinctrl_enable() still needs to be manually called after
2114 * this once the driver is ready.
2115 */
2116 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2117 struct device *dev, void *driver_data,
2118 struct pinctrl_dev **pctldev)
2119 {
2120 struct pinctrl_dev *p;
2121
2122 p = pinctrl_init_controller(pctldesc, dev, driver_data);
2123 if (IS_ERR(p))
2124 return PTR_ERR(p);
2125
2126 /*
2127 * We have pinctrl_start() call functions in the pin controller
2128 * driver with create_pinctrl() for at least dt_node_to_map(). So
2129 * let's make sure pctldev is properly initialized for the
2130 * pin controller driver before we do anything.
2131 */
2132 *pctldev = p;
2133
2134 return 0;
2135 }
2136 EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2137
2138 /**
2139 * pinctrl_unregister() - unregister pinmux
2140 * @pctldev: pin controller to unregister
2141 *
2142 * Called by pinmux drivers to unregister a pinmux.
2143 */
2144 void pinctrl_unregister(struct pinctrl_dev *pctldev)
2145 {
2146 struct pinctrl_gpio_range *range, *n;
2147
2148 if (pctldev == NULL)
2149 return;
2150
2151 mutex_lock(&pctldev->mutex);
2152 pinctrl_remove_device_debugfs(pctldev);
2153 mutex_unlock(&pctldev->mutex);
2154
2155 if (!IS_ERR_OR_NULL(pctldev->p))
2156 pinctrl_put(pctldev->p);
2157
2158 mutex_lock(&pinctrldev_list_mutex);
2159 mutex_lock(&pctldev->mutex);
2160 /* TODO: check that no pinmuxes are still active? */
2161 list_del(&pctldev->node);
2162 pinmux_generic_free_functions(pctldev);
2163 pinctrl_generic_free_groups(pctldev);
2164 /* Destroy descriptor tree */
2165 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2166 pctldev->desc->npins);
2167 /* remove gpio ranges map */
2168 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2169 list_del(&range->node);
2170
2171 mutex_unlock(&pctldev->mutex);
2172 mutex_destroy(&pctldev->mutex);
2173 kfree(pctldev);
2174 mutex_unlock(&pinctrldev_list_mutex);
2175 }
2176 EXPORT_SYMBOL_GPL(pinctrl_unregister);
2177
2178 static void devm_pinctrl_dev_release(struct device *dev, void *res)
2179 {
2180 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2181
2182 pinctrl_unregister(pctldev);
2183 }
2184
2185 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2186 {
2187 struct pctldev **r = res;
2188
2189 if (WARN_ON(!r || !*r))
2190 return 0;
2191
2192 return *r == data;
2193 }
2194
2195 /**
2196 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2197 * @dev: parent device for this pin controller
2198 * @pctldesc: descriptor for this pin controller
2199 * @driver_data: private pin controller data for this pin controller
2200 *
2201 * Returns an error pointer if pincontrol register failed. Otherwise
2202 * it returns valid pinctrl handle.
2203 *
2204 * The pinctrl device will be automatically released when the device is unbound.
2205 */
2206 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2207 struct pinctrl_desc *pctldesc,
2208 void *driver_data)
2209 {
2210 struct pinctrl_dev **ptr, *pctldev;
2211
2212 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2213 if (!ptr)
2214 return ERR_PTR(-ENOMEM);
2215
2216 pctldev = pinctrl_register(pctldesc, dev, driver_data);
2217 if (IS_ERR(pctldev)) {
2218 devres_free(ptr);
2219 return pctldev;
2220 }
2221
2222 *ptr = pctldev;
2223 devres_add(dev, ptr);
2224
2225 return pctldev;
2226 }
2227 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2228
2229 /**
2230 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2231 * @dev: parent device for this pin controller
2232 * @pctldesc: descriptor for this pin controller
2233 * @driver_data: private pin controller data for this pin controller
2234 *
2235 * Returns an error pointer if pincontrol register failed. Otherwise
2236 * it returns valid pinctrl handle.
2237 *
2238 * The pinctrl device will be automatically released when the device is unbound.
2239 */
2240 int devm_pinctrl_register_and_init(struct device *dev,
2241 struct pinctrl_desc *pctldesc,
2242 void *driver_data,
2243 struct pinctrl_dev **pctldev)
2244 {
2245 struct pinctrl_dev **ptr;
2246 int error;
2247
2248 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2249 if (!ptr)
2250 return -ENOMEM;
2251
2252 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2253 if (error) {
2254 devres_free(ptr);
2255 return error;
2256 }
2257
2258 *ptr = *pctldev;
2259 devres_add(dev, ptr);
2260
2261 return 0;
2262 }
2263 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2264
2265 /**
2266 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2267 * @dev: device for which which resource was allocated
2268 * @pctldev: the pinctrl device to unregister.
2269 */
2270 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2271 {
2272 WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2273 devm_pinctrl_dev_match, pctldev));
2274 }
2275 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2276
2277 static int __init pinctrl_init(void)
2278 {
2279 pr_info("initialized pinctrl subsystem\n");
2280 pinctrl_init_debugfs();
2281 return 0;
2282 }
2283
2284 /* init early since many drivers really need to initialized pinmux early */
2285 core_initcall(pinctrl_init);