]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/pinctrl/core.c
Merge tag 'iio-for-4.13b' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[mirror_ubuntu-artful-kernel.git] / drivers / pinctrl / core.c
1 /*
2 * Core driver for the pin control subsystem
3 *
4 * Copyright (C) 2011-2012 ST-Ericsson SA
5 * Written on behalf of Linaro for ST-Ericsson
6 * Based on bits of regulator core, gpio core and clk core
7 *
8 * Author: Linus Walleij <linus.walleij@linaro.org>
9 *
10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
11 *
12 * License terms: GNU General Public License (GPL) version 2
13 */
14 #define pr_fmt(fmt) "pinctrl core: " fmt
15
16 #include <linux/kernel.h>
17 #include <linux/kref.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/list.h>
24 #include <linux/sysfs.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pinctrl/pinctrl.h>
29 #include <linux/pinctrl/machine.h>
30
31 #ifdef CONFIG_GPIOLIB
32 #include <asm-generic/gpio.h>
33 #endif
34
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinmux.h"
38 #include "pinconf.h"
39
40
41 static bool pinctrl_dummy_state;
42
43 /* Mutex taken to protect pinctrl_list */
44 static DEFINE_MUTEX(pinctrl_list_mutex);
45
46 /* Mutex taken to protect pinctrl_maps */
47 DEFINE_MUTEX(pinctrl_maps_mutex);
48
49 /* Mutex taken to protect pinctrldev_list */
50 static DEFINE_MUTEX(pinctrldev_list_mutex);
51
52 /* Global list of pin control devices (struct pinctrl_dev) */
53 static LIST_HEAD(pinctrldev_list);
54
55 /* List of pin controller handles (struct pinctrl) */
56 static LIST_HEAD(pinctrl_list);
57
58 /* List of pinctrl maps (struct pinctrl_maps) */
59 LIST_HEAD(pinctrl_maps);
60
61
62 /**
63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
64 *
65 * Usually this function is called by platforms without pinctrl driver support
66 * but run with some shared drivers using pinctrl APIs.
67 * After calling this function, the pinctrl core will return successfully
68 * with creating a dummy state for the driver to keep going smoothly.
69 */
70 void pinctrl_provide_dummies(void)
71 {
72 pinctrl_dummy_state = true;
73 }
74
75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
76 {
77 /* We're not allowed to register devices without name */
78 return pctldev->desc->name;
79 }
80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
81
82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
83 {
84 return dev_name(pctldev->dev);
85 }
86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
87
88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
89 {
90 return pctldev->driver_data;
91 }
92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
93
94 /**
95 * get_pinctrl_dev_from_devname() - look up pin controller device
96 * @devname: the name of a device instance, as returned by dev_name()
97 *
98 * Looks up a pin control device matching a certain device name or pure device
99 * pointer, the pure device pointer will take precedence.
100 */
101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102 {
103 struct pinctrl_dev *pctldev = NULL;
104
105 if (!devname)
106 return NULL;
107
108 mutex_lock(&pinctrldev_list_mutex);
109
110 list_for_each_entry(pctldev, &pinctrldev_list, node) {
111 if (!strcmp(dev_name(pctldev->dev), devname)) {
112 /* Matched on device name */
113 mutex_unlock(&pinctrldev_list_mutex);
114 return pctldev;
115 }
116 }
117
118 mutex_unlock(&pinctrldev_list_mutex);
119
120 return NULL;
121 }
122
123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
124 {
125 struct pinctrl_dev *pctldev;
126
127 mutex_lock(&pinctrldev_list_mutex);
128
129 list_for_each_entry(pctldev, &pinctrldev_list, node)
130 if (pctldev->dev->of_node == np) {
131 mutex_unlock(&pinctrldev_list_mutex);
132 return pctldev;
133 }
134
135 mutex_unlock(&pinctrldev_list_mutex);
136
137 return NULL;
138 }
139
140 /**
141 * pin_get_from_name() - look up a pin number from a name
142 * @pctldev: the pin control device to lookup the pin on
143 * @name: the name of the pin to look up
144 */
145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
146 {
147 unsigned i, pin;
148
149 /* The pin number can be retrived from the pin controller descriptor */
150 for (i = 0; i < pctldev->desc->npins; i++) {
151 struct pin_desc *desc;
152
153 pin = pctldev->desc->pins[i].number;
154 desc = pin_desc_get(pctldev, pin);
155 /* Pin space may be sparse */
156 if (desc && !strcmp(name, desc->name))
157 return pin;
158 }
159
160 return -EINVAL;
161 }
162
163 /**
164 * pin_get_name_from_id() - look up a pin name from a pin id
165 * @pctldev: the pin control device to lookup the pin on
166 * @name: the name of the pin to look up
167 */
168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
169 {
170 const struct pin_desc *desc;
171
172 desc = pin_desc_get(pctldev, pin);
173 if (desc == NULL) {
174 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
175 pin);
176 return NULL;
177 }
178
179 return desc->name;
180 }
181
182 /**
183 * pin_is_valid() - check if pin exists on controller
184 * @pctldev: the pin control device to check the pin on
185 * @pin: pin to check, use the local pin controller index number
186 *
187 * This tells us whether a certain pin exist on a certain pin controller or
188 * not. Pin lists may be sparse, so some pins may not exist.
189 */
190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
191 {
192 struct pin_desc *pindesc;
193
194 if (pin < 0)
195 return false;
196
197 mutex_lock(&pctldev->mutex);
198 pindesc = pin_desc_get(pctldev, pin);
199 mutex_unlock(&pctldev->mutex);
200
201 return pindesc != NULL;
202 }
203 EXPORT_SYMBOL_GPL(pin_is_valid);
204
205 /* Deletes a range of pin descriptors */
206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
207 const struct pinctrl_pin_desc *pins,
208 unsigned num_pins)
209 {
210 int i;
211
212 for (i = 0; i < num_pins; i++) {
213 struct pin_desc *pindesc;
214
215 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
216 pins[i].number);
217 if (pindesc != NULL) {
218 radix_tree_delete(&pctldev->pin_desc_tree,
219 pins[i].number);
220 if (pindesc->dynamic_name)
221 kfree(pindesc->name);
222 }
223 kfree(pindesc);
224 }
225 }
226
227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
228 const struct pinctrl_pin_desc *pin)
229 {
230 struct pin_desc *pindesc;
231
232 pindesc = pin_desc_get(pctldev, pin->number);
233 if (pindesc != NULL) {
234 dev_err(pctldev->dev, "pin %d already registered\n",
235 pin->number);
236 return -EINVAL;
237 }
238
239 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
240 if (!pindesc)
241 return -ENOMEM;
242
243 /* Set owner */
244 pindesc->pctldev = pctldev;
245
246 /* Copy basic pin info */
247 if (pin->name) {
248 pindesc->name = pin->name;
249 } else {
250 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
251 if (pindesc->name == NULL) {
252 kfree(pindesc);
253 return -ENOMEM;
254 }
255 pindesc->dynamic_name = true;
256 }
257
258 pindesc->drv_data = pin->drv_data;
259
260 radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
261 pr_debug("registered pin %d (%s) on %s\n",
262 pin->number, pindesc->name, pctldev->desc->name);
263 return 0;
264 }
265
266 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
267 struct pinctrl_pin_desc const *pins,
268 unsigned num_descs)
269 {
270 unsigned i;
271 int ret = 0;
272
273 for (i = 0; i < num_descs; i++) {
274 ret = pinctrl_register_one_pin(pctldev, &pins[i]);
275 if (ret)
276 return ret;
277 }
278
279 return 0;
280 }
281
282 /**
283 * gpio_to_pin() - GPIO range GPIO number to pin number translation
284 * @range: GPIO range used for the translation
285 * @gpio: gpio pin to translate to a pin number
286 *
287 * Finds the pin number for a given GPIO using the specified GPIO range
288 * as a base for translation. The distinction between linear GPIO ranges
289 * and pin list based GPIO ranges is managed correctly by this function.
290 *
291 * This function assumes the gpio is part of the specified GPIO range, use
292 * only after making sure this is the case (e.g. by calling it on the
293 * result of successful pinctrl_get_device_gpio_range calls)!
294 */
295 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
296 unsigned int gpio)
297 {
298 unsigned int offset = gpio - range->base;
299 if (range->pins)
300 return range->pins[offset];
301 else
302 return range->pin_base + offset;
303 }
304
305 /**
306 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
307 * @pctldev: pin controller device to check
308 * @gpio: gpio pin to check taken from the global GPIO pin space
309 *
310 * Tries to match a GPIO pin number to the ranges handled by a certain pin
311 * controller, return the range or NULL
312 */
313 static struct pinctrl_gpio_range *
314 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
315 {
316 struct pinctrl_gpio_range *range = NULL;
317
318 mutex_lock(&pctldev->mutex);
319 /* Loop over the ranges */
320 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
321 /* Check if we're in the valid range */
322 if (gpio >= range->base &&
323 gpio < range->base + range->npins) {
324 mutex_unlock(&pctldev->mutex);
325 return range;
326 }
327 }
328 mutex_unlock(&pctldev->mutex);
329 return NULL;
330 }
331
332 /**
333 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
334 * the same GPIO chip are in range
335 * @gpio: gpio pin to check taken from the global GPIO pin space
336 *
337 * This function is complement of pinctrl_match_gpio_range(). If the return
338 * value of pinctrl_match_gpio_range() is NULL, this function could be used
339 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
340 * of the same GPIO chip don't have back-end pinctrl interface.
341 * If the return value is true, it means that pinctrl device is ready & the
342 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
343 * is false, it means that pinctrl device may not be ready.
344 */
345 #ifdef CONFIG_GPIOLIB
346 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
347 {
348 struct pinctrl_dev *pctldev;
349 struct pinctrl_gpio_range *range = NULL;
350 struct gpio_chip *chip = gpio_to_chip(gpio);
351
352 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
353 return false;
354
355 mutex_lock(&pinctrldev_list_mutex);
356
357 /* Loop over the pin controllers */
358 list_for_each_entry(pctldev, &pinctrldev_list, node) {
359 /* Loop over the ranges */
360 mutex_lock(&pctldev->mutex);
361 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
362 /* Check if any gpio range overlapped with gpio chip */
363 if (range->base + range->npins - 1 < chip->base ||
364 range->base > chip->base + chip->ngpio - 1)
365 continue;
366 mutex_unlock(&pctldev->mutex);
367 mutex_unlock(&pinctrldev_list_mutex);
368 return true;
369 }
370 mutex_unlock(&pctldev->mutex);
371 }
372
373 mutex_unlock(&pinctrldev_list_mutex);
374
375 return false;
376 }
377 #else
378 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
379 #endif
380
381 /**
382 * pinctrl_get_device_gpio_range() - find device for GPIO range
383 * @gpio: the pin to locate the pin controller for
384 * @outdev: the pin control device if found
385 * @outrange: the GPIO range if found
386 *
387 * Find the pin controller handling a certain GPIO pin from the pinspace of
388 * the GPIO subsystem, return the device and the matching GPIO range. Returns
389 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
390 * may still have not been registered.
391 */
392 static int pinctrl_get_device_gpio_range(unsigned gpio,
393 struct pinctrl_dev **outdev,
394 struct pinctrl_gpio_range **outrange)
395 {
396 struct pinctrl_dev *pctldev = NULL;
397
398 mutex_lock(&pinctrldev_list_mutex);
399
400 /* Loop over the pin controllers */
401 list_for_each_entry(pctldev, &pinctrldev_list, node) {
402 struct pinctrl_gpio_range *range;
403
404 range = pinctrl_match_gpio_range(pctldev, gpio);
405 if (range != NULL) {
406 *outdev = pctldev;
407 *outrange = range;
408 mutex_unlock(&pinctrldev_list_mutex);
409 return 0;
410 }
411 }
412
413 mutex_unlock(&pinctrldev_list_mutex);
414
415 return -EPROBE_DEFER;
416 }
417
418 /**
419 * pinctrl_add_gpio_range() - register a GPIO range for a controller
420 * @pctldev: pin controller device to add the range to
421 * @range: the GPIO range to add
422 *
423 * This adds a range of GPIOs to be handled by a certain pin controller. Call
424 * this to register handled ranges after registering your pin controller.
425 */
426 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
427 struct pinctrl_gpio_range *range)
428 {
429 mutex_lock(&pctldev->mutex);
430 list_add_tail(&range->node, &pctldev->gpio_ranges);
431 mutex_unlock(&pctldev->mutex);
432 }
433 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
434
435 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
436 struct pinctrl_gpio_range *ranges,
437 unsigned nranges)
438 {
439 int i;
440
441 for (i = 0; i < nranges; i++)
442 pinctrl_add_gpio_range(pctldev, &ranges[i]);
443 }
444 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
445
446 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
447 struct pinctrl_gpio_range *range)
448 {
449 struct pinctrl_dev *pctldev;
450
451 pctldev = get_pinctrl_dev_from_devname(devname);
452
453 /*
454 * If we can't find this device, let's assume that is because
455 * it has not probed yet, so the driver trying to register this
456 * range need to defer probing.
457 */
458 if (!pctldev) {
459 return ERR_PTR(-EPROBE_DEFER);
460 }
461 pinctrl_add_gpio_range(pctldev, range);
462
463 return pctldev;
464 }
465 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
466
467 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
468 const unsigned **pins, unsigned *num_pins)
469 {
470 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
471 int gs;
472
473 if (!pctlops->get_group_pins)
474 return -EINVAL;
475
476 gs = pinctrl_get_group_selector(pctldev, pin_group);
477 if (gs < 0)
478 return gs;
479
480 return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
481 }
482 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
483
484 struct pinctrl_gpio_range *
485 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
486 unsigned int pin)
487 {
488 struct pinctrl_gpio_range *range;
489
490 /* Loop over the ranges */
491 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
492 /* Check if we're in the valid range */
493 if (range->pins) {
494 int a;
495 for (a = 0; a < range->npins; a++) {
496 if (range->pins[a] == pin)
497 return range;
498 }
499 } else if (pin >= range->pin_base &&
500 pin < range->pin_base + range->npins)
501 return range;
502 }
503
504 return NULL;
505 }
506 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
507
508 /**
509 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
510 * @pctldev: the pin controller device to look in
511 * @pin: a controller-local number to find the range for
512 */
513 struct pinctrl_gpio_range *
514 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
515 unsigned int pin)
516 {
517 struct pinctrl_gpio_range *range;
518
519 mutex_lock(&pctldev->mutex);
520 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
521 mutex_unlock(&pctldev->mutex);
522
523 return range;
524 }
525 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
526
527 /**
528 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
529 * @pctldev: pin controller device to remove the range from
530 * @range: the GPIO range to remove
531 */
532 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
533 struct pinctrl_gpio_range *range)
534 {
535 mutex_lock(&pctldev->mutex);
536 list_del(&range->node);
537 mutex_unlock(&pctldev->mutex);
538 }
539 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
540
541 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
542
543 /**
544 * pinctrl_generic_get_group_count() - returns the number of pin groups
545 * @pctldev: pin controller device
546 */
547 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
548 {
549 return pctldev->num_groups;
550 }
551 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
552
553 /**
554 * pinctrl_generic_get_group_name() - returns the name of a pin group
555 * @pctldev: pin controller device
556 * @selector: group number
557 */
558 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
559 unsigned int selector)
560 {
561 struct group_desc *group;
562
563 group = radix_tree_lookup(&pctldev->pin_group_tree,
564 selector);
565 if (!group)
566 return NULL;
567
568 return group->name;
569 }
570 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
571
572 /**
573 * pinctrl_generic_get_group_pins() - gets the pin group pins
574 * @pctldev: pin controller device
575 * @selector: group number
576 * @pins: pins in the group
577 * @num_pins: number of pins in the group
578 */
579 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
580 unsigned int selector,
581 const unsigned int **pins,
582 unsigned int *num_pins)
583 {
584 struct group_desc *group;
585
586 group = radix_tree_lookup(&pctldev->pin_group_tree,
587 selector);
588 if (!group) {
589 dev_err(pctldev->dev, "%s could not find pingroup%i\n",
590 __func__, selector);
591 return -EINVAL;
592 }
593
594 *pins = group->pins;
595 *num_pins = group->num_pins;
596
597 return 0;
598 }
599 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
600
601 /**
602 * pinctrl_generic_get_group() - returns a pin group based on the number
603 * @pctldev: pin controller device
604 * @gselector: group number
605 */
606 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
607 unsigned int selector)
608 {
609 struct group_desc *group;
610
611 group = radix_tree_lookup(&pctldev->pin_group_tree,
612 selector);
613 if (!group)
614 return NULL;
615
616 return group;
617 }
618 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
619
620 /**
621 * pinctrl_generic_add_group() - adds a new pin group
622 * @pctldev: pin controller device
623 * @name: name of the pin group
624 * @pins: pins in the pin group
625 * @num_pins: number of pins in the pin group
626 * @data: pin controller driver specific data
627 *
628 * Note that the caller must take care of locking.
629 */
630 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
631 int *pins, int num_pins, void *data)
632 {
633 struct group_desc *group;
634
635 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
636 if (!group)
637 return -ENOMEM;
638
639 group->name = name;
640 group->pins = pins;
641 group->num_pins = num_pins;
642 group->data = data;
643
644 radix_tree_insert(&pctldev->pin_group_tree, pctldev->num_groups,
645 group);
646
647 pctldev->num_groups++;
648
649 return 0;
650 }
651 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
652
653 /**
654 * pinctrl_generic_remove_group() - removes a numbered pin group
655 * @pctldev: pin controller device
656 * @selector: group number
657 *
658 * Note that the caller must take care of locking.
659 */
660 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
661 unsigned int selector)
662 {
663 struct group_desc *group;
664
665 group = radix_tree_lookup(&pctldev->pin_group_tree,
666 selector);
667 if (!group)
668 return -ENOENT;
669
670 radix_tree_delete(&pctldev->pin_group_tree, selector);
671 devm_kfree(pctldev->dev, group);
672
673 pctldev->num_groups--;
674
675 return 0;
676 }
677 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
678
679 /**
680 * pinctrl_generic_free_groups() - removes all pin groups
681 * @pctldev: pin controller device
682 *
683 * Note that the caller must take care of locking. The pinctrl groups
684 * are allocated with devm_kzalloc() so no need to free them here.
685 */
686 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
687 {
688 struct radix_tree_iter iter;
689 void **slot;
690
691 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
692 radix_tree_delete(&pctldev->pin_group_tree, iter.index);
693
694 pctldev->num_groups = 0;
695 }
696
697 #else
698 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
699 {
700 }
701 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
702
703 /**
704 * pinctrl_get_group_selector() - returns the group selector for a group
705 * @pctldev: the pin controller handling the group
706 * @pin_group: the pin group to look up
707 */
708 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
709 const char *pin_group)
710 {
711 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
712 unsigned ngroups = pctlops->get_groups_count(pctldev);
713 unsigned group_selector = 0;
714
715 while (group_selector < ngroups) {
716 const char *gname = pctlops->get_group_name(pctldev,
717 group_selector);
718 if (!strcmp(gname, pin_group)) {
719 dev_dbg(pctldev->dev,
720 "found group selector %u for %s\n",
721 group_selector,
722 pin_group);
723 return group_selector;
724 }
725
726 group_selector++;
727 }
728
729 dev_err(pctldev->dev, "does not have pin group %s\n",
730 pin_group);
731
732 return -EINVAL;
733 }
734
735 /**
736 * pinctrl_request_gpio() - request a single pin to be used as GPIO
737 * @gpio: the GPIO pin number from the GPIO subsystem number space
738 *
739 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
740 * as part of their gpio_request() semantics, platforms and individual drivers
741 * shall *NOT* request GPIO pins to be muxed in.
742 */
743 int pinctrl_request_gpio(unsigned gpio)
744 {
745 struct pinctrl_dev *pctldev;
746 struct pinctrl_gpio_range *range;
747 int ret;
748 int pin;
749
750 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
751 if (ret) {
752 if (pinctrl_ready_for_gpio_range(gpio))
753 ret = 0;
754 return ret;
755 }
756
757 mutex_lock(&pctldev->mutex);
758
759 /* Convert to the pin controllers number space */
760 pin = gpio_to_pin(range, gpio);
761
762 ret = pinmux_request_gpio(pctldev, range, pin, gpio);
763
764 mutex_unlock(&pctldev->mutex);
765
766 return ret;
767 }
768 EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
769
770 /**
771 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
772 * @gpio: the GPIO pin number from the GPIO subsystem number space
773 *
774 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
775 * as part of their gpio_free() semantics, platforms and individual drivers
776 * shall *NOT* request GPIO pins to be muxed out.
777 */
778 void pinctrl_free_gpio(unsigned gpio)
779 {
780 struct pinctrl_dev *pctldev;
781 struct pinctrl_gpio_range *range;
782 int ret;
783 int pin;
784
785 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
786 if (ret) {
787 return;
788 }
789 mutex_lock(&pctldev->mutex);
790
791 /* Convert to the pin controllers number space */
792 pin = gpio_to_pin(range, gpio);
793
794 pinmux_free_gpio(pctldev, pin, range);
795
796 mutex_unlock(&pctldev->mutex);
797 }
798 EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
799
800 static int pinctrl_gpio_direction(unsigned gpio, bool input)
801 {
802 struct pinctrl_dev *pctldev;
803 struct pinctrl_gpio_range *range;
804 int ret;
805 int pin;
806
807 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
808 if (ret) {
809 return ret;
810 }
811
812 mutex_lock(&pctldev->mutex);
813
814 /* Convert to the pin controllers number space */
815 pin = gpio_to_pin(range, gpio);
816 ret = pinmux_gpio_direction(pctldev, range, pin, input);
817
818 mutex_unlock(&pctldev->mutex);
819
820 return ret;
821 }
822
823 /**
824 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
825 * @gpio: the GPIO pin number from the GPIO subsystem number space
826 *
827 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
828 * as part of their gpio_direction_input() semantics, platforms and individual
829 * drivers shall *NOT* touch pin control GPIO calls.
830 */
831 int pinctrl_gpio_direction_input(unsigned gpio)
832 {
833 return pinctrl_gpio_direction(gpio, true);
834 }
835 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
836
837 /**
838 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
839 * @gpio: the GPIO pin number from the GPIO subsystem number space
840 *
841 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
842 * as part of their gpio_direction_output() semantics, platforms and individual
843 * drivers shall *NOT* touch pin control GPIO calls.
844 */
845 int pinctrl_gpio_direction_output(unsigned gpio)
846 {
847 return pinctrl_gpio_direction(gpio, false);
848 }
849 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
850
851 /**
852 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
853 * @gpio: the GPIO pin number from the GPIO subsystem number space
854 * @config: the configuration to apply to the GPIO
855 *
856 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
857 * they need to call the underlying pin controller to change GPIO config
858 * (for example set debounce time).
859 */
860 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
861 {
862 unsigned long configs[] = { config };
863 struct pinctrl_gpio_range *range;
864 struct pinctrl_dev *pctldev;
865 int ret, pin;
866
867 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
868 if (ret)
869 return ret;
870
871 mutex_lock(&pctldev->mutex);
872 pin = gpio_to_pin(range, gpio);
873 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
874 mutex_unlock(&pctldev->mutex);
875
876 return ret;
877 }
878 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
879
880 static struct pinctrl_state *find_state(struct pinctrl *p,
881 const char *name)
882 {
883 struct pinctrl_state *state;
884
885 list_for_each_entry(state, &p->states, node)
886 if (!strcmp(state->name, name))
887 return state;
888
889 return NULL;
890 }
891
892 static struct pinctrl_state *create_state(struct pinctrl *p,
893 const char *name)
894 {
895 struct pinctrl_state *state;
896
897 state = kzalloc(sizeof(*state), GFP_KERNEL);
898 if (!state)
899 return ERR_PTR(-ENOMEM);
900
901 state->name = name;
902 INIT_LIST_HEAD(&state->settings);
903
904 list_add_tail(&state->node, &p->states);
905
906 return state;
907 }
908
909 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
910 struct pinctrl_map const *map)
911 {
912 struct pinctrl_state *state;
913 struct pinctrl_setting *setting;
914 int ret;
915
916 state = find_state(p, map->name);
917 if (!state)
918 state = create_state(p, map->name);
919 if (IS_ERR(state))
920 return PTR_ERR(state);
921
922 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
923 return 0;
924
925 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
926 if (!setting)
927 return -ENOMEM;
928
929 setting->type = map->type;
930
931 if (pctldev)
932 setting->pctldev = pctldev;
933 else
934 setting->pctldev =
935 get_pinctrl_dev_from_devname(map->ctrl_dev_name);
936 if (setting->pctldev == NULL) {
937 kfree(setting);
938 /* Do not defer probing of hogs (circular loop) */
939 if (!strcmp(map->ctrl_dev_name, map->dev_name))
940 return -ENODEV;
941 /*
942 * OK let us guess that the driver is not there yet, and
943 * let's defer obtaining this pinctrl handle to later...
944 */
945 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
946 map->ctrl_dev_name);
947 return -EPROBE_DEFER;
948 }
949
950 setting->dev_name = map->dev_name;
951
952 switch (map->type) {
953 case PIN_MAP_TYPE_MUX_GROUP:
954 ret = pinmux_map_to_setting(map, setting);
955 break;
956 case PIN_MAP_TYPE_CONFIGS_PIN:
957 case PIN_MAP_TYPE_CONFIGS_GROUP:
958 ret = pinconf_map_to_setting(map, setting);
959 break;
960 default:
961 ret = -EINVAL;
962 break;
963 }
964 if (ret < 0) {
965 kfree(setting);
966 return ret;
967 }
968
969 list_add_tail(&setting->node, &state->settings);
970
971 return 0;
972 }
973
974 static struct pinctrl *find_pinctrl(struct device *dev)
975 {
976 struct pinctrl *p;
977
978 mutex_lock(&pinctrl_list_mutex);
979 list_for_each_entry(p, &pinctrl_list, node)
980 if (p->dev == dev) {
981 mutex_unlock(&pinctrl_list_mutex);
982 return p;
983 }
984
985 mutex_unlock(&pinctrl_list_mutex);
986 return NULL;
987 }
988
989 static void pinctrl_free(struct pinctrl *p, bool inlist);
990
991 static struct pinctrl *create_pinctrl(struct device *dev,
992 struct pinctrl_dev *pctldev)
993 {
994 struct pinctrl *p;
995 const char *devname;
996 struct pinctrl_maps *maps_node;
997 int i;
998 struct pinctrl_map const *map;
999 int ret;
1000
1001 /*
1002 * create the state cookie holder struct pinctrl for each
1003 * mapping, this is what consumers will get when requesting
1004 * a pin control handle with pinctrl_get()
1005 */
1006 p = kzalloc(sizeof(*p), GFP_KERNEL);
1007 if (!p)
1008 return ERR_PTR(-ENOMEM);
1009 p->dev = dev;
1010 INIT_LIST_HEAD(&p->states);
1011 INIT_LIST_HEAD(&p->dt_maps);
1012
1013 ret = pinctrl_dt_to_map(p, pctldev);
1014 if (ret < 0) {
1015 kfree(p);
1016 return ERR_PTR(ret);
1017 }
1018
1019 devname = dev_name(dev);
1020
1021 mutex_lock(&pinctrl_maps_mutex);
1022 /* Iterate over the pin control maps to locate the right ones */
1023 for_each_maps(maps_node, i, map) {
1024 /* Map must be for this device */
1025 if (strcmp(map->dev_name, devname))
1026 continue;
1027
1028 ret = add_setting(p, pctldev, map);
1029 /*
1030 * At this point the adding of a setting may:
1031 *
1032 * - Defer, if the pinctrl device is not yet available
1033 * - Fail, if the pinctrl device is not yet available,
1034 * AND the setting is a hog. We cannot defer that, since
1035 * the hog will kick in immediately after the device
1036 * is registered.
1037 *
1038 * If the error returned was not -EPROBE_DEFER then we
1039 * accumulate the errors to see if we end up with
1040 * an -EPROBE_DEFER later, as that is the worst case.
1041 */
1042 if (ret == -EPROBE_DEFER) {
1043 pinctrl_free(p, false);
1044 mutex_unlock(&pinctrl_maps_mutex);
1045 return ERR_PTR(ret);
1046 }
1047 }
1048 mutex_unlock(&pinctrl_maps_mutex);
1049
1050 if (ret < 0) {
1051 /* If some other error than deferral occurred, return here */
1052 pinctrl_free(p, false);
1053 return ERR_PTR(ret);
1054 }
1055
1056 kref_init(&p->users);
1057
1058 /* Add the pinctrl handle to the global list */
1059 mutex_lock(&pinctrl_list_mutex);
1060 list_add_tail(&p->node, &pinctrl_list);
1061 mutex_unlock(&pinctrl_list_mutex);
1062
1063 return p;
1064 }
1065
1066 /**
1067 * pinctrl_get() - retrieves the pinctrl handle for a device
1068 * @dev: the device to obtain the handle for
1069 */
1070 struct pinctrl *pinctrl_get(struct device *dev)
1071 {
1072 struct pinctrl *p;
1073
1074 if (WARN_ON(!dev))
1075 return ERR_PTR(-EINVAL);
1076
1077 /*
1078 * See if somebody else (such as the device core) has already
1079 * obtained a handle to the pinctrl for this device. In that case,
1080 * return another pointer to it.
1081 */
1082 p = find_pinctrl(dev);
1083 if (p != NULL) {
1084 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1085 kref_get(&p->users);
1086 return p;
1087 }
1088
1089 return create_pinctrl(dev, NULL);
1090 }
1091 EXPORT_SYMBOL_GPL(pinctrl_get);
1092
1093 static void pinctrl_free_setting(bool disable_setting,
1094 struct pinctrl_setting *setting)
1095 {
1096 switch (setting->type) {
1097 case PIN_MAP_TYPE_MUX_GROUP:
1098 if (disable_setting)
1099 pinmux_disable_setting(setting);
1100 pinmux_free_setting(setting);
1101 break;
1102 case PIN_MAP_TYPE_CONFIGS_PIN:
1103 case PIN_MAP_TYPE_CONFIGS_GROUP:
1104 pinconf_free_setting(setting);
1105 break;
1106 default:
1107 break;
1108 }
1109 }
1110
1111 static void pinctrl_free(struct pinctrl *p, bool inlist)
1112 {
1113 struct pinctrl_state *state, *n1;
1114 struct pinctrl_setting *setting, *n2;
1115
1116 mutex_lock(&pinctrl_list_mutex);
1117 list_for_each_entry_safe(state, n1, &p->states, node) {
1118 list_for_each_entry_safe(setting, n2, &state->settings, node) {
1119 pinctrl_free_setting(state == p->state, setting);
1120 list_del(&setting->node);
1121 kfree(setting);
1122 }
1123 list_del(&state->node);
1124 kfree(state);
1125 }
1126
1127 pinctrl_dt_free_maps(p);
1128
1129 if (inlist)
1130 list_del(&p->node);
1131 kfree(p);
1132 mutex_unlock(&pinctrl_list_mutex);
1133 }
1134
1135 /**
1136 * pinctrl_release() - release the pinctrl handle
1137 * @kref: the kref in the pinctrl being released
1138 */
1139 static void pinctrl_release(struct kref *kref)
1140 {
1141 struct pinctrl *p = container_of(kref, struct pinctrl, users);
1142
1143 pinctrl_free(p, true);
1144 }
1145
1146 /**
1147 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1148 * @p: the pinctrl handle to release
1149 */
1150 void pinctrl_put(struct pinctrl *p)
1151 {
1152 kref_put(&p->users, pinctrl_release);
1153 }
1154 EXPORT_SYMBOL_GPL(pinctrl_put);
1155
1156 /**
1157 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1158 * @p: the pinctrl handle to retrieve the state from
1159 * @name: the state name to retrieve
1160 */
1161 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1162 const char *name)
1163 {
1164 struct pinctrl_state *state;
1165
1166 state = find_state(p, name);
1167 if (!state) {
1168 if (pinctrl_dummy_state) {
1169 /* create dummy state */
1170 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1171 name);
1172 state = create_state(p, name);
1173 } else
1174 state = ERR_PTR(-ENODEV);
1175 }
1176
1177 return state;
1178 }
1179 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1180
1181 /**
1182 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1183 * @p: the pinctrl handle for the device that requests configuration
1184 * @state: the state handle to select/activate/program
1185 */
1186 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1187 {
1188 struct pinctrl_setting *setting, *setting2;
1189 struct pinctrl_state *old_state = p->state;
1190 int ret;
1191
1192 if (p->state == state)
1193 return 0;
1194
1195 if (p->state) {
1196 /*
1197 * For each pinmux setting in the old state, forget SW's record
1198 * of mux owner for that pingroup. Any pingroups which are
1199 * still owned by the new state will be re-acquired by the call
1200 * to pinmux_enable_setting() in the loop below.
1201 */
1202 list_for_each_entry(setting, &p->state->settings, node) {
1203 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1204 continue;
1205 pinmux_disable_setting(setting);
1206 }
1207 }
1208
1209 p->state = NULL;
1210
1211 /* Apply all the settings for the new state */
1212 list_for_each_entry(setting, &state->settings, node) {
1213 switch (setting->type) {
1214 case PIN_MAP_TYPE_MUX_GROUP:
1215 ret = pinmux_enable_setting(setting);
1216 break;
1217 case PIN_MAP_TYPE_CONFIGS_PIN:
1218 case PIN_MAP_TYPE_CONFIGS_GROUP:
1219 ret = pinconf_apply_setting(setting);
1220 break;
1221 default:
1222 ret = -EINVAL;
1223 break;
1224 }
1225
1226 if (ret < 0) {
1227 goto unapply_new_state;
1228 }
1229 }
1230
1231 p->state = state;
1232
1233 return 0;
1234
1235 unapply_new_state:
1236 dev_err(p->dev, "Error applying setting, reverse things back\n");
1237
1238 list_for_each_entry(setting2, &state->settings, node) {
1239 if (&setting2->node == &setting->node)
1240 break;
1241 /*
1242 * All we can do here is pinmux_disable_setting.
1243 * That means that some pins are muxed differently now
1244 * than they were before applying the setting (We can't
1245 * "unmux a pin"!), but it's not a big deal since the pins
1246 * are free to be muxed by another apply_setting.
1247 */
1248 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1249 pinmux_disable_setting(setting2);
1250 }
1251
1252 /* There's no infinite recursive loop here because p->state is NULL */
1253 if (old_state)
1254 pinctrl_select_state(p, old_state);
1255
1256 return ret;
1257 }
1258 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1259
1260 static void devm_pinctrl_release(struct device *dev, void *res)
1261 {
1262 pinctrl_put(*(struct pinctrl **)res);
1263 }
1264
1265 /**
1266 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1267 * @dev: the device to obtain the handle for
1268 *
1269 * If there is a need to explicitly destroy the returned struct pinctrl,
1270 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1271 */
1272 struct pinctrl *devm_pinctrl_get(struct device *dev)
1273 {
1274 struct pinctrl **ptr, *p;
1275
1276 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1277 if (!ptr)
1278 return ERR_PTR(-ENOMEM);
1279
1280 p = pinctrl_get(dev);
1281 if (!IS_ERR(p)) {
1282 *ptr = p;
1283 devres_add(dev, ptr);
1284 } else {
1285 devres_free(ptr);
1286 }
1287
1288 return p;
1289 }
1290 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1291
1292 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1293 {
1294 struct pinctrl **p = res;
1295
1296 return *p == data;
1297 }
1298
1299 /**
1300 * devm_pinctrl_put() - Resource managed pinctrl_put()
1301 * @p: the pinctrl handle to release
1302 *
1303 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1304 * this function will not need to be called and the resource management
1305 * code will ensure that the resource is freed.
1306 */
1307 void devm_pinctrl_put(struct pinctrl *p)
1308 {
1309 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1310 devm_pinctrl_match, p));
1311 }
1312 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1313
1314 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1315 bool dup)
1316 {
1317 int i, ret;
1318 struct pinctrl_maps *maps_node;
1319
1320 pr_debug("add %u pinctrl maps\n", num_maps);
1321
1322 /* First sanity check the new mapping */
1323 for (i = 0; i < num_maps; i++) {
1324 if (!maps[i].dev_name) {
1325 pr_err("failed to register map %s (%d): no device given\n",
1326 maps[i].name, i);
1327 return -EINVAL;
1328 }
1329
1330 if (!maps[i].name) {
1331 pr_err("failed to register map %d: no map name given\n",
1332 i);
1333 return -EINVAL;
1334 }
1335
1336 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1337 !maps[i].ctrl_dev_name) {
1338 pr_err("failed to register map %s (%d): no pin control device given\n",
1339 maps[i].name, i);
1340 return -EINVAL;
1341 }
1342
1343 switch (maps[i].type) {
1344 case PIN_MAP_TYPE_DUMMY_STATE:
1345 break;
1346 case PIN_MAP_TYPE_MUX_GROUP:
1347 ret = pinmux_validate_map(&maps[i], i);
1348 if (ret < 0)
1349 return ret;
1350 break;
1351 case PIN_MAP_TYPE_CONFIGS_PIN:
1352 case PIN_MAP_TYPE_CONFIGS_GROUP:
1353 ret = pinconf_validate_map(&maps[i], i);
1354 if (ret < 0)
1355 return ret;
1356 break;
1357 default:
1358 pr_err("failed to register map %s (%d): invalid type given\n",
1359 maps[i].name, i);
1360 return -EINVAL;
1361 }
1362 }
1363
1364 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1365 if (!maps_node)
1366 return -ENOMEM;
1367
1368 maps_node->num_maps = num_maps;
1369 if (dup) {
1370 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1371 GFP_KERNEL);
1372 if (!maps_node->maps) {
1373 pr_err("failed to duplicate mapping table\n");
1374 kfree(maps_node);
1375 return -ENOMEM;
1376 }
1377 } else {
1378 maps_node->maps = maps;
1379 }
1380
1381 mutex_lock(&pinctrl_maps_mutex);
1382 list_add_tail(&maps_node->node, &pinctrl_maps);
1383 mutex_unlock(&pinctrl_maps_mutex);
1384
1385 return 0;
1386 }
1387
1388 /**
1389 * pinctrl_register_mappings() - register a set of pin controller mappings
1390 * @maps: the pincontrol mappings table to register. This should probably be
1391 * marked with __initdata so it can be discarded after boot. This
1392 * function will perform a shallow copy for the mapping entries.
1393 * @num_maps: the number of maps in the mapping table
1394 */
1395 int pinctrl_register_mappings(struct pinctrl_map const *maps,
1396 unsigned num_maps)
1397 {
1398 return pinctrl_register_map(maps, num_maps, true);
1399 }
1400
1401 void pinctrl_unregister_map(struct pinctrl_map const *map)
1402 {
1403 struct pinctrl_maps *maps_node;
1404
1405 mutex_lock(&pinctrl_maps_mutex);
1406 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1407 if (maps_node->maps == map) {
1408 list_del(&maps_node->node);
1409 kfree(maps_node);
1410 mutex_unlock(&pinctrl_maps_mutex);
1411 return;
1412 }
1413 }
1414 mutex_unlock(&pinctrl_maps_mutex);
1415 }
1416
1417 /**
1418 * pinctrl_force_sleep() - turn a given controller device into sleep state
1419 * @pctldev: pin controller device
1420 */
1421 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1422 {
1423 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1424 return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1425 return 0;
1426 }
1427 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1428
1429 /**
1430 * pinctrl_force_default() - turn a given controller device into default state
1431 * @pctldev: pin controller device
1432 */
1433 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1434 {
1435 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1436 return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1437 return 0;
1438 }
1439 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1440
1441 /**
1442 * pinctrl_init_done() - tell pinctrl probe is done
1443 *
1444 * We'll use this time to switch the pins from "init" to "default" unless the
1445 * driver selected some other state.
1446 *
1447 * @dev: device to that's done probing
1448 */
1449 int pinctrl_init_done(struct device *dev)
1450 {
1451 struct dev_pin_info *pins = dev->pins;
1452 int ret;
1453
1454 if (!pins)
1455 return 0;
1456
1457 if (IS_ERR(pins->init_state))
1458 return 0; /* No such state */
1459
1460 if (pins->p->state != pins->init_state)
1461 return 0; /* Not at init anyway */
1462
1463 if (IS_ERR(pins->default_state))
1464 return 0; /* No default state */
1465
1466 ret = pinctrl_select_state(pins->p, pins->default_state);
1467 if (ret)
1468 dev_err(dev, "failed to activate default pinctrl state\n");
1469
1470 return ret;
1471 }
1472
1473 #ifdef CONFIG_PM
1474
1475 /**
1476 * pinctrl_pm_select_state() - select pinctrl state for PM
1477 * @dev: device to select default state for
1478 * @state: state to set
1479 */
1480 static int pinctrl_pm_select_state(struct device *dev,
1481 struct pinctrl_state *state)
1482 {
1483 struct dev_pin_info *pins = dev->pins;
1484 int ret;
1485
1486 if (IS_ERR(state))
1487 return 0; /* No such state */
1488 ret = pinctrl_select_state(pins->p, state);
1489 if (ret)
1490 dev_err(dev, "failed to activate pinctrl state %s\n",
1491 state->name);
1492 return ret;
1493 }
1494
1495 /**
1496 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1497 * @dev: device to select default state for
1498 */
1499 int pinctrl_pm_select_default_state(struct device *dev)
1500 {
1501 if (!dev->pins)
1502 return 0;
1503
1504 return pinctrl_pm_select_state(dev, dev->pins->default_state);
1505 }
1506 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1507
1508 /**
1509 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1510 * @dev: device to select sleep state for
1511 */
1512 int pinctrl_pm_select_sleep_state(struct device *dev)
1513 {
1514 if (!dev->pins)
1515 return 0;
1516
1517 return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1518 }
1519 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1520
1521 /**
1522 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1523 * @dev: device to select idle state for
1524 */
1525 int pinctrl_pm_select_idle_state(struct device *dev)
1526 {
1527 if (!dev->pins)
1528 return 0;
1529
1530 return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1531 }
1532 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1533 #endif
1534
1535 #ifdef CONFIG_DEBUG_FS
1536
1537 static int pinctrl_pins_show(struct seq_file *s, void *what)
1538 {
1539 struct pinctrl_dev *pctldev = s->private;
1540 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1541 unsigned i, pin;
1542
1543 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1544
1545 mutex_lock(&pctldev->mutex);
1546
1547 /* The pin number can be retrived from the pin controller descriptor */
1548 for (i = 0; i < pctldev->desc->npins; i++) {
1549 struct pin_desc *desc;
1550
1551 pin = pctldev->desc->pins[i].number;
1552 desc = pin_desc_get(pctldev, pin);
1553 /* Pin space may be sparse */
1554 if (desc == NULL)
1555 continue;
1556
1557 seq_printf(s, "pin %d (%s) ", pin, desc->name);
1558
1559 /* Driver-specific info per pin */
1560 if (ops->pin_dbg_show)
1561 ops->pin_dbg_show(pctldev, s, pin);
1562
1563 seq_puts(s, "\n");
1564 }
1565
1566 mutex_unlock(&pctldev->mutex);
1567
1568 return 0;
1569 }
1570
1571 static int pinctrl_groups_show(struct seq_file *s, void *what)
1572 {
1573 struct pinctrl_dev *pctldev = s->private;
1574 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1575 unsigned ngroups, selector = 0;
1576
1577 mutex_lock(&pctldev->mutex);
1578
1579 ngroups = ops->get_groups_count(pctldev);
1580
1581 seq_puts(s, "registered pin groups:\n");
1582 while (selector < ngroups) {
1583 const unsigned *pins = NULL;
1584 unsigned num_pins = 0;
1585 const char *gname = ops->get_group_name(pctldev, selector);
1586 const char *pname;
1587 int ret = 0;
1588 int i;
1589
1590 if (ops->get_group_pins)
1591 ret = ops->get_group_pins(pctldev, selector,
1592 &pins, &num_pins);
1593 if (ret)
1594 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1595 gname);
1596 else {
1597 seq_printf(s, "group: %s\n", gname);
1598 for (i = 0; i < num_pins; i++) {
1599 pname = pin_get_name(pctldev, pins[i]);
1600 if (WARN_ON(!pname)) {
1601 mutex_unlock(&pctldev->mutex);
1602 return -EINVAL;
1603 }
1604 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1605 }
1606 seq_puts(s, "\n");
1607 }
1608 selector++;
1609 }
1610
1611 mutex_unlock(&pctldev->mutex);
1612
1613 return 0;
1614 }
1615
1616 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1617 {
1618 struct pinctrl_dev *pctldev = s->private;
1619 struct pinctrl_gpio_range *range = NULL;
1620
1621 seq_puts(s, "GPIO ranges handled:\n");
1622
1623 mutex_lock(&pctldev->mutex);
1624
1625 /* Loop over the ranges */
1626 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1627 if (range->pins) {
1628 int a;
1629 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1630 range->id, range->name,
1631 range->base, (range->base + range->npins - 1));
1632 for (a = 0; a < range->npins - 1; a++)
1633 seq_printf(s, "%u, ", range->pins[a]);
1634 seq_printf(s, "%u}\n", range->pins[a]);
1635 }
1636 else
1637 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1638 range->id, range->name,
1639 range->base, (range->base + range->npins - 1),
1640 range->pin_base,
1641 (range->pin_base + range->npins - 1));
1642 }
1643
1644 mutex_unlock(&pctldev->mutex);
1645
1646 return 0;
1647 }
1648
1649 static int pinctrl_devices_show(struct seq_file *s, void *what)
1650 {
1651 struct pinctrl_dev *pctldev;
1652
1653 seq_puts(s, "name [pinmux] [pinconf]\n");
1654
1655 mutex_lock(&pinctrldev_list_mutex);
1656
1657 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1658 seq_printf(s, "%s ", pctldev->desc->name);
1659 if (pctldev->desc->pmxops)
1660 seq_puts(s, "yes ");
1661 else
1662 seq_puts(s, "no ");
1663 if (pctldev->desc->confops)
1664 seq_puts(s, "yes");
1665 else
1666 seq_puts(s, "no");
1667 seq_puts(s, "\n");
1668 }
1669
1670 mutex_unlock(&pinctrldev_list_mutex);
1671
1672 return 0;
1673 }
1674
1675 static inline const char *map_type(enum pinctrl_map_type type)
1676 {
1677 static const char * const names[] = {
1678 "INVALID",
1679 "DUMMY_STATE",
1680 "MUX_GROUP",
1681 "CONFIGS_PIN",
1682 "CONFIGS_GROUP",
1683 };
1684
1685 if (type >= ARRAY_SIZE(names))
1686 return "UNKNOWN";
1687
1688 return names[type];
1689 }
1690
1691 static int pinctrl_maps_show(struct seq_file *s, void *what)
1692 {
1693 struct pinctrl_maps *maps_node;
1694 int i;
1695 struct pinctrl_map const *map;
1696
1697 seq_puts(s, "Pinctrl maps:\n");
1698
1699 mutex_lock(&pinctrl_maps_mutex);
1700 for_each_maps(maps_node, i, map) {
1701 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1702 map->dev_name, map->name, map_type(map->type),
1703 map->type);
1704
1705 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1706 seq_printf(s, "controlling device %s\n",
1707 map->ctrl_dev_name);
1708
1709 switch (map->type) {
1710 case PIN_MAP_TYPE_MUX_GROUP:
1711 pinmux_show_map(s, map);
1712 break;
1713 case PIN_MAP_TYPE_CONFIGS_PIN:
1714 case PIN_MAP_TYPE_CONFIGS_GROUP:
1715 pinconf_show_map(s, map);
1716 break;
1717 default:
1718 break;
1719 }
1720
1721 seq_printf(s, "\n");
1722 }
1723 mutex_unlock(&pinctrl_maps_mutex);
1724
1725 return 0;
1726 }
1727
1728 static int pinctrl_show(struct seq_file *s, void *what)
1729 {
1730 struct pinctrl *p;
1731 struct pinctrl_state *state;
1732 struct pinctrl_setting *setting;
1733
1734 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1735
1736 mutex_lock(&pinctrl_list_mutex);
1737
1738 list_for_each_entry(p, &pinctrl_list, node) {
1739 seq_printf(s, "device: %s current state: %s\n",
1740 dev_name(p->dev),
1741 p->state ? p->state->name : "none");
1742
1743 list_for_each_entry(state, &p->states, node) {
1744 seq_printf(s, " state: %s\n", state->name);
1745
1746 list_for_each_entry(setting, &state->settings, node) {
1747 struct pinctrl_dev *pctldev = setting->pctldev;
1748
1749 seq_printf(s, " type: %s controller %s ",
1750 map_type(setting->type),
1751 pinctrl_dev_get_name(pctldev));
1752
1753 switch (setting->type) {
1754 case PIN_MAP_TYPE_MUX_GROUP:
1755 pinmux_show_setting(s, setting);
1756 break;
1757 case PIN_MAP_TYPE_CONFIGS_PIN:
1758 case PIN_MAP_TYPE_CONFIGS_GROUP:
1759 pinconf_show_setting(s, setting);
1760 break;
1761 default:
1762 break;
1763 }
1764 }
1765 }
1766 }
1767
1768 mutex_unlock(&pinctrl_list_mutex);
1769
1770 return 0;
1771 }
1772
1773 static int pinctrl_pins_open(struct inode *inode, struct file *file)
1774 {
1775 return single_open(file, pinctrl_pins_show, inode->i_private);
1776 }
1777
1778 static int pinctrl_groups_open(struct inode *inode, struct file *file)
1779 {
1780 return single_open(file, pinctrl_groups_show, inode->i_private);
1781 }
1782
1783 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1784 {
1785 return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1786 }
1787
1788 static int pinctrl_devices_open(struct inode *inode, struct file *file)
1789 {
1790 return single_open(file, pinctrl_devices_show, NULL);
1791 }
1792
1793 static int pinctrl_maps_open(struct inode *inode, struct file *file)
1794 {
1795 return single_open(file, pinctrl_maps_show, NULL);
1796 }
1797
1798 static int pinctrl_open(struct inode *inode, struct file *file)
1799 {
1800 return single_open(file, pinctrl_show, NULL);
1801 }
1802
1803 static const struct file_operations pinctrl_pins_ops = {
1804 .open = pinctrl_pins_open,
1805 .read = seq_read,
1806 .llseek = seq_lseek,
1807 .release = single_release,
1808 };
1809
1810 static const struct file_operations pinctrl_groups_ops = {
1811 .open = pinctrl_groups_open,
1812 .read = seq_read,
1813 .llseek = seq_lseek,
1814 .release = single_release,
1815 };
1816
1817 static const struct file_operations pinctrl_gpioranges_ops = {
1818 .open = pinctrl_gpioranges_open,
1819 .read = seq_read,
1820 .llseek = seq_lseek,
1821 .release = single_release,
1822 };
1823
1824 static const struct file_operations pinctrl_devices_ops = {
1825 .open = pinctrl_devices_open,
1826 .read = seq_read,
1827 .llseek = seq_lseek,
1828 .release = single_release,
1829 };
1830
1831 static const struct file_operations pinctrl_maps_ops = {
1832 .open = pinctrl_maps_open,
1833 .read = seq_read,
1834 .llseek = seq_lseek,
1835 .release = single_release,
1836 };
1837
1838 static const struct file_operations pinctrl_ops = {
1839 .open = pinctrl_open,
1840 .read = seq_read,
1841 .llseek = seq_lseek,
1842 .release = single_release,
1843 };
1844
1845 static struct dentry *debugfs_root;
1846
1847 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1848 {
1849 struct dentry *device_root;
1850
1851 device_root = debugfs_create_dir(dev_name(pctldev->dev),
1852 debugfs_root);
1853 pctldev->device_root = device_root;
1854
1855 if (IS_ERR(device_root) || !device_root) {
1856 pr_warn("failed to create debugfs directory for %s\n",
1857 dev_name(pctldev->dev));
1858 return;
1859 }
1860 debugfs_create_file("pins", S_IFREG | S_IRUGO,
1861 device_root, pctldev, &pinctrl_pins_ops);
1862 debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1863 device_root, pctldev, &pinctrl_groups_ops);
1864 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1865 device_root, pctldev, &pinctrl_gpioranges_ops);
1866 if (pctldev->desc->pmxops)
1867 pinmux_init_device_debugfs(device_root, pctldev);
1868 if (pctldev->desc->confops)
1869 pinconf_init_device_debugfs(device_root, pctldev);
1870 }
1871
1872 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1873 {
1874 debugfs_remove_recursive(pctldev->device_root);
1875 }
1876
1877 static void pinctrl_init_debugfs(void)
1878 {
1879 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1880 if (IS_ERR(debugfs_root) || !debugfs_root) {
1881 pr_warn("failed to create debugfs directory\n");
1882 debugfs_root = NULL;
1883 return;
1884 }
1885
1886 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1887 debugfs_root, NULL, &pinctrl_devices_ops);
1888 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1889 debugfs_root, NULL, &pinctrl_maps_ops);
1890 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1891 debugfs_root, NULL, &pinctrl_ops);
1892 }
1893
1894 #else /* CONFIG_DEBUG_FS */
1895
1896 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1897 {
1898 }
1899
1900 static void pinctrl_init_debugfs(void)
1901 {
1902 }
1903
1904 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1905 {
1906 }
1907
1908 #endif
1909
1910 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1911 {
1912 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1913
1914 if (!ops ||
1915 !ops->get_groups_count ||
1916 !ops->get_group_name)
1917 return -EINVAL;
1918
1919 return 0;
1920 }
1921
1922 /**
1923 * pinctrl_init_controller() - init a pin controller device
1924 * @pctldesc: descriptor for this pin controller
1925 * @dev: parent device for this pin controller
1926 * @driver_data: private pin controller data for this pin controller
1927 */
1928 static struct pinctrl_dev *
1929 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
1930 void *driver_data)
1931 {
1932 struct pinctrl_dev *pctldev;
1933 int ret;
1934
1935 if (!pctldesc)
1936 return ERR_PTR(-EINVAL);
1937 if (!pctldesc->name)
1938 return ERR_PTR(-EINVAL);
1939
1940 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1941 if (!pctldev)
1942 return ERR_PTR(-ENOMEM);
1943
1944 /* Initialize pin control device struct */
1945 pctldev->owner = pctldesc->owner;
1946 pctldev->desc = pctldesc;
1947 pctldev->driver_data = driver_data;
1948 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1949 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
1950 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
1951 #endif
1952 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
1953 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
1954 #endif
1955 INIT_LIST_HEAD(&pctldev->gpio_ranges);
1956 INIT_LIST_HEAD(&pctldev->node);
1957 pctldev->dev = dev;
1958 mutex_init(&pctldev->mutex);
1959
1960 /* check core ops for sanity */
1961 ret = pinctrl_check_ops(pctldev);
1962 if (ret) {
1963 dev_err(dev, "pinctrl ops lacks necessary functions\n");
1964 goto out_err;
1965 }
1966
1967 /* If we're implementing pinmuxing, check the ops for sanity */
1968 if (pctldesc->pmxops) {
1969 ret = pinmux_check_ops(pctldev);
1970 if (ret)
1971 goto out_err;
1972 }
1973
1974 /* If we're implementing pinconfig, check the ops for sanity */
1975 if (pctldesc->confops) {
1976 ret = pinconf_check_ops(pctldev);
1977 if (ret)
1978 goto out_err;
1979 }
1980
1981 /* Register all the pins */
1982 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
1983 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1984 if (ret) {
1985 dev_err(dev, "error during pin registration\n");
1986 pinctrl_free_pindescs(pctldev, pctldesc->pins,
1987 pctldesc->npins);
1988 goto out_err;
1989 }
1990
1991 return pctldev;
1992
1993 out_err:
1994 mutex_destroy(&pctldev->mutex);
1995 kfree(pctldev);
1996 return ERR_PTR(ret);
1997 }
1998
1999 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2000 {
2001 pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2002 if (PTR_ERR(pctldev->p) == -ENODEV) {
2003 dev_dbg(pctldev->dev, "no hogs found\n");
2004
2005 return 0;
2006 }
2007
2008 if (IS_ERR(pctldev->p)) {
2009 dev_err(pctldev->dev, "error claiming hogs: %li\n",
2010 PTR_ERR(pctldev->p));
2011
2012 return PTR_ERR(pctldev->p);
2013 }
2014
2015 kref_get(&pctldev->p->users);
2016 pctldev->hog_default =
2017 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2018 if (IS_ERR(pctldev->hog_default)) {
2019 dev_dbg(pctldev->dev,
2020 "failed to lookup the default state\n");
2021 } else {
2022 if (pinctrl_select_state(pctldev->p,
2023 pctldev->hog_default))
2024 dev_err(pctldev->dev,
2025 "failed to select default state\n");
2026 }
2027
2028 pctldev->hog_sleep =
2029 pinctrl_lookup_state(pctldev->p,
2030 PINCTRL_STATE_SLEEP);
2031 if (IS_ERR(pctldev->hog_sleep))
2032 dev_dbg(pctldev->dev,
2033 "failed to lookup the sleep state\n");
2034
2035 return 0;
2036 }
2037
2038 int pinctrl_enable(struct pinctrl_dev *pctldev)
2039 {
2040 int error;
2041
2042 error = pinctrl_claim_hogs(pctldev);
2043 if (error) {
2044 dev_err(pctldev->dev, "could not claim hogs: %i\n",
2045 error);
2046 mutex_destroy(&pctldev->mutex);
2047 kfree(pctldev);
2048
2049 return error;
2050 }
2051
2052 mutex_lock(&pinctrldev_list_mutex);
2053 list_add_tail(&pctldev->node, &pinctrldev_list);
2054 mutex_unlock(&pinctrldev_list_mutex);
2055
2056 pinctrl_init_device_debugfs(pctldev);
2057
2058 return 0;
2059 }
2060 EXPORT_SYMBOL_GPL(pinctrl_enable);
2061
2062 /**
2063 * pinctrl_register() - register a pin controller device
2064 * @pctldesc: descriptor for this pin controller
2065 * @dev: parent device for this pin controller
2066 * @driver_data: private pin controller data for this pin controller
2067 *
2068 * Note that pinctrl_register() is known to have problems as the pin
2069 * controller driver functions are called before the driver has a
2070 * struct pinctrl_dev handle. To avoid issues later on, please use the
2071 * new pinctrl_register_and_init() below instead.
2072 */
2073 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2074 struct device *dev, void *driver_data)
2075 {
2076 struct pinctrl_dev *pctldev;
2077 int error;
2078
2079 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2080 if (IS_ERR(pctldev))
2081 return pctldev;
2082
2083 error = pinctrl_enable(pctldev);
2084 if (error)
2085 return ERR_PTR(error);
2086
2087 return pctldev;
2088
2089 }
2090 EXPORT_SYMBOL_GPL(pinctrl_register);
2091
2092 /**
2093 * pinctrl_register_and_init() - register and init pin controller device
2094 * @pctldesc: descriptor for this pin controller
2095 * @dev: parent device for this pin controller
2096 * @driver_data: private pin controller data for this pin controller
2097 * @pctldev: pin controller device
2098 *
2099 * Note that pinctrl_enable() still needs to be manually called after
2100 * this once the driver is ready.
2101 */
2102 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2103 struct device *dev, void *driver_data,
2104 struct pinctrl_dev **pctldev)
2105 {
2106 struct pinctrl_dev *p;
2107
2108 p = pinctrl_init_controller(pctldesc, dev, driver_data);
2109 if (IS_ERR(p))
2110 return PTR_ERR(p);
2111
2112 /*
2113 * We have pinctrl_start() call functions in the pin controller
2114 * driver with create_pinctrl() for at least dt_node_to_map(). So
2115 * let's make sure pctldev is properly initialized for the
2116 * pin controller driver before we do anything.
2117 */
2118 *pctldev = p;
2119
2120 return 0;
2121 }
2122 EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2123
2124 /**
2125 * pinctrl_unregister() - unregister pinmux
2126 * @pctldev: pin controller to unregister
2127 *
2128 * Called by pinmux drivers to unregister a pinmux.
2129 */
2130 void pinctrl_unregister(struct pinctrl_dev *pctldev)
2131 {
2132 struct pinctrl_gpio_range *range, *n;
2133
2134 if (pctldev == NULL)
2135 return;
2136
2137 mutex_lock(&pctldev->mutex);
2138 pinctrl_remove_device_debugfs(pctldev);
2139 mutex_unlock(&pctldev->mutex);
2140
2141 if (!IS_ERR_OR_NULL(pctldev->p))
2142 pinctrl_put(pctldev->p);
2143
2144 mutex_lock(&pinctrldev_list_mutex);
2145 mutex_lock(&pctldev->mutex);
2146 /* TODO: check that no pinmuxes are still active? */
2147 list_del(&pctldev->node);
2148 pinmux_generic_free_functions(pctldev);
2149 pinctrl_generic_free_groups(pctldev);
2150 /* Destroy descriptor tree */
2151 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2152 pctldev->desc->npins);
2153 /* remove gpio ranges map */
2154 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2155 list_del(&range->node);
2156
2157 mutex_unlock(&pctldev->mutex);
2158 mutex_destroy(&pctldev->mutex);
2159 kfree(pctldev);
2160 mutex_unlock(&pinctrldev_list_mutex);
2161 }
2162 EXPORT_SYMBOL_GPL(pinctrl_unregister);
2163
2164 static void devm_pinctrl_dev_release(struct device *dev, void *res)
2165 {
2166 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2167
2168 pinctrl_unregister(pctldev);
2169 }
2170
2171 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2172 {
2173 struct pctldev **r = res;
2174
2175 if (WARN_ON(!r || !*r))
2176 return 0;
2177
2178 return *r == data;
2179 }
2180
2181 /**
2182 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2183 * @dev: parent device for this pin controller
2184 * @pctldesc: descriptor for this pin controller
2185 * @driver_data: private pin controller data for this pin controller
2186 *
2187 * Returns an error pointer if pincontrol register failed. Otherwise
2188 * it returns valid pinctrl handle.
2189 *
2190 * The pinctrl device will be automatically released when the device is unbound.
2191 */
2192 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2193 struct pinctrl_desc *pctldesc,
2194 void *driver_data)
2195 {
2196 struct pinctrl_dev **ptr, *pctldev;
2197
2198 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2199 if (!ptr)
2200 return ERR_PTR(-ENOMEM);
2201
2202 pctldev = pinctrl_register(pctldesc, dev, driver_data);
2203 if (IS_ERR(pctldev)) {
2204 devres_free(ptr);
2205 return pctldev;
2206 }
2207
2208 *ptr = pctldev;
2209 devres_add(dev, ptr);
2210
2211 return pctldev;
2212 }
2213 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2214
2215 /**
2216 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2217 * @dev: parent device for this pin controller
2218 * @pctldesc: descriptor for this pin controller
2219 * @driver_data: private pin controller data for this pin controller
2220 *
2221 * Returns an error pointer if pincontrol register failed. Otherwise
2222 * it returns valid pinctrl handle.
2223 *
2224 * The pinctrl device will be automatically released when the device is unbound.
2225 */
2226 int devm_pinctrl_register_and_init(struct device *dev,
2227 struct pinctrl_desc *pctldesc,
2228 void *driver_data,
2229 struct pinctrl_dev **pctldev)
2230 {
2231 struct pinctrl_dev **ptr;
2232 int error;
2233
2234 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2235 if (!ptr)
2236 return -ENOMEM;
2237
2238 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2239 if (error) {
2240 devres_free(ptr);
2241 return error;
2242 }
2243
2244 *ptr = *pctldev;
2245 devres_add(dev, ptr);
2246
2247 return 0;
2248 }
2249 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2250
2251 /**
2252 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2253 * @dev: device for which which resource was allocated
2254 * @pctldev: the pinctrl device to unregister.
2255 */
2256 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2257 {
2258 WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2259 devm_pinctrl_dev_match, pctldev));
2260 }
2261 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2262
2263 static int __init pinctrl_init(void)
2264 {
2265 pr_info("initialized pinctrl subsystem\n");
2266 pinctrl_init_debugfs();
2267 return 0;
2268 }
2269
2270 /* init early since many drivers really need to initialized pinmux early */
2271 core_initcall(pinctrl_init);