]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/pinctrl/core.c
Merge branch 'for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[mirror_ubuntu-artful-kernel.git] / drivers / pinctrl / core.c
1 /*
2 * Core driver for the pin control subsystem
3 *
4 * Copyright (C) 2011-2012 ST-Ericsson SA
5 * Written on behalf of Linaro for ST-Ericsson
6 * Based on bits of regulator core, gpio core and clk core
7 *
8 * Author: Linus Walleij <linus.walleij@linaro.org>
9 *
10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
11 *
12 * License terms: GNU General Public License (GPL) version 2
13 */
14 #define pr_fmt(fmt) "pinctrl core: " fmt
15
16 #include <linux/kernel.h>
17 #include <linux/kref.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/list.h>
24 #include <linux/sysfs.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pinctrl/pinctrl.h>
29 #include <linux/pinctrl/machine.h>
30
31 #ifdef CONFIG_GPIOLIB
32 #include <asm-generic/gpio.h>
33 #endif
34
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinmux.h"
38 #include "pinconf.h"
39
40
41 static bool pinctrl_dummy_state;
42
43 /* Mutex taken to protect pinctrl_list */
44 static DEFINE_MUTEX(pinctrl_list_mutex);
45
46 /* Mutex taken to protect pinctrl_maps */
47 DEFINE_MUTEX(pinctrl_maps_mutex);
48
49 /* Mutex taken to protect pinctrldev_list */
50 static DEFINE_MUTEX(pinctrldev_list_mutex);
51
52 /* Global list of pin control devices (struct pinctrl_dev) */
53 static LIST_HEAD(pinctrldev_list);
54
55 /* List of pin controller handles (struct pinctrl) */
56 static LIST_HEAD(pinctrl_list);
57
58 /* List of pinctrl maps (struct pinctrl_maps) */
59 LIST_HEAD(pinctrl_maps);
60
61
62 /**
63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
64 *
65 * Usually this function is called by platforms without pinctrl driver support
66 * but run with some shared drivers using pinctrl APIs.
67 * After calling this function, the pinctrl core will return successfully
68 * with creating a dummy state for the driver to keep going smoothly.
69 */
70 void pinctrl_provide_dummies(void)
71 {
72 pinctrl_dummy_state = true;
73 }
74
75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
76 {
77 /* We're not allowed to register devices without name */
78 return pctldev->desc->name;
79 }
80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
81
82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
83 {
84 return dev_name(pctldev->dev);
85 }
86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
87
88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
89 {
90 return pctldev->driver_data;
91 }
92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
93
94 /**
95 * get_pinctrl_dev_from_devname() - look up pin controller device
96 * @devname: the name of a device instance, as returned by dev_name()
97 *
98 * Looks up a pin control device matching a certain device name or pure device
99 * pointer, the pure device pointer will take precedence.
100 */
101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102 {
103 struct pinctrl_dev *pctldev = NULL;
104
105 if (!devname)
106 return NULL;
107
108 mutex_lock(&pinctrldev_list_mutex);
109
110 list_for_each_entry(pctldev, &pinctrldev_list, node) {
111 if (!strcmp(dev_name(pctldev->dev), devname)) {
112 /* Matched on device name */
113 mutex_unlock(&pinctrldev_list_mutex);
114 return pctldev;
115 }
116 }
117
118 mutex_unlock(&pinctrldev_list_mutex);
119
120 return NULL;
121 }
122
123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
124 {
125 struct pinctrl_dev *pctldev;
126
127 mutex_lock(&pinctrldev_list_mutex);
128
129 list_for_each_entry(pctldev, &pinctrldev_list, node)
130 if (pctldev->dev->of_node == np) {
131 mutex_unlock(&pinctrldev_list_mutex);
132 return pctldev;
133 }
134
135 mutex_unlock(&pinctrldev_list_mutex);
136
137 return NULL;
138 }
139
140 /**
141 * pin_get_from_name() - look up a pin number from a name
142 * @pctldev: the pin control device to lookup the pin on
143 * @name: the name of the pin to look up
144 */
145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
146 {
147 unsigned i, pin;
148
149 /* The pin number can be retrived from the pin controller descriptor */
150 for (i = 0; i < pctldev->desc->npins; i++) {
151 struct pin_desc *desc;
152
153 pin = pctldev->desc->pins[i].number;
154 desc = pin_desc_get(pctldev, pin);
155 /* Pin space may be sparse */
156 if (desc && !strcmp(name, desc->name))
157 return pin;
158 }
159
160 return -EINVAL;
161 }
162
163 /**
164 * pin_get_name_from_id() - look up a pin name from a pin id
165 * @pctldev: the pin control device to lookup the pin on
166 * @name: the name of the pin to look up
167 */
168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
169 {
170 const struct pin_desc *desc;
171
172 desc = pin_desc_get(pctldev, pin);
173 if (desc == NULL) {
174 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
175 pin);
176 return NULL;
177 }
178
179 return desc->name;
180 }
181
182 /**
183 * pin_is_valid() - check if pin exists on controller
184 * @pctldev: the pin control device to check the pin on
185 * @pin: pin to check, use the local pin controller index number
186 *
187 * This tells us whether a certain pin exist on a certain pin controller or
188 * not. Pin lists may be sparse, so some pins may not exist.
189 */
190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
191 {
192 struct pin_desc *pindesc;
193
194 if (pin < 0)
195 return false;
196
197 mutex_lock(&pctldev->mutex);
198 pindesc = pin_desc_get(pctldev, pin);
199 mutex_unlock(&pctldev->mutex);
200
201 return pindesc != NULL;
202 }
203 EXPORT_SYMBOL_GPL(pin_is_valid);
204
205 /* Deletes a range of pin descriptors */
206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
207 const struct pinctrl_pin_desc *pins,
208 unsigned num_pins)
209 {
210 int i;
211
212 for (i = 0; i < num_pins; i++) {
213 struct pin_desc *pindesc;
214
215 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
216 pins[i].number);
217 if (pindesc != NULL) {
218 radix_tree_delete(&pctldev->pin_desc_tree,
219 pins[i].number);
220 if (pindesc->dynamic_name)
221 kfree(pindesc->name);
222 }
223 kfree(pindesc);
224 }
225 }
226
227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
228 unsigned number, const char *name)
229 {
230 struct pin_desc *pindesc;
231
232 pindesc = pin_desc_get(pctldev, number);
233 if (pindesc != NULL) {
234 dev_err(pctldev->dev, "pin %d already registered\n", number);
235 return -EINVAL;
236 }
237
238 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
239 if (pindesc == NULL) {
240 dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
241 return -ENOMEM;
242 }
243
244 /* Set owner */
245 pindesc->pctldev = pctldev;
246
247 /* Copy basic pin info */
248 if (name) {
249 pindesc->name = name;
250 } else {
251 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
252 if (pindesc->name == NULL) {
253 kfree(pindesc);
254 return -ENOMEM;
255 }
256 pindesc->dynamic_name = true;
257 }
258
259 radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
260 pr_debug("registered pin %d (%s) on %s\n",
261 number, pindesc->name, pctldev->desc->name);
262 return 0;
263 }
264
265 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
266 struct pinctrl_pin_desc const *pins,
267 unsigned num_descs)
268 {
269 unsigned i;
270 int ret = 0;
271
272 for (i = 0; i < num_descs; i++) {
273 ret = pinctrl_register_one_pin(pctldev,
274 pins[i].number, pins[i].name);
275 if (ret)
276 return ret;
277 }
278
279 return 0;
280 }
281
282 /**
283 * gpio_to_pin() - GPIO range GPIO number to pin number translation
284 * @range: GPIO range used for the translation
285 * @gpio: gpio pin to translate to a pin number
286 *
287 * Finds the pin number for a given GPIO using the specified GPIO range
288 * as a base for translation. The distinction between linear GPIO ranges
289 * and pin list based GPIO ranges is managed correctly by this function.
290 *
291 * This function assumes the gpio is part of the specified GPIO range, use
292 * only after making sure this is the case (e.g. by calling it on the
293 * result of successful pinctrl_get_device_gpio_range calls)!
294 */
295 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
296 unsigned int gpio)
297 {
298 unsigned int offset = gpio - range->base;
299 if (range->pins)
300 return range->pins[offset];
301 else
302 return range->pin_base + offset;
303 }
304
305 /**
306 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
307 * @pctldev: pin controller device to check
308 * @gpio: gpio pin to check taken from the global GPIO pin space
309 *
310 * Tries to match a GPIO pin number to the ranges handled by a certain pin
311 * controller, return the range or NULL
312 */
313 static struct pinctrl_gpio_range *
314 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
315 {
316 struct pinctrl_gpio_range *range = NULL;
317
318 mutex_lock(&pctldev->mutex);
319 /* Loop over the ranges */
320 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
321 /* Check if we're in the valid range */
322 if (gpio >= range->base &&
323 gpio < range->base + range->npins) {
324 mutex_unlock(&pctldev->mutex);
325 return range;
326 }
327 }
328 mutex_unlock(&pctldev->mutex);
329 return NULL;
330 }
331
332 /**
333 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
334 * the same GPIO chip are in range
335 * @gpio: gpio pin to check taken from the global GPIO pin space
336 *
337 * This function is complement of pinctrl_match_gpio_range(). If the return
338 * value of pinctrl_match_gpio_range() is NULL, this function could be used
339 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
340 * of the same GPIO chip don't have back-end pinctrl interface.
341 * If the return value is true, it means that pinctrl device is ready & the
342 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
343 * is false, it means that pinctrl device may not be ready.
344 */
345 #ifdef CONFIG_GPIOLIB
346 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
347 {
348 struct pinctrl_dev *pctldev;
349 struct pinctrl_gpio_range *range = NULL;
350 struct gpio_chip *chip = gpio_to_chip(gpio);
351
352 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
353 return false;
354
355 mutex_lock(&pinctrldev_list_mutex);
356
357 /* Loop over the pin controllers */
358 list_for_each_entry(pctldev, &pinctrldev_list, node) {
359 /* Loop over the ranges */
360 mutex_lock(&pctldev->mutex);
361 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
362 /* Check if any gpio range overlapped with gpio chip */
363 if (range->base + range->npins - 1 < chip->base ||
364 range->base > chip->base + chip->ngpio - 1)
365 continue;
366 mutex_unlock(&pctldev->mutex);
367 mutex_unlock(&pinctrldev_list_mutex);
368 return true;
369 }
370 mutex_unlock(&pctldev->mutex);
371 }
372
373 mutex_unlock(&pinctrldev_list_mutex);
374
375 return false;
376 }
377 #else
378 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
379 #endif
380
381 /**
382 * pinctrl_get_device_gpio_range() - find device for GPIO range
383 * @gpio: the pin to locate the pin controller for
384 * @outdev: the pin control device if found
385 * @outrange: the GPIO range if found
386 *
387 * Find the pin controller handling a certain GPIO pin from the pinspace of
388 * the GPIO subsystem, return the device and the matching GPIO range. Returns
389 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
390 * may still have not been registered.
391 */
392 static int pinctrl_get_device_gpio_range(unsigned gpio,
393 struct pinctrl_dev **outdev,
394 struct pinctrl_gpio_range **outrange)
395 {
396 struct pinctrl_dev *pctldev = NULL;
397
398 mutex_lock(&pinctrldev_list_mutex);
399
400 /* Loop over the pin controllers */
401 list_for_each_entry(pctldev, &pinctrldev_list, node) {
402 struct pinctrl_gpio_range *range;
403
404 range = pinctrl_match_gpio_range(pctldev, gpio);
405 if (range != NULL) {
406 *outdev = pctldev;
407 *outrange = range;
408 mutex_unlock(&pinctrldev_list_mutex);
409 return 0;
410 }
411 }
412
413 mutex_unlock(&pinctrldev_list_mutex);
414
415 return -EPROBE_DEFER;
416 }
417
418 /**
419 * pinctrl_add_gpio_range() - register a GPIO range for a controller
420 * @pctldev: pin controller device to add the range to
421 * @range: the GPIO range to add
422 *
423 * This adds a range of GPIOs to be handled by a certain pin controller. Call
424 * this to register handled ranges after registering your pin controller.
425 */
426 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
427 struct pinctrl_gpio_range *range)
428 {
429 mutex_lock(&pctldev->mutex);
430 list_add_tail(&range->node, &pctldev->gpio_ranges);
431 mutex_unlock(&pctldev->mutex);
432 }
433 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
434
435 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
436 struct pinctrl_gpio_range *ranges,
437 unsigned nranges)
438 {
439 int i;
440
441 for (i = 0; i < nranges; i++)
442 pinctrl_add_gpio_range(pctldev, &ranges[i]);
443 }
444 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
445
446 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
447 struct pinctrl_gpio_range *range)
448 {
449 struct pinctrl_dev *pctldev;
450
451 pctldev = get_pinctrl_dev_from_devname(devname);
452
453 /*
454 * If we can't find this device, let's assume that is because
455 * it has not probed yet, so the driver trying to register this
456 * range need to defer probing.
457 */
458 if (!pctldev) {
459 return ERR_PTR(-EPROBE_DEFER);
460 }
461 pinctrl_add_gpio_range(pctldev, range);
462
463 return pctldev;
464 }
465 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
466
467 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
468 const unsigned **pins, unsigned *num_pins)
469 {
470 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
471 int gs;
472
473 if (!pctlops->get_group_pins)
474 return -EINVAL;
475
476 gs = pinctrl_get_group_selector(pctldev, pin_group);
477 if (gs < 0)
478 return gs;
479
480 return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
481 }
482 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
483
484 /**
485 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
486 * @pctldev: the pin controller device to look in
487 * @pin: a controller-local number to find the range for
488 */
489 struct pinctrl_gpio_range *
490 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
491 unsigned int pin)
492 {
493 struct pinctrl_gpio_range *range;
494
495 mutex_lock(&pctldev->mutex);
496 /* Loop over the ranges */
497 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
498 /* Check if we're in the valid range */
499 if (range->pins) {
500 int a;
501 for (a = 0; a < range->npins; a++) {
502 if (range->pins[a] == pin)
503 goto out;
504 }
505 } else if (pin >= range->pin_base &&
506 pin < range->pin_base + range->npins)
507 goto out;
508 }
509 range = NULL;
510 out:
511 mutex_unlock(&pctldev->mutex);
512 return range;
513 }
514 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
515
516 /**
517 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
518 * @pctldev: pin controller device to remove the range from
519 * @range: the GPIO range to remove
520 */
521 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
522 struct pinctrl_gpio_range *range)
523 {
524 mutex_lock(&pctldev->mutex);
525 list_del(&range->node);
526 mutex_unlock(&pctldev->mutex);
527 }
528 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
529
530 /**
531 * pinctrl_get_group_selector() - returns the group selector for a group
532 * @pctldev: the pin controller handling the group
533 * @pin_group: the pin group to look up
534 */
535 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
536 const char *pin_group)
537 {
538 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
539 unsigned ngroups = pctlops->get_groups_count(pctldev);
540 unsigned group_selector = 0;
541
542 while (group_selector < ngroups) {
543 const char *gname = pctlops->get_group_name(pctldev,
544 group_selector);
545 if (!strcmp(gname, pin_group)) {
546 dev_dbg(pctldev->dev,
547 "found group selector %u for %s\n",
548 group_selector,
549 pin_group);
550 return group_selector;
551 }
552
553 group_selector++;
554 }
555
556 dev_err(pctldev->dev, "does not have pin group %s\n",
557 pin_group);
558
559 return -EINVAL;
560 }
561
562 /**
563 * pinctrl_request_gpio() - request a single pin to be used as GPIO
564 * @gpio: the GPIO pin number from the GPIO subsystem number space
565 *
566 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
567 * as part of their gpio_request() semantics, platforms and individual drivers
568 * shall *NOT* request GPIO pins to be muxed in.
569 */
570 int pinctrl_request_gpio(unsigned gpio)
571 {
572 struct pinctrl_dev *pctldev;
573 struct pinctrl_gpio_range *range;
574 int ret;
575 int pin;
576
577 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
578 if (ret) {
579 if (pinctrl_ready_for_gpio_range(gpio))
580 ret = 0;
581 return ret;
582 }
583
584 mutex_lock(&pctldev->mutex);
585
586 /* Convert to the pin controllers number space */
587 pin = gpio_to_pin(range, gpio);
588
589 ret = pinmux_request_gpio(pctldev, range, pin, gpio);
590
591 mutex_unlock(&pctldev->mutex);
592
593 return ret;
594 }
595 EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
596
597 /**
598 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
599 * @gpio: the GPIO pin number from the GPIO subsystem number space
600 *
601 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
602 * as part of their gpio_free() semantics, platforms and individual drivers
603 * shall *NOT* request GPIO pins to be muxed out.
604 */
605 void pinctrl_free_gpio(unsigned gpio)
606 {
607 struct pinctrl_dev *pctldev;
608 struct pinctrl_gpio_range *range;
609 int ret;
610 int pin;
611
612 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
613 if (ret) {
614 return;
615 }
616 mutex_lock(&pctldev->mutex);
617
618 /* Convert to the pin controllers number space */
619 pin = gpio_to_pin(range, gpio);
620
621 pinmux_free_gpio(pctldev, pin, range);
622
623 mutex_unlock(&pctldev->mutex);
624 }
625 EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
626
627 static int pinctrl_gpio_direction(unsigned gpio, bool input)
628 {
629 struct pinctrl_dev *pctldev;
630 struct pinctrl_gpio_range *range;
631 int ret;
632 int pin;
633
634 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
635 if (ret) {
636 return ret;
637 }
638
639 mutex_lock(&pctldev->mutex);
640
641 /* Convert to the pin controllers number space */
642 pin = gpio_to_pin(range, gpio);
643 ret = pinmux_gpio_direction(pctldev, range, pin, input);
644
645 mutex_unlock(&pctldev->mutex);
646
647 return ret;
648 }
649
650 /**
651 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
652 * @gpio: the GPIO pin number from the GPIO subsystem number space
653 *
654 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
655 * as part of their gpio_direction_input() semantics, platforms and individual
656 * drivers shall *NOT* touch pin control GPIO calls.
657 */
658 int pinctrl_gpio_direction_input(unsigned gpio)
659 {
660 return pinctrl_gpio_direction(gpio, true);
661 }
662 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
663
664 /**
665 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
666 * @gpio: the GPIO pin number from the GPIO subsystem number space
667 *
668 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
669 * as part of their gpio_direction_output() semantics, platforms and individual
670 * drivers shall *NOT* touch pin control GPIO calls.
671 */
672 int pinctrl_gpio_direction_output(unsigned gpio)
673 {
674 return pinctrl_gpio_direction(gpio, false);
675 }
676 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
677
678 static struct pinctrl_state *find_state(struct pinctrl *p,
679 const char *name)
680 {
681 struct pinctrl_state *state;
682
683 list_for_each_entry(state, &p->states, node)
684 if (!strcmp(state->name, name))
685 return state;
686
687 return NULL;
688 }
689
690 static struct pinctrl_state *create_state(struct pinctrl *p,
691 const char *name)
692 {
693 struct pinctrl_state *state;
694
695 state = kzalloc(sizeof(*state), GFP_KERNEL);
696 if (state == NULL) {
697 dev_err(p->dev,
698 "failed to alloc struct pinctrl_state\n");
699 return ERR_PTR(-ENOMEM);
700 }
701
702 state->name = name;
703 INIT_LIST_HEAD(&state->settings);
704
705 list_add_tail(&state->node, &p->states);
706
707 return state;
708 }
709
710 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
711 {
712 struct pinctrl_state *state;
713 struct pinctrl_setting *setting;
714 int ret;
715
716 state = find_state(p, map->name);
717 if (!state)
718 state = create_state(p, map->name);
719 if (IS_ERR(state))
720 return PTR_ERR(state);
721
722 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
723 return 0;
724
725 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
726 if (setting == NULL) {
727 dev_err(p->dev,
728 "failed to alloc struct pinctrl_setting\n");
729 return -ENOMEM;
730 }
731
732 setting->type = map->type;
733
734 setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
735 if (setting->pctldev == NULL) {
736 kfree(setting);
737 /* Do not defer probing of hogs (circular loop) */
738 if (!strcmp(map->ctrl_dev_name, map->dev_name))
739 return -ENODEV;
740 /*
741 * OK let us guess that the driver is not there yet, and
742 * let's defer obtaining this pinctrl handle to later...
743 */
744 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
745 map->ctrl_dev_name);
746 return -EPROBE_DEFER;
747 }
748
749 setting->dev_name = map->dev_name;
750
751 switch (map->type) {
752 case PIN_MAP_TYPE_MUX_GROUP:
753 ret = pinmux_map_to_setting(map, setting);
754 break;
755 case PIN_MAP_TYPE_CONFIGS_PIN:
756 case PIN_MAP_TYPE_CONFIGS_GROUP:
757 ret = pinconf_map_to_setting(map, setting);
758 break;
759 default:
760 ret = -EINVAL;
761 break;
762 }
763 if (ret < 0) {
764 kfree(setting);
765 return ret;
766 }
767
768 list_add_tail(&setting->node, &state->settings);
769
770 return 0;
771 }
772
773 static struct pinctrl *find_pinctrl(struct device *dev)
774 {
775 struct pinctrl *p;
776
777 mutex_lock(&pinctrl_list_mutex);
778 list_for_each_entry(p, &pinctrl_list, node)
779 if (p->dev == dev) {
780 mutex_unlock(&pinctrl_list_mutex);
781 return p;
782 }
783
784 mutex_unlock(&pinctrl_list_mutex);
785 return NULL;
786 }
787
788 static void pinctrl_free(struct pinctrl *p, bool inlist);
789
790 static struct pinctrl *create_pinctrl(struct device *dev)
791 {
792 struct pinctrl *p;
793 const char *devname;
794 struct pinctrl_maps *maps_node;
795 int i;
796 struct pinctrl_map const *map;
797 int ret;
798
799 /*
800 * create the state cookie holder struct pinctrl for each
801 * mapping, this is what consumers will get when requesting
802 * a pin control handle with pinctrl_get()
803 */
804 p = kzalloc(sizeof(*p), GFP_KERNEL);
805 if (p == NULL) {
806 dev_err(dev, "failed to alloc struct pinctrl\n");
807 return ERR_PTR(-ENOMEM);
808 }
809 p->dev = dev;
810 INIT_LIST_HEAD(&p->states);
811 INIT_LIST_HEAD(&p->dt_maps);
812
813 ret = pinctrl_dt_to_map(p);
814 if (ret < 0) {
815 kfree(p);
816 return ERR_PTR(ret);
817 }
818
819 devname = dev_name(dev);
820
821 mutex_lock(&pinctrl_maps_mutex);
822 /* Iterate over the pin control maps to locate the right ones */
823 for_each_maps(maps_node, i, map) {
824 /* Map must be for this device */
825 if (strcmp(map->dev_name, devname))
826 continue;
827
828 ret = add_setting(p, map);
829 /*
830 * At this point the adding of a setting may:
831 *
832 * - Defer, if the pinctrl device is not yet available
833 * - Fail, if the pinctrl device is not yet available,
834 * AND the setting is a hog. We cannot defer that, since
835 * the hog will kick in immediately after the device
836 * is registered.
837 *
838 * If the error returned was not -EPROBE_DEFER then we
839 * accumulate the errors to see if we end up with
840 * an -EPROBE_DEFER later, as that is the worst case.
841 */
842 if (ret == -EPROBE_DEFER) {
843 pinctrl_free(p, false);
844 mutex_unlock(&pinctrl_maps_mutex);
845 return ERR_PTR(ret);
846 }
847 }
848 mutex_unlock(&pinctrl_maps_mutex);
849
850 if (ret < 0) {
851 /* If some other error than deferral occured, return here */
852 pinctrl_free(p, false);
853 return ERR_PTR(ret);
854 }
855
856 kref_init(&p->users);
857
858 /* Add the pinctrl handle to the global list */
859 mutex_lock(&pinctrl_list_mutex);
860 list_add_tail(&p->node, &pinctrl_list);
861 mutex_unlock(&pinctrl_list_mutex);
862
863 return p;
864 }
865
866 /**
867 * pinctrl_get() - retrieves the pinctrl handle for a device
868 * @dev: the device to obtain the handle for
869 */
870 struct pinctrl *pinctrl_get(struct device *dev)
871 {
872 struct pinctrl *p;
873
874 if (WARN_ON(!dev))
875 return ERR_PTR(-EINVAL);
876
877 /*
878 * See if somebody else (such as the device core) has already
879 * obtained a handle to the pinctrl for this device. In that case,
880 * return another pointer to it.
881 */
882 p = find_pinctrl(dev);
883 if (p != NULL) {
884 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
885 kref_get(&p->users);
886 return p;
887 }
888
889 return create_pinctrl(dev);
890 }
891 EXPORT_SYMBOL_GPL(pinctrl_get);
892
893 static void pinctrl_free_setting(bool disable_setting,
894 struct pinctrl_setting *setting)
895 {
896 switch (setting->type) {
897 case PIN_MAP_TYPE_MUX_GROUP:
898 if (disable_setting)
899 pinmux_disable_setting(setting);
900 pinmux_free_setting(setting);
901 break;
902 case PIN_MAP_TYPE_CONFIGS_PIN:
903 case PIN_MAP_TYPE_CONFIGS_GROUP:
904 pinconf_free_setting(setting);
905 break;
906 default:
907 break;
908 }
909 }
910
911 static void pinctrl_free(struct pinctrl *p, bool inlist)
912 {
913 struct pinctrl_state *state, *n1;
914 struct pinctrl_setting *setting, *n2;
915
916 mutex_lock(&pinctrl_list_mutex);
917 list_for_each_entry_safe(state, n1, &p->states, node) {
918 list_for_each_entry_safe(setting, n2, &state->settings, node) {
919 pinctrl_free_setting(state == p->state, setting);
920 list_del(&setting->node);
921 kfree(setting);
922 }
923 list_del(&state->node);
924 kfree(state);
925 }
926
927 pinctrl_dt_free_maps(p);
928
929 if (inlist)
930 list_del(&p->node);
931 kfree(p);
932 mutex_unlock(&pinctrl_list_mutex);
933 }
934
935 /**
936 * pinctrl_release() - release the pinctrl handle
937 * @kref: the kref in the pinctrl being released
938 */
939 static void pinctrl_release(struct kref *kref)
940 {
941 struct pinctrl *p = container_of(kref, struct pinctrl, users);
942
943 pinctrl_free(p, true);
944 }
945
946 /**
947 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
948 * @p: the pinctrl handle to release
949 */
950 void pinctrl_put(struct pinctrl *p)
951 {
952 kref_put(&p->users, pinctrl_release);
953 }
954 EXPORT_SYMBOL_GPL(pinctrl_put);
955
956 /**
957 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
958 * @p: the pinctrl handle to retrieve the state from
959 * @name: the state name to retrieve
960 */
961 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
962 const char *name)
963 {
964 struct pinctrl_state *state;
965
966 state = find_state(p, name);
967 if (!state) {
968 if (pinctrl_dummy_state) {
969 /* create dummy state */
970 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
971 name);
972 state = create_state(p, name);
973 } else
974 state = ERR_PTR(-ENODEV);
975 }
976
977 return state;
978 }
979 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
980
981 /**
982 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
983 * @p: the pinctrl handle for the device that requests configuration
984 * @state: the state handle to select/activate/program
985 */
986 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
987 {
988 struct pinctrl_setting *setting, *setting2;
989 struct pinctrl_state *old_state = p->state;
990 int ret;
991
992 if (p->state == state)
993 return 0;
994
995 if (p->state) {
996 /*
997 * For each pinmux setting in the old state, forget SW's record
998 * of mux owner for that pingroup. Any pingroups which are
999 * still owned by the new state will be re-acquired by the call
1000 * to pinmux_enable_setting() in the loop below.
1001 */
1002 list_for_each_entry(setting, &p->state->settings, node) {
1003 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1004 continue;
1005 pinmux_disable_setting(setting);
1006 }
1007 }
1008
1009 p->state = NULL;
1010
1011 /* Apply all the settings for the new state */
1012 list_for_each_entry(setting, &state->settings, node) {
1013 switch (setting->type) {
1014 case PIN_MAP_TYPE_MUX_GROUP:
1015 ret = pinmux_enable_setting(setting);
1016 break;
1017 case PIN_MAP_TYPE_CONFIGS_PIN:
1018 case PIN_MAP_TYPE_CONFIGS_GROUP:
1019 ret = pinconf_apply_setting(setting);
1020 break;
1021 default:
1022 ret = -EINVAL;
1023 break;
1024 }
1025
1026 if (ret < 0) {
1027 goto unapply_new_state;
1028 }
1029 }
1030
1031 p->state = state;
1032
1033 return 0;
1034
1035 unapply_new_state:
1036 dev_err(p->dev, "Error applying setting, reverse things back\n");
1037
1038 list_for_each_entry(setting2, &state->settings, node) {
1039 if (&setting2->node == &setting->node)
1040 break;
1041 /*
1042 * All we can do here is pinmux_disable_setting.
1043 * That means that some pins are muxed differently now
1044 * than they were before applying the setting (We can't
1045 * "unmux a pin"!), but it's not a big deal since the pins
1046 * are free to be muxed by another apply_setting.
1047 */
1048 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1049 pinmux_disable_setting(setting2);
1050 }
1051
1052 /* There's no infinite recursive loop here because p->state is NULL */
1053 if (old_state)
1054 pinctrl_select_state(p, old_state);
1055
1056 return ret;
1057 }
1058 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1059
1060 static void devm_pinctrl_release(struct device *dev, void *res)
1061 {
1062 pinctrl_put(*(struct pinctrl **)res);
1063 }
1064
1065 /**
1066 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1067 * @dev: the device to obtain the handle for
1068 *
1069 * If there is a need to explicitly destroy the returned struct pinctrl,
1070 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1071 */
1072 struct pinctrl *devm_pinctrl_get(struct device *dev)
1073 {
1074 struct pinctrl **ptr, *p;
1075
1076 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1077 if (!ptr)
1078 return ERR_PTR(-ENOMEM);
1079
1080 p = pinctrl_get(dev);
1081 if (!IS_ERR(p)) {
1082 *ptr = p;
1083 devres_add(dev, ptr);
1084 } else {
1085 devres_free(ptr);
1086 }
1087
1088 return p;
1089 }
1090 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1091
1092 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1093 {
1094 struct pinctrl **p = res;
1095
1096 return *p == data;
1097 }
1098
1099 /**
1100 * devm_pinctrl_put() - Resource managed pinctrl_put()
1101 * @p: the pinctrl handle to release
1102 *
1103 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1104 * this function will not need to be called and the resource management
1105 * code will ensure that the resource is freed.
1106 */
1107 void devm_pinctrl_put(struct pinctrl *p)
1108 {
1109 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1110 devm_pinctrl_match, p));
1111 }
1112 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1113
1114 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1115 bool dup)
1116 {
1117 int i, ret;
1118 struct pinctrl_maps *maps_node;
1119
1120 pr_debug("add %u pinctrl maps\n", num_maps);
1121
1122 /* First sanity check the new mapping */
1123 for (i = 0; i < num_maps; i++) {
1124 if (!maps[i].dev_name) {
1125 pr_err("failed to register map %s (%d): no device given\n",
1126 maps[i].name, i);
1127 return -EINVAL;
1128 }
1129
1130 if (!maps[i].name) {
1131 pr_err("failed to register map %d: no map name given\n",
1132 i);
1133 return -EINVAL;
1134 }
1135
1136 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1137 !maps[i].ctrl_dev_name) {
1138 pr_err("failed to register map %s (%d): no pin control device given\n",
1139 maps[i].name, i);
1140 return -EINVAL;
1141 }
1142
1143 switch (maps[i].type) {
1144 case PIN_MAP_TYPE_DUMMY_STATE:
1145 break;
1146 case PIN_MAP_TYPE_MUX_GROUP:
1147 ret = pinmux_validate_map(&maps[i], i);
1148 if (ret < 0)
1149 return ret;
1150 break;
1151 case PIN_MAP_TYPE_CONFIGS_PIN:
1152 case PIN_MAP_TYPE_CONFIGS_GROUP:
1153 ret = pinconf_validate_map(&maps[i], i);
1154 if (ret < 0)
1155 return ret;
1156 break;
1157 default:
1158 pr_err("failed to register map %s (%d): invalid type given\n",
1159 maps[i].name, i);
1160 return -EINVAL;
1161 }
1162 }
1163
1164 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1165 if (!maps_node) {
1166 pr_err("failed to alloc struct pinctrl_maps\n");
1167 return -ENOMEM;
1168 }
1169
1170 maps_node->num_maps = num_maps;
1171 if (dup) {
1172 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1173 GFP_KERNEL);
1174 if (!maps_node->maps) {
1175 pr_err("failed to duplicate mapping table\n");
1176 kfree(maps_node);
1177 return -ENOMEM;
1178 }
1179 } else {
1180 maps_node->maps = maps;
1181 }
1182
1183 mutex_lock(&pinctrl_maps_mutex);
1184 list_add_tail(&maps_node->node, &pinctrl_maps);
1185 mutex_unlock(&pinctrl_maps_mutex);
1186
1187 return 0;
1188 }
1189
1190 /**
1191 * pinctrl_register_mappings() - register a set of pin controller mappings
1192 * @maps: the pincontrol mappings table to register. This should probably be
1193 * marked with __initdata so it can be discarded after boot. This
1194 * function will perform a shallow copy for the mapping entries.
1195 * @num_maps: the number of maps in the mapping table
1196 */
1197 int pinctrl_register_mappings(struct pinctrl_map const *maps,
1198 unsigned num_maps)
1199 {
1200 return pinctrl_register_map(maps, num_maps, true);
1201 }
1202
1203 void pinctrl_unregister_map(struct pinctrl_map const *map)
1204 {
1205 struct pinctrl_maps *maps_node;
1206
1207 mutex_lock(&pinctrl_maps_mutex);
1208 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1209 if (maps_node->maps == map) {
1210 list_del(&maps_node->node);
1211 kfree(maps_node);
1212 mutex_unlock(&pinctrl_maps_mutex);
1213 return;
1214 }
1215 }
1216 mutex_unlock(&pinctrl_maps_mutex);
1217 }
1218
1219 /**
1220 * pinctrl_force_sleep() - turn a given controller device into sleep state
1221 * @pctldev: pin controller device
1222 */
1223 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1224 {
1225 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1226 return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1227 return 0;
1228 }
1229 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1230
1231 /**
1232 * pinctrl_force_default() - turn a given controller device into default state
1233 * @pctldev: pin controller device
1234 */
1235 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1236 {
1237 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1238 return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1239 return 0;
1240 }
1241 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1242
1243 /**
1244 * pinctrl_init_done() - tell pinctrl probe is done
1245 *
1246 * We'll use this time to switch the pins from "init" to "default" unless the
1247 * driver selected some other state.
1248 *
1249 * @dev: device to that's done probing
1250 */
1251 int pinctrl_init_done(struct device *dev)
1252 {
1253 struct dev_pin_info *pins = dev->pins;
1254 int ret;
1255
1256 if (!pins)
1257 return 0;
1258
1259 if (IS_ERR(pins->init_state))
1260 return 0; /* No such state */
1261
1262 if (pins->p->state != pins->init_state)
1263 return 0; /* Not at init anyway */
1264
1265 if (IS_ERR(pins->default_state))
1266 return 0; /* No default state */
1267
1268 ret = pinctrl_select_state(pins->p, pins->default_state);
1269 if (ret)
1270 dev_err(dev, "failed to activate default pinctrl state\n");
1271
1272 return ret;
1273 }
1274
1275 #ifdef CONFIG_PM
1276
1277 /**
1278 * pinctrl_pm_select_state() - select pinctrl state for PM
1279 * @dev: device to select default state for
1280 * @state: state to set
1281 */
1282 static int pinctrl_pm_select_state(struct device *dev,
1283 struct pinctrl_state *state)
1284 {
1285 struct dev_pin_info *pins = dev->pins;
1286 int ret;
1287
1288 if (IS_ERR(state))
1289 return 0; /* No such state */
1290 ret = pinctrl_select_state(pins->p, state);
1291 if (ret)
1292 dev_err(dev, "failed to activate pinctrl state %s\n",
1293 state->name);
1294 return ret;
1295 }
1296
1297 /**
1298 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1299 * @dev: device to select default state for
1300 */
1301 int pinctrl_pm_select_default_state(struct device *dev)
1302 {
1303 if (!dev->pins)
1304 return 0;
1305
1306 return pinctrl_pm_select_state(dev, dev->pins->default_state);
1307 }
1308 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1309
1310 /**
1311 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1312 * @dev: device to select sleep state for
1313 */
1314 int pinctrl_pm_select_sleep_state(struct device *dev)
1315 {
1316 if (!dev->pins)
1317 return 0;
1318
1319 return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1320 }
1321 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1322
1323 /**
1324 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1325 * @dev: device to select idle state for
1326 */
1327 int pinctrl_pm_select_idle_state(struct device *dev)
1328 {
1329 if (!dev->pins)
1330 return 0;
1331
1332 return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1333 }
1334 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1335 #endif
1336
1337 #ifdef CONFIG_DEBUG_FS
1338
1339 static int pinctrl_pins_show(struct seq_file *s, void *what)
1340 {
1341 struct pinctrl_dev *pctldev = s->private;
1342 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1343 unsigned i, pin;
1344
1345 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1346
1347 mutex_lock(&pctldev->mutex);
1348
1349 /* The pin number can be retrived from the pin controller descriptor */
1350 for (i = 0; i < pctldev->desc->npins; i++) {
1351 struct pin_desc *desc;
1352
1353 pin = pctldev->desc->pins[i].number;
1354 desc = pin_desc_get(pctldev, pin);
1355 /* Pin space may be sparse */
1356 if (desc == NULL)
1357 continue;
1358
1359 seq_printf(s, "pin %d (%s) ", pin,
1360 desc->name ? desc->name : "unnamed");
1361
1362 /* Driver-specific info per pin */
1363 if (ops->pin_dbg_show)
1364 ops->pin_dbg_show(pctldev, s, pin);
1365
1366 seq_puts(s, "\n");
1367 }
1368
1369 mutex_unlock(&pctldev->mutex);
1370
1371 return 0;
1372 }
1373
1374 static int pinctrl_groups_show(struct seq_file *s, void *what)
1375 {
1376 struct pinctrl_dev *pctldev = s->private;
1377 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1378 unsigned ngroups, selector = 0;
1379
1380 mutex_lock(&pctldev->mutex);
1381
1382 ngroups = ops->get_groups_count(pctldev);
1383
1384 seq_puts(s, "registered pin groups:\n");
1385 while (selector < ngroups) {
1386 const unsigned *pins = NULL;
1387 unsigned num_pins = 0;
1388 const char *gname = ops->get_group_name(pctldev, selector);
1389 const char *pname;
1390 int ret = 0;
1391 int i;
1392
1393 if (ops->get_group_pins)
1394 ret = ops->get_group_pins(pctldev, selector,
1395 &pins, &num_pins);
1396 if (ret)
1397 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1398 gname);
1399 else {
1400 seq_printf(s, "group: %s\n", gname);
1401 for (i = 0; i < num_pins; i++) {
1402 pname = pin_get_name(pctldev, pins[i]);
1403 if (WARN_ON(!pname)) {
1404 mutex_unlock(&pctldev->mutex);
1405 return -EINVAL;
1406 }
1407 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1408 }
1409 seq_puts(s, "\n");
1410 }
1411 selector++;
1412 }
1413
1414 mutex_unlock(&pctldev->mutex);
1415
1416 return 0;
1417 }
1418
1419 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1420 {
1421 struct pinctrl_dev *pctldev = s->private;
1422 struct pinctrl_gpio_range *range = NULL;
1423
1424 seq_puts(s, "GPIO ranges handled:\n");
1425
1426 mutex_lock(&pctldev->mutex);
1427
1428 /* Loop over the ranges */
1429 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1430 if (range->pins) {
1431 int a;
1432 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1433 range->id, range->name,
1434 range->base, (range->base + range->npins - 1));
1435 for (a = 0; a < range->npins - 1; a++)
1436 seq_printf(s, "%u, ", range->pins[a]);
1437 seq_printf(s, "%u}\n", range->pins[a]);
1438 }
1439 else
1440 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1441 range->id, range->name,
1442 range->base, (range->base + range->npins - 1),
1443 range->pin_base,
1444 (range->pin_base + range->npins - 1));
1445 }
1446
1447 mutex_unlock(&pctldev->mutex);
1448
1449 return 0;
1450 }
1451
1452 static int pinctrl_devices_show(struct seq_file *s, void *what)
1453 {
1454 struct pinctrl_dev *pctldev;
1455
1456 seq_puts(s, "name [pinmux] [pinconf]\n");
1457
1458 mutex_lock(&pinctrldev_list_mutex);
1459
1460 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1461 seq_printf(s, "%s ", pctldev->desc->name);
1462 if (pctldev->desc->pmxops)
1463 seq_puts(s, "yes ");
1464 else
1465 seq_puts(s, "no ");
1466 if (pctldev->desc->confops)
1467 seq_puts(s, "yes");
1468 else
1469 seq_puts(s, "no");
1470 seq_puts(s, "\n");
1471 }
1472
1473 mutex_unlock(&pinctrldev_list_mutex);
1474
1475 return 0;
1476 }
1477
1478 static inline const char *map_type(enum pinctrl_map_type type)
1479 {
1480 static const char * const names[] = {
1481 "INVALID",
1482 "DUMMY_STATE",
1483 "MUX_GROUP",
1484 "CONFIGS_PIN",
1485 "CONFIGS_GROUP",
1486 };
1487
1488 if (type >= ARRAY_SIZE(names))
1489 return "UNKNOWN";
1490
1491 return names[type];
1492 }
1493
1494 static int pinctrl_maps_show(struct seq_file *s, void *what)
1495 {
1496 struct pinctrl_maps *maps_node;
1497 int i;
1498 struct pinctrl_map const *map;
1499
1500 seq_puts(s, "Pinctrl maps:\n");
1501
1502 mutex_lock(&pinctrl_maps_mutex);
1503 for_each_maps(maps_node, i, map) {
1504 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1505 map->dev_name, map->name, map_type(map->type),
1506 map->type);
1507
1508 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1509 seq_printf(s, "controlling device %s\n",
1510 map->ctrl_dev_name);
1511
1512 switch (map->type) {
1513 case PIN_MAP_TYPE_MUX_GROUP:
1514 pinmux_show_map(s, map);
1515 break;
1516 case PIN_MAP_TYPE_CONFIGS_PIN:
1517 case PIN_MAP_TYPE_CONFIGS_GROUP:
1518 pinconf_show_map(s, map);
1519 break;
1520 default:
1521 break;
1522 }
1523
1524 seq_printf(s, "\n");
1525 }
1526 mutex_unlock(&pinctrl_maps_mutex);
1527
1528 return 0;
1529 }
1530
1531 static int pinctrl_show(struct seq_file *s, void *what)
1532 {
1533 struct pinctrl *p;
1534 struct pinctrl_state *state;
1535 struct pinctrl_setting *setting;
1536
1537 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1538
1539 mutex_lock(&pinctrl_list_mutex);
1540
1541 list_for_each_entry(p, &pinctrl_list, node) {
1542 seq_printf(s, "device: %s current state: %s\n",
1543 dev_name(p->dev),
1544 p->state ? p->state->name : "none");
1545
1546 list_for_each_entry(state, &p->states, node) {
1547 seq_printf(s, " state: %s\n", state->name);
1548
1549 list_for_each_entry(setting, &state->settings, node) {
1550 struct pinctrl_dev *pctldev = setting->pctldev;
1551
1552 seq_printf(s, " type: %s controller %s ",
1553 map_type(setting->type),
1554 pinctrl_dev_get_name(pctldev));
1555
1556 switch (setting->type) {
1557 case PIN_MAP_TYPE_MUX_GROUP:
1558 pinmux_show_setting(s, setting);
1559 break;
1560 case PIN_MAP_TYPE_CONFIGS_PIN:
1561 case PIN_MAP_TYPE_CONFIGS_GROUP:
1562 pinconf_show_setting(s, setting);
1563 break;
1564 default:
1565 break;
1566 }
1567 }
1568 }
1569 }
1570
1571 mutex_unlock(&pinctrl_list_mutex);
1572
1573 return 0;
1574 }
1575
1576 static int pinctrl_pins_open(struct inode *inode, struct file *file)
1577 {
1578 return single_open(file, pinctrl_pins_show, inode->i_private);
1579 }
1580
1581 static int pinctrl_groups_open(struct inode *inode, struct file *file)
1582 {
1583 return single_open(file, pinctrl_groups_show, inode->i_private);
1584 }
1585
1586 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1587 {
1588 return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1589 }
1590
1591 static int pinctrl_devices_open(struct inode *inode, struct file *file)
1592 {
1593 return single_open(file, pinctrl_devices_show, NULL);
1594 }
1595
1596 static int pinctrl_maps_open(struct inode *inode, struct file *file)
1597 {
1598 return single_open(file, pinctrl_maps_show, NULL);
1599 }
1600
1601 static int pinctrl_open(struct inode *inode, struct file *file)
1602 {
1603 return single_open(file, pinctrl_show, NULL);
1604 }
1605
1606 static const struct file_operations pinctrl_pins_ops = {
1607 .open = pinctrl_pins_open,
1608 .read = seq_read,
1609 .llseek = seq_lseek,
1610 .release = single_release,
1611 };
1612
1613 static const struct file_operations pinctrl_groups_ops = {
1614 .open = pinctrl_groups_open,
1615 .read = seq_read,
1616 .llseek = seq_lseek,
1617 .release = single_release,
1618 };
1619
1620 static const struct file_operations pinctrl_gpioranges_ops = {
1621 .open = pinctrl_gpioranges_open,
1622 .read = seq_read,
1623 .llseek = seq_lseek,
1624 .release = single_release,
1625 };
1626
1627 static const struct file_operations pinctrl_devices_ops = {
1628 .open = pinctrl_devices_open,
1629 .read = seq_read,
1630 .llseek = seq_lseek,
1631 .release = single_release,
1632 };
1633
1634 static const struct file_operations pinctrl_maps_ops = {
1635 .open = pinctrl_maps_open,
1636 .read = seq_read,
1637 .llseek = seq_lseek,
1638 .release = single_release,
1639 };
1640
1641 static const struct file_operations pinctrl_ops = {
1642 .open = pinctrl_open,
1643 .read = seq_read,
1644 .llseek = seq_lseek,
1645 .release = single_release,
1646 };
1647
1648 static struct dentry *debugfs_root;
1649
1650 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1651 {
1652 struct dentry *device_root;
1653
1654 device_root = debugfs_create_dir(dev_name(pctldev->dev),
1655 debugfs_root);
1656 pctldev->device_root = device_root;
1657
1658 if (IS_ERR(device_root) || !device_root) {
1659 pr_warn("failed to create debugfs directory for %s\n",
1660 dev_name(pctldev->dev));
1661 return;
1662 }
1663 debugfs_create_file("pins", S_IFREG | S_IRUGO,
1664 device_root, pctldev, &pinctrl_pins_ops);
1665 debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1666 device_root, pctldev, &pinctrl_groups_ops);
1667 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1668 device_root, pctldev, &pinctrl_gpioranges_ops);
1669 if (pctldev->desc->pmxops)
1670 pinmux_init_device_debugfs(device_root, pctldev);
1671 if (pctldev->desc->confops)
1672 pinconf_init_device_debugfs(device_root, pctldev);
1673 }
1674
1675 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1676 {
1677 debugfs_remove_recursive(pctldev->device_root);
1678 }
1679
1680 static void pinctrl_init_debugfs(void)
1681 {
1682 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1683 if (IS_ERR(debugfs_root) || !debugfs_root) {
1684 pr_warn("failed to create debugfs directory\n");
1685 debugfs_root = NULL;
1686 return;
1687 }
1688
1689 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1690 debugfs_root, NULL, &pinctrl_devices_ops);
1691 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1692 debugfs_root, NULL, &pinctrl_maps_ops);
1693 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1694 debugfs_root, NULL, &pinctrl_ops);
1695 }
1696
1697 #else /* CONFIG_DEBUG_FS */
1698
1699 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1700 {
1701 }
1702
1703 static void pinctrl_init_debugfs(void)
1704 {
1705 }
1706
1707 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1708 {
1709 }
1710
1711 #endif
1712
1713 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1714 {
1715 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1716
1717 if (!ops ||
1718 !ops->get_groups_count ||
1719 !ops->get_group_name)
1720 return -EINVAL;
1721
1722 if (ops->dt_node_to_map && !ops->dt_free_map)
1723 return -EINVAL;
1724
1725 return 0;
1726 }
1727
1728 /**
1729 * pinctrl_register() - register a pin controller device
1730 * @pctldesc: descriptor for this pin controller
1731 * @dev: parent device for this pin controller
1732 * @driver_data: private pin controller data for this pin controller
1733 */
1734 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
1735 struct device *dev, void *driver_data)
1736 {
1737 struct pinctrl_dev *pctldev;
1738 int ret;
1739
1740 if (!pctldesc)
1741 return ERR_PTR(-EINVAL);
1742 if (!pctldesc->name)
1743 return ERR_PTR(-EINVAL);
1744
1745 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1746 if (pctldev == NULL) {
1747 dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1748 return ERR_PTR(-ENOMEM);
1749 }
1750
1751 /* Initialize pin control device struct */
1752 pctldev->owner = pctldesc->owner;
1753 pctldev->desc = pctldesc;
1754 pctldev->driver_data = driver_data;
1755 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1756 INIT_LIST_HEAD(&pctldev->gpio_ranges);
1757 pctldev->dev = dev;
1758 mutex_init(&pctldev->mutex);
1759
1760 /* check core ops for sanity */
1761 ret = pinctrl_check_ops(pctldev);
1762 if (ret) {
1763 dev_err(dev, "pinctrl ops lacks necessary functions\n");
1764 goto out_err;
1765 }
1766
1767 /* If we're implementing pinmuxing, check the ops for sanity */
1768 if (pctldesc->pmxops) {
1769 ret = pinmux_check_ops(pctldev);
1770 if (ret)
1771 goto out_err;
1772 }
1773
1774 /* If we're implementing pinconfig, check the ops for sanity */
1775 if (pctldesc->confops) {
1776 ret = pinconf_check_ops(pctldev);
1777 if (ret)
1778 goto out_err;
1779 }
1780
1781 /* Register all the pins */
1782 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
1783 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1784 if (ret) {
1785 dev_err(dev, "error during pin registration\n");
1786 pinctrl_free_pindescs(pctldev, pctldesc->pins,
1787 pctldesc->npins);
1788 goto out_err;
1789 }
1790
1791 mutex_lock(&pinctrldev_list_mutex);
1792 list_add_tail(&pctldev->node, &pinctrldev_list);
1793 mutex_unlock(&pinctrldev_list_mutex);
1794
1795 pctldev->p = pinctrl_get(pctldev->dev);
1796
1797 if (!IS_ERR(pctldev->p)) {
1798 pctldev->hog_default =
1799 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1800 if (IS_ERR(pctldev->hog_default)) {
1801 dev_dbg(dev, "failed to lookup the default state\n");
1802 } else {
1803 if (pinctrl_select_state(pctldev->p,
1804 pctldev->hog_default))
1805 dev_err(dev,
1806 "failed to select default state\n");
1807 }
1808
1809 pctldev->hog_sleep =
1810 pinctrl_lookup_state(pctldev->p,
1811 PINCTRL_STATE_SLEEP);
1812 if (IS_ERR(pctldev->hog_sleep))
1813 dev_dbg(dev, "failed to lookup the sleep state\n");
1814 }
1815
1816 pinctrl_init_device_debugfs(pctldev);
1817
1818 return pctldev;
1819
1820 out_err:
1821 mutex_destroy(&pctldev->mutex);
1822 kfree(pctldev);
1823 return ERR_PTR(ret);
1824 }
1825 EXPORT_SYMBOL_GPL(pinctrl_register);
1826
1827 /**
1828 * pinctrl_unregister() - unregister pinmux
1829 * @pctldev: pin controller to unregister
1830 *
1831 * Called by pinmux drivers to unregister a pinmux.
1832 */
1833 void pinctrl_unregister(struct pinctrl_dev *pctldev)
1834 {
1835 struct pinctrl_gpio_range *range, *n;
1836 if (pctldev == NULL)
1837 return;
1838
1839 mutex_lock(&pctldev->mutex);
1840 pinctrl_remove_device_debugfs(pctldev);
1841 mutex_unlock(&pctldev->mutex);
1842
1843 if (!IS_ERR(pctldev->p))
1844 pinctrl_put(pctldev->p);
1845
1846 mutex_lock(&pinctrldev_list_mutex);
1847 mutex_lock(&pctldev->mutex);
1848 /* TODO: check that no pinmuxes are still active? */
1849 list_del(&pctldev->node);
1850 /* Destroy descriptor tree */
1851 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
1852 pctldev->desc->npins);
1853 /* remove gpio ranges map */
1854 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
1855 list_del(&range->node);
1856
1857 mutex_unlock(&pctldev->mutex);
1858 mutex_destroy(&pctldev->mutex);
1859 kfree(pctldev);
1860 mutex_unlock(&pinctrldev_list_mutex);
1861 }
1862 EXPORT_SYMBOL_GPL(pinctrl_unregister);
1863
1864 static int __init pinctrl_init(void)
1865 {
1866 pr_info("initialized pinctrl subsystem\n");
1867 pinctrl_init_debugfs();
1868 return 0;
1869 }
1870
1871 /* init early since many drivers really need to initialized pinmux early */
1872 core_initcall(pinctrl_init);