]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/platform/chrome/cros_ec_spi.c
Merge tag 'docs-5.6-2' of git://git.lwn.net/linux
[mirror_ubuntu-hirsute-kernel.git] / drivers / platform / chrome / cros_ec_spi.c
1 // SPDX-License-Identifier: GPL-2.0
2 // SPI interface for ChromeOS Embedded Controller
3 //
4 // Copyright (C) 2012 Google, Inc
5
6 #include <linux/delay.h>
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/of.h>
10 #include <linux/platform_data/cros_ec_commands.h>
11 #include <linux/platform_data/cros_ec_proto.h>
12 #include <linux/platform_device.h>
13 #include <linux/slab.h>
14 #include <linux/spi/spi.h>
15 #include <uapi/linux/sched/types.h>
16
17 #include "cros_ec.h"
18
19 /* The header byte, which follows the preamble */
20 #define EC_MSG_HEADER 0xec
21
22 /*
23 * Number of EC preamble bytes we read at a time. Since it takes
24 * about 400-500us for the EC to respond there is not a lot of
25 * point in tuning this. If the EC could respond faster then
26 * we could increase this so that might expect the preamble and
27 * message to occur in a single transaction. However, the maximum
28 * SPI transfer size is 256 bytes, so at 5MHz we need a response
29 * time of perhaps <320us (200 bytes / 1600 bits).
30 */
31 #define EC_MSG_PREAMBLE_COUNT 32
32
33 /*
34 * Allow for a long time for the EC to respond. We support i2c
35 * tunneling and support fairly long messages for the tunnel (249
36 * bytes long at the moment). If we're talking to a 100 kHz device
37 * on the other end and need to transfer ~256 bytes, then we need:
38 * 10 us/bit * ~10 bits/byte * ~256 bytes = ~25ms
39 *
40 * We'll wait 8 times that to handle clock stretching and other
41 * paranoia. Note that some battery gas gauge ICs claim to have a
42 * clock stretch of 144ms in rare situations. That's incentive for
43 * not directly passing i2c through, but it's too late for that for
44 * existing hardware.
45 *
46 * It's pretty unlikely that we'll really see a 249 byte tunnel in
47 * anything other than testing. If this was more common we might
48 * consider having slow commands like this require a GET_STATUS
49 * wait loop. The 'flash write' command would be another candidate
50 * for this, clocking in at 2-3ms.
51 */
52 #define EC_MSG_DEADLINE_MS 200
53
54 /*
55 * Time between raising the SPI chip select (for the end of a
56 * transaction) and dropping it again (for the next transaction).
57 * If we go too fast, the EC will miss the transaction. We know that we
58 * need at least 70 us with the 16 MHz STM32 EC, so go with 200 us to be
59 * safe.
60 */
61 #define EC_SPI_RECOVERY_TIME_NS (200 * 1000)
62
63 /**
64 * struct cros_ec_spi - information about a SPI-connected EC
65 *
66 * @spi: SPI device we are connected to
67 * @last_transfer_ns: time that we last finished a transfer.
68 * @start_of_msg_delay: used to set the delay_usecs on the spi_transfer that
69 * is sent when we want to turn on CS at the start of a transaction.
70 * @end_of_msg_delay: used to set the delay_usecs on the spi_transfer that
71 * is sent when we want to turn off CS at the end of a transaction.
72 * @high_pri_worker: Used to schedule high priority work.
73 */
74 struct cros_ec_spi {
75 struct spi_device *spi;
76 s64 last_transfer_ns;
77 unsigned int start_of_msg_delay;
78 unsigned int end_of_msg_delay;
79 struct kthread_worker *high_pri_worker;
80 };
81
82 typedef int (*cros_ec_xfer_fn_t) (struct cros_ec_device *ec_dev,
83 struct cros_ec_command *ec_msg);
84
85 /**
86 * struct cros_ec_xfer_work_params - params for our high priority workers
87 *
88 * @work: The work_struct needed to queue work
89 * @fn: The function to use to transfer
90 * @ec_dev: ChromeOS EC device
91 * @ec_msg: Message to transfer
92 * @ret: The return value of the function
93 */
94
95 struct cros_ec_xfer_work_params {
96 struct kthread_work work;
97 cros_ec_xfer_fn_t fn;
98 struct cros_ec_device *ec_dev;
99 struct cros_ec_command *ec_msg;
100 int ret;
101 };
102
103 static void debug_packet(struct device *dev, const char *name, u8 *ptr,
104 int len)
105 {
106 #ifdef DEBUG
107 int i;
108
109 dev_dbg(dev, "%s: ", name);
110 for (i = 0; i < len; i++)
111 pr_cont(" %02x", ptr[i]);
112
113 pr_cont("\n");
114 #endif
115 }
116
117 static int terminate_request(struct cros_ec_device *ec_dev)
118 {
119 struct cros_ec_spi *ec_spi = ec_dev->priv;
120 struct spi_message msg;
121 struct spi_transfer trans;
122 int ret;
123
124 /*
125 * Turn off CS, possibly adding a delay to ensure the rising edge
126 * doesn't come too soon after the end of the data.
127 */
128 spi_message_init(&msg);
129 memset(&trans, 0, sizeof(trans));
130 trans.delay_usecs = ec_spi->end_of_msg_delay;
131 spi_message_add_tail(&trans, &msg);
132
133 ret = spi_sync_locked(ec_spi->spi, &msg);
134
135 /* Reset end-of-response timer */
136 ec_spi->last_transfer_ns = ktime_get_ns();
137 if (ret < 0) {
138 dev_err(ec_dev->dev,
139 "cs-deassert spi transfer failed: %d\n",
140 ret);
141 }
142
143 return ret;
144 }
145
146 /**
147 * receive_n_bytes - receive n bytes from the EC.
148 *
149 * Assumes buf is a pointer into the ec_dev->din buffer
150 */
151 static int receive_n_bytes(struct cros_ec_device *ec_dev, u8 *buf, int n)
152 {
153 struct cros_ec_spi *ec_spi = ec_dev->priv;
154 struct spi_transfer trans;
155 struct spi_message msg;
156 int ret;
157
158 BUG_ON(buf - ec_dev->din + n > ec_dev->din_size);
159
160 memset(&trans, 0, sizeof(trans));
161 trans.cs_change = 1;
162 trans.rx_buf = buf;
163 trans.len = n;
164
165 spi_message_init(&msg);
166 spi_message_add_tail(&trans, &msg);
167 ret = spi_sync_locked(ec_spi->spi, &msg);
168 if (ret < 0)
169 dev_err(ec_dev->dev, "spi transfer failed: %d\n", ret);
170
171 return ret;
172 }
173
174 /**
175 * cros_ec_spi_receive_packet - Receive a packet from the EC.
176 *
177 * This function has two phases: reading the preamble bytes (since if we read
178 * data from the EC before it is ready to send, we just get preamble) and
179 * reading the actual message.
180 *
181 * The received data is placed into ec_dev->din.
182 *
183 * @ec_dev: ChromeOS EC device
184 * @need_len: Number of message bytes we need to read
185 */
186 static int cros_ec_spi_receive_packet(struct cros_ec_device *ec_dev,
187 int need_len)
188 {
189 struct ec_host_response *response;
190 u8 *ptr, *end;
191 int ret;
192 unsigned long deadline;
193 int todo;
194
195 BUG_ON(ec_dev->din_size < EC_MSG_PREAMBLE_COUNT);
196
197 /* Receive data until we see the header byte */
198 deadline = jiffies + msecs_to_jiffies(EC_MSG_DEADLINE_MS);
199 while (true) {
200 unsigned long start_jiffies = jiffies;
201
202 ret = receive_n_bytes(ec_dev,
203 ec_dev->din,
204 EC_MSG_PREAMBLE_COUNT);
205 if (ret < 0)
206 return ret;
207
208 ptr = ec_dev->din;
209 for (end = ptr + EC_MSG_PREAMBLE_COUNT; ptr != end; ptr++) {
210 if (*ptr == EC_SPI_FRAME_START) {
211 dev_dbg(ec_dev->dev, "msg found at %zd\n",
212 ptr - ec_dev->din);
213 break;
214 }
215 }
216 if (ptr != end)
217 break;
218
219 /*
220 * Use the time at the start of the loop as a timeout. This
221 * gives us one last shot at getting the transfer and is useful
222 * in case we got context switched out for a while.
223 */
224 if (time_after(start_jiffies, deadline)) {
225 dev_warn(ec_dev->dev, "EC failed to respond in time\n");
226 return -ETIMEDOUT;
227 }
228 }
229
230 /*
231 * ptr now points to the header byte. Copy any valid data to the
232 * start of our buffer
233 */
234 todo = end - ++ptr;
235 BUG_ON(todo < 0 || todo > ec_dev->din_size);
236 todo = min(todo, need_len);
237 memmove(ec_dev->din, ptr, todo);
238 ptr = ec_dev->din + todo;
239 dev_dbg(ec_dev->dev, "need %d, got %d bytes from preamble\n",
240 need_len, todo);
241 need_len -= todo;
242
243 /* If the entire response struct wasn't read, get the rest of it. */
244 if (todo < sizeof(*response)) {
245 ret = receive_n_bytes(ec_dev, ptr, sizeof(*response) - todo);
246 if (ret < 0)
247 return -EBADMSG;
248 ptr += (sizeof(*response) - todo);
249 todo = sizeof(*response);
250 }
251
252 response = (struct ec_host_response *)ec_dev->din;
253
254 /* Abort if data_len is too large. */
255 if (response->data_len > ec_dev->din_size)
256 return -EMSGSIZE;
257
258 /* Receive data until we have it all */
259 while (need_len > 0) {
260 /*
261 * We can't support transfers larger than the SPI FIFO size
262 * unless we have DMA. We don't have DMA on the ISP SPI ports
263 * for Exynos. We need a way of asking SPI driver for
264 * maximum-supported transfer size.
265 */
266 todo = min(need_len, 256);
267 dev_dbg(ec_dev->dev, "loop, todo=%d, need_len=%d, ptr=%zd\n",
268 todo, need_len, ptr - ec_dev->din);
269
270 ret = receive_n_bytes(ec_dev, ptr, todo);
271 if (ret < 0)
272 return ret;
273
274 ptr += todo;
275 need_len -= todo;
276 }
277
278 dev_dbg(ec_dev->dev, "loop done, ptr=%zd\n", ptr - ec_dev->din);
279
280 return 0;
281 }
282
283 /**
284 * cros_ec_spi_receive_response - Receive a response from the EC.
285 *
286 * This function has two phases: reading the preamble bytes (since if we read
287 * data from the EC before it is ready to send, we just get preamble) and
288 * reading the actual message.
289 *
290 * The received data is placed into ec_dev->din.
291 *
292 * @ec_dev: ChromeOS EC device
293 * @need_len: Number of message bytes we need to read
294 */
295 static int cros_ec_spi_receive_response(struct cros_ec_device *ec_dev,
296 int need_len)
297 {
298 u8 *ptr, *end;
299 int ret;
300 unsigned long deadline;
301 int todo;
302
303 BUG_ON(ec_dev->din_size < EC_MSG_PREAMBLE_COUNT);
304
305 /* Receive data until we see the header byte */
306 deadline = jiffies + msecs_to_jiffies(EC_MSG_DEADLINE_MS);
307 while (true) {
308 unsigned long start_jiffies = jiffies;
309
310 ret = receive_n_bytes(ec_dev,
311 ec_dev->din,
312 EC_MSG_PREAMBLE_COUNT);
313 if (ret < 0)
314 return ret;
315
316 ptr = ec_dev->din;
317 for (end = ptr + EC_MSG_PREAMBLE_COUNT; ptr != end; ptr++) {
318 if (*ptr == EC_SPI_FRAME_START) {
319 dev_dbg(ec_dev->dev, "msg found at %zd\n",
320 ptr - ec_dev->din);
321 break;
322 }
323 }
324 if (ptr != end)
325 break;
326
327 /*
328 * Use the time at the start of the loop as a timeout. This
329 * gives us one last shot at getting the transfer and is useful
330 * in case we got context switched out for a while.
331 */
332 if (time_after(start_jiffies, deadline)) {
333 dev_warn(ec_dev->dev, "EC failed to respond in time\n");
334 return -ETIMEDOUT;
335 }
336 }
337
338 /*
339 * ptr now points to the header byte. Copy any valid data to the
340 * start of our buffer
341 */
342 todo = end - ++ptr;
343 BUG_ON(todo < 0 || todo > ec_dev->din_size);
344 todo = min(todo, need_len);
345 memmove(ec_dev->din, ptr, todo);
346 ptr = ec_dev->din + todo;
347 dev_dbg(ec_dev->dev, "need %d, got %d bytes from preamble\n",
348 need_len, todo);
349 need_len -= todo;
350
351 /* Receive data until we have it all */
352 while (need_len > 0) {
353 /*
354 * We can't support transfers larger than the SPI FIFO size
355 * unless we have DMA. We don't have DMA on the ISP SPI ports
356 * for Exynos. We need a way of asking SPI driver for
357 * maximum-supported transfer size.
358 */
359 todo = min(need_len, 256);
360 dev_dbg(ec_dev->dev, "loop, todo=%d, need_len=%d, ptr=%zd\n",
361 todo, need_len, ptr - ec_dev->din);
362
363 ret = receive_n_bytes(ec_dev, ptr, todo);
364 if (ret < 0)
365 return ret;
366
367 debug_packet(ec_dev->dev, "interim", ptr, todo);
368 ptr += todo;
369 need_len -= todo;
370 }
371
372 dev_dbg(ec_dev->dev, "loop done, ptr=%zd\n", ptr - ec_dev->din);
373
374 return 0;
375 }
376
377 /**
378 * do_cros_ec_pkt_xfer_spi - Transfer a packet over SPI and receive the reply
379 *
380 * @ec_dev: ChromeOS EC device
381 * @ec_msg: Message to transfer
382 */
383 static int do_cros_ec_pkt_xfer_spi(struct cros_ec_device *ec_dev,
384 struct cros_ec_command *ec_msg)
385 {
386 struct ec_host_response *response;
387 struct cros_ec_spi *ec_spi = ec_dev->priv;
388 struct spi_transfer trans, trans_delay;
389 struct spi_message msg;
390 int i, len;
391 u8 *ptr;
392 u8 *rx_buf;
393 u8 sum;
394 u8 rx_byte;
395 int ret = 0, final_ret;
396 unsigned long delay;
397
398 len = cros_ec_prepare_tx(ec_dev, ec_msg);
399 dev_dbg(ec_dev->dev, "prepared, len=%d\n", len);
400
401 /* If it's too soon to do another transaction, wait */
402 delay = ktime_get_ns() - ec_spi->last_transfer_ns;
403 if (delay < EC_SPI_RECOVERY_TIME_NS)
404 ndelay(EC_SPI_RECOVERY_TIME_NS - delay);
405
406 rx_buf = kzalloc(len, GFP_KERNEL);
407 if (!rx_buf)
408 return -ENOMEM;
409
410 spi_bus_lock(ec_spi->spi->master);
411
412 /*
413 * Leave a gap between CS assertion and clocking of data to allow the
414 * EC time to wakeup.
415 */
416 spi_message_init(&msg);
417 if (ec_spi->start_of_msg_delay) {
418 memset(&trans_delay, 0, sizeof(trans_delay));
419 trans_delay.delay_usecs = ec_spi->start_of_msg_delay;
420 spi_message_add_tail(&trans_delay, &msg);
421 }
422
423 /* Transmit phase - send our message */
424 memset(&trans, 0, sizeof(trans));
425 trans.tx_buf = ec_dev->dout;
426 trans.rx_buf = rx_buf;
427 trans.len = len;
428 trans.cs_change = 1;
429 spi_message_add_tail(&trans, &msg);
430 ret = spi_sync_locked(ec_spi->spi, &msg);
431
432 /* Get the response */
433 if (!ret) {
434 /* Verify that EC can process command */
435 for (i = 0; i < len; i++) {
436 rx_byte = rx_buf[i];
437 /*
438 * Seeing the PAST_END, RX_BAD_DATA, or NOT_READY
439 * markers are all signs that the EC didn't fully
440 * receive our command. e.g., if the EC is flashing
441 * itself, it can't respond to any commands and instead
442 * clocks out EC_SPI_PAST_END from its SPI hardware
443 * buffer. Similar occurrences can happen if the AP is
444 * too slow to clock out data after asserting CS -- the
445 * EC will abort and fill its buffer with
446 * EC_SPI_RX_BAD_DATA.
447 *
448 * In all cases, these errors should be safe to retry.
449 * Report -EAGAIN and let the caller decide what to do
450 * about that.
451 */
452 if (rx_byte == EC_SPI_PAST_END ||
453 rx_byte == EC_SPI_RX_BAD_DATA ||
454 rx_byte == EC_SPI_NOT_READY) {
455 ret = -EAGAIN;
456 break;
457 }
458 }
459 }
460
461 if (!ret)
462 ret = cros_ec_spi_receive_packet(ec_dev,
463 ec_msg->insize + sizeof(*response));
464 else if (ret != -EAGAIN)
465 dev_err(ec_dev->dev, "spi transfer failed: %d\n", ret);
466
467 final_ret = terminate_request(ec_dev);
468
469 spi_bus_unlock(ec_spi->spi->master);
470
471 if (!ret)
472 ret = final_ret;
473 if (ret < 0)
474 goto exit;
475
476 ptr = ec_dev->din;
477
478 /* check response error code */
479 response = (struct ec_host_response *)ptr;
480 ec_msg->result = response->result;
481
482 ret = cros_ec_check_result(ec_dev, ec_msg);
483 if (ret)
484 goto exit;
485
486 len = response->data_len;
487 sum = 0;
488 if (len > ec_msg->insize) {
489 dev_err(ec_dev->dev, "packet too long (%d bytes, expected %d)",
490 len, ec_msg->insize);
491 ret = -EMSGSIZE;
492 goto exit;
493 }
494
495 for (i = 0; i < sizeof(*response); i++)
496 sum += ptr[i];
497
498 /* copy response packet payload and compute checksum */
499 memcpy(ec_msg->data, ptr + sizeof(*response), len);
500 for (i = 0; i < len; i++)
501 sum += ec_msg->data[i];
502
503 if (sum) {
504 dev_err(ec_dev->dev,
505 "bad packet checksum, calculated %x\n",
506 sum);
507 ret = -EBADMSG;
508 goto exit;
509 }
510
511 ret = len;
512 exit:
513 kfree(rx_buf);
514 if (ec_msg->command == EC_CMD_REBOOT_EC)
515 msleep(EC_REBOOT_DELAY_MS);
516
517 return ret;
518 }
519
520 /**
521 * do_cros_ec_cmd_xfer_spi - Transfer a message over SPI and receive the reply
522 *
523 * @ec_dev: ChromeOS EC device
524 * @ec_msg: Message to transfer
525 */
526 static int do_cros_ec_cmd_xfer_spi(struct cros_ec_device *ec_dev,
527 struct cros_ec_command *ec_msg)
528 {
529 struct cros_ec_spi *ec_spi = ec_dev->priv;
530 struct spi_transfer trans;
531 struct spi_message msg;
532 int i, len;
533 u8 *ptr;
534 u8 *rx_buf;
535 u8 rx_byte;
536 int sum;
537 int ret = 0, final_ret;
538 unsigned long delay;
539
540 len = cros_ec_prepare_tx(ec_dev, ec_msg);
541 dev_dbg(ec_dev->dev, "prepared, len=%d\n", len);
542
543 /* If it's too soon to do another transaction, wait */
544 delay = ktime_get_ns() - ec_spi->last_transfer_ns;
545 if (delay < EC_SPI_RECOVERY_TIME_NS)
546 ndelay(EC_SPI_RECOVERY_TIME_NS - delay);
547
548 rx_buf = kzalloc(len, GFP_KERNEL);
549 if (!rx_buf)
550 return -ENOMEM;
551
552 spi_bus_lock(ec_spi->spi->master);
553
554 /* Transmit phase - send our message */
555 debug_packet(ec_dev->dev, "out", ec_dev->dout, len);
556 memset(&trans, 0, sizeof(trans));
557 trans.tx_buf = ec_dev->dout;
558 trans.rx_buf = rx_buf;
559 trans.len = len;
560 trans.cs_change = 1;
561 spi_message_init(&msg);
562 spi_message_add_tail(&trans, &msg);
563 ret = spi_sync_locked(ec_spi->spi, &msg);
564
565 /* Get the response */
566 if (!ret) {
567 /* Verify that EC can process command */
568 for (i = 0; i < len; i++) {
569 rx_byte = rx_buf[i];
570 /* See comments in cros_ec_pkt_xfer_spi() */
571 if (rx_byte == EC_SPI_PAST_END ||
572 rx_byte == EC_SPI_RX_BAD_DATA ||
573 rx_byte == EC_SPI_NOT_READY) {
574 ret = -EAGAIN;
575 break;
576 }
577 }
578 }
579
580 if (!ret)
581 ret = cros_ec_spi_receive_response(ec_dev,
582 ec_msg->insize + EC_MSG_TX_PROTO_BYTES);
583 else if (ret != -EAGAIN)
584 dev_err(ec_dev->dev, "spi transfer failed: %d\n", ret);
585
586 final_ret = terminate_request(ec_dev);
587
588 spi_bus_unlock(ec_spi->spi->master);
589
590 if (!ret)
591 ret = final_ret;
592 if (ret < 0)
593 goto exit;
594
595 ptr = ec_dev->din;
596
597 /* check response error code */
598 ec_msg->result = ptr[0];
599 ret = cros_ec_check_result(ec_dev, ec_msg);
600 if (ret)
601 goto exit;
602
603 len = ptr[1];
604 sum = ptr[0] + ptr[1];
605 if (len > ec_msg->insize) {
606 dev_err(ec_dev->dev, "packet too long (%d bytes, expected %d)",
607 len, ec_msg->insize);
608 ret = -ENOSPC;
609 goto exit;
610 }
611
612 /* copy response packet payload and compute checksum */
613 for (i = 0; i < len; i++) {
614 sum += ptr[i + 2];
615 if (ec_msg->insize)
616 ec_msg->data[i] = ptr[i + 2];
617 }
618 sum &= 0xff;
619
620 debug_packet(ec_dev->dev, "in", ptr, len + 3);
621
622 if (sum != ptr[len + 2]) {
623 dev_err(ec_dev->dev,
624 "bad packet checksum, expected %02x, got %02x\n",
625 sum, ptr[len + 2]);
626 ret = -EBADMSG;
627 goto exit;
628 }
629
630 ret = len;
631 exit:
632 kfree(rx_buf);
633 if (ec_msg->command == EC_CMD_REBOOT_EC)
634 msleep(EC_REBOOT_DELAY_MS);
635
636 return ret;
637 }
638
639 static void cros_ec_xfer_high_pri_work(struct kthread_work *work)
640 {
641 struct cros_ec_xfer_work_params *params;
642
643 params = container_of(work, struct cros_ec_xfer_work_params, work);
644 params->ret = params->fn(params->ec_dev, params->ec_msg);
645 }
646
647 static int cros_ec_xfer_high_pri(struct cros_ec_device *ec_dev,
648 struct cros_ec_command *ec_msg,
649 cros_ec_xfer_fn_t fn)
650 {
651 struct cros_ec_spi *ec_spi = ec_dev->priv;
652 struct cros_ec_xfer_work_params params = {
653 .work = KTHREAD_WORK_INIT(params.work,
654 cros_ec_xfer_high_pri_work),
655 .ec_dev = ec_dev,
656 .ec_msg = ec_msg,
657 .fn = fn,
658 };
659
660 /*
661 * This looks a bit ridiculous. Why do the work on a
662 * different thread if we're just going to block waiting for
663 * the thread to finish? The key here is that the thread is
664 * running at high priority but the calling context might not
665 * be. We need to be at high priority to avoid getting
666 * context switched out for too long and the EC giving up on
667 * the transfer.
668 */
669 kthread_queue_work(ec_spi->high_pri_worker, &params.work);
670 kthread_flush_work(&params.work);
671
672 return params.ret;
673 }
674
675 static int cros_ec_pkt_xfer_spi(struct cros_ec_device *ec_dev,
676 struct cros_ec_command *ec_msg)
677 {
678 return cros_ec_xfer_high_pri(ec_dev, ec_msg, do_cros_ec_pkt_xfer_spi);
679 }
680
681 static int cros_ec_cmd_xfer_spi(struct cros_ec_device *ec_dev,
682 struct cros_ec_command *ec_msg)
683 {
684 return cros_ec_xfer_high_pri(ec_dev, ec_msg, do_cros_ec_cmd_xfer_spi);
685 }
686
687 static void cros_ec_spi_dt_probe(struct cros_ec_spi *ec_spi, struct device *dev)
688 {
689 struct device_node *np = dev->of_node;
690 u32 val;
691 int ret;
692
693 ret = of_property_read_u32(np, "google,cros-ec-spi-pre-delay", &val);
694 if (!ret)
695 ec_spi->start_of_msg_delay = val;
696
697 ret = of_property_read_u32(np, "google,cros-ec-spi-msg-delay", &val);
698 if (!ret)
699 ec_spi->end_of_msg_delay = val;
700 }
701
702 static void cros_ec_spi_high_pri_release(void *worker)
703 {
704 kthread_destroy_worker(worker);
705 }
706
707 static int cros_ec_spi_devm_high_pri_alloc(struct device *dev,
708 struct cros_ec_spi *ec_spi)
709 {
710 struct sched_param sched_priority = {
711 .sched_priority = MAX_RT_PRIO / 2,
712 };
713 int err;
714
715 ec_spi->high_pri_worker =
716 kthread_create_worker(0, "cros_ec_spi_high_pri");
717
718 if (IS_ERR(ec_spi->high_pri_worker)) {
719 err = PTR_ERR(ec_spi->high_pri_worker);
720 dev_err(dev, "Can't create cros_ec high pri worker: %d\n", err);
721 return err;
722 }
723
724 err = devm_add_action_or_reset(dev, cros_ec_spi_high_pri_release,
725 ec_spi->high_pri_worker);
726 if (err)
727 return err;
728
729 err = sched_setscheduler_nocheck(ec_spi->high_pri_worker->task,
730 SCHED_FIFO, &sched_priority);
731 if (err)
732 dev_err(dev, "Can't set cros_ec high pri priority: %d\n", err);
733 return err;
734 }
735
736 static int cros_ec_spi_probe(struct spi_device *spi)
737 {
738 struct device *dev = &spi->dev;
739 struct cros_ec_device *ec_dev;
740 struct cros_ec_spi *ec_spi;
741 int err;
742
743 spi->bits_per_word = 8;
744 spi->mode = SPI_MODE_0;
745 spi->rt = true;
746 err = spi_setup(spi);
747 if (err < 0)
748 return err;
749
750 ec_spi = devm_kzalloc(dev, sizeof(*ec_spi), GFP_KERNEL);
751 if (ec_spi == NULL)
752 return -ENOMEM;
753 ec_spi->spi = spi;
754 ec_dev = devm_kzalloc(dev, sizeof(*ec_dev), GFP_KERNEL);
755 if (!ec_dev)
756 return -ENOMEM;
757
758 /* Check for any DT properties */
759 cros_ec_spi_dt_probe(ec_spi, dev);
760
761 spi_set_drvdata(spi, ec_dev);
762 ec_dev->dev = dev;
763 ec_dev->priv = ec_spi;
764 ec_dev->irq = spi->irq;
765 ec_dev->cmd_xfer = cros_ec_cmd_xfer_spi;
766 ec_dev->pkt_xfer = cros_ec_pkt_xfer_spi;
767 ec_dev->phys_name = dev_name(&ec_spi->spi->dev);
768 ec_dev->din_size = EC_MSG_PREAMBLE_COUNT +
769 sizeof(struct ec_host_response) +
770 sizeof(struct ec_response_get_protocol_info);
771 ec_dev->dout_size = sizeof(struct ec_host_request);
772
773 ec_spi->last_transfer_ns = ktime_get_ns();
774
775 err = cros_ec_spi_devm_high_pri_alloc(dev, ec_spi);
776 if (err)
777 return err;
778
779 err = cros_ec_register(ec_dev);
780 if (err) {
781 dev_err(dev, "cannot register EC\n");
782 return err;
783 }
784
785 device_init_wakeup(&spi->dev, true);
786
787 return 0;
788 }
789
790 static int cros_ec_spi_remove(struct spi_device *spi)
791 {
792 struct cros_ec_device *ec_dev = spi_get_drvdata(spi);
793
794 return cros_ec_unregister(ec_dev);
795 }
796
797 #ifdef CONFIG_PM_SLEEP
798 static int cros_ec_spi_suspend(struct device *dev)
799 {
800 struct cros_ec_device *ec_dev = dev_get_drvdata(dev);
801
802 return cros_ec_suspend(ec_dev);
803 }
804
805 static int cros_ec_spi_resume(struct device *dev)
806 {
807 struct cros_ec_device *ec_dev = dev_get_drvdata(dev);
808
809 return cros_ec_resume(ec_dev);
810 }
811 #endif
812
813 static SIMPLE_DEV_PM_OPS(cros_ec_spi_pm_ops, cros_ec_spi_suspend,
814 cros_ec_spi_resume);
815
816 static const struct of_device_id cros_ec_spi_of_match[] = {
817 { .compatible = "google,cros-ec-spi", },
818 { /* sentinel */ },
819 };
820 MODULE_DEVICE_TABLE(of, cros_ec_spi_of_match);
821
822 static const struct spi_device_id cros_ec_spi_id[] = {
823 { "cros-ec-spi", 0 },
824 { }
825 };
826 MODULE_DEVICE_TABLE(spi, cros_ec_spi_id);
827
828 static struct spi_driver cros_ec_driver_spi = {
829 .driver = {
830 .name = "cros-ec-spi",
831 .of_match_table = cros_ec_spi_of_match,
832 .pm = &cros_ec_spi_pm_ops,
833 },
834 .probe = cros_ec_spi_probe,
835 .remove = cros_ec_spi_remove,
836 .id_table = cros_ec_spi_id,
837 };
838
839 module_spi_driver(cros_ec_driver_spi);
840
841 MODULE_LICENSE("GPL v2");
842 MODULE_DESCRIPTION("SPI interface for ChromeOS Embedded Controller");