]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/platform/x86/asus-laptop.c
Merge branch 'exynos-drm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / drivers / platform / x86 / asus-laptop.c
1 /*
2 * asus-laptop.c - Asus Laptop Support
3 *
4 *
5 * Copyright (C) 2002-2005 Julien Lerouge, 2003-2006 Karol Kozimor
6 * Copyright (C) 2006-2007 Corentin Chary
7 * Copyright (C) 2011 Wind River Systems
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 *
24 * The development page for this driver is located at
25 * http://sourceforge.net/projects/acpi4asus/
26 *
27 * Credits:
28 * Pontus Fuchs - Helper functions, cleanup
29 * Johann Wiesner - Small compile fixes
30 * John Belmonte - ACPI code for Toshiba laptop was a good starting point.
31 * Eric Burghard - LED display support for W1N
32 * Josh Green - Light Sens support
33 * Thomas Tuttle - His first patch for led support was very helpful
34 * Sam Lin - GPS support
35 */
36
37 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/init.h>
42 #include <linux/types.h>
43 #include <linux/err.h>
44 #include <linux/proc_fs.h>
45 #include <linux/backlight.h>
46 #include <linux/fb.h>
47 #include <linux/leds.h>
48 #include <linux/platform_device.h>
49 #include <linux/uaccess.h>
50 #include <linux/input.h>
51 #include <linux/input/sparse-keymap.h>
52 #include <linux/input-polldev.h>
53 #include <linux/rfkill.h>
54 #include <linux/slab.h>
55 #include <linux/dmi.h>
56 #include <linux/acpi.h>
57 #include <acpi/video.h>
58
59 #define ASUS_LAPTOP_VERSION "0.42"
60
61 #define ASUS_LAPTOP_NAME "Asus Laptop Support"
62 #define ASUS_LAPTOP_CLASS "hotkey"
63 #define ASUS_LAPTOP_DEVICE_NAME "Hotkey"
64 #define ASUS_LAPTOP_FILE KBUILD_MODNAME
65 #define ASUS_LAPTOP_PREFIX "\\_SB.ATKD."
66
67 MODULE_AUTHOR("Julien Lerouge, Karol Kozimor, Corentin Chary");
68 MODULE_DESCRIPTION(ASUS_LAPTOP_NAME);
69 MODULE_LICENSE("GPL");
70
71 /*
72 * WAPF defines the behavior of the Fn+Fx wlan key
73 * The significance of values is yet to be found, but
74 * most of the time:
75 * Bit | Bluetooth | WLAN
76 * 0 | Hardware | Hardware
77 * 1 | Hardware | Software
78 * 4 | Software | Software
79 */
80 static uint wapf = 1;
81 module_param(wapf, uint, 0444);
82 MODULE_PARM_DESC(wapf, "WAPF value");
83
84 static char *wled_type = "unknown";
85 static char *bled_type = "unknown";
86
87 module_param(wled_type, charp, 0444);
88 MODULE_PARM_DESC(wled_type, "Set the wled type on boot "
89 "(unknown, led or rfkill). "
90 "default is unknown");
91
92 module_param(bled_type, charp, 0444);
93 MODULE_PARM_DESC(bled_type, "Set the bled type on boot "
94 "(unknown, led or rfkill). "
95 "default is unknown");
96
97 static int wlan_status = 1;
98 static int bluetooth_status = 1;
99 static int wimax_status = -1;
100 static int wwan_status = -1;
101 static int als_status;
102
103 module_param(wlan_status, int, 0444);
104 MODULE_PARM_DESC(wlan_status, "Set the wireless status on boot "
105 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
106 "default is -1");
107
108 module_param(bluetooth_status, int, 0444);
109 MODULE_PARM_DESC(bluetooth_status, "Set the wireless status on boot "
110 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
111 "default is -1");
112
113 module_param(wimax_status, int, 0444);
114 MODULE_PARM_DESC(wimax_status, "Set the wireless status on boot "
115 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
116 "default is -1");
117
118 module_param(wwan_status, int, 0444);
119 MODULE_PARM_DESC(wwan_status, "Set the wireless status on boot "
120 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
121 "default is -1");
122
123 module_param(als_status, int, 0444);
124 MODULE_PARM_DESC(als_status, "Set the ALS status on boot "
125 "(0 = disabled, 1 = enabled). "
126 "default is 0");
127
128 /*
129 * Some events we use, same for all Asus
130 */
131 #define ATKD_BRNUP_MIN 0x10
132 #define ATKD_BRNUP_MAX 0x1f
133 #define ATKD_BRNDOWN_MIN 0x20
134 #define ATKD_BRNDOWN_MAX 0x2f
135 #define ATKD_BRNDOWN 0x20
136 #define ATKD_BRNUP 0x2f
137 #define ATKD_LCD_ON 0x33
138 #define ATKD_LCD_OFF 0x34
139
140 /*
141 * Known bits returned by \_SB.ATKD.HWRS
142 */
143 #define WL_HWRS 0x80
144 #define BT_HWRS 0x100
145
146 /*
147 * Flags for hotk status
148 * WL_ON and BT_ON are also used for wireless_status()
149 */
150 #define WL_RSTS 0x01 /* internal Wifi */
151 #define BT_RSTS 0x02 /* internal Bluetooth */
152 #define WM_RSTS 0x08 /* internal wimax */
153 #define WW_RSTS 0x20 /* internal wwan */
154
155 /* WLED and BLED type */
156 #define TYPE_UNKNOWN 0
157 #define TYPE_LED 1
158 #define TYPE_RFKILL 2
159
160 /* LED */
161 #define METHOD_MLED "MLED"
162 #define METHOD_TLED "TLED"
163 #define METHOD_RLED "RLED" /* W1JC */
164 #define METHOD_PLED "PLED" /* A7J */
165 #define METHOD_GLED "GLED" /* G1, G2 (probably) */
166
167 /* LEDD */
168 #define METHOD_LEDD "SLCM"
169
170 /*
171 * Bluetooth and WLAN
172 * WLED and BLED are not handled like other XLED, because in some dsdt
173 * they also control the WLAN/Bluetooth device.
174 */
175 #define METHOD_WLAN "WLED"
176 #define METHOD_BLUETOOTH "BLED"
177
178 /* WWAN and WIMAX */
179 #define METHOD_WWAN "GSMC"
180 #define METHOD_WIMAX "WMXC"
181
182 #define METHOD_WL_STATUS "RSTS"
183
184 /* Brightness */
185 #define METHOD_BRIGHTNESS_SET "SPLV"
186 #define METHOD_BRIGHTNESS_GET "GPLV"
187
188 /* Display */
189 #define METHOD_SWITCH_DISPLAY "SDSP"
190
191 #define METHOD_ALS_CONTROL "ALSC" /* Z71A Z71V */
192 #define METHOD_ALS_LEVEL "ALSL" /* Z71A Z71V */
193
194 /* GPS */
195 /* R2H use different handle for GPS on/off */
196 #define METHOD_GPS_ON "SDON"
197 #define METHOD_GPS_OFF "SDOF"
198 #define METHOD_GPS_STATUS "GPST"
199
200 /* Keyboard light */
201 #define METHOD_KBD_LIGHT_SET "SLKB"
202 #define METHOD_KBD_LIGHT_GET "GLKB"
203
204 /* For Pegatron Lucid tablet */
205 #define DEVICE_NAME_PEGA "Lucid"
206
207 #define METHOD_PEGA_ENABLE "ENPR"
208 #define METHOD_PEGA_DISABLE "DAPR"
209 #define PEGA_WLAN 0x00
210 #define PEGA_BLUETOOTH 0x01
211 #define PEGA_WWAN 0x02
212 #define PEGA_ALS 0x04
213 #define PEGA_ALS_POWER 0x05
214
215 #define METHOD_PEGA_READ "RDLN"
216 #define PEGA_READ_ALS_H 0x02
217 #define PEGA_READ_ALS_L 0x03
218
219 #define PEGA_ACCEL_NAME "pega_accel"
220 #define PEGA_ACCEL_DESC "Pegatron Lucid Tablet Accelerometer"
221 #define METHOD_XLRX "XLRX"
222 #define METHOD_XLRY "XLRY"
223 #define METHOD_XLRZ "XLRZ"
224 #define PEGA_ACC_CLAMP 512 /* 1G accel is reported as ~256, so clamp to 2G */
225 #define PEGA_ACC_RETRIES 3
226
227 /*
228 * Define a specific led structure to keep the main structure clean
229 */
230 struct asus_led {
231 int wk;
232 struct work_struct work;
233 struct led_classdev led;
234 struct asus_laptop *asus;
235 const char *method;
236 };
237
238 /*
239 * Same thing for rfkill
240 */
241 struct asus_rfkill {
242 /* type of control. Maps to PEGA_* values or *_RSTS */
243 int control_id;
244 struct rfkill *rfkill;
245 struct asus_laptop *asus;
246 };
247
248 /*
249 * This is the main structure, we can use it to store anything interesting
250 * about the hotk device
251 */
252 struct asus_laptop {
253 char *name; /* laptop name */
254
255 struct acpi_table_header *dsdt_info;
256 struct platform_device *platform_device;
257 struct acpi_device *device; /* the device we are in */
258 struct backlight_device *backlight_device;
259
260 struct input_dev *inputdev;
261 struct key_entry *keymap;
262 struct input_polled_dev *pega_accel_poll;
263
264 struct asus_led wled;
265 struct asus_led bled;
266 struct asus_led mled;
267 struct asus_led tled;
268 struct asus_led rled;
269 struct asus_led pled;
270 struct asus_led gled;
271 struct asus_led kled;
272 struct workqueue_struct *led_workqueue;
273
274 int wled_type;
275 int bled_type;
276 int wireless_status;
277 bool have_rsts;
278 bool is_pega_lucid;
279 bool pega_acc_live;
280 int pega_acc_x;
281 int pega_acc_y;
282 int pega_acc_z;
283
284 struct asus_rfkill wlan;
285 struct asus_rfkill bluetooth;
286 struct asus_rfkill wwan;
287 struct asus_rfkill wimax;
288 struct asus_rfkill gps;
289
290 acpi_handle handle; /* the handle of the hotk device */
291 u32 ledd_status; /* status of the LED display */
292 u8 light_level; /* light sensor level */
293 u8 light_switch; /* light sensor switch value */
294 u16 event_count[128]; /* count for each event TODO make this better */
295 };
296
297 static const struct key_entry asus_keymap[] = {
298 /* Lenovo SL Specific keycodes */
299 {KE_KEY, 0x02, { KEY_SCREENLOCK } },
300 {KE_KEY, 0x05, { KEY_WLAN } },
301 {KE_KEY, 0x08, { KEY_F13 } },
302 {KE_KEY, 0x09, { KEY_PROG2 } }, /* Dock */
303 {KE_KEY, 0x17, { KEY_ZOOM } },
304 {KE_KEY, 0x1f, { KEY_BATTERY } },
305 /* End of Lenovo SL Specific keycodes */
306 {KE_KEY, ATKD_BRNDOWN, { KEY_BRIGHTNESSDOWN } },
307 {KE_KEY, ATKD_BRNUP, { KEY_BRIGHTNESSUP } },
308 {KE_KEY, 0x30, { KEY_VOLUMEUP } },
309 {KE_KEY, 0x31, { KEY_VOLUMEDOWN } },
310 {KE_KEY, 0x32, { KEY_MUTE } },
311 {KE_KEY, 0x33, { KEY_DISPLAYTOGGLE } }, /* LCD on */
312 {KE_KEY, 0x34, { KEY_DISPLAY_OFF } }, /* LCD off */
313 {KE_KEY, 0x40, { KEY_PREVIOUSSONG } },
314 {KE_KEY, 0x41, { KEY_NEXTSONG } },
315 {KE_KEY, 0x43, { KEY_STOPCD } }, /* Stop/Eject */
316 {KE_KEY, 0x45, { KEY_PLAYPAUSE } },
317 {KE_KEY, 0x4c, { KEY_MEDIA } }, /* WMP Key */
318 {KE_KEY, 0x50, { KEY_EMAIL } },
319 {KE_KEY, 0x51, { KEY_WWW } },
320 {KE_KEY, 0x55, { KEY_CALC } },
321 {KE_IGNORE, 0x57, }, /* Battery mode */
322 {KE_IGNORE, 0x58, }, /* AC mode */
323 {KE_KEY, 0x5C, { KEY_SCREENLOCK } }, /* Screenlock */
324 {KE_KEY, 0x5D, { KEY_WLAN } }, /* WLAN Toggle */
325 {KE_KEY, 0x5E, { KEY_WLAN } }, /* WLAN Enable */
326 {KE_KEY, 0x5F, { KEY_WLAN } }, /* WLAN Disable */
327 {KE_KEY, 0x60, { KEY_TOUCHPAD_ON } },
328 {KE_KEY, 0x61, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD only */
329 {KE_KEY, 0x62, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT only */
330 {KE_KEY, 0x63, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT */
331 {KE_KEY, 0x64, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV */
332 {KE_KEY, 0x65, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV */
333 {KE_KEY, 0x66, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV */
334 {KE_KEY, 0x67, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV */
335 {KE_KEY, 0x6A, { KEY_TOUCHPAD_TOGGLE } }, /* Lock Touchpad Fn + F9 */
336 {KE_KEY, 0x6B, { KEY_TOUCHPAD_TOGGLE } }, /* Lock Touchpad */
337 {KE_KEY, 0x6C, { KEY_SLEEP } }, /* Suspend */
338 {KE_KEY, 0x6D, { KEY_SLEEP } }, /* Hibernate */
339 {KE_IGNORE, 0x6E, }, /* Low Battery notification */
340 {KE_KEY, 0x7D, { KEY_BLUETOOTH } }, /* Bluetooth Enable */
341 {KE_KEY, 0x7E, { KEY_BLUETOOTH } }, /* Bluetooth Disable */
342 {KE_KEY, 0x82, { KEY_CAMERA } },
343 {KE_KEY, 0x88, { KEY_RFKILL } }, /* Radio Toggle Key */
344 {KE_KEY, 0x8A, { KEY_PROG1 } }, /* Color enhancement mode */
345 {KE_KEY, 0x8C, { KEY_SWITCHVIDEOMODE } }, /* SDSP DVI only */
346 {KE_KEY, 0x8D, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + DVI */
347 {KE_KEY, 0x8E, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + DVI */
348 {KE_KEY, 0x8F, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + DVI */
349 {KE_KEY, 0x90, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + DVI */
350 {KE_KEY, 0x91, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + DVI */
351 {KE_KEY, 0x92, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + DVI */
352 {KE_KEY, 0x93, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + DVI */
353 {KE_KEY, 0x95, { KEY_MEDIA } },
354 {KE_KEY, 0x99, { KEY_PHONE } },
355 {KE_KEY, 0xA0, { KEY_SWITCHVIDEOMODE } }, /* SDSP HDMI only */
356 {KE_KEY, 0xA1, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + HDMI */
357 {KE_KEY, 0xA2, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + HDMI */
358 {KE_KEY, 0xA3, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + HDMI */
359 {KE_KEY, 0xA4, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + HDMI */
360 {KE_KEY, 0xA5, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + HDMI */
361 {KE_KEY, 0xA6, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + HDMI */
362 {KE_KEY, 0xA7, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + HDMI */
363 {KE_KEY, 0xB5, { KEY_CALC } },
364 {KE_KEY, 0xC4, { KEY_KBDILLUMUP } },
365 {KE_KEY, 0xC5, { KEY_KBDILLUMDOWN } },
366 {KE_END, 0},
367 };
368
369
370 /*
371 * This function evaluates an ACPI method, given an int as parameter, the
372 * method is searched within the scope of the handle, can be NULL. The output
373 * of the method is written is output, which can also be NULL
374 *
375 * returns 0 if write is successful, -1 else.
376 */
377 static int write_acpi_int_ret(acpi_handle handle, const char *method, int val,
378 struct acpi_buffer *output)
379 {
380 struct acpi_object_list params; /* list of input parameters (an int) */
381 union acpi_object in_obj; /* the only param we use */
382 acpi_status status;
383
384 if (!handle)
385 return -1;
386
387 params.count = 1;
388 params.pointer = &in_obj;
389 in_obj.type = ACPI_TYPE_INTEGER;
390 in_obj.integer.value = val;
391
392 status = acpi_evaluate_object(handle, (char *)method, &params, output);
393 if (status == AE_OK)
394 return 0;
395 else
396 return -1;
397 }
398
399 static int write_acpi_int(acpi_handle handle, const char *method, int val)
400 {
401 return write_acpi_int_ret(handle, method, val, NULL);
402 }
403
404 static int acpi_check_handle(acpi_handle handle, const char *method,
405 acpi_handle *ret)
406 {
407 acpi_status status;
408
409 if (method == NULL)
410 return -ENODEV;
411
412 if (ret)
413 status = acpi_get_handle(handle, (char *)method,
414 ret);
415 else {
416 acpi_handle dummy;
417
418 status = acpi_get_handle(handle, (char *)method,
419 &dummy);
420 }
421
422 if (status != AE_OK) {
423 if (ret)
424 pr_warn("Error finding %s\n", method);
425 return -ENODEV;
426 }
427 return 0;
428 }
429
430 static bool asus_check_pega_lucid(struct asus_laptop *asus)
431 {
432 return !strcmp(asus->name, DEVICE_NAME_PEGA) &&
433 !acpi_check_handle(asus->handle, METHOD_PEGA_ENABLE, NULL) &&
434 !acpi_check_handle(asus->handle, METHOD_PEGA_DISABLE, NULL) &&
435 !acpi_check_handle(asus->handle, METHOD_PEGA_READ, NULL);
436 }
437
438 static int asus_pega_lucid_set(struct asus_laptop *asus, int unit, bool enable)
439 {
440 char *method = enable ? METHOD_PEGA_ENABLE : METHOD_PEGA_DISABLE;
441 return write_acpi_int(asus->handle, method, unit);
442 }
443
444 static int pega_acc_axis(struct asus_laptop *asus, int curr, char *method)
445 {
446 int i, delta;
447 unsigned long long val;
448 for (i = 0; i < PEGA_ACC_RETRIES; i++) {
449 acpi_evaluate_integer(asus->handle, method, NULL, &val);
450
451 /* The output is noisy. From reading the ASL
452 * dissassembly, timeout errors are returned with 1's
453 * in the high word, and the lack of locking around
454 * thei hi/lo byte reads means that a transition
455 * between (for example) -1 and 0 could be read as
456 * 0xff00 or 0x00ff. */
457 delta = abs(curr - (short)val);
458 if (delta < 128 && !(val & ~0xffff))
459 break;
460 }
461 return clamp_val((short)val, -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP);
462 }
463
464 static void pega_accel_poll(struct input_polled_dev *ipd)
465 {
466 struct device *parent = ipd->input->dev.parent;
467 struct asus_laptop *asus = dev_get_drvdata(parent);
468
469 /* In some cases, the very first call to poll causes a
470 * recursive fault under the polldev worker. This is
471 * apparently related to very early userspace access to the
472 * device, and perhaps a firmware bug. Fake the first report. */
473 if (!asus->pega_acc_live) {
474 asus->pega_acc_live = true;
475 input_report_abs(ipd->input, ABS_X, 0);
476 input_report_abs(ipd->input, ABS_Y, 0);
477 input_report_abs(ipd->input, ABS_Z, 0);
478 input_sync(ipd->input);
479 return;
480 }
481
482 asus->pega_acc_x = pega_acc_axis(asus, asus->pega_acc_x, METHOD_XLRX);
483 asus->pega_acc_y = pega_acc_axis(asus, asus->pega_acc_y, METHOD_XLRY);
484 asus->pega_acc_z = pega_acc_axis(asus, asus->pega_acc_z, METHOD_XLRZ);
485
486 /* Note transform, convert to "right/up/out" in the native
487 * landscape orientation (i.e. the vector is the direction of
488 * "real up" in the device's cartiesian coordinates). */
489 input_report_abs(ipd->input, ABS_X, -asus->pega_acc_x);
490 input_report_abs(ipd->input, ABS_Y, -asus->pega_acc_y);
491 input_report_abs(ipd->input, ABS_Z, asus->pega_acc_z);
492 input_sync(ipd->input);
493 }
494
495 static void pega_accel_exit(struct asus_laptop *asus)
496 {
497 if (asus->pega_accel_poll) {
498 input_unregister_polled_device(asus->pega_accel_poll);
499 input_free_polled_device(asus->pega_accel_poll);
500 }
501 asus->pega_accel_poll = NULL;
502 }
503
504 static int pega_accel_init(struct asus_laptop *asus)
505 {
506 int err;
507 struct input_polled_dev *ipd;
508
509 if (!asus->is_pega_lucid)
510 return -ENODEV;
511
512 if (acpi_check_handle(asus->handle, METHOD_XLRX, NULL) ||
513 acpi_check_handle(asus->handle, METHOD_XLRY, NULL) ||
514 acpi_check_handle(asus->handle, METHOD_XLRZ, NULL))
515 return -ENODEV;
516
517 ipd = input_allocate_polled_device();
518 if (!ipd)
519 return -ENOMEM;
520
521 ipd->poll = pega_accel_poll;
522 ipd->poll_interval = 125;
523 ipd->poll_interval_min = 50;
524 ipd->poll_interval_max = 2000;
525
526 ipd->input->name = PEGA_ACCEL_DESC;
527 ipd->input->phys = PEGA_ACCEL_NAME "/input0";
528 ipd->input->dev.parent = &asus->platform_device->dev;
529 ipd->input->id.bustype = BUS_HOST;
530
531 set_bit(EV_ABS, ipd->input->evbit);
532 input_set_abs_params(ipd->input, ABS_X,
533 -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
534 input_set_abs_params(ipd->input, ABS_Y,
535 -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
536 input_set_abs_params(ipd->input, ABS_Z,
537 -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
538
539 err = input_register_polled_device(ipd);
540 if (err)
541 goto exit;
542
543 asus->pega_accel_poll = ipd;
544 return 0;
545
546 exit:
547 input_free_polled_device(ipd);
548 return err;
549 }
550
551 /* Generic LED function */
552 static int asus_led_set(struct asus_laptop *asus, const char *method,
553 int value)
554 {
555 if (!strcmp(method, METHOD_MLED))
556 value = !value;
557 else if (!strcmp(method, METHOD_GLED))
558 value = !value + 1;
559 else
560 value = !!value;
561
562 return write_acpi_int(asus->handle, method, value);
563 }
564
565 /*
566 * LEDs
567 */
568 /* /sys/class/led handlers */
569 static void asus_led_cdev_set(struct led_classdev *led_cdev,
570 enum led_brightness value)
571 {
572 struct asus_led *led = container_of(led_cdev, struct asus_led, led);
573 struct asus_laptop *asus = led->asus;
574
575 led->wk = !!value;
576 queue_work(asus->led_workqueue, &led->work);
577 }
578
579 static void asus_led_cdev_update(struct work_struct *work)
580 {
581 struct asus_led *led = container_of(work, struct asus_led, work);
582 struct asus_laptop *asus = led->asus;
583
584 asus_led_set(asus, led->method, led->wk);
585 }
586
587 static enum led_brightness asus_led_cdev_get(struct led_classdev *led_cdev)
588 {
589 return led_cdev->brightness;
590 }
591
592 /*
593 * Keyboard backlight (also a LED)
594 */
595 static int asus_kled_lvl(struct asus_laptop *asus)
596 {
597 unsigned long long kblv;
598 struct acpi_object_list params;
599 union acpi_object in_obj;
600 acpi_status rv;
601
602 params.count = 1;
603 params.pointer = &in_obj;
604 in_obj.type = ACPI_TYPE_INTEGER;
605 in_obj.integer.value = 2;
606
607 rv = acpi_evaluate_integer(asus->handle, METHOD_KBD_LIGHT_GET,
608 &params, &kblv);
609 if (ACPI_FAILURE(rv)) {
610 pr_warn("Error reading kled level\n");
611 return -ENODEV;
612 }
613 return kblv;
614 }
615
616 static int asus_kled_set(struct asus_laptop *asus, int kblv)
617 {
618 if (kblv > 0)
619 kblv = (1 << 7) | (kblv & 0x7F);
620 else
621 kblv = 0;
622
623 if (write_acpi_int(asus->handle, METHOD_KBD_LIGHT_SET, kblv)) {
624 pr_warn("Keyboard LED display write failed\n");
625 return -EINVAL;
626 }
627 return 0;
628 }
629
630 static void asus_kled_cdev_set(struct led_classdev *led_cdev,
631 enum led_brightness value)
632 {
633 struct asus_led *led = container_of(led_cdev, struct asus_led, led);
634 struct asus_laptop *asus = led->asus;
635
636 led->wk = value;
637 queue_work(asus->led_workqueue, &led->work);
638 }
639
640 static void asus_kled_cdev_update(struct work_struct *work)
641 {
642 struct asus_led *led = container_of(work, struct asus_led, work);
643 struct asus_laptop *asus = led->asus;
644
645 asus_kled_set(asus, led->wk);
646 }
647
648 static enum led_brightness asus_kled_cdev_get(struct led_classdev *led_cdev)
649 {
650 struct asus_led *led = container_of(led_cdev, struct asus_led, led);
651 struct asus_laptop *asus = led->asus;
652
653 return asus_kled_lvl(asus);
654 }
655
656 static void asus_led_exit(struct asus_laptop *asus)
657 {
658 if (!IS_ERR_OR_NULL(asus->wled.led.dev))
659 led_classdev_unregister(&asus->wled.led);
660 if (!IS_ERR_OR_NULL(asus->bled.led.dev))
661 led_classdev_unregister(&asus->bled.led);
662 if (!IS_ERR_OR_NULL(asus->mled.led.dev))
663 led_classdev_unregister(&asus->mled.led);
664 if (!IS_ERR_OR_NULL(asus->tled.led.dev))
665 led_classdev_unregister(&asus->tled.led);
666 if (!IS_ERR_OR_NULL(asus->pled.led.dev))
667 led_classdev_unregister(&asus->pled.led);
668 if (!IS_ERR_OR_NULL(asus->rled.led.dev))
669 led_classdev_unregister(&asus->rled.led);
670 if (!IS_ERR_OR_NULL(asus->gled.led.dev))
671 led_classdev_unregister(&asus->gled.led);
672 if (!IS_ERR_OR_NULL(asus->kled.led.dev))
673 led_classdev_unregister(&asus->kled.led);
674 if (asus->led_workqueue) {
675 destroy_workqueue(asus->led_workqueue);
676 asus->led_workqueue = NULL;
677 }
678 }
679
680 /* Ugly macro, need to fix that later */
681 static int asus_led_register(struct asus_laptop *asus,
682 struct asus_led *led,
683 const char *name, const char *method)
684 {
685 struct led_classdev *led_cdev = &led->led;
686
687 if (!method || acpi_check_handle(asus->handle, method, NULL))
688 return 0; /* Led not present */
689
690 led->asus = asus;
691 led->method = method;
692
693 INIT_WORK(&led->work, asus_led_cdev_update);
694 led_cdev->name = name;
695 led_cdev->brightness_set = asus_led_cdev_set;
696 led_cdev->brightness_get = asus_led_cdev_get;
697 led_cdev->max_brightness = 1;
698 return led_classdev_register(&asus->platform_device->dev, led_cdev);
699 }
700
701 static int asus_led_init(struct asus_laptop *asus)
702 {
703 int r = 0;
704
705 /*
706 * The Pegatron Lucid has no physical leds, but all methods are
707 * available in the DSDT...
708 */
709 if (asus->is_pega_lucid)
710 return 0;
711
712 /*
713 * Functions that actually update the LED's are called from a
714 * workqueue. By doing this as separate work rather than when the LED
715 * subsystem asks, we avoid messing with the Asus ACPI stuff during a
716 * potentially bad time, such as a timer interrupt.
717 */
718 asus->led_workqueue = create_singlethread_workqueue("led_workqueue");
719 if (!asus->led_workqueue)
720 return -ENOMEM;
721
722 if (asus->wled_type == TYPE_LED)
723 r = asus_led_register(asus, &asus->wled, "asus::wlan",
724 METHOD_WLAN);
725 if (r)
726 goto error;
727 if (asus->bled_type == TYPE_LED)
728 r = asus_led_register(asus, &asus->bled, "asus::bluetooth",
729 METHOD_BLUETOOTH);
730 if (r)
731 goto error;
732 r = asus_led_register(asus, &asus->mled, "asus::mail", METHOD_MLED);
733 if (r)
734 goto error;
735 r = asus_led_register(asus, &asus->tled, "asus::touchpad", METHOD_TLED);
736 if (r)
737 goto error;
738 r = asus_led_register(asus, &asus->rled, "asus::record", METHOD_RLED);
739 if (r)
740 goto error;
741 r = asus_led_register(asus, &asus->pled, "asus::phone", METHOD_PLED);
742 if (r)
743 goto error;
744 r = asus_led_register(asus, &asus->gled, "asus::gaming", METHOD_GLED);
745 if (r)
746 goto error;
747 if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL) &&
748 !acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_GET, NULL)) {
749 struct asus_led *led = &asus->kled;
750 struct led_classdev *cdev = &led->led;
751
752 led->asus = asus;
753
754 INIT_WORK(&led->work, asus_kled_cdev_update);
755 cdev->name = "asus::kbd_backlight";
756 cdev->brightness_set = asus_kled_cdev_set;
757 cdev->brightness_get = asus_kled_cdev_get;
758 cdev->max_brightness = 3;
759 r = led_classdev_register(&asus->platform_device->dev, cdev);
760 }
761 error:
762 if (r)
763 asus_led_exit(asus);
764 return r;
765 }
766
767 /*
768 * Backlight device
769 */
770 static int asus_read_brightness(struct backlight_device *bd)
771 {
772 struct asus_laptop *asus = bl_get_data(bd);
773 unsigned long long value;
774 acpi_status rv;
775
776 rv = acpi_evaluate_integer(asus->handle, METHOD_BRIGHTNESS_GET,
777 NULL, &value);
778 if (ACPI_FAILURE(rv)) {
779 pr_warn("Error reading brightness\n");
780 return 0;
781 }
782
783 return value;
784 }
785
786 static int asus_set_brightness(struct backlight_device *bd, int value)
787 {
788 struct asus_laptop *asus = bl_get_data(bd);
789
790 if (write_acpi_int(asus->handle, METHOD_BRIGHTNESS_SET, value)) {
791 pr_warn("Error changing brightness\n");
792 return -EIO;
793 }
794 return 0;
795 }
796
797 static int update_bl_status(struct backlight_device *bd)
798 {
799 int value = bd->props.brightness;
800
801 return asus_set_brightness(bd, value);
802 }
803
804 static const struct backlight_ops asusbl_ops = {
805 .get_brightness = asus_read_brightness,
806 .update_status = update_bl_status,
807 };
808
809 static int asus_backlight_notify(struct asus_laptop *asus)
810 {
811 struct backlight_device *bd = asus->backlight_device;
812 int old = bd->props.brightness;
813
814 backlight_force_update(bd, BACKLIGHT_UPDATE_HOTKEY);
815
816 return old;
817 }
818
819 static int asus_backlight_init(struct asus_laptop *asus)
820 {
821 struct backlight_device *bd;
822 struct backlight_properties props;
823
824 if (acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_GET, NULL) ||
825 acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_SET, NULL))
826 return 0;
827
828 memset(&props, 0, sizeof(struct backlight_properties));
829 props.max_brightness = 15;
830 props.type = BACKLIGHT_PLATFORM;
831
832 bd = backlight_device_register(ASUS_LAPTOP_FILE,
833 &asus->platform_device->dev, asus,
834 &asusbl_ops, &props);
835 if (IS_ERR(bd)) {
836 pr_err("Could not register asus backlight device\n");
837 asus->backlight_device = NULL;
838 return PTR_ERR(bd);
839 }
840
841 asus->backlight_device = bd;
842 bd->props.brightness = asus_read_brightness(bd);
843 bd->props.power = FB_BLANK_UNBLANK;
844 backlight_update_status(bd);
845 return 0;
846 }
847
848 static void asus_backlight_exit(struct asus_laptop *asus)
849 {
850 backlight_device_unregister(asus->backlight_device);
851 asus->backlight_device = NULL;
852 }
853
854 /*
855 * Platform device handlers
856 */
857
858 /*
859 * We write our info in page, we begin at offset off and cannot write more
860 * than count bytes. We set eof to 1 if we handle those 2 values. We return the
861 * number of bytes written in page
862 */
863 static ssize_t infos_show(struct device *dev, struct device_attribute *attr,
864 char *page)
865 {
866 struct asus_laptop *asus = dev_get_drvdata(dev);
867 int len = 0;
868 unsigned long long temp;
869 char buf[16]; /* enough for all info */
870 acpi_status rv;
871
872 /*
873 * We use the easy way, we don't care of off and count,
874 * so we don't set eof to 1
875 */
876
877 len += sprintf(page, ASUS_LAPTOP_NAME " " ASUS_LAPTOP_VERSION "\n");
878 len += sprintf(page + len, "Model reference : %s\n", asus->name);
879 /*
880 * The SFUN method probably allows the original driver to get the list
881 * of features supported by a given model. For now, 0x0100 or 0x0800
882 * bit signifies that the laptop is equipped with a Wi-Fi MiniPCI card.
883 * The significance of others is yet to be found.
884 */
885 rv = acpi_evaluate_integer(asus->handle, "SFUN", NULL, &temp);
886 if (!ACPI_FAILURE(rv))
887 len += sprintf(page + len, "SFUN value : %#x\n",
888 (uint) temp);
889 /*
890 * The HWRS method return informations about the hardware.
891 * 0x80 bit is for WLAN, 0x100 for Bluetooth.
892 * 0x40 for WWAN, 0x10 for WIMAX.
893 * The significance of others is yet to be found.
894 * We don't currently use this for device detection, and it
895 * takes several seconds to run on some systems.
896 */
897 rv = acpi_evaluate_integer(asus->handle, "HWRS", NULL, &temp);
898 if (!ACPI_FAILURE(rv))
899 len += sprintf(page + len, "HWRS value : %#x\n",
900 (uint) temp);
901 /*
902 * Another value for userspace: the ASYM method returns 0x02 for
903 * battery low and 0x04 for battery critical, its readings tend to be
904 * more accurate than those provided by _BST.
905 * Note: since not all the laptops provide this method, errors are
906 * silently ignored.
907 */
908 rv = acpi_evaluate_integer(asus->handle, "ASYM", NULL, &temp);
909 if (!ACPI_FAILURE(rv))
910 len += sprintf(page + len, "ASYM value : %#x\n",
911 (uint) temp);
912 if (asus->dsdt_info) {
913 snprintf(buf, 16, "%d", asus->dsdt_info->length);
914 len += sprintf(page + len, "DSDT length : %s\n", buf);
915 snprintf(buf, 16, "%d", asus->dsdt_info->checksum);
916 len += sprintf(page + len, "DSDT checksum : %s\n", buf);
917 snprintf(buf, 16, "%d", asus->dsdt_info->revision);
918 len += sprintf(page + len, "DSDT revision : %s\n", buf);
919 snprintf(buf, 7, "%s", asus->dsdt_info->oem_id);
920 len += sprintf(page + len, "OEM id : %s\n", buf);
921 snprintf(buf, 9, "%s", asus->dsdt_info->oem_table_id);
922 len += sprintf(page + len, "OEM table id : %s\n", buf);
923 snprintf(buf, 16, "%x", asus->dsdt_info->oem_revision);
924 len += sprintf(page + len, "OEM revision : 0x%s\n", buf);
925 snprintf(buf, 5, "%s", asus->dsdt_info->asl_compiler_id);
926 len += sprintf(page + len, "ASL comp vendor id : %s\n", buf);
927 snprintf(buf, 16, "%x", asus->dsdt_info->asl_compiler_revision);
928 len += sprintf(page + len, "ASL comp revision : 0x%s\n", buf);
929 }
930
931 return len;
932 }
933 static DEVICE_ATTR_RO(infos);
934
935 static ssize_t sysfs_acpi_set(struct asus_laptop *asus,
936 const char *buf, size_t count,
937 const char *method)
938 {
939 int rv, value;
940
941 rv = kstrtoint(buf, 0, &value);
942 if (rv < 0)
943 return rv;
944
945 if (write_acpi_int(asus->handle, method, value))
946 return -ENODEV;
947 return count;
948 }
949
950 /*
951 * LEDD display
952 */
953 static ssize_t ledd_show(struct device *dev, struct device_attribute *attr,
954 char *buf)
955 {
956 struct asus_laptop *asus = dev_get_drvdata(dev);
957
958 return sprintf(buf, "0x%08x\n", asus->ledd_status);
959 }
960
961 static ssize_t ledd_store(struct device *dev, struct device_attribute *attr,
962 const char *buf, size_t count)
963 {
964 struct asus_laptop *asus = dev_get_drvdata(dev);
965 int rv, value;
966
967 rv = kstrtoint(buf, 0, &value);
968 if (rv < 0)
969 return rv;
970
971 if (write_acpi_int(asus->handle, METHOD_LEDD, value)) {
972 pr_warn("LED display write failed\n");
973 return -ENODEV;
974 }
975
976 asus->ledd_status = (u32) value;
977 return count;
978 }
979 static DEVICE_ATTR_RW(ledd);
980
981 /*
982 * Wireless
983 */
984 static int asus_wireless_status(struct asus_laptop *asus, int mask)
985 {
986 unsigned long long status;
987 acpi_status rv = AE_OK;
988
989 if (!asus->have_rsts)
990 return (asus->wireless_status & mask) ? 1 : 0;
991
992 rv = acpi_evaluate_integer(asus->handle, METHOD_WL_STATUS,
993 NULL, &status);
994 if (ACPI_FAILURE(rv)) {
995 pr_warn("Error reading Wireless status\n");
996 return -EINVAL;
997 }
998 return !!(status & mask);
999 }
1000
1001 /*
1002 * WLAN
1003 */
1004 static int asus_wlan_set(struct asus_laptop *asus, int status)
1005 {
1006 if (write_acpi_int(asus->handle, METHOD_WLAN, !!status)) {
1007 pr_warn("Error setting wlan status to %d\n", status);
1008 return -EIO;
1009 }
1010 return 0;
1011 }
1012
1013 static ssize_t wlan_show(struct device *dev, struct device_attribute *attr,
1014 char *buf)
1015 {
1016 struct asus_laptop *asus = dev_get_drvdata(dev);
1017
1018 return sprintf(buf, "%d\n", asus_wireless_status(asus, WL_RSTS));
1019 }
1020
1021 static ssize_t wlan_store(struct device *dev, struct device_attribute *attr,
1022 const char *buf, size_t count)
1023 {
1024 struct asus_laptop *asus = dev_get_drvdata(dev);
1025
1026 return sysfs_acpi_set(asus, buf, count, METHOD_WLAN);
1027 }
1028 static DEVICE_ATTR_RW(wlan);
1029
1030 /*e
1031 * Bluetooth
1032 */
1033 static int asus_bluetooth_set(struct asus_laptop *asus, int status)
1034 {
1035 if (write_acpi_int(asus->handle, METHOD_BLUETOOTH, !!status)) {
1036 pr_warn("Error setting bluetooth status to %d\n", status);
1037 return -EIO;
1038 }
1039 return 0;
1040 }
1041
1042 static ssize_t bluetooth_show(struct device *dev, struct device_attribute *attr,
1043 char *buf)
1044 {
1045 struct asus_laptop *asus = dev_get_drvdata(dev);
1046
1047 return sprintf(buf, "%d\n", asus_wireless_status(asus, BT_RSTS));
1048 }
1049
1050 static ssize_t bluetooth_store(struct device *dev,
1051 struct device_attribute *attr, const char *buf,
1052 size_t count)
1053 {
1054 struct asus_laptop *asus = dev_get_drvdata(dev);
1055
1056 return sysfs_acpi_set(asus, buf, count, METHOD_BLUETOOTH);
1057 }
1058 static DEVICE_ATTR_RW(bluetooth);
1059
1060 /*
1061 * Wimax
1062 */
1063 static int asus_wimax_set(struct asus_laptop *asus, int status)
1064 {
1065 if (write_acpi_int(asus->handle, METHOD_WIMAX, !!status)) {
1066 pr_warn("Error setting wimax status to %d\n", status);
1067 return -EIO;
1068 }
1069 return 0;
1070 }
1071
1072 static ssize_t wimax_show(struct device *dev, struct device_attribute *attr,
1073 char *buf)
1074 {
1075 struct asus_laptop *asus = dev_get_drvdata(dev);
1076
1077 return sprintf(buf, "%d\n", asus_wireless_status(asus, WM_RSTS));
1078 }
1079
1080 static ssize_t wimax_store(struct device *dev, struct device_attribute *attr,
1081 const char *buf, size_t count)
1082 {
1083 struct asus_laptop *asus = dev_get_drvdata(dev);
1084
1085 return sysfs_acpi_set(asus, buf, count, METHOD_WIMAX);
1086 }
1087 static DEVICE_ATTR_RW(wimax);
1088
1089 /*
1090 * Wwan
1091 */
1092 static int asus_wwan_set(struct asus_laptop *asus, int status)
1093 {
1094 if (write_acpi_int(asus->handle, METHOD_WWAN, !!status)) {
1095 pr_warn("Error setting wwan status to %d\n", status);
1096 return -EIO;
1097 }
1098 return 0;
1099 }
1100
1101 static ssize_t wwan_show(struct device *dev, struct device_attribute *attr,
1102 char *buf)
1103 {
1104 struct asus_laptop *asus = dev_get_drvdata(dev);
1105
1106 return sprintf(buf, "%d\n", asus_wireless_status(asus, WW_RSTS));
1107 }
1108
1109 static ssize_t wwan_store(struct device *dev, struct device_attribute *attr,
1110 const char *buf, size_t count)
1111 {
1112 struct asus_laptop *asus = dev_get_drvdata(dev);
1113
1114 return sysfs_acpi_set(asus, buf, count, METHOD_WWAN);
1115 }
1116 static DEVICE_ATTR_RW(wwan);
1117
1118 /*
1119 * Display
1120 */
1121 static void asus_set_display(struct asus_laptop *asus, int value)
1122 {
1123 /* no sanity check needed for now */
1124 if (write_acpi_int(asus->handle, METHOD_SWITCH_DISPLAY, value))
1125 pr_warn("Error setting display\n");
1126 return;
1127 }
1128
1129 /*
1130 * Experimental support for display switching. As of now: 1 should activate
1131 * the LCD output, 2 should do for CRT, 4 for TV-Out and 8 for DVI.
1132 * Any combination (bitwise) of these will suffice. I never actually tested 4
1133 * displays hooked up simultaneously, so be warned. See the acpi4asus README
1134 * for more info.
1135 */
1136 static ssize_t display_store(struct device *dev, struct device_attribute *attr,
1137 const char *buf, size_t count)
1138 {
1139 struct asus_laptop *asus = dev_get_drvdata(dev);
1140 int rv, value;
1141
1142 rv = kstrtoint(buf, 0, &value);
1143 if (rv < 0)
1144 return rv;
1145
1146 asus_set_display(asus, value);
1147 return count;
1148 }
1149 static DEVICE_ATTR_WO(display);
1150
1151 /*
1152 * Light Sens
1153 */
1154 static void asus_als_switch(struct asus_laptop *asus, int value)
1155 {
1156 int ret;
1157
1158 if (asus->is_pega_lucid) {
1159 ret = asus_pega_lucid_set(asus, PEGA_ALS, value);
1160 if (!ret)
1161 ret = asus_pega_lucid_set(asus, PEGA_ALS_POWER, value);
1162 } else {
1163 ret = write_acpi_int(asus->handle, METHOD_ALS_CONTROL, value);
1164 }
1165 if (ret)
1166 pr_warning("Error setting light sensor switch\n");
1167
1168 asus->light_switch = value;
1169 }
1170
1171 static ssize_t ls_switch_show(struct device *dev, struct device_attribute *attr,
1172 char *buf)
1173 {
1174 struct asus_laptop *asus = dev_get_drvdata(dev);
1175
1176 return sprintf(buf, "%d\n", asus->light_switch);
1177 }
1178
1179 static ssize_t ls_switch_store(struct device *dev,
1180 struct device_attribute *attr, const char *buf,
1181 size_t count)
1182 {
1183 struct asus_laptop *asus = dev_get_drvdata(dev);
1184 int rv, value;
1185
1186 rv = kstrtoint(buf, 0, &value);
1187 if (rv < 0)
1188 return rv;
1189
1190 asus_als_switch(asus, value ? 1 : 0);
1191 return count;
1192 }
1193 static DEVICE_ATTR_RW(ls_switch);
1194
1195 static void asus_als_level(struct asus_laptop *asus, int value)
1196 {
1197 if (write_acpi_int(asus->handle, METHOD_ALS_LEVEL, value))
1198 pr_warn("Error setting light sensor level\n");
1199 asus->light_level = value;
1200 }
1201
1202 static ssize_t ls_level_show(struct device *dev, struct device_attribute *attr,
1203 char *buf)
1204 {
1205 struct asus_laptop *asus = dev_get_drvdata(dev);
1206
1207 return sprintf(buf, "%d\n", asus->light_level);
1208 }
1209
1210 static ssize_t ls_level_store(struct device *dev, struct device_attribute *attr,
1211 const char *buf, size_t count)
1212 {
1213 struct asus_laptop *asus = dev_get_drvdata(dev);
1214 int rv, value;
1215
1216 rv = kstrtoint(buf, 0, &value);
1217 if (rv < 0)
1218 return rv;
1219
1220 value = (0 < value) ? ((15 < value) ? 15 : value) : 0;
1221 /* 0 <= value <= 15 */
1222 asus_als_level(asus, value);
1223
1224 return count;
1225 }
1226 static DEVICE_ATTR_RW(ls_level);
1227
1228 static int pega_int_read(struct asus_laptop *asus, int arg, int *result)
1229 {
1230 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1231 int err = write_acpi_int_ret(asus->handle, METHOD_PEGA_READ, arg,
1232 &buffer);
1233 if (!err) {
1234 union acpi_object *obj = buffer.pointer;
1235 if (obj && obj->type == ACPI_TYPE_INTEGER)
1236 *result = obj->integer.value;
1237 else
1238 err = -EIO;
1239 }
1240 return err;
1241 }
1242
1243 static ssize_t ls_value_show(struct device *dev, struct device_attribute *attr,
1244 char *buf)
1245 {
1246 struct asus_laptop *asus = dev_get_drvdata(dev);
1247 int err, hi, lo;
1248
1249 err = pega_int_read(asus, PEGA_READ_ALS_H, &hi);
1250 if (!err)
1251 err = pega_int_read(asus, PEGA_READ_ALS_L, &lo);
1252 if (!err)
1253 return sprintf(buf, "%d\n", 10 * hi + lo);
1254 return err;
1255 }
1256 static DEVICE_ATTR_RO(ls_value);
1257
1258 /*
1259 * GPS
1260 */
1261 static int asus_gps_status(struct asus_laptop *asus)
1262 {
1263 unsigned long long status;
1264 acpi_status rv;
1265
1266 rv = acpi_evaluate_integer(asus->handle, METHOD_GPS_STATUS,
1267 NULL, &status);
1268 if (ACPI_FAILURE(rv)) {
1269 pr_warn("Error reading GPS status\n");
1270 return -ENODEV;
1271 }
1272 return !!status;
1273 }
1274
1275 static int asus_gps_switch(struct asus_laptop *asus, int status)
1276 {
1277 const char *meth = status ? METHOD_GPS_ON : METHOD_GPS_OFF;
1278
1279 if (write_acpi_int(asus->handle, meth, 0x02))
1280 return -ENODEV;
1281 return 0;
1282 }
1283
1284 static ssize_t gps_show(struct device *dev, struct device_attribute *attr,
1285 char *buf)
1286 {
1287 struct asus_laptop *asus = dev_get_drvdata(dev);
1288
1289 return sprintf(buf, "%d\n", asus_gps_status(asus));
1290 }
1291
1292 static ssize_t gps_store(struct device *dev, struct device_attribute *attr,
1293 const char *buf, size_t count)
1294 {
1295 struct asus_laptop *asus = dev_get_drvdata(dev);
1296 int rv, value;
1297 int ret;
1298
1299 rv = kstrtoint(buf, 0, &value);
1300 if (rv < 0)
1301 return rv;
1302 ret = asus_gps_switch(asus, !!value);
1303 if (ret)
1304 return ret;
1305 rfkill_set_sw_state(asus->gps.rfkill, !value);
1306 return count;
1307 }
1308 static DEVICE_ATTR_RW(gps);
1309
1310 /*
1311 * rfkill
1312 */
1313 static int asus_gps_rfkill_set(void *data, bool blocked)
1314 {
1315 struct asus_laptop *asus = data;
1316
1317 return asus_gps_switch(asus, !blocked);
1318 }
1319
1320 static const struct rfkill_ops asus_gps_rfkill_ops = {
1321 .set_block = asus_gps_rfkill_set,
1322 };
1323
1324 static int asus_rfkill_set(void *data, bool blocked)
1325 {
1326 struct asus_rfkill *rfk = data;
1327 struct asus_laptop *asus = rfk->asus;
1328
1329 if (rfk->control_id == WL_RSTS)
1330 return asus_wlan_set(asus, !blocked);
1331 else if (rfk->control_id == BT_RSTS)
1332 return asus_bluetooth_set(asus, !blocked);
1333 else if (rfk->control_id == WM_RSTS)
1334 return asus_wimax_set(asus, !blocked);
1335 else if (rfk->control_id == WW_RSTS)
1336 return asus_wwan_set(asus, !blocked);
1337
1338 return -EINVAL;
1339 }
1340
1341 static const struct rfkill_ops asus_rfkill_ops = {
1342 .set_block = asus_rfkill_set,
1343 };
1344
1345 static void asus_rfkill_terminate(struct asus_rfkill *rfk)
1346 {
1347 if (!rfk->rfkill)
1348 return ;
1349
1350 rfkill_unregister(rfk->rfkill);
1351 rfkill_destroy(rfk->rfkill);
1352 rfk->rfkill = NULL;
1353 }
1354
1355 static void asus_rfkill_exit(struct asus_laptop *asus)
1356 {
1357 asus_rfkill_terminate(&asus->wwan);
1358 asus_rfkill_terminate(&asus->bluetooth);
1359 asus_rfkill_terminate(&asus->wlan);
1360 asus_rfkill_terminate(&asus->gps);
1361 }
1362
1363 static int asus_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk,
1364 const char *name, int control_id, int type,
1365 const struct rfkill_ops *ops)
1366 {
1367 int result;
1368
1369 rfk->control_id = control_id;
1370 rfk->asus = asus;
1371 rfk->rfkill = rfkill_alloc(name, &asus->platform_device->dev,
1372 type, ops, rfk);
1373 if (!rfk->rfkill)
1374 return -EINVAL;
1375
1376 result = rfkill_register(rfk->rfkill);
1377 if (result) {
1378 rfkill_destroy(rfk->rfkill);
1379 rfk->rfkill = NULL;
1380 }
1381
1382 return result;
1383 }
1384
1385 static int asus_rfkill_init(struct asus_laptop *asus)
1386 {
1387 int result = 0;
1388
1389 if (asus->is_pega_lucid)
1390 return -ENODEV;
1391
1392 if (!acpi_check_handle(asus->handle, METHOD_GPS_ON, NULL) &&
1393 !acpi_check_handle(asus->handle, METHOD_GPS_OFF, NULL) &&
1394 !acpi_check_handle(asus->handle, METHOD_GPS_STATUS, NULL))
1395 result = asus_rfkill_setup(asus, &asus->gps, "asus-gps",
1396 -1, RFKILL_TYPE_GPS,
1397 &asus_gps_rfkill_ops);
1398 if (result)
1399 goto exit;
1400
1401
1402 if (!acpi_check_handle(asus->handle, METHOD_WLAN, NULL) &&
1403 asus->wled_type == TYPE_RFKILL)
1404 result = asus_rfkill_setup(asus, &asus->wlan, "asus-wlan",
1405 WL_RSTS, RFKILL_TYPE_WLAN,
1406 &asus_rfkill_ops);
1407 if (result)
1408 goto exit;
1409
1410 if (!acpi_check_handle(asus->handle, METHOD_BLUETOOTH, NULL) &&
1411 asus->bled_type == TYPE_RFKILL)
1412 result = asus_rfkill_setup(asus, &asus->bluetooth,
1413 "asus-bluetooth", BT_RSTS,
1414 RFKILL_TYPE_BLUETOOTH,
1415 &asus_rfkill_ops);
1416 if (result)
1417 goto exit;
1418
1419 if (!acpi_check_handle(asus->handle, METHOD_WWAN, NULL))
1420 result = asus_rfkill_setup(asus, &asus->wwan, "asus-wwan",
1421 WW_RSTS, RFKILL_TYPE_WWAN,
1422 &asus_rfkill_ops);
1423 if (result)
1424 goto exit;
1425
1426 if (!acpi_check_handle(asus->handle, METHOD_WIMAX, NULL))
1427 result = asus_rfkill_setup(asus, &asus->wimax, "asus-wimax",
1428 WM_RSTS, RFKILL_TYPE_WIMAX,
1429 &asus_rfkill_ops);
1430 if (result)
1431 goto exit;
1432
1433 exit:
1434 if (result)
1435 asus_rfkill_exit(asus);
1436
1437 return result;
1438 }
1439
1440 static int pega_rfkill_set(void *data, bool blocked)
1441 {
1442 struct asus_rfkill *rfk = data;
1443
1444 int ret = asus_pega_lucid_set(rfk->asus, rfk->control_id, !blocked);
1445 return ret;
1446 }
1447
1448 static const struct rfkill_ops pega_rfkill_ops = {
1449 .set_block = pega_rfkill_set,
1450 };
1451
1452 static int pega_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk,
1453 const char *name, int controlid, int rfkill_type)
1454 {
1455 return asus_rfkill_setup(asus, rfk, name, controlid, rfkill_type,
1456 &pega_rfkill_ops);
1457 }
1458
1459 static int pega_rfkill_init(struct asus_laptop *asus)
1460 {
1461 int ret = 0;
1462
1463 if(!asus->is_pega_lucid)
1464 return -ENODEV;
1465
1466 ret = pega_rfkill_setup(asus, &asus->wlan, "pega-wlan",
1467 PEGA_WLAN, RFKILL_TYPE_WLAN);
1468 if(ret)
1469 goto exit;
1470
1471 ret = pega_rfkill_setup(asus, &asus->bluetooth, "pega-bt",
1472 PEGA_BLUETOOTH, RFKILL_TYPE_BLUETOOTH);
1473 if(ret)
1474 goto exit;
1475
1476 ret = pega_rfkill_setup(asus, &asus->wwan, "pega-wwan",
1477 PEGA_WWAN, RFKILL_TYPE_WWAN);
1478
1479 exit:
1480 if (ret)
1481 asus_rfkill_exit(asus);
1482
1483 return ret;
1484 }
1485
1486 /*
1487 * Input device (i.e. hotkeys)
1488 */
1489 static void asus_input_notify(struct asus_laptop *asus, int event)
1490 {
1491 if (!asus->inputdev)
1492 return ;
1493 if (!sparse_keymap_report_event(asus->inputdev, event, 1, true))
1494 pr_info("Unknown key %x pressed\n", event);
1495 }
1496
1497 static int asus_input_init(struct asus_laptop *asus)
1498 {
1499 struct input_dev *input;
1500 int error;
1501
1502 input = input_allocate_device();
1503 if (!input)
1504 return -ENOMEM;
1505
1506 input->name = "Asus Laptop extra buttons";
1507 input->phys = ASUS_LAPTOP_FILE "/input0";
1508 input->id.bustype = BUS_HOST;
1509 input->dev.parent = &asus->platform_device->dev;
1510
1511 error = sparse_keymap_setup(input, asus_keymap, NULL);
1512 if (error) {
1513 pr_err("Unable to setup input device keymap\n");
1514 goto err_free_dev;
1515 }
1516 error = input_register_device(input);
1517 if (error) {
1518 pr_warn("Unable to register input device\n");
1519 goto err_free_keymap;
1520 }
1521
1522 asus->inputdev = input;
1523 return 0;
1524
1525 err_free_keymap:
1526 sparse_keymap_free(input);
1527 err_free_dev:
1528 input_free_device(input);
1529 return error;
1530 }
1531
1532 static void asus_input_exit(struct asus_laptop *asus)
1533 {
1534 if (asus->inputdev) {
1535 sparse_keymap_free(asus->inputdev);
1536 input_unregister_device(asus->inputdev);
1537 }
1538 asus->inputdev = NULL;
1539 }
1540
1541 /*
1542 * ACPI driver
1543 */
1544 static void asus_acpi_notify(struct acpi_device *device, u32 event)
1545 {
1546 struct asus_laptop *asus = acpi_driver_data(device);
1547 u16 count;
1548
1549 /* TODO Find a better way to handle events count. */
1550 count = asus->event_count[event % 128]++;
1551 acpi_bus_generate_netlink_event(asus->device->pnp.device_class,
1552 dev_name(&asus->device->dev), event,
1553 count);
1554
1555 if (event >= ATKD_BRNUP_MIN && event <= ATKD_BRNUP_MAX)
1556 event = ATKD_BRNUP;
1557 else if (event >= ATKD_BRNDOWN_MIN &&
1558 event <= ATKD_BRNDOWN_MAX)
1559 event = ATKD_BRNDOWN;
1560
1561 /* Brightness events are special */
1562 if (event == ATKD_BRNDOWN || event == ATKD_BRNUP) {
1563 if (asus->backlight_device != NULL) {
1564 /* Update the backlight device. */
1565 asus_backlight_notify(asus);
1566 return ;
1567 }
1568 }
1569
1570 /* Accelerometer "coarse orientation change" event */
1571 if (asus->pega_accel_poll && event == 0xEA) {
1572 kobject_uevent(&asus->pega_accel_poll->input->dev.kobj,
1573 KOBJ_CHANGE);
1574 return ;
1575 }
1576
1577 asus_input_notify(asus, event);
1578 }
1579
1580 static struct attribute *asus_attributes[] = {
1581 &dev_attr_infos.attr,
1582 &dev_attr_wlan.attr,
1583 &dev_attr_bluetooth.attr,
1584 &dev_attr_wimax.attr,
1585 &dev_attr_wwan.attr,
1586 &dev_attr_display.attr,
1587 &dev_attr_ledd.attr,
1588 &dev_attr_ls_value.attr,
1589 &dev_attr_ls_level.attr,
1590 &dev_attr_ls_switch.attr,
1591 &dev_attr_gps.attr,
1592 NULL
1593 };
1594
1595 static umode_t asus_sysfs_is_visible(struct kobject *kobj,
1596 struct attribute *attr,
1597 int idx)
1598 {
1599 struct device *dev = container_of(kobj, struct device, kobj);
1600 struct platform_device *pdev = to_platform_device(dev);
1601 struct asus_laptop *asus = platform_get_drvdata(pdev);
1602 acpi_handle handle = asus->handle;
1603 bool supported;
1604
1605 if (asus->is_pega_lucid) {
1606 /* no ls_level interface on the Lucid */
1607 if (attr == &dev_attr_ls_switch.attr)
1608 supported = true;
1609 else if (attr == &dev_attr_ls_level.attr)
1610 supported = false;
1611 else
1612 goto normal;
1613
1614 return supported ? attr->mode : 0;
1615 }
1616
1617 normal:
1618 if (attr == &dev_attr_wlan.attr) {
1619 supported = !acpi_check_handle(handle, METHOD_WLAN, NULL);
1620
1621 } else if (attr == &dev_attr_bluetooth.attr) {
1622 supported = !acpi_check_handle(handle, METHOD_BLUETOOTH, NULL);
1623
1624 } else if (attr == &dev_attr_display.attr) {
1625 supported = !acpi_check_handle(handle, METHOD_SWITCH_DISPLAY, NULL);
1626
1627 } else if (attr == &dev_attr_wimax.attr) {
1628 supported =
1629 !acpi_check_handle(asus->handle, METHOD_WIMAX, NULL);
1630
1631 } else if (attr == &dev_attr_wwan.attr) {
1632 supported = !acpi_check_handle(asus->handle, METHOD_WWAN, NULL);
1633
1634 } else if (attr == &dev_attr_ledd.attr) {
1635 supported = !acpi_check_handle(handle, METHOD_LEDD, NULL);
1636
1637 } else if (attr == &dev_attr_ls_switch.attr ||
1638 attr == &dev_attr_ls_level.attr) {
1639 supported = !acpi_check_handle(handle, METHOD_ALS_CONTROL, NULL) &&
1640 !acpi_check_handle(handle, METHOD_ALS_LEVEL, NULL);
1641 } else if (attr == &dev_attr_ls_value.attr) {
1642 supported = asus->is_pega_lucid;
1643 } else if (attr == &dev_attr_gps.attr) {
1644 supported = !acpi_check_handle(handle, METHOD_GPS_ON, NULL) &&
1645 !acpi_check_handle(handle, METHOD_GPS_OFF, NULL) &&
1646 !acpi_check_handle(handle, METHOD_GPS_STATUS, NULL);
1647 } else {
1648 supported = true;
1649 }
1650
1651 return supported ? attr->mode : 0;
1652 }
1653
1654
1655 static const struct attribute_group asus_attr_group = {
1656 .is_visible = asus_sysfs_is_visible,
1657 .attrs = asus_attributes,
1658 };
1659
1660 static int asus_platform_init(struct asus_laptop *asus)
1661 {
1662 int result;
1663
1664 asus->platform_device = platform_device_alloc(ASUS_LAPTOP_FILE, -1);
1665 if (!asus->platform_device)
1666 return -ENOMEM;
1667 platform_set_drvdata(asus->platform_device, asus);
1668
1669 result = platform_device_add(asus->platform_device);
1670 if (result)
1671 goto fail_platform_device;
1672
1673 result = sysfs_create_group(&asus->platform_device->dev.kobj,
1674 &asus_attr_group);
1675 if (result)
1676 goto fail_sysfs;
1677
1678 return 0;
1679
1680 fail_sysfs:
1681 platform_device_del(asus->platform_device);
1682 fail_platform_device:
1683 platform_device_put(asus->platform_device);
1684 return result;
1685 }
1686
1687 static void asus_platform_exit(struct asus_laptop *asus)
1688 {
1689 sysfs_remove_group(&asus->platform_device->dev.kobj, &asus_attr_group);
1690 platform_device_unregister(asus->platform_device);
1691 }
1692
1693 static struct platform_driver platform_driver = {
1694 .driver = {
1695 .name = ASUS_LAPTOP_FILE,
1696 },
1697 };
1698
1699 /*
1700 * This function is used to initialize the context with right values. In this
1701 * method, we can make all the detection we want, and modify the asus_laptop
1702 * struct
1703 */
1704 static int asus_laptop_get_info(struct asus_laptop *asus)
1705 {
1706 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1707 union acpi_object *model = NULL;
1708 unsigned long long bsts_result;
1709 char *string = NULL;
1710 acpi_status status;
1711
1712 /*
1713 * Get DSDT headers early enough to allow for differentiating between
1714 * models, but late enough to allow acpi_bus_register_driver() to fail
1715 * before doing anything ACPI-specific. Should we encounter a machine,
1716 * which needs special handling (i.e. its hotkey device has a different
1717 * HID), this bit will be moved.
1718 */
1719 status = acpi_get_table(ACPI_SIG_DSDT, 1, &asus->dsdt_info);
1720 if (ACPI_FAILURE(status))
1721 pr_warn("Couldn't get the DSDT table header\n");
1722
1723 /* We have to write 0 on init this far for all ASUS models */
1724 if (write_acpi_int_ret(asus->handle, "INIT", 0, &buffer)) {
1725 pr_err("Hotkey initialization failed\n");
1726 return -ENODEV;
1727 }
1728
1729 /* This needs to be called for some laptops to init properly */
1730 status =
1731 acpi_evaluate_integer(asus->handle, "BSTS", NULL, &bsts_result);
1732 if (ACPI_FAILURE(status))
1733 pr_warn("Error calling BSTS\n");
1734 else if (bsts_result)
1735 pr_notice("BSTS called, 0x%02x returned\n",
1736 (uint) bsts_result);
1737
1738 /* This too ... */
1739 if (write_acpi_int(asus->handle, "CWAP", wapf))
1740 pr_err("Error calling CWAP(%d)\n", wapf);
1741 /*
1742 * Try to match the object returned by INIT to the specific model.
1743 * Handle every possible object (or the lack of thereof) the DSDT
1744 * writers might throw at us. When in trouble, we pass NULL to
1745 * asus_model_match() and try something completely different.
1746 */
1747 if (buffer.pointer) {
1748 model = buffer.pointer;
1749 switch (model->type) {
1750 case ACPI_TYPE_STRING:
1751 string = model->string.pointer;
1752 break;
1753 case ACPI_TYPE_BUFFER:
1754 string = model->buffer.pointer;
1755 break;
1756 default:
1757 string = "";
1758 break;
1759 }
1760 }
1761 asus->name = kstrdup(string, GFP_KERNEL);
1762 if (!asus->name) {
1763 kfree(buffer.pointer);
1764 return -ENOMEM;
1765 }
1766
1767 if (string)
1768 pr_notice(" %s model detected\n", string);
1769
1770 if (!acpi_check_handle(asus->handle, METHOD_WL_STATUS, NULL))
1771 asus->have_rsts = true;
1772
1773 kfree(model);
1774
1775 return AE_OK;
1776 }
1777
1778 static int asus_acpi_init(struct asus_laptop *asus)
1779 {
1780 int result = 0;
1781
1782 result = acpi_bus_get_status(asus->device);
1783 if (result)
1784 return result;
1785 if (!asus->device->status.present) {
1786 pr_err("Hotkey device not present, aborting\n");
1787 return -ENODEV;
1788 }
1789
1790 result = asus_laptop_get_info(asus);
1791 if (result)
1792 return result;
1793
1794 if (!strcmp(bled_type, "led"))
1795 asus->bled_type = TYPE_LED;
1796 else if (!strcmp(bled_type, "rfkill"))
1797 asus->bled_type = TYPE_RFKILL;
1798
1799 if (!strcmp(wled_type, "led"))
1800 asus->wled_type = TYPE_LED;
1801 else if (!strcmp(wled_type, "rfkill"))
1802 asus->wled_type = TYPE_RFKILL;
1803
1804 if (bluetooth_status >= 0)
1805 asus_bluetooth_set(asus, !!bluetooth_status);
1806
1807 if (wlan_status >= 0)
1808 asus_wlan_set(asus, !!wlan_status);
1809
1810 if (wimax_status >= 0)
1811 asus_wimax_set(asus, !!wimax_status);
1812
1813 if (wwan_status >= 0)
1814 asus_wwan_set(asus, !!wwan_status);
1815
1816 /* Keyboard Backlight is on by default */
1817 if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL))
1818 asus_kled_set(asus, 1);
1819
1820 /* LED display is off by default */
1821 asus->ledd_status = 0xFFF;
1822
1823 /* Set initial values of light sensor and level */
1824 asus->light_switch = !!als_status;
1825 asus->light_level = 5; /* level 5 for sensor sensitivity */
1826
1827 if (asus->is_pega_lucid) {
1828 asus_als_switch(asus, asus->light_switch);
1829 } else if (!acpi_check_handle(asus->handle, METHOD_ALS_CONTROL, NULL) &&
1830 !acpi_check_handle(asus->handle, METHOD_ALS_LEVEL, NULL)) {
1831 asus_als_switch(asus, asus->light_switch);
1832 asus_als_level(asus, asus->light_level);
1833 }
1834
1835 return result;
1836 }
1837
1838 static void asus_dmi_check(void)
1839 {
1840 const char *model;
1841
1842 model = dmi_get_system_info(DMI_PRODUCT_NAME);
1843 if (!model)
1844 return;
1845
1846 /* On L1400B WLED control the sound card, don't mess with it ... */
1847 if (strncmp(model, "L1400B", 6) == 0) {
1848 wlan_status = -1;
1849 }
1850 }
1851
1852 static bool asus_device_present;
1853
1854 static int asus_acpi_add(struct acpi_device *device)
1855 {
1856 struct asus_laptop *asus;
1857 int result;
1858
1859 pr_notice("Asus Laptop Support version %s\n",
1860 ASUS_LAPTOP_VERSION);
1861 asus = kzalloc(sizeof(struct asus_laptop), GFP_KERNEL);
1862 if (!asus)
1863 return -ENOMEM;
1864 asus->handle = device->handle;
1865 strcpy(acpi_device_name(device), ASUS_LAPTOP_DEVICE_NAME);
1866 strcpy(acpi_device_class(device), ASUS_LAPTOP_CLASS);
1867 device->driver_data = asus;
1868 asus->device = device;
1869
1870 asus_dmi_check();
1871
1872 result = asus_acpi_init(asus);
1873 if (result)
1874 goto fail_platform;
1875
1876 /*
1877 * Need platform type detection first, then the platform
1878 * device. It is used as a parent for the sub-devices below.
1879 */
1880 asus->is_pega_lucid = asus_check_pega_lucid(asus);
1881 result = asus_platform_init(asus);
1882 if (result)
1883 goto fail_platform;
1884
1885 if (acpi_video_get_backlight_type() == acpi_backlight_vendor) {
1886 result = asus_backlight_init(asus);
1887 if (result)
1888 goto fail_backlight;
1889 }
1890
1891 result = asus_input_init(asus);
1892 if (result)
1893 goto fail_input;
1894
1895 result = asus_led_init(asus);
1896 if (result)
1897 goto fail_led;
1898
1899 result = asus_rfkill_init(asus);
1900 if (result && result != -ENODEV)
1901 goto fail_rfkill;
1902
1903 result = pega_accel_init(asus);
1904 if (result && result != -ENODEV)
1905 goto fail_pega_accel;
1906
1907 result = pega_rfkill_init(asus);
1908 if (result && result != -ENODEV)
1909 goto fail_pega_rfkill;
1910
1911 asus_device_present = true;
1912 return 0;
1913
1914 fail_pega_rfkill:
1915 pega_accel_exit(asus);
1916 fail_pega_accel:
1917 asus_rfkill_exit(asus);
1918 fail_rfkill:
1919 asus_led_exit(asus);
1920 fail_led:
1921 asus_input_exit(asus);
1922 fail_input:
1923 asus_backlight_exit(asus);
1924 fail_backlight:
1925 asus_platform_exit(asus);
1926 fail_platform:
1927 kfree(asus);
1928
1929 return result;
1930 }
1931
1932 static int asus_acpi_remove(struct acpi_device *device)
1933 {
1934 struct asus_laptop *asus = acpi_driver_data(device);
1935
1936 asus_backlight_exit(asus);
1937 asus_rfkill_exit(asus);
1938 asus_led_exit(asus);
1939 asus_input_exit(asus);
1940 pega_accel_exit(asus);
1941 asus_platform_exit(asus);
1942
1943 kfree(asus->name);
1944 kfree(asus);
1945 return 0;
1946 }
1947
1948 static const struct acpi_device_id asus_device_ids[] = {
1949 {"ATK0100", 0},
1950 {"ATK0101", 0},
1951 {"", 0},
1952 };
1953 MODULE_DEVICE_TABLE(acpi, asus_device_ids);
1954
1955 static struct acpi_driver asus_acpi_driver = {
1956 .name = ASUS_LAPTOP_NAME,
1957 .class = ASUS_LAPTOP_CLASS,
1958 .owner = THIS_MODULE,
1959 .ids = asus_device_ids,
1960 .flags = ACPI_DRIVER_ALL_NOTIFY_EVENTS,
1961 .ops = {
1962 .add = asus_acpi_add,
1963 .remove = asus_acpi_remove,
1964 .notify = asus_acpi_notify,
1965 },
1966 };
1967
1968 static int __init asus_laptop_init(void)
1969 {
1970 int result;
1971
1972 result = platform_driver_register(&platform_driver);
1973 if (result < 0)
1974 return result;
1975
1976 result = acpi_bus_register_driver(&asus_acpi_driver);
1977 if (result < 0)
1978 goto fail_acpi_driver;
1979 if (!asus_device_present) {
1980 result = -ENODEV;
1981 goto fail_no_device;
1982 }
1983 return 0;
1984
1985 fail_no_device:
1986 acpi_bus_unregister_driver(&asus_acpi_driver);
1987 fail_acpi_driver:
1988 platform_driver_unregister(&platform_driver);
1989 return result;
1990 }
1991
1992 static void __exit asus_laptop_exit(void)
1993 {
1994 acpi_bus_unregister_driver(&asus_acpi_driver);
1995 platform_driver_unregister(&platform_driver);
1996 }
1997
1998 module_init(asus_laptop_init);
1999 module_exit(asus_laptop_exit);