]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/platform/x86/asus-laptop.c
Merge tag 'upstream-3.12-rc1' of git://git.infradead.org/linux-ubifs
[mirror_ubuntu-bionic-kernel.git] / drivers / platform / x86 / asus-laptop.c
1 /*
2 * asus-laptop.c - Asus Laptop Support
3 *
4 *
5 * Copyright (C) 2002-2005 Julien Lerouge, 2003-2006 Karol Kozimor
6 * Copyright (C) 2006-2007 Corentin Chary
7 * Copyright (C) 2011 Wind River Systems
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 *
24 * The development page for this driver is located at
25 * http://sourceforge.net/projects/acpi4asus/
26 *
27 * Credits:
28 * Pontus Fuchs - Helper functions, cleanup
29 * Johann Wiesner - Small compile fixes
30 * John Belmonte - ACPI code for Toshiba laptop was a good starting point.
31 * Eric Burghard - LED display support for W1N
32 * Josh Green - Light Sens support
33 * Thomas Tuttle - His first patch for led support was very helpful
34 * Sam Lin - GPS support
35 */
36
37 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/init.h>
42 #include <linux/types.h>
43 #include <linux/err.h>
44 #include <linux/proc_fs.h>
45 #include <linux/backlight.h>
46 #include <linux/fb.h>
47 #include <linux/leds.h>
48 #include <linux/platform_device.h>
49 #include <linux/uaccess.h>
50 #include <linux/input.h>
51 #include <linux/input/sparse-keymap.h>
52 #include <linux/input-polldev.h>
53 #include <linux/rfkill.h>
54 #include <linux/slab.h>
55 #include <linux/dmi.h>
56 #include <acpi/acpi_drivers.h>
57 #include <acpi/acpi_bus.h>
58
59 #define ASUS_LAPTOP_VERSION "0.42"
60
61 #define ASUS_LAPTOP_NAME "Asus Laptop Support"
62 #define ASUS_LAPTOP_CLASS "hotkey"
63 #define ASUS_LAPTOP_DEVICE_NAME "Hotkey"
64 #define ASUS_LAPTOP_FILE KBUILD_MODNAME
65 #define ASUS_LAPTOP_PREFIX "\\_SB.ATKD."
66
67 MODULE_AUTHOR("Julien Lerouge, Karol Kozimor, Corentin Chary");
68 MODULE_DESCRIPTION(ASUS_LAPTOP_NAME);
69 MODULE_LICENSE("GPL");
70
71 /*
72 * WAPF defines the behavior of the Fn+Fx wlan key
73 * The significance of values is yet to be found, but
74 * most of the time:
75 * Bit | Bluetooth | WLAN
76 * 0 | Hardware | Hardware
77 * 1 | Hardware | Software
78 * 4 | Software | Software
79 */
80 static uint wapf = 1;
81 module_param(wapf, uint, 0444);
82 MODULE_PARM_DESC(wapf, "WAPF value");
83
84 static char *wled_type = "unknown";
85 static char *bled_type = "unknown";
86
87 module_param(wled_type, charp, 0444);
88 MODULE_PARM_DESC(wled_type, "Set the wled type on boot "
89 "(unknown, led or rfkill). "
90 "default is unknown");
91
92 module_param(bled_type, charp, 0444);
93 MODULE_PARM_DESC(bled_type, "Set the bled type on boot "
94 "(unknown, led or rfkill). "
95 "default is unknown");
96
97 static int wlan_status = 1;
98 static int bluetooth_status = 1;
99 static int wimax_status = -1;
100 static int wwan_status = -1;
101 static int als_status;
102
103 module_param(wlan_status, int, 0444);
104 MODULE_PARM_DESC(wlan_status, "Set the wireless status on boot "
105 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
106 "default is -1");
107
108 module_param(bluetooth_status, int, 0444);
109 MODULE_PARM_DESC(bluetooth_status, "Set the wireless status on boot "
110 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
111 "default is -1");
112
113 module_param(wimax_status, int, 0444);
114 MODULE_PARM_DESC(wimax_status, "Set the wireless status on boot "
115 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
116 "default is -1");
117
118 module_param(wwan_status, int, 0444);
119 MODULE_PARM_DESC(wwan_status, "Set the wireless status on boot "
120 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
121 "default is -1");
122
123 module_param(als_status, int, 0444);
124 MODULE_PARM_DESC(als_status, "Set the ALS status on boot "
125 "(0 = disabled, 1 = enabled). "
126 "default is 0");
127
128 /*
129 * Some events we use, same for all Asus
130 */
131 #define ATKD_BRNUP_MIN 0x10
132 #define ATKD_BRNUP_MAX 0x1f
133 #define ATKD_BRNDOWN_MIN 0x20
134 #define ATKD_BRNDOWN_MAX 0x2f
135 #define ATKD_BRNDOWN 0x20
136 #define ATKD_BRNUP 0x2f
137 #define ATKD_LCD_ON 0x33
138 #define ATKD_LCD_OFF 0x34
139
140 /*
141 * Known bits returned by \_SB.ATKD.HWRS
142 */
143 #define WL_HWRS 0x80
144 #define BT_HWRS 0x100
145
146 /*
147 * Flags for hotk status
148 * WL_ON and BT_ON are also used for wireless_status()
149 */
150 #define WL_RSTS 0x01 /* internal Wifi */
151 #define BT_RSTS 0x02 /* internal Bluetooth */
152 #define WM_RSTS 0x08 /* internal wimax */
153 #define WW_RSTS 0x20 /* internal wwan */
154
155 /* WLED and BLED type */
156 #define TYPE_UNKNOWN 0
157 #define TYPE_LED 1
158 #define TYPE_RFKILL 2
159
160 /* LED */
161 #define METHOD_MLED "MLED"
162 #define METHOD_TLED "TLED"
163 #define METHOD_RLED "RLED" /* W1JC */
164 #define METHOD_PLED "PLED" /* A7J */
165 #define METHOD_GLED "GLED" /* G1, G2 (probably) */
166
167 /* LEDD */
168 #define METHOD_LEDD "SLCM"
169
170 /*
171 * Bluetooth and WLAN
172 * WLED and BLED are not handled like other XLED, because in some dsdt
173 * they also control the WLAN/Bluetooth device.
174 */
175 #define METHOD_WLAN "WLED"
176 #define METHOD_BLUETOOTH "BLED"
177
178 /* WWAN and WIMAX */
179 #define METHOD_WWAN "GSMC"
180 #define METHOD_WIMAX "WMXC"
181
182 #define METHOD_WL_STATUS "RSTS"
183
184 /* Brightness */
185 #define METHOD_BRIGHTNESS_SET "SPLV"
186 #define METHOD_BRIGHTNESS_GET "GPLV"
187
188 /* Display */
189 #define METHOD_SWITCH_DISPLAY "SDSP"
190
191 #define METHOD_ALS_CONTROL "ALSC" /* Z71A Z71V */
192 #define METHOD_ALS_LEVEL "ALSL" /* Z71A Z71V */
193
194 /* GPS */
195 /* R2H use different handle for GPS on/off */
196 #define METHOD_GPS_ON "SDON"
197 #define METHOD_GPS_OFF "SDOF"
198 #define METHOD_GPS_STATUS "GPST"
199
200 /* Keyboard light */
201 #define METHOD_KBD_LIGHT_SET "SLKB"
202 #define METHOD_KBD_LIGHT_GET "GLKB"
203
204 /* For Pegatron Lucid tablet */
205 #define DEVICE_NAME_PEGA "Lucid"
206
207 #define METHOD_PEGA_ENABLE "ENPR"
208 #define METHOD_PEGA_DISABLE "DAPR"
209 #define PEGA_WLAN 0x00
210 #define PEGA_BLUETOOTH 0x01
211 #define PEGA_WWAN 0x02
212 #define PEGA_ALS 0x04
213 #define PEGA_ALS_POWER 0x05
214
215 #define METHOD_PEGA_READ "RDLN"
216 #define PEGA_READ_ALS_H 0x02
217 #define PEGA_READ_ALS_L 0x03
218
219 #define PEGA_ACCEL_NAME "pega_accel"
220 #define PEGA_ACCEL_DESC "Pegatron Lucid Tablet Accelerometer"
221 #define METHOD_XLRX "XLRX"
222 #define METHOD_XLRY "XLRY"
223 #define METHOD_XLRZ "XLRZ"
224 #define PEGA_ACC_CLAMP 512 /* 1G accel is reported as ~256, so clamp to 2G */
225 #define PEGA_ACC_RETRIES 3
226
227 /*
228 * Define a specific led structure to keep the main structure clean
229 */
230 struct asus_led {
231 int wk;
232 struct work_struct work;
233 struct led_classdev led;
234 struct asus_laptop *asus;
235 const char *method;
236 };
237
238 /*
239 * Same thing for rfkill
240 */
241 struct asus_rfkill {
242 /* type of control. Maps to PEGA_* values or *_RSTS */
243 int control_id;
244 struct rfkill *rfkill;
245 struct asus_laptop *asus;
246 };
247
248 /*
249 * This is the main structure, we can use it to store anything interesting
250 * about the hotk device
251 */
252 struct asus_laptop {
253 char *name; /* laptop name */
254
255 struct acpi_table_header *dsdt_info;
256 struct platform_device *platform_device;
257 struct acpi_device *device; /* the device we are in */
258 struct backlight_device *backlight_device;
259
260 struct input_dev *inputdev;
261 struct key_entry *keymap;
262 struct input_polled_dev *pega_accel_poll;
263
264 struct asus_led wled;
265 struct asus_led bled;
266 struct asus_led mled;
267 struct asus_led tled;
268 struct asus_led rled;
269 struct asus_led pled;
270 struct asus_led gled;
271 struct asus_led kled;
272 struct workqueue_struct *led_workqueue;
273
274 int wled_type;
275 int bled_type;
276 int wireless_status;
277 bool have_rsts;
278 bool is_pega_lucid;
279 bool pega_acc_live;
280 int pega_acc_x;
281 int pega_acc_y;
282 int pega_acc_z;
283
284 struct asus_rfkill wlan;
285 struct asus_rfkill bluetooth;
286 struct asus_rfkill wwan;
287 struct asus_rfkill wimax;
288 struct asus_rfkill gps;
289
290 acpi_handle handle; /* the handle of the hotk device */
291 u32 ledd_status; /* status of the LED display */
292 u8 light_level; /* light sensor level */
293 u8 light_switch; /* light sensor switch value */
294 u16 event_count[128]; /* count for each event TODO make this better */
295 };
296
297 static const struct key_entry asus_keymap[] = {
298 /* Lenovo SL Specific keycodes */
299 {KE_KEY, 0x02, { KEY_SCREENLOCK } },
300 {KE_KEY, 0x05, { KEY_WLAN } },
301 {KE_KEY, 0x08, { KEY_F13 } },
302 {KE_KEY, 0x09, { KEY_PROG2 } }, /* Dock */
303 {KE_KEY, 0x17, { KEY_ZOOM } },
304 {KE_KEY, 0x1f, { KEY_BATTERY } },
305 /* End of Lenovo SL Specific keycodes */
306 {KE_KEY, ATKD_BRNDOWN, { KEY_BRIGHTNESSDOWN } },
307 {KE_KEY, ATKD_BRNUP, { KEY_BRIGHTNESSUP } },
308 {KE_KEY, 0x30, { KEY_VOLUMEUP } },
309 {KE_KEY, 0x31, { KEY_VOLUMEDOWN } },
310 {KE_KEY, 0x32, { KEY_MUTE } },
311 {KE_KEY, 0x33, { KEY_DISPLAYTOGGLE } }, /* LCD on */
312 {KE_KEY, 0x34, { KEY_DISPLAY_OFF } }, /* LCD off */
313 {KE_KEY, 0x40, { KEY_PREVIOUSSONG } },
314 {KE_KEY, 0x41, { KEY_NEXTSONG } },
315 {KE_KEY, 0x43, { KEY_STOPCD } }, /* Stop/Eject */
316 {KE_KEY, 0x45, { KEY_PLAYPAUSE } },
317 {KE_KEY, 0x4c, { KEY_MEDIA } }, /* WMP Key */
318 {KE_KEY, 0x50, { KEY_EMAIL } },
319 {KE_KEY, 0x51, { KEY_WWW } },
320 {KE_KEY, 0x55, { KEY_CALC } },
321 {KE_IGNORE, 0x57, }, /* Battery mode */
322 {KE_IGNORE, 0x58, }, /* AC mode */
323 {KE_KEY, 0x5C, { KEY_SCREENLOCK } }, /* Screenlock */
324 {KE_KEY, 0x5D, { KEY_WLAN } }, /* WLAN Toggle */
325 {KE_KEY, 0x5E, { KEY_WLAN } }, /* WLAN Enable */
326 {KE_KEY, 0x5F, { KEY_WLAN } }, /* WLAN Disable */
327 {KE_KEY, 0x60, { KEY_TOUCHPAD_ON } },
328 {KE_KEY, 0x61, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD only */
329 {KE_KEY, 0x62, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT only */
330 {KE_KEY, 0x63, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT */
331 {KE_KEY, 0x64, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV */
332 {KE_KEY, 0x65, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV */
333 {KE_KEY, 0x66, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV */
334 {KE_KEY, 0x67, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV */
335 {KE_KEY, 0x6B, { KEY_TOUCHPAD_TOGGLE } }, /* Lock Touchpad */
336 {KE_KEY, 0x6C, { KEY_SLEEP } }, /* Suspend */
337 {KE_KEY, 0x6D, { KEY_SLEEP } }, /* Hibernate */
338 {KE_IGNORE, 0x6E, }, /* Low Battery notification */
339 {KE_KEY, 0x7D, { KEY_BLUETOOTH } }, /* Bluetooth Enable */
340 {KE_KEY, 0x7E, { KEY_BLUETOOTH } }, /* Bluetooth Disable */
341 {KE_KEY, 0x82, { KEY_CAMERA } },
342 {KE_KEY, 0x88, { KEY_RFKILL } }, /* Radio Toggle Key */
343 {KE_KEY, 0x8A, { KEY_PROG1 } }, /* Color enhancement mode */
344 {KE_KEY, 0x8C, { KEY_SWITCHVIDEOMODE } }, /* SDSP DVI only */
345 {KE_KEY, 0x8D, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + DVI */
346 {KE_KEY, 0x8E, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + DVI */
347 {KE_KEY, 0x8F, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + DVI */
348 {KE_KEY, 0x90, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + DVI */
349 {KE_KEY, 0x91, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + DVI */
350 {KE_KEY, 0x92, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + DVI */
351 {KE_KEY, 0x93, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + DVI */
352 {KE_KEY, 0x95, { KEY_MEDIA } },
353 {KE_KEY, 0x99, { KEY_PHONE } },
354 {KE_KEY, 0xA0, { KEY_SWITCHVIDEOMODE } }, /* SDSP HDMI only */
355 {KE_KEY, 0xA1, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + HDMI */
356 {KE_KEY, 0xA2, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + HDMI */
357 {KE_KEY, 0xA3, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + HDMI */
358 {KE_KEY, 0xA4, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + HDMI */
359 {KE_KEY, 0xA5, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + HDMI */
360 {KE_KEY, 0xA6, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + HDMI */
361 {KE_KEY, 0xA7, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + HDMI */
362 {KE_KEY, 0xB5, { KEY_CALC } },
363 {KE_KEY, 0xC4, { KEY_KBDILLUMUP } },
364 {KE_KEY, 0xC5, { KEY_KBDILLUMDOWN } },
365 {KE_END, 0},
366 };
367
368
369 /*
370 * This function evaluates an ACPI method, given an int as parameter, the
371 * method is searched within the scope of the handle, can be NULL. The output
372 * of the method is written is output, which can also be NULL
373 *
374 * returns 0 if write is successful, -1 else.
375 */
376 static int write_acpi_int_ret(acpi_handle handle, const char *method, int val,
377 struct acpi_buffer *output)
378 {
379 struct acpi_object_list params; /* list of input parameters (an int) */
380 union acpi_object in_obj; /* the only param we use */
381 acpi_status status;
382
383 if (!handle)
384 return -1;
385
386 params.count = 1;
387 params.pointer = &in_obj;
388 in_obj.type = ACPI_TYPE_INTEGER;
389 in_obj.integer.value = val;
390
391 status = acpi_evaluate_object(handle, (char *)method, &params, output);
392 if (status == AE_OK)
393 return 0;
394 else
395 return -1;
396 }
397
398 static int write_acpi_int(acpi_handle handle, const char *method, int val)
399 {
400 return write_acpi_int_ret(handle, method, val, NULL);
401 }
402
403 static int acpi_check_handle(acpi_handle handle, const char *method,
404 acpi_handle *ret)
405 {
406 acpi_status status;
407
408 if (method == NULL)
409 return -ENODEV;
410
411 if (ret)
412 status = acpi_get_handle(handle, (char *)method,
413 ret);
414 else {
415 acpi_handle dummy;
416
417 status = acpi_get_handle(handle, (char *)method,
418 &dummy);
419 }
420
421 if (status != AE_OK) {
422 if (ret)
423 pr_warn("Error finding %s\n", method);
424 return -ENODEV;
425 }
426 return 0;
427 }
428
429 static bool asus_check_pega_lucid(struct asus_laptop *asus)
430 {
431 return !strcmp(asus->name, DEVICE_NAME_PEGA) &&
432 !acpi_check_handle(asus->handle, METHOD_PEGA_ENABLE, NULL) &&
433 !acpi_check_handle(asus->handle, METHOD_PEGA_DISABLE, NULL) &&
434 !acpi_check_handle(asus->handle, METHOD_PEGA_READ, NULL);
435 }
436
437 static int asus_pega_lucid_set(struct asus_laptop *asus, int unit, bool enable)
438 {
439 char *method = enable ? METHOD_PEGA_ENABLE : METHOD_PEGA_DISABLE;
440 return write_acpi_int(asus->handle, method, unit);
441 }
442
443 static int pega_acc_axis(struct asus_laptop *asus, int curr, char *method)
444 {
445 int i, delta;
446 unsigned long long val;
447 for (i = 0; i < PEGA_ACC_RETRIES; i++) {
448 acpi_evaluate_integer(asus->handle, method, NULL, &val);
449
450 /* The output is noisy. From reading the ASL
451 * dissassembly, timeout errors are returned with 1's
452 * in the high word, and the lack of locking around
453 * thei hi/lo byte reads means that a transition
454 * between (for example) -1 and 0 could be read as
455 * 0xff00 or 0x00ff. */
456 delta = abs(curr - (short)val);
457 if (delta < 128 && !(val & ~0xffff))
458 break;
459 }
460 return clamp_val((short)val, -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP);
461 }
462
463 static void pega_accel_poll(struct input_polled_dev *ipd)
464 {
465 struct device *parent = ipd->input->dev.parent;
466 struct asus_laptop *asus = dev_get_drvdata(parent);
467
468 /* In some cases, the very first call to poll causes a
469 * recursive fault under the polldev worker. This is
470 * apparently related to very early userspace access to the
471 * device, and perhaps a firmware bug. Fake the first report. */
472 if (!asus->pega_acc_live) {
473 asus->pega_acc_live = true;
474 input_report_abs(ipd->input, ABS_X, 0);
475 input_report_abs(ipd->input, ABS_Y, 0);
476 input_report_abs(ipd->input, ABS_Z, 0);
477 input_sync(ipd->input);
478 return;
479 }
480
481 asus->pega_acc_x = pega_acc_axis(asus, asus->pega_acc_x, METHOD_XLRX);
482 asus->pega_acc_y = pega_acc_axis(asus, asus->pega_acc_y, METHOD_XLRY);
483 asus->pega_acc_z = pega_acc_axis(asus, asus->pega_acc_z, METHOD_XLRZ);
484
485 /* Note transform, convert to "right/up/out" in the native
486 * landscape orientation (i.e. the vector is the direction of
487 * "real up" in the device's cartiesian coordinates). */
488 input_report_abs(ipd->input, ABS_X, -asus->pega_acc_x);
489 input_report_abs(ipd->input, ABS_Y, -asus->pega_acc_y);
490 input_report_abs(ipd->input, ABS_Z, asus->pega_acc_z);
491 input_sync(ipd->input);
492 }
493
494 static void pega_accel_exit(struct asus_laptop *asus)
495 {
496 if (asus->pega_accel_poll) {
497 input_unregister_polled_device(asus->pega_accel_poll);
498 input_free_polled_device(asus->pega_accel_poll);
499 }
500 asus->pega_accel_poll = NULL;
501 }
502
503 static int pega_accel_init(struct asus_laptop *asus)
504 {
505 int err;
506 struct input_polled_dev *ipd;
507
508 if (!asus->is_pega_lucid)
509 return -ENODEV;
510
511 if (acpi_check_handle(asus->handle, METHOD_XLRX, NULL) ||
512 acpi_check_handle(asus->handle, METHOD_XLRY, NULL) ||
513 acpi_check_handle(asus->handle, METHOD_XLRZ, NULL))
514 return -ENODEV;
515
516 ipd = input_allocate_polled_device();
517 if (!ipd)
518 return -ENOMEM;
519
520 ipd->poll = pega_accel_poll;
521 ipd->poll_interval = 125;
522 ipd->poll_interval_min = 50;
523 ipd->poll_interval_max = 2000;
524
525 ipd->input->name = PEGA_ACCEL_DESC;
526 ipd->input->phys = PEGA_ACCEL_NAME "/input0";
527 ipd->input->dev.parent = &asus->platform_device->dev;
528 ipd->input->id.bustype = BUS_HOST;
529
530 set_bit(EV_ABS, ipd->input->evbit);
531 input_set_abs_params(ipd->input, ABS_X,
532 -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
533 input_set_abs_params(ipd->input, ABS_Y,
534 -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
535 input_set_abs_params(ipd->input, ABS_Z,
536 -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
537
538 err = input_register_polled_device(ipd);
539 if (err)
540 goto exit;
541
542 asus->pega_accel_poll = ipd;
543 return 0;
544
545 exit:
546 input_free_polled_device(ipd);
547 return err;
548 }
549
550 /* Generic LED function */
551 static int asus_led_set(struct asus_laptop *asus, const char *method,
552 int value)
553 {
554 if (!strcmp(method, METHOD_MLED))
555 value = !value;
556 else if (!strcmp(method, METHOD_GLED))
557 value = !value + 1;
558 else
559 value = !!value;
560
561 return write_acpi_int(asus->handle, method, value);
562 }
563
564 /*
565 * LEDs
566 */
567 /* /sys/class/led handlers */
568 static void asus_led_cdev_set(struct led_classdev *led_cdev,
569 enum led_brightness value)
570 {
571 struct asus_led *led = container_of(led_cdev, struct asus_led, led);
572 struct asus_laptop *asus = led->asus;
573
574 led->wk = !!value;
575 queue_work(asus->led_workqueue, &led->work);
576 }
577
578 static void asus_led_cdev_update(struct work_struct *work)
579 {
580 struct asus_led *led = container_of(work, struct asus_led, work);
581 struct asus_laptop *asus = led->asus;
582
583 asus_led_set(asus, led->method, led->wk);
584 }
585
586 static enum led_brightness asus_led_cdev_get(struct led_classdev *led_cdev)
587 {
588 return led_cdev->brightness;
589 }
590
591 /*
592 * Keyboard backlight (also a LED)
593 */
594 static int asus_kled_lvl(struct asus_laptop *asus)
595 {
596 unsigned long long kblv;
597 struct acpi_object_list params;
598 union acpi_object in_obj;
599 acpi_status rv;
600
601 params.count = 1;
602 params.pointer = &in_obj;
603 in_obj.type = ACPI_TYPE_INTEGER;
604 in_obj.integer.value = 2;
605
606 rv = acpi_evaluate_integer(asus->handle, METHOD_KBD_LIGHT_GET,
607 &params, &kblv);
608 if (ACPI_FAILURE(rv)) {
609 pr_warn("Error reading kled level\n");
610 return -ENODEV;
611 }
612 return kblv;
613 }
614
615 static int asus_kled_set(struct asus_laptop *asus, int kblv)
616 {
617 if (kblv > 0)
618 kblv = (1 << 7) | (kblv & 0x7F);
619 else
620 kblv = 0;
621
622 if (write_acpi_int(asus->handle, METHOD_KBD_LIGHT_SET, kblv)) {
623 pr_warn("Keyboard LED display write failed\n");
624 return -EINVAL;
625 }
626 return 0;
627 }
628
629 static void asus_kled_cdev_set(struct led_classdev *led_cdev,
630 enum led_brightness value)
631 {
632 struct asus_led *led = container_of(led_cdev, struct asus_led, led);
633 struct asus_laptop *asus = led->asus;
634
635 led->wk = value;
636 queue_work(asus->led_workqueue, &led->work);
637 }
638
639 static void asus_kled_cdev_update(struct work_struct *work)
640 {
641 struct asus_led *led = container_of(work, struct asus_led, work);
642 struct asus_laptop *asus = led->asus;
643
644 asus_kled_set(asus, led->wk);
645 }
646
647 static enum led_brightness asus_kled_cdev_get(struct led_classdev *led_cdev)
648 {
649 struct asus_led *led = container_of(led_cdev, struct asus_led, led);
650 struct asus_laptop *asus = led->asus;
651
652 return asus_kled_lvl(asus);
653 }
654
655 static void asus_led_exit(struct asus_laptop *asus)
656 {
657 if (!IS_ERR_OR_NULL(asus->wled.led.dev))
658 led_classdev_unregister(&asus->wled.led);
659 if (!IS_ERR_OR_NULL(asus->bled.led.dev))
660 led_classdev_unregister(&asus->bled.led);
661 if (!IS_ERR_OR_NULL(asus->mled.led.dev))
662 led_classdev_unregister(&asus->mled.led);
663 if (!IS_ERR_OR_NULL(asus->tled.led.dev))
664 led_classdev_unregister(&asus->tled.led);
665 if (!IS_ERR_OR_NULL(asus->pled.led.dev))
666 led_classdev_unregister(&asus->pled.led);
667 if (!IS_ERR_OR_NULL(asus->rled.led.dev))
668 led_classdev_unregister(&asus->rled.led);
669 if (!IS_ERR_OR_NULL(asus->gled.led.dev))
670 led_classdev_unregister(&asus->gled.led);
671 if (!IS_ERR_OR_NULL(asus->kled.led.dev))
672 led_classdev_unregister(&asus->kled.led);
673 if (asus->led_workqueue) {
674 destroy_workqueue(asus->led_workqueue);
675 asus->led_workqueue = NULL;
676 }
677 }
678
679 /* Ugly macro, need to fix that later */
680 static int asus_led_register(struct asus_laptop *asus,
681 struct asus_led *led,
682 const char *name, const char *method)
683 {
684 struct led_classdev *led_cdev = &led->led;
685
686 if (!method || acpi_check_handle(asus->handle, method, NULL))
687 return 0; /* Led not present */
688
689 led->asus = asus;
690 led->method = method;
691
692 INIT_WORK(&led->work, asus_led_cdev_update);
693 led_cdev->name = name;
694 led_cdev->brightness_set = asus_led_cdev_set;
695 led_cdev->brightness_get = asus_led_cdev_get;
696 led_cdev->max_brightness = 1;
697 return led_classdev_register(&asus->platform_device->dev, led_cdev);
698 }
699
700 static int asus_led_init(struct asus_laptop *asus)
701 {
702 int r = 0;
703
704 /*
705 * The Pegatron Lucid has no physical leds, but all methods are
706 * available in the DSDT...
707 */
708 if (asus->is_pega_lucid)
709 return 0;
710
711 /*
712 * Functions that actually update the LED's are called from a
713 * workqueue. By doing this as separate work rather than when the LED
714 * subsystem asks, we avoid messing with the Asus ACPI stuff during a
715 * potentially bad time, such as a timer interrupt.
716 */
717 asus->led_workqueue = create_singlethread_workqueue("led_workqueue");
718 if (!asus->led_workqueue)
719 return -ENOMEM;
720
721 if (asus->wled_type == TYPE_LED)
722 r = asus_led_register(asus, &asus->wled, "asus::wlan",
723 METHOD_WLAN);
724 if (r)
725 goto error;
726 if (asus->bled_type == TYPE_LED)
727 r = asus_led_register(asus, &asus->bled, "asus::bluetooth",
728 METHOD_BLUETOOTH);
729 if (r)
730 goto error;
731 r = asus_led_register(asus, &asus->mled, "asus::mail", METHOD_MLED);
732 if (r)
733 goto error;
734 r = asus_led_register(asus, &asus->tled, "asus::touchpad", METHOD_TLED);
735 if (r)
736 goto error;
737 r = asus_led_register(asus, &asus->rled, "asus::record", METHOD_RLED);
738 if (r)
739 goto error;
740 r = asus_led_register(asus, &asus->pled, "asus::phone", METHOD_PLED);
741 if (r)
742 goto error;
743 r = asus_led_register(asus, &asus->gled, "asus::gaming", METHOD_GLED);
744 if (r)
745 goto error;
746 if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL) &&
747 !acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_GET, NULL)) {
748 struct asus_led *led = &asus->kled;
749 struct led_classdev *cdev = &led->led;
750
751 led->asus = asus;
752
753 INIT_WORK(&led->work, asus_kled_cdev_update);
754 cdev->name = "asus::kbd_backlight";
755 cdev->brightness_set = asus_kled_cdev_set;
756 cdev->brightness_get = asus_kled_cdev_get;
757 cdev->max_brightness = 3;
758 r = led_classdev_register(&asus->platform_device->dev, cdev);
759 }
760 error:
761 if (r)
762 asus_led_exit(asus);
763 return r;
764 }
765
766 /*
767 * Backlight device
768 */
769 static int asus_read_brightness(struct backlight_device *bd)
770 {
771 struct asus_laptop *asus = bl_get_data(bd);
772 unsigned long long value;
773 acpi_status rv = AE_OK;
774
775 rv = acpi_evaluate_integer(asus->handle, METHOD_BRIGHTNESS_GET,
776 NULL, &value);
777 if (ACPI_FAILURE(rv))
778 pr_warn("Error reading brightness\n");
779
780 return value;
781 }
782
783 static int asus_set_brightness(struct backlight_device *bd, int value)
784 {
785 struct asus_laptop *asus = bl_get_data(bd);
786
787 if (write_acpi_int(asus->handle, METHOD_BRIGHTNESS_SET, value)) {
788 pr_warn("Error changing brightness\n");
789 return -EIO;
790 }
791 return 0;
792 }
793
794 static int update_bl_status(struct backlight_device *bd)
795 {
796 int value = bd->props.brightness;
797
798 return asus_set_brightness(bd, value);
799 }
800
801 static const struct backlight_ops asusbl_ops = {
802 .get_brightness = asus_read_brightness,
803 .update_status = update_bl_status,
804 };
805
806 static int asus_backlight_notify(struct asus_laptop *asus)
807 {
808 struct backlight_device *bd = asus->backlight_device;
809 int old = bd->props.brightness;
810
811 backlight_force_update(bd, BACKLIGHT_UPDATE_HOTKEY);
812
813 return old;
814 }
815
816 static int asus_backlight_init(struct asus_laptop *asus)
817 {
818 struct backlight_device *bd;
819 struct backlight_properties props;
820
821 if (acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_GET, NULL) ||
822 acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_SET, NULL))
823 return 0;
824
825 memset(&props, 0, sizeof(struct backlight_properties));
826 props.max_brightness = 15;
827 props.type = BACKLIGHT_PLATFORM;
828
829 bd = backlight_device_register(ASUS_LAPTOP_FILE,
830 &asus->platform_device->dev, asus,
831 &asusbl_ops, &props);
832 if (IS_ERR(bd)) {
833 pr_err("Could not register asus backlight device\n");
834 asus->backlight_device = NULL;
835 return PTR_ERR(bd);
836 }
837
838 asus->backlight_device = bd;
839 bd->props.brightness = asus_read_brightness(bd);
840 bd->props.power = FB_BLANK_UNBLANK;
841 backlight_update_status(bd);
842 return 0;
843 }
844
845 static void asus_backlight_exit(struct asus_laptop *asus)
846 {
847 if (asus->backlight_device)
848 backlight_device_unregister(asus->backlight_device);
849 asus->backlight_device = NULL;
850 }
851
852 /*
853 * Platform device handlers
854 */
855
856 /*
857 * We write our info in page, we begin at offset off and cannot write more
858 * than count bytes. We set eof to 1 if we handle those 2 values. We return the
859 * number of bytes written in page
860 */
861 static ssize_t show_infos(struct device *dev,
862 struct device_attribute *attr, char *page)
863 {
864 struct asus_laptop *asus = dev_get_drvdata(dev);
865 int len = 0;
866 unsigned long long temp;
867 char buf[16]; /* enough for all info */
868 acpi_status rv = AE_OK;
869
870 /*
871 * We use the easy way, we don't care of off and count,
872 * so we don't set eof to 1
873 */
874
875 len += sprintf(page, ASUS_LAPTOP_NAME " " ASUS_LAPTOP_VERSION "\n");
876 len += sprintf(page + len, "Model reference : %s\n", asus->name);
877 /*
878 * The SFUN method probably allows the original driver to get the list
879 * of features supported by a given model. For now, 0x0100 or 0x0800
880 * bit signifies that the laptop is equipped with a Wi-Fi MiniPCI card.
881 * The significance of others is yet to be found.
882 */
883 rv = acpi_evaluate_integer(asus->handle, "SFUN", NULL, &temp);
884 if (!ACPI_FAILURE(rv))
885 len += sprintf(page + len, "SFUN value : %#x\n",
886 (uint) temp);
887 /*
888 * The HWRS method return informations about the hardware.
889 * 0x80 bit is for WLAN, 0x100 for Bluetooth.
890 * 0x40 for WWAN, 0x10 for WIMAX.
891 * The significance of others is yet to be found.
892 * We don't currently use this for device detection, and it
893 * takes several seconds to run on some systems.
894 */
895 rv = acpi_evaluate_integer(asus->handle, "HWRS", NULL, &temp);
896 if (!ACPI_FAILURE(rv))
897 len += sprintf(page + len, "HWRS value : %#x\n",
898 (uint) temp);
899 /*
900 * Another value for userspace: the ASYM method returns 0x02 for
901 * battery low and 0x04 for battery critical, its readings tend to be
902 * more accurate than those provided by _BST.
903 * Note: since not all the laptops provide this method, errors are
904 * silently ignored.
905 */
906 rv = acpi_evaluate_integer(asus->handle, "ASYM", NULL, &temp);
907 if (!ACPI_FAILURE(rv))
908 len += sprintf(page + len, "ASYM value : %#x\n",
909 (uint) temp);
910 if (asus->dsdt_info) {
911 snprintf(buf, 16, "%d", asus->dsdt_info->length);
912 len += sprintf(page + len, "DSDT length : %s\n", buf);
913 snprintf(buf, 16, "%d", asus->dsdt_info->checksum);
914 len += sprintf(page + len, "DSDT checksum : %s\n", buf);
915 snprintf(buf, 16, "%d", asus->dsdt_info->revision);
916 len += sprintf(page + len, "DSDT revision : %s\n", buf);
917 snprintf(buf, 7, "%s", asus->dsdt_info->oem_id);
918 len += sprintf(page + len, "OEM id : %s\n", buf);
919 snprintf(buf, 9, "%s", asus->dsdt_info->oem_table_id);
920 len += sprintf(page + len, "OEM table id : %s\n", buf);
921 snprintf(buf, 16, "%x", asus->dsdt_info->oem_revision);
922 len += sprintf(page + len, "OEM revision : 0x%s\n", buf);
923 snprintf(buf, 5, "%s", asus->dsdt_info->asl_compiler_id);
924 len += sprintf(page + len, "ASL comp vendor id : %s\n", buf);
925 snprintf(buf, 16, "%x", asus->dsdt_info->asl_compiler_revision);
926 len += sprintf(page + len, "ASL comp revision : 0x%s\n", buf);
927 }
928
929 return len;
930 }
931
932 static int parse_arg(const char *buf, unsigned long count, int *val)
933 {
934 if (!count)
935 return 0;
936 if (count > 31)
937 return -EINVAL;
938 if (sscanf(buf, "%i", val) != 1)
939 return -EINVAL;
940 return count;
941 }
942
943 static ssize_t sysfs_acpi_set(struct asus_laptop *asus,
944 const char *buf, size_t count,
945 const char *method)
946 {
947 int rv, value;
948 int out = 0;
949
950 rv = parse_arg(buf, count, &value);
951 if (rv > 0)
952 out = value ? 1 : 0;
953
954 if (write_acpi_int(asus->handle, method, value))
955 return -ENODEV;
956 return rv;
957 }
958
959 /*
960 * LEDD display
961 */
962 static ssize_t show_ledd(struct device *dev,
963 struct device_attribute *attr, char *buf)
964 {
965 struct asus_laptop *asus = dev_get_drvdata(dev);
966
967 return sprintf(buf, "0x%08x\n", asus->ledd_status);
968 }
969
970 static ssize_t store_ledd(struct device *dev, struct device_attribute *attr,
971 const char *buf, size_t count)
972 {
973 struct asus_laptop *asus = dev_get_drvdata(dev);
974 int rv, value;
975
976 rv = parse_arg(buf, count, &value);
977 if (rv > 0) {
978 if (write_acpi_int(asus->handle, METHOD_LEDD, value)) {
979 pr_warn("LED display write failed\n");
980 return -ENODEV;
981 }
982 asus->ledd_status = (u32) value;
983 }
984 return rv;
985 }
986
987 /*
988 * Wireless
989 */
990 static int asus_wireless_status(struct asus_laptop *asus, int mask)
991 {
992 unsigned long long status;
993 acpi_status rv = AE_OK;
994
995 if (!asus->have_rsts)
996 return (asus->wireless_status & mask) ? 1 : 0;
997
998 rv = acpi_evaluate_integer(asus->handle, METHOD_WL_STATUS,
999 NULL, &status);
1000 if (ACPI_FAILURE(rv)) {
1001 pr_warn("Error reading Wireless status\n");
1002 return -EINVAL;
1003 }
1004 return !!(status & mask);
1005 }
1006
1007 /*
1008 * WLAN
1009 */
1010 static int asus_wlan_set(struct asus_laptop *asus, int status)
1011 {
1012 if (write_acpi_int(asus->handle, METHOD_WLAN, !!status)) {
1013 pr_warn("Error setting wlan status to %d\n", status);
1014 return -EIO;
1015 }
1016 return 0;
1017 }
1018
1019 static ssize_t show_wlan(struct device *dev,
1020 struct device_attribute *attr, char *buf)
1021 {
1022 struct asus_laptop *asus = dev_get_drvdata(dev);
1023
1024 return sprintf(buf, "%d\n", asus_wireless_status(asus, WL_RSTS));
1025 }
1026
1027 static ssize_t store_wlan(struct device *dev, struct device_attribute *attr,
1028 const char *buf, size_t count)
1029 {
1030 struct asus_laptop *asus = dev_get_drvdata(dev);
1031
1032 return sysfs_acpi_set(asus, buf, count, METHOD_WLAN);
1033 }
1034
1035 /*e
1036 * Bluetooth
1037 */
1038 static int asus_bluetooth_set(struct asus_laptop *asus, int status)
1039 {
1040 if (write_acpi_int(asus->handle, METHOD_BLUETOOTH, !!status)) {
1041 pr_warn("Error setting bluetooth status to %d\n", status);
1042 return -EIO;
1043 }
1044 return 0;
1045 }
1046
1047 static ssize_t show_bluetooth(struct device *dev,
1048 struct device_attribute *attr, char *buf)
1049 {
1050 struct asus_laptop *asus = dev_get_drvdata(dev);
1051
1052 return sprintf(buf, "%d\n", asus_wireless_status(asus, BT_RSTS));
1053 }
1054
1055 static ssize_t store_bluetooth(struct device *dev,
1056 struct device_attribute *attr, const char *buf,
1057 size_t count)
1058 {
1059 struct asus_laptop *asus = dev_get_drvdata(dev);
1060
1061 return sysfs_acpi_set(asus, buf, count, METHOD_BLUETOOTH);
1062 }
1063
1064 /*
1065 * Wimax
1066 */
1067 static int asus_wimax_set(struct asus_laptop *asus, int status)
1068 {
1069 if (write_acpi_int(asus->handle, METHOD_WIMAX, !!status)) {
1070 pr_warn("Error setting wimax status to %d\n", status);
1071 return -EIO;
1072 }
1073 return 0;
1074 }
1075
1076 static ssize_t show_wimax(struct device *dev,
1077 struct device_attribute *attr, char *buf)
1078 {
1079 struct asus_laptop *asus = dev_get_drvdata(dev);
1080
1081 return sprintf(buf, "%d\n", asus_wireless_status(asus, WM_RSTS));
1082 }
1083
1084 static ssize_t store_wimax(struct device *dev,
1085 struct device_attribute *attr, const char *buf,
1086 size_t count)
1087 {
1088 struct asus_laptop *asus = dev_get_drvdata(dev);
1089
1090 return sysfs_acpi_set(asus, buf, count, METHOD_WIMAX);
1091 }
1092
1093 /*
1094 * Wwan
1095 */
1096 static int asus_wwan_set(struct asus_laptop *asus, int status)
1097 {
1098 if (write_acpi_int(asus->handle, METHOD_WWAN, !!status)) {
1099 pr_warn("Error setting wwan status to %d\n", status);
1100 return -EIO;
1101 }
1102 return 0;
1103 }
1104
1105 static ssize_t show_wwan(struct device *dev,
1106 struct device_attribute *attr, char *buf)
1107 {
1108 struct asus_laptop *asus = dev_get_drvdata(dev);
1109
1110 return sprintf(buf, "%d\n", asus_wireless_status(asus, WW_RSTS));
1111 }
1112
1113 static ssize_t store_wwan(struct device *dev,
1114 struct device_attribute *attr, const char *buf,
1115 size_t count)
1116 {
1117 struct asus_laptop *asus = dev_get_drvdata(dev);
1118
1119 return sysfs_acpi_set(asus, buf, count, METHOD_WWAN);
1120 }
1121
1122 /*
1123 * Display
1124 */
1125 static void asus_set_display(struct asus_laptop *asus, int value)
1126 {
1127 /* no sanity check needed for now */
1128 if (write_acpi_int(asus->handle, METHOD_SWITCH_DISPLAY, value))
1129 pr_warn("Error setting display\n");
1130 return;
1131 }
1132
1133 /*
1134 * Experimental support for display switching. As of now: 1 should activate
1135 * the LCD output, 2 should do for CRT, 4 for TV-Out and 8 for DVI.
1136 * Any combination (bitwise) of these will suffice. I never actually tested 4
1137 * displays hooked up simultaneously, so be warned. See the acpi4asus README
1138 * for more info.
1139 */
1140 static ssize_t store_disp(struct device *dev, struct device_attribute *attr,
1141 const char *buf, size_t count)
1142 {
1143 struct asus_laptop *asus = dev_get_drvdata(dev);
1144 int rv, value;
1145
1146 rv = parse_arg(buf, count, &value);
1147 if (rv > 0)
1148 asus_set_display(asus, value);
1149 return rv;
1150 }
1151
1152 /*
1153 * Light Sens
1154 */
1155 static void asus_als_switch(struct asus_laptop *asus, int value)
1156 {
1157 int ret;
1158
1159 if (asus->is_pega_lucid) {
1160 ret = asus_pega_lucid_set(asus, PEGA_ALS, value);
1161 if (!ret)
1162 ret = asus_pega_lucid_set(asus, PEGA_ALS_POWER, value);
1163 } else {
1164 ret = write_acpi_int(asus->handle, METHOD_ALS_CONTROL, value);
1165 }
1166 if (ret)
1167 pr_warning("Error setting light sensor switch\n");
1168
1169 asus->light_switch = value;
1170 }
1171
1172 static ssize_t show_lssw(struct device *dev,
1173 struct device_attribute *attr, char *buf)
1174 {
1175 struct asus_laptop *asus = dev_get_drvdata(dev);
1176
1177 return sprintf(buf, "%d\n", asus->light_switch);
1178 }
1179
1180 static ssize_t store_lssw(struct device *dev, struct device_attribute *attr,
1181 const char *buf, size_t count)
1182 {
1183 struct asus_laptop *asus = dev_get_drvdata(dev);
1184 int rv, value;
1185
1186 rv = parse_arg(buf, count, &value);
1187 if (rv > 0)
1188 asus_als_switch(asus, value ? 1 : 0);
1189
1190 return rv;
1191 }
1192
1193 static void asus_als_level(struct asus_laptop *asus, int value)
1194 {
1195 if (write_acpi_int(asus->handle, METHOD_ALS_LEVEL, value))
1196 pr_warn("Error setting light sensor level\n");
1197 asus->light_level = value;
1198 }
1199
1200 static ssize_t show_lslvl(struct device *dev,
1201 struct device_attribute *attr, char *buf)
1202 {
1203 struct asus_laptop *asus = dev_get_drvdata(dev);
1204
1205 return sprintf(buf, "%d\n", asus->light_level);
1206 }
1207
1208 static ssize_t store_lslvl(struct device *dev, struct device_attribute *attr,
1209 const char *buf, size_t count)
1210 {
1211 struct asus_laptop *asus = dev_get_drvdata(dev);
1212 int rv, value;
1213
1214 rv = parse_arg(buf, count, &value);
1215 if (rv > 0) {
1216 value = (0 < value) ? ((15 < value) ? 15 : value) : 0;
1217 /* 0 <= value <= 15 */
1218 asus_als_level(asus, value);
1219 }
1220
1221 return rv;
1222 }
1223
1224 static int pega_int_read(struct asus_laptop *asus, int arg, int *result)
1225 {
1226 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1227 int err = write_acpi_int_ret(asus->handle, METHOD_PEGA_READ, arg,
1228 &buffer);
1229 if (!err) {
1230 union acpi_object *obj = buffer.pointer;
1231 if (obj && obj->type == ACPI_TYPE_INTEGER)
1232 *result = obj->integer.value;
1233 else
1234 err = -EIO;
1235 }
1236 return err;
1237 }
1238
1239 static ssize_t show_lsvalue(struct device *dev,
1240 struct device_attribute *attr, char *buf)
1241 {
1242 struct asus_laptop *asus = dev_get_drvdata(dev);
1243 int err, hi, lo;
1244
1245 err = pega_int_read(asus, PEGA_READ_ALS_H, &hi);
1246 if (!err)
1247 err = pega_int_read(asus, PEGA_READ_ALS_L, &lo);
1248 if (!err)
1249 return sprintf(buf, "%d\n", 10 * hi + lo);
1250 return err;
1251 }
1252
1253 /*
1254 * GPS
1255 */
1256 static int asus_gps_status(struct asus_laptop *asus)
1257 {
1258 unsigned long long status;
1259 acpi_status rv = AE_OK;
1260
1261 rv = acpi_evaluate_integer(asus->handle, METHOD_GPS_STATUS,
1262 NULL, &status);
1263 if (ACPI_FAILURE(rv)) {
1264 pr_warn("Error reading GPS status\n");
1265 return -ENODEV;
1266 }
1267 return !!status;
1268 }
1269
1270 static int asus_gps_switch(struct asus_laptop *asus, int status)
1271 {
1272 const char *meth = status ? METHOD_GPS_ON : METHOD_GPS_OFF;
1273
1274 if (write_acpi_int(asus->handle, meth, 0x02))
1275 return -ENODEV;
1276 return 0;
1277 }
1278
1279 static ssize_t show_gps(struct device *dev,
1280 struct device_attribute *attr, char *buf)
1281 {
1282 struct asus_laptop *asus = dev_get_drvdata(dev);
1283
1284 return sprintf(buf, "%d\n", asus_gps_status(asus));
1285 }
1286
1287 static ssize_t store_gps(struct device *dev, struct device_attribute *attr,
1288 const char *buf, size_t count)
1289 {
1290 struct asus_laptop *asus = dev_get_drvdata(dev);
1291 int rv, value;
1292 int ret;
1293
1294 rv = parse_arg(buf, count, &value);
1295 if (rv <= 0)
1296 return -EINVAL;
1297 ret = asus_gps_switch(asus, !!value);
1298 if (ret)
1299 return ret;
1300 rfkill_set_sw_state(asus->gps.rfkill, !value);
1301 return rv;
1302 }
1303
1304 /*
1305 * rfkill
1306 */
1307 static int asus_gps_rfkill_set(void *data, bool blocked)
1308 {
1309 struct asus_laptop *asus = data;
1310
1311 return asus_gps_switch(asus, !blocked);
1312 }
1313
1314 static const struct rfkill_ops asus_gps_rfkill_ops = {
1315 .set_block = asus_gps_rfkill_set,
1316 };
1317
1318 static int asus_rfkill_set(void *data, bool blocked)
1319 {
1320 struct asus_rfkill *rfk = data;
1321 struct asus_laptop *asus = rfk->asus;
1322
1323 if (rfk->control_id == WL_RSTS)
1324 return asus_wlan_set(asus, !blocked);
1325 else if (rfk->control_id == BT_RSTS)
1326 return asus_bluetooth_set(asus, !blocked);
1327 else if (rfk->control_id == WM_RSTS)
1328 return asus_wimax_set(asus, !blocked);
1329 else if (rfk->control_id == WW_RSTS)
1330 return asus_wwan_set(asus, !blocked);
1331
1332 return -EINVAL;
1333 }
1334
1335 static const struct rfkill_ops asus_rfkill_ops = {
1336 .set_block = asus_rfkill_set,
1337 };
1338
1339 static void asus_rfkill_terminate(struct asus_rfkill *rfk)
1340 {
1341 if (!rfk->rfkill)
1342 return ;
1343
1344 rfkill_unregister(rfk->rfkill);
1345 rfkill_destroy(rfk->rfkill);
1346 rfk->rfkill = NULL;
1347 }
1348
1349 static void asus_rfkill_exit(struct asus_laptop *asus)
1350 {
1351 asus_rfkill_terminate(&asus->wwan);
1352 asus_rfkill_terminate(&asus->bluetooth);
1353 asus_rfkill_terminate(&asus->wlan);
1354 asus_rfkill_terminate(&asus->gps);
1355 }
1356
1357 static int asus_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk,
1358 const char *name, int control_id, int type,
1359 const struct rfkill_ops *ops)
1360 {
1361 int result;
1362
1363 rfk->control_id = control_id;
1364 rfk->asus = asus;
1365 rfk->rfkill = rfkill_alloc(name, &asus->platform_device->dev,
1366 type, ops, rfk);
1367 if (!rfk->rfkill)
1368 return -EINVAL;
1369
1370 result = rfkill_register(rfk->rfkill);
1371 if (result) {
1372 rfkill_destroy(rfk->rfkill);
1373 rfk->rfkill = NULL;
1374 }
1375
1376 return result;
1377 }
1378
1379 static int asus_rfkill_init(struct asus_laptop *asus)
1380 {
1381 int result = 0;
1382
1383 if (asus->is_pega_lucid)
1384 return -ENODEV;
1385
1386 if (!acpi_check_handle(asus->handle, METHOD_GPS_ON, NULL) &&
1387 !acpi_check_handle(asus->handle, METHOD_GPS_OFF, NULL) &&
1388 !acpi_check_handle(asus->handle, METHOD_GPS_STATUS, NULL))
1389 result = asus_rfkill_setup(asus, &asus->gps, "asus-gps",
1390 -1, RFKILL_TYPE_GPS,
1391 &asus_gps_rfkill_ops);
1392 if (result)
1393 goto exit;
1394
1395
1396 if (!acpi_check_handle(asus->handle, METHOD_WLAN, NULL) &&
1397 asus->wled_type == TYPE_RFKILL)
1398 result = asus_rfkill_setup(asus, &asus->wlan, "asus-wlan",
1399 WL_RSTS, RFKILL_TYPE_WLAN,
1400 &asus_rfkill_ops);
1401 if (result)
1402 goto exit;
1403
1404 if (!acpi_check_handle(asus->handle, METHOD_BLUETOOTH, NULL) &&
1405 asus->bled_type == TYPE_RFKILL)
1406 result = asus_rfkill_setup(asus, &asus->bluetooth,
1407 "asus-bluetooth", BT_RSTS,
1408 RFKILL_TYPE_BLUETOOTH,
1409 &asus_rfkill_ops);
1410 if (result)
1411 goto exit;
1412
1413 if (!acpi_check_handle(asus->handle, METHOD_WWAN, NULL))
1414 result = asus_rfkill_setup(asus, &asus->wwan, "asus-wwan",
1415 WW_RSTS, RFKILL_TYPE_WWAN,
1416 &asus_rfkill_ops);
1417 if (result)
1418 goto exit;
1419
1420 if (!acpi_check_handle(asus->handle, METHOD_WIMAX, NULL))
1421 result = asus_rfkill_setup(asus, &asus->wimax, "asus-wimax",
1422 WM_RSTS, RFKILL_TYPE_WIMAX,
1423 &asus_rfkill_ops);
1424 if (result)
1425 goto exit;
1426
1427 exit:
1428 if (result)
1429 asus_rfkill_exit(asus);
1430
1431 return result;
1432 }
1433
1434 static int pega_rfkill_set(void *data, bool blocked)
1435 {
1436 struct asus_rfkill *rfk = data;
1437
1438 int ret = asus_pega_lucid_set(rfk->asus, rfk->control_id, !blocked);
1439 return ret;
1440 }
1441
1442 static const struct rfkill_ops pega_rfkill_ops = {
1443 .set_block = pega_rfkill_set,
1444 };
1445
1446 static int pega_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk,
1447 const char *name, int controlid, int rfkill_type)
1448 {
1449 return asus_rfkill_setup(asus, rfk, name, controlid, rfkill_type,
1450 &pega_rfkill_ops);
1451 }
1452
1453 static int pega_rfkill_init(struct asus_laptop *asus)
1454 {
1455 int ret = 0;
1456
1457 if(!asus->is_pega_lucid)
1458 return -ENODEV;
1459
1460 ret = pega_rfkill_setup(asus, &asus->wlan, "pega-wlan",
1461 PEGA_WLAN, RFKILL_TYPE_WLAN);
1462 if(ret)
1463 goto exit;
1464
1465 ret = pega_rfkill_setup(asus, &asus->bluetooth, "pega-bt",
1466 PEGA_BLUETOOTH, RFKILL_TYPE_BLUETOOTH);
1467 if(ret)
1468 goto exit;
1469
1470 ret = pega_rfkill_setup(asus, &asus->wwan, "pega-wwan",
1471 PEGA_WWAN, RFKILL_TYPE_WWAN);
1472
1473 exit:
1474 if (ret)
1475 asus_rfkill_exit(asus);
1476
1477 return ret;
1478 }
1479
1480 /*
1481 * Input device (i.e. hotkeys)
1482 */
1483 static void asus_input_notify(struct asus_laptop *asus, int event)
1484 {
1485 if (!asus->inputdev)
1486 return ;
1487 if (!sparse_keymap_report_event(asus->inputdev, event, 1, true))
1488 pr_info("Unknown key %x pressed\n", event);
1489 }
1490
1491 static int asus_input_init(struct asus_laptop *asus)
1492 {
1493 struct input_dev *input;
1494 int error;
1495
1496 input = input_allocate_device();
1497 if (!input) {
1498 pr_warn("Unable to allocate input device\n");
1499 return -ENOMEM;
1500 }
1501 input->name = "Asus Laptop extra buttons";
1502 input->phys = ASUS_LAPTOP_FILE "/input0";
1503 input->id.bustype = BUS_HOST;
1504 input->dev.parent = &asus->platform_device->dev;
1505
1506 error = sparse_keymap_setup(input, asus_keymap, NULL);
1507 if (error) {
1508 pr_err("Unable to setup input device keymap\n");
1509 goto err_free_dev;
1510 }
1511 error = input_register_device(input);
1512 if (error) {
1513 pr_warn("Unable to register input device\n");
1514 goto err_free_keymap;
1515 }
1516
1517 asus->inputdev = input;
1518 return 0;
1519
1520 err_free_keymap:
1521 sparse_keymap_free(input);
1522 err_free_dev:
1523 input_free_device(input);
1524 return error;
1525 }
1526
1527 static void asus_input_exit(struct asus_laptop *asus)
1528 {
1529 if (asus->inputdev) {
1530 sparse_keymap_free(asus->inputdev);
1531 input_unregister_device(asus->inputdev);
1532 }
1533 asus->inputdev = NULL;
1534 }
1535
1536 /*
1537 * ACPI driver
1538 */
1539 static void asus_acpi_notify(struct acpi_device *device, u32 event)
1540 {
1541 struct asus_laptop *asus = acpi_driver_data(device);
1542 u16 count;
1543
1544 /* TODO Find a better way to handle events count. */
1545 count = asus->event_count[event % 128]++;
1546 acpi_bus_generate_netlink_event(asus->device->pnp.device_class,
1547 dev_name(&asus->device->dev), event,
1548 count);
1549
1550 if (event >= ATKD_BRNUP_MIN && event <= ATKD_BRNUP_MAX)
1551 event = ATKD_BRNUP;
1552 else if (event >= ATKD_BRNDOWN_MIN &&
1553 event <= ATKD_BRNDOWN_MAX)
1554 event = ATKD_BRNDOWN;
1555
1556 /* Brightness events are special */
1557 if (event == ATKD_BRNDOWN || event == ATKD_BRNUP) {
1558 if (asus->backlight_device != NULL) {
1559 /* Update the backlight device. */
1560 asus_backlight_notify(asus);
1561 return ;
1562 }
1563 }
1564
1565 /* Accelerometer "coarse orientation change" event */
1566 if (asus->pega_accel_poll && event == 0xEA) {
1567 kobject_uevent(&asus->pega_accel_poll->input->dev.kobj,
1568 KOBJ_CHANGE);
1569 return ;
1570 }
1571
1572 asus_input_notify(asus, event);
1573 }
1574
1575 static DEVICE_ATTR(infos, S_IRUGO, show_infos, NULL);
1576 static DEVICE_ATTR(wlan, S_IRUGO | S_IWUSR, show_wlan, store_wlan);
1577 static DEVICE_ATTR(bluetooth, S_IRUGO | S_IWUSR,
1578 show_bluetooth, store_bluetooth);
1579 static DEVICE_ATTR(wimax, S_IRUGO | S_IWUSR, show_wimax, store_wimax);
1580 static DEVICE_ATTR(wwan, S_IRUGO | S_IWUSR, show_wwan, store_wwan);
1581 static DEVICE_ATTR(display, S_IWUSR, NULL, store_disp);
1582 static DEVICE_ATTR(ledd, S_IRUGO | S_IWUSR, show_ledd, store_ledd);
1583 static DEVICE_ATTR(ls_value, S_IRUGO, show_lsvalue, NULL);
1584 static DEVICE_ATTR(ls_level, S_IRUGO | S_IWUSR, show_lslvl, store_lslvl);
1585 static DEVICE_ATTR(ls_switch, S_IRUGO | S_IWUSR, show_lssw, store_lssw);
1586 static DEVICE_ATTR(gps, S_IRUGO | S_IWUSR, show_gps, store_gps);
1587
1588 static struct attribute *asus_attributes[] = {
1589 &dev_attr_infos.attr,
1590 &dev_attr_wlan.attr,
1591 &dev_attr_bluetooth.attr,
1592 &dev_attr_wimax.attr,
1593 &dev_attr_wwan.attr,
1594 &dev_attr_display.attr,
1595 &dev_attr_ledd.attr,
1596 &dev_attr_ls_value.attr,
1597 &dev_attr_ls_level.attr,
1598 &dev_attr_ls_switch.attr,
1599 &dev_attr_gps.attr,
1600 NULL
1601 };
1602
1603 static umode_t asus_sysfs_is_visible(struct kobject *kobj,
1604 struct attribute *attr,
1605 int idx)
1606 {
1607 struct device *dev = container_of(kobj, struct device, kobj);
1608 struct platform_device *pdev = to_platform_device(dev);
1609 struct asus_laptop *asus = platform_get_drvdata(pdev);
1610 acpi_handle handle = asus->handle;
1611 bool supported;
1612
1613 if (asus->is_pega_lucid) {
1614 /* no ls_level interface on the Lucid */
1615 if (attr == &dev_attr_ls_switch.attr)
1616 supported = true;
1617 else if (attr == &dev_attr_ls_level.attr)
1618 supported = false;
1619 else
1620 goto normal;
1621
1622 return supported;
1623 }
1624
1625 normal:
1626 if (attr == &dev_attr_wlan.attr) {
1627 supported = !acpi_check_handle(handle, METHOD_WLAN, NULL);
1628
1629 } else if (attr == &dev_attr_bluetooth.attr) {
1630 supported = !acpi_check_handle(handle, METHOD_BLUETOOTH, NULL);
1631
1632 } else if (attr == &dev_attr_display.attr) {
1633 supported = !acpi_check_handle(handle, METHOD_SWITCH_DISPLAY, NULL);
1634
1635 } else if (attr == &dev_attr_wimax.attr) {
1636 supported =
1637 !acpi_check_handle(asus->handle, METHOD_WIMAX, NULL);
1638
1639 } else if (attr == &dev_attr_wwan.attr) {
1640 supported = !acpi_check_handle(asus->handle, METHOD_WWAN, NULL);
1641
1642 } else if (attr == &dev_attr_ledd.attr) {
1643 supported = !acpi_check_handle(handle, METHOD_LEDD, NULL);
1644
1645 } else if (attr == &dev_attr_ls_switch.attr ||
1646 attr == &dev_attr_ls_level.attr) {
1647 supported = !acpi_check_handle(handle, METHOD_ALS_CONTROL, NULL) &&
1648 !acpi_check_handle(handle, METHOD_ALS_LEVEL, NULL);
1649 } else if (attr == &dev_attr_ls_value.attr) {
1650 supported = asus->is_pega_lucid;
1651 } else if (attr == &dev_attr_gps.attr) {
1652 supported = !acpi_check_handle(handle, METHOD_GPS_ON, NULL) &&
1653 !acpi_check_handle(handle, METHOD_GPS_OFF, NULL) &&
1654 !acpi_check_handle(handle, METHOD_GPS_STATUS, NULL);
1655 } else {
1656 supported = true;
1657 }
1658
1659 return supported ? attr->mode : 0;
1660 }
1661
1662
1663 static const struct attribute_group asus_attr_group = {
1664 .is_visible = asus_sysfs_is_visible,
1665 .attrs = asus_attributes,
1666 };
1667
1668 static int asus_platform_init(struct asus_laptop *asus)
1669 {
1670 int result;
1671
1672 asus->platform_device = platform_device_alloc(ASUS_LAPTOP_FILE, -1);
1673 if (!asus->platform_device)
1674 return -ENOMEM;
1675 platform_set_drvdata(asus->platform_device, asus);
1676
1677 result = platform_device_add(asus->platform_device);
1678 if (result)
1679 goto fail_platform_device;
1680
1681 result = sysfs_create_group(&asus->platform_device->dev.kobj,
1682 &asus_attr_group);
1683 if (result)
1684 goto fail_sysfs;
1685
1686 return 0;
1687
1688 fail_sysfs:
1689 platform_device_del(asus->platform_device);
1690 fail_platform_device:
1691 platform_device_put(asus->platform_device);
1692 return result;
1693 }
1694
1695 static void asus_platform_exit(struct asus_laptop *asus)
1696 {
1697 sysfs_remove_group(&asus->platform_device->dev.kobj, &asus_attr_group);
1698 platform_device_unregister(asus->platform_device);
1699 }
1700
1701 static struct platform_driver platform_driver = {
1702 .driver = {
1703 .name = ASUS_LAPTOP_FILE,
1704 .owner = THIS_MODULE,
1705 },
1706 };
1707
1708 /*
1709 * This function is used to initialize the context with right values. In this
1710 * method, we can make all the detection we want, and modify the asus_laptop
1711 * struct
1712 */
1713 static int asus_laptop_get_info(struct asus_laptop *asus)
1714 {
1715 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1716 union acpi_object *model = NULL;
1717 unsigned long long bsts_result;
1718 char *string = NULL;
1719 acpi_status status;
1720
1721 /*
1722 * Get DSDT headers early enough to allow for differentiating between
1723 * models, but late enough to allow acpi_bus_register_driver() to fail
1724 * before doing anything ACPI-specific. Should we encounter a machine,
1725 * which needs special handling (i.e. its hotkey device has a different
1726 * HID), this bit will be moved.
1727 */
1728 status = acpi_get_table(ACPI_SIG_DSDT, 1, &asus->dsdt_info);
1729 if (ACPI_FAILURE(status))
1730 pr_warn("Couldn't get the DSDT table header\n");
1731
1732 /* We have to write 0 on init this far for all ASUS models */
1733 if (write_acpi_int_ret(asus->handle, "INIT", 0, &buffer)) {
1734 pr_err("Hotkey initialization failed\n");
1735 return -ENODEV;
1736 }
1737
1738 /* This needs to be called for some laptops to init properly */
1739 status =
1740 acpi_evaluate_integer(asus->handle, "BSTS", NULL, &bsts_result);
1741 if (ACPI_FAILURE(status))
1742 pr_warn("Error calling BSTS\n");
1743 else if (bsts_result)
1744 pr_notice("BSTS called, 0x%02x returned\n",
1745 (uint) bsts_result);
1746
1747 /* This too ... */
1748 if (write_acpi_int(asus->handle, "CWAP", wapf))
1749 pr_err("Error calling CWAP(%d)\n", wapf);
1750 /*
1751 * Try to match the object returned by INIT to the specific model.
1752 * Handle every possible object (or the lack of thereof) the DSDT
1753 * writers might throw at us. When in trouble, we pass NULL to
1754 * asus_model_match() and try something completely different.
1755 */
1756 if (buffer.pointer) {
1757 model = buffer.pointer;
1758 switch (model->type) {
1759 case ACPI_TYPE_STRING:
1760 string = model->string.pointer;
1761 break;
1762 case ACPI_TYPE_BUFFER:
1763 string = model->buffer.pointer;
1764 break;
1765 default:
1766 string = "";
1767 break;
1768 }
1769 }
1770 asus->name = kstrdup(string, GFP_KERNEL);
1771 if (!asus->name) {
1772 kfree(buffer.pointer);
1773 return -ENOMEM;
1774 }
1775
1776 if (string)
1777 pr_notice(" %s model detected\n", string);
1778
1779 if (!acpi_check_handle(asus->handle, METHOD_WL_STATUS, NULL))
1780 asus->have_rsts = true;
1781
1782 kfree(model);
1783
1784 return AE_OK;
1785 }
1786
1787 static int asus_acpi_init(struct asus_laptop *asus)
1788 {
1789 int result = 0;
1790
1791 result = acpi_bus_get_status(asus->device);
1792 if (result)
1793 return result;
1794 if (!asus->device->status.present) {
1795 pr_err("Hotkey device not present, aborting\n");
1796 return -ENODEV;
1797 }
1798
1799 result = asus_laptop_get_info(asus);
1800 if (result)
1801 return result;
1802
1803 if (!strcmp(bled_type, "led"))
1804 asus->bled_type = TYPE_LED;
1805 else if (!strcmp(bled_type, "rfkill"))
1806 asus->bled_type = TYPE_RFKILL;
1807
1808 if (!strcmp(wled_type, "led"))
1809 asus->wled_type = TYPE_LED;
1810 else if (!strcmp(wled_type, "rfkill"))
1811 asus->wled_type = TYPE_RFKILL;
1812
1813 if (bluetooth_status >= 0)
1814 asus_bluetooth_set(asus, !!bluetooth_status);
1815
1816 if (wlan_status >= 0)
1817 asus_wlan_set(asus, !!wlan_status);
1818
1819 if (wimax_status >= 0)
1820 asus_wimax_set(asus, !!wimax_status);
1821
1822 if (wwan_status >= 0)
1823 asus_wwan_set(asus, !!wwan_status);
1824
1825 /* Keyboard Backlight is on by default */
1826 if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL))
1827 asus_kled_set(asus, 1);
1828
1829 /* LED display is off by default */
1830 asus->ledd_status = 0xFFF;
1831
1832 /* Set initial values of light sensor and level */
1833 asus->light_switch = !!als_status;
1834 asus->light_level = 5; /* level 5 for sensor sensitivity */
1835
1836 if (asus->is_pega_lucid) {
1837 asus_als_switch(asus, asus->light_switch);
1838 } else if (!acpi_check_handle(asus->handle, METHOD_ALS_CONTROL, NULL) &&
1839 !acpi_check_handle(asus->handle, METHOD_ALS_LEVEL, NULL)) {
1840 asus_als_switch(asus, asus->light_switch);
1841 asus_als_level(asus, asus->light_level);
1842 }
1843
1844 return result;
1845 }
1846
1847 static void asus_dmi_check(void)
1848 {
1849 const char *model;
1850
1851 model = dmi_get_system_info(DMI_PRODUCT_NAME);
1852 if (!model)
1853 return;
1854
1855 /* On L1400B WLED control the sound card, don't mess with it ... */
1856 if (strncmp(model, "L1400B", 6) == 0) {
1857 wlan_status = -1;
1858 }
1859 }
1860
1861 static bool asus_device_present;
1862
1863 static int asus_acpi_add(struct acpi_device *device)
1864 {
1865 struct asus_laptop *asus;
1866 int result;
1867
1868 pr_notice("Asus Laptop Support version %s\n",
1869 ASUS_LAPTOP_VERSION);
1870 asus = kzalloc(sizeof(struct asus_laptop), GFP_KERNEL);
1871 if (!asus)
1872 return -ENOMEM;
1873 asus->handle = device->handle;
1874 strcpy(acpi_device_name(device), ASUS_LAPTOP_DEVICE_NAME);
1875 strcpy(acpi_device_class(device), ASUS_LAPTOP_CLASS);
1876 device->driver_data = asus;
1877 asus->device = device;
1878
1879 asus_dmi_check();
1880
1881 result = asus_acpi_init(asus);
1882 if (result)
1883 goto fail_platform;
1884
1885 /*
1886 * Need platform type detection first, then the platform
1887 * device. It is used as a parent for the sub-devices below.
1888 */
1889 asus->is_pega_lucid = asus_check_pega_lucid(asus);
1890 result = asus_platform_init(asus);
1891 if (result)
1892 goto fail_platform;
1893
1894 if (!acpi_video_backlight_support()) {
1895 result = asus_backlight_init(asus);
1896 if (result)
1897 goto fail_backlight;
1898 } else
1899 pr_info("Backlight controlled by ACPI video driver\n");
1900
1901 result = asus_input_init(asus);
1902 if (result)
1903 goto fail_input;
1904
1905 result = asus_led_init(asus);
1906 if (result)
1907 goto fail_led;
1908
1909 result = asus_rfkill_init(asus);
1910 if (result && result != -ENODEV)
1911 goto fail_rfkill;
1912
1913 result = pega_accel_init(asus);
1914 if (result && result != -ENODEV)
1915 goto fail_pega_accel;
1916
1917 result = pega_rfkill_init(asus);
1918 if (result && result != -ENODEV)
1919 goto fail_pega_rfkill;
1920
1921 asus_device_present = true;
1922 return 0;
1923
1924 fail_pega_rfkill:
1925 pega_accel_exit(asus);
1926 fail_pega_accel:
1927 asus_rfkill_exit(asus);
1928 fail_rfkill:
1929 asus_led_exit(asus);
1930 fail_led:
1931 asus_input_exit(asus);
1932 fail_input:
1933 asus_backlight_exit(asus);
1934 fail_backlight:
1935 asus_platform_exit(asus);
1936 fail_platform:
1937 kfree(asus);
1938
1939 return result;
1940 }
1941
1942 static int asus_acpi_remove(struct acpi_device *device)
1943 {
1944 struct asus_laptop *asus = acpi_driver_data(device);
1945
1946 asus_backlight_exit(asus);
1947 asus_rfkill_exit(asus);
1948 asus_led_exit(asus);
1949 asus_input_exit(asus);
1950 pega_accel_exit(asus);
1951 asus_platform_exit(asus);
1952
1953 kfree(asus->name);
1954 kfree(asus);
1955 return 0;
1956 }
1957
1958 static const struct acpi_device_id asus_device_ids[] = {
1959 {"ATK0100", 0},
1960 {"ATK0101", 0},
1961 {"", 0},
1962 };
1963 MODULE_DEVICE_TABLE(acpi, asus_device_ids);
1964
1965 static struct acpi_driver asus_acpi_driver = {
1966 .name = ASUS_LAPTOP_NAME,
1967 .class = ASUS_LAPTOP_CLASS,
1968 .owner = THIS_MODULE,
1969 .ids = asus_device_ids,
1970 .flags = ACPI_DRIVER_ALL_NOTIFY_EVENTS,
1971 .ops = {
1972 .add = asus_acpi_add,
1973 .remove = asus_acpi_remove,
1974 .notify = asus_acpi_notify,
1975 },
1976 };
1977
1978 static int __init asus_laptop_init(void)
1979 {
1980 int result;
1981
1982 result = platform_driver_register(&platform_driver);
1983 if (result < 0)
1984 return result;
1985
1986 result = acpi_bus_register_driver(&asus_acpi_driver);
1987 if (result < 0)
1988 goto fail_acpi_driver;
1989 if (!asus_device_present) {
1990 result = -ENODEV;
1991 goto fail_no_device;
1992 }
1993 return 0;
1994
1995 fail_no_device:
1996 acpi_bus_unregister_driver(&asus_acpi_driver);
1997 fail_acpi_driver:
1998 platform_driver_unregister(&platform_driver);
1999 return result;
2000 }
2001
2002 static void __exit asus_laptop_exit(void)
2003 {
2004 acpi_bus_unregister_driver(&asus_acpi_driver);
2005 platform_driver_unregister(&platform_driver);
2006 }
2007
2008 module_init(asus_laptop_init);
2009 module_exit(asus_laptop_exit);