]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/platform/x86/asus-laptop.c
Merge tag 'v3.7-rc3' into next to sync up with recent USB and MFD changes
[mirror_ubuntu-bionic-kernel.git] / drivers / platform / x86 / asus-laptop.c
1 /*
2 * asus-laptop.c - Asus Laptop Support
3 *
4 *
5 * Copyright (C) 2002-2005 Julien Lerouge, 2003-2006 Karol Kozimor
6 * Copyright (C) 2006-2007 Corentin Chary
7 * Copyright (C) 2011 Wind River Systems
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 *
24 * The development page for this driver is located at
25 * http://sourceforge.net/projects/acpi4asus/
26 *
27 * Credits:
28 * Pontus Fuchs - Helper functions, cleanup
29 * Johann Wiesner - Small compile fixes
30 * John Belmonte - ACPI code for Toshiba laptop was a good starting point.
31 * Eric Burghard - LED display support for W1N
32 * Josh Green - Light Sens support
33 * Thomas Tuttle - His first patch for led support was very helpful
34 * Sam Lin - GPS support
35 */
36
37 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/init.h>
42 #include <linux/types.h>
43 #include <linux/err.h>
44 #include <linux/proc_fs.h>
45 #include <linux/backlight.h>
46 #include <linux/fb.h>
47 #include <linux/leds.h>
48 #include <linux/platform_device.h>
49 #include <linux/uaccess.h>
50 #include <linux/input.h>
51 #include <linux/input/sparse-keymap.h>
52 #include <linux/input-polldev.h>
53 #include <linux/rfkill.h>
54 #include <linux/slab.h>
55 #include <linux/dmi.h>
56 #include <acpi/acpi_drivers.h>
57 #include <acpi/acpi_bus.h>
58
59 #define ASUS_LAPTOP_VERSION "0.42"
60
61 #define ASUS_LAPTOP_NAME "Asus Laptop Support"
62 #define ASUS_LAPTOP_CLASS "hotkey"
63 #define ASUS_LAPTOP_DEVICE_NAME "Hotkey"
64 #define ASUS_LAPTOP_FILE KBUILD_MODNAME
65 #define ASUS_LAPTOP_PREFIX "\\_SB.ATKD."
66
67 MODULE_AUTHOR("Julien Lerouge, Karol Kozimor, Corentin Chary");
68 MODULE_DESCRIPTION(ASUS_LAPTOP_NAME);
69 MODULE_LICENSE("GPL");
70
71 /*
72 * WAPF defines the behavior of the Fn+Fx wlan key
73 * The significance of values is yet to be found, but
74 * most of the time:
75 * Bit | Bluetooth | WLAN
76 * 0 | Hardware | Hardware
77 * 1 | Hardware | Software
78 * 4 | Software | Software
79 */
80 static uint wapf = 1;
81 module_param(wapf, uint, 0444);
82 MODULE_PARM_DESC(wapf, "WAPF value");
83
84 static char *wled_type = "unknown";
85 static char *bled_type = "unknown";
86
87 module_param(wled_type, charp, 0444);
88 MODULE_PARM_DESC(wled_type, "Set the wled type on boot "
89 "(unknown, led or rfkill). "
90 "default is unknown");
91
92 module_param(bled_type, charp, 0444);
93 MODULE_PARM_DESC(bled_type, "Set the bled type on boot "
94 "(unknown, led or rfkill). "
95 "default is unknown");
96
97 static int wlan_status = 1;
98 static int bluetooth_status = 1;
99 static int wimax_status = -1;
100 static int wwan_status = -1;
101 static int als_status;
102
103 module_param(wlan_status, int, 0444);
104 MODULE_PARM_DESC(wlan_status, "Set the wireless status on boot "
105 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
106 "default is -1");
107
108 module_param(bluetooth_status, int, 0444);
109 MODULE_PARM_DESC(bluetooth_status, "Set the wireless status on boot "
110 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
111 "default is -1");
112
113 module_param(wimax_status, int, 0444);
114 MODULE_PARM_DESC(wimax_status, "Set the wireless status on boot "
115 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
116 "default is -1");
117
118 module_param(wwan_status, int, 0444);
119 MODULE_PARM_DESC(wwan_status, "Set the wireless status on boot "
120 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
121 "default is -1");
122
123 module_param(als_status, int, 0444);
124 MODULE_PARM_DESC(als_status, "Set the ALS status on boot "
125 "(0 = disabled, 1 = enabled). "
126 "default is 0");
127
128 /*
129 * Some events we use, same for all Asus
130 */
131 #define ATKD_BR_UP 0x10 /* (event & ~ATKD_BR_UP) = brightness level */
132 #define ATKD_BR_DOWN 0x20 /* (event & ~ATKD_BR_DOWN) = britghness level */
133 #define ATKD_BR_MIN ATKD_BR_UP
134 #define ATKD_BR_MAX (ATKD_BR_DOWN | 0xF) /* 0x2f */
135 #define ATKD_LCD_ON 0x33
136 #define ATKD_LCD_OFF 0x34
137
138 /*
139 * Known bits returned by \_SB.ATKD.HWRS
140 */
141 #define WL_HWRS 0x80
142 #define BT_HWRS 0x100
143
144 /*
145 * Flags for hotk status
146 * WL_ON and BT_ON are also used for wireless_status()
147 */
148 #define WL_RSTS 0x01 /* internal Wifi */
149 #define BT_RSTS 0x02 /* internal Bluetooth */
150 #define WM_RSTS 0x08 /* internal wimax */
151 #define WW_RSTS 0x20 /* internal wwan */
152
153 /* WLED and BLED type */
154 #define TYPE_UNKNOWN 0
155 #define TYPE_LED 1
156 #define TYPE_RFKILL 2
157
158 /* LED */
159 #define METHOD_MLED "MLED"
160 #define METHOD_TLED "TLED"
161 #define METHOD_RLED "RLED" /* W1JC */
162 #define METHOD_PLED "PLED" /* A7J */
163 #define METHOD_GLED "GLED" /* G1, G2 (probably) */
164
165 /* LEDD */
166 #define METHOD_LEDD "SLCM"
167
168 /*
169 * Bluetooth and WLAN
170 * WLED and BLED are not handled like other XLED, because in some dsdt
171 * they also control the WLAN/Bluetooth device.
172 */
173 #define METHOD_WLAN "WLED"
174 #define METHOD_BLUETOOTH "BLED"
175
176 /* WWAN and WIMAX */
177 #define METHOD_WWAN "GSMC"
178 #define METHOD_WIMAX "WMXC"
179
180 #define METHOD_WL_STATUS "RSTS"
181
182 /* Brightness */
183 #define METHOD_BRIGHTNESS_SET "SPLV"
184 #define METHOD_BRIGHTNESS_GET "GPLV"
185
186 /* Display */
187 #define METHOD_SWITCH_DISPLAY "SDSP"
188
189 #define METHOD_ALS_CONTROL "ALSC" /* Z71A Z71V */
190 #define METHOD_ALS_LEVEL "ALSL" /* Z71A Z71V */
191
192 /* GPS */
193 /* R2H use different handle for GPS on/off */
194 #define METHOD_GPS_ON "SDON"
195 #define METHOD_GPS_OFF "SDOF"
196 #define METHOD_GPS_STATUS "GPST"
197
198 /* Keyboard light */
199 #define METHOD_KBD_LIGHT_SET "SLKB"
200 #define METHOD_KBD_LIGHT_GET "GLKB"
201
202 /* For Pegatron Lucid tablet */
203 #define DEVICE_NAME_PEGA "Lucid"
204
205 #define METHOD_PEGA_ENABLE "ENPR"
206 #define METHOD_PEGA_DISABLE "DAPR"
207 #define PEGA_WLAN 0x00
208 #define PEGA_BLUETOOTH 0x01
209 #define PEGA_WWAN 0x02
210 #define PEGA_ALS 0x04
211 #define PEGA_ALS_POWER 0x05
212
213 #define METHOD_PEGA_READ "RDLN"
214 #define PEGA_READ_ALS_H 0x02
215 #define PEGA_READ_ALS_L 0x03
216
217 #define PEGA_ACCEL_NAME "pega_accel"
218 #define PEGA_ACCEL_DESC "Pegatron Lucid Tablet Accelerometer"
219 #define METHOD_XLRX "XLRX"
220 #define METHOD_XLRY "XLRY"
221 #define METHOD_XLRZ "XLRZ"
222 #define PEGA_ACC_CLAMP 512 /* 1G accel is reported as ~256, so clamp to 2G */
223 #define PEGA_ACC_RETRIES 3
224
225 /*
226 * Define a specific led structure to keep the main structure clean
227 */
228 struct asus_led {
229 int wk;
230 struct work_struct work;
231 struct led_classdev led;
232 struct asus_laptop *asus;
233 const char *method;
234 };
235
236 /*
237 * Same thing for rfkill
238 */
239 struct asus_rfkill {
240 /* type of control. Maps to PEGA_* values or *_RSTS */
241 int control_id;
242 struct rfkill *rfkill;
243 struct asus_laptop *asus;
244 };
245
246 /*
247 * This is the main structure, we can use it to store anything interesting
248 * about the hotk device
249 */
250 struct asus_laptop {
251 char *name; /* laptop name */
252
253 struct acpi_table_header *dsdt_info;
254 struct platform_device *platform_device;
255 struct acpi_device *device; /* the device we are in */
256 struct backlight_device *backlight_device;
257
258 struct input_dev *inputdev;
259 struct key_entry *keymap;
260 struct input_polled_dev *pega_accel_poll;
261
262 struct asus_led wled;
263 struct asus_led bled;
264 struct asus_led mled;
265 struct asus_led tled;
266 struct asus_led rled;
267 struct asus_led pled;
268 struct asus_led gled;
269 struct asus_led kled;
270 struct workqueue_struct *led_workqueue;
271
272 int wled_type;
273 int bled_type;
274 int wireless_status;
275 bool have_rsts;
276 bool is_pega_lucid;
277 bool pega_acc_live;
278 int pega_acc_x;
279 int pega_acc_y;
280 int pega_acc_z;
281
282 struct asus_rfkill wlan;
283 struct asus_rfkill bluetooth;
284 struct asus_rfkill wwan;
285 struct asus_rfkill wimax;
286 struct asus_rfkill gps;
287
288 acpi_handle handle; /* the handle of the hotk device */
289 u32 ledd_status; /* status of the LED display */
290 u8 light_level; /* light sensor level */
291 u8 light_switch; /* light sensor switch value */
292 u16 event_count[128]; /* count for each event TODO make this better */
293 };
294
295 static const struct key_entry asus_keymap[] = {
296 /* Lenovo SL Specific keycodes */
297 {KE_KEY, 0x02, { KEY_SCREENLOCK } },
298 {KE_KEY, 0x05, { KEY_WLAN } },
299 {KE_KEY, 0x08, { KEY_F13 } },
300 {KE_KEY, 0x09, { KEY_PROG2 } }, /* Dock */
301 {KE_KEY, 0x17, { KEY_ZOOM } },
302 {KE_KEY, 0x1f, { KEY_BATTERY } },
303 /* End of Lenovo SL Specific keycodes */
304 {KE_KEY, 0x30, { KEY_VOLUMEUP } },
305 {KE_KEY, 0x31, { KEY_VOLUMEDOWN } },
306 {KE_KEY, 0x32, { KEY_MUTE } },
307 {KE_KEY, 0x33, { KEY_SWITCHVIDEOMODE } },
308 {KE_KEY, 0x34, { KEY_SWITCHVIDEOMODE } },
309 {KE_KEY, 0x40, { KEY_PREVIOUSSONG } },
310 {KE_KEY, 0x41, { KEY_NEXTSONG } },
311 {KE_KEY, 0x43, { KEY_STOPCD } },
312 {KE_KEY, 0x45, { KEY_PLAYPAUSE } },
313 {KE_KEY, 0x4c, { KEY_MEDIA } },
314 {KE_KEY, 0x50, { KEY_EMAIL } },
315 {KE_KEY, 0x51, { KEY_WWW } },
316 {KE_KEY, 0x55, { KEY_CALC } },
317 {KE_KEY, 0x5C, { KEY_SCREENLOCK } }, /* Screenlock */
318 {KE_KEY, 0x5D, { KEY_WLAN } },
319 {KE_KEY, 0x5E, { KEY_WLAN } },
320 {KE_KEY, 0x5F, { KEY_WLAN } },
321 {KE_KEY, 0x60, { KEY_SWITCHVIDEOMODE } },
322 {KE_KEY, 0x61, { KEY_SWITCHVIDEOMODE } },
323 {KE_KEY, 0x62, { KEY_SWITCHVIDEOMODE } },
324 {KE_KEY, 0x63, { KEY_SWITCHVIDEOMODE } },
325 {KE_KEY, 0x6B, { KEY_F13 } }, /* Lock Touchpad */
326 {KE_KEY, 0x6C, { KEY_SLEEP } }, /* Suspend */
327 {KE_KEY, 0x6D, { KEY_SLEEP } }, /* Hibernate */
328 {KE_KEY, 0x7E, { KEY_BLUETOOTH } },
329 {KE_KEY, 0x7D, { KEY_BLUETOOTH } },
330 {KE_KEY, 0x82, { KEY_CAMERA } },
331 {KE_KEY, 0x88, { KEY_WLAN } },
332 {KE_KEY, 0x8A, { KEY_PROG1 } },
333 {KE_KEY, 0x95, { KEY_MEDIA } },
334 {KE_KEY, 0x99, { KEY_PHONE } },
335 {KE_KEY, 0xc4, { KEY_KBDILLUMUP } },
336 {KE_KEY, 0xc5, { KEY_KBDILLUMDOWN } },
337 {KE_KEY, 0xb5, { KEY_CALC } },
338 {KE_END, 0},
339 };
340
341
342 /*
343 * This function evaluates an ACPI method, given an int as parameter, the
344 * method is searched within the scope of the handle, can be NULL. The output
345 * of the method is written is output, which can also be NULL
346 *
347 * returns 0 if write is successful, -1 else.
348 */
349 static int write_acpi_int_ret(acpi_handle handle, const char *method, int val,
350 struct acpi_buffer *output)
351 {
352 struct acpi_object_list params; /* list of input parameters (an int) */
353 union acpi_object in_obj; /* the only param we use */
354 acpi_status status;
355
356 if (!handle)
357 return -1;
358
359 params.count = 1;
360 params.pointer = &in_obj;
361 in_obj.type = ACPI_TYPE_INTEGER;
362 in_obj.integer.value = val;
363
364 status = acpi_evaluate_object(handle, (char *)method, &params, output);
365 if (status == AE_OK)
366 return 0;
367 else
368 return -1;
369 }
370
371 static int write_acpi_int(acpi_handle handle, const char *method, int val)
372 {
373 return write_acpi_int_ret(handle, method, val, NULL);
374 }
375
376 static int acpi_check_handle(acpi_handle handle, const char *method,
377 acpi_handle *ret)
378 {
379 acpi_status status;
380
381 if (method == NULL)
382 return -ENODEV;
383
384 if (ret)
385 status = acpi_get_handle(handle, (char *)method,
386 ret);
387 else {
388 acpi_handle dummy;
389
390 status = acpi_get_handle(handle, (char *)method,
391 &dummy);
392 }
393
394 if (status != AE_OK) {
395 if (ret)
396 pr_warn("Error finding %s\n", method);
397 return -ENODEV;
398 }
399 return 0;
400 }
401
402 static bool asus_check_pega_lucid(struct asus_laptop *asus)
403 {
404 return !strcmp(asus->name, DEVICE_NAME_PEGA) &&
405 !acpi_check_handle(asus->handle, METHOD_PEGA_ENABLE, NULL) &&
406 !acpi_check_handle(asus->handle, METHOD_PEGA_DISABLE, NULL) &&
407 !acpi_check_handle(asus->handle, METHOD_PEGA_READ, NULL);
408 }
409
410 static int asus_pega_lucid_set(struct asus_laptop *asus, int unit, bool enable)
411 {
412 char *method = enable ? METHOD_PEGA_ENABLE : METHOD_PEGA_DISABLE;
413 return write_acpi_int(asus->handle, method, unit);
414 }
415
416 static int pega_acc_axis(struct asus_laptop *asus, int curr, char *method)
417 {
418 int i, delta;
419 unsigned long long val;
420 for (i = 0; i < PEGA_ACC_RETRIES; i++) {
421 acpi_evaluate_integer(asus->handle, method, NULL, &val);
422
423 /* The output is noisy. From reading the ASL
424 * dissassembly, timeout errors are returned with 1's
425 * in the high word, and the lack of locking around
426 * thei hi/lo byte reads means that a transition
427 * between (for example) -1 and 0 could be read as
428 * 0xff00 or 0x00ff. */
429 delta = abs(curr - (short)val);
430 if (delta < 128 && !(val & ~0xffff))
431 break;
432 }
433 return clamp_val((short)val, -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP);
434 }
435
436 static void pega_accel_poll(struct input_polled_dev *ipd)
437 {
438 struct device *parent = ipd->input->dev.parent;
439 struct asus_laptop *asus = dev_get_drvdata(parent);
440
441 /* In some cases, the very first call to poll causes a
442 * recursive fault under the polldev worker. This is
443 * apparently related to very early userspace access to the
444 * device, and perhaps a firmware bug. Fake the first report. */
445 if (!asus->pega_acc_live) {
446 asus->pega_acc_live = true;
447 input_report_abs(ipd->input, ABS_X, 0);
448 input_report_abs(ipd->input, ABS_Y, 0);
449 input_report_abs(ipd->input, ABS_Z, 0);
450 input_sync(ipd->input);
451 return;
452 }
453
454 asus->pega_acc_x = pega_acc_axis(asus, asus->pega_acc_x, METHOD_XLRX);
455 asus->pega_acc_y = pega_acc_axis(asus, asus->pega_acc_y, METHOD_XLRY);
456 asus->pega_acc_z = pega_acc_axis(asus, asus->pega_acc_z, METHOD_XLRZ);
457
458 /* Note transform, convert to "right/up/out" in the native
459 * landscape orientation (i.e. the vector is the direction of
460 * "real up" in the device's cartiesian coordinates). */
461 input_report_abs(ipd->input, ABS_X, -asus->pega_acc_x);
462 input_report_abs(ipd->input, ABS_Y, -asus->pega_acc_y);
463 input_report_abs(ipd->input, ABS_Z, asus->pega_acc_z);
464 input_sync(ipd->input);
465 }
466
467 static void pega_accel_exit(struct asus_laptop *asus)
468 {
469 if (asus->pega_accel_poll) {
470 input_unregister_polled_device(asus->pega_accel_poll);
471 input_free_polled_device(asus->pega_accel_poll);
472 }
473 asus->pega_accel_poll = NULL;
474 }
475
476 static int pega_accel_init(struct asus_laptop *asus)
477 {
478 int err;
479 struct input_polled_dev *ipd;
480
481 if (!asus->is_pega_lucid)
482 return -ENODEV;
483
484 if (acpi_check_handle(asus->handle, METHOD_XLRX, NULL) ||
485 acpi_check_handle(asus->handle, METHOD_XLRY, NULL) ||
486 acpi_check_handle(asus->handle, METHOD_XLRZ, NULL))
487 return -ENODEV;
488
489 ipd = input_allocate_polled_device();
490 if (!ipd)
491 return -ENOMEM;
492
493 ipd->poll = pega_accel_poll;
494 ipd->poll_interval = 125;
495 ipd->poll_interval_min = 50;
496 ipd->poll_interval_max = 2000;
497
498 ipd->input->name = PEGA_ACCEL_DESC;
499 ipd->input->phys = PEGA_ACCEL_NAME "/input0";
500 ipd->input->dev.parent = &asus->platform_device->dev;
501 ipd->input->id.bustype = BUS_HOST;
502
503 set_bit(EV_ABS, ipd->input->evbit);
504 input_set_abs_params(ipd->input, ABS_X,
505 -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
506 input_set_abs_params(ipd->input, ABS_Y,
507 -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
508 input_set_abs_params(ipd->input, ABS_Z,
509 -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
510
511 err = input_register_polled_device(ipd);
512 if (err)
513 goto exit;
514
515 asus->pega_accel_poll = ipd;
516 return 0;
517
518 exit:
519 input_free_polled_device(ipd);
520 return err;
521 }
522
523 /* Generic LED function */
524 static int asus_led_set(struct asus_laptop *asus, const char *method,
525 int value)
526 {
527 if (!strcmp(method, METHOD_MLED))
528 value = !value;
529 else if (!strcmp(method, METHOD_GLED))
530 value = !value + 1;
531 else
532 value = !!value;
533
534 return write_acpi_int(asus->handle, method, value);
535 }
536
537 /*
538 * LEDs
539 */
540 /* /sys/class/led handlers */
541 static void asus_led_cdev_set(struct led_classdev *led_cdev,
542 enum led_brightness value)
543 {
544 struct asus_led *led = container_of(led_cdev, struct asus_led, led);
545 struct asus_laptop *asus = led->asus;
546
547 led->wk = !!value;
548 queue_work(asus->led_workqueue, &led->work);
549 }
550
551 static void asus_led_cdev_update(struct work_struct *work)
552 {
553 struct asus_led *led = container_of(work, struct asus_led, work);
554 struct asus_laptop *asus = led->asus;
555
556 asus_led_set(asus, led->method, led->wk);
557 }
558
559 static enum led_brightness asus_led_cdev_get(struct led_classdev *led_cdev)
560 {
561 return led_cdev->brightness;
562 }
563
564 /*
565 * Keyboard backlight (also a LED)
566 */
567 static int asus_kled_lvl(struct asus_laptop *asus)
568 {
569 unsigned long long kblv;
570 struct acpi_object_list params;
571 union acpi_object in_obj;
572 acpi_status rv;
573
574 params.count = 1;
575 params.pointer = &in_obj;
576 in_obj.type = ACPI_TYPE_INTEGER;
577 in_obj.integer.value = 2;
578
579 rv = acpi_evaluate_integer(asus->handle, METHOD_KBD_LIGHT_GET,
580 &params, &kblv);
581 if (ACPI_FAILURE(rv)) {
582 pr_warn("Error reading kled level\n");
583 return -ENODEV;
584 }
585 return kblv;
586 }
587
588 static int asus_kled_set(struct asus_laptop *asus, int kblv)
589 {
590 if (kblv > 0)
591 kblv = (1 << 7) | (kblv & 0x7F);
592 else
593 kblv = 0;
594
595 if (write_acpi_int(asus->handle, METHOD_KBD_LIGHT_SET, kblv)) {
596 pr_warn("Keyboard LED display write failed\n");
597 return -EINVAL;
598 }
599 return 0;
600 }
601
602 static void asus_kled_cdev_set(struct led_classdev *led_cdev,
603 enum led_brightness value)
604 {
605 struct asus_led *led = container_of(led_cdev, struct asus_led, led);
606 struct asus_laptop *asus = led->asus;
607
608 led->wk = value;
609 queue_work(asus->led_workqueue, &led->work);
610 }
611
612 static void asus_kled_cdev_update(struct work_struct *work)
613 {
614 struct asus_led *led = container_of(work, struct asus_led, work);
615 struct asus_laptop *asus = led->asus;
616
617 asus_kled_set(asus, led->wk);
618 }
619
620 static enum led_brightness asus_kled_cdev_get(struct led_classdev *led_cdev)
621 {
622 struct asus_led *led = container_of(led_cdev, struct asus_led, led);
623 struct asus_laptop *asus = led->asus;
624
625 return asus_kled_lvl(asus);
626 }
627
628 static void asus_led_exit(struct asus_laptop *asus)
629 {
630 if (!IS_ERR_OR_NULL(asus->wled.led.dev))
631 led_classdev_unregister(&asus->wled.led);
632 if (!IS_ERR_OR_NULL(asus->bled.led.dev))
633 led_classdev_unregister(&asus->bled.led);
634 if (!IS_ERR_OR_NULL(asus->mled.led.dev))
635 led_classdev_unregister(&asus->mled.led);
636 if (!IS_ERR_OR_NULL(asus->tled.led.dev))
637 led_classdev_unregister(&asus->tled.led);
638 if (!IS_ERR_OR_NULL(asus->pled.led.dev))
639 led_classdev_unregister(&asus->pled.led);
640 if (!IS_ERR_OR_NULL(asus->rled.led.dev))
641 led_classdev_unregister(&asus->rled.led);
642 if (!IS_ERR_OR_NULL(asus->gled.led.dev))
643 led_classdev_unregister(&asus->gled.led);
644 if (!IS_ERR_OR_NULL(asus->kled.led.dev))
645 led_classdev_unregister(&asus->kled.led);
646 if (asus->led_workqueue) {
647 destroy_workqueue(asus->led_workqueue);
648 asus->led_workqueue = NULL;
649 }
650 }
651
652 /* Ugly macro, need to fix that later */
653 static int asus_led_register(struct asus_laptop *asus,
654 struct asus_led *led,
655 const char *name, const char *method)
656 {
657 struct led_classdev *led_cdev = &led->led;
658
659 if (!method || acpi_check_handle(asus->handle, method, NULL))
660 return 0; /* Led not present */
661
662 led->asus = asus;
663 led->method = method;
664
665 INIT_WORK(&led->work, asus_led_cdev_update);
666 led_cdev->name = name;
667 led_cdev->brightness_set = asus_led_cdev_set;
668 led_cdev->brightness_get = asus_led_cdev_get;
669 led_cdev->max_brightness = 1;
670 return led_classdev_register(&asus->platform_device->dev, led_cdev);
671 }
672
673 static int asus_led_init(struct asus_laptop *asus)
674 {
675 int r = 0;
676
677 /*
678 * The Pegatron Lucid has no physical leds, but all methods are
679 * available in the DSDT...
680 */
681 if (asus->is_pega_lucid)
682 return 0;
683
684 /*
685 * Functions that actually update the LED's are called from a
686 * workqueue. By doing this as separate work rather than when the LED
687 * subsystem asks, we avoid messing with the Asus ACPI stuff during a
688 * potentially bad time, such as a timer interrupt.
689 */
690 asus->led_workqueue = create_singlethread_workqueue("led_workqueue");
691 if (!asus->led_workqueue)
692 return -ENOMEM;
693
694 if (asus->wled_type == TYPE_LED)
695 r = asus_led_register(asus, &asus->wled, "asus::wlan",
696 METHOD_WLAN);
697 if (r)
698 goto error;
699 if (asus->bled_type == TYPE_LED)
700 r = asus_led_register(asus, &asus->bled, "asus::bluetooth",
701 METHOD_BLUETOOTH);
702 if (r)
703 goto error;
704 r = asus_led_register(asus, &asus->mled, "asus::mail", METHOD_MLED);
705 if (r)
706 goto error;
707 r = asus_led_register(asus, &asus->tled, "asus::touchpad", METHOD_TLED);
708 if (r)
709 goto error;
710 r = asus_led_register(asus, &asus->rled, "asus::record", METHOD_RLED);
711 if (r)
712 goto error;
713 r = asus_led_register(asus, &asus->pled, "asus::phone", METHOD_PLED);
714 if (r)
715 goto error;
716 r = asus_led_register(asus, &asus->gled, "asus::gaming", METHOD_GLED);
717 if (r)
718 goto error;
719 if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL) &&
720 !acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_GET, NULL)) {
721 struct asus_led *led = &asus->kled;
722 struct led_classdev *cdev = &led->led;
723
724 led->asus = asus;
725
726 INIT_WORK(&led->work, asus_kled_cdev_update);
727 cdev->name = "asus::kbd_backlight";
728 cdev->brightness_set = asus_kled_cdev_set;
729 cdev->brightness_get = asus_kled_cdev_get;
730 cdev->max_brightness = 3;
731 r = led_classdev_register(&asus->platform_device->dev, cdev);
732 }
733 error:
734 if (r)
735 asus_led_exit(asus);
736 return r;
737 }
738
739 /*
740 * Backlight device
741 */
742 static int asus_read_brightness(struct backlight_device *bd)
743 {
744 struct asus_laptop *asus = bl_get_data(bd);
745 unsigned long long value;
746 acpi_status rv = AE_OK;
747
748 rv = acpi_evaluate_integer(asus->handle, METHOD_BRIGHTNESS_GET,
749 NULL, &value);
750 if (ACPI_FAILURE(rv))
751 pr_warn("Error reading brightness\n");
752
753 return value;
754 }
755
756 static int asus_set_brightness(struct backlight_device *bd, int value)
757 {
758 struct asus_laptop *asus = bl_get_data(bd);
759
760 if (write_acpi_int(asus->handle, METHOD_BRIGHTNESS_SET, value)) {
761 pr_warn("Error changing brightness\n");
762 return -EIO;
763 }
764 return 0;
765 }
766
767 static int update_bl_status(struct backlight_device *bd)
768 {
769 int value = bd->props.brightness;
770
771 return asus_set_brightness(bd, value);
772 }
773
774 static const struct backlight_ops asusbl_ops = {
775 .get_brightness = asus_read_brightness,
776 .update_status = update_bl_status,
777 };
778
779 static int asus_backlight_notify(struct asus_laptop *asus)
780 {
781 struct backlight_device *bd = asus->backlight_device;
782 int old = bd->props.brightness;
783
784 backlight_force_update(bd, BACKLIGHT_UPDATE_HOTKEY);
785
786 return old;
787 }
788
789 static int asus_backlight_init(struct asus_laptop *asus)
790 {
791 struct backlight_device *bd;
792 struct backlight_properties props;
793
794 if (acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_GET, NULL) ||
795 acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_SET, NULL))
796 return 0;
797
798 memset(&props, 0, sizeof(struct backlight_properties));
799 props.max_brightness = 15;
800 props.type = BACKLIGHT_PLATFORM;
801
802 bd = backlight_device_register(ASUS_LAPTOP_FILE,
803 &asus->platform_device->dev, asus,
804 &asusbl_ops, &props);
805 if (IS_ERR(bd)) {
806 pr_err("Could not register asus backlight device\n");
807 asus->backlight_device = NULL;
808 return PTR_ERR(bd);
809 }
810
811 asus->backlight_device = bd;
812 bd->props.brightness = asus_read_brightness(bd);
813 bd->props.power = FB_BLANK_UNBLANK;
814 backlight_update_status(bd);
815 return 0;
816 }
817
818 static void asus_backlight_exit(struct asus_laptop *asus)
819 {
820 if (asus->backlight_device)
821 backlight_device_unregister(asus->backlight_device);
822 asus->backlight_device = NULL;
823 }
824
825 /*
826 * Platform device handlers
827 */
828
829 /*
830 * We write our info in page, we begin at offset off and cannot write more
831 * than count bytes. We set eof to 1 if we handle those 2 values. We return the
832 * number of bytes written in page
833 */
834 static ssize_t show_infos(struct device *dev,
835 struct device_attribute *attr, char *page)
836 {
837 struct asus_laptop *asus = dev_get_drvdata(dev);
838 int len = 0;
839 unsigned long long temp;
840 char buf[16]; /* enough for all info */
841 acpi_status rv = AE_OK;
842
843 /*
844 * We use the easy way, we don't care of off and count,
845 * so we don't set eof to 1
846 */
847
848 len += sprintf(page, ASUS_LAPTOP_NAME " " ASUS_LAPTOP_VERSION "\n");
849 len += sprintf(page + len, "Model reference : %s\n", asus->name);
850 /*
851 * The SFUN method probably allows the original driver to get the list
852 * of features supported by a given model. For now, 0x0100 or 0x0800
853 * bit signifies that the laptop is equipped with a Wi-Fi MiniPCI card.
854 * The significance of others is yet to be found.
855 */
856 rv = acpi_evaluate_integer(asus->handle, "SFUN", NULL, &temp);
857 if (!ACPI_FAILURE(rv))
858 len += sprintf(page + len, "SFUN value : %#x\n",
859 (uint) temp);
860 /*
861 * The HWRS method return informations about the hardware.
862 * 0x80 bit is for WLAN, 0x100 for Bluetooth.
863 * The significance of others is yet to be found.
864 * If we don't find the method, we assume the device are present.
865 */
866 rv = acpi_evaluate_integer(asus->handle, "HWRS", NULL, &temp);
867 if (!ACPI_FAILURE(rv))
868 len += sprintf(page + len, "HWRS value : %#x\n",
869 (uint) temp);
870 /*
871 * Another value for userspace: the ASYM method returns 0x02 for
872 * battery low and 0x04 for battery critical, its readings tend to be
873 * more accurate than those provided by _BST.
874 * Note: since not all the laptops provide this method, errors are
875 * silently ignored.
876 */
877 rv = acpi_evaluate_integer(asus->handle, "ASYM", NULL, &temp);
878 if (!ACPI_FAILURE(rv))
879 len += sprintf(page + len, "ASYM value : %#x\n",
880 (uint) temp);
881 if (asus->dsdt_info) {
882 snprintf(buf, 16, "%d", asus->dsdt_info->length);
883 len += sprintf(page + len, "DSDT length : %s\n", buf);
884 snprintf(buf, 16, "%d", asus->dsdt_info->checksum);
885 len += sprintf(page + len, "DSDT checksum : %s\n", buf);
886 snprintf(buf, 16, "%d", asus->dsdt_info->revision);
887 len += sprintf(page + len, "DSDT revision : %s\n", buf);
888 snprintf(buf, 7, "%s", asus->dsdt_info->oem_id);
889 len += sprintf(page + len, "OEM id : %s\n", buf);
890 snprintf(buf, 9, "%s", asus->dsdt_info->oem_table_id);
891 len += sprintf(page + len, "OEM table id : %s\n", buf);
892 snprintf(buf, 16, "%x", asus->dsdt_info->oem_revision);
893 len += sprintf(page + len, "OEM revision : 0x%s\n", buf);
894 snprintf(buf, 5, "%s", asus->dsdt_info->asl_compiler_id);
895 len += sprintf(page + len, "ASL comp vendor id : %s\n", buf);
896 snprintf(buf, 16, "%x", asus->dsdt_info->asl_compiler_revision);
897 len += sprintf(page + len, "ASL comp revision : 0x%s\n", buf);
898 }
899
900 return len;
901 }
902
903 static int parse_arg(const char *buf, unsigned long count, int *val)
904 {
905 if (!count)
906 return 0;
907 if (count > 31)
908 return -EINVAL;
909 if (sscanf(buf, "%i", val) != 1)
910 return -EINVAL;
911 return count;
912 }
913
914 static ssize_t sysfs_acpi_set(struct asus_laptop *asus,
915 const char *buf, size_t count,
916 const char *method)
917 {
918 int rv, value;
919 int out = 0;
920
921 rv = parse_arg(buf, count, &value);
922 if (rv > 0)
923 out = value ? 1 : 0;
924
925 if (write_acpi_int(asus->handle, method, value))
926 return -ENODEV;
927 return rv;
928 }
929
930 /*
931 * LEDD display
932 */
933 static ssize_t show_ledd(struct device *dev,
934 struct device_attribute *attr, char *buf)
935 {
936 struct asus_laptop *asus = dev_get_drvdata(dev);
937
938 return sprintf(buf, "0x%08x\n", asus->ledd_status);
939 }
940
941 static ssize_t store_ledd(struct device *dev, struct device_attribute *attr,
942 const char *buf, size_t count)
943 {
944 struct asus_laptop *asus = dev_get_drvdata(dev);
945 int rv, value;
946
947 rv = parse_arg(buf, count, &value);
948 if (rv > 0) {
949 if (write_acpi_int(asus->handle, METHOD_LEDD, value)) {
950 pr_warn("LED display write failed\n");
951 return -ENODEV;
952 }
953 asus->ledd_status = (u32) value;
954 }
955 return rv;
956 }
957
958 /*
959 * Wireless
960 */
961 static int asus_wireless_status(struct asus_laptop *asus, int mask)
962 {
963 unsigned long long status;
964 acpi_status rv = AE_OK;
965
966 if (!asus->have_rsts)
967 return (asus->wireless_status & mask) ? 1 : 0;
968
969 rv = acpi_evaluate_integer(asus->handle, METHOD_WL_STATUS,
970 NULL, &status);
971 if (ACPI_FAILURE(rv)) {
972 pr_warn("Error reading Wireless status\n");
973 return -EINVAL;
974 }
975 return !!(status & mask);
976 }
977
978 /*
979 * WLAN
980 */
981 static int asus_wlan_set(struct asus_laptop *asus, int status)
982 {
983 if (write_acpi_int(asus->handle, METHOD_WLAN, !!status)) {
984 pr_warn("Error setting wlan status to %d\n", status);
985 return -EIO;
986 }
987 return 0;
988 }
989
990 static ssize_t show_wlan(struct device *dev,
991 struct device_attribute *attr, char *buf)
992 {
993 struct asus_laptop *asus = dev_get_drvdata(dev);
994
995 return sprintf(buf, "%d\n", asus_wireless_status(asus, WL_RSTS));
996 }
997
998 static ssize_t store_wlan(struct device *dev, struct device_attribute *attr,
999 const char *buf, size_t count)
1000 {
1001 struct asus_laptop *asus = dev_get_drvdata(dev);
1002
1003 return sysfs_acpi_set(asus, buf, count, METHOD_WLAN);
1004 }
1005
1006 /*e
1007 * Bluetooth
1008 */
1009 static int asus_bluetooth_set(struct asus_laptop *asus, int status)
1010 {
1011 if (write_acpi_int(asus->handle, METHOD_BLUETOOTH, !!status)) {
1012 pr_warn("Error setting bluetooth status to %d\n", status);
1013 return -EIO;
1014 }
1015 return 0;
1016 }
1017
1018 static ssize_t show_bluetooth(struct device *dev,
1019 struct device_attribute *attr, char *buf)
1020 {
1021 struct asus_laptop *asus = dev_get_drvdata(dev);
1022
1023 return sprintf(buf, "%d\n", asus_wireless_status(asus, BT_RSTS));
1024 }
1025
1026 static ssize_t store_bluetooth(struct device *dev,
1027 struct device_attribute *attr, const char *buf,
1028 size_t count)
1029 {
1030 struct asus_laptop *asus = dev_get_drvdata(dev);
1031
1032 return sysfs_acpi_set(asus, buf, count, METHOD_BLUETOOTH);
1033 }
1034
1035 /*
1036 * Wimax
1037 */
1038 static int asus_wimax_set(struct asus_laptop *asus, int status)
1039 {
1040 if (write_acpi_int(asus->handle, METHOD_WIMAX, !!status)) {
1041 pr_warn("Error setting wimax status to %d\n", status);
1042 return -EIO;
1043 }
1044 return 0;
1045 }
1046
1047 static ssize_t show_wimax(struct device *dev,
1048 struct device_attribute *attr, char *buf)
1049 {
1050 struct asus_laptop *asus = dev_get_drvdata(dev);
1051
1052 return sprintf(buf, "%d\n", asus_wireless_status(asus, WM_RSTS));
1053 }
1054
1055 static ssize_t store_wimax(struct device *dev,
1056 struct device_attribute *attr, const char *buf,
1057 size_t count)
1058 {
1059 struct asus_laptop *asus = dev_get_drvdata(dev);
1060
1061 return sysfs_acpi_set(asus, buf, count, METHOD_WIMAX);
1062 }
1063
1064 /*
1065 * Wwan
1066 */
1067 static int asus_wwan_set(struct asus_laptop *asus, int status)
1068 {
1069 if (write_acpi_int(asus->handle, METHOD_WWAN, !!status)) {
1070 pr_warn("Error setting wwan status to %d\n", status);
1071 return -EIO;
1072 }
1073 return 0;
1074 }
1075
1076 static ssize_t show_wwan(struct device *dev,
1077 struct device_attribute *attr, char *buf)
1078 {
1079 struct asus_laptop *asus = dev_get_drvdata(dev);
1080
1081 return sprintf(buf, "%d\n", asus_wireless_status(asus, WW_RSTS));
1082 }
1083
1084 static ssize_t store_wwan(struct device *dev,
1085 struct device_attribute *attr, const char *buf,
1086 size_t count)
1087 {
1088 struct asus_laptop *asus = dev_get_drvdata(dev);
1089
1090 return sysfs_acpi_set(asus, buf, count, METHOD_WWAN);
1091 }
1092
1093 /*
1094 * Display
1095 */
1096 static void asus_set_display(struct asus_laptop *asus, int value)
1097 {
1098 /* no sanity check needed for now */
1099 if (write_acpi_int(asus->handle, METHOD_SWITCH_DISPLAY, value))
1100 pr_warn("Error setting display\n");
1101 return;
1102 }
1103
1104 /*
1105 * Experimental support for display switching. As of now: 1 should activate
1106 * the LCD output, 2 should do for CRT, 4 for TV-Out and 8 for DVI.
1107 * Any combination (bitwise) of these will suffice. I never actually tested 4
1108 * displays hooked up simultaneously, so be warned. See the acpi4asus README
1109 * for more info.
1110 */
1111 static ssize_t store_disp(struct device *dev, struct device_attribute *attr,
1112 const char *buf, size_t count)
1113 {
1114 struct asus_laptop *asus = dev_get_drvdata(dev);
1115 int rv, value;
1116
1117 rv = parse_arg(buf, count, &value);
1118 if (rv > 0)
1119 asus_set_display(asus, value);
1120 return rv;
1121 }
1122
1123 /*
1124 * Light Sens
1125 */
1126 static void asus_als_switch(struct asus_laptop *asus, int value)
1127 {
1128 int ret;
1129
1130 if (asus->is_pega_lucid) {
1131 ret = asus_pega_lucid_set(asus, PEGA_ALS, value);
1132 if (!ret)
1133 ret = asus_pega_lucid_set(asus, PEGA_ALS_POWER, value);
1134 } else {
1135 ret = write_acpi_int(asus->handle, METHOD_ALS_CONTROL, value);
1136 }
1137 if (ret)
1138 pr_warning("Error setting light sensor switch\n");
1139
1140 asus->light_switch = value;
1141 }
1142
1143 static ssize_t show_lssw(struct device *dev,
1144 struct device_attribute *attr, char *buf)
1145 {
1146 struct asus_laptop *asus = dev_get_drvdata(dev);
1147
1148 return sprintf(buf, "%d\n", asus->light_switch);
1149 }
1150
1151 static ssize_t store_lssw(struct device *dev, struct device_attribute *attr,
1152 const char *buf, size_t count)
1153 {
1154 struct asus_laptop *asus = dev_get_drvdata(dev);
1155 int rv, value;
1156
1157 rv = parse_arg(buf, count, &value);
1158 if (rv > 0)
1159 asus_als_switch(asus, value ? 1 : 0);
1160
1161 return rv;
1162 }
1163
1164 static void asus_als_level(struct asus_laptop *asus, int value)
1165 {
1166 if (write_acpi_int(asus->handle, METHOD_ALS_LEVEL, value))
1167 pr_warn("Error setting light sensor level\n");
1168 asus->light_level = value;
1169 }
1170
1171 static ssize_t show_lslvl(struct device *dev,
1172 struct device_attribute *attr, char *buf)
1173 {
1174 struct asus_laptop *asus = dev_get_drvdata(dev);
1175
1176 return sprintf(buf, "%d\n", asus->light_level);
1177 }
1178
1179 static ssize_t store_lslvl(struct device *dev, struct device_attribute *attr,
1180 const char *buf, size_t count)
1181 {
1182 struct asus_laptop *asus = dev_get_drvdata(dev);
1183 int rv, value;
1184
1185 rv = parse_arg(buf, count, &value);
1186 if (rv > 0) {
1187 value = (0 < value) ? ((15 < value) ? 15 : value) : 0;
1188 /* 0 <= value <= 15 */
1189 asus_als_level(asus, value);
1190 }
1191
1192 return rv;
1193 }
1194
1195 static int pega_int_read(struct asus_laptop *asus, int arg, int *result)
1196 {
1197 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1198 int err = write_acpi_int_ret(asus->handle, METHOD_PEGA_READ, arg,
1199 &buffer);
1200 if (!err) {
1201 union acpi_object *obj = buffer.pointer;
1202 if (obj && obj->type == ACPI_TYPE_INTEGER)
1203 *result = obj->integer.value;
1204 else
1205 err = -EIO;
1206 }
1207 return err;
1208 }
1209
1210 static ssize_t show_lsvalue(struct device *dev,
1211 struct device_attribute *attr, char *buf)
1212 {
1213 struct asus_laptop *asus = dev_get_drvdata(dev);
1214 int err, hi, lo;
1215
1216 err = pega_int_read(asus, PEGA_READ_ALS_H, &hi);
1217 if (!err)
1218 err = pega_int_read(asus, PEGA_READ_ALS_L, &lo);
1219 if (!err)
1220 return sprintf(buf, "%d\n", 10 * hi + lo);
1221 return err;
1222 }
1223
1224 /*
1225 * GPS
1226 */
1227 static int asus_gps_status(struct asus_laptop *asus)
1228 {
1229 unsigned long long status;
1230 acpi_status rv = AE_OK;
1231
1232 rv = acpi_evaluate_integer(asus->handle, METHOD_GPS_STATUS,
1233 NULL, &status);
1234 if (ACPI_FAILURE(rv)) {
1235 pr_warn("Error reading GPS status\n");
1236 return -ENODEV;
1237 }
1238 return !!status;
1239 }
1240
1241 static int asus_gps_switch(struct asus_laptop *asus, int status)
1242 {
1243 const char *meth = status ? METHOD_GPS_ON : METHOD_GPS_OFF;
1244
1245 if (write_acpi_int(asus->handle, meth, 0x02))
1246 return -ENODEV;
1247 return 0;
1248 }
1249
1250 static ssize_t show_gps(struct device *dev,
1251 struct device_attribute *attr, char *buf)
1252 {
1253 struct asus_laptop *asus = dev_get_drvdata(dev);
1254
1255 return sprintf(buf, "%d\n", asus_gps_status(asus));
1256 }
1257
1258 static ssize_t store_gps(struct device *dev, struct device_attribute *attr,
1259 const char *buf, size_t count)
1260 {
1261 struct asus_laptop *asus = dev_get_drvdata(dev);
1262 int rv, value;
1263 int ret;
1264
1265 rv = parse_arg(buf, count, &value);
1266 if (rv <= 0)
1267 return -EINVAL;
1268 ret = asus_gps_switch(asus, !!value);
1269 if (ret)
1270 return ret;
1271 rfkill_set_sw_state(asus->gps.rfkill, !value);
1272 return rv;
1273 }
1274
1275 /*
1276 * rfkill
1277 */
1278 static int asus_gps_rfkill_set(void *data, bool blocked)
1279 {
1280 struct asus_laptop *asus = data;
1281
1282 return asus_gps_switch(asus, !blocked);
1283 }
1284
1285 static const struct rfkill_ops asus_gps_rfkill_ops = {
1286 .set_block = asus_gps_rfkill_set,
1287 };
1288
1289 static int asus_rfkill_set(void *data, bool blocked)
1290 {
1291 struct asus_rfkill *rfk = data;
1292 struct asus_laptop *asus = rfk->asus;
1293
1294 if (rfk->control_id == WL_RSTS)
1295 return asus_wlan_set(asus, !blocked);
1296 else if (rfk->control_id == BT_RSTS)
1297 return asus_bluetooth_set(asus, !blocked);
1298 else if (rfk->control_id == WM_RSTS)
1299 return asus_wimax_set(asus, !blocked);
1300 else if (rfk->control_id == WW_RSTS)
1301 return asus_wwan_set(asus, !blocked);
1302
1303 return -EINVAL;
1304 }
1305
1306 static const struct rfkill_ops asus_rfkill_ops = {
1307 .set_block = asus_rfkill_set,
1308 };
1309
1310 static void asus_rfkill_terminate(struct asus_rfkill *rfk)
1311 {
1312 if (!rfk->rfkill)
1313 return ;
1314
1315 rfkill_unregister(rfk->rfkill);
1316 rfkill_destroy(rfk->rfkill);
1317 rfk->rfkill = NULL;
1318 }
1319
1320 static void asus_rfkill_exit(struct asus_laptop *asus)
1321 {
1322 asus_rfkill_terminate(&asus->wwan);
1323 asus_rfkill_terminate(&asus->bluetooth);
1324 asus_rfkill_terminate(&asus->wlan);
1325 asus_rfkill_terminate(&asus->gps);
1326 }
1327
1328 static int asus_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk,
1329 const char *name, int control_id, int type,
1330 const struct rfkill_ops *ops)
1331 {
1332 int result;
1333
1334 rfk->control_id = control_id;
1335 rfk->asus = asus;
1336 rfk->rfkill = rfkill_alloc(name, &asus->platform_device->dev,
1337 type, ops, rfk);
1338 if (!rfk->rfkill)
1339 return -EINVAL;
1340
1341 result = rfkill_register(rfk->rfkill);
1342 if (result) {
1343 rfkill_destroy(rfk->rfkill);
1344 rfk->rfkill = NULL;
1345 }
1346
1347 return result;
1348 }
1349
1350 static int asus_rfkill_init(struct asus_laptop *asus)
1351 {
1352 int result = 0;
1353
1354 if (asus->is_pega_lucid)
1355 return -ENODEV;
1356
1357 if (!acpi_check_handle(asus->handle, METHOD_GPS_ON, NULL) &&
1358 !acpi_check_handle(asus->handle, METHOD_GPS_OFF, NULL) &&
1359 !acpi_check_handle(asus->handle, METHOD_GPS_STATUS, NULL))
1360 result = asus_rfkill_setup(asus, &asus->gps, "asus-gps",
1361 -1, RFKILL_TYPE_GPS,
1362 &asus_gps_rfkill_ops);
1363 if (result)
1364 goto exit;
1365
1366
1367 if (!acpi_check_handle(asus->handle, METHOD_WLAN, NULL) &&
1368 asus->wled_type == TYPE_RFKILL)
1369 result = asus_rfkill_setup(asus, &asus->wlan, "asus-wlan",
1370 WL_RSTS, RFKILL_TYPE_WLAN,
1371 &asus_rfkill_ops);
1372 if (result)
1373 goto exit;
1374
1375 if (!acpi_check_handle(asus->handle, METHOD_BLUETOOTH, NULL) &&
1376 asus->bled_type == TYPE_RFKILL)
1377 result = asus_rfkill_setup(asus, &asus->bluetooth,
1378 "asus-bluetooth", BT_RSTS,
1379 RFKILL_TYPE_BLUETOOTH,
1380 &asus_rfkill_ops);
1381 if (result)
1382 goto exit;
1383
1384 if (!acpi_check_handle(asus->handle, METHOD_WWAN, NULL))
1385 result = asus_rfkill_setup(asus, &asus->wwan, "asus-wwan",
1386 WW_RSTS, RFKILL_TYPE_WWAN,
1387 &asus_rfkill_ops);
1388 if (result)
1389 goto exit;
1390
1391 if (!acpi_check_handle(asus->handle, METHOD_WIMAX, NULL))
1392 result = asus_rfkill_setup(asus, &asus->wimax, "asus-wimax",
1393 WM_RSTS, RFKILL_TYPE_WIMAX,
1394 &asus_rfkill_ops);
1395 if (result)
1396 goto exit;
1397
1398 exit:
1399 if (result)
1400 asus_rfkill_exit(asus);
1401
1402 return result;
1403 }
1404
1405 static int pega_rfkill_set(void *data, bool blocked)
1406 {
1407 struct asus_rfkill *rfk = data;
1408
1409 int ret = asus_pega_lucid_set(rfk->asus, rfk->control_id, !blocked);
1410 return ret;
1411 }
1412
1413 static const struct rfkill_ops pega_rfkill_ops = {
1414 .set_block = pega_rfkill_set,
1415 };
1416
1417 static int pega_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk,
1418 const char *name, int controlid, int rfkill_type)
1419 {
1420 return asus_rfkill_setup(asus, rfk, name, controlid, rfkill_type,
1421 &pega_rfkill_ops);
1422 }
1423
1424 static int pega_rfkill_init(struct asus_laptop *asus)
1425 {
1426 int ret = 0;
1427
1428 if(!asus->is_pega_lucid)
1429 return -ENODEV;
1430
1431 ret = pega_rfkill_setup(asus, &asus->wlan, "pega-wlan",
1432 PEGA_WLAN, RFKILL_TYPE_WLAN);
1433 if(ret)
1434 goto exit;
1435
1436 ret = pega_rfkill_setup(asus, &asus->bluetooth, "pega-bt",
1437 PEGA_BLUETOOTH, RFKILL_TYPE_BLUETOOTH);
1438 if(ret)
1439 goto exit;
1440
1441 ret = pega_rfkill_setup(asus, &asus->wwan, "pega-wwan",
1442 PEGA_WWAN, RFKILL_TYPE_WWAN);
1443
1444 exit:
1445 if (ret)
1446 asus_rfkill_exit(asus);
1447
1448 return ret;
1449 }
1450
1451 /*
1452 * Input device (i.e. hotkeys)
1453 */
1454 static void asus_input_notify(struct asus_laptop *asus, int event)
1455 {
1456 if (!asus->inputdev)
1457 return ;
1458 if (!sparse_keymap_report_event(asus->inputdev, event, 1, true))
1459 pr_info("Unknown key %x pressed\n", event);
1460 }
1461
1462 static int asus_input_init(struct asus_laptop *asus)
1463 {
1464 struct input_dev *input;
1465 int error;
1466
1467 input = input_allocate_device();
1468 if (!input) {
1469 pr_warn("Unable to allocate input device\n");
1470 return -ENOMEM;
1471 }
1472 input->name = "Asus Laptop extra buttons";
1473 input->phys = ASUS_LAPTOP_FILE "/input0";
1474 input->id.bustype = BUS_HOST;
1475 input->dev.parent = &asus->platform_device->dev;
1476
1477 error = sparse_keymap_setup(input, asus_keymap, NULL);
1478 if (error) {
1479 pr_err("Unable to setup input device keymap\n");
1480 goto err_free_dev;
1481 }
1482 error = input_register_device(input);
1483 if (error) {
1484 pr_warn("Unable to register input device\n");
1485 goto err_free_keymap;
1486 }
1487
1488 asus->inputdev = input;
1489 return 0;
1490
1491 err_free_keymap:
1492 sparse_keymap_free(input);
1493 err_free_dev:
1494 input_free_device(input);
1495 return error;
1496 }
1497
1498 static void asus_input_exit(struct asus_laptop *asus)
1499 {
1500 if (asus->inputdev) {
1501 sparse_keymap_free(asus->inputdev);
1502 input_unregister_device(asus->inputdev);
1503 }
1504 asus->inputdev = NULL;
1505 }
1506
1507 /*
1508 * ACPI driver
1509 */
1510 static void asus_acpi_notify(struct acpi_device *device, u32 event)
1511 {
1512 struct asus_laptop *asus = acpi_driver_data(device);
1513 u16 count;
1514
1515 /* TODO Find a better way to handle events count. */
1516 count = asus->event_count[event % 128]++;
1517 acpi_bus_generate_proc_event(asus->device, event, count);
1518 acpi_bus_generate_netlink_event(asus->device->pnp.device_class,
1519 dev_name(&asus->device->dev), event,
1520 count);
1521
1522 /* Brightness events are special */
1523 if (event >= ATKD_BR_MIN && event <= ATKD_BR_MAX) {
1524
1525 /* Ignore them completely if the acpi video driver is used */
1526 if (asus->backlight_device != NULL) {
1527 /* Update the backlight device. */
1528 asus_backlight_notify(asus);
1529 }
1530 return ;
1531 }
1532
1533 /* Accelerometer "coarse orientation change" event */
1534 if (asus->pega_accel_poll && event == 0xEA) {
1535 kobject_uevent(&asus->pega_accel_poll->input->dev.kobj,
1536 KOBJ_CHANGE);
1537 return ;
1538 }
1539
1540 asus_input_notify(asus, event);
1541 }
1542
1543 static DEVICE_ATTR(infos, S_IRUGO, show_infos, NULL);
1544 static DEVICE_ATTR(wlan, S_IRUGO | S_IWUSR, show_wlan, store_wlan);
1545 static DEVICE_ATTR(bluetooth, S_IRUGO | S_IWUSR,
1546 show_bluetooth, store_bluetooth);
1547 static DEVICE_ATTR(wimax, S_IRUGO | S_IWUSR, show_wimax, store_wimax);
1548 static DEVICE_ATTR(wwan, S_IRUGO | S_IWUSR, show_wwan, store_wwan);
1549 static DEVICE_ATTR(display, S_IWUSR, NULL, store_disp);
1550 static DEVICE_ATTR(ledd, S_IRUGO | S_IWUSR, show_ledd, store_ledd);
1551 static DEVICE_ATTR(ls_value, S_IRUGO, show_lsvalue, NULL);
1552 static DEVICE_ATTR(ls_level, S_IRUGO | S_IWUSR, show_lslvl, store_lslvl);
1553 static DEVICE_ATTR(ls_switch, S_IRUGO | S_IWUSR, show_lssw, store_lssw);
1554 static DEVICE_ATTR(gps, S_IRUGO | S_IWUSR, show_gps, store_gps);
1555
1556 static struct attribute *asus_attributes[] = {
1557 &dev_attr_infos.attr,
1558 &dev_attr_wlan.attr,
1559 &dev_attr_bluetooth.attr,
1560 &dev_attr_wimax.attr,
1561 &dev_attr_wwan.attr,
1562 &dev_attr_display.attr,
1563 &dev_attr_ledd.attr,
1564 &dev_attr_ls_value.attr,
1565 &dev_attr_ls_level.attr,
1566 &dev_attr_ls_switch.attr,
1567 &dev_attr_gps.attr,
1568 NULL
1569 };
1570
1571 static umode_t asus_sysfs_is_visible(struct kobject *kobj,
1572 struct attribute *attr,
1573 int idx)
1574 {
1575 struct device *dev = container_of(kobj, struct device, kobj);
1576 struct platform_device *pdev = to_platform_device(dev);
1577 struct asus_laptop *asus = platform_get_drvdata(pdev);
1578 acpi_handle handle = asus->handle;
1579 bool supported;
1580
1581 if (asus->is_pega_lucid) {
1582 /* no ls_level interface on the Lucid */
1583 if (attr == &dev_attr_ls_switch.attr)
1584 supported = true;
1585 else if (attr == &dev_attr_ls_level.attr)
1586 supported = false;
1587 else
1588 goto normal;
1589
1590 return supported;
1591 }
1592
1593 normal:
1594 if (attr == &dev_attr_wlan.attr) {
1595 supported = !acpi_check_handle(handle, METHOD_WLAN, NULL);
1596
1597 } else if (attr == &dev_attr_bluetooth.attr) {
1598 supported = !acpi_check_handle(handle, METHOD_BLUETOOTH, NULL);
1599
1600 } else if (attr == &dev_attr_display.attr) {
1601 supported = !acpi_check_handle(handle, METHOD_SWITCH_DISPLAY, NULL);
1602
1603 } else if (attr == &dev_attr_wimax.attr) {
1604 supported =
1605 !acpi_check_handle(asus->handle, METHOD_WIMAX, NULL);
1606
1607 } else if (attr == &dev_attr_wwan.attr) {
1608 supported = !acpi_check_handle(asus->handle, METHOD_WWAN, NULL);
1609
1610 } else if (attr == &dev_attr_ledd.attr) {
1611 supported = !acpi_check_handle(handle, METHOD_LEDD, NULL);
1612
1613 } else if (attr == &dev_attr_ls_switch.attr ||
1614 attr == &dev_attr_ls_level.attr) {
1615 supported = !acpi_check_handle(handle, METHOD_ALS_CONTROL, NULL) &&
1616 !acpi_check_handle(handle, METHOD_ALS_LEVEL, NULL);
1617 } else if (attr == &dev_attr_ls_value.attr) {
1618 supported = asus->is_pega_lucid;
1619 } else if (attr == &dev_attr_gps.attr) {
1620 supported = !acpi_check_handle(handle, METHOD_GPS_ON, NULL) &&
1621 !acpi_check_handle(handle, METHOD_GPS_OFF, NULL) &&
1622 !acpi_check_handle(handle, METHOD_GPS_STATUS, NULL);
1623 } else {
1624 supported = true;
1625 }
1626
1627 return supported ? attr->mode : 0;
1628 }
1629
1630
1631 static const struct attribute_group asus_attr_group = {
1632 .is_visible = asus_sysfs_is_visible,
1633 .attrs = asus_attributes,
1634 };
1635
1636 static int asus_platform_init(struct asus_laptop *asus)
1637 {
1638 int result;
1639
1640 asus->platform_device = platform_device_alloc(ASUS_LAPTOP_FILE, -1);
1641 if (!asus->platform_device)
1642 return -ENOMEM;
1643 platform_set_drvdata(asus->platform_device, asus);
1644
1645 result = platform_device_add(asus->platform_device);
1646 if (result)
1647 goto fail_platform_device;
1648
1649 result = sysfs_create_group(&asus->platform_device->dev.kobj,
1650 &asus_attr_group);
1651 if (result)
1652 goto fail_sysfs;
1653
1654 return 0;
1655
1656 fail_sysfs:
1657 platform_device_del(asus->platform_device);
1658 fail_platform_device:
1659 platform_device_put(asus->platform_device);
1660 return result;
1661 }
1662
1663 static void asus_platform_exit(struct asus_laptop *asus)
1664 {
1665 sysfs_remove_group(&asus->platform_device->dev.kobj, &asus_attr_group);
1666 platform_device_unregister(asus->platform_device);
1667 }
1668
1669 static struct platform_driver platform_driver = {
1670 .driver = {
1671 .name = ASUS_LAPTOP_FILE,
1672 .owner = THIS_MODULE,
1673 },
1674 };
1675
1676 /*
1677 * This function is used to initialize the context with right values. In this
1678 * method, we can make all the detection we want, and modify the asus_laptop
1679 * struct
1680 */
1681 static int asus_laptop_get_info(struct asus_laptop *asus)
1682 {
1683 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1684 union acpi_object *model = NULL;
1685 unsigned long long bsts_result, hwrs_result;
1686 char *string = NULL;
1687 acpi_status status;
1688
1689 /*
1690 * Get DSDT headers early enough to allow for differentiating between
1691 * models, but late enough to allow acpi_bus_register_driver() to fail
1692 * before doing anything ACPI-specific. Should we encounter a machine,
1693 * which needs special handling (i.e. its hotkey device has a different
1694 * HID), this bit will be moved.
1695 */
1696 status = acpi_get_table(ACPI_SIG_DSDT, 1, &asus->dsdt_info);
1697 if (ACPI_FAILURE(status))
1698 pr_warn("Couldn't get the DSDT table header\n");
1699
1700 /* We have to write 0 on init this far for all ASUS models */
1701 if (write_acpi_int_ret(asus->handle, "INIT", 0, &buffer)) {
1702 pr_err("Hotkey initialization failed\n");
1703 return -ENODEV;
1704 }
1705
1706 /* This needs to be called for some laptops to init properly */
1707 status =
1708 acpi_evaluate_integer(asus->handle, "BSTS", NULL, &bsts_result);
1709 if (ACPI_FAILURE(status))
1710 pr_warn("Error calling BSTS\n");
1711 else if (bsts_result)
1712 pr_notice("BSTS called, 0x%02x returned\n",
1713 (uint) bsts_result);
1714
1715 /* This too ... */
1716 if (write_acpi_int(asus->handle, "CWAP", wapf))
1717 pr_err("Error calling CWAP(%d)\n", wapf);
1718 /*
1719 * Try to match the object returned by INIT to the specific model.
1720 * Handle every possible object (or the lack of thereof) the DSDT
1721 * writers might throw at us. When in trouble, we pass NULL to
1722 * asus_model_match() and try something completely different.
1723 */
1724 if (buffer.pointer) {
1725 model = buffer.pointer;
1726 switch (model->type) {
1727 case ACPI_TYPE_STRING:
1728 string = model->string.pointer;
1729 break;
1730 case ACPI_TYPE_BUFFER:
1731 string = model->buffer.pointer;
1732 break;
1733 default:
1734 string = "";
1735 break;
1736 }
1737 }
1738 asus->name = kstrdup(string, GFP_KERNEL);
1739 if (!asus->name) {
1740 kfree(buffer.pointer);
1741 return -ENOMEM;
1742 }
1743
1744 if (*string)
1745 pr_notice(" %s model detected\n", string);
1746
1747 /*
1748 * The HWRS method return informations about the hardware.
1749 * 0x80 bit is for WLAN, 0x100 for Bluetooth,
1750 * 0x40 for WWAN, 0x10 for WIMAX.
1751 * The significance of others is yet to be found.
1752 */
1753 status =
1754 acpi_evaluate_integer(asus->handle, "HWRS", NULL, &hwrs_result);
1755 if (!ACPI_FAILURE(status))
1756 pr_notice(" HWRS returned %x", (int)hwrs_result);
1757
1758 if (!acpi_check_handle(asus->handle, METHOD_WL_STATUS, NULL))
1759 asus->have_rsts = true;
1760
1761 kfree(model);
1762
1763 return AE_OK;
1764 }
1765
1766 static int __devinit asus_acpi_init(struct asus_laptop *asus)
1767 {
1768 int result = 0;
1769
1770 result = acpi_bus_get_status(asus->device);
1771 if (result)
1772 return result;
1773 if (!asus->device->status.present) {
1774 pr_err("Hotkey device not present, aborting\n");
1775 return -ENODEV;
1776 }
1777
1778 result = asus_laptop_get_info(asus);
1779 if (result)
1780 return result;
1781
1782 if (!strcmp(bled_type, "led"))
1783 asus->bled_type = TYPE_LED;
1784 else if (!strcmp(bled_type, "rfkill"))
1785 asus->bled_type = TYPE_RFKILL;
1786
1787 if (!strcmp(wled_type, "led"))
1788 asus->wled_type = TYPE_LED;
1789 else if (!strcmp(wled_type, "rfkill"))
1790 asus->wled_type = TYPE_RFKILL;
1791
1792 if (bluetooth_status >= 0)
1793 asus_bluetooth_set(asus, !!bluetooth_status);
1794
1795 if (wlan_status >= 0)
1796 asus_wlan_set(asus, !!wlan_status);
1797
1798 if (wimax_status >= 0)
1799 asus_wimax_set(asus, !!wimax_status);
1800
1801 if (wwan_status >= 0)
1802 asus_wwan_set(asus, !!wwan_status);
1803
1804 /* Keyboard Backlight is on by default */
1805 if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL))
1806 asus_kled_set(asus, 1);
1807
1808 /* LED display is off by default */
1809 asus->ledd_status = 0xFFF;
1810
1811 /* Set initial values of light sensor and level */
1812 asus->light_switch = !!als_status;
1813 asus->light_level = 5; /* level 5 for sensor sensitivity */
1814
1815 if (asus->is_pega_lucid) {
1816 asus_als_switch(asus, asus->light_switch);
1817 } else if (!acpi_check_handle(asus->handle, METHOD_ALS_CONTROL, NULL) &&
1818 !acpi_check_handle(asus->handle, METHOD_ALS_LEVEL, NULL)) {
1819 asus_als_switch(asus, asus->light_switch);
1820 asus_als_level(asus, asus->light_level);
1821 }
1822
1823 return result;
1824 }
1825
1826 static void __devinit asus_dmi_check(void)
1827 {
1828 const char *model;
1829
1830 model = dmi_get_system_info(DMI_PRODUCT_NAME);
1831 if (!model)
1832 return;
1833
1834 /* On L1400B WLED control the sound card, don't mess with it ... */
1835 if (strncmp(model, "L1400B", 6) == 0) {
1836 wlan_status = -1;
1837 }
1838 }
1839
1840 static bool asus_device_present;
1841
1842 static int __devinit asus_acpi_add(struct acpi_device *device)
1843 {
1844 struct asus_laptop *asus;
1845 int result;
1846
1847 pr_notice("Asus Laptop Support version %s\n",
1848 ASUS_LAPTOP_VERSION);
1849 asus = kzalloc(sizeof(struct asus_laptop), GFP_KERNEL);
1850 if (!asus)
1851 return -ENOMEM;
1852 asus->handle = device->handle;
1853 strcpy(acpi_device_name(device), ASUS_LAPTOP_DEVICE_NAME);
1854 strcpy(acpi_device_class(device), ASUS_LAPTOP_CLASS);
1855 device->driver_data = asus;
1856 asus->device = device;
1857
1858 asus_dmi_check();
1859
1860 result = asus_acpi_init(asus);
1861 if (result)
1862 goto fail_platform;
1863
1864 /*
1865 * Need platform type detection first, then the platform
1866 * device. It is used as a parent for the sub-devices below.
1867 */
1868 asus->is_pega_lucid = asus_check_pega_lucid(asus);
1869 result = asus_platform_init(asus);
1870 if (result)
1871 goto fail_platform;
1872
1873 if (!acpi_video_backlight_support()) {
1874 result = asus_backlight_init(asus);
1875 if (result)
1876 goto fail_backlight;
1877 } else
1878 pr_info("Backlight controlled by ACPI video driver\n");
1879
1880 result = asus_input_init(asus);
1881 if (result)
1882 goto fail_input;
1883
1884 result = asus_led_init(asus);
1885 if (result)
1886 goto fail_led;
1887
1888 result = asus_rfkill_init(asus);
1889 if (result && result != -ENODEV)
1890 goto fail_rfkill;
1891
1892 result = pega_accel_init(asus);
1893 if (result && result != -ENODEV)
1894 goto fail_pega_accel;
1895
1896 result = pega_rfkill_init(asus);
1897 if (result && result != -ENODEV)
1898 goto fail_pega_rfkill;
1899
1900 asus_device_present = true;
1901 return 0;
1902
1903 fail_pega_rfkill:
1904 pega_accel_exit(asus);
1905 fail_pega_accel:
1906 asus_rfkill_exit(asus);
1907 fail_rfkill:
1908 asus_led_exit(asus);
1909 fail_led:
1910 asus_input_exit(asus);
1911 fail_input:
1912 asus_backlight_exit(asus);
1913 fail_backlight:
1914 asus_platform_exit(asus);
1915 fail_platform:
1916 kfree(asus->name);
1917 kfree(asus);
1918
1919 return result;
1920 }
1921
1922 static int asus_acpi_remove(struct acpi_device *device, int type)
1923 {
1924 struct asus_laptop *asus = acpi_driver_data(device);
1925
1926 asus_backlight_exit(asus);
1927 asus_rfkill_exit(asus);
1928 asus_led_exit(asus);
1929 asus_input_exit(asus);
1930 pega_accel_exit(asus);
1931 asus_platform_exit(asus);
1932
1933 kfree(asus->name);
1934 kfree(asus);
1935 return 0;
1936 }
1937
1938 static const struct acpi_device_id asus_device_ids[] = {
1939 {"ATK0100", 0},
1940 {"ATK0101", 0},
1941 {"", 0},
1942 };
1943 MODULE_DEVICE_TABLE(acpi, asus_device_ids);
1944
1945 static struct acpi_driver asus_acpi_driver = {
1946 .name = ASUS_LAPTOP_NAME,
1947 .class = ASUS_LAPTOP_CLASS,
1948 .owner = THIS_MODULE,
1949 .ids = asus_device_ids,
1950 .flags = ACPI_DRIVER_ALL_NOTIFY_EVENTS,
1951 .ops = {
1952 .add = asus_acpi_add,
1953 .remove = asus_acpi_remove,
1954 .notify = asus_acpi_notify,
1955 },
1956 };
1957
1958 static int __init asus_laptop_init(void)
1959 {
1960 int result;
1961
1962 result = platform_driver_register(&platform_driver);
1963 if (result < 0)
1964 return result;
1965
1966 result = acpi_bus_register_driver(&asus_acpi_driver);
1967 if (result < 0)
1968 goto fail_acpi_driver;
1969 if (!asus_device_present) {
1970 result = -ENODEV;
1971 goto fail_no_device;
1972 }
1973 return 0;
1974
1975 fail_no_device:
1976 acpi_bus_unregister_driver(&asus_acpi_driver);
1977 fail_acpi_driver:
1978 platform_driver_unregister(&platform_driver);
1979 return result;
1980 }
1981
1982 static void __exit asus_laptop_exit(void)
1983 {
1984 acpi_bus_unregister_driver(&asus_acpi_driver);
1985 platform_driver_unregister(&platform_driver);
1986 }
1987
1988 module_init(asus_laptop_init);
1989 module_exit(asus_laptop_exit);