]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/platform/x86/intel_ips.c
Merge branch 'for-linus-4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[mirror_ubuntu-zesty-kernel.git] / drivers / platform / x86 / intel_ips.c
1 /*
2 * Copyright (c) 2009-2010 Intel Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc.,
15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16 *
17 * The full GNU General Public License is included in this distribution in
18 * the file called "COPYING".
19 *
20 * Authors:
21 * Jesse Barnes <jbarnes@virtuousgeek.org>
22 */
23
24 /*
25 * Some Intel Ibex Peak based platforms support so-called "intelligent
26 * power sharing", which allows the CPU and GPU to cooperate to maximize
27 * performance within a given TDP (thermal design point). This driver
28 * performs the coordination between the CPU and GPU, monitors thermal and
29 * power statistics in the platform, and initializes power monitoring
30 * hardware. It also provides a few tunables to control behavior. Its
31 * primary purpose is to safely allow CPU and GPU turbo modes to be enabled
32 * by tracking power and thermal budget; secondarily it can boost turbo
33 * performance by allocating more power or thermal budget to the CPU or GPU
34 * based on available headroom and activity.
35 *
36 * The basic algorithm is driven by a 5s moving average of temperature. If
37 * thermal headroom is available, the CPU and/or GPU power clamps may be
38 * adjusted upwards. If we hit the thermal ceiling or a thermal trigger,
39 * we scale back the clamp. Aside from trigger events (when we're critically
40 * close or over our TDP) we don't adjust the clamps more than once every
41 * five seconds.
42 *
43 * The thermal device (device 31, function 6) has a set of registers that
44 * are updated by the ME firmware. The ME should also take the clamp values
45 * written to those registers and write them to the CPU, but we currently
46 * bypass that functionality and write the CPU MSR directly.
47 *
48 * UNSUPPORTED:
49 * - dual MCP configs
50 *
51 * TODO:
52 * - handle CPU hotplug
53 * - provide turbo enable/disable api
54 *
55 * Related documents:
56 * - CDI 403777, 403778 - Auburndale EDS vol 1 & 2
57 * - CDI 401376 - Ibex Peak EDS
58 * - ref 26037, 26641 - IPS BIOS spec
59 * - ref 26489 - Nehalem BIOS writer's guide
60 * - ref 26921 - Ibex Peak BIOS Specification
61 */
62
63 #include <linux/debugfs.h>
64 #include <linux/delay.h>
65 #include <linux/interrupt.h>
66 #include <linux/kernel.h>
67 #include <linux/kthread.h>
68 #include <linux/module.h>
69 #include <linux/pci.h>
70 #include <linux/sched.h>
71 #include <linux/seq_file.h>
72 #include <linux/string.h>
73 #include <linux/tick.h>
74 #include <linux/timer.h>
75 #include <linux/dmi.h>
76 #include <drm/i915_drm.h>
77 #include <asm/msr.h>
78 #include <asm/processor.h>
79 #include "intel_ips.h"
80
81 #include <linux/io-64-nonatomic-lo-hi.h>
82
83 #define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32
84
85 /*
86 * Package level MSRs for monitor/control
87 */
88 #define PLATFORM_INFO 0xce
89 #define PLATFORM_TDP (1<<29)
90 #define PLATFORM_RATIO (1<<28)
91
92 #define IA32_MISC_ENABLE 0x1a0
93 #define IA32_MISC_TURBO_EN (1ULL<<38)
94
95 #define TURBO_POWER_CURRENT_LIMIT 0x1ac
96 #define TURBO_TDC_OVR_EN (1UL<<31)
97 #define TURBO_TDC_MASK (0x000000007fff0000UL)
98 #define TURBO_TDC_SHIFT (16)
99 #define TURBO_TDP_OVR_EN (1UL<<15)
100 #define TURBO_TDP_MASK (0x0000000000003fffUL)
101
102 /*
103 * Core/thread MSRs for monitoring
104 */
105 #define IA32_PERF_CTL 0x199
106 #define IA32_PERF_TURBO_DIS (1ULL<<32)
107
108 /*
109 * Thermal PCI device regs
110 */
111 #define THM_CFG_TBAR 0x10
112 #define THM_CFG_TBAR_HI 0x14
113
114 #define THM_TSIU 0x00
115 #define THM_TSE 0x01
116 #define TSE_EN 0xb8
117 #define THM_TSS 0x02
118 #define THM_TSTR 0x03
119 #define THM_TSTTP 0x04
120 #define THM_TSCO 0x08
121 #define THM_TSES 0x0c
122 #define THM_TSGPEN 0x0d
123 #define TSGPEN_HOT_LOHI (1<<1)
124 #define TSGPEN_CRIT_LOHI (1<<2)
125 #define THM_TSPC 0x0e
126 #define THM_PPEC 0x10
127 #define THM_CTA 0x12
128 #define THM_PTA 0x14
129 #define PTA_SLOPE_MASK (0xff00)
130 #define PTA_SLOPE_SHIFT 8
131 #define PTA_OFFSET_MASK (0x00ff)
132 #define THM_MGTA 0x16
133 #define MGTA_SLOPE_MASK (0xff00)
134 #define MGTA_SLOPE_SHIFT 8
135 #define MGTA_OFFSET_MASK (0x00ff)
136 #define THM_TRC 0x1a
137 #define TRC_CORE2_EN (1<<15)
138 #define TRC_THM_EN (1<<12)
139 #define TRC_C6_WAR (1<<8)
140 #define TRC_CORE1_EN (1<<7)
141 #define TRC_CORE_PWR (1<<6)
142 #define TRC_PCH_EN (1<<5)
143 #define TRC_MCH_EN (1<<4)
144 #define TRC_DIMM4 (1<<3)
145 #define TRC_DIMM3 (1<<2)
146 #define TRC_DIMM2 (1<<1)
147 #define TRC_DIMM1 (1<<0)
148 #define THM_TES 0x20
149 #define THM_TEN 0x21
150 #define TEN_UPDATE_EN 1
151 #define THM_PSC 0x24
152 #define PSC_NTG (1<<0) /* No GFX turbo support */
153 #define PSC_NTPC (1<<1) /* No CPU turbo support */
154 #define PSC_PP_DEF (0<<2) /* Perf policy up to driver */
155 #define PSP_PP_PC (1<<2) /* BIOS prefers CPU perf */
156 #define PSP_PP_BAL (2<<2) /* BIOS wants balanced perf */
157 #define PSP_PP_GFX (3<<2) /* BIOS prefers GFX perf */
158 #define PSP_PBRT (1<<4) /* BIOS run time support */
159 #define THM_CTV1 0x30
160 #define CTV_TEMP_ERROR (1<<15)
161 #define CTV_TEMP_MASK 0x3f
162 #define CTV_
163 #define THM_CTV2 0x32
164 #define THM_CEC 0x34 /* undocumented power accumulator in joules */
165 #define THM_AE 0x3f
166 #define THM_HTS 0x50 /* 32 bits */
167 #define HTS_PCPL_MASK (0x7fe00000)
168 #define HTS_PCPL_SHIFT 21
169 #define HTS_GPL_MASK (0x001ff000)
170 #define HTS_GPL_SHIFT 12
171 #define HTS_PP_MASK (0x00000c00)
172 #define HTS_PP_SHIFT 10
173 #define HTS_PP_DEF 0
174 #define HTS_PP_PROC 1
175 #define HTS_PP_BAL 2
176 #define HTS_PP_GFX 3
177 #define HTS_PCTD_DIS (1<<9)
178 #define HTS_GTD_DIS (1<<8)
179 #define HTS_PTL_MASK (0x000000fe)
180 #define HTS_PTL_SHIFT 1
181 #define HTS_NVV (1<<0)
182 #define THM_HTSHI 0x54 /* 16 bits */
183 #define HTS2_PPL_MASK (0x03ff)
184 #define HTS2_PRST_MASK (0x3c00)
185 #define HTS2_PRST_SHIFT 10
186 #define HTS2_PRST_UNLOADED 0
187 #define HTS2_PRST_RUNNING 1
188 #define HTS2_PRST_TDISOP 2 /* turbo disabled due to power */
189 #define HTS2_PRST_TDISHT 3 /* turbo disabled due to high temp */
190 #define HTS2_PRST_TDISUSR 4 /* user disabled turbo */
191 #define HTS2_PRST_TDISPLAT 5 /* platform disabled turbo */
192 #define HTS2_PRST_TDISPM 6 /* power management disabled turbo */
193 #define HTS2_PRST_TDISERR 7 /* some kind of error disabled turbo */
194 #define THM_PTL 0x56
195 #define THM_MGTV 0x58
196 #define TV_MASK 0x000000000000ff00
197 #define TV_SHIFT 8
198 #define THM_PTV 0x60
199 #define PTV_MASK 0x00ff
200 #define THM_MMGPC 0x64
201 #define THM_MPPC 0x66
202 #define THM_MPCPC 0x68
203 #define THM_TSPIEN 0x82
204 #define TSPIEN_AUX_LOHI (1<<0)
205 #define TSPIEN_HOT_LOHI (1<<1)
206 #define TSPIEN_CRIT_LOHI (1<<2)
207 #define TSPIEN_AUX2_LOHI (1<<3)
208 #define THM_TSLOCK 0x83
209 #define THM_ATR 0x84
210 #define THM_TOF 0x87
211 #define THM_STS 0x98
212 #define STS_PCPL_MASK (0x7fe00000)
213 #define STS_PCPL_SHIFT 21
214 #define STS_GPL_MASK (0x001ff000)
215 #define STS_GPL_SHIFT 12
216 #define STS_PP_MASK (0x00000c00)
217 #define STS_PP_SHIFT 10
218 #define STS_PP_DEF 0
219 #define STS_PP_PROC 1
220 #define STS_PP_BAL 2
221 #define STS_PP_GFX 3
222 #define STS_PCTD_DIS (1<<9)
223 #define STS_GTD_DIS (1<<8)
224 #define STS_PTL_MASK (0x000000fe)
225 #define STS_PTL_SHIFT 1
226 #define STS_NVV (1<<0)
227 #define THM_SEC 0x9c
228 #define SEC_ACK (1<<0)
229 #define THM_TC3 0xa4
230 #define THM_TC1 0xa8
231 #define STS_PPL_MASK (0x0003ff00)
232 #define STS_PPL_SHIFT 16
233 #define THM_TC2 0xac
234 #define THM_DTV 0xb0
235 #define THM_ITV 0xd8
236 #define ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */
237 #define ITV_ME_SEQNO_SHIFT (16)
238 #define ITV_MCH_TEMP_MASK 0x0000ff00
239 #define ITV_MCH_TEMP_SHIFT (8)
240 #define ITV_PCH_TEMP_MASK 0x000000ff
241
242 #define thm_readb(off) readb(ips->regmap + (off))
243 #define thm_readw(off) readw(ips->regmap + (off))
244 #define thm_readl(off) readl(ips->regmap + (off))
245 #define thm_readq(off) readq(ips->regmap + (off))
246
247 #define thm_writeb(off, val) writeb((val), ips->regmap + (off))
248 #define thm_writew(off, val) writew((val), ips->regmap + (off))
249 #define thm_writel(off, val) writel((val), ips->regmap + (off))
250
251 static const int IPS_ADJUST_PERIOD = 5000; /* ms */
252 static bool late_i915_load = false;
253
254 /* For initial average collection */
255 static const int IPS_SAMPLE_PERIOD = 200; /* ms */
256 static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */
257 #define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD)
258
259 /* Per-SKU limits */
260 struct ips_mcp_limits {
261 int cpu_family;
262 int cpu_model; /* includes extended model... */
263 int mcp_power_limit; /* mW units */
264 int core_power_limit;
265 int mch_power_limit;
266 int core_temp_limit; /* degrees C */
267 int mch_temp_limit;
268 };
269
270 /* Max temps are -10 degrees C to avoid PROCHOT# */
271
272 static struct ips_mcp_limits ips_sv_limits = {
273 .mcp_power_limit = 35000,
274 .core_power_limit = 29000,
275 .mch_power_limit = 20000,
276 .core_temp_limit = 95,
277 .mch_temp_limit = 90
278 };
279
280 static struct ips_mcp_limits ips_lv_limits = {
281 .mcp_power_limit = 25000,
282 .core_power_limit = 21000,
283 .mch_power_limit = 13000,
284 .core_temp_limit = 95,
285 .mch_temp_limit = 90
286 };
287
288 static struct ips_mcp_limits ips_ulv_limits = {
289 .mcp_power_limit = 18000,
290 .core_power_limit = 14000,
291 .mch_power_limit = 11000,
292 .core_temp_limit = 95,
293 .mch_temp_limit = 90
294 };
295
296 struct ips_driver {
297 struct pci_dev *dev;
298 void *regmap;
299 struct task_struct *monitor;
300 struct task_struct *adjust;
301 struct dentry *debug_root;
302
303 /* Average CPU core temps (all averages in .01 degrees C for precision) */
304 u16 ctv1_avg_temp;
305 u16 ctv2_avg_temp;
306 /* GMCH average */
307 u16 mch_avg_temp;
308 /* Average for the CPU (both cores?) */
309 u16 mcp_avg_temp;
310 /* Average power consumption (in mW) */
311 u32 cpu_avg_power;
312 u32 mch_avg_power;
313
314 /* Offset values */
315 u16 cta_val;
316 u16 pta_val;
317 u16 mgta_val;
318
319 /* Maximums & prefs, protected by turbo status lock */
320 spinlock_t turbo_status_lock;
321 u16 mcp_temp_limit;
322 u16 mcp_power_limit;
323 u16 core_power_limit;
324 u16 mch_power_limit;
325 bool cpu_turbo_enabled;
326 bool __cpu_turbo_on;
327 bool gpu_turbo_enabled;
328 bool __gpu_turbo_on;
329 bool gpu_preferred;
330 bool poll_turbo_status;
331 bool second_cpu;
332 bool turbo_toggle_allowed;
333 struct ips_mcp_limits *limits;
334
335 /* Optional MCH interfaces for if i915 is in use */
336 unsigned long (*read_mch_val)(void);
337 bool (*gpu_raise)(void);
338 bool (*gpu_lower)(void);
339 bool (*gpu_busy)(void);
340 bool (*gpu_turbo_disable)(void);
341
342 /* For restoration at unload */
343 u64 orig_turbo_limit;
344 u64 orig_turbo_ratios;
345 };
346
347 static bool
348 ips_gpu_turbo_enabled(struct ips_driver *ips);
349
350 /**
351 * ips_cpu_busy - is CPU busy?
352 * @ips: IPS driver struct
353 *
354 * Check CPU for load to see whether we should increase its thermal budget.
355 *
356 * RETURNS:
357 * True if the CPU could use more power, false otherwise.
358 */
359 static bool ips_cpu_busy(struct ips_driver *ips)
360 {
361 if ((avenrun[0] >> FSHIFT) > 1)
362 return true;
363
364 return false;
365 }
366
367 /**
368 * ips_cpu_raise - raise CPU power clamp
369 * @ips: IPS driver struct
370 *
371 * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for
372 * this platform.
373 *
374 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as
375 * long as we haven't hit the TDP limit for the SKU).
376 */
377 static void ips_cpu_raise(struct ips_driver *ips)
378 {
379 u64 turbo_override;
380 u16 cur_tdp_limit, new_tdp_limit;
381
382 if (!ips->cpu_turbo_enabled)
383 return;
384
385 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
386
387 cur_tdp_limit = turbo_override & TURBO_TDP_MASK;
388 new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */
389
390 /* Clamp to SKU TDP limit */
391 if (((new_tdp_limit * 10) / 8) > ips->core_power_limit)
392 new_tdp_limit = cur_tdp_limit;
393
394 thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8);
395
396 turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
397 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
398
399 turbo_override &= ~TURBO_TDP_MASK;
400 turbo_override |= new_tdp_limit;
401
402 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
403 }
404
405 /**
406 * ips_cpu_lower - lower CPU power clamp
407 * @ips: IPS driver struct
408 *
409 * Lower CPU power clamp b %IPS_CPU_STEP if possible.
410 *
411 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going
412 * as low as the platform limits will allow (though we could go lower there
413 * wouldn't be much point).
414 */
415 static void ips_cpu_lower(struct ips_driver *ips)
416 {
417 u64 turbo_override;
418 u16 cur_limit, new_limit;
419
420 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
421
422 cur_limit = turbo_override & TURBO_TDP_MASK;
423 new_limit = cur_limit - 8; /* 1W decrease */
424
425 /* Clamp to SKU TDP limit */
426 if (new_limit < (ips->orig_turbo_limit & TURBO_TDP_MASK))
427 new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK;
428
429 thm_writew(THM_MPCPC, (new_limit * 10) / 8);
430
431 turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
432 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
433
434 turbo_override &= ~TURBO_TDP_MASK;
435 turbo_override |= new_limit;
436
437 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
438 }
439
440 /**
441 * do_enable_cpu_turbo - internal turbo enable function
442 * @data: unused
443 *
444 * Internal function for actually updating MSRs. When we enable/disable
445 * turbo, we need to do it on each CPU; this function is the one called
446 * by on_each_cpu() when needed.
447 */
448 static void do_enable_cpu_turbo(void *data)
449 {
450 u64 perf_ctl;
451
452 rdmsrl(IA32_PERF_CTL, perf_ctl);
453 if (perf_ctl & IA32_PERF_TURBO_DIS) {
454 perf_ctl &= ~IA32_PERF_TURBO_DIS;
455 wrmsrl(IA32_PERF_CTL, perf_ctl);
456 }
457 }
458
459 /**
460 * ips_enable_cpu_turbo - enable turbo mode on all CPUs
461 * @ips: IPS driver struct
462 *
463 * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on
464 * all logical threads.
465 */
466 static void ips_enable_cpu_turbo(struct ips_driver *ips)
467 {
468 /* Already on, no need to mess with MSRs */
469 if (ips->__cpu_turbo_on)
470 return;
471
472 if (ips->turbo_toggle_allowed)
473 on_each_cpu(do_enable_cpu_turbo, ips, 1);
474
475 ips->__cpu_turbo_on = true;
476 }
477
478 /**
479 * do_disable_cpu_turbo - internal turbo disable function
480 * @data: unused
481 *
482 * Internal function for actually updating MSRs. When we enable/disable
483 * turbo, we need to do it on each CPU; this function is the one called
484 * by on_each_cpu() when needed.
485 */
486 static void do_disable_cpu_turbo(void *data)
487 {
488 u64 perf_ctl;
489
490 rdmsrl(IA32_PERF_CTL, perf_ctl);
491 if (!(perf_ctl & IA32_PERF_TURBO_DIS)) {
492 perf_ctl |= IA32_PERF_TURBO_DIS;
493 wrmsrl(IA32_PERF_CTL, perf_ctl);
494 }
495 }
496
497 /**
498 * ips_disable_cpu_turbo - disable turbo mode on all CPUs
499 * @ips: IPS driver struct
500 *
501 * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on
502 * all logical threads.
503 */
504 static void ips_disable_cpu_turbo(struct ips_driver *ips)
505 {
506 /* Already off, leave it */
507 if (!ips->__cpu_turbo_on)
508 return;
509
510 if (ips->turbo_toggle_allowed)
511 on_each_cpu(do_disable_cpu_turbo, ips, 1);
512
513 ips->__cpu_turbo_on = false;
514 }
515
516 /**
517 * ips_gpu_busy - is GPU busy?
518 * @ips: IPS driver struct
519 *
520 * Check GPU for load to see whether we should increase its thermal budget.
521 * We need to call into the i915 driver in this case.
522 *
523 * RETURNS:
524 * True if the GPU could use more power, false otherwise.
525 */
526 static bool ips_gpu_busy(struct ips_driver *ips)
527 {
528 if (!ips_gpu_turbo_enabled(ips))
529 return false;
530
531 return ips->gpu_busy();
532 }
533
534 /**
535 * ips_gpu_raise - raise GPU power clamp
536 * @ips: IPS driver struct
537 *
538 * Raise the GPU frequency/power if possible. We need to call into the
539 * i915 driver in this case.
540 */
541 static void ips_gpu_raise(struct ips_driver *ips)
542 {
543 if (!ips_gpu_turbo_enabled(ips))
544 return;
545
546 if (!ips->gpu_raise())
547 ips->gpu_turbo_enabled = false;
548
549 return;
550 }
551
552 /**
553 * ips_gpu_lower - lower GPU power clamp
554 * @ips: IPS driver struct
555 *
556 * Lower GPU frequency/power if possible. Need to call i915.
557 */
558 static void ips_gpu_lower(struct ips_driver *ips)
559 {
560 if (!ips_gpu_turbo_enabled(ips))
561 return;
562
563 if (!ips->gpu_lower())
564 ips->gpu_turbo_enabled = false;
565
566 return;
567 }
568
569 /**
570 * ips_enable_gpu_turbo - notify the gfx driver turbo is available
571 * @ips: IPS driver struct
572 *
573 * Call into the graphics driver indicating that it can safely use
574 * turbo mode.
575 */
576 static void ips_enable_gpu_turbo(struct ips_driver *ips)
577 {
578 if (ips->__gpu_turbo_on)
579 return;
580 ips->__gpu_turbo_on = true;
581 }
582
583 /**
584 * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode
585 * @ips: IPS driver struct
586 *
587 * Request that the graphics driver disable turbo mode.
588 */
589 static void ips_disable_gpu_turbo(struct ips_driver *ips)
590 {
591 /* Avoid calling i915 if turbo is already disabled */
592 if (!ips->__gpu_turbo_on)
593 return;
594
595 if (!ips->gpu_turbo_disable())
596 dev_err(&ips->dev->dev, "failed to disable graphics turbo\n");
597 else
598 ips->__gpu_turbo_on = false;
599 }
600
601 /**
602 * mcp_exceeded - check whether we're outside our thermal & power limits
603 * @ips: IPS driver struct
604 *
605 * Check whether the MCP is over its thermal or power budget.
606 */
607 static bool mcp_exceeded(struct ips_driver *ips)
608 {
609 unsigned long flags;
610 bool ret = false;
611 u32 temp_limit;
612 u32 avg_power;
613
614 spin_lock_irqsave(&ips->turbo_status_lock, flags);
615
616 temp_limit = ips->mcp_temp_limit * 100;
617 if (ips->mcp_avg_temp > temp_limit)
618 ret = true;
619
620 avg_power = ips->cpu_avg_power + ips->mch_avg_power;
621 if (avg_power > ips->mcp_power_limit)
622 ret = true;
623
624 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
625
626 return ret;
627 }
628
629 /**
630 * cpu_exceeded - check whether a CPU core is outside its limits
631 * @ips: IPS driver struct
632 * @cpu: CPU number to check
633 *
634 * Check a given CPU's average temp or power is over its limit.
635 */
636 static bool cpu_exceeded(struct ips_driver *ips, int cpu)
637 {
638 unsigned long flags;
639 int avg;
640 bool ret = false;
641
642 spin_lock_irqsave(&ips->turbo_status_lock, flags);
643 avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp;
644 if (avg > (ips->limits->core_temp_limit * 100))
645 ret = true;
646 if (ips->cpu_avg_power > ips->core_power_limit * 100)
647 ret = true;
648 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
649
650 if (ret)
651 dev_info(&ips->dev->dev,
652 "CPU power or thermal limit exceeded\n");
653
654 return ret;
655 }
656
657 /**
658 * mch_exceeded - check whether the GPU is over budget
659 * @ips: IPS driver struct
660 *
661 * Check the MCH temp & power against their maximums.
662 */
663 static bool mch_exceeded(struct ips_driver *ips)
664 {
665 unsigned long flags;
666 bool ret = false;
667
668 spin_lock_irqsave(&ips->turbo_status_lock, flags);
669 if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100))
670 ret = true;
671 if (ips->mch_avg_power > ips->mch_power_limit)
672 ret = true;
673 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
674
675 return ret;
676 }
677
678 /**
679 * verify_limits - verify BIOS provided limits
680 * @ips: IPS structure
681 *
682 * BIOS can optionally provide non-default limits for power and temp. Check
683 * them here and use the defaults if the BIOS values are not provided or
684 * are otherwise unusable.
685 */
686 static void verify_limits(struct ips_driver *ips)
687 {
688 if (ips->mcp_power_limit < ips->limits->mcp_power_limit ||
689 ips->mcp_power_limit > 35000)
690 ips->mcp_power_limit = ips->limits->mcp_power_limit;
691
692 if (ips->mcp_temp_limit < ips->limits->core_temp_limit ||
693 ips->mcp_temp_limit < ips->limits->mch_temp_limit ||
694 ips->mcp_temp_limit > 150)
695 ips->mcp_temp_limit = min(ips->limits->core_temp_limit,
696 ips->limits->mch_temp_limit);
697 }
698
699 /**
700 * update_turbo_limits - get various limits & settings from regs
701 * @ips: IPS driver struct
702 *
703 * Update the IPS power & temp limits, along with turbo enable flags,
704 * based on latest register contents.
705 *
706 * Used at init time and for runtime BIOS support, which requires polling
707 * the regs for updates (as a result of AC->DC transition for example).
708 *
709 * LOCKING:
710 * Caller must hold turbo_status_lock (outside of init)
711 */
712 static void update_turbo_limits(struct ips_driver *ips)
713 {
714 u32 hts = thm_readl(THM_HTS);
715
716 ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS);
717 /*
718 * Disable turbo for now, until we can figure out why the power figures
719 * are wrong
720 */
721 ips->cpu_turbo_enabled = false;
722
723 if (ips->gpu_busy)
724 ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS);
725
726 ips->core_power_limit = thm_readw(THM_MPCPC);
727 ips->mch_power_limit = thm_readw(THM_MMGPC);
728 ips->mcp_temp_limit = thm_readw(THM_PTL);
729 ips->mcp_power_limit = thm_readw(THM_MPPC);
730
731 verify_limits(ips);
732 /* Ignore BIOS CPU vs GPU pref */
733 }
734
735 /**
736 * ips_adjust - adjust power clamp based on thermal state
737 * @data: ips driver structure
738 *
739 * Wake up every 5s or so and check whether we should adjust the power clamp.
740 * Check CPU and GPU load to determine which needs adjustment. There are
741 * several things to consider here:
742 * - do we need to adjust up or down?
743 * - is CPU busy?
744 * - is GPU busy?
745 * - is CPU in turbo?
746 * - is GPU in turbo?
747 * - is CPU or GPU preferred? (CPU is default)
748 *
749 * So, given the above, we do the following:
750 * - up (TDP available)
751 * - CPU not busy, GPU not busy - nothing
752 * - CPU busy, GPU not busy - adjust CPU up
753 * - CPU not busy, GPU busy - adjust GPU up
754 * - CPU busy, GPU busy - adjust preferred unit up, taking headroom from
755 * non-preferred unit if necessary
756 * - down (at TDP limit)
757 * - adjust both CPU and GPU down if possible
758 *
759 cpu+ gpu+ cpu+gpu- cpu-gpu+ cpu-gpu-
760 cpu < gpu < cpu+gpu+ cpu+ gpu+ nothing
761 cpu < gpu >= cpu+gpu-(mcp<) cpu+gpu-(mcp<) gpu- gpu-
762 cpu >= gpu < cpu-gpu+(mcp<) cpu- cpu-gpu+(mcp<) cpu-
763 cpu >= gpu >= cpu-gpu- cpu-gpu- cpu-gpu- cpu-gpu-
764 *
765 */
766 static int ips_adjust(void *data)
767 {
768 struct ips_driver *ips = data;
769 unsigned long flags;
770
771 dev_dbg(&ips->dev->dev, "starting ips-adjust thread\n");
772
773 /*
774 * Adjust CPU and GPU clamps every 5s if needed. Doing it more
775 * often isn't recommended due to ME interaction.
776 */
777 do {
778 bool cpu_busy = ips_cpu_busy(ips);
779 bool gpu_busy = ips_gpu_busy(ips);
780
781 spin_lock_irqsave(&ips->turbo_status_lock, flags);
782 if (ips->poll_turbo_status)
783 update_turbo_limits(ips);
784 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
785
786 /* Update turbo status if necessary */
787 if (ips->cpu_turbo_enabled)
788 ips_enable_cpu_turbo(ips);
789 else
790 ips_disable_cpu_turbo(ips);
791
792 if (ips->gpu_turbo_enabled)
793 ips_enable_gpu_turbo(ips);
794 else
795 ips_disable_gpu_turbo(ips);
796
797 /* We're outside our comfort zone, crank them down */
798 if (mcp_exceeded(ips)) {
799 ips_cpu_lower(ips);
800 ips_gpu_lower(ips);
801 goto sleep;
802 }
803
804 if (!cpu_exceeded(ips, 0) && cpu_busy)
805 ips_cpu_raise(ips);
806 else
807 ips_cpu_lower(ips);
808
809 if (!mch_exceeded(ips) && gpu_busy)
810 ips_gpu_raise(ips);
811 else
812 ips_gpu_lower(ips);
813
814 sleep:
815 schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD));
816 } while (!kthread_should_stop());
817
818 dev_dbg(&ips->dev->dev, "ips-adjust thread stopped\n");
819
820 return 0;
821 }
822
823 /*
824 * Helpers for reading out temp/power values and calculating their
825 * averages for the decision making and monitoring functions.
826 */
827
828 static u16 calc_avg_temp(struct ips_driver *ips, u16 *array)
829 {
830 u64 total = 0;
831 int i;
832 u16 avg;
833
834 for (i = 0; i < IPS_SAMPLE_COUNT; i++)
835 total += (u64)(array[i] * 100);
836
837 do_div(total, IPS_SAMPLE_COUNT);
838
839 avg = (u16)total;
840
841 return avg;
842 }
843
844 static u16 read_mgtv(struct ips_driver *ips)
845 {
846 u16 ret;
847 u64 slope, offset;
848 u64 val;
849
850 val = thm_readq(THM_MGTV);
851 val = (val & TV_MASK) >> TV_SHIFT;
852
853 slope = offset = thm_readw(THM_MGTA);
854 slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT;
855 offset = offset & MGTA_OFFSET_MASK;
856
857 ret = ((val * slope + 0x40) >> 7) + offset;
858
859 return 0; /* MCH temp reporting buggy */
860 }
861
862 static u16 read_ptv(struct ips_driver *ips)
863 {
864 u16 val, slope, offset;
865
866 slope = (ips->pta_val & PTA_SLOPE_MASK) >> PTA_SLOPE_SHIFT;
867 offset = ips->pta_val & PTA_OFFSET_MASK;
868
869 val = thm_readw(THM_PTV) & PTV_MASK;
870
871 return val;
872 }
873
874 static u16 read_ctv(struct ips_driver *ips, int cpu)
875 {
876 int reg = cpu ? THM_CTV2 : THM_CTV1;
877 u16 val;
878
879 val = thm_readw(reg);
880 if (!(val & CTV_TEMP_ERROR))
881 val = (val) >> 6; /* discard fractional component */
882 else
883 val = 0;
884
885 return val;
886 }
887
888 static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period)
889 {
890 u32 val;
891 u32 ret;
892
893 /*
894 * CEC is in joules/65535. Take difference over time to
895 * get watts.
896 */
897 val = thm_readl(THM_CEC);
898
899 /* period is in ms and we want mW */
900 ret = (((val - *last) * 1000) / period);
901 ret = (ret * 1000) / 65535;
902 *last = val;
903
904 return 0;
905 }
906
907 static const u16 temp_decay_factor = 2;
908 static u16 update_average_temp(u16 avg, u16 val)
909 {
910 u16 ret;
911
912 /* Multiply by 100 for extra precision */
913 ret = (val * 100 / temp_decay_factor) +
914 (((temp_decay_factor - 1) * avg) / temp_decay_factor);
915 return ret;
916 }
917
918 static const u16 power_decay_factor = 2;
919 static u16 update_average_power(u32 avg, u32 val)
920 {
921 u32 ret;
922
923 ret = (val / power_decay_factor) +
924 (((power_decay_factor - 1) * avg) / power_decay_factor);
925
926 return ret;
927 }
928
929 static u32 calc_avg_power(struct ips_driver *ips, u32 *array)
930 {
931 u64 total = 0;
932 u32 avg;
933 int i;
934
935 for (i = 0; i < IPS_SAMPLE_COUNT; i++)
936 total += array[i];
937
938 do_div(total, IPS_SAMPLE_COUNT);
939 avg = (u32)total;
940
941 return avg;
942 }
943
944 static void monitor_timeout(unsigned long arg)
945 {
946 wake_up_process((struct task_struct *)arg);
947 }
948
949 /**
950 * ips_monitor - temp/power monitoring thread
951 * @data: ips driver structure
952 *
953 * This is the main function for the IPS driver. It monitors power and
954 * tempurature in the MCP and adjusts CPU and GPU power clams accordingly.
955 *
956 * We keep a 5s moving average of power consumption and tempurature. Using
957 * that data, along with CPU vs GPU preference, we adjust the power clamps
958 * up or down.
959 */
960 static int ips_monitor(void *data)
961 {
962 struct ips_driver *ips = data;
963 struct timer_list timer;
964 unsigned long seqno_timestamp, expire, last_msecs, last_sample_period;
965 int i;
966 u32 *cpu_samples, *mchp_samples, old_cpu_power;
967 u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples;
968 u8 cur_seqno, last_seqno;
969
970 mcp_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
971 ctv1_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
972 ctv2_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
973 mch_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
974 cpu_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
975 mchp_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
976 if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples ||
977 !cpu_samples || !mchp_samples) {
978 dev_err(&ips->dev->dev,
979 "failed to allocate sample array, ips disabled\n");
980 kfree(mcp_samples);
981 kfree(ctv1_samples);
982 kfree(ctv2_samples);
983 kfree(mch_samples);
984 kfree(cpu_samples);
985 kfree(mchp_samples);
986 return -ENOMEM;
987 }
988
989 last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
990 ITV_ME_SEQNO_SHIFT;
991 seqno_timestamp = get_jiffies_64();
992
993 old_cpu_power = thm_readl(THM_CEC);
994 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
995
996 /* Collect an initial average */
997 for (i = 0; i < IPS_SAMPLE_COUNT; i++) {
998 u32 mchp, cpu_power;
999 u16 val;
1000
1001 mcp_samples[i] = read_ptv(ips);
1002
1003 val = read_ctv(ips, 0);
1004 ctv1_samples[i] = val;
1005
1006 val = read_ctv(ips, 1);
1007 ctv2_samples[i] = val;
1008
1009 val = read_mgtv(ips);
1010 mch_samples[i] = val;
1011
1012 cpu_power = get_cpu_power(ips, &old_cpu_power,
1013 IPS_SAMPLE_PERIOD);
1014 cpu_samples[i] = cpu_power;
1015
1016 if (ips->read_mch_val) {
1017 mchp = ips->read_mch_val();
1018 mchp_samples[i] = mchp;
1019 }
1020
1021 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1022 if (kthread_should_stop())
1023 break;
1024 }
1025
1026 ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples);
1027 ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples);
1028 ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples);
1029 ips->mch_avg_temp = calc_avg_temp(ips, mch_samples);
1030 ips->cpu_avg_power = calc_avg_power(ips, cpu_samples);
1031 ips->mch_avg_power = calc_avg_power(ips, mchp_samples);
1032 kfree(mcp_samples);
1033 kfree(ctv1_samples);
1034 kfree(ctv2_samples);
1035 kfree(mch_samples);
1036 kfree(cpu_samples);
1037 kfree(mchp_samples);
1038
1039 /* Start the adjustment thread now that we have data */
1040 wake_up_process(ips->adjust);
1041
1042 /*
1043 * Ok, now we have an initial avg. From here on out, we track the
1044 * running avg using a decaying average calculation. This allows
1045 * us to reduce the sample frequency if the CPU and GPU are idle.
1046 */
1047 old_cpu_power = thm_readl(THM_CEC);
1048 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1049 last_sample_period = IPS_SAMPLE_PERIOD;
1050
1051 setup_deferrable_timer_on_stack(&timer, monitor_timeout,
1052 (unsigned long)current);
1053 do {
1054 u32 cpu_val, mch_val;
1055 u16 val;
1056
1057 /* MCP itself */
1058 val = read_ptv(ips);
1059 ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val);
1060
1061 /* Processor 0 */
1062 val = read_ctv(ips, 0);
1063 ips->ctv1_avg_temp =
1064 update_average_temp(ips->ctv1_avg_temp, val);
1065 /* Power */
1066 cpu_val = get_cpu_power(ips, &old_cpu_power,
1067 last_sample_period);
1068 ips->cpu_avg_power =
1069 update_average_power(ips->cpu_avg_power, cpu_val);
1070
1071 if (ips->second_cpu) {
1072 /* Processor 1 */
1073 val = read_ctv(ips, 1);
1074 ips->ctv2_avg_temp =
1075 update_average_temp(ips->ctv2_avg_temp, val);
1076 }
1077
1078 /* MCH */
1079 val = read_mgtv(ips);
1080 ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val);
1081 /* Power */
1082 if (ips->read_mch_val) {
1083 mch_val = ips->read_mch_val();
1084 ips->mch_avg_power =
1085 update_average_power(ips->mch_avg_power,
1086 mch_val);
1087 }
1088
1089 /*
1090 * Make sure ME is updating thermal regs.
1091 * Note:
1092 * If it's been more than a second since the last update,
1093 * the ME is probably hung.
1094 */
1095 cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
1096 ITV_ME_SEQNO_SHIFT;
1097 if (cur_seqno == last_seqno &&
1098 time_after(jiffies, seqno_timestamp + HZ)) {
1099 dev_warn(&ips->dev->dev, "ME failed to update for more than 1s, likely hung\n");
1100 } else {
1101 seqno_timestamp = get_jiffies_64();
1102 last_seqno = cur_seqno;
1103 }
1104
1105 last_msecs = jiffies_to_msecs(jiffies);
1106 expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD);
1107
1108 __set_current_state(TASK_INTERRUPTIBLE);
1109 mod_timer(&timer, expire);
1110 schedule();
1111
1112 /* Calculate actual sample period for power averaging */
1113 last_sample_period = jiffies_to_msecs(jiffies) - last_msecs;
1114 if (!last_sample_period)
1115 last_sample_period = 1;
1116 } while (!kthread_should_stop());
1117
1118 del_timer_sync(&timer);
1119 destroy_timer_on_stack(&timer);
1120
1121 dev_dbg(&ips->dev->dev, "ips-monitor thread stopped\n");
1122
1123 return 0;
1124 }
1125
1126 #if 0
1127 #define THM_DUMPW(reg) \
1128 { \
1129 u16 val = thm_readw(reg); \
1130 dev_dbg(&ips->dev->dev, #reg ": 0x%04x\n", val); \
1131 }
1132 #define THM_DUMPL(reg) \
1133 { \
1134 u32 val = thm_readl(reg); \
1135 dev_dbg(&ips->dev->dev, #reg ": 0x%08x\n", val); \
1136 }
1137 #define THM_DUMPQ(reg) \
1138 { \
1139 u64 val = thm_readq(reg); \
1140 dev_dbg(&ips->dev->dev, #reg ": 0x%016x\n", val); \
1141 }
1142
1143 static void dump_thermal_info(struct ips_driver *ips)
1144 {
1145 u16 ptl;
1146
1147 ptl = thm_readw(THM_PTL);
1148 dev_dbg(&ips->dev->dev, "Processor temp limit: %d\n", ptl);
1149
1150 THM_DUMPW(THM_CTA);
1151 THM_DUMPW(THM_TRC);
1152 THM_DUMPW(THM_CTV1);
1153 THM_DUMPL(THM_STS);
1154 THM_DUMPW(THM_PTV);
1155 THM_DUMPQ(THM_MGTV);
1156 }
1157 #endif
1158
1159 /**
1160 * ips_irq_handler - handle temperature triggers and other IPS events
1161 * @irq: irq number
1162 * @arg: unused
1163 *
1164 * Handle temperature limit trigger events, generally by lowering the clamps.
1165 * If we're at a critical limit, we clamp back to the lowest possible value
1166 * to prevent emergency shutdown.
1167 */
1168 static irqreturn_t ips_irq_handler(int irq, void *arg)
1169 {
1170 struct ips_driver *ips = arg;
1171 u8 tses = thm_readb(THM_TSES);
1172 u8 tes = thm_readb(THM_TES);
1173
1174 if (!tses && !tes)
1175 return IRQ_NONE;
1176
1177 dev_info(&ips->dev->dev, "TSES: 0x%02x\n", tses);
1178 dev_info(&ips->dev->dev, "TES: 0x%02x\n", tes);
1179
1180 /* STS update from EC? */
1181 if (tes & 1) {
1182 u32 sts, tc1;
1183
1184 sts = thm_readl(THM_STS);
1185 tc1 = thm_readl(THM_TC1);
1186
1187 if (sts & STS_NVV) {
1188 spin_lock(&ips->turbo_status_lock);
1189 ips->core_power_limit = (sts & STS_PCPL_MASK) >>
1190 STS_PCPL_SHIFT;
1191 ips->mch_power_limit = (sts & STS_GPL_MASK) >>
1192 STS_GPL_SHIFT;
1193 /* ignore EC CPU vs GPU pref */
1194 ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS);
1195 /*
1196 * Disable turbo for now, until we can figure
1197 * out why the power figures are wrong
1198 */
1199 ips->cpu_turbo_enabled = false;
1200 if (ips->gpu_busy)
1201 ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS);
1202 ips->mcp_temp_limit = (sts & STS_PTL_MASK) >>
1203 STS_PTL_SHIFT;
1204 ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >>
1205 STS_PPL_SHIFT;
1206 verify_limits(ips);
1207 spin_unlock(&ips->turbo_status_lock);
1208
1209 thm_writeb(THM_SEC, SEC_ACK);
1210 }
1211 thm_writeb(THM_TES, tes);
1212 }
1213
1214 /* Thermal trip */
1215 if (tses) {
1216 dev_warn(&ips->dev->dev,
1217 "thermal trip occurred, tses: 0x%04x\n", tses);
1218 thm_writeb(THM_TSES, tses);
1219 }
1220
1221 return IRQ_HANDLED;
1222 }
1223
1224 #ifndef CONFIG_DEBUG_FS
1225 static void ips_debugfs_init(struct ips_driver *ips) { return; }
1226 static void ips_debugfs_cleanup(struct ips_driver *ips) { return; }
1227 #else
1228
1229 /* Expose current state and limits in debugfs if possible */
1230
1231 struct ips_debugfs_node {
1232 struct ips_driver *ips;
1233 char *name;
1234 int (*show)(struct seq_file *m, void *data);
1235 };
1236
1237 static int show_cpu_temp(struct seq_file *m, void *data)
1238 {
1239 struct ips_driver *ips = m->private;
1240
1241 seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100,
1242 ips->ctv1_avg_temp % 100);
1243
1244 return 0;
1245 }
1246
1247 static int show_cpu_power(struct seq_file *m, void *data)
1248 {
1249 struct ips_driver *ips = m->private;
1250
1251 seq_printf(m, "%dmW\n", ips->cpu_avg_power);
1252
1253 return 0;
1254 }
1255
1256 static int show_cpu_clamp(struct seq_file *m, void *data)
1257 {
1258 u64 turbo_override;
1259 int tdp, tdc;
1260
1261 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1262
1263 tdp = (int)(turbo_override & TURBO_TDP_MASK);
1264 tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT);
1265
1266 /* Convert to .1W/A units */
1267 tdp = tdp * 10 / 8;
1268 tdc = tdc * 10 / 8;
1269
1270 /* Watts Amperes */
1271 seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10,
1272 tdc / 10, tdc % 10);
1273
1274 return 0;
1275 }
1276
1277 static int show_mch_temp(struct seq_file *m, void *data)
1278 {
1279 struct ips_driver *ips = m->private;
1280
1281 seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100,
1282 ips->mch_avg_temp % 100);
1283
1284 return 0;
1285 }
1286
1287 static int show_mch_power(struct seq_file *m, void *data)
1288 {
1289 struct ips_driver *ips = m->private;
1290
1291 seq_printf(m, "%dmW\n", ips->mch_avg_power);
1292
1293 return 0;
1294 }
1295
1296 static struct ips_debugfs_node ips_debug_files[] = {
1297 { NULL, "cpu_temp", show_cpu_temp },
1298 { NULL, "cpu_power", show_cpu_power },
1299 { NULL, "cpu_clamp", show_cpu_clamp },
1300 { NULL, "mch_temp", show_mch_temp },
1301 { NULL, "mch_power", show_mch_power },
1302 };
1303
1304 static int ips_debugfs_open(struct inode *inode, struct file *file)
1305 {
1306 struct ips_debugfs_node *node = inode->i_private;
1307
1308 return single_open(file, node->show, node->ips);
1309 }
1310
1311 static const struct file_operations ips_debugfs_ops = {
1312 .owner = THIS_MODULE,
1313 .open = ips_debugfs_open,
1314 .read = seq_read,
1315 .llseek = seq_lseek,
1316 .release = single_release,
1317 };
1318
1319 static void ips_debugfs_cleanup(struct ips_driver *ips)
1320 {
1321 if (ips->debug_root)
1322 debugfs_remove_recursive(ips->debug_root);
1323 return;
1324 }
1325
1326 static void ips_debugfs_init(struct ips_driver *ips)
1327 {
1328 int i;
1329
1330 ips->debug_root = debugfs_create_dir("ips", NULL);
1331 if (!ips->debug_root) {
1332 dev_err(&ips->dev->dev,
1333 "failed to create debugfs entries: %ld\n",
1334 PTR_ERR(ips->debug_root));
1335 return;
1336 }
1337
1338 for (i = 0; i < ARRAY_SIZE(ips_debug_files); i++) {
1339 struct dentry *ent;
1340 struct ips_debugfs_node *node = &ips_debug_files[i];
1341
1342 node->ips = ips;
1343 ent = debugfs_create_file(node->name, S_IFREG | S_IRUGO,
1344 ips->debug_root, node,
1345 &ips_debugfs_ops);
1346 if (!ent) {
1347 dev_err(&ips->dev->dev,
1348 "failed to create debug file: %ld\n",
1349 PTR_ERR(ent));
1350 goto err_cleanup;
1351 }
1352 }
1353
1354 return;
1355
1356 err_cleanup:
1357 ips_debugfs_cleanup(ips);
1358 return;
1359 }
1360 #endif /* CONFIG_DEBUG_FS */
1361
1362 /**
1363 * ips_detect_cpu - detect whether CPU supports IPS
1364 *
1365 * Walk our list and see if we're on a supported CPU. If we find one,
1366 * return the limits for it.
1367 */
1368 static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips)
1369 {
1370 u64 turbo_power, misc_en;
1371 struct ips_mcp_limits *limits = NULL;
1372 u16 tdp;
1373
1374 if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) {
1375 dev_info(&ips->dev->dev, "Non-IPS CPU detected.\n");
1376 goto out;
1377 }
1378
1379 rdmsrl(IA32_MISC_ENABLE, misc_en);
1380 /*
1381 * If the turbo enable bit isn't set, we shouldn't try to enable/disable
1382 * turbo manually or we'll get an illegal MSR access, even though
1383 * turbo will still be available.
1384 */
1385 if (misc_en & IA32_MISC_TURBO_EN)
1386 ips->turbo_toggle_allowed = true;
1387 else
1388 ips->turbo_toggle_allowed = false;
1389
1390 if (strstr(boot_cpu_data.x86_model_id, "CPU M"))
1391 limits = &ips_sv_limits;
1392 else if (strstr(boot_cpu_data.x86_model_id, "CPU L"))
1393 limits = &ips_lv_limits;
1394 else if (strstr(boot_cpu_data.x86_model_id, "CPU U"))
1395 limits = &ips_ulv_limits;
1396 else {
1397 dev_info(&ips->dev->dev, "No CPUID match found.\n");
1398 goto out;
1399 }
1400
1401 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power);
1402 tdp = turbo_power & TURBO_TDP_MASK;
1403
1404 /* Sanity check TDP against CPU */
1405 if (limits->core_power_limit != (tdp / 8) * 1000) {
1406 dev_info(&ips->dev->dev, "CPU TDP doesn't match expected value (found %d, expected %d)\n",
1407 tdp / 8, limits->core_power_limit / 1000);
1408 limits->core_power_limit = (tdp / 8) * 1000;
1409 }
1410
1411 out:
1412 return limits;
1413 }
1414
1415 /**
1416 * ips_get_i915_syms - try to get GPU control methods from i915 driver
1417 * @ips: IPS driver
1418 *
1419 * The i915 driver exports several interfaces to allow the IPS driver to
1420 * monitor and control graphics turbo mode. If we can find them, we can
1421 * enable graphics turbo, otherwise we must disable it to avoid exceeding
1422 * thermal and power limits in the MCP.
1423 */
1424 static bool ips_get_i915_syms(struct ips_driver *ips)
1425 {
1426 ips->read_mch_val = symbol_get(i915_read_mch_val);
1427 if (!ips->read_mch_val)
1428 goto out_err;
1429 ips->gpu_raise = symbol_get(i915_gpu_raise);
1430 if (!ips->gpu_raise)
1431 goto out_put_mch;
1432 ips->gpu_lower = symbol_get(i915_gpu_lower);
1433 if (!ips->gpu_lower)
1434 goto out_put_raise;
1435 ips->gpu_busy = symbol_get(i915_gpu_busy);
1436 if (!ips->gpu_busy)
1437 goto out_put_lower;
1438 ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable);
1439 if (!ips->gpu_turbo_disable)
1440 goto out_put_busy;
1441
1442 return true;
1443
1444 out_put_busy:
1445 symbol_put(i915_gpu_busy);
1446 out_put_lower:
1447 symbol_put(i915_gpu_lower);
1448 out_put_raise:
1449 symbol_put(i915_gpu_raise);
1450 out_put_mch:
1451 symbol_put(i915_read_mch_val);
1452 out_err:
1453 return false;
1454 }
1455
1456 static bool
1457 ips_gpu_turbo_enabled(struct ips_driver *ips)
1458 {
1459 if (!ips->gpu_busy && late_i915_load) {
1460 if (ips_get_i915_syms(ips)) {
1461 dev_info(&ips->dev->dev,
1462 "i915 driver attached, reenabling gpu turbo\n");
1463 ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS);
1464 }
1465 }
1466
1467 return ips->gpu_turbo_enabled;
1468 }
1469
1470 void
1471 ips_link_to_i915_driver(void)
1472 {
1473 /* We can't cleanly get at the various ips_driver structs from
1474 * this caller (the i915 driver), so just set a flag saying
1475 * that it's time to try getting the symbols again.
1476 */
1477 late_i915_load = true;
1478 }
1479 EXPORT_SYMBOL_GPL(ips_link_to_i915_driver);
1480
1481 static const struct pci_device_id ips_id_table[] = {
1482 { PCI_DEVICE(PCI_VENDOR_ID_INTEL,
1483 PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), },
1484 { 0, }
1485 };
1486
1487 MODULE_DEVICE_TABLE(pci, ips_id_table);
1488
1489 static int ips_blacklist_callback(const struct dmi_system_id *id)
1490 {
1491 pr_info("Blacklisted intel_ips for %s\n", id->ident);
1492 return 1;
1493 }
1494
1495 static const struct dmi_system_id ips_blacklist[] = {
1496 {
1497 .callback = ips_blacklist_callback,
1498 .ident = "HP ProBook",
1499 .matches = {
1500 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
1501 DMI_MATCH(DMI_PRODUCT_NAME, "HP ProBook"),
1502 },
1503 },
1504 { } /* terminating entry */
1505 };
1506
1507 static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id)
1508 {
1509 u64 platform_info;
1510 struct ips_driver *ips;
1511 u32 hts;
1512 int ret = 0;
1513 u16 htshi, trc, trc_required_mask;
1514 u8 tse;
1515
1516 if (dmi_check_system(ips_blacklist))
1517 return -ENODEV;
1518
1519 ips = kzalloc(sizeof(struct ips_driver), GFP_KERNEL);
1520 if (!ips)
1521 return -ENOMEM;
1522
1523 pci_set_drvdata(dev, ips);
1524 ips->dev = dev;
1525
1526 ips->limits = ips_detect_cpu(ips);
1527 if (!ips->limits) {
1528 dev_info(&dev->dev, "IPS not supported on this CPU\n");
1529 ret = -ENXIO;
1530 goto error_free;
1531 }
1532
1533 spin_lock_init(&ips->turbo_status_lock);
1534
1535 ret = pci_enable_device(dev);
1536 if (ret) {
1537 dev_err(&dev->dev, "can't enable PCI device, aborting\n");
1538 goto error_free;
1539 }
1540
1541 if (!pci_resource_start(dev, 0)) {
1542 dev_err(&dev->dev, "TBAR not assigned, aborting\n");
1543 ret = -ENXIO;
1544 goto error_free;
1545 }
1546
1547 ret = pci_request_regions(dev, "ips thermal sensor");
1548 if (ret) {
1549 dev_err(&dev->dev, "thermal resource busy, aborting\n");
1550 goto error_free;
1551 }
1552
1553
1554 ips->regmap = ioremap(pci_resource_start(dev, 0),
1555 pci_resource_len(dev, 0));
1556 if (!ips->regmap) {
1557 dev_err(&dev->dev, "failed to map thermal regs, aborting\n");
1558 ret = -EBUSY;
1559 goto error_release;
1560 }
1561
1562 tse = thm_readb(THM_TSE);
1563 if (tse != TSE_EN) {
1564 dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse);
1565 ret = -ENXIO;
1566 goto error_unmap;
1567 }
1568
1569 trc = thm_readw(THM_TRC);
1570 trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN;
1571 if ((trc & trc_required_mask) != trc_required_mask) {
1572 dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n");
1573 ret = -ENXIO;
1574 goto error_unmap;
1575 }
1576
1577 if (trc & TRC_CORE2_EN)
1578 ips->second_cpu = true;
1579
1580 update_turbo_limits(ips);
1581 dev_dbg(&dev->dev, "max cpu power clamp: %dW\n",
1582 ips->mcp_power_limit / 10);
1583 dev_dbg(&dev->dev, "max core power clamp: %dW\n",
1584 ips->core_power_limit / 10);
1585 /* BIOS may update limits at runtime */
1586 if (thm_readl(THM_PSC) & PSP_PBRT)
1587 ips->poll_turbo_status = true;
1588
1589 if (!ips_get_i915_syms(ips)) {
1590 dev_info(&dev->dev, "failed to get i915 symbols, graphics turbo disabled until i915 loads\n");
1591 ips->gpu_turbo_enabled = false;
1592 } else {
1593 dev_dbg(&dev->dev, "graphics turbo enabled\n");
1594 ips->gpu_turbo_enabled = true;
1595 }
1596
1597 /*
1598 * Check PLATFORM_INFO MSR to make sure this chip is
1599 * turbo capable.
1600 */
1601 rdmsrl(PLATFORM_INFO, platform_info);
1602 if (!(platform_info & PLATFORM_TDP)) {
1603 dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n");
1604 ret = -ENODEV;
1605 goto error_unmap;
1606 }
1607
1608 /*
1609 * IRQ handler for ME interaction
1610 * Note: don't use MSI here as the PCH has bugs.
1611 */
1612 pci_disable_msi(dev);
1613 ret = request_irq(dev->irq, ips_irq_handler, IRQF_SHARED, "ips",
1614 ips);
1615 if (ret) {
1616 dev_err(&dev->dev, "request irq failed, aborting\n");
1617 goto error_unmap;
1618 }
1619
1620 /* Enable aux, hot & critical interrupts */
1621 thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI |
1622 TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI);
1623 thm_writeb(THM_TEN, TEN_UPDATE_EN);
1624
1625 /* Collect adjustment values */
1626 ips->cta_val = thm_readw(THM_CTA);
1627 ips->pta_val = thm_readw(THM_PTA);
1628 ips->mgta_val = thm_readw(THM_MGTA);
1629
1630 /* Save turbo limits & ratios */
1631 rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1632
1633 ips_disable_cpu_turbo(ips);
1634 ips->cpu_turbo_enabled = false;
1635
1636 /* Create thermal adjust thread */
1637 ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust");
1638 if (IS_ERR(ips->adjust)) {
1639 dev_err(&dev->dev,
1640 "failed to create thermal adjust thread, aborting\n");
1641 ret = -ENOMEM;
1642 goto error_free_irq;
1643
1644 }
1645
1646 /*
1647 * Set up the work queue and monitor thread. The monitor thread
1648 * will wake up ips_adjust thread.
1649 */
1650 ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor");
1651 if (IS_ERR(ips->monitor)) {
1652 dev_err(&dev->dev,
1653 "failed to create thermal monitor thread, aborting\n");
1654 ret = -ENOMEM;
1655 goto error_thread_cleanup;
1656 }
1657
1658 hts = (ips->core_power_limit << HTS_PCPL_SHIFT) |
1659 (ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV;
1660 htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT;
1661
1662 thm_writew(THM_HTSHI, htshi);
1663 thm_writel(THM_HTS, hts);
1664
1665 ips_debugfs_init(ips);
1666
1667 dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n",
1668 ips->mcp_temp_limit);
1669 return ret;
1670
1671 error_thread_cleanup:
1672 kthread_stop(ips->adjust);
1673 error_free_irq:
1674 free_irq(ips->dev->irq, ips);
1675 error_unmap:
1676 iounmap(ips->regmap);
1677 error_release:
1678 pci_release_regions(dev);
1679 error_free:
1680 kfree(ips);
1681 return ret;
1682 }
1683
1684 static void ips_remove(struct pci_dev *dev)
1685 {
1686 struct ips_driver *ips = pci_get_drvdata(dev);
1687 u64 turbo_override;
1688
1689 if (!ips)
1690 return;
1691
1692 ips_debugfs_cleanup(ips);
1693
1694 /* Release i915 driver */
1695 if (ips->read_mch_val)
1696 symbol_put(i915_read_mch_val);
1697 if (ips->gpu_raise)
1698 symbol_put(i915_gpu_raise);
1699 if (ips->gpu_lower)
1700 symbol_put(i915_gpu_lower);
1701 if (ips->gpu_busy)
1702 symbol_put(i915_gpu_busy);
1703 if (ips->gpu_turbo_disable)
1704 symbol_put(i915_gpu_turbo_disable);
1705
1706 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1707 turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN);
1708 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1709 wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1710
1711 free_irq(ips->dev->irq, ips);
1712 if (ips->adjust)
1713 kthread_stop(ips->adjust);
1714 if (ips->monitor)
1715 kthread_stop(ips->monitor);
1716 iounmap(ips->regmap);
1717 pci_release_regions(dev);
1718 kfree(ips);
1719 dev_dbg(&dev->dev, "IPS driver removed\n");
1720 }
1721
1722 static void ips_shutdown(struct pci_dev *dev)
1723 {
1724 }
1725
1726 static struct pci_driver ips_pci_driver = {
1727 .name = "intel ips",
1728 .id_table = ips_id_table,
1729 .probe = ips_probe,
1730 .remove = ips_remove,
1731 .shutdown = ips_shutdown,
1732 };
1733
1734 module_pci_driver(ips_pci_driver);
1735
1736 MODULE_LICENSE("GPL");
1737 MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>");
1738 MODULE_DESCRIPTION("Intelligent Power Sharing Driver");