]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/power/ab8500_fg.c
Merge tag 'vfio-v3.19-rc1' of git://github.com/awilliam/linux-vfio
[mirror_ubuntu-artful-kernel.git] / drivers / power / ab8500_fg.c
1 /*
2 * Copyright (C) ST-Ericsson AB 2012
3 *
4 * Main and Back-up battery management driver.
5 *
6 * Note: Backup battery management is required in case of Li-Ion battery and not
7 * for capacitive battery. HREF boards have capacitive battery and hence backup
8 * battery management is not used and the supported code is available in this
9 * driver.
10 *
11 * License Terms: GNU General Public License v2
12 * Author:
13 * Johan Palsson <johan.palsson@stericsson.com>
14 * Karl Komierowski <karl.komierowski@stericsson.com>
15 * Arun R Murthy <arun.murthy@stericsson.com>
16 */
17
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/interrupt.h>
22 #include <linux/platform_device.h>
23 #include <linux/power_supply.h>
24 #include <linux/kobject.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/time.h>
28 #include <linux/time64.h>
29 #include <linux/of.h>
30 #include <linux/completion.h>
31 #include <linux/mfd/core.h>
32 #include <linux/mfd/abx500.h>
33 #include <linux/mfd/abx500/ab8500.h>
34 #include <linux/mfd/abx500/ab8500-bm.h>
35 #include <linux/mfd/abx500/ab8500-gpadc.h>
36 #include <linux/kernel.h>
37
38 #define MILLI_TO_MICRO 1000
39 #define FG_LSB_IN_MA 1627
40 #define QLSB_NANO_AMP_HOURS_X10 1071
41 #define INS_CURR_TIMEOUT (3 * HZ)
42
43 #define SEC_TO_SAMPLE(S) (S * 4)
44
45 #define NBR_AVG_SAMPLES 20
46
47 #define LOW_BAT_CHECK_INTERVAL (HZ / 16) /* 62.5 ms */
48
49 #define VALID_CAPACITY_SEC (45 * 60) /* 45 minutes */
50 #define BATT_OK_MIN 2360 /* mV */
51 #define BATT_OK_INCREMENT 50 /* mV */
52 #define BATT_OK_MAX_NR_INCREMENTS 0xE
53
54 /* FG constants */
55 #define BATT_OVV 0x01
56
57 #define interpolate(x, x1, y1, x2, y2) \
58 ((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
59
60 #define to_ab8500_fg_device_info(x) container_of((x), \
61 struct ab8500_fg, fg_psy);
62
63 /**
64 * struct ab8500_fg_interrupts - ab8500 fg interupts
65 * @name: name of the interrupt
66 * @isr function pointer to the isr
67 */
68 struct ab8500_fg_interrupts {
69 char *name;
70 irqreturn_t (*isr)(int irq, void *data);
71 };
72
73 enum ab8500_fg_discharge_state {
74 AB8500_FG_DISCHARGE_INIT,
75 AB8500_FG_DISCHARGE_INITMEASURING,
76 AB8500_FG_DISCHARGE_INIT_RECOVERY,
77 AB8500_FG_DISCHARGE_RECOVERY,
78 AB8500_FG_DISCHARGE_READOUT_INIT,
79 AB8500_FG_DISCHARGE_READOUT,
80 AB8500_FG_DISCHARGE_WAKEUP,
81 };
82
83 static char *discharge_state[] = {
84 "DISCHARGE_INIT",
85 "DISCHARGE_INITMEASURING",
86 "DISCHARGE_INIT_RECOVERY",
87 "DISCHARGE_RECOVERY",
88 "DISCHARGE_READOUT_INIT",
89 "DISCHARGE_READOUT",
90 "DISCHARGE_WAKEUP",
91 };
92
93 enum ab8500_fg_charge_state {
94 AB8500_FG_CHARGE_INIT,
95 AB8500_FG_CHARGE_READOUT,
96 };
97
98 static char *charge_state[] = {
99 "CHARGE_INIT",
100 "CHARGE_READOUT",
101 };
102
103 enum ab8500_fg_calibration_state {
104 AB8500_FG_CALIB_INIT,
105 AB8500_FG_CALIB_WAIT,
106 AB8500_FG_CALIB_END,
107 };
108
109 struct ab8500_fg_avg_cap {
110 int avg;
111 int samples[NBR_AVG_SAMPLES];
112 time64_t time_stamps[NBR_AVG_SAMPLES];
113 int pos;
114 int nbr_samples;
115 int sum;
116 };
117
118 struct ab8500_fg_cap_scaling {
119 bool enable;
120 int cap_to_scale[2];
121 int disable_cap_level;
122 int scaled_cap;
123 };
124
125 struct ab8500_fg_battery_capacity {
126 int max_mah_design;
127 int max_mah;
128 int mah;
129 int permille;
130 int level;
131 int prev_mah;
132 int prev_percent;
133 int prev_level;
134 int user_mah;
135 struct ab8500_fg_cap_scaling cap_scale;
136 };
137
138 struct ab8500_fg_flags {
139 bool fg_enabled;
140 bool conv_done;
141 bool charging;
142 bool fully_charged;
143 bool force_full;
144 bool low_bat_delay;
145 bool low_bat;
146 bool bat_ovv;
147 bool batt_unknown;
148 bool calibrate;
149 bool user_cap;
150 bool batt_id_received;
151 };
152
153 struct inst_curr_result_list {
154 struct list_head list;
155 int *result;
156 };
157
158 /**
159 * struct ab8500_fg - ab8500 FG device information
160 * @dev: Pointer to the structure device
161 * @node: a list of AB8500 FGs, hence prepared for reentrance
162 * @irq holds the CCEOC interrupt number
163 * @vbat: Battery voltage in mV
164 * @vbat_nom: Nominal battery voltage in mV
165 * @inst_curr: Instantenous battery current in mA
166 * @avg_curr: Average battery current in mA
167 * @bat_temp battery temperature
168 * @fg_samples: Number of samples used in the FG accumulation
169 * @accu_charge: Accumulated charge from the last conversion
170 * @recovery_cnt: Counter for recovery mode
171 * @high_curr_cnt: Counter for high current mode
172 * @init_cnt: Counter for init mode
173 * @low_bat_cnt Counter for number of consecutive low battery measures
174 * @nbr_cceoc_irq_cnt Counter for number of CCEOC irqs received since enabled
175 * @recovery_needed: Indicate if recovery is needed
176 * @high_curr_mode: Indicate if we're in high current mode
177 * @init_capacity: Indicate if initial capacity measuring should be done
178 * @turn_off_fg: True if fg was off before current measurement
179 * @calib_state State during offset calibration
180 * @discharge_state: Current discharge state
181 * @charge_state: Current charge state
182 * @ab8500_fg_started Completion struct used for the instant current start
183 * @ab8500_fg_complete Completion struct used for the instant current reading
184 * @flags: Structure for information about events triggered
185 * @bat_cap: Structure for battery capacity specific parameters
186 * @avg_cap: Average capacity filter
187 * @parent: Pointer to the struct ab8500
188 * @gpadc: Pointer to the struct gpadc
189 * @bm: Platform specific battery management information
190 * @fg_psy: Structure that holds the FG specific battery properties
191 * @fg_wq: Work queue for running the FG algorithm
192 * @fg_periodic_work: Work to run the FG algorithm periodically
193 * @fg_low_bat_work: Work to check low bat condition
194 * @fg_reinit_work Work used to reset and reinitialise the FG algorithm
195 * @fg_work: Work to run the FG algorithm instantly
196 * @fg_acc_cur_work: Work to read the FG accumulator
197 * @fg_check_hw_failure_work: Work for checking HW state
198 * @cc_lock: Mutex for locking the CC
199 * @fg_kobject: Structure of type kobject
200 */
201 struct ab8500_fg {
202 struct device *dev;
203 struct list_head node;
204 int irq;
205 int vbat;
206 int vbat_nom;
207 int inst_curr;
208 int avg_curr;
209 int bat_temp;
210 int fg_samples;
211 int accu_charge;
212 int recovery_cnt;
213 int high_curr_cnt;
214 int init_cnt;
215 int low_bat_cnt;
216 int nbr_cceoc_irq_cnt;
217 bool recovery_needed;
218 bool high_curr_mode;
219 bool init_capacity;
220 bool turn_off_fg;
221 enum ab8500_fg_calibration_state calib_state;
222 enum ab8500_fg_discharge_state discharge_state;
223 enum ab8500_fg_charge_state charge_state;
224 struct completion ab8500_fg_started;
225 struct completion ab8500_fg_complete;
226 struct ab8500_fg_flags flags;
227 struct ab8500_fg_battery_capacity bat_cap;
228 struct ab8500_fg_avg_cap avg_cap;
229 struct ab8500 *parent;
230 struct ab8500_gpadc *gpadc;
231 struct abx500_bm_data *bm;
232 struct power_supply fg_psy;
233 struct workqueue_struct *fg_wq;
234 struct delayed_work fg_periodic_work;
235 struct delayed_work fg_low_bat_work;
236 struct delayed_work fg_reinit_work;
237 struct work_struct fg_work;
238 struct work_struct fg_acc_cur_work;
239 struct delayed_work fg_check_hw_failure_work;
240 struct mutex cc_lock;
241 struct kobject fg_kobject;
242 };
243 static LIST_HEAD(ab8500_fg_list);
244
245 /**
246 * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
247 * (i.e. the first fuel gauge in the instance list)
248 */
249 struct ab8500_fg *ab8500_fg_get(void)
250 {
251 struct ab8500_fg *fg;
252
253 if (list_empty(&ab8500_fg_list))
254 return NULL;
255
256 fg = list_first_entry(&ab8500_fg_list, struct ab8500_fg, node);
257 return fg;
258 }
259
260 /* Main battery properties */
261 static enum power_supply_property ab8500_fg_props[] = {
262 POWER_SUPPLY_PROP_VOLTAGE_NOW,
263 POWER_SUPPLY_PROP_CURRENT_NOW,
264 POWER_SUPPLY_PROP_CURRENT_AVG,
265 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
266 POWER_SUPPLY_PROP_ENERGY_FULL,
267 POWER_SUPPLY_PROP_ENERGY_NOW,
268 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
269 POWER_SUPPLY_PROP_CHARGE_FULL,
270 POWER_SUPPLY_PROP_CHARGE_NOW,
271 POWER_SUPPLY_PROP_CAPACITY,
272 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
273 };
274
275 /*
276 * This array maps the raw hex value to lowbat voltage used by the AB8500
277 * Values taken from the UM0836
278 */
279 static int ab8500_fg_lowbat_voltage_map[] = {
280 2300 ,
281 2325 ,
282 2350 ,
283 2375 ,
284 2400 ,
285 2425 ,
286 2450 ,
287 2475 ,
288 2500 ,
289 2525 ,
290 2550 ,
291 2575 ,
292 2600 ,
293 2625 ,
294 2650 ,
295 2675 ,
296 2700 ,
297 2725 ,
298 2750 ,
299 2775 ,
300 2800 ,
301 2825 ,
302 2850 ,
303 2875 ,
304 2900 ,
305 2925 ,
306 2950 ,
307 2975 ,
308 3000 ,
309 3025 ,
310 3050 ,
311 3075 ,
312 3100 ,
313 3125 ,
314 3150 ,
315 3175 ,
316 3200 ,
317 3225 ,
318 3250 ,
319 3275 ,
320 3300 ,
321 3325 ,
322 3350 ,
323 3375 ,
324 3400 ,
325 3425 ,
326 3450 ,
327 3475 ,
328 3500 ,
329 3525 ,
330 3550 ,
331 3575 ,
332 3600 ,
333 3625 ,
334 3650 ,
335 3675 ,
336 3700 ,
337 3725 ,
338 3750 ,
339 3775 ,
340 3800 ,
341 3825 ,
342 3850 ,
343 3850 ,
344 };
345
346 static u8 ab8500_volt_to_regval(int voltage)
347 {
348 int i;
349
350 if (voltage < ab8500_fg_lowbat_voltage_map[0])
351 return 0;
352
353 for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
354 if (voltage < ab8500_fg_lowbat_voltage_map[i])
355 return (u8) i - 1;
356 }
357
358 /* If not captured above, return index of last element */
359 return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
360 }
361
362 /**
363 * ab8500_fg_is_low_curr() - Low or high current mode
364 * @di: pointer to the ab8500_fg structure
365 * @curr: the current to base or our decision on
366 *
367 * Low current mode if the current consumption is below a certain threshold
368 */
369 static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
370 {
371 /*
372 * We want to know if we're in low current mode
373 */
374 if (curr > -di->bm->fg_params->high_curr_threshold)
375 return true;
376 else
377 return false;
378 }
379
380 /**
381 * ab8500_fg_add_cap_sample() - Add capacity to average filter
382 * @di: pointer to the ab8500_fg structure
383 * @sample: the capacity in mAh to add to the filter
384 *
385 * A capacity is added to the filter and a new mean capacity is calculated and
386 * returned
387 */
388 static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
389 {
390 struct timespec64 ts64;
391 struct ab8500_fg_avg_cap *avg = &di->avg_cap;
392
393 getnstimeofday64(&ts64);
394
395 do {
396 avg->sum += sample - avg->samples[avg->pos];
397 avg->samples[avg->pos] = sample;
398 avg->time_stamps[avg->pos] = ts64.tv_sec;
399 avg->pos++;
400
401 if (avg->pos == NBR_AVG_SAMPLES)
402 avg->pos = 0;
403
404 if (avg->nbr_samples < NBR_AVG_SAMPLES)
405 avg->nbr_samples++;
406
407 /*
408 * Check the time stamp for each sample. If too old,
409 * replace with latest sample
410 */
411 } while (ts64.tv_sec - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
412
413 avg->avg = avg->sum / avg->nbr_samples;
414
415 return avg->avg;
416 }
417
418 /**
419 * ab8500_fg_clear_cap_samples() - Clear average filter
420 * @di: pointer to the ab8500_fg structure
421 *
422 * The capacity filter is is reset to zero.
423 */
424 static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
425 {
426 int i;
427 struct ab8500_fg_avg_cap *avg = &di->avg_cap;
428
429 avg->pos = 0;
430 avg->nbr_samples = 0;
431 avg->sum = 0;
432 avg->avg = 0;
433
434 for (i = 0; i < NBR_AVG_SAMPLES; i++) {
435 avg->samples[i] = 0;
436 avg->time_stamps[i] = 0;
437 }
438 }
439
440 /**
441 * ab8500_fg_fill_cap_sample() - Fill average filter
442 * @di: pointer to the ab8500_fg structure
443 * @sample: the capacity in mAh to fill the filter with
444 *
445 * The capacity filter is filled with a capacity in mAh
446 */
447 static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
448 {
449 int i;
450 struct timespec64 ts64;
451 struct ab8500_fg_avg_cap *avg = &di->avg_cap;
452
453 getnstimeofday64(&ts64);
454
455 for (i = 0; i < NBR_AVG_SAMPLES; i++) {
456 avg->samples[i] = sample;
457 avg->time_stamps[i] = ts64.tv_sec;
458 }
459
460 avg->pos = 0;
461 avg->nbr_samples = NBR_AVG_SAMPLES;
462 avg->sum = sample * NBR_AVG_SAMPLES;
463 avg->avg = sample;
464 }
465
466 /**
467 * ab8500_fg_coulomb_counter() - enable coulomb counter
468 * @di: pointer to the ab8500_fg structure
469 * @enable: enable/disable
470 *
471 * Enable/Disable coulomb counter.
472 * On failure returns negative value.
473 */
474 static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
475 {
476 int ret = 0;
477 mutex_lock(&di->cc_lock);
478 if (enable) {
479 /* To be able to reprogram the number of samples, we have to
480 * first stop the CC and then enable it again */
481 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
482 AB8500_RTC_CC_CONF_REG, 0x00);
483 if (ret)
484 goto cc_err;
485
486 /* Program the samples */
487 ret = abx500_set_register_interruptible(di->dev,
488 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
489 di->fg_samples);
490 if (ret)
491 goto cc_err;
492
493 /* Start the CC */
494 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
495 AB8500_RTC_CC_CONF_REG,
496 (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
497 if (ret)
498 goto cc_err;
499
500 di->flags.fg_enabled = true;
501 } else {
502 /* Clear any pending read requests */
503 ret = abx500_mask_and_set_register_interruptible(di->dev,
504 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
505 (RESET_ACCU | READ_REQ), 0);
506 if (ret)
507 goto cc_err;
508
509 ret = abx500_set_register_interruptible(di->dev,
510 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
511 if (ret)
512 goto cc_err;
513
514 /* Stop the CC */
515 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
516 AB8500_RTC_CC_CONF_REG, 0);
517 if (ret)
518 goto cc_err;
519
520 di->flags.fg_enabled = false;
521
522 }
523 dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
524 enable, di->fg_samples);
525
526 mutex_unlock(&di->cc_lock);
527
528 return ret;
529 cc_err:
530 dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
531 mutex_unlock(&di->cc_lock);
532 return ret;
533 }
534
535 /**
536 * ab8500_fg_inst_curr_start() - start battery instantaneous current
537 * @di: pointer to the ab8500_fg structure
538 *
539 * Returns 0 or error code
540 * Note: This is part "one" and has to be called before
541 * ab8500_fg_inst_curr_finalize()
542 */
543 int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
544 {
545 u8 reg_val;
546 int ret;
547
548 mutex_lock(&di->cc_lock);
549
550 di->nbr_cceoc_irq_cnt = 0;
551 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
552 AB8500_RTC_CC_CONF_REG, &reg_val);
553 if (ret < 0)
554 goto fail;
555
556 if (!(reg_val & CC_PWR_UP_ENA)) {
557 dev_dbg(di->dev, "%s Enable FG\n", __func__);
558 di->turn_off_fg = true;
559
560 /* Program the samples */
561 ret = abx500_set_register_interruptible(di->dev,
562 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
563 SEC_TO_SAMPLE(10));
564 if (ret)
565 goto fail;
566
567 /* Start the CC */
568 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
569 AB8500_RTC_CC_CONF_REG,
570 (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
571 if (ret)
572 goto fail;
573 } else {
574 di->turn_off_fg = false;
575 }
576
577 /* Return and WFI */
578 reinit_completion(&di->ab8500_fg_started);
579 reinit_completion(&di->ab8500_fg_complete);
580 enable_irq(di->irq);
581
582 /* Note: cc_lock is still locked */
583 return 0;
584 fail:
585 mutex_unlock(&di->cc_lock);
586 return ret;
587 }
588
589 /**
590 * ab8500_fg_inst_curr_started() - check if fg conversion has started
591 * @di: pointer to the ab8500_fg structure
592 *
593 * Returns 1 if conversion started, 0 if still waiting
594 */
595 int ab8500_fg_inst_curr_started(struct ab8500_fg *di)
596 {
597 return completion_done(&di->ab8500_fg_started);
598 }
599
600 /**
601 * ab8500_fg_inst_curr_done() - check if fg conversion is done
602 * @di: pointer to the ab8500_fg structure
603 *
604 * Returns 1 if conversion done, 0 if still waiting
605 */
606 int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
607 {
608 return completion_done(&di->ab8500_fg_complete);
609 }
610
611 /**
612 * ab8500_fg_inst_curr_finalize() - battery instantaneous current
613 * @di: pointer to the ab8500_fg structure
614 * @res: battery instantenous current(on success)
615 *
616 * Returns 0 or an error code
617 * Note: This is part "two" and has to be called at earliest 250 ms
618 * after ab8500_fg_inst_curr_start()
619 */
620 int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
621 {
622 u8 low, high;
623 int val;
624 int ret;
625 int timeout;
626
627 if (!completion_done(&di->ab8500_fg_complete)) {
628 timeout = wait_for_completion_timeout(
629 &di->ab8500_fg_complete,
630 INS_CURR_TIMEOUT);
631 dev_dbg(di->dev, "Finalize time: %d ms\n",
632 ((INS_CURR_TIMEOUT - timeout) * 1000) / HZ);
633 if (!timeout) {
634 ret = -ETIME;
635 disable_irq(di->irq);
636 di->nbr_cceoc_irq_cnt = 0;
637 dev_err(di->dev, "completion timed out [%d]\n",
638 __LINE__);
639 goto fail;
640 }
641 }
642
643 disable_irq(di->irq);
644 di->nbr_cceoc_irq_cnt = 0;
645
646 ret = abx500_mask_and_set_register_interruptible(di->dev,
647 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
648 READ_REQ, READ_REQ);
649
650 /* 100uS between read request and read is needed */
651 usleep_range(100, 100);
652
653 /* Read CC Sample conversion value Low and high */
654 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
655 AB8500_GASG_CC_SMPL_CNVL_REG, &low);
656 if (ret < 0)
657 goto fail;
658
659 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
660 AB8500_GASG_CC_SMPL_CNVH_REG, &high);
661 if (ret < 0)
662 goto fail;
663
664 /*
665 * negative value for Discharging
666 * convert 2's compliment into decimal
667 */
668 if (high & 0x10)
669 val = (low | (high << 8) | 0xFFFFE000);
670 else
671 val = (low | (high << 8));
672
673 /*
674 * Convert to unit value in mA
675 * Full scale input voltage is
676 * 63.160mV => LSB = 63.160mV/(4096*res) = 1.542mA
677 * Given a 250ms conversion cycle time the LSB corresponds
678 * to 107.1 nAh. Convert to current by dividing by the conversion
679 * time in hours (250ms = 1 / (3600 * 4)h)
680 * 107.1nAh assumes 10mOhm, but fg_res is in 0.1mOhm
681 */
682 val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
683 (1000 * di->bm->fg_res);
684
685 if (di->turn_off_fg) {
686 dev_dbg(di->dev, "%s Disable FG\n", __func__);
687
688 /* Clear any pending read requests */
689 ret = abx500_set_register_interruptible(di->dev,
690 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
691 if (ret)
692 goto fail;
693
694 /* Stop the CC */
695 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
696 AB8500_RTC_CC_CONF_REG, 0);
697 if (ret)
698 goto fail;
699 }
700 mutex_unlock(&di->cc_lock);
701 (*res) = val;
702
703 return 0;
704 fail:
705 mutex_unlock(&di->cc_lock);
706 return ret;
707 }
708
709 /**
710 * ab8500_fg_inst_curr_blocking() - battery instantaneous current
711 * @di: pointer to the ab8500_fg structure
712 * @res: battery instantenous current(on success)
713 *
714 * Returns 0 else error code
715 */
716 int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
717 {
718 int ret;
719 int timeout;
720 int res = 0;
721
722 ret = ab8500_fg_inst_curr_start(di);
723 if (ret) {
724 dev_err(di->dev, "Failed to initialize fg_inst\n");
725 return 0;
726 }
727
728 /* Wait for CC to actually start */
729 if (!completion_done(&di->ab8500_fg_started)) {
730 timeout = wait_for_completion_timeout(
731 &di->ab8500_fg_started,
732 INS_CURR_TIMEOUT);
733 dev_dbg(di->dev, "Start time: %d ms\n",
734 ((INS_CURR_TIMEOUT - timeout) * 1000) / HZ);
735 if (!timeout) {
736 ret = -ETIME;
737 dev_err(di->dev, "completion timed out [%d]\n",
738 __LINE__);
739 goto fail;
740 }
741 }
742
743 ret = ab8500_fg_inst_curr_finalize(di, &res);
744 if (ret) {
745 dev_err(di->dev, "Failed to finalize fg_inst\n");
746 return 0;
747 }
748
749 dev_dbg(di->dev, "%s instant current: %d", __func__, res);
750 return res;
751 fail:
752 disable_irq(di->irq);
753 mutex_unlock(&di->cc_lock);
754 return ret;
755 }
756
757 /**
758 * ab8500_fg_acc_cur_work() - average battery current
759 * @work: pointer to the work_struct structure
760 *
761 * Updated the average battery current obtained from the
762 * coulomb counter.
763 */
764 static void ab8500_fg_acc_cur_work(struct work_struct *work)
765 {
766 int val;
767 int ret;
768 u8 low, med, high;
769
770 struct ab8500_fg *di = container_of(work,
771 struct ab8500_fg, fg_acc_cur_work);
772
773 mutex_lock(&di->cc_lock);
774 ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
775 AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
776 if (ret)
777 goto exit;
778
779 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
780 AB8500_GASG_CC_NCOV_ACCU_LOW, &low);
781 if (ret < 0)
782 goto exit;
783
784 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
785 AB8500_GASG_CC_NCOV_ACCU_MED, &med);
786 if (ret < 0)
787 goto exit;
788
789 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
790 AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
791 if (ret < 0)
792 goto exit;
793
794 /* Check for sign bit in case of negative value, 2's compliment */
795 if (high & 0x10)
796 val = (low | (med << 8) | (high << 16) | 0xFFE00000);
797 else
798 val = (low | (med << 8) | (high << 16));
799
800 /*
801 * Convert to uAh
802 * Given a 250ms conversion cycle time the LSB corresponds
803 * to 112.9 nAh.
804 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
805 */
806 di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
807 (100 * di->bm->fg_res);
808
809 /*
810 * Convert to unit value in mA
811 * by dividing by the conversion
812 * time in hours (= samples / (3600 * 4)h)
813 * and multiply with 1000
814 */
815 di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
816 (1000 * di->bm->fg_res * (di->fg_samples / 4));
817
818 di->flags.conv_done = true;
819
820 mutex_unlock(&di->cc_lock);
821
822 queue_work(di->fg_wq, &di->fg_work);
823
824 dev_dbg(di->dev, "fg_res: %d, fg_samples: %d, gasg: %d, accu_charge: %d \n",
825 di->bm->fg_res, di->fg_samples, val, di->accu_charge);
826 return;
827 exit:
828 dev_err(di->dev,
829 "Failed to read or write gas gauge registers\n");
830 mutex_unlock(&di->cc_lock);
831 queue_work(di->fg_wq, &di->fg_work);
832 }
833
834 /**
835 * ab8500_fg_bat_voltage() - get battery voltage
836 * @di: pointer to the ab8500_fg structure
837 *
838 * Returns battery voltage(on success) else error code
839 */
840 static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
841 {
842 int vbat;
843 static int prev;
844
845 vbat = ab8500_gpadc_convert(di->gpadc, MAIN_BAT_V);
846 if (vbat < 0) {
847 dev_err(di->dev,
848 "%s gpadc conversion failed, using previous value\n",
849 __func__);
850 return prev;
851 }
852
853 prev = vbat;
854 return vbat;
855 }
856
857 /**
858 * ab8500_fg_volt_to_capacity() - Voltage based capacity
859 * @di: pointer to the ab8500_fg structure
860 * @voltage: The voltage to convert to a capacity
861 *
862 * Returns battery capacity in per mille based on voltage
863 */
864 static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
865 {
866 int i, tbl_size;
867 const struct abx500_v_to_cap *tbl;
868 int cap = 0;
869
870 tbl = di->bm->bat_type[di->bm->batt_id].v_to_cap_tbl,
871 tbl_size = di->bm->bat_type[di->bm->batt_id].n_v_cap_tbl_elements;
872
873 for (i = 0; i < tbl_size; ++i) {
874 if (voltage > tbl[i].voltage)
875 break;
876 }
877
878 if ((i > 0) && (i < tbl_size)) {
879 cap = interpolate(voltage,
880 tbl[i].voltage,
881 tbl[i].capacity * 10,
882 tbl[i-1].voltage,
883 tbl[i-1].capacity * 10);
884 } else if (i == 0) {
885 cap = 1000;
886 } else {
887 cap = 0;
888 }
889
890 dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
891 __func__, voltage, cap);
892
893 return cap;
894 }
895
896 /**
897 * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
898 * @di: pointer to the ab8500_fg structure
899 *
900 * Returns battery capacity based on battery voltage that is not compensated
901 * for the voltage drop due to the load
902 */
903 static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
904 {
905 di->vbat = ab8500_fg_bat_voltage(di);
906 return ab8500_fg_volt_to_capacity(di, di->vbat);
907 }
908
909 /**
910 * ab8500_fg_battery_resistance() - Returns the battery inner resistance
911 * @di: pointer to the ab8500_fg structure
912 *
913 * Returns battery inner resistance added with the fuel gauge resistor value
914 * to get the total resistance in the whole link from gnd to bat+ node.
915 */
916 static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
917 {
918 int i, tbl_size;
919 const struct batres_vs_temp *tbl;
920 int resist = 0;
921
922 tbl = di->bm->bat_type[di->bm->batt_id].batres_tbl;
923 tbl_size = di->bm->bat_type[di->bm->batt_id].n_batres_tbl_elements;
924
925 for (i = 0; i < tbl_size; ++i) {
926 if (di->bat_temp / 10 > tbl[i].temp)
927 break;
928 }
929
930 if ((i > 0) && (i < tbl_size)) {
931 resist = interpolate(di->bat_temp / 10,
932 tbl[i].temp,
933 tbl[i].resist,
934 tbl[i-1].temp,
935 tbl[i-1].resist);
936 } else if (i == 0) {
937 resist = tbl[0].resist;
938 } else {
939 resist = tbl[tbl_size - 1].resist;
940 }
941
942 dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
943 " fg resistance %d, total: %d (mOhm)\n",
944 __func__, di->bat_temp, resist, di->bm->fg_res / 10,
945 (di->bm->fg_res / 10) + resist);
946
947 /* fg_res variable is in 0.1mOhm */
948 resist += di->bm->fg_res / 10;
949
950 return resist;
951 }
952
953 /**
954 * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
955 * @di: pointer to the ab8500_fg structure
956 *
957 * Returns battery capacity based on battery voltage that is load compensated
958 * for the voltage drop
959 */
960 static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
961 {
962 int vbat_comp, res;
963 int i = 0;
964 int vbat = 0;
965
966 ab8500_fg_inst_curr_start(di);
967
968 do {
969 vbat += ab8500_fg_bat_voltage(di);
970 i++;
971 usleep_range(5000, 6000);
972 } while (!ab8500_fg_inst_curr_done(di));
973
974 ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
975
976 di->vbat = vbat / i;
977 res = ab8500_fg_battery_resistance(di);
978
979 /* Use Ohms law to get the load compensated voltage */
980 vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
981
982 dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
983 "R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
984 __func__, di->vbat, vbat_comp, res, di->inst_curr, i);
985
986 return ab8500_fg_volt_to_capacity(di, vbat_comp);
987 }
988
989 /**
990 * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
991 * @di: pointer to the ab8500_fg structure
992 * @cap_mah: capacity in mAh
993 *
994 * Converts capacity in mAh to capacity in permille
995 */
996 static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
997 {
998 return (cap_mah * 1000) / di->bat_cap.max_mah_design;
999 }
1000
1001 /**
1002 * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
1003 * @di: pointer to the ab8500_fg structure
1004 * @cap_pm: capacity in permille
1005 *
1006 * Converts capacity in permille to capacity in mAh
1007 */
1008 static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
1009 {
1010 return cap_pm * di->bat_cap.max_mah_design / 1000;
1011 }
1012
1013 /**
1014 * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
1015 * @di: pointer to the ab8500_fg structure
1016 * @cap_mah: capacity in mAh
1017 *
1018 * Converts capacity in mAh to capacity in uWh
1019 */
1020 static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
1021 {
1022 u64 div_res;
1023 u32 div_rem;
1024
1025 div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
1026 div_rem = do_div(div_res, 1000);
1027
1028 /* Make sure to round upwards if necessary */
1029 if (div_rem >= 1000 / 2)
1030 div_res++;
1031
1032 return (int) div_res;
1033 }
1034
1035 /**
1036 * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
1037 * @di: pointer to the ab8500_fg structure
1038 *
1039 * Return the capacity in mAh based on previous calculated capcity and the FG
1040 * accumulator register value. The filter is filled with this capacity
1041 */
1042 static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
1043 {
1044 dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1045 __func__,
1046 di->bat_cap.mah,
1047 di->accu_charge);
1048
1049 /* Capacity should not be less than 0 */
1050 if (di->bat_cap.mah + di->accu_charge > 0)
1051 di->bat_cap.mah += di->accu_charge;
1052 else
1053 di->bat_cap.mah = 0;
1054 /*
1055 * We force capacity to 100% once when the algorithm
1056 * reports that it's full.
1057 */
1058 if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
1059 di->flags.force_full) {
1060 di->bat_cap.mah = di->bat_cap.max_mah_design;
1061 }
1062
1063 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1064 di->bat_cap.permille =
1065 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1066
1067 /* We need to update battery voltage and inst current when charging */
1068 di->vbat = ab8500_fg_bat_voltage(di);
1069 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1070
1071 return di->bat_cap.mah;
1072 }
1073
1074 /**
1075 * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1076 * @di: pointer to the ab8500_fg structure
1077 * @comp: if voltage should be load compensated before capacity calc
1078 *
1079 * Return the capacity in mAh based on the battery voltage. The voltage can
1080 * either be load compensated or not. This value is added to the filter and a
1081 * new mean value is calculated and returned.
1082 */
1083 static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
1084 {
1085 int permille, mah;
1086
1087 if (comp)
1088 permille = ab8500_fg_load_comp_volt_to_capacity(di);
1089 else
1090 permille = ab8500_fg_uncomp_volt_to_capacity(di);
1091
1092 mah = ab8500_fg_convert_permille_to_mah(di, permille);
1093
1094 di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
1095 di->bat_cap.permille =
1096 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1097
1098 return di->bat_cap.mah;
1099 }
1100
1101 /**
1102 * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1103 * @di: pointer to the ab8500_fg structure
1104 *
1105 * Return the capacity in mAh based on previous calculated capcity and the FG
1106 * accumulator register value. This value is added to the filter and a
1107 * new mean value is calculated and returned.
1108 */
1109 static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
1110 {
1111 int permille_volt, permille;
1112
1113 dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1114 __func__,
1115 di->bat_cap.mah,
1116 di->accu_charge);
1117
1118 /* Capacity should not be less than 0 */
1119 if (di->bat_cap.mah + di->accu_charge > 0)
1120 di->bat_cap.mah += di->accu_charge;
1121 else
1122 di->bat_cap.mah = 0;
1123
1124 if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
1125 di->bat_cap.mah = di->bat_cap.max_mah_design;
1126
1127 /*
1128 * Check against voltage based capacity. It can not be lower
1129 * than what the uncompensated voltage says
1130 */
1131 permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1132 permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
1133
1134 if (permille < permille_volt) {
1135 di->bat_cap.permille = permille_volt;
1136 di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
1137 di->bat_cap.permille);
1138
1139 dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
1140 __func__,
1141 permille,
1142 permille_volt);
1143
1144 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1145 } else {
1146 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1147 di->bat_cap.permille =
1148 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1149 }
1150
1151 return di->bat_cap.mah;
1152 }
1153
1154 /**
1155 * ab8500_fg_capacity_level() - Get the battery capacity level
1156 * @di: pointer to the ab8500_fg structure
1157 *
1158 * Get the battery capacity level based on the capacity in percent
1159 */
1160 static int ab8500_fg_capacity_level(struct ab8500_fg *di)
1161 {
1162 int ret, percent;
1163
1164 percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1165
1166 if (percent <= di->bm->cap_levels->critical ||
1167 di->flags.low_bat)
1168 ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1169 else if (percent <= di->bm->cap_levels->low)
1170 ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1171 else if (percent <= di->bm->cap_levels->normal)
1172 ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1173 else if (percent <= di->bm->cap_levels->high)
1174 ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
1175 else
1176 ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1177
1178 return ret;
1179 }
1180
1181 /**
1182 * ab8500_fg_calculate_scaled_capacity() - Capacity scaling
1183 * @di: pointer to the ab8500_fg structure
1184 *
1185 * Calculates the capacity to be shown to upper layers. Scales the capacity
1186 * to have 100% as a reference from the actual capacity upon removal of charger
1187 * when charging is in maintenance mode.
1188 */
1189 static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg *di)
1190 {
1191 struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1192 int capacity = di->bat_cap.prev_percent;
1193
1194 if (!cs->enable)
1195 return capacity;
1196
1197 /*
1198 * As long as we are in fully charge mode scale the capacity
1199 * to show 100%.
1200 */
1201 if (di->flags.fully_charged) {
1202 cs->cap_to_scale[0] = 100;
1203 cs->cap_to_scale[1] =
1204 max(capacity, di->bm->fg_params->maint_thres);
1205 dev_dbg(di->dev, "Scale cap with %d/%d\n",
1206 cs->cap_to_scale[0], cs->cap_to_scale[1]);
1207 }
1208
1209 /* Calculates the scaled capacity. */
1210 if ((cs->cap_to_scale[0] != cs->cap_to_scale[1])
1211 && (cs->cap_to_scale[1] > 0))
1212 capacity = min(100,
1213 DIV_ROUND_CLOSEST(di->bat_cap.prev_percent *
1214 cs->cap_to_scale[0],
1215 cs->cap_to_scale[1]));
1216
1217 if (di->flags.charging) {
1218 if (capacity < cs->disable_cap_level) {
1219 cs->disable_cap_level = capacity;
1220 dev_dbg(di->dev, "Cap to stop scale lowered %d%%\n",
1221 cs->disable_cap_level);
1222 } else if (!di->flags.fully_charged) {
1223 if (di->bat_cap.prev_percent >=
1224 cs->disable_cap_level) {
1225 dev_dbg(di->dev, "Disabling scaled capacity\n");
1226 cs->enable = false;
1227 capacity = di->bat_cap.prev_percent;
1228 } else {
1229 dev_dbg(di->dev,
1230 "Waiting in cap to level %d%%\n",
1231 cs->disable_cap_level);
1232 capacity = cs->disable_cap_level;
1233 }
1234 }
1235 }
1236
1237 return capacity;
1238 }
1239
1240 /**
1241 * ab8500_fg_update_cap_scalers() - Capacity scaling
1242 * @di: pointer to the ab8500_fg structure
1243 *
1244 * To be called when state change from charge<->discharge to update
1245 * the capacity scalers.
1246 */
1247 static void ab8500_fg_update_cap_scalers(struct ab8500_fg *di)
1248 {
1249 struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1250
1251 if (!cs->enable)
1252 return;
1253 if (di->flags.charging) {
1254 di->bat_cap.cap_scale.disable_cap_level =
1255 di->bat_cap.cap_scale.scaled_cap;
1256 dev_dbg(di->dev, "Cap to stop scale at charge %d%%\n",
1257 di->bat_cap.cap_scale.disable_cap_level);
1258 } else {
1259 if (cs->scaled_cap != 100) {
1260 cs->cap_to_scale[0] = cs->scaled_cap;
1261 cs->cap_to_scale[1] = di->bat_cap.prev_percent;
1262 } else {
1263 cs->cap_to_scale[0] = 100;
1264 cs->cap_to_scale[1] =
1265 max(di->bat_cap.prev_percent,
1266 di->bm->fg_params->maint_thres);
1267 }
1268
1269 dev_dbg(di->dev, "Cap to scale at discharge %d/%d\n",
1270 cs->cap_to_scale[0], cs->cap_to_scale[1]);
1271 }
1272 }
1273
1274 /**
1275 * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1276 * @di: pointer to the ab8500_fg structure
1277 * @init: capacity is allowed to go up in init mode
1278 *
1279 * Check if capacity or capacity limit has changed and notify the system
1280 * about it using the power_supply framework
1281 */
1282 static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
1283 {
1284 bool changed = false;
1285 int percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1286
1287 di->bat_cap.level = ab8500_fg_capacity_level(di);
1288
1289 if (di->bat_cap.level != di->bat_cap.prev_level) {
1290 /*
1291 * We do not allow reported capacity level to go up
1292 * unless we're charging or if we're in init
1293 */
1294 if (!(!di->flags.charging && di->bat_cap.level >
1295 di->bat_cap.prev_level) || init) {
1296 dev_dbg(di->dev, "level changed from %d to %d\n",
1297 di->bat_cap.prev_level,
1298 di->bat_cap.level);
1299 di->bat_cap.prev_level = di->bat_cap.level;
1300 changed = true;
1301 } else {
1302 dev_dbg(di->dev, "level not allowed to go up "
1303 "since no charger is connected: %d to %d\n",
1304 di->bat_cap.prev_level,
1305 di->bat_cap.level);
1306 }
1307 }
1308
1309 /*
1310 * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1311 * shutdown
1312 */
1313 if (di->flags.low_bat) {
1314 dev_dbg(di->dev, "Battery low, set capacity to 0\n");
1315 di->bat_cap.prev_percent = 0;
1316 di->bat_cap.permille = 0;
1317 percent = 0;
1318 di->bat_cap.prev_mah = 0;
1319 di->bat_cap.mah = 0;
1320 changed = true;
1321 } else if (di->flags.fully_charged) {
1322 /*
1323 * We report 100% if algorithm reported fully charged
1324 * and show 100% during maintenance charging (scaling).
1325 */
1326 if (di->flags.force_full) {
1327 di->bat_cap.prev_percent = percent;
1328 di->bat_cap.prev_mah = di->bat_cap.mah;
1329
1330 changed = true;
1331
1332 if (!di->bat_cap.cap_scale.enable &&
1333 di->bm->capacity_scaling) {
1334 di->bat_cap.cap_scale.enable = true;
1335 di->bat_cap.cap_scale.cap_to_scale[0] = 100;
1336 di->bat_cap.cap_scale.cap_to_scale[1] =
1337 di->bat_cap.prev_percent;
1338 di->bat_cap.cap_scale.disable_cap_level = 100;
1339 }
1340 } else if (di->bat_cap.prev_percent != percent) {
1341 dev_dbg(di->dev,
1342 "battery reported full "
1343 "but capacity dropping: %d\n",
1344 percent);
1345 di->bat_cap.prev_percent = percent;
1346 di->bat_cap.prev_mah = di->bat_cap.mah;
1347
1348 changed = true;
1349 }
1350 } else if (di->bat_cap.prev_percent != percent) {
1351 if (percent == 0) {
1352 /*
1353 * We will not report 0% unless we've got
1354 * the LOW_BAT IRQ, no matter what the FG
1355 * algorithm says.
1356 */
1357 di->bat_cap.prev_percent = 1;
1358 percent = 1;
1359
1360 changed = true;
1361 } else if (!(!di->flags.charging &&
1362 percent > di->bat_cap.prev_percent) || init) {
1363 /*
1364 * We do not allow reported capacity to go up
1365 * unless we're charging or if we're in init
1366 */
1367 dev_dbg(di->dev,
1368 "capacity changed from %d to %d (%d)\n",
1369 di->bat_cap.prev_percent,
1370 percent,
1371 di->bat_cap.permille);
1372 di->bat_cap.prev_percent = percent;
1373 di->bat_cap.prev_mah = di->bat_cap.mah;
1374
1375 changed = true;
1376 } else {
1377 dev_dbg(di->dev, "capacity not allowed to go up since "
1378 "no charger is connected: %d to %d (%d)\n",
1379 di->bat_cap.prev_percent,
1380 percent,
1381 di->bat_cap.permille);
1382 }
1383 }
1384
1385 if (changed) {
1386 if (di->bm->capacity_scaling) {
1387 di->bat_cap.cap_scale.scaled_cap =
1388 ab8500_fg_calculate_scaled_capacity(di);
1389
1390 dev_info(di->dev, "capacity=%d (%d)\n",
1391 di->bat_cap.prev_percent,
1392 di->bat_cap.cap_scale.scaled_cap);
1393 }
1394 power_supply_changed(&di->fg_psy);
1395 if (di->flags.fully_charged && di->flags.force_full) {
1396 dev_dbg(di->dev, "Battery full, notifying.\n");
1397 di->flags.force_full = false;
1398 sysfs_notify(&di->fg_kobject, NULL, "charge_full");
1399 }
1400 sysfs_notify(&di->fg_kobject, NULL, "charge_now");
1401 }
1402 }
1403
1404 static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
1405 enum ab8500_fg_charge_state new_state)
1406 {
1407 dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
1408 di->charge_state,
1409 charge_state[di->charge_state],
1410 new_state,
1411 charge_state[new_state]);
1412
1413 di->charge_state = new_state;
1414 }
1415
1416 static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
1417 enum ab8500_fg_discharge_state new_state)
1418 {
1419 dev_dbg(di->dev, "Disharge state from %d [%s] to %d [%s]\n",
1420 di->discharge_state,
1421 discharge_state[di->discharge_state],
1422 new_state,
1423 discharge_state[new_state]);
1424
1425 di->discharge_state = new_state;
1426 }
1427
1428 /**
1429 * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1430 * @di: pointer to the ab8500_fg structure
1431 *
1432 * Battery capacity calculation state machine for when we're charging
1433 */
1434 static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
1435 {
1436 /*
1437 * If we change to discharge mode
1438 * we should start with recovery
1439 */
1440 if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
1441 ab8500_fg_discharge_state_to(di,
1442 AB8500_FG_DISCHARGE_INIT_RECOVERY);
1443
1444 switch (di->charge_state) {
1445 case AB8500_FG_CHARGE_INIT:
1446 di->fg_samples = SEC_TO_SAMPLE(
1447 di->bm->fg_params->accu_charging);
1448
1449 ab8500_fg_coulomb_counter(di, true);
1450 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
1451
1452 break;
1453
1454 case AB8500_FG_CHARGE_READOUT:
1455 /*
1456 * Read the FG and calculate the new capacity
1457 */
1458 mutex_lock(&di->cc_lock);
1459 if (!di->flags.conv_done && !di->flags.force_full) {
1460 /* Wasn't the CC IRQ that got us here */
1461 mutex_unlock(&di->cc_lock);
1462 dev_dbg(di->dev, "%s CC conv not done\n",
1463 __func__);
1464
1465 break;
1466 }
1467 di->flags.conv_done = false;
1468 mutex_unlock(&di->cc_lock);
1469
1470 ab8500_fg_calc_cap_charging(di);
1471
1472 break;
1473
1474 default:
1475 break;
1476 }
1477
1478 /* Check capacity limits */
1479 ab8500_fg_check_capacity_limits(di, false);
1480 }
1481
1482 static void force_capacity(struct ab8500_fg *di)
1483 {
1484 int cap;
1485
1486 ab8500_fg_clear_cap_samples(di);
1487 cap = di->bat_cap.user_mah;
1488 if (cap > di->bat_cap.max_mah_design) {
1489 dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
1490 " %d\n", cap, di->bat_cap.max_mah_design);
1491 cap = di->bat_cap.max_mah_design;
1492 }
1493 ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
1494 di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
1495 di->bat_cap.mah = cap;
1496 ab8500_fg_check_capacity_limits(di, true);
1497 }
1498
1499 static bool check_sysfs_capacity(struct ab8500_fg *di)
1500 {
1501 int cap, lower, upper;
1502 int cap_permille;
1503
1504 cap = di->bat_cap.user_mah;
1505
1506 cap_permille = ab8500_fg_convert_mah_to_permille(di,
1507 di->bat_cap.user_mah);
1508
1509 lower = di->bat_cap.permille - di->bm->fg_params->user_cap_limit * 10;
1510 upper = di->bat_cap.permille + di->bm->fg_params->user_cap_limit * 10;
1511
1512 if (lower < 0)
1513 lower = 0;
1514 /* 1000 is permille, -> 100 percent */
1515 if (upper > 1000)
1516 upper = 1000;
1517
1518 dev_dbg(di->dev, "Capacity limits:"
1519 " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1520 lower, cap_permille, upper, cap, di->bat_cap.mah);
1521
1522 /* If within limits, use the saved capacity and exit estimation...*/
1523 if (cap_permille > lower && cap_permille < upper) {
1524 dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
1525 force_capacity(di);
1526 return true;
1527 }
1528 dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
1529 return false;
1530 }
1531
1532 /**
1533 * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1534 * @di: pointer to the ab8500_fg structure
1535 *
1536 * Battery capacity calculation state machine for when we're discharging
1537 */
1538 static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
1539 {
1540 int sleep_time;
1541
1542 /* If we change to charge mode we should start with init */
1543 if (di->charge_state != AB8500_FG_CHARGE_INIT)
1544 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
1545
1546 switch (di->discharge_state) {
1547 case AB8500_FG_DISCHARGE_INIT:
1548 /* We use the FG IRQ to work on */
1549 di->init_cnt = 0;
1550 di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
1551 ab8500_fg_coulomb_counter(di, true);
1552 ab8500_fg_discharge_state_to(di,
1553 AB8500_FG_DISCHARGE_INITMEASURING);
1554
1555 /* Intentional fallthrough */
1556 case AB8500_FG_DISCHARGE_INITMEASURING:
1557 /*
1558 * Discard a number of samples during startup.
1559 * After that, use compensated voltage for a few
1560 * samples to get an initial capacity.
1561 * Then go to READOUT
1562 */
1563 sleep_time = di->bm->fg_params->init_timer;
1564
1565 /* Discard the first [x] seconds */
1566 if (di->init_cnt > di->bm->fg_params->init_discard_time) {
1567 ab8500_fg_calc_cap_discharge_voltage(di, true);
1568
1569 ab8500_fg_check_capacity_limits(di, true);
1570 }
1571
1572 di->init_cnt += sleep_time;
1573 if (di->init_cnt > di->bm->fg_params->init_total_time)
1574 ab8500_fg_discharge_state_to(di,
1575 AB8500_FG_DISCHARGE_READOUT_INIT);
1576
1577 break;
1578
1579 case AB8500_FG_DISCHARGE_INIT_RECOVERY:
1580 di->recovery_cnt = 0;
1581 di->recovery_needed = true;
1582 ab8500_fg_discharge_state_to(di,
1583 AB8500_FG_DISCHARGE_RECOVERY);
1584
1585 /* Intentional fallthrough */
1586
1587 case AB8500_FG_DISCHARGE_RECOVERY:
1588 sleep_time = di->bm->fg_params->recovery_sleep_timer;
1589
1590 /*
1591 * We should check the power consumption
1592 * If low, go to READOUT (after x min) or
1593 * RECOVERY_SLEEP if time left.
1594 * If high, go to READOUT
1595 */
1596 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1597
1598 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1599 if (di->recovery_cnt >
1600 di->bm->fg_params->recovery_total_time) {
1601 di->fg_samples = SEC_TO_SAMPLE(
1602 di->bm->fg_params->accu_high_curr);
1603 ab8500_fg_coulomb_counter(di, true);
1604 ab8500_fg_discharge_state_to(di,
1605 AB8500_FG_DISCHARGE_READOUT);
1606 di->recovery_needed = false;
1607 } else {
1608 queue_delayed_work(di->fg_wq,
1609 &di->fg_periodic_work,
1610 sleep_time * HZ);
1611 }
1612 di->recovery_cnt += sleep_time;
1613 } else {
1614 di->fg_samples = SEC_TO_SAMPLE(
1615 di->bm->fg_params->accu_high_curr);
1616 ab8500_fg_coulomb_counter(di, true);
1617 ab8500_fg_discharge_state_to(di,
1618 AB8500_FG_DISCHARGE_READOUT);
1619 }
1620 break;
1621
1622 case AB8500_FG_DISCHARGE_READOUT_INIT:
1623 di->fg_samples = SEC_TO_SAMPLE(
1624 di->bm->fg_params->accu_high_curr);
1625 ab8500_fg_coulomb_counter(di, true);
1626 ab8500_fg_discharge_state_to(di,
1627 AB8500_FG_DISCHARGE_READOUT);
1628 break;
1629
1630 case AB8500_FG_DISCHARGE_READOUT:
1631 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1632
1633 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1634 /* Detect mode change */
1635 if (di->high_curr_mode) {
1636 di->high_curr_mode = false;
1637 di->high_curr_cnt = 0;
1638 }
1639
1640 if (di->recovery_needed) {
1641 ab8500_fg_discharge_state_to(di,
1642 AB8500_FG_DISCHARGE_INIT_RECOVERY);
1643
1644 queue_delayed_work(di->fg_wq,
1645 &di->fg_periodic_work, 0);
1646
1647 break;
1648 }
1649
1650 ab8500_fg_calc_cap_discharge_voltage(di, true);
1651 } else {
1652 mutex_lock(&di->cc_lock);
1653 if (!di->flags.conv_done) {
1654 /* Wasn't the CC IRQ that got us here */
1655 mutex_unlock(&di->cc_lock);
1656 dev_dbg(di->dev, "%s CC conv not done\n",
1657 __func__);
1658
1659 break;
1660 }
1661 di->flags.conv_done = false;
1662 mutex_unlock(&di->cc_lock);
1663
1664 /* Detect mode change */
1665 if (!di->high_curr_mode) {
1666 di->high_curr_mode = true;
1667 di->high_curr_cnt = 0;
1668 }
1669
1670 di->high_curr_cnt +=
1671 di->bm->fg_params->accu_high_curr;
1672 if (di->high_curr_cnt >
1673 di->bm->fg_params->high_curr_time)
1674 di->recovery_needed = true;
1675
1676 ab8500_fg_calc_cap_discharge_fg(di);
1677 }
1678
1679 ab8500_fg_check_capacity_limits(di, false);
1680
1681 break;
1682
1683 case AB8500_FG_DISCHARGE_WAKEUP:
1684 ab8500_fg_calc_cap_discharge_voltage(di, true);
1685
1686 di->fg_samples = SEC_TO_SAMPLE(
1687 di->bm->fg_params->accu_high_curr);
1688 ab8500_fg_coulomb_counter(di, true);
1689 ab8500_fg_discharge_state_to(di,
1690 AB8500_FG_DISCHARGE_READOUT);
1691
1692 ab8500_fg_check_capacity_limits(di, false);
1693
1694 break;
1695
1696 default:
1697 break;
1698 }
1699 }
1700
1701 /**
1702 * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1703 * @di: pointer to the ab8500_fg structure
1704 *
1705 */
1706 static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
1707 {
1708 int ret;
1709
1710 switch (di->calib_state) {
1711 case AB8500_FG_CALIB_INIT:
1712 dev_dbg(di->dev, "Calibration ongoing...\n");
1713
1714 ret = abx500_mask_and_set_register_interruptible(di->dev,
1715 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1716 CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
1717 if (ret < 0)
1718 goto err;
1719
1720 ret = abx500_mask_and_set_register_interruptible(di->dev,
1721 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1722 CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
1723 if (ret < 0)
1724 goto err;
1725 di->calib_state = AB8500_FG_CALIB_WAIT;
1726 break;
1727 case AB8500_FG_CALIB_END:
1728 ret = abx500_mask_and_set_register_interruptible(di->dev,
1729 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1730 CC_MUXOFFSET, CC_MUXOFFSET);
1731 if (ret < 0)
1732 goto err;
1733 di->flags.calibrate = false;
1734 dev_dbg(di->dev, "Calibration done...\n");
1735 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1736 break;
1737 case AB8500_FG_CALIB_WAIT:
1738 dev_dbg(di->dev, "Calibration WFI\n");
1739 default:
1740 break;
1741 }
1742 return;
1743 err:
1744 /* Something went wrong, don't calibrate then */
1745 dev_err(di->dev, "failed to calibrate the CC\n");
1746 di->flags.calibrate = false;
1747 di->calib_state = AB8500_FG_CALIB_INIT;
1748 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1749 }
1750
1751 /**
1752 * ab8500_fg_algorithm() - Entry point for the FG algorithm
1753 * @di: pointer to the ab8500_fg structure
1754 *
1755 * Entry point for the battery capacity calculation state machine
1756 */
1757 static void ab8500_fg_algorithm(struct ab8500_fg *di)
1758 {
1759 if (di->flags.calibrate)
1760 ab8500_fg_algorithm_calibrate(di);
1761 else {
1762 if (di->flags.charging)
1763 ab8500_fg_algorithm_charging(di);
1764 else
1765 ab8500_fg_algorithm_discharging(di);
1766 }
1767
1768 dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d %d "
1769 "%d %d %d %d %d %d %d\n",
1770 di->bat_cap.max_mah_design,
1771 di->bat_cap.max_mah,
1772 di->bat_cap.mah,
1773 di->bat_cap.permille,
1774 di->bat_cap.level,
1775 di->bat_cap.prev_mah,
1776 di->bat_cap.prev_percent,
1777 di->bat_cap.prev_level,
1778 di->vbat,
1779 di->inst_curr,
1780 di->avg_curr,
1781 di->accu_charge,
1782 di->flags.charging,
1783 di->charge_state,
1784 di->discharge_state,
1785 di->high_curr_mode,
1786 di->recovery_needed);
1787 }
1788
1789 /**
1790 * ab8500_fg_periodic_work() - Run the FG state machine periodically
1791 * @work: pointer to the work_struct structure
1792 *
1793 * Work queue function for periodic work
1794 */
1795 static void ab8500_fg_periodic_work(struct work_struct *work)
1796 {
1797 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1798 fg_periodic_work.work);
1799
1800 if (di->init_capacity) {
1801 /* Get an initial capacity calculation */
1802 ab8500_fg_calc_cap_discharge_voltage(di, true);
1803 ab8500_fg_check_capacity_limits(di, true);
1804 di->init_capacity = false;
1805
1806 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1807 } else if (di->flags.user_cap) {
1808 if (check_sysfs_capacity(di)) {
1809 ab8500_fg_check_capacity_limits(di, true);
1810 if (di->flags.charging)
1811 ab8500_fg_charge_state_to(di,
1812 AB8500_FG_CHARGE_INIT);
1813 else
1814 ab8500_fg_discharge_state_to(di,
1815 AB8500_FG_DISCHARGE_READOUT_INIT);
1816 }
1817 di->flags.user_cap = false;
1818 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1819 } else
1820 ab8500_fg_algorithm(di);
1821
1822 }
1823
1824 /**
1825 * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1826 * @work: pointer to the work_struct structure
1827 *
1828 * Work queue function for checking the OVV_BAT condition
1829 */
1830 static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
1831 {
1832 int ret;
1833 u8 reg_value;
1834
1835 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1836 fg_check_hw_failure_work.work);
1837
1838 /*
1839 * If we have had a battery over-voltage situation,
1840 * check ovv-bit to see if it should be reset.
1841 */
1842 ret = abx500_get_register_interruptible(di->dev,
1843 AB8500_CHARGER, AB8500_CH_STAT_REG,
1844 &reg_value);
1845 if (ret < 0) {
1846 dev_err(di->dev, "%s ab8500 read failed\n", __func__);
1847 return;
1848 }
1849 if ((reg_value & BATT_OVV) == BATT_OVV) {
1850 if (!di->flags.bat_ovv) {
1851 dev_dbg(di->dev, "Battery OVV\n");
1852 di->flags.bat_ovv = true;
1853 power_supply_changed(&di->fg_psy);
1854 }
1855 /* Not yet recovered from ovv, reschedule this test */
1856 queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
1857 HZ);
1858 } else {
1859 dev_dbg(di->dev, "Battery recovered from OVV\n");
1860 di->flags.bat_ovv = false;
1861 power_supply_changed(&di->fg_psy);
1862 }
1863 }
1864
1865 /**
1866 * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1867 * @work: pointer to the work_struct structure
1868 *
1869 * Work queue function for checking the LOW_BAT condition
1870 */
1871 static void ab8500_fg_low_bat_work(struct work_struct *work)
1872 {
1873 int vbat;
1874
1875 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1876 fg_low_bat_work.work);
1877
1878 vbat = ab8500_fg_bat_voltage(di);
1879
1880 /* Check if LOW_BAT still fulfilled */
1881 if (vbat < di->bm->fg_params->lowbat_threshold) {
1882 /* Is it time to shut down? */
1883 if (di->low_bat_cnt < 1) {
1884 di->flags.low_bat = true;
1885 dev_warn(di->dev, "Shut down pending...\n");
1886 } else {
1887 /*
1888 * Else we need to re-schedule this check to be able to detect
1889 * if the voltage increases again during charging or
1890 * due to decreasing load.
1891 */
1892 di->low_bat_cnt--;
1893 dev_warn(di->dev, "Battery voltage still LOW\n");
1894 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1895 round_jiffies(LOW_BAT_CHECK_INTERVAL));
1896 }
1897 } else {
1898 di->flags.low_bat_delay = false;
1899 di->low_bat_cnt = 10;
1900 dev_warn(di->dev, "Battery voltage OK again\n");
1901 }
1902
1903 /* This is needed to dispatch LOW_BAT */
1904 ab8500_fg_check_capacity_limits(di, false);
1905 }
1906
1907 /**
1908 * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1909 * to the target voltage.
1910 * @di: pointer to the ab8500_fg structure
1911 * @target target voltage
1912 *
1913 * Returns bit pattern closest to the target voltage
1914 * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1915 */
1916
1917 static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
1918 {
1919 if (target > BATT_OK_MIN +
1920 (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
1921 return BATT_OK_MAX_NR_INCREMENTS;
1922 if (target < BATT_OK_MIN)
1923 return 0;
1924 return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
1925 }
1926
1927 /**
1928 * ab8500_fg_battok_init_hw_register - init battok levels
1929 * @di: pointer to the ab8500_fg structure
1930 *
1931 */
1932
1933 static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
1934 {
1935 int selected;
1936 int sel0;
1937 int sel1;
1938 int cbp_sel0;
1939 int cbp_sel1;
1940 int ret;
1941 int new_val;
1942
1943 sel0 = di->bm->fg_params->battok_falling_th_sel0;
1944 sel1 = di->bm->fg_params->battok_raising_th_sel1;
1945
1946 cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
1947 cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
1948
1949 selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
1950
1951 if (selected != sel0)
1952 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1953 sel0, selected, cbp_sel0);
1954
1955 selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
1956
1957 if (selected != sel1)
1958 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1959 sel1, selected, cbp_sel1);
1960
1961 new_val = cbp_sel0 | (cbp_sel1 << 4);
1962
1963 dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
1964 ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
1965 AB8500_BATT_OK_REG, new_val);
1966 return ret;
1967 }
1968
1969 /**
1970 * ab8500_fg_instant_work() - Run the FG state machine instantly
1971 * @work: pointer to the work_struct structure
1972 *
1973 * Work queue function for instant work
1974 */
1975 static void ab8500_fg_instant_work(struct work_struct *work)
1976 {
1977 struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
1978
1979 ab8500_fg_algorithm(di);
1980 }
1981
1982 /**
1983 * ab8500_fg_cc_data_end_handler() - end of data conversion isr.
1984 * @irq: interrupt number
1985 * @_di: pointer to the ab8500_fg structure
1986 *
1987 * Returns IRQ status(IRQ_HANDLED)
1988 */
1989 static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
1990 {
1991 struct ab8500_fg *di = _di;
1992 if (!di->nbr_cceoc_irq_cnt) {
1993 di->nbr_cceoc_irq_cnt++;
1994 complete(&di->ab8500_fg_started);
1995 } else {
1996 di->nbr_cceoc_irq_cnt = 0;
1997 complete(&di->ab8500_fg_complete);
1998 }
1999 return IRQ_HANDLED;
2000 }
2001
2002 /**
2003 * ab8500_fg_cc_int_calib_handler () - end of calibration isr.
2004 * @irq: interrupt number
2005 * @_di: pointer to the ab8500_fg structure
2006 *
2007 * Returns IRQ status(IRQ_HANDLED)
2008 */
2009 static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
2010 {
2011 struct ab8500_fg *di = _di;
2012 di->calib_state = AB8500_FG_CALIB_END;
2013 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2014 return IRQ_HANDLED;
2015 }
2016
2017 /**
2018 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
2019 * @irq: interrupt number
2020 * @_di: pointer to the ab8500_fg structure
2021 *
2022 * Returns IRQ status(IRQ_HANDLED)
2023 */
2024 static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
2025 {
2026 struct ab8500_fg *di = _di;
2027
2028 queue_work(di->fg_wq, &di->fg_acc_cur_work);
2029
2030 return IRQ_HANDLED;
2031 }
2032
2033 /**
2034 * ab8500_fg_batt_ovv_handler() - Battery OVV occured
2035 * @irq: interrupt number
2036 * @_di: pointer to the ab8500_fg structure
2037 *
2038 * Returns IRQ status(IRQ_HANDLED)
2039 */
2040 static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
2041 {
2042 struct ab8500_fg *di = _di;
2043
2044 dev_dbg(di->dev, "Battery OVV\n");
2045
2046 /* Schedule a new HW failure check */
2047 queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
2048
2049 return IRQ_HANDLED;
2050 }
2051
2052 /**
2053 * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
2054 * @irq: interrupt number
2055 * @_di: pointer to the ab8500_fg structure
2056 *
2057 * Returns IRQ status(IRQ_HANDLED)
2058 */
2059 static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
2060 {
2061 struct ab8500_fg *di = _di;
2062
2063 /* Initiate handling in ab8500_fg_low_bat_work() if not already initiated. */
2064 if (!di->flags.low_bat_delay) {
2065 dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
2066 di->flags.low_bat_delay = true;
2067 /*
2068 * Start a timer to check LOW_BAT again after some time
2069 * This is done to avoid shutdown on single voltage dips
2070 */
2071 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
2072 round_jiffies(LOW_BAT_CHECK_INTERVAL));
2073 }
2074 return IRQ_HANDLED;
2075 }
2076
2077 /**
2078 * ab8500_fg_get_property() - get the fg properties
2079 * @psy: pointer to the power_supply structure
2080 * @psp: pointer to the power_supply_property structure
2081 * @val: pointer to the power_supply_propval union
2082 *
2083 * This function gets called when an application tries to get the
2084 * fg properties by reading the sysfs files.
2085 * voltage_now: battery voltage
2086 * current_now: battery instant current
2087 * current_avg: battery average current
2088 * charge_full_design: capacity where battery is considered full
2089 * charge_now: battery capacity in nAh
2090 * capacity: capacity in percent
2091 * capacity_level: capacity level
2092 *
2093 * Returns error code in case of failure else 0 on success
2094 */
2095 static int ab8500_fg_get_property(struct power_supply *psy,
2096 enum power_supply_property psp,
2097 union power_supply_propval *val)
2098 {
2099 struct ab8500_fg *di;
2100
2101 di = to_ab8500_fg_device_info(psy);
2102
2103 /*
2104 * If battery is identified as unknown and charging of unknown
2105 * batteries is disabled, we always report 100% capacity and
2106 * capacity level UNKNOWN, since we can't calculate
2107 * remaining capacity
2108 */
2109
2110 switch (psp) {
2111 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
2112 if (di->flags.bat_ovv)
2113 val->intval = BATT_OVV_VALUE * 1000;
2114 else
2115 val->intval = di->vbat * 1000;
2116 break;
2117 case POWER_SUPPLY_PROP_CURRENT_NOW:
2118 val->intval = di->inst_curr * 1000;
2119 break;
2120 case POWER_SUPPLY_PROP_CURRENT_AVG:
2121 val->intval = di->avg_curr * 1000;
2122 break;
2123 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
2124 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2125 di->bat_cap.max_mah_design);
2126 break;
2127 case POWER_SUPPLY_PROP_ENERGY_FULL:
2128 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2129 di->bat_cap.max_mah);
2130 break;
2131 case POWER_SUPPLY_PROP_ENERGY_NOW:
2132 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2133 di->flags.batt_id_received)
2134 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2135 di->bat_cap.max_mah);
2136 else
2137 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2138 di->bat_cap.prev_mah);
2139 break;
2140 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
2141 val->intval = di->bat_cap.max_mah_design;
2142 break;
2143 case POWER_SUPPLY_PROP_CHARGE_FULL:
2144 val->intval = di->bat_cap.max_mah;
2145 break;
2146 case POWER_SUPPLY_PROP_CHARGE_NOW:
2147 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2148 di->flags.batt_id_received)
2149 val->intval = di->bat_cap.max_mah;
2150 else
2151 val->intval = di->bat_cap.prev_mah;
2152 break;
2153 case POWER_SUPPLY_PROP_CAPACITY:
2154 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2155 di->flags.batt_id_received)
2156 val->intval = 100;
2157 else
2158 val->intval = di->bat_cap.prev_percent;
2159 break;
2160 case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
2161 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2162 di->flags.batt_id_received)
2163 val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
2164 else
2165 val->intval = di->bat_cap.prev_level;
2166 break;
2167 default:
2168 return -EINVAL;
2169 }
2170 return 0;
2171 }
2172
2173 static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
2174 {
2175 struct power_supply *psy;
2176 struct power_supply *ext;
2177 struct ab8500_fg *di;
2178 union power_supply_propval ret;
2179 int i, j;
2180 bool psy_found = false;
2181
2182 psy = (struct power_supply *)data;
2183 ext = dev_get_drvdata(dev);
2184 di = to_ab8500_fg_device_info(psy);
2185
2186 /*
2187 * For all psy where the name of your driver
2188 * appears in any supplied_to
2189 */
2190 for (i = 0; i < ext->num_supplicants; i++) {
2191 if (!strcmp(ext->supplied_to[i], psy->name))
2192 psy_found = true;
2193 }
2194
2195 if (!psy_found)
2196 return 0;
2197
2198 /* Go through all properties for the psy */
2199 for (j = 0; j < ext->num_properties; j++) {
2200 enum power_supply_property prop;
2201 prop = ext->properties[j];
2202
2203 if (ext->get_property(ext, prop, &ret))
2204 continue;
2205
2206 switch (prop) {
2207 case POWER_SUPPLY_PROP_STATUS:
2208 switch (ext->type) {
2209 case POWER_SUPPLY_TYPE_BATTERY:
2210 switch (ret.intval) {
2211 case POWER_SUPPLY_STATUS_UNKNOWN:
2212 case POWER_SUPPLY_STATUS_DISCHARGING:
2213 case POWER_SUPPLY_STATUS_NOT_CHARGING:
2214 if (!di->flags.charging)
2215 break;
2216 di->flags.charging = false;
2217 di->flags.fully_charged = false;
2218 if (di->bm->capacity_scaling)
2219 ab8500_fg_update_cap_scalers(di);
2220 queue_work(di->fg_wq, &di->fg_work);
2221 break;
2222 case POWER_SUPPLY_STATUS_FULL:
2223 if (di->flags.fully_charged)
2224 break;
2225 di->flags.fully_charged = true;
2226 di->flags.force_full = true;
2227 /* Save current capacity as maximum */
2228 di->bat_cap.max_mah = di->bat_cap.mah;
2229 queue_work(di->fg_wq, &di->fg_work);
2230 break;
2231 case POWER_SUPPLY_STATUS_CHARGING:
2232 if (di->flags.charging &&
2233 !di->flags.fully_charged)
2234 break;
2235 di->flags.charging = true;
2236 di->flags.fully_charged = false;
2237 if (di->bm->capacity_scaling)
2238 ab8500_fg_update_cap_scalers(di);
2239 queue_work(di->fg_wq, &di->fg_work);
2240 break;
2241 };
2242 default:
2243 break;
2244 };
2245 break;
2246 case POWER_SUPPLY_PROP_TECHNOLOGY:
2247 switch (ext->type) {
2248 case POWER_SUPPLY_TYPE_BATTERY:
2249 if (!di->flags.batt_id_received &&
2250 di->bm->batt_id != BATTERY_UNKNOWN) {
2251 const struct abx500_battery_type *b;
2252
2253 b = &(di->bm->bat_type[di->bm->batt_id]);
2254
2255 di->flags.batt_id_received = true;
2256
2257 di->bat_cap.max_mah_design =
2258 MILLI_TO_MICRO *
2259 b->charge_full_design;
2260
2261 di->bat_cap.max_mah =
2262 di->bat_cap.max_mah_design;
2263
2264 di->vbat_nom = b->nominal_voltage;
2265 }
2266
2267 if (ret.intval)
2268 di->flags.batt_unknown = false;
2269 else
2270 di->flags.batt_unknown = true;
2271 break;
2272 default:
2273 break;
2274 }
2275 break;
2276 case POWER_SUPPLY_PROP_TEMP:
2277 switch (ext->type) {
2278 case POWER_SUPPLY_TYPE_BATTERY:
2279 if (di->flags.batt_id_received)
2280 di->bat_temp = ret.intval;
2281 break;
2282 default:
2283 break;
2284 }
2285 break;
2286 default:
2287 break;
2288 }
2289 }
2290 return 0;
2291 }
2292
2293 /**
2294 * ab8500_fg_init_hw_registers() - Set up FG related registers
2295 * @di: pointer to the ab8500_fg structure
2296 *
2297 * Set up battery OVV, low battery voltage registers
2298 */
2299 static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
2300 {
2301 int ret;
2302
2303 /* Set VBAT OVV threshold */
2304 ret = abx500_mask_and_set_register_interruptible(di->dev,
2305 AB8500_CHARGER,
2306 AB8500_BATT_OVV,
2307 BATT_OVV_TH_4P75,
2308 BATT_OVV_TH_4P75);
2309 if (ret) {
2310 dev_err(di->dev, "failed to set BATT_OVV\n");
2311 goto out;
2312 }
2313
2314 /* Enable VBAT OVV detection */
2315 ret = abx500_mask_and_set_register_interruptible(di->dev,
2316 AB8500_CHARGER,
2317 AB8500_BATT_OVV,
2318 BATT_OVV_ENA,
2319 BATT_OVV_ENA);
2320 if (ret) {
2321 dev_err(di->dev, "failed to enable BATT_OVV\n");
2322 goto out;
2323 }
2324
2325 /* Low Battery Voltage */
2326 ret = abx500_set_register_interruptible(di->dev,
2327 AB8500_SYS_CTRL2_BLOCK,
2328 AB8500_LOW_BAT_REG,
2329 ab8500_volt_to_regval(
2330 di->bm->fg_params->lowbat_threshold) << 1 |
2331 LOW_BAT_ENABLE);
2332 if (ret) {
2333 dev_err(di->dev, "%s write failed\n", __func__);
2334 goto out;
2335 }
2336
2337 /* Battery OK threshold */
2338 ret = ab8500_fg_battok_init_hw_register(di);
2339 if (ret) {
2340 dev_err(di->dev, "BattOk init write failed.\n");
2341 goto out;
2342 }
2343
2344 if (((is_ab8505(di->parent) || is_ab9540(di->parent)) &&
2345 abx500_get_chip_id(di->dev) >= AB8500_CUT2P0)
2346 || is_ab8540(di->parent)) {
2347 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2348 AB8505_RTC_PCUT_MAX_TIME_REG, di->bm->fg_params->pcut_max_time);
2349
2350 if (ret) {
2351 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_MAX_TIME_REG\n", __func__);
2352 goto out;
2353 };
2354
2355 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2356 AB8505_RTC_PCUT_FLAG_TIME_REG, di->bm->fg_params->pcut_flag_time);
2357
2358 if (ret) {
2359 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_FLAG_TIME_REG\n", __func__);
2360 goto out;
2361 };
2362
2363 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2364 AB8505_RTC_PCUT_RESTART_REG, di->bm->fg_params->pcut_max_restart);
2365
2366 if (ret) {
2367 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_RESTART_REG\n", __func__);
2368 goto out;
2369 };
2370
2371 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2372 AB8505_RTC_PCUT_DEBOUNCE_REG, di->bm->fg_params->pcut_debounce_time);
2373
2374 if (ret) {
2375 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_DEBOUNCE_REG\n", __func__);
2376 goto out;
2377 };
2378
2379 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2380 AB8505_RTC_PCUT_CTL_STATUS_REG, di->bm->fg_params->pcut_enable);
2381
2382 if (ret) {
2383 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_CTL_STATUS_REG\n", __func__);
2384 goto out;
2385 };
2386 }
2387 out:
2388 return ret;
2389 }
2390
2391 /**
2392 * ab8500_fg_external_power_changed() - callback for power supply changes
2393 * @psy: pointer to the structure power_supply
2394 *
2395 * This function is the entry point of the pointer external_power_changed
2396 * of the structure power_supply.
2397 * This function gets executed when there is a change in any external power
2398 * supply that this driver needs to be notified of.
2399 */
2400 static void ab8500_fg_external_power_changed(struct power_supply *psy)
2401 {
2402 struct ab8500_fg *di = to_ab8500_fg_device_info(psy);
2403
2404 class_for_each_device(power_supply_class, NULL,
2405 &di->fg_psy, ab8500_fg_get_ext_psy_data);
2406 }
2407
2408 /**
2409 * abab8500_fg_reinit_work() - work to reset the FG algorithm
2410 * @work: pointer to the work_struct structure
2411 *
2412 * Used to reset the current battery capacity to be able to
2413 * retrigger a new voltage base capacity calculation. For
2414 * test and verification purpose.
2415 */
2416 static void ab8500_fg_reinit_work(struct work_struct *work)
2417 {
2418 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
2419 fg_reinit_work.work);
2420
2421 if (di->flags.calibrate == false) {
2422 dev_dbg(di->dev, "Resetting FG state machine to init.\n");
2423 ab8500_fg_clear_cap_samples(di);
2424 ab8500_fg_calc_cap_discharge_voltage(di, true);
2425 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2426 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2427 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2428
2429 } else {
2430 dev_err(di->dev, "Residual offset calibration ongoing "
2431 "retrying..\n");
2432 /* Wait one second until next try*/
2433 queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
2434 round_jiffies(1));
2435 }
2436 }
2437
2438 /**
2439 * ab8500_fg_reinit() - forces FG algorithm to reinitialize with current values
2440 *
2441 * This function can be used to force the FG algorithm to recalculate a new
2442 * voltage based battery capacity.
2443 */
2444 void ab8500_fg_reinit(void)
2445 {
2446 struct ab8500_fg *di = ab8500_fg_get();
2447 /* User won't be notified if a null pointer returned. */
2448 if (di != NULL)
2449 queue_delayed_work(di->fg_wq, &di->fg_reinit_work, 0);
2450 }
2451
2452 /* Exposure to the sysfs interface */
2453
2454 struct ab8500_fg_sysfs_entry {
2455 struct attribute attr;
2456 ssize_t (*show)(struct ab8500_fg *, char *);
2457 ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
2458 };
2459
2460 static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
2461 {
2462 return sprintf(buf, "%d\n", di->bat_cap.max_mah);
2463 }
2464
2465 static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
2466 size_t count)
2467 {
2468 unsigned long charge_full;
2469 ssize_t ret;
2470
2471 ret = kstrtoul(buf, 10, &charge_full);
2472
2473 dev_dbg(di->dev, "Ret %zd charge_full %lu", ret, charge_full);
2474
2475 if (!ret) {
2476 di->bat_cap.max_mah = (int) charge_full;
2477 ret = count;
2478 }
2479 return ret;
2480 }
2481
2482 static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
2483 {
2484 return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
2485 }
2486
2487 static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
2488 size_t count)
2489 {
2490 unsigned long charge_now;
2491 ssize_t ret;
2492
2493 ret = kstrtoul(buf, 10, &charge_now);
2494
2495 dev_dbg(di->dev, "Ret %zd charge_now %lu was %d",
2496 ret, charge_now, di->bat_cap.prev_mah);
2497
2498 if (!ret) {
2499 di->bat_cap.user_mah = (int) charge_now;
2500 di->flags.user_cap = true;
2501 ret = count;
2502 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2503 }
2504 return ret;
2505 }
2506
2507 static struct ab8500_fg_sysfs_entry charge_full_attr =
2508 __ATTR(charge_full, 0644, charge_full_show, charge_full_store);
2509
2510 static struct ab8500_fg_sysfs_entry charge_now_attr =
2511 __ATTR(charge_now, 0644, charge_now_show, charge_now_store);
2512
2513 static ssize_t
2514 ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
2515 {
2516 struct ab8500_fg_sysfs_entry *entry;
2517 struct ab8500_fg *di;
2518
2519 entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2520 di = container_of(kobj, struct ab8500_fg, fg_kobject);
2521
2522 if (!entry->show)
2523 return -EIO;
2524
2525 return entry->show(di, buf);
2526 }
2527 static ssize_t
2528 ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
2529 size_t count)
2530 {
2531 struct ab8500_fg_sysfs_entry *entry;
2532 struct ab8500_fg *di;
2533
2534 entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2535 di = container_of(kobj, struct ab8500_fg, fg_kobject);
2536
2537 if (!entry->store)
2538 return -EIO;
2539
2540 return entry->store(di, buf, count);
2541 }
2542
2543 static const struct sysfs_ops ab8500_fg_sysfs_ops = {
2544 .show = ab8500_fg_show,
2545 .store = ab8500_fg_store,
2546 };
2547
2548 static struct attribute *ab8500_fg_attrs[] = {
2549 &charge_full_attr.attr,
2550 &charge_now_attr.attr,
2551 NULL,
2552 };
2553
2554 static struct kobj_type ab8500_fg_ktype = {
2555 .sysfs_ops = &ab8500_fg_sysfs_ops,
2556 .default_attrs = ab8500_fg_attrs,
2557 };
2558
2559 /**
2560 * ab8500_chargalg_sysfs_exit() - de-init of sysfs entry
2561 * @di: pointer to the struct ab8500_chargalg
2562 *
2563 * This function removes the entry in sysfs.
2564 */
2565 static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
2566 {
2567 kobject_del(&di->fg_kobject);
2568 }
2569
2570 /**
2571 * ab8500_chargalg_sysfs_init() - init of sysfs entry
2572 * @di: pointer to the struct ab8500_chargalg
2573 *
2574 * This function adds an entry in sysfs.
2575 * Returns error code in case of failure else 0(on success)
2576 */
2577 static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
2578 {
2579 int ret = 0;
2580
2581 ret = kobject_init_and_add(&di->fg_kobject,
2582 &ab8500_fg_ktype,
2583 NULL, "battery");
2584 if (ret < 0)
2585 dev_err(di->dev, "failed to create sysfs entry\n");
2586
2587 return ret;
2588 }
2589
2590 static ssize_t ab8505_powercut_flagtime_read(struct device *dev,
2591 struct device_attribute *attr,
2592 char *buf)
2593 {
2594 int ret;
2595 u8 reg_value;
2596 struct power_supply *psy = dev_get_drvdata(dev);
2597 struct ab8500_fg *di;
2598
2599 di = to_ab8500_fg_device_info(psy);
2600
2601 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2602 AB8505_RTC_PCUT_FLAG_TIME_REG, &reg_value);
2603
2604 if (ret < 0) {
2605 dev_err(dev, "Failed to read AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2606 goto fail;
2607 }
2608
2609 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2610
2611 fail:
2612 return ret;
2613 }
2614
2615 static ssize_t ab8505_powercut_flagtime_write(struct device *dev,
2616 struct device_attribute *attr,
2617 const char *buf, size_t count)
2618 {
2619 int ret;
2620 long unsigned reg_value;
2621 struct power_supply *psy = dev_get_drvdata(dev);
2622 struct ab8500_fg *di;
2623
2624 di = to_ab8500_fg_device_info(psy);
2625
2626 reg_value = simple_strtoul(buf, NULL, 10);
2627
2628 if (reg_value > 0x7F) {
2629 dev_err(dev, "Incorrect parameter, echo 0 (1.98s) - 127 (15.625ms) for flagtime\n");
2630 goto fail;
2631 }
2632
2633 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2634 AB8505_RTC_PCUT_FLAG_TIME_REG, (u8)reg_value);
2635
2636 if (ret < 0)
2637 dev_err(dev, "Failed to set AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2638
2639 fail:
2640 return count;
2641 }
2642
2643 static ssize_t ab8505_powercut_maxtime_read(struct device *dev,
2644 struct device_attribute *attr,
2645 char *buf)
2646 {
2647 int ret;
2648 u8 reg_value;
2649 struct power_supply *psy = dev_get_drvdata(dev);
2650 struct ab8500_fg *di;
2651
2652 di = to_ab8500_fg_device_info(psy);
2653
2654 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2655 AB8505_RTC_PCUT_MAX_TIME_REG, &reg_value);
2656
2657 if (ret < 0) {
2658 dev_err(dev, "Failed to read AB8505_RTC_PCUT_MAX_TIME_REG\n");
2659 goto fail;
2660 }
2661
2662 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2663
2664 fail:
2665 return ret;
2666
2667 }
2668
2669 static ssize_t ab8505_powercut_maxtime_write(struct device *dev,
2670 struct device_attribute *attr,
2671 const char *buf, size_t count)
2672 {
2673 int ret;
2674 int reg_value;
2675 struct power_supply *psy = dev_get_drvdata(dev);
2676 struct ab8500_fg *di;
2677
2678 di = to_ab8500_fg_device_info(psy);
2679
2680 reg_value = simple_strtoul(buf, NULL, 10);
2681 if (reg_value > 0x7F) {
2682 dev_err(dev, "Incorrect parameter, echo 0 (0.0s) - 127 (1.98s) for maxtime\n");
2683 goto fail;
2684 }
2685
2686 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2687 AB8505_RTC_PCUT_MAX_TIME_REG, (u8)reg_value);
2688
2689 if (ret < 0)
2690 dev_err(dev, "Failed to set AB8505_RTC_PCUT_MAX_TIME_REG\n");
2691
2692 fail:
2693 return count;
2694 }
2695
2696 static ssize_t ab8505_powercut_restart_read(struct device *dev,
2697 struct device_attribute *attr,
2698 char *buf)
2699 {
2700 int ret;
2701 u8 reg_value;
2702 struct power_supply *psy = dev_get_drvdata(dev);
2703 struct ab8500_fg *di;
2704
2705 di = to_ab8500_fg_device_info(psy);
2706
2707 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2708 AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2709
2710 if (ret < 0) {
2711 dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2712 goto fail;
2713 }
2714
2715 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF));
2716
2717 fail:
2718 return ret;
2719 }
2720
2721 static ssize_t ab8505_powercut_restart_write(struct device *dev,
2722 struct device_attribute *attr,
2723 const char *buf, size_t count)
2724 {
2725 int ret;
2726 int reg_value;
2727 struct power_supply *psy = dev_get_drvdata(dev);
2728 struct ab8500_fg *di;
2729
2730 di = to_ab8500_fg_device_info(psy);
2731
2732 reg_value = simple_strtoul(buf, NULL, 10);
2733 if (reg_value > 0xF) {
2734 dev_err(dev, "Incorrect parameter, echo 0 - 15 for number of restart\n");
2735 goto fail;
2736 }
2737
2738 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2739 AB8505_RTC_PCUT_RESTART_REG, (u8)reg_value);
2740
2741 if (ret < 0)
2742 dev_err(dev, "Failed to set AB8505_RTC_PCUT_RESTART_REG\n");
2743
2744 fail:
2745 return count;
2746
2747 }
2748
2749 static ssize_t ab8505_powercut_timer_read(struct device *dev,
2750 struct device_attribute *attr,
2751 char *buf)
2752 {
2753 int ret;
2754 u8 reg_value;
2755 struct power_supply *psy = dev_get_drvdata(dev);
2756 struct ab8500_fg *di;
2757
2758 di = to_ab8500_fg_device_info(psy);
2759
2760 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2761 AB8505_RTC_PCUT_TIME_REG, &reg_value);
2762
2763 if (ret < 0) {
2764 dev_err(dev, "Failed to read AB8505_RTC_PCUT_TIME_REG\n");
2765 goto fail;
2766 }
2767
2768 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2769
2770 fail:
2771 return ret;
2772 }
2773
2774 static ssize_t ab8505_powercut_restart_counter_read(struct device *dev,
2775 struct device_attribute *attr,
2776 char *buf)
2777 {
2778 int ret;
2779 u8 reg_value;
2780 struct power_supply *psy = dev_get_drvdata(dev);
2781 struct ab8500_fg *di;
2782
2783 di = to_ab8500_fg_device_info(psy);
2784
2785 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2786 AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2787
2788 if (ret < 0) {
2789 dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2790 goto fail;
2791 }
2792
2793 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF0) >> 4);
2794
2795 fail:
2796 return ret;
2797 }
2798
2799 static ssize_t ab8505_powercut_read(struct device *dev,
2800 struct device_attribute *attr,
2801 char *buf)
2802 {
2803 int ret;
2804 u8 reg_value;
2805 struct power_supply *psy = dev_get_drvdata(dev);
2806 struct ab8500_fg *di;
2807
2808 di = to_ab8500_fg_device_info(psy);
2809
2810 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2811 AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2812
2813 if (ret < 0)
2814 goto fail;
2815
2816 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x1));
2817
2818 fail:
2819 return ret;
2820 }
2821
2822 static ssize_t ab8505_powercut_write(struct device *dev,
2823 struct device_attribute *attr,
2824 const char *buf, size_t count)
2825 {
2826 int ret;
2827 int reg_value;
2828 struct power_supply *psy = dev_get_drvdata(dev);
2829 struct ab8500_fg *di;
2830
2831 di = to_ab8500_fg_device_info(psy);
2832
2833 reg_value = simple_strtoul(buf, NULL, 10);
2834 if (reg_value > 0x1) {
2835 dev_err(dev, "Incorrect parameter, echo 0/1 to disable/enable Pcut feature\n");
2836 goto fail;
2837 }
2838
2839 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2840 AB8505_RTC_PCUT_CTL_STATUS_REG, (u8)reg_value);
2841
2842 if (ret < 0)
2843 dev_err(dev, "Failed to set AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2844
2845 fail:
2846 return count;
2847 }
2848
2849 static ssize_t ab8505_powercut_flag_read(struct device *dev,
2850 struct device_attribute *attr,
2851 char *buf)
2852 {
2853
2854 int ret;
2855 u8 reg_value;
2856 struct power_supply *psy = dev_get_drvdata(dev);
2857 struct ab8500_fg *di;
2858
2859 di = to_ab8500_fg_device_info(psy);
2860
2861 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2862 AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2863
2864 if (ret < 0) {
2865 dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2866 goto fail;
2867 }
2868
2869 return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x10) >> 4));
2870
2871 fail:
2872 return ret;
2873 }
2874
2875 static ssize_t ab8505_powercut_debounce_read(struct device *dev,
2876 struct device_attribute *attr,
2877 char *buf)
2878 {
2879 int ret;
2880 u8 reg_value;
2881 struct power_supply *psy = dev_get_drvdata(dev);
2882 struct ab8500_fg *di;
2883
2884 di = to_ab8500_fg_device_info(psy);
2885
2886 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2887 AB8505_RTC_PCUT_DEBOUNCE_REG, &reg_value);
2888
2889 if (ret < 0) {
2890 dev_err(dev, "Failed to read AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2891 goto fail;
2892 }
2893
2894 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7));
2895
2896 fail:
2897 return ret;
2898 }
2899
2900 static ssize_t ab8505_powercut_debounce_write(struct device *dev,
2901 struct device_attribute *attr,
2902 const char *buf, size_t count)
2903 {
2904 int ret;
2905 int reg_value;
2906 struct power_supply *psy = dev_get_drvdata(dev);
2907 struct ab8500_fg *di;
2908
2909 di = to_ab8500_fg_device_info(psy);
2910
2911 reg_value = simple_strtoul(buf, NULL, 10);
2912 if (reg_value > 0x7) {
2913 dev_err(dev, "Incorrect parameter, echo 0 to 7 for debounce setting\n");
2914 goto fail;
2915 }
2916
2917 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2918 AB8505_RTC_PCUT_DEBOUNCE_REG, (u8)reg_value);
2919
2920 if (ret < 0)
2921 dev_err(dev, "Failed to set AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2922
2923 fail:
2924 return count;
2925 }
2926
2927 static ssize_t ab8505_powercut_enable_status_read(struct device *dev,
2928 struct device_attribute *attr,
2929 char *buf)
2930 {
2931 int ret;
2932 u8 reg_value;
2933 struct power_supply *psy = dev_get_drvdata(dev);
2934 struct ab8500_fg *di;
2935
2936 di = to_ab8500_fg_device_info(psy);
2937
2938 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2939 AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2940
2941 if (ret < 0) {
2942 dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2943 goto fail;
2944 }
2945
2946 return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x20) >> 5));
2947
2948 fail:
2949 return ret;
2950 }
2951
2952 static struct device_attribute ab8505_fg_sysfs_psy_attrs[] = {
2953 __ATTR(powercut_flagtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2954 ab8505_powercut_flagtime_read, ab8505_powercut_flagtime_write),
2955 __ATTR(powercut_maxtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2956 ab8505_powercut_maxtime_read, ab8505_powercut_maxtime_write),
2957 __ATTR(powercut_restart_max, (S_IRUGO | S_IWUSR | S_IWGRP),
2958 ab8505_powercut_restart_read, ab8505_powercut_restart_write),
2959 __ATTR(powercut_timer, S_IRUGO, ab8505_powercut_timer_read, NULL),
2960 __ATTR(powercut_restart_counter, S_IRUGO,
2961 ab8505_powercut_restart_counter_read, NULL),
2962 __ATTR(powercut_enable, (S_IRUGO | S_IWUSR | S_IWGRP),
2963 ab8505_powercut_read, ab8505_powercut_write),
2964 __ATTR(powercut_flag, S_IRUGO, ab8505_powercut_flag_read, NULL),
2965 __ATTR(powercut_debounce_time, (S_IRUGO | S_IWUSR | S_IWGRP),
2966 ab8505_powercut_debounce_read, ab8505_powercut_debounce_write),
2967 __ATTR(powercut_enable_status, S_IRUGO,
2968 ab8505_powercut_enable_status_read, NULL),
2969 };
2970
2971 static int ab8500_fg_sysfs_psy_create_attrs(struct device *dev)
2972 {
2973 unsigned int i;
2974 struct power_supply *psy = dev_get_drvdata(dev);
2975 struct ab8500_fg *di;
2976
2977 di = to_ab8500_fg_device_info(psy);
2978
2979 if (((is_ab8505(di->parent) || is_ab9540(di->parent)) &&
2980 abx500_get_chip_id(dev->parent) >= AB8500_CUT2P0)
2981 || is_ab8540(di->parent)) {
2982 for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2983 if (device_create_file(dev,
2984 &ab8505_fg_sysfs_psy_attrs[i]))
2985 goto sysfs_psy_create_attrs_failed_ab8505;
2986 }
2987 return 0;
2988 sysfs_psy_create_attrs_failed_ab8505:
2989 dev_err(dev, "Failed creating sysfs psy attrs for ab8505.\n");
2990 while (i--)
2991 device_remove_file(dev, &ab8505_fg_sysfs_psy_attrs[i]);
2992
2993 return -EIO;
2994 }
2995
2996 static void ab8500_fg_sysfs_psy_remove_attrs(struct device *dev)
2997 {
2998 unsigned int i;
2999 struct power_supply *psy = dev_get_drvdata(dev);
3000 struct ab8500_fg *di;
3001
3002 di = to_ab8500_fg_device_info(psy);
3003
3004 if (((is_ab8505(di->parent) || is_ab9540(di->parent)) &&
3005 abx500_get_chip_id(dev->parent) >= AB8500_CUT2P0)
3006 || is_ab8540(di->parent)) {
3007 for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
3008 (void)device_remove_file(dev, &ab8505_fg_sysfs_psy_attrs[i]);
3009 }
3010 }
3011
3012 /* Exposure to the sysfs interface <<END>> */
3013
3014 #if defined(CONFIG_PM)
3015 static int ab8500_fg_resume(struct platform_device *pdev)
3016 {
3017 struct ab8500_fg *di = platform_get_drvdata(pdev);
3018
3019 /*
3020 * Change state if we're not charging. If we're charging we will wake
3021 * up on the FG IRQ
3022 */
3023 if (!di->flags.charging) {
3024 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
3025 queue_work(di->fg_wq, &di->fg_work);
3026 }
3027
3028 return 0;
3029 }
3030
3031 static int ab8500_fg_suspend(struct platform_device *pdev,
3032 pm_message_t state)
3033 {
3034 struct ab8500_fg *di = platform_get_drvdata(pdev);
3035
3036 flush_delayed_work(&di->fg_periodic_work);
3037 flush_work(&di->fg_work);
3038 flush_work(&di->fg_acc_cur_work);
3039 flush_delayed_work(&di->fg_reinit_work);
3040 flush_delayed_work(&di->fg_low_bat_work);
3041 flush_delayed_work(&di->fg_check_hw_failure_work);
3042
3043 /*
3044 * If the FG is enabled we will disable it before going to suspend
3045 * only if we're not charging
3046 */
3047 if (di->flags.fg_enabled && !di->flags.charging)
3048 ab8500_fg_coulomb_counter(di, false);
3049
3050 return 0;
3051 }
3052 #else
3053 #define ab8500_fg_suspend NULL
3054 #define ab8500_fg_resume NULL
3055 #endif
3056
3057 static int ab8500_fg_remove(struct platform_device *pdev)
3058 {
3059 int ret = 0;
3060 struct ab8500_fg *di = platform_get_drvdata(pdev);
3061
3062 list_del(&di->node);
3063
3064 /* Disable coulomb counter */
3065 ret = ab8500_fg_coulomb_counter(di, false);
3066 if (ret)
3067 dev_err(di->dev, "failed to disable coulomb counter\n");
3068
3069 destroy_workqueue(di->fg_wq);
3070 ab8500_fg_sysfs_exit(di);
3071
3072 flush_scheduled_work();
3073 ab8500_fg_sysfs_psy_remove_attrs(di->fg_psy.dev);
3074 power_supply_unregister(&di->fg_psy);
3075 return ret;
3076 }
3077
3078 /* ab8500 fg driver interrupts and their respective isr */
3079 static struct ab8500_fg_interrupts ab8500_fg_irq[] = {
3080 {"NCONV_ACCU", ab8500_fg_cc_convend_handler},
3081 {"BATT_OVV", ab8500_fg_batt_ovv_handler},
3082 {"LOW_BAT_F", ab8500_fg_lowbatf_handler},
3083 {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
3084 {"CCEOC", ab8500_fg_cc_data_end_handler},
3085 };
3086
3087 static char *supply_interface[] = {
3088 "ab8500_chargalg",
3089 "ab8500_usb",
3090 };
3091
3092 static int ab8500_fg_probe(struct platform_device *pdev)
3093 {
3094 struct device_node *np = pdev->dev.of_node;
3095 struct abx500_bm_data *plat = pdev->dev.platform_data;
3096 struct ab8500_fg *di;
3097 int i, irq;
3098 int ret = 0;
3099
3100 di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL);
3101 if (!di) {
3102 dev_err(&pdev->dev, "%s no mem for ab8500_fg\n", __func__);
3103 return -ENOMEM;
3104 }
3105
3106 if (!plat) {
3107 dev_err(&pdev->dev, "no battery management data supplied\n");
3108 return -EINVAL;
3109 }
3110 di->bm = plat;
3111
3112 if (np) {
3113 ret = ab8500_bm_of_probe(&pdev->dev, np, di->bm);
3114 if (ret) {
3115 dev_err(&pdev->dev, "failed to get battery information\n");
3116 return ret;
3117 }
3118 }
3119
3120 mutex_init(&di->cc_lock);
3121
3122 /* get parent data */
3123 di->dev = &pdev->dev;
3124 di->parent = dev_get_drvdata(pdev->dev.parent);
3125 di->gpadc = ab8500_gpadc_get("ab8500-gpadc.0");
3126
3127 di->fg_psy.name = "ab8500_fg";
3128 di->fg_psy.type = POWER_SUPPLY_TYPE_BATTERY;
3129 di->fg_psy.properties = ab8500_fg_props;
3130 di->fg_psy.num_properties = ARRAY_SIZE(ab8500_fg_props);
3131 di->fg_psy.get_property = ab8500_fg_get_property;
3132 di->fg_psy.supplied_to = supply_interface;
3133 di->fg_psy.num_supplicants = ARRAY_SIZE(supply_interface),
3134 di->fg_psy.external_power_changed = ab8500_fg_external_power_changed;
3135
3136 di->bat_cap.max_mah_design = MILLI_TO_MICRO *
3137 di->bm->bat_type[di->bm->batt_id].charge_full_design;
3138
3139 di->bat_cap.max_mah = di->bat_cap.max_mah_design;
3140
3141 di->vbat_nom = di->bm->bat_type[di->bm->batt_id].nominal_voltage;
3142
3143 di->init_capacity = true;
3144
3145 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
3146 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
3147
3148 /* Create a work queue for running the FG algorithm */
3149 di->fg_wq = create_singlethread_workqueue("ab8500_fg_wq");
3150 if (di->fg_wq == NULL) {
3151 dev_err(di->dev, "failed to create work queue\n");
3152 return -ENOMEM;
3153 }
3154
3155 /* Init work for running the fg algorithm instantly */
3156 INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
3157
3158 /* Init work for getting the battery accumulated current */
3159 INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
3160
3161 /* Init work for reinitialising the fg algorithm */
3162 INIT_DEFERRABLE_WORK(&di->fg_reinit_work,
3163 ab8500_fg_reinit_work);
3164
3165 /* Work delayed Queue to run the state machine */
3166 INIT_DEFERRABLE_WORK(&di->fg_periodic_work,
3167 ab8500_fg_periodic_work);
3168
3169 /* Work to check low battery condition */
3170 INIT_DEFERRABLE_WORK(&di->fg_low_bat_work,
3171 ab8500_fg_low_bat_work);
3172
3173 /* Init work for HW failure check */
3174 INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work,
3175 ab8500_fg_check_hw_failure_work);
3176
3177 /* Reset battery low voltage flag */
3178 di->flags.low_bat = false;
3179
3180 /* Initialize low battery counter */
3181 di->low_bat_cnt = 10;
3182
3183 /* Initialize OVV, and other registers */
3184 ret = ab8500_fg_init_hw_registers(di);
3185 if (ret) {
3186 dev_err(di->dev, "failed to initialize registers\n");
3187 goto free_inst_curr_wq;
3188 }
3189
3190 /* Consider battery unknown until we're informed otherwise */
3191 di->flags.batt_unknown = true;
3192 di->flags.batt_id_received = false;
3193
3194 /* Register FG power supply class */
3195 ret = power_supply_register(di->dev, &di->fg_psy);
3196 if (ret) {
3197 dev_err(di->dev, "failed to register FG psy\n");
3198 goto free_inst_curr_wq;
3199 }
3200
3201 di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
3202 ab8500_fg_coulomb_counter(di, true);
3203
3204 /*
3205 * Initialize completion used to notify completion and start
3206 * of inst current
3207 */
3208 init_completion(&di->ab8500_fg_started);
3209 init_completion(&di->ab8500_fg_complete);
3210
3211 /* Register interrupts */
3212 for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) {
3213 irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
3214 ret = request_threaded_irq(irq, NULL, ab8500_fg_irq[i].isr,
3215 IRQF_SHARED | IRQF_NO_SUSPEND,
3216 ab8500_fg_irq[i].name, di);
3217
3218 if (ret != 0) {
3219 dev_err(di->dev, "failed to request %s IRQ %d: %d\n"
3220 , ab8500_fg_irq[i].name, irq, ret);
3221 goto free_irq;
3222 }
3223 dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
3224 ab8500_fg_irq[i].name, irq, ret);
3225 }
3226 di->irq = platform_get_irq_byname(pdev, "CCEOC");
3227 disable_irq(di->irq);
3228 di->nbr_cceoc_irq_cnt = 0;
3229
3230 platform_set_drvdata(pdev, di);
3231
3232 ret = ab8500_fg_sysfs_init(di);
3233 if (ret) {
3234 dev_err(di->dev, "failed to create sysfs entry\n");
3235 goto free_irq;
3236 }
3237
3238 ret = ab8500_fg_sysfs_psy_create_attrs(di->fg_psy.dev);
3239 if (ret) {
3240 dev_err(di->dev, "failed to create FG psy\n");
3241 ab8500_fg_sysfs_exit(di);
3242 goto free_irq;
3243 }
3244
3245 /* Calibrate the fg first time */
3246 di->flags.calibrate = true;
3247 di->calib_state = AB8500_FG_CALIB_INIT;
3248
3249 /* Use room temp as default value until we get an update from driver. */
3250 di->bat_temp = 210;
3251
3252 /* Run the FG algorithm */
3253 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
3254
3255 list_add_tail(&di->node, &ab8500_fg_list);
3256
3257 return ret;
3258
3259 free_irq:
3260 power_supply_unregister(&di->fg_psy);
3261
3262 /* We also have to free all successfully registered irqs */
3263 for (i = i - 1; i >= 0; i--) {
3264 irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
3265 free_irq(irq, di);
3266 }
3267 free_inst_curr_wq:
3268 destroy_workqueue(di->fg_wq);
3269 return ret;
3270 }
3271
3272 static const struct of_device_id ab8500_fg_match[] = {
3273 { .compatible = "stericsson,ab8500-fg", },
3274 { },
3275 };
3276
3277 static struct platform_driver ab8500_fg_driver = {
3278 .probe = ab8500_fg_probe,
3279 .remove = ab8500_fg_remove,
3280 .suspend = ab8500_fg_suspend,
3281 .resume = ab8500_fg_resume,
3282 .driver = {
3283 .name = "ab8500-fg",
3284 .of_match_table = ab8500_fg_match,
3285 },
3286 };
3287
3288 static int __init ab8500_fg_init(void)
3289 {
3290 return platform_driver_register(&ab8500_fg_driver);
3291 }
3292
3293 static void __exit ab8500_fg_exit(void)
3294 {
3295 platform_driver_unregister(&ab8500_fg_driver);
3296 }
3297
3298 subsys_initcall_sync(ab8500_fg_init);
3299 module_exit(ab8500_fg_exit);
3300
3301 MODULE_LICENSE("GPL v2");
3302 MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
3303 MODULE_ALIAS("platform:ab8500-fg");
3304 MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");