]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/ptp/ptp_clock.c
Merge tag 'platform-drivers-x86-v5.2-1' of git://git.infradead.org/linux-platform...
[mirror_ubuntu-jammy-kernel.git] / drivers / ptp / ptp_clock.c
1 /*
2 * PTP 1588 clock support
3 *
4 * Copyright (C) 2010 OMICRON electronics GmbH
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20 #include <linux/idr.h>
21 #include <linux/device.h>
22 #include <linux/err.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/posix-clock.h>
27 #include <linux/pps_kernel.h>
28 #include <linux/slab.h>
29 #include <linux/syscalls.h>
30 #include <linux/uaccess.h>
31 #include <uapi/linux/sched/types.h>
32
33 #include "ptp_private.h"
34
35 #define PTP_MAX_ALARMS 4
36 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
37 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
38 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
39
40 /* private globals */
41
42 static dev_t ptp_devt;
43 static struct class *ptp_class;
44
45 static DEFINE_IDA(ptp_clocks_map);
46
47 /* time stamp event queue operations */
48
49 static inline int queue_free(struct timestamp_event_queue *q)
50 {
51 return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
52 }
53
54 static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
55 struct ptp_clock_event *src)
56 {
57 struct ptp_extts_event *dst;
58 unsigned long flags;
59 s64 seconds;
60 u32 remainder;
61
62 seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
63
64 spin_lock_irqsave(&queue->lock, flags);
65
66 dst = &queue->buf[queue->tail];
67 dst->index = src->index;
68 dst->t.sec = seconds;
69 dst->t.nsec = remainder;
70
71 if (!queue_free(queue))
72 queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
73
74 queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
75
76 spin_unlock_irqrestore(&queue->lock, flags);
77 }
78
79 static s32 scaled_ppm_to_ppb(long ppm)
80 {
81 /*
82 * The 'freq' field in the 'struct timex' is in parts per
83 * million, but with a 16 bit binary fractional field.
84 *
85 * We want to calculate
86 *
87 * ppb = scaled_ppm * 1000 / 2^16
88 *
89 * which simplifies to
90 *
91 * ppb = scaled_ppm * 125 / 2^13
92 */
93 s64 ppb = 1 + ppm;
94 ppb *= 125;
95 ppb >>= 13;
96 return (s32) ppb;
97 }
98
99 /* posix clock implementation */
100
101 static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
102 {
103 tp->tv_sec = 0;
104 tp->tv_nsec = 1;
105 return 0;
106 }
107
108 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
109 {
110 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
111
112 return ptp->info->settime64(ptp->info, tp);
113 }
114
115 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
116 {
117 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
118 int err;
119
120 if (ptp->info->gettimex64)
121 err = ptp->info->gettimex64(ptp->info, tp, NULL);
122 else
123 err = ptp->info->gettime64(ptp->info, tp);
124 return err;
125 }
126
127 static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
128 {
129 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
130 struct ptp_clock_info *ops;
131 int err = -EOPNOTSUPP;
132
133 ops = ptp->info;
134
135 if (tx->modes & ADJ_SETOFFSET) {
136 struct timespec64 ts;
137 ktime_t kt;
138 s64 delta;
139
140 ts.tv_sec = tx->time.tv_sec;
141 ts.tv_nsec = tx->time.tv_usec;
142
143 if (!(tx->modes & ADJ_NANO))
144 ts.tv_nsec *= 1000;
145
146 if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
147 return -EINVAL;
148
149 kt = timespec64_to_ktime(ts);
150 delta = ktime_to_ns(kt);
151 err = ops->adjtime(ops, delta);
152 } else if (tx->modes & ADJ_FREQUENCY) {
153 s32 ppb = scaled_ppm_to_ppb(tx->freq);
154 if (ppb > ops->max_adj || ppb < -ops->max_adj)
155 return -ERANGE;
156 if (ops->adjfine)
157 err = ops->adjfine(ops, tx->freq);
158 else
159 err = ops->adjfreq(ops, ppb);
160 ptp->dialed_frequency = tx->freq;
161 } else if (tx->modes == 0) {
162 tx->freq = ptp->dialed_frequency;
163 err = 0;
164 }
165
166 return err;
167 }
168
169 static struct posix_clock_operations ptp_clock_ops = {
170 .owner = THIS_MODULE,
171 .clock_adjtime = ptp_clock_adjtime,
172 .clock_gettime = ptp_clock_gettime,
173 .clock_getres = ptp_clock_getres,
174 .clock_settime = ptp_clock_settime,
175 .ioctl = ptp_ioctl,
176 .open = ptp_open,
177 .poll = ptp_poll,
178 .read = ptp_read,
179 };
180
181 static void delete_ptp_clock(struct posix_clock *pc)
182 {
183 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
184
185 mutex_destroy(&ptp->tsevq_mux);
186 mutex_destroy(&ptp->pincfg_mux);
187 ida_simple_remove(&ptp_clocks_map, ptp->index);
188 kfree(ptp);
189 }
190
191 static void ptp_aux_kworker(struct kthread_work *work)
192 {
193 struct ptp_clock *ptp = container_of(work, struct ptp_clock,
194 aux_work.work);
195 struct ptp_clock_info *info = ptp->info;
196 long delay;
197
198 delay = info->do_aux_work(info);
199
200 if (delay >= 0)
201 kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
202 }
203
204 /* public interface */
205
206 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
207 struct device *parent)
208 {
209 struct ptp_clock *ptp;
210 int err = 0, index, major = MAJOR(ptp_devt);
211
212 if (info->n_alarm > PTP_MAX_ALARMS)
213 return ERR_PTR(-EINVAL);
214
215 /* Initialize a clock structure. */
216 err = -ENOMEM;
217 ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
218 if (ptp == NULL)
219 goto no_memory;
220
221 index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
222 if (index < 0) {
223 err = index;
224 goto no_slot;
225 }
226
227 ptp->clock.ops = ptp_clock_ops;
228 ptp->clock.release = delete_ptp_clock;
229 ptp->info = info;
230 ptp->devid = MKDEV(major, index);
231 ptp->index = index;
232 spin_lock_init(&ptp->tsevq.lock);
233 mutex_init(&ptp->tsevq_mux);
234 mutex_init(&ptp->pincfg_mux);
235 init_waitqueue_head(&ptp->tsev_wq);
236
237 if (ptp->info->do_aux_work) {
238 kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
239 ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
240 if (IS_ERR(ptp->kworker)) {
241 err = PTR_ERR(ptp->kworker);
242 pr_err("failed to create ptp aux_worker %d\n", err);
243 goto kworker_err;
244 }
245 }
246
247 err = ptp_populate_pin_groups(ptp);
248 if (err)
249 goto no_pin_groups;
250
251 /* Create a new device in our class. */
252 ptp->dev = device_create_with_groups(ptp_class, parent, ptp->devid,
253 ptp, ptp->pin_attr_groups,
254 "ptp%d", ptp->index);
255 if (IS_ERR(ptp->dev)) {
256 err = PTR_ERR(ptp->dev);
257 goto no_device;
258 }
259
260 /* Register a new PPS source. */
261 if (info->pps) {
262 struct pps_source_info pps;
263 memset(&pps, 0, sizeof(pps));
264 snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
265 pps.mode = PTP_PPS_MODE;
266 pps.owner = info->owner;
267 ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
268 if (IS_ERR(ptp->pps_source)) {
269 err = PTR_ERR(ptp->pps_source);
270 pr_err("failed to register pps source\n");
271 goto no_pps;
272 }
273 }
274
275 /* Create a posix clock. */
276 err = posix_clock_register(&ptp->clock, ptp->devid);
277 if (err) {
278 pr_err("failed to create posix clock\n");
279 goto no_clock;
280 }
281
282 return ptp;
283
284 no_clock:
285 if (ptp->pps_source)
286 pps_unregister_source(ptp->pps_source);
287 no_pps:
288 device_destroy(ptp_class, ptp->devid);
289 no_device:
290 ptp_cleanup_pin_groups(ptp);
291 no_pin_groups:
292 if (ptp->kworker)
293 kthread_destroy_worker(ptp->kworker);
294 kworker_err:
295 mutex_destroy(&ptp->tsevq_mux);
296 mutex_destroy(&ptp->pincfg_mux);
297 ida_simple_remove(&ptp_clocks_map, index);
298 no_slot:
299 kfree(ptp);
300 no_memory:
301 return ERR_PTR(err);
302 }
303 EXPORT_SYMBOL(ptp_clock_register);
304
305 int ptp_clock_unregister(struct ptp_clock *ptp)
306 {
307 ptp->defunct = 1;
308 wake_up_interruptible(&ptp->tsev_wq);
309
310 if (ptp->kworker) {
311 kthread_cancel_delayed_work_sync(&ptp->aux_work);
312 kthread_destroy_worker(ptp->kworker);
313 }
314
315 /* Release the clock's resources. */
316 if (ptp->pps_source)
317 pps_unregister_source(ptp->pps_source);
318
319 device_destroy(ptp_class, ptp->devid);
320 ptp_cleanup_pin_groups(ptp);
321
322 posix_clock_unregister(&ptp->clock);
323 return 0;
324 }
325 EXPORT_SYMBOL(ptp_clock_unregister);
326
327 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
328 {
329 struct pps_event_time evt;
330
331 switch (event->type) {
332
333 case PTP_CLOCK_ALARM:
334 break;
335
336 case PTP_CLOCK_EXTTS:
337 enqueue_external_timestamp(&ptp->tsevq, event);
338 wake_up_interruptible(&ptp->tsev_wq);
339 break;
340
341 case PTP_CLOCK_PPS:
342 pps_get_ts(&evt);
343 pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
344 break;
345
346 case PTP_CLOCK_PPSUSR:
347 pps_event(ptp->pps_source, &event->pps_times,
348 PTP_PPS_EVENT, NULL);
349 break;
350 }
351 }
352 EXPORT_SYMBOL(ptp_clock_event);
353
354 int ptp_clock_index(struct ptp_clock *ptp)
355 {
356 return ptp->index;
357 }
358 EXPORT_SYMBOL(ptp_clock_index);
359
360 int ptp_find_pin(struct ptp_clock *ptp,
361 enum ptp_pin_function func, unsigned int chan)
362 {
363 struct ptp_pin_desc *pin = NULL;
364 int i;
365
366 mutex_lock(&ptp->pincfg_mux);
367 for (i = 0; i < ptp->info->n_pins; i++) {
368 if (ptp->info->pin_config[i].func == func &&
369 ptp->info->pin_config[i].chan == chan) {
370 pin = &ptp->info->pin_config[i];
371 break;
372 }
373 }
374 mutex_unlock(&ptp->pincfg_mux);
375
376 return pin ? i : -1;
377 }
378 EXPORT_SYMBOL(ptp_find_pin);
379
380 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
381 {
382 return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
383 }
384 EXPORT_SYMBOL(ptp_schedule_worker);
385
386 /* module operations */
387
388 static void __exit ptp_exit(void)
389 {
390 class_destroy(ptp_class);
391 unregister_chrdev_region(ptp_devt, MINORMASK + 1);
392 ida_destroy(&ptp_clocks_map);
393 }
394
395 static int __init ptp_init(void)
396 {
397 int err;
398
399 ptp_class = class_create(THIS_MODULE, "ptp");
400 if (IS_ERR(ptp_class)) {
401 pr_err("ptp: failed to allocate class\n");
402 return PTR_ERR(ptp_class);
403 }
404
405 err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
406 if (err < 0) {
407 pr_err("ptp: failed to allocate device region\n");
408 goto no_region;
409 }
410
411 ptp_class->dev_groups = ptp_groups;
412 pr_info("PTP clock support registered\n");
413 return 0;
414
415 no_region:
416 class_destroy(ptp_class);
417 return err;
418 }
419
420 subsys_initcall(ptp_init);
421 module_exit(ptp_exit);
422
423 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
424 MODULE_DESCRIPTION("PTP clocks support");
425 MODULE_LICENSE("GPL");