]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/ras/cec.c
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[mirror_ubuntu-bionic-kernel.git] / drivers / ras / cec.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/gfp.h>
4 #include <linux/kernel.h>
5
6 #include <asm/mce.h>
7
8 #include "debugfs.h"
9
10 /*
11 * RAS Correctable Errors Collector
12 *
13 * This is a simple gadget which collects correctable errors and counts their
14 * occurrence per physical page address.
15 *
16 * We've opted for possibly the simplest data structure to collect those - an
17 * array of the size of a memory page. It stores 512 u64's with the following
18 * structure:
19 *
20 * [63 ... PFN ... 12 | 11 ... generation ... 10 | 9 ... count ... 0]
21 *
22 * The generation in the two highest order bits is two bits which are set to 11b
23 * on every insertion. During the course of each entry's existence, the
24 * generation field gets decremented during spring cleaning to 10b, then 01b and
25 * then 00b.
26 *
27 * This way we're employing the natural numeric ordering to make sure that newly
28 * inserted/touched elements have higher 12-bit counts (which we've manufactured)
29 * and thus iterating over the array initially won't kick out those elements
30 * which were inserted last.
31 *
32 * Spring cleaning is what we do when we reach a certain number CLEAN_ELEMS of
33 * elements entered into the array, during which, we're decaying all elements.
34 * If, after decay, an element gets inserted again, its generation is set to 11b
35 * to make sure it has higher numerical count than other, older elements and
36 * thus emulate an an LRU-like behavior when deleting elements to free up space
37 * in the page.
38 *
39 * When an element reaches it's max count of count_threshold, we try to poison
40 * it by assuming that errors triggered count_threshold times in a single page
41 * are excessive and that page shouldn't be used anymore. count_threshold is
42 * initialized to COUNT_MASK which is the maximum.
43 *
44 * That error event entry causes cec_add_elem() to return !0 value and thus
45 * signal to its callers to log the error.
46 *
47 * To the question why we've chosen a page and moving elements around with
48 * memmove(), it is because it is a very simple structure to handle and max data
49 * movement is 4K which on highly optimized modern CPUs is almost unnoticeable.
50 * We wanted to avoid the pointer traversal of more complex structures like a
51 * linked list or some sort of a balancing search tree.
52 *
53 * Deleting an element takes O(n) but since it is only a single page, it should
54 * be fast enough and it shouldn't happen all too often depending on error
55 * patterns.
56 */
57
58 #undef pr_fmt
59 #define pr_fmt(fmt) "RAS: " fmt
60
61 /*
62 * We use DECAY_BITS bits of PAGE_SHIFT bits for counting decay, i.e., how long
63 * elements have stayed in the array without having been accessed again.
64 */
65 #define DECAY_BITS 2
66 #define DECAY_MASK ((1ULL << DECAY_BITS) - 1)
67 #define MAX_ELEMS (PAGE_SIZE / sizeof(u64))
68
69 /*
70 * Threshold amount of inserted elements after which we start spring
71 * cleaning.
72 */
73 #define CLEAN_ELEMS (MAX_ELEMS >> DECAY_BITS)
74
75 /* Bits which count the number of errors happened in this 4K page. */
76 #define COUNT_BITS (PAGE_SHIFT - DECAY_BITS)
77 #define COUNT_MASK ((1ULL << COUNT_BITS) - 1)
78 #define FULL_COUNT_MASK (PAGE_SIZE - 1)
79
80 /*
81 * u64: [ 63 ... 12 | DECAY_BITS | COUNT_BITS ]
82 */
83
84 #define PFN(e) ((e) >> PAGE_SHIFT)
85 #define DECAY(e) (((e) >> COUNT_BITS) & DECAY_MASK)
86 #define COUNT(e) ((unsigned int)(e) & COUNT_MASK)
87 #define FULL_COUNT(e) ((e) & (PAGE_SIZE - 1))
88
89 static struct ce_array {
90 u64 *array; /* container page */
91 unsigned int n; /* number of elements in the array */
92
93 unsigned int decay_count; /*
94 * number of element insertions/increments
95 * since the last spring cleaning.
96 */
97
98 u64 pfns_poisoned; /*
99 * number of PFNs which got poisoned.
100 */
101
102 u64 ces_entered; /*
103 * The number of correctable errors
104 * entered into the collector.
105 */
106
107 u64 decays_done; /*
108 * Times we did spring cleaning.
109 */
110
111 union {
112 struct {
113 __u32 disabled : 1, /* cmdline disabled */
114 __resv : 31;
115 };
116 __u32 flags;
117 };
118 } ce_arr;
119
120 static DEFINE_MUTEX(ce_mutex);
121 static u64 dfs_pfn;
122
123 /* Amount of errors after which we offline */
124 static unsigned int count_threshold = COUNT_MASK;
125
126 /*
127 * The timer "decays" element count each timer_interval which is 24hrs by
128 * default.
129 */
130
131 #define CEC_TIMER_DEFAULT_INTERVAL 24 * 60 * 60 /* 24 hrs */
132 #define CEC_TIMER_MIN_INTERVAL 1 * 60 * 60 /* 1h */
133 #define CEC_TIMER_MAX_INTERVAL 30 * 24 * 60 * 60 /* one month */
134 static struct timer_list cec_timer;
135 static u64 timer_interval = CEC_TIMER_DEFAULT_INTERVAL;
136
137 /*
138 * Decrement decay value. We're using DECAY_BITS bits to denote decay of an
139 * element in the array. On insertion and any access, it gets reset to max.
140 */
141 static void do_spring_cleaning(struct ce_array *ca)
142 {
143 int i;
144
145 for (i = 0; i < ca->n; i++) {
146 u8 decay = DECAY(ca->array[i]);
147
148 if (!decay)
149 continue;
150
151 decay--;
152
153 ca->array[i] &= ~(DECAY_MASK << COUNT_BITS);
154 ca->array[i] |= (decay << COUNT_BITS);
155 }
156 ca->decay_count = 0;
157 ca->decays_done++;
158 }
159
160 /*
161 * @interval in seconds
162 */
163 static void cec_mod_timer(struct timer_list *t, unsigned long interval)
164 {
165 unsigned long iv;
166
167 iv = interval * HZ + jiffies;
168
169 mod_timer(t, round_jiffies(iv));
170 }
171
172 static void cec_timer_fn(unsigned long data)
173 {
174 struct ce_array *ca = (struct ce_array *)data;
175
176 do_spring_cleaning(ca);
177
178 cec_mod_timer(&cec_timer, timer_interval);
179 }
180
181 /*
182 * @to: index of the smallest element which is >= then @pfn.
183 *
184 * Return the index of the pfn if found, otherwise negative value.
185 */
186 static int __find_elem(struct ce_array *ca, u64 pfn, unsigned int *to)
187 {
188 u64 this_pfn;
189 int min = 0, max = ca->n;
190
191 while (min < max) {
192 int tmp = (max + min) >> 1;
193
194 this_pfn = PFN(ca->array[tmp]);
195
196 if (this_pfn < pfn)
197 min = tmp + 1;
198 else if (this_pfn > pfn)
199 max = tmp;
200 else {
201 min = tmp;
202 break;
203 }
204 }
205
206 if (to)
207 *to = min;
208
209 this_pfn = PFN(ca->array[min]);
210
211 if (this_pfn == pfn)
212 return min;
213
214 return -ENOKEY;
215 }
216
217 static int find_elem(struct ce_array *ca, u64 pfn, unsigned int *to)
218 {
219 WARN_ON(!to);
220
221 if (!ca->n) {
222 *to = 0;
223 return -ENOKEY;
224 }
225 return __find_elem(ca, pfn, to);
226 }
227
228 static void del_elem(struct ce_array *ca, int idx)
229 {
230 /* Save us a function call when deleting the last element. */
231 if (ca->n - (idx + 1))
232 memmove((void *)&ca->array[idx],
233 (void *)&ca->array[idx + 1],
234 (ca->n - (idx + 1)) * sizeof(u64));
235
236 ca->n--;
237 }
238
239 static u64 del_lru_elem_unlocked(struct ce_array *ca)
240 {
241 unsigned int min = FULL_COUNT_MASK;
242 int i, min_idx = 0;
243
244 for (i = 0; i < ca->n; i++) {
245 unsigned int this = FULL_COUNT(ca->array[i]);
246
247 if (min > this) {
248 min = this;
249 min_idx = i;
250 }
251 }
252
253 del_elem(ca, min_idx);
254
255 return PFN(ca->array[min_idx]);
256 }
257
258 /*
259 * We return the 0th pfn in the error case under the assumption that it cannot
260 * be poisoned and excessive CEs in there are a serious deal anyway.
261 */
262 static u64 __maybe_unused del_lru_elem(void)
263 {
264 struct ce_array *ca = &ce_arr;
265 u64 pfn;
266
267 if (!ca->n)
268 return 0;
269
270 mutex_lock(&ce_mutex);
271 pfn = del_lru_elem_unlocked(ca);
272 mutex_unlock(&ce_mutex);
273
274 return pfn;
275 }
276
277
278 int cec_add_elem(u64 pfn)
279 {
280 struct ce_array *ca = &ce_arr;
281 unsigned int to;
282 int count, ret = 0;
283
284 /*
285 * We can be called very early on the identify_cpu() path where we are
286 * not initialized yet. We ignore the error for simplicity.
287 */
288 if (!ce_arr.array || ce_arr.disabled)
289 return -ENODEV;
290
291 ca->ces_entered++;
292
293 mutex_lock(&ce_mutex);
294
295 if (ca->n == MAX_ELEMS)
296 WARN_ON(!del_lru_elem_unlocked(ca));
297
298 ret = find_elem(ca, pfn, &to);
299 if (ret < 0) {
300 /*
301 * Shift range [to-end] to make room for one more element.
302 */
303 memmove((void *)&ca->array[to + 1],
304 (void *)&ca->array[to],
305 (ca->n - to) * sizeof(u64));
306
307 ca->array[to] = (pfn << PAGE_SHIFT) |
308 (DECAY_MASK << COUNT_BITS) | 1;
309
310 ca->n++;
311
312 ret = 0;
313
314 goto decay;
315 }
316
317 count = COUNT(ca->array[to]);
318
319 if (count < count_threshold) {
320 ca->array[to] |= (DECAY_MASK << COUNT_BITS);
321 ca->array[to]++;
322
323 ret = 0;
324 } else {
325 u64 pfn = ca->array[to] >> PAGE_SHIFT;
326
327 if (!pfn_valid(pfn)) {
328 pr_warn("CEC: Invalid pfn: 0x%llx\n", pfn);
329 } else {
330 /* We have reached max count for this page, soft-offline it. */
331 pr_err("Soft-offlining pfn: 0x%llx\n", pfn);
332 memory_failure_queue(pfn, 0, MF_SOFT_OFFLINE);
333 ca->pfns_poisoned++;
334 }
335
336 del_elem(ca, to);
337
338 /*
339 * Return a >0 value to denote that we've reached the offlining
340 * threshold.
341 */
342 ret = 1;
343
344 goto unlock;
345 }
346
347 decay:
348 ca->decay_count++;
349
350 if (ca->decay_count >= CLEAN_ELEMS)
351 do_spring_cleaning(ca);
352
353 unlock:
354 mutex_unlock(&ce_mutex);
355
356 return ret;
357 }
358
359 static int u64_get(void *data, u64 *val)
360 {
361 *val = *(u64 *)data;
362
363 return 0;
364 }
365
366 static int pfn_set(void *data, u64 val)
367 {
368 *(u64 *)data = val;
369
370 return cec_add_elem(val);
371 }
372
373 DEFINE_DEBUGFS_ATTRIBUTE(pfn_ops, u64_get, pfn_set, "0x%llx\n");
374
375 static int decay_interval_set(void *data, u64 val)
376 {
377 *(u64 *)data = val;
378
379 if (val < CEC_TIMER_MIN_INTERVAL)
380 return -EINVAL;
381
382 if (val > CEC_TIMER_MAX_INTERVAL)
383 return -EINVAL;
384
385 timer_interval = val;
386
387 cec_mod_timer(&cec_timer, timer_interval);
388 return 0;
389 }
390 DEFINE_DEBUGFS_ATTRIBUTE(decay_interval_ops, u64_get, decay_interval_set, "%lld\n");
391
392 static int count_threshold_set(void *data, u64 val)
393 {
394 *(u64 *)data = val;
395
396 if (val > COUNT_MASK)
397 val = COUNT_MASK;
398
399 count_threshold = val;
400
401 return 0;
402 }
403 DEFINE_DEBUGFS_ATTRIBUTE(count_threshold_ops, u64_get, count_threshold_set, "%lld\n");
404
405 static int array_dump(struct seq_file *m, void *v)
406 {
407 struct ce_array *ca = &ce_arr;
408 u64 prev = 0;
409 int i;
410
411 mutex_lock(&ce_mutex);
412
413 seq_printf(m, "{ n: %d\n", ca->n);
414 for (i = 0; i < ca->n; i++) {
415 u64 this = PFN(ca->array[i]);
416
417 seq_printf(m, " %03d: [%016llx|%03llx]\n", i, this, FULL_COUNT(ca->array[i]));
418
419 WARN_ON(prev > this);
420
421 prev = this;
422 }
423
424 seq_printf(m, "}\n");
425
426 seq_printf(m, "Stats:\nCEs: %llu\nofflined pages: %llu\n",
427 ca->ces_entered, ca->pfns_poisoned);
428
429 seq_printf(m, "Flags: 0x%x\n", ca->flags);
430
431 seq_printf(m, "Timer interval: %lld seconds\n", timer_interval);
432 seq_printf(m, "Decays: %lld\n", ca->decays_done);
433
434 seq_printf(m, "Action threshold: %d\n", count_threshold);
435
436 mutex_unlock(&ce_mutex);
437
438 return 0;
439 }
440
441 static int array_open(struct inode *inode, struct file *filp)
442 {
443 return single_open(filp, array_dump, NULL);
444 }
445
446 static const struct file_operations array_ops = {
447 .owner = THIS_MODULE,
448 .open = array_open,
449 .read = seq_read,
450 .llseek = seq_lseek,
451 .release = single_release,
452 };
453
454 static int __init create_debugfs_nodes(void)
455 {
456 struct dentry *d, *pfn, *decay, *count, *array;
457
458 d = debugfs_create_dir("cec", ras_debugfs_dir);
459 if (!d) {
460 pr_warn("Error creating cec debugfs node!\n");
461 return -1;
462 }
463
464 pfn = debugfs_create_file("pfn", S_IRUSR | S_IWUSR, d, &dfs_pfn, &pfn_ops);
465 if (!pfn) {
466 pr_warn("Error creating pfn debugfs node!\n");
467 goto err;
468 }
469
470 array = debugfs_create_file("array", S_IRUSR, d, NULL, &array_ops);
471 if (!array) {
472 pr_warn("Error creating array debugfs node!\n");
473 goto err;
474 }
475
476 decay = debugfs_create_file("decay_interval", S_IRUSR | S_IWUSR, d,
477 &timer_interval, &decay_interval_ops);
478 if (!decay) {
479 pr_warn("Error creating decay_interval debugfs node!\n");
480 goto err;
481 }
482
483 count = debugfs_create_file("count_threshold", S_IRUSR | S_IWUSR, d,
484 &count_threshold, &count_threshold_ops);
485 if (!count) {
486 pr_warn("Error creating count_threshold debugfs node!\n");
487 goto err;
488 }
489
490
491 return 0;
492
493 err:
494 debugfs_remove_recursive(d);
495
496 return 1;
497 }
498
499 void __init cec_init(void)
500 {
501 if (ce_arr.disabled)
502 return;
503
504 ce_arr.array = (void *)get_zeroed_page(GFP_KERNEL);
505 if (!ce_arr.array) {
506 pr_err("Error allocating CE array page!\n");
507 return;
508 }
509
510 if (create_debugfs_nodes())
511 return;
512
513 setup_timer(&cec_timer, cec_timer_fn, (unsigned long)&ce_arr);
514 cec_mod_timer(&cec_timer, CEC_TIMER_DEFAULT_INTERVAL);
515
516 pr_info("Correctable Errors collector initialized.\n");
517 }
518
519 int __init parse_cec_param(char *str)
520 {
521 if (!str)
522 return 0;
523
524 if (*str == '=')
525 str++;
526
527 if (!strcmp(str, "cec_disable"))
528 ce_arr.disabled = 1;
529 else
530 return 0;
531
532 return 1;
533 }