]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/regulator/core.c
config: Add RTL8XXXU wifi module
[mirror_ubuntu-zesty-kernel.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64 * struct regulator_map
65 *
66 * Used to provide symbolic supply names to devices.
67 */
68 struct regulator_map {
69 struct list_head list;
70 const char *dev_name; /* The dev_name() for the consumer */
71 const char *supply;
72 struct regulator_dev *regulator;
73 };
74
75 /*
76 * struct regulator_enable_gpio
77 *
78 * Management for shared enable GPIO pin
79 */
80 struct regulator_enable_gpio {
81 struct list_head list;
82 struct gpio_desc *gpiod;
83 u32 enable_count; /* a number of enabled shared GPIO */
84 u32 request_count; /* a number of requested shared GPIO */
85 unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89 * struct regulator_supply_alias
90 *
91 * Used to map lookups for a supply onto an alternative device.
92 */
93 struct regulator_supply_alias {
94 struct list_head list;
95 struct device *src_dev;
96 const char *src_supply;
97 struct device *alias_dev;
98 const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107 unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109 int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111 struct device *dev,
112 const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117 return container_of(dev, struct regulator_dev, dev);
118 }
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122 if (rdev->constraints && rdev->constraints->name)
123 return rdev->constraints->name;
124 else if (rdev->desc->name)
125 return rdev->desc->name;
126 else
127 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132 return has_full_constraints || of_have_populated_dt();
133 }
134
135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
136 {
137 if (!rdev->constraints) {
138 rdev_err(rdev, "no constraints\n");
139 return false;
140 }
141
142 if (rdev->constraints->valid_ops_mask & ops)
143 return true;
144
145 return false;
146 }
147
148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
149 {
150 if (rdev && rdev->supply)
151 return rdev->supply->rdev;
152
153 return NULL;
154 }
155
156 /**
157 * regulator_lock_supply - lock a regulator and its supplies
158 * @rdev: regulator source
159 */
160 static void regulator_lock_supply(struct regulator_dev *rdev)
161 {
162 int i;
163
164 for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
165 mutex_lock_nested(&rdev->mutex, i);
166 }
167
168 /**
169 * regulator_unlock_supply - unlock a regulator and its supplies
170 * @rdev: regulator source
171 */
172 static void regulator_unlock_supply(struct regulator_dev *rdev)
173 {
174 struct regulator *supply;
175
176 while (1) {
177 mutex_unlock(&rdev->mutex);
178 supply = rdev->supply;
179
180 if (!rdev->supply)
181 return;
182
183 rdev = supply->rdev;
184 }
185 }
186
187 /**
188 * of_get_regulator - get a regulator device node based on supply name
189 * @dev: Device pointer for the consumer (of regulator) device
190 * @supply: regulator supply name
191 *
192 * Extract the regulator device node corresponding to the supply name.
193 * returns the device node corresponding to the regulator if found, else
194 * returns NULL.
195 */
196 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
197 {
198 struct device_node *regnode = NULL;
199 char prop_name[32]; /* 32 is max size of property name */
200
201 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
202
203 snprintf(prop_name, 32, "%s-supply", supply);
204 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
205
206 if (!regnode) {
207 dev_dbg(dev, "Looking up %s property in node %s failed\n",
208 prop_name, dev->of_node->full_name);
209 return NULL;
210 }
211 return regnode;
212 }
213
214 /* Platform voltage constraint check */
215 static int regulator_check_voltage(struct regulator_dev *rdev,
216 int *min_uV, int *max_uV)
217 {
218 BUG_ON(*min_uV > *max_uV);
219
220 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
221 rdev_err(rdev, "voltage operation not allowed\n");
222 return -EPERM;
223 }
224
225 if (*max_uV > rdev->constraints->max_uV)
226 *max_uV = rdev->constraints->max_uV;
227 if (*min_uV < rdev->constraints->min_uV)
228 *min_uV = rdev->constraints->min_uV;
229
230 if (*min_uV > *max_uV) {
231 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
232 *min_uV, *max_uV);
233 return -EINVAL;
234 }
235
236 return 0;
237 }
238
239 /* Make sure we select a voltage that suits the needs of all
240 * regulator consumers
241 */
242 static int regulator_check_consumers(struct regulator_dev *rdev,
243 int *min_uV, int *max_uV)
244 {
245 struct regulator *regulator;
246
247 list_for_each_entry(regulator, &rdev->consumer_list, list) {
248 /*
249 * Assume consumers that didn't say anything are OK
250 * with anything in the constraint range.
251 */
252 if (!regulator->min_uV && !regulator->max_uV)
253 continue;
254
255 if (*max_uV > regulator->max_uV)
256 *max_uV = regulator->max_uV;
257 if (*min_uV < regulator->min_uV)
258 *min_uV = regulator->min_uV;
259 }
260
261 if (*min_uV > *max_uV) {
262 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
263 *min_uV, *max_uV);
264 return -EINVAL;
265 }
266
267 return 0;
268 }
269
270 /* current constraint check */
271 static int regulator_check_current_limit(struct regulator_dev *rdev,
272 int *min_uA, int *max_uA)
273 {
274 BUG_ON(*min_uA > *max_uA);
275
276 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
277 rdev_err(rdev, "current operation not allowed\n");
278 return -EPERM;
279 }
280
281 if (*max_uA > rdev->constraints->max_uA)
282 *max_uA = rdev->constraints->max_uA;
283 if (*min_uA < rdev->constraints->min_uA)
284 *min_uA = rdev->constraints->min_uA;
285
286 if (*min_uA > *max_uA) {
287 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
288 *min_uA, *max_uA);
289 return -EINVAL;
290 }
291
292 return 0;
293 }
294
295 /* operating mode constraint check */
296 static int regulator_mode_constrain(struct regulator_dev *rdev,
297 unsigned int *mode)
298 {
299 switch (*mode) {
300 case REGULATOR_MODE_FAST:
301 case REGULATOR_MODE_NORMAL:
302 case REGULATOR_MODE_IDLE:
303 case REGULATOR_MODE_STANDBY:
304 break;
305 default:
306 rdev_err(rdev, "invalid mode %x specified\n", *mode);
307 return -EINVAL;
308 }
309
310 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
311 rdev_err(rdev, "mode operation not allowed\n");
312 return -EPERM;
313 }
314
315 /* The modes are bitmasks, the most power hungry modes having
316 * the lowest values. If the requested mode isn't supported
317 * try higher modes. */
318 while (*mode) {
319 if (rdev->constraints->valid_modes_mask & *mode)
320 return 0;
321 *mode /= 2;
322 }
323
324 return -EINVAL;
325 }
326
327 static ssize_t regulator_uV_show(struct device *dev,
328 struct device_attribute *attr, char *buf)
329 {
330 struct regulator_dev *rdev = dev_get_drvdata(dev);
331 ssize_t ret;
332
333 mutex_lock(&rdev->mutex);
334 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
335 mutex_unlock(&rdev->mutex);
336
337 return ret;
338 }
339 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
340
341 static ssize_t regulator_uA_show(struct device *dev,
342 struct device_attribute *attr, char *buf)
343 {
344 struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
347 }
348 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
349
350 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
351 char *buf)
352 {
353 struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355 return sprintf(buf, "%s\n", rdev_get_name(rdev));
356 }
357 static DEVICE_ATTR_RO(name);
358
359 static ssize_t regulator_print_opmode(char *buf, int mode)
360 {
361 switch (mode) {
362 case REGULATOR_MODE_FAST:
363 return sprintf(buf, "fast\n");
364 case REGULATOR_MODE_NORMAL:
365 return sprintf(buf, "normal\n");
366 case REGULATOR_MODE_IDLE:
367 return sprintf(buf, "idle\n");
368 case REGULATOR_MODE_STANDBY:
369 return sprintf(buf, "standby\n");
370 }
371 return sprintf(buf, "unknown\n");
372 }
373
374 static ssize_t regulator_opmode_show(struct device *dev,
375 struct device_attribute *attr, char *buf)
376 {
377 struct regulator_dev *rdev = dev_get_drvdata(dev);
378
379 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
380 }
381 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
382
383 static ssize_t regulator_print_state(char *buf, int state)
384 {
385 if (state > 0)
386 return sprintf(buf, "enabled\n");
387 else if (state == 0)
388 return sprintf(buf, "disabled\n");
389 else
390 return sprintf(buf, "unknown\n");
391 }
392
393 static ssize_t regulator_state_show(struct device *dev,
394 struct device_attribute *attr, char *buf)
395 {
396 struct regulator_dev *rdev = dev_get_drvdata(dev);
397 ssize_t ret;
398
399 mutex_lock(&rdev->mutex);
400 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
401 mutex_unlock(&rdev->mutex);
402
403 return ret;
404 }
405 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
406
407 static ssize_t regulator_status_show(struct device *dev,
408 struct device_attribute *attr, char *buf)
409 {
410 struct regulator_dev *rdev = dev_get_drvdata(dev);
411 int status;
412 char *label;
413
414 status = rdev->desc->ops->get_status(rdev);
415 if (status < 0)
416 return status;
417
418 switch (status) {
419 case REGULATOR_STATUS_OFF:
420 label = "off";
421 break;
422 case REGULATOR_STATUS_ON:
423 label = "on";
424 break;
425 case REGULATOR_STATUS_ERROR:
426 label = "error";
427 break;
428 case REGULATOR_STATUS_FAST:
429 label = "fast";
430 break;
431 case REGULATOR_STATUS_NORMAL:
432 label = "normal";
433 break;
434 case REGULATOR_STATUS_IDLE:
435 label = "idle";
436 break;
437 case REGULATOR_STATUS_STANDBY:
438 label = "standby";
439 break;
440 case REGULATOR_STATUS_BYPASS:
441 label = "bypass";
442 break;
443 case REGULATOR_STATUS_UNDEFINED:
444 label = "undefined";
445 break;
446 default:
447 return -ERANGE;
448 }
449
450 return sprintf(buf, "%s\n", label);
451 }
452 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
453
454 static ssize_t regulator_min_uA_show(struct device *dev,
455 struct device_attribute *attr, char *buf)
456 {
457 struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459 if (!rdev->constraints)
460 return sprintf(buf, "constraint not defined\n");
461
462 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
463 }
464 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
465
466 static ssize_t regulator_max_uA_show(struct device *dev,
467 struct device_attribute *attr, char *buf)
468 {
469 struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471 if (!rdev->constraints)
472 return sprintf(buf, "constraint not defined\n");
473
474 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
475 }
476 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
477
478 static ssize_t regulator_min_uV_show(struct device *dev,
479 struct device_attribute *attr, char *buf)
480 {
481 struct regulator_dev *rdev = dev_get_drvdata(dev);
482
483 if (!rdev->constraints)
484 return sprintf(buf, "constraint not defined\n");
485
486 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
487 }
488 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
489
490 static ssize_t regulator_max_uV_show(struct device *dev,
491 struct device_attribute *attr, char *buf)
492 {
493 struct regulator_dev *rdev = dev_get_drvdata(dev);
494
495 if (!rdev->constraints)
496 return sprintf(buf, "constraint not defined\n");
497
498 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
499 }
500 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
501
502 static ssize_t regulator_total_uA_show(struct device *dev,
503 struct device_attribute *attr, char *buf)
504 {
505 struct regulator_dev *rdev = dev_get_drvdata(dev);
506 struct regulator *regulator;
507 int uA = 0;
508
509 mutex_lock(&rdev->mutex);
510 list_for_each_entry(regulator, &rdev->consumer_list, list)
511 uA += regulator->uA_load;
512 mutex_unlock(&rdev->mutex);
513 return sprintf(buf, "%d\n", uA);
514 }
515 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
516
517 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
518 char *buf)
519 {
520 struct regulator_dev *rdev = dev_get_drvdata(dev);
521 return sprintf(buf, "%d\n", rdev->use_count);
522 }
523 static DEVICE_ATTR_RO(num_users);
524
525 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
526 char *buf)
527 {
528 struct regulator_dev *rdev = dev_get_drvdata(dev);
529
530 switch (rdev->desc->type) {
531 case REGULATOR_VOLTAGE:
532 return sprintf(buf, "voltage\n");
533 case REGULATOR_CURRENT:
534 return sprintf(buf, "current\n");
535 }
536 return sprintf(buf, "unknown\n");
537 }
538 static DEVICE_ATTR_RO(type);
539
540 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
541 struct device_attribute *attr, char *buf)
542 {
543 struct regulator_dev *rdev = dev_get_drvdata(dev);
544
545 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
546 }
547 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
548 regulator_suspend_mem_uV_show, NULL);
549
550 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
551 struct device_attribute *attr, char *buf)
552 {
553 struct regulator_dev *rdev = dev_get_drvdata(dev);
554
555 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
556 }
557 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
558 regulator_suspend_disk_uV_show, NULL);
559
560 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
561 struct device_attribute *attr, char *buf)
562 {
563 struct regulator_dev *rdev = dev_get_drvdata(dev);
564
565 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
566 }
567 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
568 regulator_suspend_standby_uV_show, NULL);
569
570 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
571 struct device_attribute *attr, char *buf)
572 {
573 struct regulator_dev *rdev = dev_get_drvdata(dev);
574
575 return regulator_print_opmode(buf,
576 rdev->constraints->state_mem.mode);
577 }
578 static DEVICE_ATTR(suspend_mem_mode, 0444,
579 regulator_suspend_mem_mode_show, NULL);
580
581 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
582 struct device_attribute *attr, char *buf)
583 {
584 struct regulator_dev *rdev = dev_get_drvdata(dev);
585
586 return regulator_print_opmode(buf,
587 rdev->constraints->state_disk.mode);
588 }
589 static DEVICE_ATTR(suspend_disk_mode, 0444,
590 regulator_suspend_disk_mode_show, NULL);
591
592 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
593 struct device_attribute *attr, char *buf)
594 {
595 struct regulator_dev *rdev = dev_get_drvdata(dev);
596
597 return regulator_print_opmode(buf,
598 rdev->constraints->state_standby.mode);
599 }
600 static DEVICE_ATTR(suspend_standby_mode, 0444,
601 regulator_suspend_standby_mode_show, NULL);
602
603 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
604 struct device_attribute *attr, char *buf)
605 {
606 struct regulator_dev *rdev = dev_get_drvdata(dev);
607
608 return regulator_print_state(buf,
609 rdev->constraints->state_mem.enabled);
610 }
611 static DEVICE_ATTR(suspend_mem_state, 0444,
612 regulator_suspend_mem_state_show, NULL);
613
614 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
615 struct device_attribute *attr, char *buf)
616 {
617 struct regulator_dev *rdev = dev_get_drvdata(dev);
618
619 return regulator_print_state(buf,
620 rdev->constraints->state_disk.enabled);
621 }
622 static DEVICE_ATTR(suspend_disk_state, 0444,
623 regulator_suspend_disk_state_show, NULL);
624
625 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
626 struct device_attribute *attr, char *buf)
627 {
628 struct regulator_dev *rdev = dev_get_drvdata(dev);
629
630 return regulator_print_state(buf,
631 rdev->constraints->state_standby.enabled);
632 }
633 static DEVICE_ATTR(suspend_standby_state, 0444,
634 regulator_suspend_standby_state_show, NULL);
635
636 static ssize_t regulator_bypass_show(struct device *dev,
637 struct device_attribute *attr, char *buf)
638 {
639 struct regulator_dev *rdev = dev_get_drvdata(dev);
640 const char *report;
641 bool bypass;
642 int ret;
643
644 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
645
646 if (ret != 0)
647 report = "unknown";
648 else if (bypass)
649 report = "enabled";
650 else
651 report = "disabled";
652
653 return sprintf(buf, "%s\n", report);
654 }
655 static DEVICE_ATTR(bypass, 0444,
656 regulator_bypass_show, NULL);
657
658 /* Calculate the new optimum regulator operating mode based on the new total
659 * consumer load. All locks held by caller */
660 static int drms_uA_update(struct regulator_dev *rdev)
661 {
662 struct regulator *sibling;
663 int current_uA = 0, output_uV, input_uV, err;
664 unsigned int mode;
665
666 lockdep_assert_held_once(&rdev->mutex);
667
668 /*
669 * first check to see if we can set modes at all, otherwise just
670 * tell the consumer everything is OK.
671 */
672 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
673 return 0;
674
675 if (!rdev->desc->ops->get_optimum_mode &&
676 !rdev->desc->ops->set_load)
677 return 0;
678
679 if (!rdev->desc->ops->set_mode &&
680 !rdev->desc->ops->set_load)
681 return -EINVAL;
682
683 /* calc total requested load */
684 list_for_each_entry(sibling, &rdev->consumer_list, list)
685 current_uA += sibling->uA_load;
686
687 current_uA += rdev->constraints->system_load;
688
689 if (rdev->desc->ops->set_load) {
690 /* set the optimum mode for our new total regulator load */
691 err = rdev->desc->ops->set_load(rdev, current_uA);
692 if (err < 0)
693 rdev_err(rdev, "failed to set load %d\n", current_uA);
694 } else {
695 /* get output voltage */
696 output_uV = _regulator_get_voltage(rdev);
697 if (output_uV <= 0) {
698 rdev_err(rdev, "invalid output voltage found\n");
699 return -EINVAL;
700 }
701
702 /* get input voltage */
703 input_uV = 0;
704 if (rdev->supply)
705 input_uV = regulator_get_voltage(rdev->supply);
706 if (input_uV <= 0)
707 input_uV = rdev->constraints->input_uV;
708 if (input_uV <= 0) {
709 rdev_err(rdev, "invalid input voltage found\n");
710 return -EINVAL;
711 }
712
713 /* now get the optimum mode for our new total regulator load */
714 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
715 output_uV, current_uA);
716
717 /* check the new mode is allowed */
718 err = regulator_mode_constrain(rdev, &mode);
719 if (err < 0) {
720 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
721 current_uA, input_uV, output_uV);
722 return err;
723 }
724
725 err = rdev->desc->ops->set_mode(rdev, mode);
726 if (err < 0)
727 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
728 }
729
730 return err;
731 }
732
733 static int suspend_set_state(struct regulator_dev *rdev,
734 struct regulator_state *rstate)
735 {
736 int ret = 0;
737
738 /* If we have no suspend mode configration don't set anything;
739 * only warn if the driver implements set_suspend_voltage or
740 * set_suspend_mode callback.
741 */
742 if (!rstate->enabled && !rstate->disabled) {
743 if (rdev->desc->ops->set_suspend_voltage ||
744 rdev->desc->ops->set_suspend_mode)
745 rdev_warn(rdev, "No configuration\n");
746 return 0;
747 }
748
749 if (rstate->enabled && rstate->disabled) {
750 rdev_err(rdev, "invalid configuration\n");
751 return -EINVAL;
752 }
753
754 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
755 ret = rdev->desc->ops->set_suspend_enable(rdev);
756 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
757 ret = rdev->desc->ops->set_suspend_disable(rdev);
758 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
759 ret = 0;
760
761 if (ret < 0) {
762 rdev_err(rdev, "failed to enabled/disable\n");
763 return ret;
764 }
765
766 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
767 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
768 if (ret < 0) {
769 rdev_err(rdev, "failed to set voltage\n");
770 return ret;
771 }
772 }
773
774 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
775 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
776 if (ret < 0) {
777 rdev_err(rdev, "failed to set mode\n");
778 return ret;
779 }
780 }
781 return ret;
782 }
783
784 /* locks held by caller */
785 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
786 {
787 if (!rdev->constraints)
788 return -EINVAL;
789
790 switch (state) {
791 case PM_SUSPEND_STANDBY:
792 return suspend_set_state(rdev,
793 &rdev->constraints->state_standby);
794 case PM_SUSPEND_MEM:
795 return suspend_set_state(rdev,
796 &rdev->constraints->state_mem);
797 case PM_SUSPEND_MAX:
798 return suspend_set_state(rdev,
799 &rdev->constraints->state_disk);
800 default:
801 return -EINVAL;
802 }
803 }
804
805 static void print_constraints(struct regulator_dev *rdev)
806 {
807 struct regulation_constraints *constraints = rdev->constraints;
808 char buf[160] = "";
809 size_t len = sizeof(buf) - 1;
810 int count = 0;
811 int ret;
812
813 if (constraints->min_uV && constraints->max_uV) {
814 if (constraints->min_uV == constraints->max_uV)
815 count += scnprintf(buf + count, len - count, "%d mV ",
816 constraints->min_uV / 1000);
817 else
818 count += scnprintf(buf + count, len - count,
819 "%d <--> %d mV ",
820 constraints->min_uV / 1000,
821 constraints->max_uV / 1000);
822 }
823
824 if (!constraints->min_uV ||
825 constraints->min_uV != constraints->max_uV) {
826 ret = _regulator_get_voltage(rdev);
827 if (ret > 0)
828 count += scnprintf(buf + count, len - count,
829 "at %d mV ", ret / 1000);
830 }
831
832 if (constraints->uV_offset)
833 count += scnprintf(buf + count, len - count, "%dmV offset ",
834 constraints->uV_offset / 1000);
835
836 if (constraints->min_uA && constraints->max_uA) {
837 if (constraints->min_uA == constraints->max_uA)
838 count += scnprintf(buf + count, len - count, "%d mA ",
839 constraints->min_uA / 1000);
840 else
841 count += scnprintf(buf + count, len - count,
842 "%d <--> %d mA ",
843 constraints->min_uA / 1000,
844 constraints->max_uA / 1000);
845 }
846
847 if (!constraints->min_uA ||
848 constraints->min_uA != constraints->max_uA) {
849 ret = _regulator_get_current_limit(rdev);
850 if (ret > 0)
851 count += scnprintf(buf + count, len - count,
852 "at %d mA ", ret / 1000);
853 }
854
855 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
856 count += scnprintf(buf + count, len - count, "fast ");
857 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
858 count += scnprintf(buf + count, len - count, "normal ");
859 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
860 count += scnprintf(buf + count, len - count, "idle ");
861 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
862 count += scnprintf(buf + count, len - count, "standby");
863
864 if (!count)
865 scnprintf(buf, len, "no parameters");
866
867 rdev_dbg(rdev, "%s\n", buf);
868
869 if ((constraints->min_uV != constraints->max_uV) &&
870 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
871 rdev_warn(rdev,
872 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
873 }
874
875 static int machine_constraints_voltage(struct regulator_dev *rdev,
876 struct regulation_constraints *constraints)
877 {
878 const struct regulator_ops *ops = rdev->desc->ops;
879 int ret;
880
881 /* do we need to apply the constraint voltage */
882 if (rdev->constraints->apply_uV &&
883 rdev->constraints->min_uV && rdev->constraints->max_uV) {
884 int target_min, target_max;
885 int current_uV = _regulator_get_voltage(rdev);
886 if (current_uV < 0) {
887 rdev_err(rdev,
888 "failed to get the current voltage(%d)\n",
889 current_uV);
890 return current_uV;
891 }
892
893 /*
894 * If we're below the minimum voltage move up to the
895 * minimum voltage, if we're above the maximum voltage
896 * then move down to the maximum.
897 */
898 target_min = current_uV;
899 target_max = current_uV;
900
901 if (current_uV < rdev->constraints->min_uV) {
902 target_min = rdev->constraints->min_uV;
903 target_max = rdev->constraints->min_uV;
904 }
905
906 if (current_uV > rdev->constraints->max_uV) {
907 target_min = rdev->constraints->max_uV;
908 target_max = rdev->constraints->max_uV;
909 }
910
911 if (target_min != current_uV || target_max != current_uV) {
912 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
913 current_uV, target_min, target_max);
914 ret = _regulator_do_set_voltage(
915 rdev, target_min, target_max);
916 if (ret < 0) {
917 rdev_err(rdev,
918 "failed to apply %d-%duV constraint(%d)\n",
919 target_min, target_max, ret);
920 return ret;
921 }
922 }
923 }
924
925 /* constrain machine-level voltage specs to fit
926 * the actual range supported by this regulator.
927 */
928 if (ops->list_voltage && rdev->desc->n_voltages) {
929 int count = rdev->desc->n_voltages;
930 int i;
931 int min_uV = INT_MAX;
932 int max_uV = INT_MIN;
933 int cmin = constraints->min_uV;
934 int cmax = constraints->max_uV;
935
936 /* it's safe to autoconfigure fixed-voltage supplies
937 and the constraints are used by list_voltage. */
938 if (count == 1 && !cmin) {
939 cmin = 1;
940 cmax = INT_MAX;
941 constraints->min_uV = cmin;
942 constraints->max_uV = cmax;
943 }
944
945 /* voltage constraints are optional */
946 if ((cmin == 0) && (cmax == 0))
947 return 0;
948
949 /* else require explicit machine-level constraints */
950 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
951 rdev_err(rdev, "invalid voltage constraints\n");
952 return -EINVAL;
953 }
954
955 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
956 for (i = 0; i < count; i++) {
957 int value;
958
959 value = ops->list_voltage(rdev, i);
960 if (value <= 0)
961 continue;
962
963 /* maybe adjust [min_uV..max_uV] */
964 if (value >= cmin && value < min_uV)
965 min_uV = value;
966 if (value <= cmax && value > max_uV)
967 max_uV = value;
968 }
969
970 /* final: [min_uV..max_uV] valid iff constraints valid */
971 if (max_uV < min_uV) {
972 rdev_err(rdev,
973 "unsupportable voltage constraints %u-%uuV\n",
974 min_uV, max_uV);
975 return -EINVAL;
976 }
977
978 /* use regulator's subset of machine constraints */
979 if (constraints->min_uV < min_uV) {
980 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
981 constraints->min_uV, min_uV);
982 constraints->min_uV = min_uV;
983 }
984 if (constraints->max_uV > max_uV) {
985 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
986 constraints->max_uV, max_uV);
987 constraints->max_uV = max_uV;
988 }
989 }
990
991 return 0;
992 }
993
994 static int machine_constraints_current(struct regulator_dev *rdev,
995 struct regulation_constraints *constraints)
996 {
997 const struct regulator_ops *ops = rdev->desc->ops;
998 int ret;
999
1000 if (!constraints->min_uA && !constraints->max_uA)
1001 return 0;
1002
1003 if (constraints->min_uA > constraints->max_uA) {
1004 rdev_err(rdev, "Invalid current constraints\n");
1005 return -EINVAL;
1006 }
1007
1008 if (!ops->set_current_limit || !ops->get_current_limit) {
1009 rdev_warn(rdev, "Operation of current configuration missing\n");
1010 return 0;
1011 }
1012
1013 /* Set regulator current in constraints range */
1014 ret = ops->set_current_limit(rdev, constraints->min_uA,
1015 constraints->max_uA);
1016 if (ret < 0) {
1017 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1018 return ret;
1019 }
1020
1021 return 0;
1022 }
1023
1024 static int _regulator_do_enable(struct regulator_dev *rdev);
1025
1026 /**
1027 * set_machine_constraints - sets regulator constraints
1028 * @rdev: regulator source
1029 * @constraints: constraints to apply
1030 *
1031 * Allows platform initialisation code to define and constrain
1032 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1033 * Constraints *must* be set by platform code in order for some
1034 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1035 * set_mode.
1036 */
1037 static int set_machine_constraints(struct regulator_dev *rdev,
1038 const struct regulation_constraints *constraints)
1039 {
1040 int ret = 0;
1041 const struct regulator_ops *ops = rdev->desc->ops;
1042
1043 if (constraints)
1044 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1045 GFP_KERNEL);
1046 else
1047 rdev->constraints = kzalloc(sizeof(*constraints),
1048 GFP_KERNEL);
1049 if (!rdev->constraints)
1050 return -ENOMEM;
1051
1052 ret = machine_constraints_voltage(rdev, rdev->constraints);
1053 if (ret != 0)
1054 return ret;
1055
1056 ret = machine_constraints_current(rdev, rdev->constraints);
1057 if (ret != 0)
1058 return ret;
1059
1060 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1061 ret = ops->set_input_current_limit(rdev,
1062 rdev->constraints->ilim_uA);
1063 if (ret < 0) {
1064 rdev_err(rdev, "failed to set input limit\n");
1065 return ret;
1066 }
1067 }
1068
1069 /* do we need to setup our suspend state */
1070 if (rdev->constraints->initial_state) {
1071 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1072 if (ret < 0) {
1073 rdev_err(rdev, "failed to set suspend state\n");
1074 return ret;
1075 }
1076 }
1077
1078 if (rdev->constraints->initial_mode) {
1079 if (!ops->set_mode) {
1080 rdev_err(rdev, "no set_mode operation\n");
1081 return -EINVAL;
1082 }
1083
1084 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1085 if (ret < 0) {
1086 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1087 return ret;
1088 }
1089 }
1090
1091 /* If the constraints say the regulator should be on at this point
1092 * and we have control then make sure it is enabled.
1093 */
1094 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1095 ret = _regulator_do_enable(rdev);
1096 if (ret < 0 && ret != -EINVAL) {
1097 rdev_err(rdev, "failed to enable\n");
1098 return ret;
1099 }
1100 }
1101
1102 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1103 && ops->set_ramp_delay) {
1104 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1105 if (ret < 0) {
1106 rdev_err(rdev, "failed to set ramp_delay\n");
1107 return ret;
1108 }
1109 }
1110
1111 if (rdev->constraints->pull_down && ops->set_pull_down) {
1112 ret = ops->set_pull_down(rdev);
1113 if (ret < 0) {
1114 rdev_err(rdev, "failed to set pull down\n");
1115 return ret;
1116 }
1117 }
1118
1119 if (rdev->constraints->soft_start && ops->set_soft_start) {
1120 ret = ops->set_soft_start(rdev);
1121 if (ret < 0) {
1122 rdev_err(rdev, "failed to set soft start\n");
1123 return ret;
1124 }
1125 }
1126
1127 if (rdev->constraints->over_current_protection
1128 && ops->set_over_current_protection) {
1129 ret = ops->set_over_current_protection(rdev);
1130 if (ret < 0) {
1131 rdev_err(rdev, "failed to set over current protection\n");
1132 return ret;
1133 }
1134 }
1135
1136 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1137 bool ad_state = (rdev->constraints->active_discharge ==
1138 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1139
1140 ret = ops->set_active_discharge(rdev, ad_state);
1141 if (ret < 0) {
1142 rdev_err(rdev, "failed to set active discharge\n");
1143 return ret;
1144 }
1145 }
1146
1147 print_constraints(rdev);
1148 return 0;
1149 }
1150
1151 /**
1152 * set_supply - set regulator supply regulator
1153 * @rdev: regulator name
1154 * @supply_rdev: supply regulator name
1155 *
1156 * Called by platform initialisation code to set the supply regulator for this
1157 * regulator. This ensures that a regulators supply will also be enabled by the
1158 * core if it's child is enabled.
1159 */
1160 static int set_supply(struct regulator_dev *rdev,
1161 struct regulator_dev *supply_rdev)
1162 {
1163 int err;
1164
1165 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1166
1167 if (!try_module_get(supply_rdev->owner))
1168 return -ENODEV;
1169
1170 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1171 if (rdev->supply == NULL) {
1172 err = -ENOMEM;
1173 return err;
1174 }
1175 supply_rdev->open_count++;
1176
1177 return 0;
1178 }
1179
1180 /**
1181 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1182 * @rdev: regulator source
1183 * @consumer_dev_name: dev_name() string for device supply applies to
1184 * @supply: symbolic name for supply
1185 *
1186 * Allows platform initialisation code to map physical regulator
1187 * sources to symbolic names for supplies for use by devices. Devices
1188 * should use these symbolic names to request regulators, avoiding the
1189 * need to provide board-specific regulator names as platform data.
1190 */
1191 static int set_consumer_device_supply(struct regulator_dev *rdev,
1192 const char *consumer_dev_name,
1193 const char *supply)
1194 {
1195 struct regulator_map *node;
1196 int has_dev;
1197
1198 if (supply == NULL)
1199 return -EINVAL;
1200
1201 if (consumer_dev_name != NULL)
1202 has_dev = 1;
1203 else
1204 has_dev = 0;
1205
1206 list_for_each_entry(node, &regulator_map_list, list) {
1207 if (node->dev_name && consumer_dev_name) {
1208 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1209 continue;
1210 } else if (node->dev_name || consumer_dev_name) {
1211 continue;
1212 }
1213
1214 if (strcmp(node->supply, supply) != 0)
1215 continue;
1216
1217 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1218 consumer_dev_name,
1219 dev_name(&node->regulator->dev),
1220 node->regulator->desc->name,
1221 supply,
1222 dev_name(&rdev->dev), rdev_get_name(rdev));
1223 return -EBUSY;
1224 }
1225
1226 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1227 if (node == NULL)
1228 return -ENOMEM;
1229
1230 node->regulator = rdev;
1231 node->supply = supply;
1232
1233 if (has_dev) {
1234 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1235 if (node->dev_name == NULL) {
1236 kfree(node);
1237 return -ENOMEM;
1238 }
1239 }
1240
1241 list_add(&node->list, &regulator_map_list);
1242 return 0;
1243 }
1244
1245 static void unset_regulator_supplies(struct regulator_dev *rdev)
1246 {
1247 struct regulator_map *node, *n;
1248
1249 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1250 if (rdev == node->regulator) {
1251 list_del(&node->list);
1252 kfree(node->dev_name);
1253 kfree(node);
1254 }
1255 }
1256 }
1257
1258 #ifdef CONFIG_DEBUG_FS
1259 static ssize_t constraint_flags_read_file(struct file *file,
1260 char __user *user_buf,
1261 size_t count, loff_t *ppos)
1262 {
1263 const struct regulator *regulator = file->private_data;
1264 const struct regulation_constraints *c = regulator->rdev->constraints;
1265 char *buf;
1266 ssize_t ret;
1267
1268 if (!c)
1269 return 0;
1270
1271 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1272 if (!buf)
1273 return -ENOMEM;
1274
1275 ret = snprintf(buf, PAGE_SIZE,
1276 "always_on: %u\n"
1277 "boot_on: %u\n"
1278 "apply_uV: %u\n"
1279 "ramp_disable: %u\n"
1280 "soft_start: %u\n"
1281 "pull_down: %u\n"
1282 "over_current_protection: %u\n",
1283 c->always_on,
1284 c->boot_on,
1285 c->apply_uV,
1286 c->ramp_disable,
1287 c->soft_start,
1288 c->pull_down,
1289 c->over_current_protection);
1290
1291 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1292 kfree(buf);
1293
1294 return ret;
1295 }
1296
1297 #endif
1298
1299 static const struct file_operations constraint_flags_fops = {
1300 #ifdef CONFIG_DEBUG_FS
1301 .open = simple_open,
1302 .read = constraint_flags_read_file,
1303 .llseek = default_llseek,
1304 #endif
1305 };
1306
1307 #define REG_STR_SIZE 64
1308
1309 static struct regulator *create_regulator(struct regulator_dev *rdev,
1310 struct device *dev,
1311 const char *supply_name)
1312 {
1313 struct regulator *regulator;
1314 char buf[REG_STR_SIZE];
1315 int err, size;
1316
1317 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1318 if (regulator == NULL)
1319 return NULL;
1320
1321 mutex_lock(&rdev->mutex);
1322 regulator->rdev = rdev;
1323 list_add(&regulator->list, &rdev->consumer_list);
1324
1325 if (dev) {
1326 regulator->dev = dev;
1327
1328 /* Add a link to the device sysfs entry */
1329 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1330 dev->kobj.name, supply_name);
1331 if (size >= REG_STR_SIZE)
1332 goto overflow_err;
1333
1334 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1335 if (regulator->supply_name == NULL)
1336 goto overflow_err;
1337
1338 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1339 buf);
1340 if (err) {
1341 rdev_dbg(rdev, "could not add device link %s err %d\n",
1342 dev->kobj.name, err);
1343 /* non-fatal */
1344 }
1345 } else {
1346 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1347 if (regulator->supply_name == NULL)
1348 goto overflow_err;
1349 }
1350
1351 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1352 rdev->debugfs);
1353 if (!regulator->debugfs) {
1354 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1355 } else {
1356 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1357 &regulator->uA_load);
1358 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1359 &regulator->min_uV);
1360 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1361 &regulator->max_uV);
1362 debugfs_create_file("constraint_flags", 0444,
1363 regulator->debugfs, regulator,
1364 &constraint_flags_fops);
1365 }
1366
1367 /*
1368 * Check now if the regulator is an always on regulator - if
1369 * it is then we don't need to do nearly so much work for
1370 * enable/disable calls.
1371 */
1372 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1373 _regulator_is_enabled(rdev))
1374 regulator->always_on = true;
1375
1376 mutex_unlock(&rdev->mutex);
1377 return regulator;
1378 overflow_err:
1379 list_del(&regulator->list);
1380 kfree(regulator);
1381 mutex_unlock(&rdev->mutex);
1382 return NULL;
1383 }
1384
1385 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1386 {
1387 if (rdev->constraints && rdev->constraints->enable_time)
1388 return rdev->constraints->enable_time;
1389 if (!rdev->desc->ops->enable_time)
1390 return rdev->desc->enable_time;
1391 return rdev->desc->ops->enable_time(rdev);
1392 }
1393
1394 static struct regulator_supply_alias *regulator_find_supply_alias(
1395 struct device *dev, const char *supply)
1396 {
1397 struct regulator_supply_alias *map;
1398
1399 list_for_each_entry(map, &regulator_supply_alias_list, list)
1400 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1401 return map;
1402
1403 return NULL;
1404 }
1405
1406 static void regulator_supply_alias(struct device **dev, const char **supply)
1407 {
1408 struct regulator_supply_alias *map;
1409
1410 map = regulator_find_supply_alias(*dev, *supply);
1411 if (map) {
1412 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1413 *supply, map->alias_supply,
1414 dev_name(map->alias_dev));
1415 *dev = map->alias_dev;
1416 *supply = map->alias_supply;
1417 }
1418 }
1419
1420 static int of_node_match(struct device *dev, const void *data)
1421 {
1422 return dev->of_node == data;
1423 }
1424
1425 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1426 {
1427 struct device *dev;
1428
1429 dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1430
1431 return dev ? dev_to_rdev(dev) : NULL;
1432 }
1433
1434 static int regulator_match(struct device *dev, const void *data)
1435 {
1436 struct regulator_dev *r = dev_to_rdev(dev);
1437
1438 return strcmp(rdev_get_name(r), data) == 0;
1439 }
1440
1441 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1442 {
1443 struct device *dev;
1444
1445 dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1446
1447 return dev ? dev_to_rdev(dev) : NULL;
1448 }
1449
1450 /**
1451 * regulator_dev_lookup - lookup a regulator device.
1452 * @dev: device for regulator "consumer".
1453 * @supply: Supply name or regulator ID.
1454 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1455 * lookup could succeed in the future.
1456 *
1457 * If successful, returns a struct regulator_dev that corresponds to the name
1458 * @supply and with the embedded struct device refcount incremented by one,
1459 * or NULL on failure. The refcount must be dropped by calling put_device().
1460 */
1461 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1462 const char *supply,
1463 int *ret)
1464 {
1465 struct regulator_dev *r;
1466 struct device_node *node;
1467 struct regulator_map *map;
1468 const char *devname = NULL;
1469
1470 regulator_supply_alias(&dev, &supply);
1471
1472 /* first do a dt based lookup */
1473 if (dev && dev->of_node) {
1474 node = of_get_regulator(dev, supply);
1475 if (node) {
1476 r = of_find_regulator_by_node(node);
1477 if (r)
1478 return r;
1479 *ret = -EPROBE_DEFER;
1480 return NULL;
1481 } else {
1482 /*
1483 * If we couldn't even get the node then it's
1484 * not just that the device didn't register
1485 * yet, there's no node and we'll never
1486 * succeed.
1487 */
1488 *ret = -ENODEV;
1489 }
1490 }
1491
1492 /* if not found, try doing it non-dt way */
1493 if (dev)
1494 devname = dev_name(dev);
1495
1496 r = regulator_lookup_by_name(supply);
1497 if (r)
1498 return r;
1499
1500 mutex_lock(&regulator_list_mutex);
1501 list_for_each_entry(map, &regulator_map_list, list) {
1502 /* If the mapping has a device set up it must match */
1503 if (map->dev_name &&
1504 (!devname || strcmp(map->dev_name, devname)))
1505 continue;
1506
1507 if (strcmp(map->supply, supply) == 0 &&
1508 get_device(&map->regulator->dev)) {
1509 mutex_unlock(&regulator_list_mutex);
1510 return map->regulator;
1511 }
1512 }
1513 mutex_unlock(&regulator_list_mutex);
1514
1515 return NULL;
1516 }
1517
1518 static int regulator_resolve_supply(struct regulator_dev *rdev)
1519 {
1520 struct regulator_dev *r;
1521 struct device *dev = rdev->dev.parent;
1522 int ret;
1523
1524 /* No supply to resovle? */
1525 if (!rdev->supply_name)
1526 return 0;
1527
1528 /* Supply already resolved? */
1529 if (rdev->supply)
1530 return 0;
1531
1532 r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1533 if (!r) {
1534 if (ret == -ENODEV) {
1535 /*
1536 * No supply was specified for this regulator and
1537 * there will never be one.
1538 */
1539 return 0;
1540 }
1541
1542 /* Did the lookup explicitly defer for us? */
1543 if (ret == -EPROBE_DEFER)
1544 return ret;
1545
1546 if (have_full_constraints()) {
1547 r = dummy_regulator_rdev;
1548 get_device(&r->dev);
1549 } else {
1550 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1551 rdev->supply_name, rdev->desc->name);
1552 return -EPROBE_DEFER;
1553 }
1554 }
1555
1556 /* Recursively resolve the supply of the supply */
1557 ret = regulator_resolve_supply(r);
1558 if (ret < 0) {
1559 put_device(&r->dev);
1560 return ret;
1561 }
1562
1563 ret = set_supply(rdev, r);
1564 if (ret < 0) {
1565 put_device(&r->dev);
1566 return ret;
1567 }
1568
1569 /* Cascade always-on state to supply */
1570 if (_regulator_is_enabled(rdev)) {
1571 ret = regulator_enable(rdev->supply);
1572 if (ret < 0) {
1573 _regulator_put(rdev->supply);
1574 rdev->supply = NULL;
1575 return ret;
1576 }
1577 }
1578
1579 return 0;
1580 }
1581
1582 /* Internal regulator request function */
1583 static struct regulator *_regulator_get(struct device *dev, const char *id,
1584 bool exclusive, bool allow_dummy)
1585 {
1586 struct regulator_dev *rdev;
1587 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1588 const char *devname = NULL;
1589 int ret;
1590
1591 if (id == NULL) {
1592 pr_err("get() with no identifier\n");
1593 return ERR_PTR(-EINVAL);
1594 }
1595
1596 if (dev)
1597 devname = dev_name(dev);
1598
1599 if (have_full_constraints())
1600 ret = -ENODEV;
1601 else
1602 ret = -EPROBE_DEFER;
1603
1604 rdev = regulator_dev_lookup(dev, id, &ret);
1605 if (rdev)
1606 goto found;
1607
1608 regulator = ERR_PTR(ret);
1609
1610 /*
1611 * If we have return value from dev_lookup fail, we do not expect to
1612 * succeed, so, quit with appropriate error value
1613 */
1614 if (ret && ret != -ENODEV)
1615 return regulator;
1616
1617 if (!devname)
1618 devname = "deviceless";
1619
1620 /*
1621 * Assume that a regulator is physically present and enabled
1622 * even if it isn't hooked up and just provide a dummy.
1623 */
1624 if (have_full_constraints() && allow_dummy) {
1625 pr_warn("%s supply %s not found, using dummy regulator\n",
1626 devname, id);
1627
1628 rdev = dummy_regulator_rdev;
1629 get_device(&rdev->dev);
1630 goto found;
1631 /* Don't log an error when called from regulator_get_optional() */
1632 } else if (!have_full_constraints() || exclusive) {
1633 dev_warn(dev, "dummy supplies not allowed\n");
1634 }
1635
1636 return regulator;
1637
1638 found:
1639 if (rdev->exclusive) {
1640 regulator = ERR_PTR(-EPERM);
1641 put_device(&rdev->dev);
1642 return regulator;
1643 }
1644
1645 if (exclusive && rdev->open_count) {
1646 regulator = ERR_PTR(-EBUSY);
1647 put_device(&rdev->dev);
1648 return regulator;
1649 }
1650
1651 ret = regulator_resolve_supply(rdev);
1652 if (ret < 0) {
1653 regulator = ERR_PTR(ret);
1654 put_device(&rdev->dev);
1655 return regulator;
1656 }
1657
1658 if (!try_module_get(rdev->owner)) {
1659 put_device(&rdev->dev);
1660 return regulator;
1661 }
1662
1663 regulator = create_regulator(rdev, dev, id);
1664 if (regulator == NULL) {
1665 regulator = ERR_PTR(-ENOMEM);
1666 put_device(&rdev->dev);
1667 module_put(rdev->owner);
1668 return regulator;
1669 }
1670
1671 rdev->open_count++;
1672 if (exclusive) {
1673 rdev->exclusive = 1;
1674
1675 ret = _regulator_is_enabled(rdev);
1676 if (ret > 0)
1677 rdev->use_count = 1;
1678 else
1679 rdev->use_count = 0;
1680 }
1681
1682 return regulator;
1683 }
1684
1685 /**
1686 * regulator_get - lookup and obtain a reference to a regulator.
1687 * @dev: device for regulator "consumer"
1688 * @id: Supply name or regulator ID.
1689 *
1690 * Returns a struct regulator corresponding to the regulator producer,
1691 * or IS_ERR() condition containing errno.
1692 *
1693 * Use of supply names configured via regulator_set_device_supply() is
1694 * strongly encouraged. It is recommended that the supply name used
1695 * should match the name used for the supply and/or the relevant
1696 * device pins in the datasheet.
1697 */
1698 struct regulator *regulator_get(struct device *dev, const char *id)
1699 {
1700 return _regulator_get(dev, id, false, true);
1701 }
1702 EXPORT_SYMBOL_GPL(regulator_get);
1703
1704 /**
1705 * regulator_get_exclusive - obtain exclusive access to a regulator.
1706 * @dev: device for regulator "consumer"
1707 * @id: Supply name or regulator ID.
1708 *
1709 * Returns a struct regulator corresponding to the regulator producer,
1710 * or IS_ERR() condition containing errno. Other consumers will be
1711 * unable to obtain this regulator while this reference is held and the
1712 * use count for the regulator will be initialised to reflect the current
1713 * state of the regulator.
1714 *
1715 * This is intended for use by consumers which cannot tolerate shared
1716 * use of the regulator such as those which need to force the
1717 * regulator off for correct operation of the hardware they are
1718 * controlling.
1719 *
1720 * Use of supply names configured via regulator_set_device_supply() is
1721 * strongly encouraged. It is recommended that the supply name used
1722 * should match the name used for the supply and/or the relevant
1723 * device pins in the datasheet.
1724 */
1725 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1726 {
1727 return _regulator_get(dev, id, true, false);
1728 }
1729 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1730
1731 /**
1732 * regulator_get_optional - obtain optional access to a regulator.
1733 * @dev: device for regulator "consumer"
1734 * @id: Supply name or regulator ID.
1735 *
1736 * Returns a struct regulator corresponding to the regulator producer,
1737 * or IS_ERR() condition containing errno.
1738 *
1739 * This is intended for use by consumers for devices which can have
1740 * some supplies unconnected in normal use, such as some MMC devices.
1741 * It can allow the regulator core to provide stub supplies for other
1742 * supplies requested using normal regulator_get() calls without
1743 * disrupting the operation of drivers that can handle absent
1744 * supplies.
1745 *
1746 * Use of supply names configured via regulator_set_device_supply() is
1747 * strongly encouraged. It is recommended that the supply name used
1748 * should match the name used for the supply and/or the relevant
1749 * device pins in the datasheet.
1750 */
1751 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1752 {
1753 return _regulator_get(dev, id, false, false);
1754 }
1755 EXPORT_SYMBOL_GPL(regulator_get_optional);
1756
1757 /* regulator_list_mutex lock held by regulator_put() */
1758 static void _regulator_put(struct regulator *regulator)
1759 {
1760 struct regulator_dev *rdev;
1761
1762 if (IS_ERR_OR_NULL(regulator))
1763 return;
1764
1765 lockdep_assert_held_once(&regulator_list_mutex);
1766
1767 rdev = regulator->rdev;
1768
1769 debugfs_remove_recursive(regulator->debugfs);
1770
1771 /* remove any sysfs entries */
1772 if (regulator->dev)
1773 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1774 mutex_lock(&rdev->mutex);
1775 list_del(&regulator->list);
1776
1777 rdev->open_count--;
1778 rdev->exclusive = 0;
1779 put_device(&rdev->dev);
1780 mutex_unlock(&rdev->mutex);
1781
1782 kfree(regulator->supply_name);
1783 kfree(regulator);
1784
1785 module_put(rdev->owner);
1786 }
1787
1788 /**
1789 * regulator_put - "free" the regulator source
1790 * @regulator: regulator source
1791 *
1792 * Note: drivers must ensure that all regulator_enable calls made on this
1793 * regulator source are balanced by regulator_disable calls prior to calling
1794 * this function.
1795 */
1796 void regulator_put(struct regulator *regulator)
1797 {
1798 mutex_lock(&regulator_list_mutex);
1799 _regulator_put(regulator);
1800 mutex_unlock(&regulator_list_mutex);
1801 }
1802 EXPORT_SYMBOL_GPL(regulator_put);
1803
1804 /**
1805 * regulator_register_supply_alias - Provide device alias for supply lookup
1806 *
1807 * @dev: device that will be given as the regulator "consumer"
1808 * @id: Supply name or regulator ID
1809 * @alias_dev: device that should be used to lookup the supply
1810 * @alias_id: Supply name or regulator ID that should be used to lookup the
1811 * supply
1812 *
1813 * All lookups for id on dev will instead be conducted for alias_id on
1814 * alias_dev.
1815 */
1816 int regulator_register_supply_alias(struct device *dev, const char *id,
1817 struct device *alias_dev,
1818 const char *alias_id)
1819 {
1820 struct regulator_supply_alias *map;
1821
1822 map = regulator_find_supply_alias(dev, id);
1823 if (map)
1824 return -EEXIST;
1825
1826 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1827 if (!map)
1828 return -ENOMEM;
1829
1830 map->src_dev = dev;
1831 map->src_supply = id;
1832 map->alias_dev = alias_dev;
1833 map->alias_supply = alias_id;
1834
1835 list_add(&map->list, &regulator_supply_alias_list);
1836
1837 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1838 id, dev_name(dev), alias_id, dev_name(alias_dev));
1839
1840 return 0;
1841 }
1842 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1843
1844 /**
1845 * regulator_unregister_supply_alias - Remove device alias
1846 *
1847 * @dev: device that will be given as the regulator "consumer"
1848 * @id: Supply name or regulator ID
1849 *
1850 * Remove a lookup alias if one exists for id on dev.
1851 */
1852 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1853 {
1854 struct regulator_supply_alias *map;
1855
1856 map = regulator_find_supply_alias(dev, id);
1857 if (map) {
1858 list_del(&map->list);
1859 kfree(map);
1860 }
1861 }
1862 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1863
1864 /**
1865 * regulator_bulk_register_supply_alias - register multiple aliases
1866 *
1867 * @dev: device that will be given as the regulator "consumer"
1868 * @id: List of supply names or regulator IDs
1869 * @alias_dev: device that should be used to lookup the supply
1870 * @alias_id: List of supply names or regulator IDs that should be used to
1871 * lookup the supply
1872 * @num_id: Number of aliases to register
1873 *
1874 * @return 0 on success, an errno on failure.
1875 *
1876 * This helper function allows drivers to register several supply
1877 * aliases in one operation. If any of the aliases cannot be
1878 * registered any aliases that were registered will be removed
1879 * before returning to the caller.
1880 */
1881 int regulator_bulk_register_supply_alias(struct device *dev,
1882 const char *const *id,
1883 struct device *alias_dev,
1884 const char *const *alias_id,
1885 int num_id)
1886 {
1887 int i;
1888 int ret;
1889
1890 for (i = 0; i < num_id; ++i) {
1891 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1892 alias_id[i]);
1893 if (ret < 0)
1894 goto err;
1895 }
1896
1897 return 0;
1898
1899 err:
1900 dev_err(dev,
1901 "Failed to create supply alias %s,%s -> %s,%s\n",
1902 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1903
1904 while (--i >= 0)
1905 regulator_unregister_supply_alias(dev, id[i]);
1906
1907 return ret;
1908 }
1909 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1910
1911 /**
1912 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1913 *
1914 * @dev: device that will be given as the regulator "consumer"
1915 * @id: List of supply names or regulator IDs
1916 * @num_id: Number of aliases to unregister
1917 *
1918 * This helper function allows drivers to unregister several supply
1919 * aliases in one operation.
1920 */
1921 void regulator_bulk_unregister_supply_alias(struct device *dev,
1922 const char *const *id,
1923 int num_id)
1924 {
1925 int i;
1926
1927 for (i = 0; i < num_id; ++i)
1928 regulator_unregister_supply_alias(dev, id[i]);
1929 }
1930 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1931
1932
1933 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1934 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1935 const struct regulator_config *config)
1936 {
1937 struct regulator_enable_gpio *pin;
1938 struct gpio_desc *gpiod;
1939 int ret;
1940
1941 gpiod = gpio_to_desc(config->ena_gpio);
1942
1943 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1944 if (pin->gpiod == gpiod) {
1945 rdev_dbg(rdev, "GPIO %d is already used\n",
1946 config->ena_gpio);
1947 goto update_ena_gpio_to_rdev;
1948 }
1949 }
1950
1951 ret = gpio_request_one(config->ena_gpio,
1952 GPIOF_DIR_OUT | config->ena_gpio_flags,
1953 rdev_get_name(rdev));
1954 if (ret)
1955 return ret;
1956
1957 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1958 if (pin == NULL) {
1959 gpio_free(config->ena_gpio);
1960 return -ENOMEM;
1961 }
1962
1963 pin->gpiod = gpiod;
1964 pin->ena_gpio_invert = config->ena_gpio_invert;
1965 list_add(&pin->list, &regulator_ena_gpio_list);
1966
1967 update_ena_gpio_to_rdev:
1968 pin->request_count++;
1969 rdev->ena_pin = pin;
1970 return 0;
1971 }
1972
1973 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1974 {
1975 struct regulator_enable_gpio *pin, *n;
1976
1977 if (!rdev->ena_pin)
1978 return;
1979
1980 /* Free the GPIO only in case of no use */
1981 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1982 if (pin->gpiod == rdev->ena_pin->gpiod) {
1983 if (pin->request_count <= 1) {
1984 pin->request_count = 0;
1985 gpiod_put(pin->gpiod);
1986 list_del(&pin->list);
1987 kfree(pin);
1988 rdev->ena_pin = NULL;
1989 return;
1990 } else {
1991 pin->request_count--;
1992 }
1993 }
1994 }
1995 }
1996
1997 /**
1998 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1999 * @rdev: regulator_dev structure
2000 * @enable: enable GPIO at initial use?
2001 *
2002 * GPIO is enabled in case of initial use. (enable_count is 0)
2003 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2004 */
2005 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2006 {
2007 struct regulator_enable_gpio *pin = rdev->ena_pin;
2008
2009 if (!pin)
2010 return -EINVAL;
2011
2012 if (enable) {
2013 /* Enable GPIO at initial use */
2014 if (pin->enable_count == 0)
2015 gpiod_set_value_cansleep(pin->gpiod,
2016 !pin->ena_gpio_invert);
2017
2018 pin->enable_count++;
2019 } else {
2020 if (pin->enable_count > 1) {
2021 pin->enable_count--;
2022 return 0;
2023 }
2024
2025 /* Disable GPIO if not used */
2026 if (pin->enable_count <= 1) {
2027 gpiod_set_value_cansleep(pin->gpiod,
2028 pin->ena_gpio_invert);
2029 pin->enable_count = 0;
2030 }
2031 }
2032
2033 return 0;
2034 }
2035
2036 /**
2037 * _regulator_enable_delay - a delay helper function
2038 * @delay: time to delay in microseconds
2039 *
2040 * Delay for the requested amount of time as per the guidelines in:
2041 *
2042 * Documentation/timers/timers-howto.txt
2043 *
2044 * The assumption here is that regulators will never be enabled in
2045 * atomic context and therefore sleeping functions can be used.
2046 */
2047 static void _regulator_enable_delay(unsigned int delay)
2048 {
2049 unsigned int ms = delay / 1000;
2050 unsigned int us = delay % 1000;
2051
2052 if (ms > 0) {
2053 /*
2054 * For small enough values, handle super-millisecond
2055 * delays in the usleep_range() call below.
2056 */
2057 if (ms < 20)
2058 us += ms * 1000;
2059 else
2060 msleep(ms);
2061 }
2062
2063 /*
2064 * Give the scheduler some room to coalesce with any other
2065 * wakeup sources. For delays shorter than 10 us, don't even
2066 * bother setting up high-resolution timers and just busy-
2067 * loop.
2068 */
2069 if (us >= 10)
2070 usleep_range(us, us + 100);
2071 else
2072 udelay(us);
2073 }
2074
2075 static int _regulator_do_enable(struct regulator_dev *rdev)
2076 {
2077 int ret, delay;
2078
2079 /* Query before enabling in case configuration dependent. */
2080 ret = _regulator_get_enable_time(rdev);
2081 if (ret >= 0) {
2082 delay = ret;
2083 } else {
2084 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2085 delay = 0;
2086 }
2087
2088 trace_regulator_enable(rdev_get_name(rdev));
2089
2090 if (rdev->desc->off_on_delay) {
2091 /* if needed, keep a distance of off_on_delay from last time
2092 * this regulator was disabled.
2093 */
2094 unsigned long start_jiffy = jiffies;
2095 unsigned long intended, max_delay, remaining;
2096
2097 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2098 intended = rdev->last_off_jiffy + max_delay;
2099
2100 if (time_before(start_jiffy, intended)) {
2101 /* calc remaining jiffies to deal with one-time
2102 * timer wrapping.
2103 * in case of multiple timer wrapping, either it can be
2104 * detected by out-of-range remaining, or it cannot be
2105 * detected and we gets a panelty of
2106 * _regulator_enable_delay().
2107 */
2108 remaining = intended - start_jiffy;
2109 if (remaining <= max_delay)
2110 _regulator_enable_delay(
2111 jiffies_to_usecs(remaining));
2112 }
2113 }
2114
2115 if (rdev->ena_pin) {
2116 if (!rdev->ena_gpio_state) {
2117 ret = regulator_ena_gpio_ctrl(rdev, true);
2118 if (ret < 0)
2119 return ret;
2120 rdev->ena_gpio_state = 1;
2121 }
2122 } else if (rdev->desc->ops->enable) {
2123 ret = rdev->desc->ops->enable(rdev);
2124 if (ret < 0)
2125 return ret;
2126 } else {
2127 return -EINVAL;
2128 }
2129
2130 /* Allow the regulator to ramp; it would be useful to extend
2131 * this for bulk operations so that the regulators can ramp
2132 * together. */
2133 trace_regulator_enable_delay(rdev_get_name(rdev));
2134
2135 _regulator_enable_delay(delay);
2136
2137 trace_regulator_enable_complete(rdev_get_name(rdev));
2138
2139 return 0;
2140 }
2141
2142 /* locks held by regulator_enable() */
2143 static int _regulator_enable(struct regulator_dev *rdev)
2144 {
2145 int ret;
2146
2147 lockdep_assert_held_once(&rdev->mutex);
2148
2149 /* check voltage and requested load before enabling */
2150 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2151 drms_uA_update(rdev);
2152
2153 if (rdev->use_count == 0) {
2154 /* The regulator may on if it's not switchable or left on */
2155 ret = _regulator_is_enabled(rdev);
2156 if (ret == -EINVAL || ret == 0) {
2157 if (!regulator_ops_is_valid(rdev,
2158 REGULATOR_CHANGE_STATUS))
2159 return -EPERM;
2160
2161 ret = _regulator_do_enable(rdev);
2162 if (ret < 0)
2163 return ret;
2164
2165 } else if (ret < 0) {
2166 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2167 return ret;
2168 }
2169 /* Fallthrough on positive return values - already enabled */
2170 }
2171
2172 rdev->use_count++;
2173
2174 return 0;
2175 }
2176
2177 /**
2178 * regulator_enable - enable regulator output
2179 * @regulator: regulator source
2180 *
2181 * Request that the regulator be enabled with the regulator output at
2182 * the predefined voltage or current value. Calls to regulator_enable()
2183 * must be balanced with calls to regulator_disable().
2184 *
2185 * NOTE: the output value can be set by other drivers, boot loader or may be
2186 * hardwired in the regulator.
2187 */
2188 int regulator_enable(struct regulator *regulator)
2189 {
2190 struct regulator_dev *rdev = regulator->rdev;
2191 int ret = 0;
2192
2193 if (regulator->always_on)
2194 return 0;
2195
2196 if (rdev->supply) {
2197 ret = regulator_enable(rdev->supply);
2198 if (ret != 0)
2199 return ret;
2200 }
2201
2202 mutex_lock(&rdev->mutex);
2203 ret = _regulator_enable(rdev);
2204 mutex_unlock(&rdev->mutex);
2205
2206 if (ret != 0 && rdev->supply)
2207 regulator_disable(rdev->supply);
2208
2209 return ret;
2210 }
2211 EXPORT_SYMBOL_GPL(regulator_enable);
2212
2213 static int _regulator_do_disable(struct regulator_dev *rdev)
2214 {
2215 int ret;
2216
2217 trace_regulator_disable(rdev_get_name(rdev));
2218
2219 if (rdev->ena_pin) {
2220 if (rdev->ena_gpio_state) {
2221 ret = regulator_ena_gpio_ctrl(rdev, false);
2222 if (ret < 0)
2223 return ret;
2224 rdev->ena_gpio_state = 0;
2225 }
2226
2227 } else if (rdev->desc->ops->disable) {
2228 ret = rdev->desc->ops->disable(rdev);
2229 if (ret != 0)
2230 return ret;
2231 }
2232
2233 /* cares about last_off_jiffy only if off_on_delay is required by
2234 * device.
2235 */
2236 if (rdev->desc->off_on_delay)
2237 rdev->last_off_jiffy = jiffies;
2238
2239 trace_regulator_disable_complete(rdev_get_name(rdev));
2240
2241 return 0;
2242 }
2243
2244 /* locks held by regulator_disable() */
2245 static int _regulator_disable(struct regulator_dev *rdev)
2246 {
2247 int ret = 0;
2248
2249 lockdep_assert_held_once(&rdev->mutex);
2250
2251 if (WARN(rdev->use_count <= 0,
2252 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2253 return -EIO;
2254
2255 /* are we the last user and permitted to disable ? */
2256 if (rdev->use_count == 1 &&
2257 (rdev->constraints && !rdev->constraints->always_on)) {
2258
2259 /* we are last user */
2260 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2261 ret = _notifier_call_chain(rdev,
2262 REGULATOR_EVENT_PRE_DISABLE,
2263 NULL);
2264 if (ret & NOTIFY_STOP_MASK)
2265 return -EINVAL;
2266
2267 ret = _regulator_do_disable(rdev);
2268 if (ret < 0) {
2269 rdev_err(rdev, "failed to disable\n");
2270 _notifier_call_chain(rdev,
2271 REGULATOR_EVENT_ABORT_DISABLE,
2272 NULL);
2273 return ret;
2274 }
2275 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2276 NULL);
2277 }
2278
2279 rdev->use_count = 0;
2280 } else if (rdev->use_count > 1) {
2281 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2282 drms_uA_update(rdev);
2283
2284 rdev->use_count--;
2285 }
2286
2287 return ret;
2288 }
2289
2290 /**
2291 * regulator_disable - disable regulator output
2292 * @regulator: regulator source
2293 *
2294 * Disable the regulator output voltage or current. Calls to
2295 * regulator_enable() must be balanced with calls to
2296 * regulator_disable().
2297 *
2298 * NOTE: this will only disable the regulator output if no other consumer
2299 * devices have it enabled, the regulator device supports disabling and
2300 * machine constraints permit this operation.
2301 */
2302 int regulator_disable(struct regulator *regulator)
2303 {
2304 struct regulator_dev *rdev = regulator->rdev;
2305 int ret = 0;
2306
2307 if (regulator->always_on)
2308 return 0;
2309
2310 mutex_lock(&rdev->mutex);
2311 ret = _regulator_disable(rdev);
2312 mutex_unlock(&rdev->mutex);
2313
2314 if (ret == 0 && rdev->supply)
2315 regulator_disable(rdev->supply);
2316
2317 return ret;
2318 }
2319 EXPORT_SYMBOL_GPL(regulator_disable);
2320
2321 /* locks held by regulator_force_disable() */
2322 static int _regulator_force_disable(struct regulator_dev *rdev)
2323 {
2324 int ret = 0;
2325
2326 lockdep_assert_held_once(&rdev->mutex);
2327
2328 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2329 REGULATOR_EVENT_PRE_DISABLE, NULL);
2330 if (ret & NOTIFY_STOP_MASK)
2331 return -EINVAL;
2332
2333 ret = _regulator_do_disable(rdev);
2334 if (ret < 0) {
2335 rdev_err(rdev, "failed to force disable\n");
2336 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2337 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2338 return ret;
2339 }
2340
2341 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2342 REGULATOR_EVENT_DISABLE, NULL);
2343
2344 return 0;
2345 }
2346
2347 /**
2348 * regulator_force_disable - force disable regulator output
2349 * @regulator: regulator source
2350 *
2351 * Forcibly disable the regulator output voltage or current.
2352 * NOTE: this *will* disable the regulator output even if other consumer
2353 * devices have it enabled. This should be used for situations when device
2354 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2355 */
2356 int regulator_force_disable(struct regulator *regulator)
2357 {
2358 struct regulator_dev *rdev = regulator->rdev;
2359 int ret;
2360
2361 mutex_lock(&rdev->mutex);
2362 regulator->uA_load = 0;
2363 ret = _regulator_force_disable(regulator->rdev);
2364 mutex_unlock(&rdev->mutex);
2365
2366 if (rdev->supply)
2367 while (rdev->open_count--)
2368 regulator_disable(rdev->supply);
2369
2370 return ret;
2371 }
2372 EXPORT_SYMBOL_GPL(regulator_force_disable);
2373
2374 static void regulator_disable_work(struct work_struct *work)
2375 {
2376 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2377 disable_work.work);
2378 int count, i, ret;
2379
2380 mutex_lock(&rdev->mutex);
2381
2382 BUG_ON(!rdev->deferred_disables);
2383
2384 count = rdev->deferred_disables;
2385 rdev->deferred_disables = 0;
2386
2387 for (i = 0; i < count; i++) {
2388 ret = _regulator_disable(rdev);
2389 if (ret != 0)
2390 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2391 }
2392
2393 mutex_unlock(&rdev->mutex);
2394
2395 if (rdev->supply) {
2396 for (i = 0; i < count; i++) {
2397 ret = regulator_disable(rdev->supply);
2398 if (ret != 0) {
2399 rdev_err(rdev,
2400 "Supply disable failed: %d\n", ret);
2401 }
2402 }
2403 }
2404 }
2405
2406 /**
2407 * regulator_disable_deferred - disable regulator output with delay
2408 * @regulator: regulator source
2409 * @ms: miliseconds until the regulator is disabled
2410 *
2411 * Execute regulator_disable() on the regulator after a delay. This
2412 * is intended for use with devices that require some time to quiesce.
2413 *
2414 * NOTE: this will only disable the regulator output if no other consumer
2415 * devices have it enabled, the regulator device supports disabling and
2416 * machine constraints permit this operation.
2417 */
2418 int regulator_disable_deferred(struct regulator *regulator, int ms)
2419 {
2420 struct regulator_dev *rdev = regulator->rdev;
2421
2422 if (regulator->always_on)
2423 return 0;
2424
2425 if (!ms)
2426 return regulator_disable(regulator);
2427
2428 mutex_lock(&rdev->mutex);
2429 rdev->deferred_disables++;
2430 mutex_unlock(&rdev->mutex);
2431
2432 queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2433 msecs_to_jiffies(ms));
2434 return 0;
2435 }
2436 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2437
2438 static int _regulator_is_enabled(struct regulator_dev *rdev)
2439 {
2440 /* A GPIO control always takes precedence */
2441 if (rdev->ena_pin)
2442 return rdev->ena_gpio_state;
2443
2444 /* If we don't know then assume that the regulator is always on */
2445 if (!rdev->desc->ops->is_enabled)
2446 return 1;
2447
2448 return rdev->desc->ops->is_enabled(rdev);
2449 }
2450
2451 static int _regulator_list_voltage(struct regulator *regulator,
2452 unsigned selector, int lock)
2453 {
2454 struct regulator_dev *rdev = regulator->rdev;
2455 const struct regulator_ops *ops = rdev->desc->ops;
2456 int ret;
2457
2458 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2459 return rdev->desc->fixed_uV;
2460
2461 if (ops->list_voltage) {
2462 if (selector >= rdev->desc->n_voltages)
2463 return -EINVAL;
2464 if (lock)
2465 mutex_lock(&rdev->mutex);
2466 ret = ops->list_voltage(rdev, selector);
2467 if (lock)
2468 mutex_unlock(&rdev->mutex);
2469 } else if (rdev->supply) {
2470 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2471 } else {
2472 return -EINVAL;
2473 }
2474
2475 if (ret > 0) {
2476 if (ret < rdev->constraints->min_uV)
2477 ret = 0;
2478 else if (ret > rdev->constraints->max_uV)
2479 ret = 0;
2480 }
2481
2482 return ret;
2483 }
2484
2485 /**
2486 * regulator_is_enabled - is the regulator output enabled
2487 * @regulator: regulator source
2488 *
2489 * Returns positive if the regulator driver backing the source/client
2490 * has requested that the device be enabled, zero if it hasn't, else a
2491 * negative errno code.
2492 *
2493 * Note that the device backing this regulator handle can have multiple
2494 * users, so it might be enabled even if regulator_enable() was never
2495 * called for this particular source.
2496 */
2497 int regulator_is_enabled(struct regulator *regulator)
2498 {
2499 int ret;
2500
2501 if (regulator->always_on)
2502 return 1;
2503
2504 mutex_lock(&regulator->rdev->mutex);
2505 ret = _regulator_is_enabled(regulator->rdev);
2506 mutex_unlock(&regulator->rdev->mutex);
2507
2508 return ret;
2509 }
2510 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2511
2512 /**
2513 * regulator_count_voltages - count regulator_list_voltage() selectors
2514 * @regulator: regulator source
2515 *
2516 * Returns number of selectors, or negative errno. Selectors are
2517 * numbered starting at zero, and typically correspond to bitfields
2518 * in hardware registers.
2519 */
2520 int regulator_count_voltages(struct regulator *regulator)
2521 {
2522 struct regulator_dev *rdev = regulator->rdev;
2523
2524 if (rdev->desc->n_voltages)
2525 return rdev->desc->n_voltages;
2526
2527 if (!rdev->supply)
2528 return -EINVAL;
2529
2530 return regulator_count_voltages(rdev->supply);
2531 }
2532 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2533
2534 /**
2535 * regulator_list_voltage - enumerate supported voltages
2536 * @regulator: regulator source
2537 * @selector: identify voltage to list
2538 * Context: can sleep
2539 *
2540 * Returns a voltage that can be passed to @regulator_set_voltage(),
2541 * zero if this selector code can't be used on this system, or a
2542 * negative errno.
2543 */
2544 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2545 {
2546 return _regulator_list_voltage(regulator, selector, 1);
2547 }
2548 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2549
2550 /**
2551 * regulator_get_regmap - get the regulator's register map
2552 * @regulator: regulator source
2553 *
2554 * Returns the register map for the given regulator, or an ERR_PTR value
2555 * if the regulator doesn't use regmap.
2556 */
2557 struct regmap *regulator_get_regmap(struct regulator *regulator)
2558 {
2559 struct regmap *map = regulator->rdev->regmap;
2560
2561 return map ? map : ERR_PTR(-EOPNOTSUPP);
2562 }
2563
2564 /**
2565 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2566 * @regulator: regulator source
2567 * @vsel_reg: voltage selector register, output parameter
2568 * @vsel_mask: mask for voltage selector bitfield, output parameter
2569 *
2570 * Returns the hardware register offset and bitmask used for setting the
2571 * regulator voltage. This might be useful when configuring voltage-scaling
2572 * hardware or firmware that can make I2C requests behind the kernel's back,
2573 * for example.
2574 *
2575 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2576 * and 0 is returned, otherwise a negative errno is returned.
2577 */
2578 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2579 unsigned *vsel_reg,
2580 unsigned *vsel_mask)
2581 {
2582 struct regulator_dev *rdev = regulator->rdev;
2583 const struct regulator_ops *ops = rdev->desc->ops;
2584
2585 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2586 return -EOPNOTSUPP;
2587
2588 *vsel_reg = rdev->desc->vsel_reg;
2589 *vsel_mask = rdev->desc->vsel_mask;
2590
2591 return 0;
2592 }
2593 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2594
2595 /**
2596 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2597 * @regulator: regulator source
2598 * @selector: identify voltage to list
2599 *
2600 * Converts the selector to a hardware-specific voltage selector that can be
2601 * directly written to the regulator registers. The address of the voltage
2602 * register can be determined by calling @regulator_get_hardware_vsel_register.
2603 *
2604 * On error a negative errno is returned.
2605 */
2606 int regulator_list_hardware_vsel(struct regulator *regulator,
2607 unsigned selector)
2608 {
2609 struct regulator_dev *rdev = regulator->rdev;
2610 const struct regulator_ops *ops = rdev->desc->ops;
2611
2612 if (selector >= rdev->desc->n_voltages)
2613 return -EINVAL;
2614 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2615 return -EOPNOTSUPP;
2616
2617 return selector;
2618 }
2619 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2620
2621 /**
2622 * regulator_get_linear_step - return the voltage step size between VSEL values
2623 * @regulator: regulator source
2624 *
2625 * Returns the voltage step size between VSEL values for linear
2626 * regulators, or return 0 if the regulator isn't a linear regulator.
2627 */
2628 unsigned int regulator_get_linear_step(struct regulator *regulator)
2629 {
2630 struct regulator_dev *rdev = regulator->rdev;
2631
2632 return rdev->desc->uV_step;
2633 }
2634 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2635
2636 /**
2637 * regulator_is_supported_voltage - check if a voltage range can be supported
2638 *
2639 * @regulator: Regulator to check.
2640 * @min_uV: Minimum required voltage in uV.
2641 * @max_uV: Maximum required voltage in uV.
2642 *
2643 * Returns a boolean or a negative error code.
2644 */
2645 int regulator_is_supported_voltage(struct regulator *regulator,
2646 int min_uV, int max_uV)
2647 {
2648 struct regulator_dev *rdev = regulator->rdev;
2649 int i, voltages, ret;
2650
2651 /* If we can't change voltage check the current voltage */
2652 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2653 ret = regulator_get_voltage(regulator);
2654 if (ret >= 0)
2655 return min_uV <= ret && ret <= max_uV;
2656 else
2657 return ret;
2658 }
2659
2660 /* Any voltage within constrains range is fine? */
2661 if (rdev->desc->continuous_voltage_range)
2662 return min_uV >= rdev->constraints->min_uV &&
2663 max_uV <= rdev->constraints->max_uV;
2664
2665 ret = regulator_count_voltages(regulator);
2666 if (ret < 0)
2667 return ret;
2668 voltages = ret;
2669
2670 for (i = 0; i < voltages; i++) {
2671 ret = regulator_list_voltage(regulator, i);
2672
2673 if (ret >= min_uV && ret <= max_uV)
2674 return 1;
2675 }
2676
2677 return 0;
2678 }
2679 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2680
2681 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2682 int max_uV)
2683 {
2684 const struct regulator_desc *desc = rdev->desc;
2685
2686 if (desc->ops->map_voltage)
2687 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2688
2689 if (desc->ops->list_voltage == regulator_list_voltage_linear)
2690 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2691
2692 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2693 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2694
2695 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2696 }
2697
2698 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2699 int min_uV, int max_uV,
2700 unsigned *selector)
2701 {
2702 struct pre_voltage_change_data data;
2703 int ret;
2704
2705 data.old_uV = _regulator_get_voltage(rdev);
2706 data.min_uV = min_uV;
2707 data.max_uV = max_uV;
2708 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2709 &data);
2710 if (ret & NOTIFY_STOP_MASK)
2711 return -EINVAL;
2712
2713 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2714 if (ret >= 0)
2715 return ret;
2716
2717 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2718 (void *)data.old_uV);
2719
2720 return ret;
2721 }
2722
2723 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2724 int uV, unsigned selector)
2725 {
2726 struct pre_voltage_change_data data;
2727 int ret;
2728
2729 data.old_uV = _regulator_get_voltage(rdev);
2730 data.min_uV = uV;
2731 data.max_uV = uV;
2732 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2733 &data);
2734 if (ret & NOTIFY_STOP_MASK)
2735 return -EINVAL;
2736
2737 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2738 if (ret >= 0)
2739 return ret;
2740
2741 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2742 (void *)data.old_uV);
2743
2744 return ret;
2745 }
2746
2747 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2748 int old_uV, int new_uV)
2749 {
2750 unsigned int ramp_delay = 0;
2751
2752 if (rdev->constraints->ramp_delay)
2753 ramp_delay = rdev->constraints->ramp_delay;
2754 else if (rdev->desc->ramp_delay)
2755 ramp_delay = rdev->desc->ramp_delay;
2756
2757 if (ramp_delay == 0) {
2758 rdev_dbg(rdev, "ramp_delay not set\n");
2759 return 0;
2760 }
2761
2762 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2763 }
2764
2765 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2766 int min_uV, int max_uV)
2767 {
2768 int ret;
2769 int delay = 0;
2770 int best_val = 0;
2771 unsigned int selector;
2772 int old_selector = -1;
2773 const struct regulator_ops *ops = rdev->desc->ops;
2774 int old_uV = _regulator_get_voltage(rdev);
2775
2776 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2777
2778 min_uV += rdev->constraints->uV_offset;
2779 max_uV += rdev->constraints->uV_offset;
2780
2781 /*
2782 * If we can't obtain the old selector there is not enough
2783 * info to call set_voltage_time_sel().
2784 */
2785 if (_regulator_is_enabled(rdev) &&
2786 ops->set_voltage_time_sel && ops->get_voltage_sel) {
2787 old_selector = ops->get_voltage_sel(rdev);
2788 if (old_selector < 0)
2789 return old_selector;
2790 }
2791
2792 if (ops->set_voltage) {
2793 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2794 &selector);
2795
2796 if (ret >= 0) {
2797 if (ops->list_voltage)
2798 best_val = ops->list_voltage(rdev,
2799 selector);
2800 else
2801 best_val = _regulator_get_voltage(rdev);
2802 }
2803
2804 } else if (ops->set_voltage_sel) {
2805 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2806 if (ret >= 0) {
2807 best_val = ops->list_voltage(rdev, ret);
2808 if (min_uV <= best_val && max_uV >= best_val) {
2809 selector = ret;
2810 if (old_selector == selector)
2811 ret = 0;
2812 else
2813 ret = _regulator_call_set_voltage_sel(
2814 rdev, best_val, selector);
2815 } else {
2816 ret = -EINVAL;
2817 }
2818 }
2819 } else {
2820 ret = -EINVAL;
2821 }
2822
2823 if (ret)
2824 goto out;
2825
2826 if (ops->set_voltage_time_sel) {
2827 /*
2828 * Call set_voltage_time_sel if successfully obtained
2829 * old_selector
2830 */
2831 if (old_selector >= 0 && old_selector != selector)
2832 delay = ops->set_voltage_time_sel(rdev, old_selector,
2833 selector);
2834 } else {
2835 if (old_uV != best_val) {
2836 if (ops->set_voltage_time)
2837 delay = ops->set_voltage_time(rdev, old_uV,
2838 best_val);
2839 else
2840 delay = _regulator_set_voltage_time(rdev,
2841 old_uV,
2842 best_val);
2843 }
2844 }
2845
2846 if (delay < 0) {
2847 rdev_warn(rdev, "failed to get delay: %d\n", delay);
2848 delay = 0;
2849 }
2850
2851 /* Insert any necessary delays */
2852 if (delay >= 1000) {
2853 mdelay(delay / 1000);
2854 udelay(delay % 1000);
2855 } else if (delay) {
2856 udelay(delay);
2857 }
2858
2859 if (best_val >= 0) {
2860 unsigned long data = best_val;
2861
2862 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2863 (void *)data);
2864 }
2865
2866 out:
2867 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2868
2869 return ret;
2870 }
2871
2872 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2873 int min_uV, int max_uV)
2874 {
2875 struct regulator_dev *rdev = regulator->rdev;
2876 int ret = 0;
2877 int old_min_uV, old_max_uV;
2878 int current_uV;
2879 int best_supply_uV = 0;
2880 int supply_change_uV = 0;
2881
2882 /* If we're setting the same range as last time the change
2883 * should be a noop (some cpufreq implementations use the same
2884 * voltage for multiple frequencies, for example).
2885 */
2886 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2887 goto out;
2888
2889 /* If we're trying to set a range that overlaps the current voltage,
2890 * return successfully even though the regulator does not support
2891 * changing the voltage.
2892 */
2893 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2894 current_uV = _regulator_get_voltage(rdev);
2895 if (min_uV <= current_uV && current_uV <= max_uV) {
2896 regulator->min_uV = min_uV;
2897 regulator->max_uV = max_uV;
2898 goto out;
2899 }
2900 }
2901
2902 /* sanity check */
2903 if (!rdev->desc->ops->set_voltage &&
2904 !rdev->desc->ops->set_voltage_sel) {
2905 ret = -EINVAL;
2906 goto out;
2907 }
2908
2909 /* constraints check */
2910 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2911 if (ret < 0)
2912 goto out;
2913
2914 /* restore original values in case of error */
2915 old_min_uV = regulator->min_uV;
2916 old_max_uV = regulator->max_uV;
2917 regulator->min_uV = min_uV;
2918 regulator->max_uV = max_uV;
2919
2920 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2921 if (ret < 0)
2922 goto out2;
2923
2924 if (rdev->supply && (rdev->desc->min_dropout_uV ||
2925 !rdev->desc->ops->get_voltage)) {
2926 int current_supply_uV;
2927 int selector;
2928
2929 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2930 if (selector < 0) {
2931 ret = selector;
2932 goto out2;
2933 }
2934
2935 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2936 if (best_supply_uV < 0) {
2937 ret = best_supply_uV;
2938 goto out2;
2939 }
2940
2941 best_supply_uV += rdev->desc->min_dropout_uV;
2942
2943 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2944 if (current_supply_uV < 0) {
2945 ret = current_supply_uV;
2946 goto out2;
2947 }
2948
2949 supply_change_uV = best_supply_uV - current_supply_uV;
2950 }
2951
2952 if (supply_change_uV > 0) {
2953 ret = regulator_set_voltage_unlocked(rdev->supply,
2954 best_supply_uV, INT_MAX);
2955 if (ret) {
2956 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2957 ret);
2958 goto out2;
2959 }
2960 }
2961
2962 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2963 if (ret < 0)
2964 goto out2;
2965
2966 if (supply_change_uV < 0) {
2967 ret = regulator_set_voltage_unlocked(rdev->supply,
2968 best_supply_uV, INT_MAX);
2969 if (ret)
2970 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2971 ret);
2972 /* No need to fail here */
2973 ret = 0;
2974 }
2975
2976 out:
2977 return ret;
2978 out2:
2979 regulator->min_uV = old_min_uV;
2980 regulator->max_uV = old_max_uV;
2981
2982 return ret;
2983 }
2984
2985 /**
2986 * regulator_set_voltage - set regulator output voltage
2987 * @regulator: regulator source
2988 * @min_uV: Minimum required voltage in uV
2989 * @max_uV: Maximum acceptable voltage in uV
2990 *
2991 * Sets a voltage regulator to the desired output voltage. This can be set
2992 * during any regulator state. IOW, regulator can be disabled or enabled.
2993 *
2994 * If the regulator is enabled then the voltage will change to the new value
2995 * immediately otherwise if the regulator is disabled the regulator will
2996 * output at the new voltage when enabled.
2997 *
2998 * NOTE: If the regulator is shared between several devices then the lowest
2999 * request voltage that meets the system constraints will be used.
3000 * Regulator system constraints must be set for this regulator before
3001 * calling this function otherwise this call will fail.
3002 */
3003 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3004 {
3005 int ret = 0;
3006
3007 regulator_lock_supply(regulator->rdev);
3008
3009 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
3010
3011 regulator_unlock_supply(regulator->rdev);
3012
3013 return ret;
3014 }
3015 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3016
3017 /**
3018 * regulator_set_voltage_time - get raise/fall time
3019 * @regulator: regulator source
3020 * @old_uV: starting voltage in microvolts
3021 * @new_uV: target voltage in microvolts
3022 *
3023 * Provided with the starting and ending voltage, this function attempts to
3024 * calculate the time in microseconds required to rise or fall to this new
3025 * voltage.
3026 */
3027 int regulator_set_voltage_time(struct regulator *regulator,
3028 int old_uV, int new_uV)
3029 {
3030 struct regulator_dev *rdev = regulator->rdev;
3031 const struct regulator_ops *ops = rdev->desc->ops;
3032 int old_sel = -1;
3033 int new_sel = -1;
3034 int voltage;
3035 int i;
3036
3037 if (ops->set_voltage_time)
3038 return ops->set_voltage_time(rdev, old_uV, new_uV);
3039 else if (!ops->set_voltage_time_sel)
3040 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3041
3042 /* Currently requires operations to do this */
3043 if (!ops->list_voltage || !rdev->desc->n_voltages)
3044 return -EINVAL;
3045
3046 for (i = 0; i < rdev->desc->n_voltages; i++) {
3047 /* We only look for exact voltage matches here */
3048 voltage = regulator_list_voltage(regulator, i);
3049 if (voltage < 0)
3050 return -EINVAL;
3051 if (voltage == 0)
3052 continue;
3053 if (voltage == old_uV)
3054 old_sel = i;
3055 if (voltage == new_uV)
3056 new_sel = i;
3057 }
3058
3059 if (old_sel < 0 || new_sel < 0)
3060 return -EINVAL;
3061
3062 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3063 }
3064 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3065
3066 /**
3067 * regulator_set_voltage_time_sel - get raise/fall time
3068 * @rdev: regulator source device
3069 * @old_selector: selector for starting voltage
3070 * @new_selector: selector for target voltage
3071 *
3072 * Provided with the starting and target voltage selectors, this function
3073 * returns time in microseconds required to rise or fall to this new voltage
3074 *
3075 * Drivers providing ramp_delay in regulation_constraints can use this as their
3076 * set_voltage_time_sel() operation.
3077 */
3078 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3079 unsigned int old_selector,
3080 unsigned int new_selector)
3081 {
3082 int old_volt, new_volt;
3083
3084 /* sanity check */
3085 if (!rdev->desc->ops->list_voltage)
3086 return -EINVAL;
3087
3088 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3089 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3090
3091 if (rdev->desc->ops->set_voltage_time)
3092 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3093 new_volt);
3094 else
3095 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3096 }
3097 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3098
3099 /**
3100 * regulator_sync_voltage - re-apply last regulator output voltage
3101 * @regulator: regulator source
3102 *
3103 * Re-apply the last configured voltage. This is intended to be used
3104 * where some external control source the consumer is cooperating with
3105 * has caused the configured voltage to change.
3106 */
3107 int regulator_sync_voltage(struct regulator *regulator)
3108 {
3109 struct regulator_dev *rdev = regulator->rdev;
3110 int ret, min_uV, max_uV;
3111
3112 mutex_lock(&rdev->mutex);
3113
3114 if (!rdev->desc->ops->set_voltage &&
3115 !rdev->desc->ops->set_voltage_sel) {
3116 ret = -EINVAL;
3117 goto out;
3118 }
3119
3120 /* This is only going to work if we've had a voltage configured. */
3121 if (!regulator->min_uV && !regulator->max_uV) {
3122 ret = -EINVAL;
3123 goto out;
3124 }
3125
3126 min_uV = regulator->min_uV;
3127 max_uV = regulator->max_uV;
3128
3129 /* This should be a paranoia check... */
3130 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3131 if (ret < 0)
3132 goto out;
3133
3134 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3135 if (ret < 0)
3136 goto out;
3137
3138 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3139
3140 out:
3141 mutex_unlock(&rdev->mutex);
3142 return ret;
3143 }
3144 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3145
3146 static int _regulator_get_voltage(struct regulator_dev *rdev)
3147 {
3148 int sel, ret;
3149 bool bypassed;
3150
3151 if (rdev->desc->ops->get_bypass) {
3152 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3153 if (ret < 0)
3154 return ret;
3155 if (bypassed) {
3156 /* if bypassed the regulator must have a supply */
3157 if (!rdev->supply) {
3158 rdev_err(rdev,
3159 "bypassed regulator has no supply!\n");
3160 return -EPROBE_DEFER;
3161 }
3162
3163 return _regulator_get_voltage(rdev->supply->rdev);
3164 }
3165 }
3166
3167 if (rdev->desc->ops->get_voltage_sel) {
3168 sel = rdev->desc->ops->get_voltage_sel(rdev);
3169 if (sel < 0)
3170 return sel;
3171 ret = rdev->desc->ops->list_voltage(rdev, sel);
3172 } else if (rdev->desc->ops->get_voltage) {
3173 ret = rdev->desc->ops->get_voltage(rdev);
3174 } else if (rdev->desc->ops->list_voltage) {
3175 ret = rdev->desc->ops->list_voltage(rdev, 0);
3176 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3177 ret = rdev->desc->fixed_uV;
3178 } else if (rdev->supply) {
3179 ret = _regulator_get_voltage(rdev->supply->rdev);
3180 } else {
3181 return -EINVAL;
3182 }
3183
3184 if (ret < 0)
3185 return ret;
3186 return ret - rdev->constraints->uV_offset;
3187 }
3188
3189 /**
3190 * regulator_get_voltage - get regulator output voltage
3191 * @regulator: regulator source
3192 *
3193 * This returns the current regulator voltage in uV.
3194 *
3195 * NOTE: If the regulator is disabled it will return the voltage value. This
3196 * function should not be used to determine regulator state.
3197 */
3198 int regulator_get_voltage(struct regulator *regulator)
3199 {
3200 int ret;
3201
3202 regulator_lock_supply(regulator->rdev);
3203
3204 ret = _regulator_get_voltage(regulator->rdev);
3205
3206 regulator_unlock_supply(regulator->rdev);
3207
3208 return ret;
3209 }
3210 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3211
3212 /**
3213 * regulator_set_current_limit - set regulator output current limit
3214 * @regulator: regulator source
3215 * @min_uA: Minimum supported current in uA
3216 * @max_uA: Maximum supported current in uA
3217 *
3218 * Sets current sink to the desired output current. This can be set during
3219 * any regulator state. IOW, regulator can be disabled or enabled.
3220 *
3221 * If the regulator is enabled then the current will change to the new value
3222 * immediately otherwise if the regulator is disabled the regulator will
3223 * output at the new current when enabled.
3224 *
3225 * NOTE: Regulator system constraints must be set for this regulator before
3226 * calling this function otherwise this call will fail.
3227 */
3228 int regulator_set_current_limit(struct regulator *regulator,
3229 int min_uA, int max_uA)
3230 {
3231 struct regulator_dev *rdev = regulator->rdev;
3232 int ret;
3233
3234 mutex_lock(&rdev->mutex);
3235
3236 /* sanity check */
3237 if (!rdev->desc->ops->set_current_limit) {
3238 ret = -EINVAL;
3239 goto out;
3240 }
3241
3242 /* constraints check */
3243 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3244 if (ret < 0)
3245 goto out;
3246
3247 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3248 out:
3249 mutex_unlock(&rdev->mutex);
3250 return ret;
3251 }
3252 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3253
3254 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3255 {
3256 int ret;
3257
3258 mutex_lock(&rdev->mutex);
3259
3260 /* sanity check */
3261 if (!rdev->desc->ops->get_current_limit) {
3262 ret = -EINVAL;
3263 goto out;
3264 }
3265
3266 ret = rdev->desc->ops->get_current_limit(rdev);
3267 out:
3268 mutex_unlock(&rdev->mutex);
3269 return ret;
3270 }
3271
3272 /**
3273 * regulator_get_current_limit - get regulator output current
3274 * @regulator: regulator source
3275 *
3276 * This returns the current supplied by the specified current sink in uA.
3277 *
3278 * NOTE: If the regulator is disabled it will return the current value. This
3279 * function should not be used to determine regulator state.
3280 */
3281 int regulator_get_current_limit(struct regulator *regulator)
3282 {
3283 return _regulator_get_current_limit(regulator->rdev);
3284 }
3285 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3286
3287 /**
3288 * regulator_set_mode - set regulator operating mode
3289 * @regulator: regulator source
3290 * @mode: operating mode - one of the REGULATOR_MODE constants
3291 *
3292 * Set regulator operating mode to increase regulator efficiency or improve
3293 * regulation performance.
3294 *
3295 * NOTE: Regulator system constraints must be set for this regulator before
3296 * calling this function otherwise this call will fail.
3297 */
3298 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3299 {
3300 struct regulator_dev *rdev = regulator->rdev;
3301 int ret;
3302 int regulator_curr_mode;
3303
3304 mutex_lock(&rdev->mutex);
3305
3306 /* sanity check */
3307 if (!rdev->desc->ops->set_mode) {
3308 ret = -EINVAL;
3309 goto out;
3310 }
3311
3312 /* return if the same mode is requested */
3313 if (rdev->desc->ops->get_mode) {
3314 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3315 if (regulator_curr_mode == mode) {
3316 ret = 0;
3317 goto out;
3318 }
3319 }
3320
3321 /* constraints check */
3322 ret = regulator_mode_constrain(rdev, &mode);
3323 if (ret < 0)
3324 goto out;
3325
3326 ret = rdev->desc->ops->set_mode(rdev, mode);
3327 out:
3328 mutex_unlock(&rdev->mutex);
3329 return ret;
3330 }
3331 EXPORT_SYMBOL_GPL(regulator_set_mode);
3332
3333 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3334 {
3335 int ret;
3336
3337 mutex_lock(&rdev->mutex);
3338
3339 /* sanity check */
3340 if (!rdev->desc->ops->get_mode) {
3341 ret = -EINVAL;
3342 goto out;
3343 }
3344
3345 ret = rdev->desc->ops->get_mode(rdev);
3346 out:
3347 mutex_unlock(&rdev->mutex);
3348 return ret;
3349 }
3350
3351 /**
3352 * regulator_get_mode - get regulator operating mode
3353 * @regulator: regulator source
3354 *
3355 * Get the current regulator operating mode.
3356 */
3357 unsigned int regulator_get_mode(struct regulator *regulator)
3358 {
3359 return _regulator_get_mode(regulator->rdev);
3360 }
3361 EXPORT_SYMBOL_GPL(regulator_get_mode);
3362
3363 static int _regulator_get_error_flags(struct regulator_dev *rdev,
3364 unsigned int *flags)
3365 {
3366 int ret;
3367
3368 mutex_lock(&rdev->mutex);
3369
3370 /* sanity check */
3371 if (!rdev->desc->ops->get_error_flags) {
3372 ret = -EINVAL;
3373 goto out;
3374 }
3375
3376 ret = rdev->desc->ops->get_error_flags(rdev, flags);
3377 out:
3378 mutex_unlock(&rdev->mutex);
3379 return ret;
3380 }
3381
3382 /**
3383 * regulator_get_error_flags - get regulator error information
3384 * @regulator: regulator source
3385 * @flags: pointer to store error flags
3386 *
3387 * Get the current regulator error information.
3388 */
3389 int regulator_get_error_flags(struct regulator *regulator,
3390 unsigned int *flags)
3391 {
3392 return _regulator_get_error_flags(regulator->rdev, flags);
3393 }
3394 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3395
3396 /**
3397 * regulator_set_load - set regulator load
3398 * @regulator: regulator source
3399 * @uA_load: load current
3400 *
3401 * Notifies the regulator core of a new device load. This is then used by
3402 * DRMS (if enabled by constraints) to set the most efficient regulator
3403 * operating mode for the new regulator loading.
3404 *
3405 * Consumer devices notify their supply regulator of the maximum power
3406 * they will require (can be taken from device datasheet in the power
3407 * consumption tables) when they change operational status and hence power
3408 * state. Examples of operational state changes that can affect power
3409 * consumption are :-
3410 *
3411 * o Device is opened / closed.
3412 * o Device I/O is about to begin or has just finished.
3413 * o Device is idling in between work.
3414 *
3415 * This information is also exported via sysfs to userspace.
3416 *
3417 * DRMS will sum the total requested load on the regulator and change
3418 * to the most efficient operating mode if platform constraints allow.
3419 *
3420 * On error a negative errno is returned.
3421 */
3422 int regulator_set_load(struct regulator *regulator, int uA_load)
3423 {
3424 struct regulator_dev *rdev = regulator->rdev;
3425 int ret;
3426
3427 mutex_lock(&rdev->mutex);
3428 regulator->uA_load = uA_load;
3429 ret = drms_uA_update(rdev);
3430 mutex_unlock(&rdev->mutex);
3431
3432 return ret;
3433 }
3434 EXPORT_SYMBOL_GPL(regulator_set_load);
3435
3436 /**
3437 * regulator_allow_bypass - allow the regulator to go into bypass mode
3438 *
3439 * @regulator: Regulator to configure
3440 * @enable: enable or disable bypass mode
3441 *
3442 * Allow the regulator to go into bypass mode if all other consumers
3443 * for the regulator also enable bypass mode and the machine
3444 * constraints allow this. Bypass mode means that the regulator is
3445 * simply passing the input directly to the output with no regulation.
3446 */
3447 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3448 {
3449 struct regulator_dev *rdev = regulator->rdev;
3450 int ret = 0;
3451
3452 if (!rdev->desc->ops->set_bypass)
3453 return 0;
3454
3455 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3456 return 0;
3457
3458 mutex_lock(&rdev->mutex);
3459
3460 if (enable && !regulator->bypass) {
3461 rdev->bypass_count++;
3462
3463 if (rdev->bypass_count == rdev->open_count) {
3464 ret = rdev->desc->ops->set_bypass(rdev, enable);
3465 if (ret != 0)
3466 rdev->bypass_count--;
3467 }
3468
3469 } else if (!enable && regulator->bypass) {
3470 rdev->bypass_count--;
3471
3472 if (rdev->bypass_count != rdev->open_count) {
3473 ret = rdev->desc->ops->set_bypass(rdev, enable);
3474 if (ret != 0)
3475 rdev->bypass_count++;
3476 }
3477 }
3478
3479 if (ret == 0)
3480 regulator->bypass = enable;
3481
3482 mutex_unlock(&rdev->mutex);
3483
3484 return ret;
3485 }
3486 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3487
3488 /**
3489 * regulator_register_notifier - register regulator event notifier
3490 * @regulator: regulator source
3491 * @nb: notifier block
3492 *
3493 * Register notifier block to receive regulator events.
3494 */
3495 int regulator_register_notifier(struct regulator *regulator,
3496 struct notifier_block *nb)
3497 {
3498 return blocking_notifier_chain_register(&regulator->rdev->notifier,
3499 nb);
3500 }
3501 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3502
3503 /**
3504 * regulator_unregister_notifier - unregister regulator event notifier
3505 * @regulator: regulator source
3506 * @nb: notifier block
3507 *
3508 * Unregister regulator event notifier block.
3509 */
3510 int regulator_unregister_notifier(struct regulator *regulator,
3511 struct notifier_block *nb)
3512 {
3513 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3514 nb);
3515 }
3516 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3517
3518 /* notify regulator consumers and downstream regulator consumers.
3519 * Note mutex must be held by caller.
3520 */
3521 static int _notifier_call_chain(struct regulator_dev *rdev,
3522 unsigned long event, void *data)
3523 {
3524 /* call rdev chain first */
3525 return blocking_notifier_call_chain(&rdev->notifier, event, data);
3526 }
3527
3528 /**
3529 * regulator_bulk_get - get multiple regulator consumers
3530 *
3531 * @dev: Device to supply
3532 * @num_consumers: Number of consumers to register
3533 * @consumers: Configuration of consumers; clients are stored here.
3534 *
3535 * @return 0 on success, an errno on failure.
3536 *
3537 * This helper function allows drivers to get several regulator
3538 * consumers in one operation. If any of the regulators cannot be
3539 * acquired then any regulators that were allocated will be freed
3540 * before returning to the caller.
3541 */
3542 int regulator_bulk_get(struct device *dev, int num_consumers,
3543 struct regulator_bulk_data *consumers)
3544 {
3545 int i;
3546 int ret;
3547
3548 for (i = 0; i < num_consumers; i++)
3549 consumers[i].consumer = NULL;
3550
3551 for (i = 0; i < num_consumers; i++) {
3552 consumers[i].consumer = regulator_get(dev,
3553 consumers[i].supply);
3554 if (IS_ERR(consumers[i].consumer)) {
3555 ret = PTR_ERR(consumers[i].consumer);
3556 dev_err(dev, "Failed to get supply '%s': %d\n",
3557 consumers[i].supply, ret);
3558 consumers[i].consumer = NULL;
3559 goto err;
3560 }
3561 }
3562
3563 return 0;
3564
3565 err:
3566 while (--i >= 0)
3567 regulator_put(consumers[i].consumer);
3568
3569 return ret;
3570 }
3571 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3572
3573 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3574 {
3575 struct regulator_bulk_data *bulk = data;
3576
3577 bulk->ret = regulator_enable(bulk->consumer);
3578 }
3579
3580 /**
3581 * regulator_bulk_enable - enable multiple regulator consumers
3582 *
3583 * @num_consumers: Number of consumers
3584 * @consumers: Consumer data; clients are stored here.
3585 * @return 0 on success, an errno on failure
3586 *
3587 * This convenience API allows consumers to enable multiple regulator
3588 * clients in a single API call. If any consumers cannot be enabled
3589 * then any others that were enabled will be disabled again prior to
3590 * return.
3591 */
3592 int regulator_bulk_enable(int num_consumers,
3593 struct regulator_bulk_data *consumers)
3594 {
3595 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3596 int i;
3597 int ret = 0;
3598
3599 for (i = 0; i < num_consumers; i++) {
3600 if (consumers[i].consumer->always_on)
3601 consumers[i].ret = 0;
3602 else
3603 async_schedule_domain(regulator_bulk_enable_async,
3604 &consumers[i], &async_domain);
3605 }
3606
3607 async_synchronize_full_domain(&async_domain);
3608
3609 /* If any consumer failed we need to unwind any that succeeded */
3610 for (i = 0; i < num_consumers; i++) {
3611 if (consumers[i].ret != 0) {
3612 ret = consumers[i].ret;
3613 goto err;
3614 }
3615 }
3616
3617 return 0;
3618
3619 err:
3620 for (i = 0; i < num_consumers; i++) {
3621 if (consumers[i].ret < 0)
3622 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3623 consumers[i].ret);
3624 else
3625 regulator_disable(consumers[i].consumer);
3626 }
3627
3628 return ret;
3629 }
3630 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3631
3632 /**
3633 * regulator_bulk_disable - disable multiple regulator consumers
3634 *
3635 * @num_consumers: Number of consumers
3636 * @consumers: Consumer data; clients are stored here.
3637 * @return 0 on success, an errno on failure
3638 *
3639 * This convenience API allows consumers to disable multiple regulator
3640 * clients in a single API call. If any consumers cannot be disabled
3641 * then any others that were disabled will be enabled again prior to
3642 * return.
3643 */
3644 int regulator_bulk_disable(int num_consumers,
3645 struct regulator_bulk_data *consumers)
3646 {
3647 int i;
3648 int ret, r;
3649
3650 for (i = num_consumers - 1; i >= 0; --i) {
3651 ret = regulator_disable(consumers[i].consumer);
3652 if (ret != 0)
3653 goto err;
3654 }
3655
3656 return 0;
3657
3658 err:
3659 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3660 for (++i; i < num_consumers; ++i) {
3661 r = regulator_enable(consumers[i].consumer);
3662 if (r != 0)
3663 pr_err("Failed to reename %s: %d\n",
3664 consumers[i].supply, r);
3665 }
3666
3667 return ret;
3668 }
3669 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3670
3671 /**
3672 * regulator_bulk_force_disable - force disable multiple regulator consumers
3673 *
3674 * @num_consumers: Number of consumers
3675 * @consumers: Consumer data; clients are stored here.
3676 * @return 0 on success, an errno on failure
3677 *
3678 * This convenience API allows consumers to forcibly disable multiple regulator
3679 * clients in a single API call.
3680 * NOTE: This should be used for situations when device damage will
3681 * likely occur if the regulators are not disabled (e.g. over temp).
3682 * Although regulator_force_disable function call for some consumers can
3683 * return error numbers, the function is called for all consumers.
3684 */
3685 int regulator_bulk_force_disable(int num_consumers,
3686 struct regulator_bulk_data *consumers)
3687 {
3688 int i;
3689 int ret;
3690
3691 for (i = 0; i < num_consumers; i++)
3692 consumers[i].ret =
3693 regulator_force_disable(consumers[i].consumer);
3694
3695 for (i = 0; i < num_consumers; i++) {
3696 if (consumers[i].ret != 0) {
3697 ret = consumers[i].ret;
3698 goto out;
3699 }
3700 }
3701
3702 return 0;
3703 out:
3704 return ret;
3705 }
3706 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3707
3708 /**
3709 * regulator_bulk_free - free multiple regulator consumers
3710 *
3711 * @num_consumers: Number of consumers
3712 * @consumers: Consumer data; clients are stored here.
3713 *
3714 * This convenience API allows consumers to free multiple regulator
3715 * clients in a single API call.
3716 */
3717 void regulator_bulk_free(int num_consumers,
3718 struct regulator_bulk_data *consumers)
3719 {
3720 int i;
3721
3722 for (i = 0; i < num_consumers; i++) {
3723 regulator_put(consumers[i].consumer);
3724 consumers[i].consumer = NULL;
3725 }
3726 }
3727 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3728
3729 /**
3730 * regulator_notifier_call_chain - call regulator event notifier
3731 * @rdev: regulator source
3732 * @event: notifier block
3733 * @data: callback-specific data.
3734 *
3735 * Called by regulator drivers to notify clients a regulator event has
3736 * occurred. We also notify regulator clients downstream.
3737 * Note lock must be held by caller.
3738 */
3739 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3740 unsigned long event, void *data)
3741 {
3742 lockdep_assert_held_once(&rdev->mutex);
3743
3744 _notifier_call_chain(rdev, event, data);
3745 return NOTIFY_DONE;
3746
3747 }
3748 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3749
3750 /**
3751 * regulator_mode_to_status - convert a regulator mode into a status
3752 *
3753 * @mode: Mode to convert
3754 *
3755 * Convert a regulator mode into a status.
3756 */
3757 int regulator_mode_to_status(unsigned int mode)
3758 {
3759 switch (mode) {
3760 case REGULATOR_MODE_FAST:
3761 return REGULATOR_STATUS_FAST;
3762 case REGULATOR_MODE_NORMAL:
3763 return REGULATOR_STATUS_NORMAL;
3764 case REGULATOR_MODE_IDLE:
3765 return REGULATOR_STATUS_IDLE;
3766 case REGULATOR_MODE_STANDBY:
3767 return REGULATOR_STATUS_STANDBY;
3768 default:
3769 return REGULATOR_STATUS_UNDEFINED;
3770 }
3771 }
3772 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3773
3774 static struct attribute *regulator_dev_attrs[] = {
3775 &dev_attr_name.attr,
3776 &dev_attr_num_users.attr,
3777 &dev_attr_type.attr,
3778 &dev_attr_microvolts.attr,
3779 &dev_attr_microamps.attr,
3780 &dev_attr_opmode.attr,
3781 &dev_attr_state.attr,
3782 &dev_attr_status.attr,
3783 &dev_attr_bypass.attr,
3784 &dev_attr_requested_microamps.attr,
3785 &dev_attr_min_microvolts.attr,
3786 &dev_attr_max_microvolts.attr,
3787 &dev_attr_min_microamps.attr,
3788 &dev_attr_max_microamps.attr,
3789 &dev_attr_suspend_standby_state.attr,
3790 &dev_attr_suspend_mem_state.attr,
3791 &dev_attr_suspend_disk_state.attr,
3792 &dev_attr_suspend_standby_microvolts.attr,
3793 &dev_attr_suspend_mem_microvolts.attr,
3794 &dev_attr_suspend_disk_microvolts.attr,
3795 &dev_attr_suspend_standby_mode.attr,
3796 &dev_attr_suspend_mem_mode.attr,
3797 &dev_attr_suspend_disk_mode.attr,
3798 NULL
3799 };
3800
3801 /*
3802 * To avoid cluttering sysfs (and memory) with useless state, only
3803 * create attributes that can be meaningfully displayed.
3804 */
3805 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3806 struct attribute *attr, int idx)
3807 {
3808 struct device *dev = kobj_to_dev(kobj);
3809 struct regulator_dev *rdev = dev_to_rdev(dev);
3810 const struct regulator_ops *ops = rdev->desc->ops;
3811 umode_t mode = attr->mode;
3812
3813 /* these three are always present */
3814 if (attr == &dev_attr_name.attr ||
3815 attr == &dev_attr_num_users.attr ||
3816 attr == &dev_attr_type.attr)
3817 return mode;
3818
3819 /* some attributes need specific methods to be displayed */
3820 if (attr == &dev_attr_microvolts.attr) {
3821 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3822 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3823 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3824 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3825 return mode;
3826 return 0;
3827 }
3828
3829 if (attr == &dev_attr_microamps.attr)
3830 return ops->get_current_limit ? mode : 0;
3831
3832 if (attr == &dev_attr_opmode.attr)
3833 return ops->get_mode ? mode : 0;
3834
3835 if (attr == &dev_attr_state.attr)
3836 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3837
3838 if (attr == &dev_attr_status.attr)
3839 return ops->get_status ? mode : 0;
3840
3841 if (attr == &dev_attr_bypass.attr)
3842 return ops->get_bypass ? mode : 0;
3843
3844 /* some attributes are type-specific */
3845 if (attr == &dev_attr_requested_microamps.attr)
3846 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3847
3848 /* constraints need specific supporting methods */
3849 if (attr == &dev_attr_min_microvolts.attr ||
3850 attr == &dev_attr_max_microvolts.attr)
3851 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3852
3853 if (attr == &dev_attr_min_microamps.attr ||
3854 attr == &dev_attr_max_microamps.attr)
3855 return ops->set_current_limit ? mode : 0;
3856
3857 if (attr == &dev_attr_suspend_standby_state.attr ||
3858 attr == &dev_attr_suspend_mem_state.attr ||
3859 attr == &dev_attr_suspend_disk_state.attr)
3860 return mode;
3861
3862 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3863 attr == &dev_attr_suspend_mem_microvolts.attr ||
3864 attr == &dev_attr_suspend_disk_microvolts.attr)
3865 return ops->set_suspend_voltage ? mode : 0;
3866
3867 if (attr == &dev_attr_suspend_standby_mode.attr ||
3868 attr == &dev_attr_suspend_mem_mode.attr ||
3869 attr == &dev_attr_suspend_disk_mode.attr)
3870 return ops->set_suspend_mode ? mode : 0;
3871
3872 return mode;
3873 }
3874
3875 static const struct attribute_group regulator_dev_group = {
3876 .attrs = regulator_dev_attrs,
3877 .is_visible = regulator_attr_is_visible,
3878 };
3879
3880 static const struct attribute_group *regulator_dev_groups[] = {
3881 &regulator_dev_group,
3882 NULL
3883 };
3884
3885 static void regulator_dev_release(struct device *dev)
3886 {
3887 struct regulator_dev *rdev = dev_get_drvdata(dev);
3888
3889 kfree(rdev->constraints);
3890 of_node_put(rdev->dev.of_node);
3891 kfree(rdev);
3892 }
3893
3894 static struct class regulator_class = {
3895 .name = "regulator",
3896 .dev_release = regulator_dev_release,
3897 .dev_groups = regulator_dev_groups,
3898 };
3899
3900 static void rdev_init_debugfs(struct regulator_dev *rdev)
3901 {
3902 struct device *parent = rdev->dev.parent;
3903 const char *rname = rdev_get_name(rdev);
3904 char name[NAME_MAX];
3905
3906 /* Avoid duplicate debugfs directory names */
3907 if (parent && rname == rdev->desc->name) {
3908 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3909 rname);
3910 rname = name;
3911 }
3912
3913 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3914 if (!rdev->debugfs) {
3915 rdev_warn(rdev, "Failed to create debugfs directory\n");
3916 return;
3917 }
3918
3919 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3920 &rdev->use_count);
3921 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3922 &rdev->open_count);
3923 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3924 &rdev->bypass_count);
3925 }
3926
3927 static int regulator_register_resolve_supply(struct device *dev, void *data)
3928 {
3929 struct regulator_dev *rdev = dev_to_rdev(dev);
3930
3931 if (regulator_resolve_supply(rdev))
3932 rdev_dbg(rdev, "unable to resolve supply\n");
3933
3934 return 0;
3935 }
3936
3937 /**
3938 * regulator_register - register regulator
3939 * @regulator_desc: regulator to register
3940 * @cfg: runtime configuration for regulator
3941 *
3942 * Called by regulator drivers to register a regulator.
3943 * Returns a valid pointer to struct regulator_dev on success
3944 * or an ERR_PTR() on error.
3945 */
3946 struct regulator_dev *
3947 regulator_register(const struct regulator_desc *regulator_desc,
3948 const struct regulator_config *cfg)
3949 {
3950 const struct regulation_constraints *constraints = NULL;
3951 const struct regulator_init_data *init_data;
3952 struct regulator_config *config = NULL;
3953 static atomic_t regulator_no = ATOMIC_INIT(-1);
3954 struct regulator_dev *rdev;
3955 struct device *dev;
3956 int ret, i;
3957
3958 if (regulator_desc == NULL || cfg == NULL)
3959 return ERR_PTR(-EINVAL);
3960
3961 dev = cfg->dev;
3962 WARN_ON(!dev);
3963
3964 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3965 return ERR_PTR(-EINVAL);
3966
3967 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3968 regulator_desc->type != REGULATOR_CURRENT)
3969 return ERR_PTR(-EINVAL);
3970
3971 /* Only one of each should be implemented */
3972 WARN_ON(regulator_desc->ops->get_voltage &&
3973 regulator_desc->ops->get_voltage_sel);
3974 WARN_ON(regulator_desc->ops->set_voltage &&
3975 regulator_desc->ops->set_voltage_sel);
3976
3977 /* If we're using selectors we must implement list_voltage. */
3978 if (regulator_desc->ops->get_voltage_sel &&
3979 !regulator_desc->ops->list_voltage) {
3980 return ERR_PTR(-EINVAL);
3981 }
3982 if (regulator_desc->ops->set_voltage_sel &&
3983 !regulator_desc->ops->list_voltage) {
3984 return ERR_PTR(-EINVAL);
3985 }
3986
3987 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3988 if (rdev == NULL)
3989 return ERR_PTR(-ENOMEM);
3990
3991 /*
3992 * Duplicate the config so the driver could override it after
3993 * parsing init data.
3994 */
3995 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3996 if (config == NULL) {
3997 kfree(rdev);
3998 return ERR_PTR(-ENOMEM);
3999 }
4000
4001 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4002 &rdev->dev.of_node);
4003 if (!init_data) {
4004 init_data = config->init_data;
4005 rdev->dev.of_node = of_node_get(config->of_node);
4006 }
4007
4008 mutex_init(&rdev->mutex);
4009 rdev->reg_data = config->driver_data;
4010 rdev->owner = regulator_desc->owner;
4011 rdev->desc = regulator_desc;
4012 if (config->regmap)
4013 rdev->regmap = config->regmap;
4014 else if (dev_get_regmap(dev, NULL))
4015 rdev->regmap = dev_get_regmap(dev, NULL);
4016 else if (dev->parent)
4017 rdev->regmap = dev_get_regmap(dev->parent, NULL);
4018 INIT_LIST_HEAD(&rdev->consumer_list);
4019 INIT_LIST_HEAD(&rdev->list);
4020 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4021 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4022
4023 /* preform any regulator specific init */
4024 if (init_data && init_data->regulator_init) {
4025 ret = init_data->regulator_init(rdev->reg_data);
4026 if (ret < 0)
4027 goto clean;
4028 }
4029
4030 if ((config->ena_gpio || config->ena_gpio_initialized) &&
4031 gpio_is_valid(config->ena_gpio)) {
4032 mutex_lock(&regulator_list_mutex);
4033 ret = regulator_ena_gpio_request(rdev, config);
4034 mutex_unlock(&regulator_list_mutex);
4035 if (ret != 0) {
4036 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4037 config->ena_gpio, ret);
4038 goto clean;
4039 }
4040 }
4041
4042 /* register with sysfs */
4043 rdev->dev.class = &regulator_class;
4044 rdev->dev.parent = dev;
4045 dev_set_name(&rdev->dev, "regulator.%lu",
4046 (unsigned long) atomic_inc_return(&regulator_no));
4047
4048 /* set regulator constraints */
4049 if (init_data)
4050 constraints = &init_data->constraints;
4051
4052 if (init_data && init_data->supply_regulator)
4053 rdev->supply_name = init_data->supply_regulator;
4054 else if (regulator_desc->supply_name)
4055 rdev->supply_name = regulator_desc->supply_name;
4056
4057 /*
4058 * Attempt to resolve the regulator supply, if specified,
4059 * but don't return an error if we fail because we will try
4060 * to resolve it again later as more regulators are added.
4061 */
4062 if (regulator_resolve_supply(rdev))
4063 rdev_dbg(rdev, "unable to resolve supply\n");
4064
4065 ret = set_machine_constraints(rdev, constraints);
4066 if (ret < 0)
4067 goto wash;
4068
4069 /* add consumers devices */
4070 if (init_data) {
4071 mutex_lock(&regulator_list_mutex);
4072 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4073 ret = set_consumer_device_supply(rdev,
4074 init_data->consumer_supplies[i].dev_name,
4075 init_data->consumer_supplies[i].supply);
4076 if (ret < 0) {
4077 mutex_unlock(&regulator_list_mutex);
4078 dev_err(dev, "Failed to set supply %s\n",
4079 init_data->consumer_supplies[i].supply);
4080 goto unset_supplies;
4081 }
4082 }
4083 mutex_unlock(&regulator_list_mutex);
4084 }
4085
4086 ret = device_register(&rdev->dev);
4087 if (ret != 0) {
4088 put_device(&rdev->dev);
4089 goto unset_supplies;
4090 }
4091
4092 dev_set_drvdata(&rdev->dev, rdev);
4093 rdev_init_debugfs(rdev);
4094
4095 /* try to resolve regulators supply since a new one was registered */
4096 class_for_each_device(&regulator_class, NULL, NULL,
4097 regulator_register_resolve_supply);
4098 kfree(config);
4099 return rdev;
4100
4101 unset_supplies:
4102 mutex_lock(&regulator_list_mutex);
4103 unset_regulator_supplies(rdev);
4104 mutex_unlock(&regulator_list_mutex);
4105 wash:
4106 kfree(rdev->constraints);
4107 mutex_lock(&regulator_list_mutex);
4108 regulator_ena_gpio_free(rdev);
4109 mutex_unlock(&regulator_list_mutex);
4110 clean:
4111 kfree(rdev);
4112 kfree(config);
4113 return ERR_PTR(ret);
4114 }
4115 EXPORT_SYMBOL_GPL(regulator_register);
4116
4117 /**
4118 * regulator_unregister - unregister regulator
4119 * @rdev: regulator to unregister
4120 *
4121 * Called by regulator drivers to unregister a regulator.
4122 */
4123 void regulator_unregister(struct regulator_dev *rdev)
4124 {
4125 if (rdev == NULL)
4126 return;
4127
4128 if (rdev->supply) {
4129 while (rdev->use_count--)
4130 regulator_disable(rdev->supply);
4131 regulator_put(rdev->supply);
4132 }
4133 mutex_lock(&regulator_list_mutex);
4134 debugfs_remove_recursive(rdev->debugfs);
4135 flush_work(&rdev->disable_work.work);
4136 WARN_ON(rdev->open_count);
4137 unset_regulator_supplies(rdev);
4138 list_del(&rdev->list);
4139 regulator_ena_gpio_free(rdev);
4140 mutex_unlock(&regulator_list_mutex);
4141 device_unregister(&rdev->dev);
4142 }
4143 EXPORT_SYMBOL_GPL(regulator_unregister);
4144
4145 static int _regulator_suspend_prepare(struct device *dev, void *data)
4146 {
4147 struct regulator_dev *rdev = dev_to_rdev(dev);
4148 const suspend_state_t *state = data;
4149 int ret;
4150
4151 mutex_lock(&rdev->mutex);
4152 ret = suspend_prepare(rdev, *state);
4153 mutex_unlock(&rdev->mutex);
4154
4155 return ret;
4156 }
4157
4158 /**
4159 * regulator_suspend_prepare - prepare regulators for system wide suspend
4160 * @state: system suspend state
4161 *
4162 * Configure each regulator with it's suspend operating parameters for state.
4163 * This will usually be called by machine suspend code prior to supending.
4164 */
4165 int regulator_suspend_prepare(suspend_state_t state)
4166 {
4167 /* ON is handled by regulator active state */
4168 if (state == PM_SUSPEND_ON)
4169 return -EINVAL;
4170
4171 return class_for_each_device(&regulator_class, NULL, &state,
4172 _regulator_suspend_prepare);
4173 }
4174 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4175
4176 static int _regulator_suspend_finish(struct device *dev, void *data)
4177 {
4178 struct regulator_dev *rdev = dev_to_rdev(dev);
4179 int ret;
4180
4181 mutex_lock(&rdev->mutex);
4182 if (rdev->use_count > 0 || rdev->constraints->always_on) {
4183 if (!_regulator_is_enabled(rdev)) {
4184 ret = _regulator_do_enable(rdev);
4185 if (ret)
4186 dev_err(dev,
4187 "Failed to resume regulator %d\n",
4188 ret);
4189 }
4190 } else {
4191 if (!have_full_constraints())
4192 goto unlock;
4193 if (!_regulator_is_enabled(rdev))
4194 goto unlock;
4195
4196 ret = _regulator_do_disable(rdev);
4197 if (ret)
4198 dev_err(dev, "Failed to suspend regulator %d\n", ret);
4199 }
4200 unlock:
4201 mutex_unlock(&rdev->mutex);
4202
4203 /* Keep processing regulators in spite of any errors */
4204 return 0;
4205 }
4206
4207 /**
4208 * regulator_suspend_finish - resume regulators from system wide suspend
4209 *
4210 * Turn on regulators that might be turned off by regulator_suspend_prepare
4211 * and that should be turned on according to the regulators properties.
4212 */
4213 int regulator_suspend_finish(void)
4214 {
4215 return class_for_each_device(&regulator_class, NULL, NULL,
4216 _regulator_suspend_finish);
4217 }
4218 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4219
4220 /**
4221 * regulator_has_full_constraints - the system has fully specified constraints
4222 *
4223 * Calling this function will cause the regulator API to disable all
4224 * regulators which have a zero use count and don't have an always_on
4225 * constraint in a late_initcall.
4226 *
4227 * The intention is that this will become the default behaviour in a
4228 * future kernel release so users are encouraged to use this facility
4229 * now.
4230 */
4231 void regulator_has_full_constraints(void)
4232 {
4233 has_full_constraints = 1;
4234 }
4235 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4236
4237 /**
4238 * rdev_get_drvdata - get rdev regulator driver data
4239 * @rdev: regulator
4240 *
4241 * Get rdev regulator driver private data. This call can be used in the
4242 * regulator driver context.
4243 */
4244 void *rdev_get_drvdata(struct regulator_dev *rdev)
4245 {
4246 return rdev->reg_data;
4247 }
4248 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4249
4250 /**
4251 * regulator_get_drvdata - get regulator driver data
4252 * @regulator: regulator
4253 *
4254 * Get regulator driver private data. This call can be used in the consumer
4255 * driver context when non API regulator specific functions need to be called.
4256 */
4257 void *regulator_get_drvdata(struct regulator *regulator)
4258 {
4259 return regulator->rdev->reg_data;
4260 }
4261 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4262
4263 /**
4264 * regulator_set_drvdata - set regulator driver data
4265 * @regulator: regulator
4266 * @data: data
4267 */
4268 void regulator_set_drvdata(struct regulator *regulator, void *data)
4269 {
4270 regulator->rdev->reg_data = data;
4271 }
4272 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4273
4274 /**
4275 * regulator_get_id - get regulator ID
4276 * @rdev: regulator
4277 */
4278 int rdev_get_id(struct regulator_dev *rdev)
4279 {
4280 return rdev->desc->id;
4281 }
4282 EXPORT_SYMBOL_GPL(rdev_get_id);
4283
4284 struct device *rdev_get_dev(struct regulator_dev *rdev)
4285 {
4286 return &rdev->dev;
4287 }
4288 EXPORT_SYMBOL_GPL(rdev_get_dev);
4289
4290 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4291 {
4292 return reg_init_data->driver_data;
4293 }
4294 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4295
4296 #ifdef CONFIG_DEBUG_FS
4297 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4298 size_t count, loff_t *ppos)
4299 {
4300 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4301 ssize_t len, ret = 0;
4302 struct regulator_map *map;
4303
4304 if (!buf)
4305 return -ENOMEM;
4306
4307 list_for_each_entry(map, &regulator_map_list, list) {
4308 len = snprintf(buf + ret, PAGE_SIZE - ret,
4309 "%s -> %s.%s\n",
4310 rdev_get_name(map->regulator), map->dev_name,
4311 map->supply);
4312 if (len >= 0)
4313 ret += len;
4314 if (ret > PAGE_SIZE) {
4315 ret = PAGE_SIZE;
4316 break;
4317 }
4318 }
4319
4320 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4321
4322 kfree(buf);
4323
4324 return ret;
4325 }
4326 #endif
4327
4328 static const struct file_operations supply_map_fops = {
4329 #ifdef CONFIG_DEBUG_FS
4330 .read = supply_map_read_file,
4331 .llseek = default_llseek,
4332 #endif
4333 };
4334
4335 #ifdef CONFIG_DEBUG_FS
4336 struct summary_data {
4337 struct seq_file *s;
4338 struct regulator_dev *parent;
4339 int level;
4340 };
4341
4342 static void regulator_summary_show_subtree(struct seq_file *s,
4343 struct regulator_dev *rdev,
4344 int level);
4345
4346 static int regulator_summary_show_children(struct device *dev, void *data)
4347 {
4348 struct regulator_dev *rdev = dev_to_rdev(dev);
4349 struct summary_data *summary_data = data;
4350
4351 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4352 regulator_summary_show_subtree(summary_data->s, rdev,
4353 summary_data->level + 1);
4354
4355 return 0;
4356 }
4357
4358 static void regulator_summary_show_subtree(struct seq_file *s,
4359 struct regulator_dev *rdev,
4360 int level)
4361 {
4362 struct regulation_constraints *c;
4363 struct regulator *consumer;
4364 struct summary_data summary_data;
4365
4366 if (!rdev)
4367 return;
4368
4369 seq_printf(s, "%*s%-*s %3d %4d %6d ",
4370 level * 3 + 1, "",
4371 30 - level * 3, rdev_get_name(rdev),
4372 rdev->use_count, rdev->open_count, rdev->bypass_count);
4373
4374 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4375 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4376
4377 c = rdev->constraints;
4378 if (c) {
4379 switch (rdev->desc->type) {
4380 case REGULATOR_VOLTAGE:
4381 seq_printf(s, "%5dmV %5dmV ",
4382 c->min_uV / 1000, c->max_uV / 1000);
4383 break;
4384 case REGULATOR_CURRENT:
4385 seq_printf(s, "%5dmA %5dmA ",
4386 c->min_uA / 1000, c->max_uA / 1000);
4387 break;
4388 }
4389 }
4390
4391 seq_puts(s, "\n");
4392
4393 list_for_each_entry(consumer, &rdev->consumer_list, list) {
4394 if (consumer->dev && consumer->dev->class == &regulator_class)
4395 continue;
4396
4397 seq_printf(s, "%*s%-*s ",
4398 (level + 1) * 3 + 1, "",
4399 30 - (level + 1) * 3,
4400 consumer->dev ? dev_name(consumer->dev) : "deviceless");
4401
4402 switch (rdev->desc->type) {
4403 case REGULATOR_VOLTAGE:
4404 seq_printf(s, "%37dmV %5dmV",
4405 consumer->min_uV / 1000,
4406 consumer->max_uV / 1000);
4407 break;
4408 case REGULATOR_CURRENT:
4409 break;
4410 }
4411
4412 seq_puts(s, "\n");
4413 }
4414
4415 summary_data.s = s;
4416 summary_data.level = level;
4417 summary_data.parent = rdev;
4418
4419 class_for_each_device(&regulator_class, NULL, &summary_data,
4420 regulator_summary_show_children);
4421 }
4422
4423 static int regulator_summary_show_roots(struct device *dev, void *data)
4424 {
4425 struct regulator_dev *rdev = dev_to_rdev(dev);
4426 struct seq_file *s = data;
4427
4428 if (!rdev->supply)
4429 regulator_summary_show_subtree(s, rdev, 0);
4430
4431 return 0;
4432 }
4433
4434 static int regulator_summary_show(struct seq_file *s, void *data)
4435 {
4436 seq_puts(s, " regulator use open bypass voltage current min max\n");
4437 seq_puts(s, "-------------------------------------------------------------------------------\n");
4438
4439 class_for_each_device(&regulator_class, NULL, s,
4440 regulator_summary_show_roots);
4441
4442 return 0;
4443 }
4444
4445 static int regulator_summary_open(struct inode *inode, struct file *file)
4446 {
4447 return single_open(file, regulator_summary_show, inode->i_private);
4448 }
4449 #endif
4450
4451 static const struct file_operations regulator_summary_fops = {
4452 #ifdef CONFIG_DEBUG_FS
4453 .open = regulator_summary_open,
4454 .read = seq_read,
4455 .llseek = seq_lseek,
4456 .release = single_release,
4457 #endif
4458 };
4459
4460 static int __init regulator_init(void)
4461 {
4462 int ret;
4463
4464 ret = class_register(&regulator_class);
4465
4466 debugfs_root = debugfs_create_dir("regulator", NULL);
4467 if (!debugfs_root)
4468 pr_warn("regulator: Failed to create debugfs directory\n");
4469
4470 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4471 &supply_map_fops);
4472
4473 debugfs_create_file("regulator_summary", 0444, debugfs_root,
4474 NULL, &regulator_summary_fops);
4475
4476 regulator_dummy_init();
4477
4478 return ret;
4479 }
4480
4481 /* init early to allow our consumers to complete system booting */
4482 core_initcall(regulator_init);
4483
4484 static int __init regulator_late_cleanup(struct device *dev, void *data)
4485 {
4486 struct regulator_dev *rdev = dev_to_rdev(dev);
4487 const struct regulator_ops *ops = rdev->desc->ops;
4488 struct regulation_constraints *c = rdev->constraints;
4489 int enabled, ret;
4490
4491 if (c && c->always_on)
4492 return 0;
4493
4494 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4495 return 0;
4496
4497 mutex_lock(&rdev->mutex);
4498
4499 if (rdev->use_count)
4500 goto unlock;
4501
4502 /* If we can't read the status assume it's on. */
4503 if (ops->is_enabled)
4504 enabled = ops->is_enabled(rdev);
4505 else
4506 enabled = 1;
4507
4508 if (!enabled)
4509 goto unlock;
4510
4511 if (have_full_constraints()) {
4512 /* We log since this may kill the system if it goes
4513 * wrong. */
4514 rdev_info(rdev, "disabling\n");
4515 ret = _regulator_do_disable(rdev);
4516 if (ret != 0)
4517 rdev_err(rdev, "couldn't disable: %d\n", ret);
4518 } else {
4519 /* The intention is that in future we will
4520 * assume that full constraints are provided
4521 * so warn even if we aren't going to do
4522 * anything here.
4523 */
4524 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4525 }
4526
4527 unlock:
4528 mutex_unlock(&rdev->mutex);
4529
4530 return 0;
4531 }
4532
4533 static int __init regulator_init_complete(void)
4534 {
4535 /*
4536 * Since DT doesn't provide an idiomatic mechanism for
4537 * enabling full constraints and since it's much more natural
4538 * with DT to provide them just assume that a DT enabled
4539 * system has full constraints.
4540 */
4541 if (of_have_populated_dt())
4542 has_full_constraints = true;
4543
4544 /* If we have a full configuration then disable any regulators
4545 * we have permission to change the status for and which are
4546 * not in use or always_on. This is effectively the default
4547 * for DT and ACPI as they have full constraints.
4548 */
4549 class_for_each_device(&regulator_class, NULL, NULL,
4550 regulator_late_cleanup);
4551
4552 return 0;
4553 }
4554 late_initcall_sync(regulator_init_complete);