]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/regulator/core.c
regulator: core: Add debugfs to show constraint flags
[mirror_ubuntu-artful-kernel.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64 * struct regulator_map
65 *
66 * Used to provide symbolic supply names to devices.
67 */
68 struct regulator_map {
69 struct list_head list;
70 const char *dev_name; /* The dev_name() for the consumer */
71 const char *supply;
72 struct regulator_dev *regulator;
73 };
74
75 /*
76 * struct regulator_enable_gpio
77 *
78 * Management for shared enable GPIO pin
79 */
80 struct regulator_enable_gpio {
81 struct list_head list;
82 struct gpio_desc *gpiod;
83 u32 enable_count; /* a number of enabled shared GPIO */
84 u32 request_count; /* a number of requested shared GPIO */
85 unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89 * struct regulator_supply_alias
90 *
91 * Used to map lookups for a supply onto an alternative device.
92 */
93 struct regulator_supply_alias {
94 struct list_head list;
95 struct device *src_dev;
96 const char *src_supply;
97 struct device *alias_dev;
98 const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107 unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109 int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111 struct device *dev,
112 const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117 return container_of(dev, struct regulator_dev, dev);
118 }
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122 if (rdev->constraints && rdev->constraints->name)
123 return rdev->constraints->name;
124 else if (rdev->desc->name)
125 return rdev->desc->name;
126 else
127 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132 return has_full_constraints || of_have_populated_dt();
133 }
134
135 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
136 {
137 if (rdev && rdev->supply)
138 return rdev->supply->rdev;
139
140 return NULL;
141 }
142
143 /**
144 * regulator_lock_supply - lock a regulator and its supplies
145 * @rdev: regulator source
146 */
147 static void regulator_lock_supply(struct regulator_dev *rdev)
148 {
149 int i;
150
151 for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
152 mutex_lock_nested(&rdev->mutex, i);
153 }
154
155 /**
156 * regulator_unlock_supply - unlock a regulator and its supplies
157 * @rdev: regulator source
158 */
159 static void regulator_unlock_supply(struct regulator_dev *rdev)
160 {
161 struct regulator *supply;
162
163 while (1) {
164 mutex_unlock(&rdev->mutex);
165 supply = rdev->supply;
166
167 if (!rdev->supply)
168 return;
169
170 rdev = supply->rdev;
171 }
172 }
173
174 /**
175 * of_get_regulator - get a regulator device node based on supply name
176 * @dev: Device pointer for the consumer (of regulator) device
177 * @supply: regulator supply name
178 *
179 * Extract the regulator device node corresponding to the supply name.
180 * returns the device node corresponding to the regulator if found, else
181 * returns NULL.
182 */
183 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
184 {
185 struct device_node *regnode = NULL;
186 char prop_name[32]; /* 32 is max size of property name */
187
188 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
189
190 snprintf(prop_name, 32, "%s-supply", supply);
191 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
192
193 if (!regnode) {
194 dev_dbg(dev, "Looking up %s property in node %s failed",
195 prop_name, dev->of_node->full_name);
196 return NULL;
197 }
198 return regnode;
199 }
200
201 static int _regulator_can_change_status(struct regulator_dev *rdev)
202 {
203 if (!rdev->constraints)
204 return 0;
205
206 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
207 return 1;
208 else
209 return 0;
210 }
211
212 /* Platform voltage constraint check */
213 static int regulator_check_voltage(struct regulator_dev *rdev,
214 int *min_uV, int *max_uV)
215 {
216 BUG_ON(*min_uV > *max_uV);
217
218 if (!rdev->constraints) {
219 rdev_err(rdev, "no constraints\n");
220 return -ENODEV;
221 }
222 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
223 rdev_err(rdev, "voltage operation not allowed\n");
224 return -EPERM;
225 }
226
227 if (*max_uV > rdev->constraints->max_uV)
228 *max_uV = rdev->constraints->max_uV;
229 if (*min_uV < rdev->constraints->min_uV)
230 *min_uV = rdev->constraints->min_uV;
231
232 if (*min_uV > *max_uV) {
233 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
234 *min_uV, *max_uV);
235 return -EINVAL;
236 }
237
238 return 0;
239 }
240
241 /* Make sure we select a voltage that suits the needs of all
242 * regulator consumers
243 */
244 static int regulator_check_consumers(struct regulator_dev *rdev,
245 int *min_uV, int *max_uV)
246 {
247 struct regulator *regulator;
248
249 list_for_each_entry(regulator, &rdev->consumer_list, list) {
250 /*
251 * Assume consumers that didn't say anything are OK
252 * with anything in the constraint range.
253 */
254 if (!regulator->min_uV && !regulator->max_uV)
255 continue;
256
257 if (*max_uV > regulator->max_uV)
258 *max_uV = regulator->max_uV;
259 if (*min_uV < regulator->min_uV)
260 *min_uV = regulator->min_uV;
261 }
262
263 if (*min_uV > *max_uV) {
264 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
265 *min_uV, *max_uV);
266 return -EINVAL;
267 }
268
269 return 0;
270 }
271
272 /* current constraint check */
273 static int regulator_check_current_limit(struct regulator_dev *rdev,
274 int *min_uA, int *max_uA)
275 {
276 BUG_ON(*min_uA > *max_uA);
277
278 if (!rdev->constraints) {
279 rdev_err(rdev, "no constraints\n");
280 return -ENODEV;
281 }
282 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
283 rdev_err(rdev, "current operation not allowed\n");
284 return -EPERM;
285 }
286
287 if (*max_uA > rdev->constraints->max_uA)
288 *max_uA = rdev->constraints->max_uA;
289 if (*min_uA < rdev->constraints->min_uA)
290 *min_uA = rdev->constraints->min_uA;
291
292 if (*min_uA > *max_uA) {
293 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
294 *min_uA, *max_uA);
295 return -EINVAL;
296 }
297
298 return 0;
299 }
300
301 /* operating mode constraint check */
302 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
303 {
304 switch (*mode) {
305 case REGULATOR_MODE_FAST:
306 case REGULATOR_MODE_NORMAL:
307 case REGULATOR_MODE_IDLE:
308 case REGULATOR_MODE_STANDBY:
309 break;
310 default:
311 rdev_err(rdev, "invalid mode %x specified\n", *mode);
312 return -EINVAL;
313 }
314
315 if (!rdev->constraints) {
316 rdev_err(rdev, "no constraints\n");
317 return -ENODEV;
318 }
319 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
320 rdev_err(rdev, "mode operation not allowed\n");
321 return -EPERM;
322 }
323
324 /* The modes are bitmasks, the most power hungry modes having
325 * the lowest values. If the requested mode isn't supported
326 * try higher modes. */
327 while (*mode) {
328 if (rdev->constraints->valid_modes_mask & *mode)
329 return 0;
330 *mode /= 2;
331 }
332
333 return -EINVAL;
334 }
335
336 /* dynamic regulator mode switching constraint check */
337 static int regulator_check_drms(struct regulator_dev *rdev)
338 {
339 if (!rdev->constraints) {
340 rdev_err(rdev, "no constraints\n");
341 return -ENODEV;
342 }
343 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
344 rdev_dbg(rdev, "drms operation not allowed\n");
345 return -EPERM;
346 }
347 return 0;
348 }
349
350 static ssize_t regulator_uV_show(struct device *dev,
351 struct device_attribute *attr, char *buf)
352 {
353 struct regulator_dev *rdev = dev_get_drvdata(dev);
354 ssize_t ret;
355
356 mutex_lock(&rdev->mutex);
357 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
358 mutex_unlock(&rdev->mutex);
359
360 return ret;
361 }
362 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
363
364 static ssize_t regulator_uA_show(struct device *dev,
365 struct device_attribute *attr, char *buf)
366 {
367 struct regulator_dev *rdev = dev_get_drvdata(dev);
368
369 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
370 }
371 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
372
373 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
374 char *buf)
375 {
376 struct regulator_dev *rdev = dev_get_drvdata(dev);
377
378 return sprintf(buf, "%s\n", rdev_get_name(rdev));
379 }
380 static DEVICE_ATTR_RO(name);
381
382 static ssize_t regulator_print_opmode(char *buf, int mode)
383 {
384 switch (mode) {
385 case REGULATOR_MODE_FAST:
386 return sprintf(buf, "fast\n");
387 case REGULATOR_MODE_NORMAL:
388 return sprintf(buf, "normal\n");
389 case REGULATOR_MODE_IDLE:
390 return sprintf(buf, "idle\n");
391 case REGULATOR_MODE_STANDBY:
392 return sprintf(buf, "standby\n");
393 }
394 return sprintf(buf, "unknown\n");
395 }
396
397 static ssize_t regulator_opmode_show(struct device *dev,
398 struct device_attribute *attr, char *buf)
399 {
400 struct regulator_dev *rdev = dev_get_drvdata(dev);
401
402 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
403 }
404 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
405
406 static ssize_t regulator_print_state(char *buf, int state)
407 {
408 if (state > 0)
409 return sprintf(buf, "enabled\n");
410 else if (state == 0)
411 return sprintf(buf, "disabled\n");
412 else
413 return sprintf(buf, "unknown\n");
414 }
415
416 static ssize_t regulator_state_show(struct device *dev,
417 struct device_attribute *attr, char *buf)
418 {
419 struct regulator_dev *rdev = dev_get_drvdata(dev);
420 ssize_t ret;
421
422 mutex_lock(&rdev->mutex);
423 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
424 mutex_unlock(&rdev->mutex);
425
426 return ret;
427 }
428 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
429
430 static ssize_t regulator_status_show(struct device *dev,
431 struct device_attribute *attr, char *buf)
432 {
433 struct regulator_dev *rdev = dev_get_drvdata(dev);
434 int status;
435 char *label;
436
437 status = rdev->desc->ops->get_status(rdev);
438 if (status < 0)
439 return status;
440
441 switch (status) {
442 case REGULATOR_STATUS_OFF:
443 label = "off";
444 break;
445 case REGULATOR_STATUS_ON:
446 label = "on";
447 break;
448 case REGULATOR_STATUS_ERROR:
449 label = "error";
450 break;
451 case REGULATOR_STATUS_FAST:
452 label = "fast";
453 break;
454 case REGULATOR_STATUS_NORMAL:
455 label = "normal";
456 break;
457 case REGULATOR_STATUS_IDLE:
458 label = "idle";
459 break;
460 case REGULATOR_STATUS_STANDBY:
461 label = "standby";
462 break;
463 case REGULATOR_STATUS_BYPASS:
464 label = "bypass";
465 break;
466 case REGULATOR_STATUS_UNDEFINED:
467 label = "undefined";
468 break;
469 default:
470 return -ERANGE;
471 }
472
473 return sprintf(buf, "%s\n", label);
474 }
475 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
476
477 static ssize_t regulator_min_uA_show(struct device *dev,
478 struct device_attribute *attr, char *buf)
479 {
480 struct regulator_dev *rdev = dev_get_drvdata(dev);
481
482 if (!rdev->constraints)
483 return sprintf(buf, "constraint not defined\n");
484
485 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
486 }
487 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
488
489 static ssize_t regulator_max_uA_show(struct device *dev,
490 struct device_attribute *attr, char *buf)
491 {
492 struct regulator_dev *rdev = dev_get_drvdata(dev);
493
494 if (!rdev->constraints)
495 return sprintf(buf, "constraint not defined\n");
496
497 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
498 }
499 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
500
501 static ssize_t regulator_min_uV_show(struct device *dev,
502 struct device_attribute *attr, char *buf)
503 {
504 struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506 if (!rdev->constraints)
507 return sprintf(buf, "constraint not defined\n");
508
509 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
510 }
511 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
512
513 static ssize_t regulator_max_uV_show(struct device *dev,
514 struct device_attribute *attr, char *buf)
515 {
516 struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518 if (!rdev->constraints)
519 return sprintf(buf, "constraint not defined\n");
520
521 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
522 }
523 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
524
525 static ssize_t regulator_total_uA_show(struct device *dev,
526 struct device_attribute *attr, char *buf)
527 {
528 struct regulator_dev *rdev = dev_get_drvdata(dev);
529 struct regulator *regulator;
530 int uA = 0;
531
532 mutex_lock(&rdev->mutex);
533 list_for_each_entry(regulator, &rdev->consumer_list, list)
534 uA += regulator->uA_load;
535 mutex_unlock(&rdev->mutex);
536 return sprintf(buf, "%d\n", uA);
537 }
538 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
539
540 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
541 char *buf)
542 {
543 struct regulator_dev *rdev = dev_get_drvdata(dev);
544 return sprintf(buf, "%d\n", rdev->use_count);
545 }
546 static DEVICE_ATTR_RO(num_users);
547
548 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
549 char *buf)
550 {
551 struct regulator_dev *rdev = dev_get_drvdata(dev);
552
553 switch (rdev->desc->type) {
554 case REGULATOR_VOLTAGE:
555 return sprintf(buf, "voltage\n");
556 case REGULATOR_CURRENT:
557 return sprintf(buf, "current\n");
558 }
559 return sprintf(buf, "unknown\n");
560 }
561 static DEVICE_ATTR_RO(type);
562
563 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
564 struct device_attribute *attr, char *buf)
565 {
566 struct regulator_dev *rdev = dev_get_drvdata(dev);
567
568 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
569 }
570 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
571 regulator_suspend_mem_uV_show, NULL);
572
573 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
574 struct device_attribute *attr, char *buf)
575 {
576 struct regulator_dev *rdev = dev_get_drvdata(dev);
577
578 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
579 }
580 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
581 regulator_suspend_disk_uV_show, NULL);
582
583 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
584 struct device_attribute *attr, char *buf)
585 {
586 struct regulator_dev *rdev = dev_get_drvdata(dev);
587
588 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
589 }
590 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
591 regulator_suspend_standby_uV_show, NULL);
592
593 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
594 struct device_attribute *attr, char *buf)
595 {
596 struct regulator_dev *rdev = dev_get_drvdata(dev);
597
598 return regulator_print_opmode(buf,
599 rdev->constraints->state_mem.mode);
600 }
601 static DEVICE_ATTR(suspend_mem_mode, 0444,
602 regulator_suspend_mem_mode_show, NULL);
603
604 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
605 struct device_attribute *attr, char *buf)
606 {
607 struct regulator_dev *rdev = dev_get_drvdata(dev);
608
609 return regulator_print_opmode(buf,
610 rdev->constraints->state_disk.mode);
611 }
612 static DEVICE_ATTR(suspend_disk_mode, 0444,
613 regulator_suspend_disk_mode_show, NULL);
614
615 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
616 struct device_attribute *attr, char *buf)
617 {
618 struct regulator_dev *rdev = dev_get_drvdata(dev);
619
620 return regulator_print_opmode(buf,
621 rdev->constraints->state_standby.mode);
622 }
623 static DEVICE_ATTR(suspend_standby_mode, 0444,
624 regulator_suspend_standby_mode_show, NULL);
625
626 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
627 struct device_attribute *attr, char *buf)
628 {
629 struct regulator_dev *rdev = dev_get_drvdata(dev);
630
631 return regulator_print_state(buf,
632 rdev->constraints->state_mem.enabled);
633 }
634 static DEVICE_ATTR(suspend_mem_state, 0444,
635 regulator_suspend_mem_state_show, NULL);
636
637 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
638 struct device_attribute *attr, char *buf)
639 {
640 struct regulator_dev *rdev = dev_get_drvdata(dev);
641
642 return regulator_print_state(buf,
643 rdev->constraints->state_disk.enabled);
644 }
645 static DEVICE_ATTR(suspend_disk_state, 0444,
646 regulator_suspend_disk_state_show, NULL);
647
648 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
649 struct device_attribute *attr, char *buf)
650 {
651 struct regulator_dev *rdev = dev_get_drvdata(dev);
652
653 return regulator_print_state(buf,
654 rdev->constraints->state_standby.enabled);
655 }
656 static DEVICE_ATTR(suspend_standby_state, 0444,
657 regulator_suspend_standby_state_show, NULL);
658
659 static ssize_t regulator_bypass_show(struct device *dev,
660 struct device_attribute *attr, char *buf)
661 {
662 struct regulator_dev *rdev = dev_get_drvdata(dev);
663 const char *report;
664 bool bypass;
665 int ret;
666
667 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
668
669 if (ret != 0)
670 report = "unknown";
671 else if (bypass)
672 report = "enabled";
673 else
674 report = "disabled";
675
676 return sprintf(buf, "%s\n", report);
677 }
678 static DEVICE_ATTR(bypass, 0444,
679 regulator_bypass_show, NULL);
680
681 /* Calculate the new optimum regulator operating mode based on the new total
682 * consumer load. All locks held by caller */
683 static int drms_uA_update(struct regulator_dev *rdev)
684 {
685 struct regulator *sibling;
686 int current_uA = 0, output_uV, input_uV, err;
687 unsigned int mode;
688
689 lockdep_assert_held_once(&rdev->mutex);
690
691 /*
692 * first check to see if we can set modes at all, otherwise just
693 * tell the consumer everything is OK.
694 */
695 err = regulator_check_drms(rdev);
696 if (err < 0)
697 return 0;
698
699 if (!rdev->desc->ops->get_optimum_mode &&
700 !rdev->desc->ops->set_load)
701 return 0;
702
703 if (!rdev->desc->ops->set_mode &&
704 !rdev->desc->ops->set_load)
705 return -EINVAL;
706
707 /* get output voltage */
708 output_uV = _regulator_get_voltage(rdev);
709 if (output_uV <= 0) {
710 rdev_err(rdev, "invalid output voltage found\n");
711 return -EINVAL;
712 }
713
714 /* get input voltage */
715 input_uV = 0;
716 if (rdev->supply)
717 input_uV = regulator_get_voltage(rdev->supply);
718 if (input_uV <= 0)
719 input_uV = rdev->constraints->input_uV;
720 if (input_uV <= 0) {
721 rdev_err(rdev, "invalid input voltage found\n");
722 return -EINVAL;
723 }
724
725 /* calc total requested load */
726 list_for_each_entry(sibling, &rdev->consumer_list, list)
727 current_uA += sibling->uA_load;
728
729 current_uA += rdev->constraints->system_load;
730
731 if (rdev->desc->ops->set_load) {
732 /* set the optimum mode for our new total regulator load */
733 err = rdev->desc->ops->set_load(rdev, current_uA);
734 if (err < 0)
735 rdev_err(rdev, "failed to set load %d\n", current_uA);
736 } else {
737 /* now get the optimum mode for our new total regulator load */
738 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
739 output_uV, current_uA);
740
741 /* check the new mode is allowed */
742 err = regulator_mode_constrain(rdev, &mode);
743 if (err < 0) {
744 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
745 current_uA, input_uV, output_uV);
746 return err;
747 }
748
749 err = rdev->desc->ops->set_mode(rdev, mode);
750 if (err < 0)
751 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
752 }
753
754 return err;
755 }
756
757 static int suspend_set_state(struct regulator_dev *rdev,
758 struct regulator_state *rstate)
759 {
760 int ret = 0;
761
762 /* If we have no suspend mode configration don't set anything;
763 * only warn if the driver implements set_suspend_voltage or
764 * set_suspend_mode callback.
765 */
766 if (!rstate->enabled && !rstate->disabled) {
767 if (rdev->desc->ops->set_suspend_voltage ||
768 rdev->desc->ops->set_suspend_mode)
769 rdev_warn(rdev, "No configuration\n");
770 return 0;
771 }
772
773 if (rstate->enabled && rstate->disabled) {
774 rdev_err(rdev, "invalid configuration\n");
775 return -EINVAL;
776 }
777
778 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
779 ret = rdev->desc->ops->set_suspend_enable(rdev);
780 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
781 ret = rdev->desc->ops->set_suspend_disable(rdev);
782 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
783 ret = 0;
784
785 if (ret < 0) {
786 rdev_err(rdev, "failed to enabled/disable\n");
787 return ret;
788 }
789
790 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
791 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
792 if (ret < 0) {
793 rdev_err(rdev, "failed to set voltage\n");
794 return ret;
795 }
796 }
797
798 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
799 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
800 if (ret < 0) {
801 rdev_err(rdev, "failed to set mode\n");
802 return ret;
803 }
804 }
805 return ret;
806 }
807
808 /* locks held by caller */
809 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
810 {
811 lockdep_assert_held_once(&rdev->mutex);
812
813 if (!rdev->constraints)
814 return -EINVAL;
815
816 switch (state) {
817 case PM_SUSPEND_STANDBY:
818 return suspend_set_state(rdev,
819 &rdev->constraints->state_standby);
820 case PM_SUSPEND_MEM:
821 return suspend_set_state(rdev,
822 &rdev->constraints->state_mem);
823 case PM_SUSPEND_MAX:
824 return suspend_set_state(rdev,
825 &rdev->constraints->state_disk);
826 default:
827 return -EINVAL;
828 }
829 }
830
831 static void print_constraints(struct regulator_dev *rdev)
832 {
833 struct regulation_constraints *constraints = rdev->constraints;
834 char buf[160] = "";
835 size_t len = sizeof(buf) - 1;
836 int count = 0;
837 int ret;
838
839 if (constraints->min_uV && constraints->max_uV) {
840 if (constraints->min_uV == constraints->max_uV)
841 count += scnprintf(buf + count, len - count, "%d mV ",
842 constraints->min_uV / 1000);
843 else
844 count += scnprintf(buf + count, len - count,
845 "%d <--> %d mV ",
846 constraints->min_uV / 1000,
847 constraints->max_uV / 1000);
848 }
849
850 if (!constraints->min_uV ||
851 constraints->min_uV != constraints->max_uV) {
852 ret = _regulator_get_voltage(rdev);
853 if (ret > 0)
854 count += scnprintf(buf + count, len - count,
855 "at %d mV ", ret / 1000);
856 }
857
858 if (constraints->uV_offset)
859 count += scnprintf(buf + count, len - count, "%dmV offset ",
860 constraints->uV_offset / 1000);
861
862 if (constraints->min_uA && constraints->max_uA) {
863 if (constraints->min_uA == constraints->max_uA)
864 count += scnprintf(buf + count, len - count, "%d mA ",
865 constraints->min_uA / 1000);
866 else
867 count += scnprintf(buf + count, len - count,
868 "%d <--> %d mA ",
869 constraints->min_uA / 1000,
870 constraints->max_uA / 1000);
871 }
872
873 if (!constraints->min_uA ||
874 constraints->min_uA != constraints->max_uA) {
875 ret = _regulator_get_current_limit(rdev);
876 if (ret > 0)
877 count += scnprintf(buf + count, len - count,
878 "at %d mA ", ret / 1000);
879 }
880
881 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
882 count += scnprintf(buf + count, len - count, "fast ");
883 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
884 count += scnprintf(buf + count, len - count, "normal ");
885 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
886 count += scnprintf(buf + count, len - count, "idle ");
887 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
888 count += scnprintf(buf + count, len - count, "standby");
889
890 if (!count)
891 scnprintf(buf, len, "no parameters");
892
893 rdev_dbg(rdev, "%s\n", buf);
894
895 if ((constraints->min_uV != constraints->max_uV) &&
896 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
897 rdev_warn(rdev,
898 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
899 }
900
901 static int machine_constraints_voltage(struct regulator_dev *rdev,
902 struct regulation_constraints *constraints)
903 {
904 const struct regulator_ops *ops = rdev->desc->ops;
905 int ret;
906
907 /* do we need to apply the constraint voltage */
908 if (rdev->constraints->apply_uV &&
909 rdev->constraints->min_uV == rdev->constraints->max_uV) {
910 int current_uV = _regulator_get_voltage(rdev);
911 if (current_uV < 0) {
912 rdev_err(rdev,
913 "failed to get the current voltage(%d)\n",
914 current_uV);
915 return current_uV;
916 }
917 if (current_uV < rdev->constraints->min_uV ||
918 current_uV > rdev->constraints->max_uV) {
919 ret = _regulator_do_set_voltage(
920 rdev, rdev->constraints->min_uV,
921 rdev->constraints->max_uV);
922 if (ret < 0) {
923 rdev_err(rdev,
924 "failed to apply %duV constraint(%d)\n",
925 rdev->constraints->min_uV, ret);
926 return ret;
927 }
928 }
929 }
930
931 /* constrain machine-level voltage specs to fit
932 * the actual range supported by this regulator.
933 */
934 if (ops->list_voltage && rdev->desc->n_voltages) {
935 int count = rdev->desc->n_voltages;
936 int i;
937 int min_uV = INT_MAX;
938 int max_uV = INT_MIN;
939 int cmin = constraints->min_uV;
940 int cmax = constraints->max_uV;
941
942 /* it's safe to autoconfigure fixed-voltage supplies
943 and the constraints are used by list_voltage. */
944 if (count == 1 && !cmin) {
945 cmin = 1;
946 cmax = INT_MAX;
947 constraints->min_uV = cmin;
948 constraints->max_uV = cmax;
949 }
950
951 /* voltage constraints are optional */
952 if ((cmin == 0) && (cmax == 0))
953 return 0;
954
955 /* else require explicit machine-level constraints */
956 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
957 rdev_err(rdev, "invalid voltage constraints\n");
958 return -EINVAL;
959 }
960
961 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
962 for (i = 0; i < count; i++) {
963 int value;
964
965 value = ops->list_voltage(rdev, i);
966 if (value <= 0)
967 continue;
968
969 /* maybe adjust [min_uV..max_uV] */
970 if (value >= cmin && value < min_uV)
971 min_uV = value;
972 if (value <= cmax && value > max_uV)
973 max_uV = value;
974 }
975
976 /* final: [min_uV..max_uV] valid iff constraints valid */
977 if (max_uV < min_uV) {
978 rdev_err(rdev,
979 "unsupportable voltage constraints %u-%uuV\n",
980 min_uV, max_uV);
981 return -EINVAL;
982 }
983
984 /* use regulator's subset of machine constraints */
985 if (constraints->min_uV < min_uV) {
986 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
987 constraints->min_uV, min_uV);
988 constraints->min_uV = min_uV;
989 }
990 if (constraints->max_uV > max_uV) {
991 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
992 constraints->max_uV, max_uV);
993 constraints->max_uV = max_uV;
994 }
995 }
996
997 return 0;
998 }
999
1000 static int machine_constraints_current(struct regulator_dev *rdev,
1001 struct regulation_constraints *constraints)
1002 {
1003 const struct regulator_ops *ops = rdev->desc->ops;
1004 int ret;
1005
1006 if (!constraints->min_uA && !constraints->max_uA)
1007 return 0;
1008
1009 if (constraints->min_uA > constraints->max_uA) {
1010 rdev_err(rdev, "Invalid current constraints\n");
1011 return -EINVAL;
1012 }
1013
1014 if (!ops->set_current_limit || !ops->get_current_limit) {
1015 rdev_warn(rdev, "Operation of current configuration missing\n");
1016 return 0;
1017 }
1018
1019 /* Set regulator current in constraints range */
1020 ret = ops->set_current_limit(rdev, constraints->min_uA,
1021 constraints->max_uA);
1022 if (ret < 0) {
1023 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1024 return ret;
1025 }
1026
1027 return 0;
1028 }
1029
1030 static int _regulator_do_enable(struct regulator_dev *rdev);
1031
1032 /**
1033 * set_machine_constraints - sets regulator constraints
1034 * @rdev: regulator source
1035 * @constraints: constraints to apply
1036 *
1037 * Allows platform initialisation code to define and constrain
1038 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1039 * Constraints *must* be set by platform code in order for some
1040 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1041 * set_mode.
1042 */
1043 static int set_machine_constraints(struct regulator_dev *rdev,
1044 const struct regulation_constraints *constraints)
1045 {
1046 int ret = 0;
1047 const struct regulator_ops *ops = rdev->desc->ops;
1048
1049 if (constraints)
1050 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1051 GFP_KERNEL);
1052 else
1053 rdev->constraints = kzalloc(sizeof(*constraints),
1054 GFP_KERNEL);
1055 if (!rdev->constraints)
1056 return -ENOMEM;
1057
1058 ret = machine_constraints_voltage(rdev, rdev->constraints);
1059 if (ret != 0)
1060 return ret;
1061
1062 ret = machine_constraints_current(rdev, rdev->constraints);
1063 if (ret != 0)
1064 return ret;
1065
1066 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1067 ret = ops->set_input_current_limit(rdev,
1068 rdev->constraints->ilim_uA);
1069 if (ret < 0) {
1070 rdev_err(rdev, "failed to set input limit\n");
1071 return ret;
1072 }
1073 }
1074
1075 /* do we need to setup our suspend state */
1076 if (rdev->constraints->initial_state) {
1077 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1078 if (ret < 0) {
1079 rdev_err(rdev, "failed to set suspend state\n");
1080 return ret;
1081 }
1082 }
1083
1084 if (rdev->constraints->initial_mode) {
1085 if (!ops->set_mode) {
1086 rdev_err(rdev, "no set_mode operation\n");
1087 return -EINVAL;
1088 }
1089
1090 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1091 if (ret < 0) {
1092 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1093 return ret;
1094 }
1095 }
1096
1097 /* If the constraints say the regulator should be on at this point
1098 * and we have control then make sure it is enabled.
1099 */
1100 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1101 ret = _regulator_do_enable(rdev);
1102 if (ret < 0 && ret != -EINVAL) {
1103 rdev_err(rdev, "failed to enable\n");
1104 return ret;
1105 }
1106 }
1107
1108 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1109 && ops->set_ramp_delay) {
1110 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1111 if (ret < 0) {
1112 rdev_err(rdev, "failed to set ramp_delay\n");
1113 return ret;
1114 }
1115 }
1116
1117 if (rdev->constraints->pull_down && ops->set_pull_down) {
1118 ret = ops->set_pull_down(rdev);
1119 if (ret < 0) {
1120 rdev_err(rdev, "failed to set pull down\n");
1121 return ret;
1122 }
1123 }
1124
1125 if (rdev->constraints->soft_start && ops->set_soft_start) {
1126 ret = ops->set_soft_start(rdev);
1127 if (ret < 0) {
1128 rdev_err(rdev, "failed to set soft start\n");
1129 return ret;
1130 }
1131 }
1132
1133 if (rdev->constraints->over_current_protection
1134 && ops->set_over_current_protection) {
1135 ret = ops->set_over_current_protection(rdev);
1136 if (ret < 0) {
1137 rdev_err(rdev, "failed to set over current protection\n");
1138 return ret;
1139 }
1140 }
1141
1142 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1143 bool ad_state = (rdev->constraints->active_discharge ==
1144 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1145
1146 ret = ops->set_active_discharge(rdev, ad_state);
1147 if (ret < 0) {
1148 rdev_err(rdev, "failed to set active discharge\n");
1149 return ret;
1150 }
1151 }
1152
1153 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1154 bool ad_state = (rdev->constraints->active_discharge ==
1155 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1156
1157 ret = ops->set_active_discharge(rdev, ad_state);
1158 if (ret < 0) {
1159 rdev_err(rdev, "failed to set active discharge\n");
1160 return ret;
1161 }
1162 }
1163
1164 print_constraints(rdev);
1165 return 0;
1166 }
1167
1168 /**
1169 * set_supply - set regulator supply regulator
1170 * @rdev: regulator name
1171 * @supply_rdev: supply regulator name
1172 *
1173 * Called by platform initialisation code to set the supply regulator for this
1174 * regulator. This ensures that a regulators supply will also be enabled by the
1175 * core if it's child is enabled.
1176 */
1177 static int set_supply(struct regulator_dev *rdev,
1178 struct regulator_dev *supply_rdev)
1179 {
1180 int err;
1181
1182 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1183
1184 if (!try_module_get(supply_rdev->owner))
1185 return -ENODEV;
1186
1187 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1188 if (rdev->supply == NULL) {
1189 err = -ENOMEM;
1190 return err;
1191 }
1192 supply_rdev->open_count++;
1193
1194 return 0;
1195 }
1196
1197 /**
1198 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1199 * @rdev: regulator source
1200 * @consumer_dev_name: dev_name() string for device supply applies to
1201 * @supply: symbolic name for supply
1202 *
1203 * Allows platform initialisation code to map physical regulator
1204 * sources to symbolic names for supplies for use by devices. Devices
1205 * should use these symbolic names to request regulators, avoiding the
1206 * need to provide board-specific regulator names as platform data.
1207 */
1208 static int set_consumer_device_supply(struct regulator_dev *rdev,
1209 const char *consumer_dev_name,
1210 const char *supply)
1211 {
1212 struct regulator_map *node;
1213 int has_dev;
1214
1215 if (supply == NULL)
1216 return -EINVAL;
1217
1218 if (consumer_dev_name != NULL)
1219 has_dev = 1;
1220 else
1221 has_dev = 0;
1222
1223 list_for_each_entry(node, &regulator_map_list, list) {
1224 if (node->dev_name && consumer_dev_name) {
1225 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1226 continue;
1227 } else if (node->dev_name || consumer_dev_name) {
1228 continue;
1229 }
1230
1231 if (strcmp(node->supply, supply) != 0)
1232 continue;
1233
1234 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1235 consumer_dev_name,
1236 dev_name(&node->regulator->dev),
1237 node->regulator->desc->name,
1238 supply,
1239 dev_name(&rdev->dev), rdev_get_name(rdev));
1240 return -EBUSY;
1241 }
1242
1243 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1244 if (node == NULL)
1245 return -ENOMEM;
1246
1247 node->regulator = rdev;
1248 node->supply = supply;
1249
1250 if (has_dev) {
1251 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1252 if (node->dev_name == NULL) {
1253 kfree(node);
1254 return -ENOMEM;
1255 }
1256 }
1257
1258 list_add(&node->list, &regulator_map_list);
1259 return 0;
1260 }
1261
1262 static void unset_regulator_supplies(struct regulator_dev *rdev)
1263 {
1264 struct regulator_map *node, *n;
1265
1266 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1267 if (rdev == node->regulator) {
1268 list_del(&node->list);
1269 kfree(node->dev_name);
1270 kfree(node);
1271 }
1272 }
1273 }
1274
1275 #ifdef CONFIG_DEBUG_FS
1276 static ssize_t constraint_flags_read_file(struct file *file,
1277 char __user *user_buf,
1278 size_t count, loff_t *ppos)
1279 {
1280 const struct regulator *regulator = file->private_data;
1281 const struct regulation_constraints *c = regulator->rdev->constraints;
1282 char *buf;
1283 ssize_t ret;
1284
1285 if (!c)
1286 return 0;
1287
1288 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1289 if (!buf)
1290 return -ENOMEM;
1291
1292 ret = snprintf(buf, PAGE_SIZE,
1293 "always_on: %u\n"
1294 "boot_on: %u\n"
1295 "apply_uV: %u\n"
1296 "ramp_disable: %u\n"
1297 "soft_start: %u\n"
1298 "pull_down: %u\n"
1299 "over_current_protection: %u\n",
1300 c->always_on,
1301 c->boot_on,
1302 c->apply_uV,
1303 c->ramp_disable,
1304 c->soft_start,
1305 c->pull_down,
1306 c->over_current_protection);
1307
1308 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1309 kfree(buf);
1310
1311 return ret;
1312 }
1313
1314 #endif
1315
1316 static const struct file_operations constraint_flags_fops = {
1317 #ifdef CONFIG_DEBUG_FS
1318 .open = simple_open,
1319 .read = constraint_flags_read_file,
1320 .llseek = default_llseek,
1321 #endif
1322 };
1323
1324 #define REG_STR_SIZE 64
1325
1326 static struct regulator *create_regulator(struct regulator_dev *rdev,
1327 struct device *dev,
1328 const char *supply_name)
1329 {
1330 struct regulator *regulator;
1331 char buf[REG_STR_SIZE];
1332 int err, size;
1333
1334 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1335 if (regulator == NULL)
1336 return NULL;
1337
1338 mutex_lock(&rdev->mutex);
1339 regulator->rdev = rdev;
1340 list_add(&regulator->list, &rdev->consumer_list);
1341
1342 if (dev) {
1343 regulator->dev = dev;
1344
1345 /* Add a link to the device sysfs entry */
1346 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1347 dev->kobj.name, supply_name);
1348 if (size >= REG_STR_SIZE)
1349 goto overflow_err;
1350
1351 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1352 if (regulator->supply_name == NULL)
1353 goto overflow_err;
1354
1355 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1356 buf);
1357 if (err) {
1358 rdev_dbg(rdev, "could not add device link %s err %d\n",
1359 dev->kobj.name, err);
1360 /* non-fatal */
1361 }
1362 } else {
1363 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1364 if (regulator->supply_name == NULL)
1365 goto overflow_err;
1366 }
1367
1368 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1369 rdev->debugfs);
1370 if (!regulator->debugfs) {
1371 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1372 } else {
1373 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1374 &regulator->uA_load);
1375 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1376 &regulator->min_uV);
1377 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1378 &regulator->max_uV);
1379 debugfs_create_file("constraint_flags", 0444,
1380 regulator->debugfs, regulator,
1381 &constraint_flags_fops);
1382 }
1383
1384 /*
1385 * Check now if the regulator is an always on regulator - if
1386 * it is then we don't need to do nearly so much work for
1387 * enable/disable calls.
1388 */
1389 if (!_regulator_can_change_status(rdev) &&
1390 _regulator_is_enabled(rdev))
1391 regulator->always_on = true;
1392
1393 mutex_unlock(&rdev->mutex);
1394 return regulator;
1395 overflow_err:
1396 list_del(&regulator->list);
1397 kfree(regulator);
1398 mutex_unlock(&rdev->mutex);
1399 return NULL;
1400 }
1401
1402 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1403 {
1404 if (rdev->constraints && rdev->constraints->enable_time)
1405 return rdev->constraints->enable_time;
1406 if (!rdev->desc->ops->enable_time)
1407 return rdev->desc->enable_time;
1408 return rdev->desc->ops->enable_time(rdev);
1409 }
1410
1411 static struct regulator_supply_alias *regulator_find_supply_alias(
1412 struct device *dev, const char *supply)
1413 {
1414 struct regulator_supply_alias *map;
1415
1416 list_for_each_entry(map, &regulator_supply_alias_list, list)
1417 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1418 return map;
1419
1420 return NULL;
1421 }
1422
1423 static void regulator_supply_alias(struct device **dev, const char **supply)
1424 {
1425 struct regulator_supply_alias *map;
1426
1427 map = regulator_find_supply_alias(*dev, *supply);
1428 if (map) {
1429 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1430 *supply, map->alias_supply,
1431 dev_name(map->alias_dev));
1432 *dev = map->alias_dev;
1433 *supply = map->alias_supply;
1434 }
1435 }
1436
1437 static int of_node_match(struct device *dev, const void *data)
1438 {
1439 return dev->of_node == data;
1440 }
1441
1442 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1443 {
1444 struct device *dev;
1445
1446 dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1447
1448 return dev ? dev_to_rdev(dev) : NULL;
1449 }
1450
1451 static int regulator_match(struct device *dev, const void *data)
1452 {
1453 struct regulator_dev *r = dev_to_rdev(dev);
1454
1455 return strcmp(rdev_get_name(r), data) == 0;
1456 }
1457
1458 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1459 {
1460 struct device *dev;
1461
1462 dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1463
1464 return dev ? dev_to_rdev(dev) : NULL;
1465 }
1466
1467 /**
1468 * regulator_dev_lookup - lookup a regulator device.
1469 * @dev: device for regulator "consumer".
1470 * @supply: Supply name or regulator ID.
1471 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1472 * lookup could succeed in the future.
1473 *
1474 * If successful, returns a struct regulator_dev that corresponds to the name
1475 * @supply and with the embedded struct device refcount incremented by one,
1476 * or NULL on failure. The refcount must be dropped by calling put_device().
1477 */
1478 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1479 const char *supply,
1480 int *ret)
1481 {
1482 struct regulator_dev *r;
1483 struct device_node *node;
1484 struct regulator_map *map;
1485 const char *devname = NULL;
1486
1487 regulator_supply_alias(&dev, &supply);
1488
1489 /* first do a dt based lookup */
1490 if (dev && dev->of_node) {
1491 node = of_get_regulator(dev, supply);
1492 if (node) {
1493 r = of_find_regulator_by_node(node);
1494 if (r)
1495 return r;
1496 *ret = -EPROBE_DEFER;
1497 return NULL;
1498 } else {
1499 /*
1500 * If we couldn't even get the node then it's
1501 * not just that the device didn't register
1502 * yet, there's no node and we'll never
1503 * succeed.
1504 */
1505 *ret = -ENODEV;
1506 }
1507 }
1508
1509 /* if not found, try doing it non-dt way */
1510 if (dev)
1511 devname = dev_name(dev);
1512
1513 r = regulator_lookup_by_name(supply);
1514 if (r)
1515 return r;
1516
1517 mutex_lock(&regulator_list_mutex);
1518 list_for_each_entry(map, &regulator_map_list, list) {
1519 /* If the mapping has a device set up it must match */
1520 if (map->dev_name &&
1521 (!devname || strcmp(map->dev_name, devname)))
1522 continue;
1523
1524 if (strcmp(map->supply, supply) == 0 &&
1525 get_device(&map->regulator->dev)) {
1526 mutex_unlock(&regulator_list_mutex);
1527 return map->regulator;
1528 }
1529 }
1530 mutex_unlock(&regulator_list_mutex);
1531
1532 return NULL;
1533 }
1534
1535 static int regulator_resolve_supply(struct regulator_dev *rdev)
1536 {
1537 struct regulator_dev *r;
1538 struct device *dev = rdev->dev.parent;
1539 int ret;
1540
1541 /* No supply to resovle? */
1542 if (!rdev->supply_name)
1543 return 0;
1544
1545 /* Supply already resolved? */
1546 if (rdev->supply)
1547 return 0;
1548
1549 r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1550 if (!r) {
1551 if (ret == -ENODEV) {
1552 /*
1553 * No supply was specified for this regulator and
1554 * there will never be one.
1555 */
1556 return 0;
1557 }
1558
1559 /* Did the lookup explicitly defer for us? */
1560 if (ret == -EPROBE_DEFER)
1561 return ret;
1562
1563 if (have_full_constraints()) {
1564 r = dummy_regulator_rdev;
1565 get_device(&r->dev);
1566 } else {
1567 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1568 rdev->supply_name, rdev->desc->name);
1569 return -EPROBE_DEFER;
1570 }
1571 }
1572
1573 /* Recursively resolve the supply of the supply */
1574 ret = regulator_resolve_supply(r);
1575 if (ret < 0) {
1576 put_device(&r->dev);
1577 return ret;
1578 }
1579
1580 ret = set_supply(rdev, r);
1581 if (ret < 0) {
1582 put_device(&r->dev);
1583 return ret;
1584 }
1585
1586 /* Cascade always-on state to supply */
1587 if (_regulator_is_enabled(rdev) && rdev->supply) {
1588 ret = regulator_enable(rdev->supply);
1589 if (ret < 0) {
1590 _regulator_put(rdev->supply);
1591 return ret;
1592 }
1593 }
1594
1595 return 0;
1596 }
1597
1598 /* Internal regulator request function */
1599 static struct regulator *_regulator_get(struct device *dev, const char *id,
1600 bool exclusive, bool allow_dummy)
1601 {
1602 struct regulator_dev *rdev;
1603 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1604 const char *devname = NULL;
1605 int ret;
1606
1607 if (id == NULL) {
1608 pr_err("get() with no identifier\n");
1609 return ERR_PTR(-EINVAL);
1610 }
1611
1612 if (dev)
1613 devname = dev_name(dev);
1614
1615 if (have_full_constraints())
1616 ret = -ENODEV;
1617 else
1618 ret = -EPROBE_DEFER;
1619
1620 rdev = regulator_dev_lookup(dev, id, &ret);
1621 if (rdev)
1622 goto found;
1623
1624 regulator = ERR_PTR(ret);
1625
1626 /*
1627 * If we have return value from dev_lookup fail, we do not expect to
1628 * succeed, so, quit with appropriate error value
1629 */
1630 if (ret && ret != -ENODEV)
1631 return regulator;
1632
1633 if (!devname)
1634 devname = "deviceless";
1635
1636 /*
1637 * Assume that a regulator is physically present and enabled
1638 * even if it isn't hooked up and just provide a dummy.
1639 */
1640 if (have_full_constraints() && allow_dummy) {
1641 pr_warn("%s supply %s not found, using dummy regulator\n",
1642 devname, id);
1643
1644 rdev = dummy_regulator_rdev;
1645 get_device(&rdev->dev);
1646 goto found;
1647 /* Don't log an error when called from regulator_get_optional() */
1648 } else if (!have_full_constraints() || exclusive) {
1649 dev_warn(dev, "dummy supplies not allowed\n");
1650 }
1651
1652 return regulator;
1653
1654 found:
1655 if (rdev->exclusive) {
1656 regulator = ERR_PTR(-EPERM);
1657 put_device(&rdev->dev);
1658 return regulator;
1659 }
1660
1661 if (exclusive && rdev->open_count) {
1662 regulator = ERR_PTR(-EBUSY);
1663 put_device(&rdev->dev);
1664 return regulator;
1665 }
1666
1667 ret = regulator_resolve_supply(rdev);
1668 if (ret < 0) {
1669 regulator = ERR_PTR(ret);
1670 put_device(&rdev->dev);
1671 return regulator;
1672 }
1673
1674 if (!try_module_get(rdev->owner)) {
1675 put_device(&rdev->dev);
1676 return regulator;
1677 }
1678
1679 regulator = create_regulator(rdev, dev, id);
1680 if (regulator == NULL) {
1681 regulator = ERR_PTR(-ENOMEM);
1682 put_device(&rdev->dev);
1683 module_put(rdev->owner);
1684 return regulator;
1685 }
1686
1687 rdev->open_count++;
1688 if (exclusive) {
1689 rdev->exclusive = 1;
1690
1691 ret = _regulator_is_enabled(rdev);
1692 if (ret > 0)
1693 rdev->use_count = 1;
1694 else
1695 rdev->use_count = 0;
1696 }
1697
1698 return regulator;
1699 }
1700
1701 /**
1702 * regulator_get - lookup and obtain a reference to a regulator.
1703 * @dev: device for regulator "consumer"
1704 * @id: Supply name or regulator ID.
1705 *
1706 * Returns a struct regulator corresponding to the regulator producer,
1707 * or IS_ERR() condition containing errno.
1708 *
1709 * Use of supply names configured via regulator_set_device_supply() is
1710 * strongly encouraged. It is recommended that the supply name used
1711 * should match the name used for the supply and/or the relevant
1712 * device pins in the datasheet.
1713 */
1714 struct regulator *regulator_get(struct device *dev, const char *id)
1715 {
1716 return _regulator_get(dev, id, false, true);
1717 }
1718 EXPORT_SYMBOL_GPL(regulator_get);
1719
1720 /**
1721 * regulator_get_exclusive - obtain exclusive access to a regulator.
1722 * @dev: device for regulator "consumer"
1723 * @id: Supply name or regulator ID.
1724 *
1725 * Returns a struct regulator corresponding to the regulator producer,
1726 * or IS_ERR() condition containing errno. Other consumers will be
1727 * unable to obtain this regulator while this reference is held and the
1728 * use count for the regulator will be initialised to reflect the current
1729 * state of the regulator.
1730 *
1731 * This is intended for use by consumers which cannot tolerate shared
1732 * use of the regulator such as those which need to force the
1733 * regulator off for correct operation of the hardware they are
1734 * controlling.
1735 *
1736 * Use of supply names configured via regulator_set_device_supply() is
1737 * strongly encouraged. It is recommended that the supply name used
1738 * should match the name used for the supply and/or the relevant
1739 * device pins in the datasheet.
1740 */
1741 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1742 {
1743 return _regulator_get(dev, id, true, false);
1744 }
1745 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1746
1747 /**
1748 * regulator_get_optional - obtain optional access to a regulator.
1749 * @dev: device for regulator "consumer"
1750 * @id: Supply name or regulator ID.
1751 *
1752 * Returns a struct regulator corresponding to the regulator producer,
1753 * or IS_ERR() condition containing errno.
1754 *
1755 * This is intended for use by consumers for devices which can have
1756 * some supplies unconnected in normal use, such as some MMC devices.
1757 * It can allow the regulator core to provide stub supplies for other
1758 * supplies requested using normal regulator_get() calls without
1759 * disrupting the operation of drivers that can handle absent
1760 * supplies.
1761 *
1762 * Use of supply names configured via regulator_set_device_supply() is
1763 * strongly encouraged. It is recommended that the supply name used
1764 * should match the name used for the supply and/or the relevant
1765 * device pins in the datasheet.
1766 */
1767 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1768 {
1769 return _regulator_get(dev, id, false, false);
1770 }
1771 EXPORT_SYMBOL_GPL(regulator_get_optional);
1772
1773 /* regulator_list_mutex lock held by regulator_put() */
1774 static void _regulator_put(struct regulator *regulator)
1775 {
1776 struct regulator_dev *rdev;
1777
1778 if (IS_ERR_OR_NULL(regulator))
1779 return;
1780
1781 lockdep_assert_held_once(&regulator_list_mutex);
1782
1783 rdev = regulator->rdev;
1784
1785 debugfs_remove_recursive(regulator->debugfs);
1786
1787 /* remove any sysfs entries */
1788 if (regulator->dev)
1789 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1790 mutex_lock(&rdev->mutex);
1791 list_del(&regulator->list);
1792
1793 rdev->open_count--;
1794 rdev->exclusive = 0;
1795 put_device(&rdev->dev);
1796 mutex_unlock(&rdev->mutex);
1797
1798 kfree(regulator->supply_name);
1799 kfree(regulator);
1800
1801 module_put(rdev->owner);
1802 }
1803
1804 /**
1805 * regulator_put - "free" the regulator source
1806 * @regulator: regulator source
1807 *
1808 * Note: drivers must ensure that all regulator_enable calls made on this
1809 * regulator source are balanced by regulator_disable calls prior to calling
1810 * this function.
1811 */
1812 void regulator_put(struct regulator *regulator)
1813 {
1814 mutex_lock(&regulator_list_mutex);
1815 _regulator_put(regulator);
1816 mutex_unlock(&regulator_list_mutex);
1817 }
1818 EXPORT_SYMBOL_GPL(regulator_put);
1819
1820 /**
1821 * regulator_register_supply_alias - Provide device alias for supply lookup
1822 *
1823 * @dev: device that will be given as the regulator "consumer"
1824 * @id: Supply name or regulator ID
1825 * @alias_dev: device that should be used to lookup the supply
1826 * @alias_id: Supply name or regulator ID that should be used to lookup the
1827 * supply
1828 *
1829 * All lookups for id on dev will instead be conducted for alias_id on
1830 * alias_dev.
1831 */
1832 int regulator_register_supply_alias(struct device *dev, const char *id,
1833 struct device *alias_dev,
1834 const char *alias_id)
1835 {
1836 struct regulator_supply_alias *map;
1837
1838 map = regulator_find_supply_alias(dev, id);
1839 if (map)
1840 return -EEXIST;
1841
1842 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1843 if (!map)
1844 return -ENOMEM;
1845
1846 map->src_dev = dev;
1847 map->src_supply = id;
1848 map->alias_dev = alias_dev;
1849 map->alias_supply = alias_id;
1850
1851 list_add(&map->list, &regulator_supply_alias_list);
1852
1853 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1854 id, dev_name(dev), alias_id, dev_name(alias_dev));
1855
1856 return 0;
1857 }
1858 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1859
1860 /**
1861 * regulator_unregister_supply_alias - Remove device alias
1862 *
1863 * @dev: device that will be given as the regulator "consumer"
1864 * @id: Supply name or regulator ID
1865 *
1866 * Remove a lookup alias if one exists for id on dev.
1867 */
1868 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1869 {
1870 struct regulator_supply_alias *map;
1871
1872 map = regulator_find_supply_alias(dev, id);
1873 if (map) {
1874 list_del(&map->list);
1875 kfree(map);
1876 }
1877 }
1878 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1879
1880 /**
1881 * regulator_bulk_register_supply_alias - register multiple aliases
1882 *
1883 * @dev: device that will be given as the regulator "consumer"
1884 * @id: List of supply names or regulator IDs
1885 * @alias_dev: device that should be used to lookup the supply
1886 * @alias_id: List of supply names or regulator IDs that should be used to
1887 * lookup the supply
1888 * @num_id: Number of aliases to register
1889 *
1890 * @return 0 on success, an errno on failure.
1891 *
1892 * This helper function allows drivers to register several supply
1893 * aliases in one operation. If any of the aliases cannot be
1894 * registered any aliases that were registered will be removed
1895 * before returning to the caller.
1896 */
1897 int regulator_bulk_register_supply_alias(struct device *dev,
1898 const char *const *id,
1899 struct device *alias_dev,
1900 const char *const *alias_id,
1901 int num_id)
1902 {
1903 int i;
1904 int ret;
1905
1906 for (i = 0; i < num_id; ++i) {
1907 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1908 alias_id[i]);
1909 if (ret < 0)
1910 goto err;
1911 }
1912
1913 return 0;
1914
1915 err:
1916 dev_err(dev,
1917 "Failed to create supply alias %s,%s -> %s,%s\n",
1918 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1919
1920 while (--i >= 0)
1921 regulator_unregister_supply_alias(dev, id[i]);
1922
1923 return ret;
1924 }
1925 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1926
1927 /**
1928 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1929 *
1930 * @dev: device that will be given as the regulator "consumer"
1931 * @id: List of supply names or regulator IDs
1932 * @num_id: Number of aliases to unregister
1933 *
1934 * This helper function allows drivers to unregister several supply
1935 * aliases in one operation.
1936 */
1937 void regulator_bulk_unregister_supply_alias(struct device *dev,
1938 const char *const *id,
1939 int num_id)
1940 {
1941 int i;
1942
1943 for (i = 0; i < num_id; ++i)
1944 regulator_unregister_supply_alias(dev, id[i]);
1945 }
1946 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1947
1948
1949 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1950 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1951 const struct regulator_config *config)
1952 {
1953 struct regulator_enable_gpio *pin;
1954 struct gpio_desc *gpiod;
1955 int ret;
1956
1957 gpiod = gpio_to_desc(config->ena_gpio);
1958
1959 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1960 if (pin->gpiod == gpiod) {
1961 rdev_dbg(rdev, "GPIO %d is already used\n",
1962 config->ena_gpio);
1963 goto update_ena_gpio_to_rdev;
1964 }
1965 }
1966
1967 ret = gpio_request_one(config->ena_gpio,
1968 GPIOF_DIR_OUT | config->ena_gpio_flags,
1969 rdev_get_name(rdev));
1970 if (ret)
1971 return ret;
1972
1973 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1974 if (pin == NULL) {
1975 gpio_free(config->ena_gpio);
1976 return -ENOMEM;
1977 }
1978
1979 pin->gpiod = gpiod;
1980 pin->ena_gpio_invert = config->ena_gpio_invert;
1981 list_add(&pin->list, &regulator_ena_gpio_list);
1982
1983 update_ena_gpio_to_rdev:
1984 pin->request_count++;
1985 rdev->ena_pin = pin;
1986 return 0;
1987 }
1988
1989 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1990 {
1991 struct regulator_enable_gpio *pin, *n;
1992
1993 if (!rdev->ena_pin)
1994 return;
1995
1996 /* Free the GPIO only in case of no use */
1997 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1998 if (pin->gpiod == rdev->ena_pin->gpiod) {
1999 if (pin->request_count <= 1) {
2000 pin->request_count = 0;
2001 gpiod_put(pin->gpiod);
2002 list_del(&pin->list);
2003 kfree(pin);
2004 rdev->ena_pin = NULL;
2005 return;
2006 } else {
2007 pin->request_count--;
2008 }
2009 }
2010 }
2011 }
2012
2013 /**
2014 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2015 * @rdev: regulator_dev structure
2016 * @enable: enable GPIO at initial use?
2017 *
2018 * GPIO is enabled in case of initial use. (enable_count is 0)
2019 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2020 */
2021 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2022 {
2023 struct regulator_enable_gpio *pin = rdev->ena_pin;
2024
2025 if (!pin)
2026 return -EINVAL;
2027
2028 if (enable) {
2029 /* Enable GPIO at initial use */
2030 if (pin->enable_count == 0)
2031 gpiod_set_value_cansleep(pin->gpiod,
2032 !pin->ena_gpio_invert);
2033
2034 pin->enable_count++;
2035 } else {
2036 if (pin->enable_count > 1) {
2037 pin->enable_count--;
2038 return 0;
2039 }
2040
2041 /* Disable GPIO if not used */
2042 if (pin->enable_count <= 1) {
2043 gpiod_set_value_cansleep(pin->gpiod,
2044 pin->ena_gpio_invert);
2045 pin->enable_count = 0;
2046 }
2047 }
2048
2049 return 0;
2050 }
2051
2052 /**
2053 * _regulator_enable_delay - a delay helper function
2054 * @delay: time to delay in microseconds
2055 *
2056 * Delay for the requested amount of time as per the guidelines in:
2057 *
2058 * Documentation/timers/timers-howto.txt
2059 *
2060 * The assumption here is that regulators will never be enabled in
2061 * atomic context and therefore sleeping functions can be used.
2062 */
2063 static void _regulator_enable_delay(unsigned int delay)
2064 {
2065 unsigned int ms = delay / 1000;
2066 unsigned int us = delay % 1000;
2067
2068 if (ms > 0) {
2069 /*
2070 * For small enough values, handle super-millisecond
2071 * delays in the usleep_range() call below.
2072 */
2073 if (ms < 20)
2074 us += ms * 1000;
2075 else
2076 msleep(ms);
2077 }
2078
2079 /*
2080 * Give the scheduler some room to coalesce with any other
2081 * wakeup sources. For delays shorter than 10 us, don't even
2082 * bother setting up high-resolution timers and just busy-
2083 * loop.
2084 */
2085 if (us >= 10)
2086 usleep_range(us, us + 100);
2087 else
2088 udelay(us);
2089 }
2090
2091 static int _regulator_do_enable(struct regulator_dev *rdev)
2092 {
2093 int ret, delay;
2094
2095 /* Query before enabling in case configuration dependent. */
2096 ret = _regulator_get_enable_time(rdev);
2097 if (ret >= 0) {
2098 delay = ret;
2099 } else {
2100 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2101 delay = 0;
2102 }
2103
2104 trace_regulator_enable(rdev_get_name(rdev));
2105
2106 if (rdev->desc->off_on_delay) {
2107 /* if needed, keep a distance of off_on_delay from last time
2108 * this regulator was disabled.
2109 */
2110 unsigned long start_jiffy = jiffies;
2111 unsigned long intended, max_delay, remaining;
2112
2113 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2114 intended = rdev->last_off_jiffy + max_delay;
2115
2116 if (time_before(start_jiffy, intended)) {
2117 /* calc remaining jiffies to deal with one-time
2118 * timer wrapping.
2119 * in case of multiple timer wrapping, either it can be
2120 * detected by out-of-range remaining, or it cannot be
2121 * detected and we gets a panelty of
2122 * _regulator_enable_delay().
2123 */
2124 remaining = intended - start_jiffy;
2125 if (remaining <= max_delay)
2126 _regulator_enable_delay(
2127 jiffies_to_usecs(remaining));
2128 }
2129 }
2130
2131 if (rdev->ena_pin) {
2132 if (!rdev->ena_gpio_state) {
2133 ret = regulator_ena_gpio_ctrl(rdev, true);
2134 if (ret < 0)
2135 return ret;
2136 rdev->ena_gpio_state = 1;
2137 }
2138 } else if (rdev->desc->ops->enable) {
2139 ret = rdev->desc->ops->enable(rdev);
2140 if (ret < 0)
2141 return ret;
2142 } else {
2143 return -EINVAL;
2144 }
2145
2146 /* Allow the regulator to ramp; it would be useful to extend
2147 * this for bulk operations so that the regulators can ramp
2148 * together. */
2149 trace_regulator_enable_delay(rdev_get_name(rdev));
2150
2151 _regulator_enable_delay(delay);
2152
2153 trace_regulator_enable_complete(rdev_get_name(rdev));
2154
2155 return 0;
2156 }
2157
2158 /* locks held by regulator_enable() */
2159 static int _regulator_enable(struct regulator_dev *rdev)
2160 {
2161 int ret;
2162
2163 lockdep_assert_held_once(&rdev->mutex);
2164
2165 /* check voltage and requested load before enabling */
2166 if (rdev->constraints &&
2167 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
2168 drms_uA_update(rdev);
2169
2170 if (rdev->use_count == 0) {
2171 /* The regulator may on if it's not switchable or left on */
2172 ret = _regulator_is_enabled(rdev);
2173 if (ret == -EINVAL || ret == 0) {
2174 if (!_regulator_can_change_status(rdev))
2175 return -EPERM;
2176
2177 ret = _regulator_do_enable(rdev);
2178 if (ret < 0)
2179 return ret;
2180
2181 } else if (ret < 0) {
2182 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2183 return ret;
2184 }
2185 /* Fallthrough on positive return values - already enabled */
2186 }
2187
2188 rdev->use_count++;
2189
2190 return 0;
2191 }
2192
2193 /**
2194 * regulator_enable - enable regulator output
2195 * @regulator: regulator source
2196 *
2197 * Request that the regulator be enabled with the regulator output at
2198 * the predefined voltage or current value. Calls to regulator_enable()
2199 * must be balanced with calls to regulator_disable().
2200 *
2201 * NOTE: the output value can be set by other drivers, boot loader or may be
2202 * hardwired in the regulator.
2203 */
2204 int regulator_enable(struct regulator *regulator)
2205 {
2206 struct regulator_dev *rdev = regulator->rdev;
2207 int ret = 0;
2208
2209 if (regulator->always_on)
2210 return 0;
2211
2212 if (rdev->supply) {
2213 ret = regulator_enable(rdev->supply);
2214 if (ret != 0)
2215 return ret;
2216 }
2217
2218 mutex_lock(&rdev->mutex);
2219 ret = _regulator_enable(rdev);
2220 mutex_unlock(&rdev->mutex);
2221
2222 if (ret != 0 && rdev->supply)
2223 regulator_disable(rdev->supply);
2224
2225 return ret;
2226 }
2227 EXPORT_SYMBOL_GPL(regulator_enable);
2228
2229 static int _regulator_do_disable(struct regulator_dev *rdev)
2230 {
2231 int ret;
2232
2233 trace_regulator_disable(rdev_get_name(rdev));
2234
2235 if (rdev->ena_pin) {
2236 if (rdev->ena_gpio_state) {
2237 ret = regulator_ena_gpio_ctrl(rdev, false);
2238 if (ret < 0)
2239 return ret;
2240 rdev->ena_gpio_state = 0;
2241 }
2242
2243 } else if (rdev->desc->ops->disable) {
2244 ret = rdev->desc->ops->disable(rdev);
2245 if (ret != 0)
2246 return ret;
2247 }
2248
2249 /* cares about last_off_jiffy only if off_on_delay is required by
2250 * device.
2251 */
2252 if (rdev->desc->off_on_delay)
2253 rdev->last_off_jiffy = jiffies;
2254
2255 trace_regulator_disable_complete(rdev_get_name(rdev));
2256
2257 return 0;
2258 }
2259
2260 /* locks held by regulator_disable() */
2261 static int _regulator_disable(struct regulator_dev *rdev)
2262 {
2263 int ret = 0;
2264
2265 lockdep_assert_held_once(&rdev->mutex);
2266
2267 if (WARN(rdev->use_count <= 0,
2268 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2269 return -EIO;
2270
2271 /* are we the last user and permitted to disable ? */
2272 if (rdev->use_count == 1 &&
2273 (rdev->constraints && !rdev->constraints->always_on)) {
2274
2275 /* we are last user */
2276 if (_regulator_can_change_status(rdev)) {
2277 ret = _notifier_call_chain(rdev,
2278 REGULATOR_EVENT_PRE_DISABLE,
2279 NULL);
2280 if (ret & NOTIFY_STOP_MASK)
2281 return -EINVAL;
2282
2283 ret = _regulator_do_disable(rdev);
2284 if (ret < 0) {
2285 rdev_err(rdev, "failed to disable\n");
2286 _notifier_call_chain(rdev,
2287 REGULATOR_EVENT_ABORT_DISABLE,
2288 NULL);
2289 return ret;
2290 }
2291 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2292 NULL);
2293 }
2294
2295 rdev->use_count = 0;
2296 } else if (rdev->use_count > 1) {
2297
2298 if (rdev->constraints &&
2299 (rdev->constraints->valid_ops_mask &
2300 REGULATOR_CHANGE_DRMS))
2301 drms_uA_update(rdev);
2302
2303 rdev->use_count--;
2304 }
2305
2306 return ret;
2307 }
2308
2309 /**
2310 * regulator_disable - disable regulator output
2311 * @regulator: regulator source
2312 *
2313 * Disable the regulator output voltage or current. Calls to
2314 * regulator_enable() must be balanced with calls to
2315 * regulator_disable().
2316 *
2317 * NOTE: this will only disable the regulator output if no other consumer
2318 * devices have it enabled, the regulator device supports disabling and
2319 * machine constraints permit this operation.
2320 */
2321 int regulator_disable(struct regulator *regulator)
2322 {
2323 struct regulator_dev *rdev = regulator->rdev;
2324 int ret = 0;
2325
2326 if (regulator->always_on)
2327 return 0;
2328
2329 mutex_lock(&rdev->mutex);
2330 ret = _regulator_disable(rdev);
2331 mutex_unlock(&rdev->mutex);
2332
2333 if (ret == 0 && rdev->supply)
2334 regulator_disable(rdev->supply);
2335
2336 return ret;
2337 }
2338 EXPORT_SYMBOL_GPL(regulator_disable);
2339
2340 /* locks held by regulator_force_disable() */
2341 static int _regulator_force_disable(struct regulator_dev *rdev)
2342 {
2343 int ret = 0;
2344
2345 lockdep_assert_held_once(&rdev->mutex);
2346
2347 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2348 REGULATOR_EVENT_PRE_DISABLE, NULL);
2349 if (ret & NOTIFY_STOP_MASK)
2350 return -EINVAL;
2351
2352 ret = _regulator_do_disable(rdev);
2353 if (ret < 0) {
2354 rdev_err(rdev, "failed to force disable\n");
2355 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2356 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2357 return ret;
2358 }
2359
2360 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2361 REGULATOR_EVENT_DISABLE, NULL);
2362
2363 return 0;
2364 }
2365
2366 /**
2367 * regulator_force_disable - force disable regulator output
2368 * @regulator: regulator source
2369 *
2370 * Forcibly disable the regulator output voltage or current.
2371 * NOTE: this *will* disable the regulator output even if other consumer
2372 * devices have it enabled. This should be used for situations when device
2373 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2374 */
2375 int regulator_force_disable(struct regulator *regulator)
2376 {
2377 struct regulator_dev *rdev = regulator->rdev;
2378 int ret;
2379
2380 mutex_lock(&rdev->mutex);
2381 regulator->uA_load = 0;
2382 ret = _regulator_force_disable(regulator->rdev);
2383 mutex_unlock(&rdev->mutex);
2384
2385 if (rdev->supply)
2386 while (rdev->open_count--)
2387 regulator_disable(rdev->supply);
2388
2389 return ret;
2390 }
2391 EXPORT_SYMBOL_GPL(regulator_force_disable);
2392
2393 static void regulator_disable_work(struct work_struct *work)
2394 {
2395 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2396 disable_work.work);
2397 int count, i, ret;
2398
2399 mutex_lock(&rdev->mutex);
2400
2401 BUG_ON(!rdev->deferred_disables);
2402
2403 count = rdev->deferred_disables;
2404 rdev->deferred_disables = 0;
2405
2406 for (i = 0; i < count; i++) {
2407 ret = _regulator_disable(rdev);
2408 if (ret != 0)
2409 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2410 }
2411
2412 mutex_unlock(&rdev->mutex);
2413
2414 if (rdev->supply) {
2415 for (i = 0; i < count; i++) {
2416 ret = regulator_disable(rdev->supply);
2417 if (ret != 0) {
2418 rdev_err(rdev,
2419 "Supply disable failed: %d\n", ret);
2420 }
2421 }
2422 }
2423 }
2424
2425 /**
2426 * regulator_disable_deferred - disable regulator output with delay
2427 * @regulator: regulator source
2428 * @ms: miliseconds until the regulator is disabled
2429 *
2430 * Execute regulator_disable() on the regulator after a delay. This
2431 * is intended for use with devices that require some time to quiesce.
2432 *
2433 * NOTE: this will only disable the regulator output if no other consumer
2434 * devices have it enabled, the regulator device supports disabling and
2435 * machine constraints permit this operation.
2436 */
2437 int regulator_disable_deferred(struct regulator *regulator, int ms)
2438 {
2439 struct regulator_dev *rdev = regulator->rdev;
2440
2441 if (regulator->always_on)
2442 return 0;
2443
2444 if (!ms)
2445 return regulator_disable(regulator);
2446
2447 mutex_lock(&rdev->mutex);
2448 rdev->deferred_disables++;
2449 mutex_unlock(&rdev->mutex);
2450
2451 queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2452 msecs_to_jiffies(ms));
2453 return 0;
2454 }
2455 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2456
2457 static int _regulator_is_enabled(struct regulator_dev *rdev)
2458 {
2459 /* A GPIO control always takes precedence */
2460 if (rdev->ena_pin)
2461 return rdev->ena_gpio_state;
2462
2463 /* If we don't know then assume that the regulator is always on */
2464 if (!rdev->desc->ops->is_enabled)
2465 return 1;
2466
2467 return rdev->desc->ops->is_enabled(rdev);
2468 }
2469
2470 static int _regulator_list_voltage(struct regulator *regulator,
2471 unsigned selector, int lock)
2472 {
2473 struct regulator_dev *rdev = regulator->rdev;
2474 const struct regulator_ops *ops = rdev->desc->ops;
2475 int ret;
2476
2477 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2478 return rdev->desc->fixed_uV;
2479
2480 if (ops->list_voltage) {
2481 if (selector >= rdev->desc->n_voltages)
2482 return -EINVAL;
2483 if (lock)
2484 mutex_lock(&rdev->mutex);
2485 ret = ops->list_voltage(rdev, selector);
2486 if (lock)
2487 mutex_unlock(&rdev->mutex);
2488 } else if (rdev->supply) {
2489 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2490 } else {
2491 return -EINVAL;
2492 }
2493
2494 if (ret > 0) {
2495 if (ret < rdev->constraints->min_uV)
2496 ret = 0;
2497 else if (ret > rdev->constraints->max_uV)
2498 ret = 0;
2499 }
2500
2501 return ret;
2502 }
2503
2504 /**
2505 * regulator_is_enabled - is the regulator output enabled
2506 * @regulator: regulator source
2507 *
2508 * Returns positive if the regulator driver backing the source/client
2509 * has requested that the device be enabled, zero if it hasn't, else a
2510 * negative errno code.
2511 *
2512 * Note that the device backing this regulator handle can have multiple
2513 * users, so it might be enabled even if regulator_enable() was never
2514 * called for this particular source.
2515 */
2516 int regulator_is_enabled(struct regulator *regulator)
2517 {
2518 int ret;
2519
2520 if (regulator->always_on)
2521 return 1;
2522
2523 mutex_lock(&regulator->rdev->mutex);
2524 ret = _regulator_is_enabled(regulator->rdev);
2525 mutex_unlock(&regulator->rdev->mutex);
2526
2527 return ret;
2528 }
2529 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2530
2531 /**
2532 * regulator_can_change_voltage - check if regulator can change voltage
2533 * @regulator: regulator source
2534 *
2535 * Returns positive if the regulator driver backing the source/client
2536 * can change its voltage, false otherwise. Useful for detecting fixed
2537 * or dummy regulators and disabling voltage change logic in the client
2538 * driver.
2539 */
2540 int regulator_can_change_voltage(struct regulator *regulator)
2541 {
2542 struct regulator_dev *rdev = regulator->rdev;
2543
2544 if (rdev->constraints &&
2545 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2546 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2547 return 1;
2548
2549 if (rdev->desc->continuous_voltage_range &&
2550 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2551 rdev->constraints->min_uV != rdev->constraints->max_uV)
2552 return 1;
2553 }
2554
2555 return 0;
2556 }
2557 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2558
2559 /**
2560 * regulator_count_voltages - count regulator_list_voltage() selectors
2561 * @regulator: regulator source
2562 *
2563 * Returns number of selectors, or negative errno. Selectors are
2564 * numbered starting at zero, and typically correspond to bitfields
2565 * in hardware registers.
2566 */
2567 int regulator_count_voltages(struct regulator *regulator)
2568 {
2569 struct regulator_dev *rdev = regulator->rdev;
2570
2571 if (rdev->desc->n_voltages)
2572 return rdev->desc->n_voltages;
2573
2574 if (!rdev->supply)
2575 return -EINVAL;
2576
2577 return regulator_count_voltages(rdev->supply);
2578 }
2579 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2580
2581 /**
2582 * regulator_list_voltage - enumerate supported voltages
2583 * @regulator: regulator source
2584 * @selector: identify voltage to list
2585 * Context: can sleep
2586 *
2587 * Returns a voltage that can be passed to @regulator_set_voltage(),
2588 * zero if this selector code can't be used on this system, or a
2589 * negative errno.
2590 */
2591 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2592 {
2593 return _regulator_list_voltage(regulator, selector, 1);
2594 }
2595 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2596
2597 /**
2598 * regulator_get_regmap - get the regulator's register map
2599 * @regulator: regulator source
2600 *
2601 * Returns the register map for the given regulator, or an ERR_PTR value
2602 * if the regulator doesn't use regmap.
2603 */
2604 struct regmap *regulator_get_regmap(struct regulator *regulator)
2605 {
2606 struct regmap *map = regulator->rdev->regmap;
2607
2608 return map ? map : ERR_PTR(-EOPNOTSUPP);
2609 }
2610
2611 /**
2612 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2613 * @regulator: regulator source
2614 * @vsel_reg: voltage selector register, output parameter
2615 * @vsel_mask: mask for voltage selector bitfield, output parameter
2616 *
2617 * Returns the hardware register offset and bitmask used for setting the
2618 * regulator voltage. This might be useful when configuring voltage-scaling
2619 * hardware or firmware that can make I2C requests behind the kernel's back,
2620 * for example.
2621 *
2622 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2623 * and 0 is returned, otherwise a negative errno is returned.
2624 */
2625 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2626 unsigned *vsel_reg,
2627 unsigned *vsel_mask)
2628 {
2629 struct regulator_dev *rdev = regulator->rdev;
2630 const struct regulator_ops *ops = rdev->desc->ops;
2631
2632 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2633 return -EOPNOTSUPP;
2634
2635 *vsel_reg = rdev->desc->vsel_reg;
2636 *vsel_mask = rdev->desc->vsel_mask;
2637
2638 return 0;
2639 }
2640 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2641
2642 /**
2643 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2644 * @regulator: regulator source
2645 * @selector: identify voltage to list
2646 *
2647 * Converts the selector to a hardware-specific voltage selector that can be
2648 * directly written to the regulator registers. The address of the voltage
2649 * register can be determined by calling @regulator_get_hardware_vsel_register.
2650 *
2651 * On error a negative errno is returned.
2652 */
2653 int regulator_list_hardware_vsel(struct regulator *regulator,
2654 unsigned selector)
2655 {
2656 struct regulator_dev *rdev = regulator->rdev;
2657 const struct regulator_ops *ops = rdev->desc->ops;
2658
2659 if (selector >= rdev->desc->n_voltages)
2660 return -EINVAL;
2661 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2662 return -EOPNOTSUPP;
2663
2664 return selector;
2665 }
2666 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2667
2668 /**
2669 * regulator_get_linear_step - return the voltage step size between VSEL values
2670 * @regulator: regulator source
2671 *
2672 * Returns the voltage step size between VSEL values for linear
2673 * regulators, or return 0 if the regulator isn't a linear regulator.
2674 */
2675 unsigned int regulator_get_linear_step(struct regulator *regulator)
2676 {
2677 struct regulator_dev *rdev = regulator->rdev;
2678
2679 return rdev->desc->uV_step;
2680 }
2681 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2682
2683 /**
2684 * regulator_is_supported_voltage - check if a voltage range can be supported
2685 *
2686 * @regulator: Regulator to check.
2687 * @min_uV: Minimum required voltage in uV.
2688 * @max_uV: Maximum required voltage in uV.
2689 *
2690 * Returns a boolean or a negative error code.
2691 */
2692 int regulator_is_supported_voltage(struct regulator *regulator,
2693 int min_uV, int max_uV)
2694 {
2695 struct regulator_dev *rdev = regulator->rdev;
2696 int i, voltages, ret;
2697
2698 /* If we can't change voltage check the current voltage */
2699 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2700 ret = regulator_get_voltage(regulator);
2701 if (ret >= 0)
2702 return min_uV <= ret && ret <= max_uV;
2703 else
2704 return ret;
2705 }
2706
2707 /* Any voltage within constrains range is fine? */
2708 if (rdev->desc->continuous_voltage_range)
2709 return min_uV >= rdev->constraints->min_uV &&
2710 max_uV <= rdev->constraints->max_uV;
2711
2712 ret = regulator_count_voltages(regulator);
2713 if (ret < 0)
2714 return ret;
2715 voltages = ret;
2716
2717 for (i = 0; i < voltages; i++) {
2718 ret = regulator_list_voltage(regulator, i);
2719
2720 if (ret >= min_uV && ret <= max_uV)
2721 return 1;
2722 }
2723
2724 return 0;
2725 }
2726 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2727
2728 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2729 int max_uV)
2730 {
2731 const struct regulator_desc *desc = rdev->desc;
2732
2733 if (desc->ops->map_voltage)
2734 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2735
2736 if (desc->ops->list_voltage == regulator_list_voltage_linear)
2737 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2738
2739 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2740 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2741
2742 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2743 }
2744
2745 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2746 int min_uV, int max_uV,
2747 unsigned *selector)
2748 {
2749 struct pre_voltage_change_data data;
2750 int ret;
2751
2752 data.old_uV = _regulator_get_voltage(rdev);
2753 data.min_uV = min_uV;
2754 data.max_uV = max_uV;
2755 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2756 &data);
2757 if (ret & NOTIFY_STOP_MASK)
2758 return -EINVAL;
2759
2760 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2761 if (ret >= 0)
2762 return ret;
2763
2764 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2765 (void *)data.old_uV);
2766
2767 return ret;
2768 }
2769
2770 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2771 int uV, unsigned selector)
2772 {
2773 struct pre_voltage_change_data data;
2774 int ret;
2775
2776 data.old_uV = _regulator_get_voltage(rdev);
2777 data.min_uV = uV;
2778 data.max_uV = uV;
2779 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2780 &data);
2781 if (ret & NOTIFY_STOP_MASK)
2782 return -EINVAL;
2783
2784 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2785 if (ret >= 0)
2786 return ret;
2787
2788 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2789 (void *)data.old_uV);
2790
2791 return ret;
2792 }
2793
2794 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2795 int min_uV, int max_uV)
2796 {
2797 int ret;
2798 int delay = 0;
2799 int best_val = 0;
2800 unsigned int selector;
2801 int old_selector = -1;
2802
2803 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2804
2805 min_uV += rdev->constraints->uV_offset;
2806 max_uV += rdev->constraints->uV_offset;
2807
2808 /*
2809 * If we can't obtain the old selector there is not enough
2810 * info to call set_voltage_time_sel().
2811 */
2812 if (_regulator_is_enabled(rdev) &&
2813 rdev->desc->ops->set_voltage_time_sel &&
2814 rdev->desc->ops->get_voltage_sel) {
2815 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2816 if (old_selector < 0)
2817 return old_selector;
2818 }
2819
2820 if (rdev->desc->ops->set_voltage) {
2821 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2822 &selector);
2823
2824 if (ret >= 0) {
2825 if (rdev->desc->ops->list_voltage)
2826 best_val = rdev->desc->ops->list_voltage(rdev,
2827 selector);
2828 else
2829 best_val = _regulator_get_voltage(rdev);
2830 }
2831
2832 } else if (rdev->desc->ops->set_voltage_sel) {
2833 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2834 if (ret >= 0) {
2835 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2836 if (min_uV <= best_val && max_uV >= best_val) {
2837 selector = ret;
2838 if (old_selector == selector)
2839 ret = 0;
2840 else
2841 ret = _regulator_call_set_voltage_sel(
2842 rdev, best_val, selector);
2843 } else {
2844 ret = -EINVAL;
2845 }
2846 }
2847 } else {
2848 ret = -EINVAL;
2849 }
2850
2851 /* Call set_voltage_time_sel if successfully obtained old_selector */
2852 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2853 && old_selector != selector) {
2854
2855 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2856 old_selector, selector);
2857 if (delay < 0) {
2858 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2859 delay);
2860 delay = 0;
2861 }
2862
2863 /* Insert any necessary delays */
2864 if (delay >= 1000) {
2865 mdelay(delay / 1000);
2866 udelay(delay % 1000);
2867 } else if (delay) {
2868 udelay(delay);
2869 }
2870 }
2871
2872 if (ret == 0 && best_val >= 0) {
2873 unsigned long data = best_val;
2874
2875 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2876 (void *)data);
2877 }
2878
2879 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2880
2881 return ret;
2882 }
2883
2884 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2885 int min_uV, int max_uV)
2886 {
2887 struct regulator_dev *rdev = regulator->rdev;
2888 int ret = 0;
2889 int old_min_uV, old_max_uV;
2890 int current_uV;
2891 int best_supply_uV = 0;
2892 int supply_change_uV = 0;
2893
2894 /* If we're setting the same range as last time the change
2895 * should be a noop (some cpufreq implementations use the same
2896 * voltage for multiple frequencies, for example).
2897 */
2898 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2899 goto out;
2900
2901 /* If we're trying to set a range that overlaps the current voltage,
2902 * return successfully even though the regulator does not support
2903 * changing the voltage.
2904 */
2905 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2906 current_uV = _regulator_get_voltage(rdev);
2907 if (min_uV <= current_uV && current_uV <= max_uV) {
2908 regulator->min_uV = min_uV;
2909 regulator->max_uV = max_uV;
2910 goto out;
2911 }
2912 }
2913
2914 /* sanity check */
2915 if (!rdev->desc->ops->set_voltage &&
2916 !rdev->desc->ops->set_voltage_sel) {
2917 ret = -EINVAL;
2918 goto out;
2919 }
2920
2921 /* constraints check */
2922 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2923 if (ret < 0)
2924 goto out;
2925
2926 /* restore original values in case of error */
2927 old_min_uV = regulator->min_uV;
2928 old_max_uV = regulator->max_uV;
2929 regulator->min_uV = min_uV;
2930 regulator->max_uV = max_uV;
2931
2932 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2933 if (ret < 0)
2934 goto out2;
2935
2936 if (rdev->supply && (rdev->desc->min_dropout_uV ||
2937 !rdev->desc->ops->get_voltage)) {
2938 int current_supply_uV;
2939 int selector;
2940
2941 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2942 if (selector < 0) {
2943 ret = selector;
2944 goto out2;
2945 }
2946
2947 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2948 if (best_supply_uV < 0) {
2949 ret = best_supply_uV;
2950 goto out2;
2951 }
2952
2953 best_supply_uV += rdev->desc->min_dropout_uV;
2954
2955 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2956 if (current_supply_uV < 0) {
2957 ret = current_supply_uV;
2958 goto out2;
2959 }
2960
2961 supply_change_uV = best_supply_uV - current_supply_uV;
2962 }
2963
2964 if (supply_change_uV > 0) {
2965 ret = regulator_set_voltage_unlocked(rdev->supply,
2966 best_supply_uV, INT_MAX);
2967 if (ret) {
2968 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2969 ret);
2970 goto out2;
2971 }
2972 }
2973
2974 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2975 if (ret < 0)
2976 goto out2;
2977
2978 if (supply_change_uV < 0) {
2979 ret = regulator_set_voltage_unlocked(rdev->supply,
2980 best_supply_uV, INT_MAX);
2981 if (ret)
2982 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2983 ret);
2984 /* No need to fail here */
2985 ret = 0;
2986 }
2987
2988 out:
2989 return ret;
2990 out2:
2991 regulator->min_uV = old_min_uV;
2992 regulator->max_uV = old_max_uV;
2993
2994 return ret;
2995 }
2996
2997 /**
2998 * regulator_set_voltage - set regulator output voltage
2999 * @regulator: regulator source
3000 * @min_uV: Minimum required voltage in uV
3001 * @max_uV: Maximum acceptable voltage in uV
3002 *
3003 * Sets a voltage regulator to the desired output voltage. This can be set
3004 * during any regulator state. IOW, regulator can be disabled or enabled.
3005 *
3006 * If the regulator is enabled then the voltage will change to the new value
3007 * immediately otherwise if the regulator is disabled the regulator will
3008 * output at the new voltage when enabled.
3009 *
3010 * NOTE: If the regulator is shared between several devices then the lowest
3011 * request voltage that meets the system constraints will be used.
3012 * Regulator system constraints must be set for this regulator before
3013 * calling this function otherwise this call will fail.
3014 */
3015 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3016 {
3017 int ret = 0;
3018
3019 regulator_lock_supply(regulator->rdev);
3020
3021 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
3022
3023 regulator_unlock_supply(regulator->rdev);
3024
3025 return ret;
3026 }
3027 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3028
3029 /**
3030 * regulator_set_voltage_time - get raise/fall time
3031 * @regulator: regulator source
3032 * @old_uV: starting voltage in microvolts
3033 * @new_uV: target voltage in microvolts
3034 *
3035 * Provided with the starting and ending voltage, this function attempts to
3036 * calculate the time in microseconds required to rise or fall to this new
3037 * voltage.
3038 */
3039 int regulator_set_voltage_time(struct regulator *regulator,
3040 int old_uV, int new_uV)
3041 {
3042 struct regulator_dev *rdev = regulator->rdev;
3043 const struct regulator_ops *ops = rdev->desc->ops;
3044 int old_sel = -1;
3045 int new_sel = -1;
3046 int voltage;
3047 int i;
3048
3049 /* Currently requires operations to do this */
3050 if (!ops->list_voltage || !ops->set_voltage_time_sel
3051 || !rdev->desc->n_voltages)
3052 return -EINVAL;
3053
3054 for (i = 0; i < rdev->desc->n_voltages; i++) {
3055 /* We only look for exact voltage matches here */
3056 voltage = regulator_list_voltage(regulator, i);
3057 if (voltage < 0)
3058 return -EINVAL;
3059 if (voltage == 0)
3060 continue;
3061 if (voltage == old_uV)
3062 old_sel = i;
3063 if (voltage == new_uV)
3064 new_sel = i;
3065 }
3066
3067 if (old_sel < 0 || new_sel < 0)
3068 return -EINVAL;
3069
3070 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3071 }
3072 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3073
3074 /**
3075 * regulator_set_voltage_time_sel - get raise/fall time
3076 * @rdev: regulator source device
3077 * @old_selector: selector for starting voltage
3078 * @new_selector: selector for target voltage
3079 *
3080 * Provided with the starting and target voltage selectors, this function
3081 * returns time in microseconds required to rise or fall to this new voltage
3082 *
3083 * Drivers providing ramp_delay in regulation_constraints can use this as their
3084 * set_voltage_time_sel() operation.
3085 */
3086 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3087 unsigned int old_selector,
3088 unsigned int new_selector)
3089 {
3090 unsigned int ramp_delay = 0;
3091 int old_volt, new_volt;
3092
3093 if (rdev->constraints->ramp_delay)
3094 ramp_delay = rdev->constraints->ramp_delay;
3095 else if (rdev->desc->ramp_delay)
3096 ramp_delay = rdev->desc->ramp_delay;
3097
3098 if (ramp_delay == 0) {
3099 rdev_warn(rdev, "ramp_delay not set\n");
3100 return 0;
3101 }
3102
3103 /* sanity check */
3104 if (!rdev->desc->ops->list_voltage)
3105 return -EINVAL;
3106
3107 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3108 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3109
3110 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
3111 }
3112 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3113
3114 /**
3115 * regulator_sync_voltage - re-apply last regulator output voltage
3116 * @regulator: regulator source
3117 *
3118 * Re-apply the last configured voltage. This is intended to be used
3119 * where some external control source the consumer is cooperating with
3120 * has caused the configured voltage to change.
3121 */
3122 int regulator_sync_voltage(struct regulator *regulator)
3123 {
3124 struct regulator_dev *rdev = regulator->rdev;
3125 int ret, min_uV, max_uV;
3126
3127 mutex_lock(&rdev->mutex);
3128
3129 if (!rdev->desc->ops->set_voltage &&
3130 !rdev->desc->ops->set_voltage_sel) {
3131 ret = -EINVAL;
3132 goto out;
3133 }
3134
3135 /* This is only going to work if we've had a voltage configured. */
3136 if (!regulator->min_uV && !regulator->max_uV) {
3137 ret = -EINVAL;
3138 goto out;
3139 }
3140
3141 min_uV = regulator->min_uV;
3142 max_uV = regulator->max_uV;
3143
3144 /* This should be a paranoia check... */
3145 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3146 if (ret < 0)
3147 goto out;
3148
3149 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3150 if (ret < 0)
3151 goto out;
3152
3153 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3154
3155 out:
3156 mutex_unlock(&rdev->mutex);
3157 return ret;
3158 }
3159 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3160
3161 static int _regulator_get_voltage(struct regulator_dev *rdev)
3162 {
3163 int sel, ret;
3164
3165 if (rdev->desc->ops->get_voltage_sel) {
3166 sel = rdev->desc->ops->get_voltage_sel(rdev);
3167 if (sel < 0)
3168 return sel;
3169 ret = rdev->desc->ops->list_voltage(rdev, sel);
3170 } else if (rdev->desc->ops->get_voltage) {
3171 ret = rdev->desc->ops->get_voltage(rdev);
3172 } else if (rdev->desc->ops->list_voltage) {
3173 ret = rdev->desc->ops->list_voltage(rdev, 0);
3174 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3175 ret = rdev->desc->fixed_uV;
3176 } else if (rdev->supply) {
3177 ret = _regulator_get_voltage(rdev->supply->rdev);
3178 } else {
3179 return -EINVAL;
3180 }
3181
3182 if (ret < 0)
3183 return ret;
3184 return ret - rdev->constraints->uV_offset;
3185 }
3186
3187 /**
3188 * regulator_get_voltage - get regulator output voltage
3189 * @regulator: regulator source
3190 *
3191 * This returns the current regulator voltage in uV.
3192 *
3193 * NOTE: If the regulator is disabled it will return the voltage value. This
3194 * function should not be used to determine regulator state.
3195 */
3196 int regulator_get_voltage(struct regulator *regulator)
3197 {
3198 int ret;
3199
3200 regulator_lock_supply(regulator->rdev);
3201
3202 ret = _regulator_get_voltage(regulator->rdev);
3203
3204 regulator_unlock_supply(regulator->rdev);
3205
3206 return ret;
3207 }
3208 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3209
3210 /**
3211 * regulator_set_current_limit - set regulator output current limit
3212 * @regulator: regulator source
3213 * @min_uA: Minimum supported current in uA
3214 * @max_uA: Maximum supported current in uA
3215 *
3216 * Sets current sink to the desired output current. This can be set during
3217 * any regulator state. IOW, regulator can be disabled or enabled.
3218 *
3219 * If the regulator is enabled then the current will change to the new value
3220 * immediately otherwise if the regulator is disabled the regulator will
3221 * output at the new current when enabled.
3222 *
3223 * NOTE: Regulator system constraints must be set for this regulator before
3224 * calling this function otherwise this call will fail.
3225 */
3226 int regulator_set_current_limit(struct regulator *regulator,
3227 int min_uA, int max_uA)
3228 {
3229 struct regulator_dev *rdev = regulator->rdev;
3230 int ret;
3231
3232 mutex_lock(&rdev->mutex);
3233
3234 /* sanity check */
3235 if (!rdev->desc->ops->set_current_limit) {
3236 ret = -EINVAL;
3237 goto out;
3238 }
3239
3240 /* constraints check */
3241 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3242 if (ret < 0)
3243 goto out;
3244
3245 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3246 out:
3247 mutex_unlock(&rdev->mutex);
3248 return ret;
3249 }
3250 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3251
3252 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3253 {
3254 int ret;
3255
3256 mutex_lock(&rdev->mutex);
3257
3258 /* sanity check */
3259 if (!rdev->desc->ops->get_current_limit) {
3260 ret = -EINVAL;
3261 goto out;
3262 }
3263
3264 ret = rdev->desc->ops->get_current_limit(rdev);
3265 out:
3266 mutex_unlock(&rdev->mutex);
3267 return ret;
3268 }
3269
3270 /**
3271 * regulator_get_current_limit - get regulator output current
3272 * @regulator: regulator source
3273 *
3274 * This returns the current supplied by the specified current sink in uA.
3275 *
3276 * NOTE: If the regulator is disabled it will return the current value. This
3277 * function should not be used to determine regulator state.
3278 */
3279 int regulator_get_current_limit(struct regulator *regulator)
3280 {
3281 return _regulator_get_current_limit(regulator->rdev);
3282 }
3283 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3284
3285 /**
3286 * regulator_set_mode - set regulator operating mode
3287 * @regulator: regulator source
3288 * @mode: operating mode - one of the REGULATOR_MODE constants
3289 *
3290 * Set regulator operating mode to increase regulator efficiency or improve
3291 * regulation performance.
3292 *
3293 * NOTE: Regulator system constraints must be set for this regulator before
3294 * calling this function otherwise this call will fail.
3295 */
3296 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3297 {
3298 struct regulator_dev *rdev = regulator->rdev;
3299 int ret;
3300 int regulator_curr_mode;
3301
3302 mutex_lock(&rdev->mutex);
3303
3304 /* sanity check */
3305 if (!rdev->desc->ops->set_mode) {
3306 ret = -EINVAL;
3307 goto out;
3308 }
3309
3310 /* return if the same mode is requested */
3311 if (rdev->desc->ops->get_mode) {
3312 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3313 if (regulator_curr_mode == mode) {
3314 ret = 0;
3315 goto out;
3316 }
3317 }
3318
3319 /* constraints check */
3320 ret = regulator_mode_constrain(rdev, &mode);
3321 if (ret < 0)
3322 goto out;
3323
3324 ret = rdev->desc->ops->set_mode(rdev, mode);
3325 out:
3326 mutex_unlock(&rdev->mutex);
3327 return ret;
3328 }
3329 EXPORT_SYMBOL_GPL(regulator_set_mode);
3330
3331 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3332 {
3333 int ret;
3334
3335 mutex_lock(&rdev->mutex);
3336
3337 /* sanity check */
3338 if (!rdev->desc->ops->get_mode) {
3339 ret = -EINVAL;
3340 goto out;
3341 }
3342
3343 ret = rdev->desc->ops->get_mode(rdev);
3344 out:
3345 mutex_unlock(&rdev->mutex);
3346 return ret;
3347 }
3348
3349 /**
3350 * regulator_get_mode - get regulator operating mode
3351 * @regulator: regulator source
3352 *
3353 * Get the current regulator operating mode.
3354 */
3355 unsigned int regulator_get_mode(struct regulator *regulator)
3356 {
3357 return _regulator_get_mode(regulator->rdev);
3358 }
3359 EXPORT_SYMBOL_GPL(regulator_get_mode);
3360
3361 /**
3362 * regulator_set_load - set regulator load
3363 * @regulator: regulator source
3364 * @uA_load: load current
3365 *
3366 * Notifies the regulator core of a new device load. This is then used by
3367 * DRMS (if enabled by constraints) to set the most efficient regulator
3368 * operating mode for the new regulator loading.
3369 *
3370 * Consumer devices notify their supply regulator of the maximum power
3371 * they will require (can be taken from device datasheet in the power
3372 * consumption tables) when they change operational status and hence power
3373 * state. Examples of operational state changes that can affect power
3374 * consumption are :-
3375 *
3376 * o Device is opened / closed.
3377 * o Device I/O is about to begin or has just finished.
3378 * o Device is idling in between work.
3379 *
3380 * This information is also exported via sysfs to userspace.
3381 *
3382 * DRMS will sum the total requested load on the regulator and change
3383 * to the most efficient operating mode if platform constraints allow.
3384 *
3385 * On error a negative errno is returned.
3386 */
3387 int regulator_set_load(struct regulator *regulator, int uA_load)
3388 {
3389 struct regulator_dev *rdev = regulator->rdev;
3390 int ret;
3391
3392 mutex_lock(&rdev->mutex);
3393 regulator->uA_load = uA_load;
3394 ret = drms_uA_update(rdev);
3395 mutex_unlock(&rdev->mutex);
3396
3397 return ret;
3398 }
3399 EXPORT_SYMBOL_GPL(regulator_set_load);
3400
3401 /**
3402 * regulator_allow_bypass - allow the regulator to go into bypass mode
3403 *
3404 * @regulator: Regulator to configure
3405 * @enable: enable or disable bypass mode
3406 *
3407 * Allow the regulator to go into bypass mode if all other consumers
3408 * for the regulator also enable bypass mode and the machine
3409 * constraints allow this. Bypass mode means that the regulator is
3410 * simply passing the input directly to the output with no regulation.
3411 */
3412 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3413 {
3414 struct regulator_dev *rdev = regulator->rdev;
3415 int ret = 0;
3416
3417 if (!rdev->desc->ops->set_bypass)
3418 return 0;
3419
3420 if (rdev->constraints &&
3421 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3422 return 0;
3423
3424 mutex_lock(&rdev->mutex);
3425
3426 if (enable && !regulator->bypass) {
3427 rdev->bypass_count++;
3428
3429 if (rdev->bypass_count == rdev->open_count) {
3430 ret = rdev->desc->ops->set_bypass(rdev, enable);
3431 if (ret != 0)
3432 rdev->bypass_count--;
3433 }
3434
3435 } else if (!enable && regulator->bypass) {
3436 rdev->bypass_count--;
3437
3438 if (rdev->bypass_count != rdev->open_count) {
3439 ret = rdev->desc->ops->set_bypass(rdev, enable);
3440 if (ret != 0)
3441 rdev->bypass_count++;
3442 }
3443 }
3444
3445 if (ret == 0)
3446 regulator->bypass = enable;
3447
3448 mutex_unlock(&rdev->mutex);
3449
3450 return ret;
3451 }
3452 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3453
3454 /**
3455 * regulator_register_notifier - register regulator event notifier
3456 * @regulator: regulator source
3457 * @nb: notifier block
3458 *
3459 * Register notifier block to receive regulator events.
3460 */
3461 int regulator_register_notifier(struct regulator *regulator,
3462 struct notifier_block *nb)
3463 {
3464 return blocking_notifier_chain_register(&regulator->rdev->notifier,
3465 nb);
3466 }
3467 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3468
3469 /**
3470 * regulator_unregister_notifier - unregister regulator event notifier
3471 * @regulator: regulator source
3472 * @nb: notifier block
3473 *
3474 * Unregister regulator event notifier block.
3475 */
3476 int regulator_unregister_notifier(struct regulator *regulator,
3477 struct notifier_block *nb)
3478 {
3479 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3480 nb);
3481 }
3482 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3483
3484 /* notify regulator consumers and downstream regulator consumers.
3485 * Note mutex must be held by caller.
3486 */
3487 static int _notifier_call_chain(struct regulator_dev *rdev,
3488 unsigned long event, void *data)
3489 {
3490 /* call rdev chain first */
3491 return blocking_notifier_call_chain(&rdev->notifier, event, data);
3492 }
3493
3494 /**
3495 * regulator_bulk_get - get multiple regulator consumers
3496 *
3497 * @dev: Device to supply
3498 * @num_consumers: Number of consumers to register
3499 * @consumers: Configuration of consumers; clients are stored here.
3500 *
3501 * @return 0 on success, an errno on failure.
3502 *
3503 * This helper function allows drivers to get several regulator
3504 * consumers in one operation. If any of the regulators cannot be
3505 * acquired then any regulators that were allocated will be freed
3506 * before returning to the caller.
3507 */
3508 int regulator_bulk_get(struct device *dev, int num_consumers,
3509 struct regulator_bulk_data *consumers)
3510 {
3511 int i;
3512 int ret;
3513
3514 for (i = 0; i < num_consumers; i++)
3515 consumers[i].consumer = NULL;
3516
3517 for (i = 0; i < num_consumers; i++) {
3518 consumers[i].consumer = _regulator_get(dev,
3519 consumers[i].supply,
3520 false,
3521 !consumers[i].optional);
3522 if (IS_ERR(consumers[i].consumer)) {
3523 ret = PTR_ERR(consumers[i].consumer);
3524 dev_err(dev, "Failed to get supply '%s': %d\n",
3525 consumers[i].supply, ret);
3526 consumers[i].consumer = NULL;
3527 goto err;
3528 }
3529 }
3530
3531 return 0;
3532
3533 err:
3534 while (--i >= 0)
3535 regulator_put(consumers[i].consumer);
3536
3537 return ret;
3538 }
3539 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3540
3541 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3542 {
3543 struct regulator_bulk_data *bulk = data;
3544
3545 bulk->ret = regulator_enable(bulk->consumer);
3546 }
3547
3548 /**
3549 * regulator_bulk_enable - enable multiple regulator consumers
3550 *
3551 * @num_consumers: Number of consumers
3552 * @consumers: Consumer data; clients are stored here.
3553 * @return 0 on success, an errno on failure
3554 *
3555 * This convenience API allows consumers to enable multiple regulator
3556 * clients in a single API call. If any consumers cannot be enabled
3557 * then any others that were enabled will be disabled again prior to
3558 * return.
3559 */
3560 int regulator_bulk_enable(int num_consumers,
3561 struct regulator_bulk_data *consumers)
3562 {
3563 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3564 int i;
3565 int ret = 0;
3566
3567 for (i = 0; i < num_consumers; i++) {
3568 if (consumers[i].consumer->always_on)
3569 consumers[i].ret = 0;
3570 else
3571 async_schedule_domain(regulator_bulk_enable_async,
3572 &consumers[i], &async_domain);
3573 }
3574
3575 async_synchronize_full_domain(&async_domain);
3576
3577 /* If any consumer failed we need to unwind any that succeeded */
3578 for (i = 0; i < num_consumers; i++) {
3579 if (consumers[i].ret != 0) {
3580 ret = consumers[i].ret;
3581 goto err;
3582 }
3583 }
3584
3585 return 0;
3586
3587 err:
3588 for (i = 0; i < num_consumers; i++) {
3589 if (consumers[i].ret < 0)
3590 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3591 consumers[i].ret);
3592 else
3593 regulator_disable(consumers[i].consumer);
3594 }
3595
3596 return ret;
3597 }
3598 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3599
3600 /**
3601 * regulator_bulk_disable - disable multiple regulator consumers
3602 *
3603 * @num_consumers: Number of consumers
3604 * @consumers: Consumer data; clients are stored here.
3605 * @return 0 on success, an errno on failure
3606 *
3607 * This convenience API allows consumers to disable multiple regulator
3608 * clients in a single API call. If any consumers cannot be disabled
3609 * then any others that were disabled will be enabled again prior to
3610 * return.
3611 */
3612 int regulator_bulk_disable(int num_consumers,
3613 struct regulator_bulk_data *consumers)
3614 {
3615 int i;
3616 int ret, r;
3617
3618 for (i = num_consumers - 1; i >= 0; --i) {
3619 ret = regulator_disable(consumers[i].consumer);
3620 if (ret != 0)
3621 goto err;
3622 }
3623
3624 return 0;
3625
3626 err:
3627 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3628 for (++i; i < num_consumers; ++i) {
3629 r = regulator_enable(consumers[i].consumer);
3630 if (r != 0)
3631 pr_err("Failed to reename %s: %d\n",
3632 consumers[i].supply, r);
3633 }
3634
3635 return ret;
3636 }
3637 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3638
3639 /**
3640 * regulator_bulk_force_disable - force disable multiple regulator consumers
3641 *
3642 * @num_consumers: Number of consumers
3643 * @consumers: Consumer data; clients are stored here.
3644 * @return 0 on success, an errno on failure
3645 *
3646 * This convenience API allows consumers to forcibly disable multiple regulator
3647 * clients in a single API call.
3648 * NOTE: This should be used for situations when device damage will
3649 * likely occur if the regulators are not disabled (e.g. over temp).
3650 * Although regulator_force_disable function call for some consumers can
3651 * return error numbers, the function is called for all consumers.
3652 */
3653 int regulator_bulk_force_disable(int num_consumers,
3654 struct regulator_bulk_data *consumers)
3655 {
3656 int i;
3657 int ret;
3658
3659 for (i = 0; i < num_consumers; i++)
3660 consumers[i].ret =
3661 regulator_force_disable(consumers[i].consumer);
3662
3663 for (i = 0; i < num_consumers; i++) {
3664 if (consumers[i].ret != 0) {
3665 ret = consumers[i].ret;
3666 goto out;
3667 }
3668 }
3669
3670 return 0;
3671 out:
3672 return ret;
3673 }
3674 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3675
3676 /**
3677 * regulator_bulk_free - free multiple regulator consumers
3678 *
3679 * @num_consumers: Number of consumers
3680 * @consumers: Consumer data; clients are stored here.
3681 *
3682 * This convenience API allows consumers to free multiple regulator
3683 * clients in a single API call.
3684 */
3685 void regulator_bulk_free(int num_consumers,
3686 struct regulator_bulk_data *consumers)
3687 {
3688 int i;
3689
3690 for (i = 0; i < num_consumers; i++) {
3691 regulator_put(consumers[i].consumer);
3692 consumers[i].consumer = NULL;
3693 }
3694 }
3695 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3696
3697 /**
3698 * regulator_notifier_call_chain - call regulator event notifier
3699 * @rdev: regulator source
3700 * @event: notifier block
3701 * @data: callback-specific data.
3702 *
3703 * Called by regulator drivers to notify clients a regulator event has
3704 * occurred. We also notify regulator clients downstream.
3705 * Note lock must be held by caller.
3706 */
3707 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3708 unsigned long event, void *data)
3709 {
3710 lockdep_assert_held_once(&rdev->mutex);
3711
3712 _notifier_call_chain(rdev, event, data);
3713 return NOTIFY_DONE;
3714
3715 }
3716 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3717
3718 /**
3719 * regulator_mode_to_status - convert a regulator mode into a status
3720 *
3721 * @mode: Mode to convert
3722 *
3723 * Convert a regulator mode into a status.
3724 */
3725 int regulator_mode_to_status(unsigned int mode)
3726 {
3727 switch (mode) {
3728 case REGULATOR_MODE_FAST:
3729 return REGULATOR_STATUS_FAST;
3730 case REGULATOR_MODE_NORMAL:
3731 return REGULATOR_STATUS_NORMAL;
3732 case REGULATOR_MODE_IDLE:
3733 return REGULATOR_STATUS_IDLE;
3734 case REGULATOR_MODE_STANDBY:
3735 return REGULATOR_STATUS_STANDBY;
3736 default:
3737 return REGULATOR_STATUS_UNDEFINED;
3738 }
3739 }
3740 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3741
3742 static struct attribute *regulator_dev_attrs[] = {
3743 &dev_attr_name.attr,
3744 &dev_attr_num_users.attr,
3745 &dev_attr_type.attr,
3746 &dev_attr_microvolts.attr,
3747 &dev_attr_microamps.attr,
3748 &dev_attr_opmode.attr,
3749 &dev_attr_state.attr,
3750 &dev_attr_status.attr,
3751 &dev_attr_bypass.attr,
3752 &dev_attr_requested_microamps.attr,
3753 &dev_attr_min_microvolts.attr,
3754 &dev_attr_max_microvolts.attr,
3755 &dev_attr_min_microamps.attr,
3756 &dev_attr_max_microamps.attr,
3757 &dev_attr_suspend_standby_state.attr,
3758 &dev_attr_suspend_mem_state.attr,
3759 &dev_attr_suspend_disk_state.attr,
3760 &dev_attr_suspend_standby_microvolts.attr,
3761 &dev_attr_suspend_mem_microvolts.attr,
3762 &dev_attr_suspend_disk_microvolts.attr,
3763 &dev_attr_suspend_standby_mode.attr,
3764 &dev_attr_suspend_mem_mode.attr,
3765 &dev_attr_suspend_disk_mode.attr,
3766 NULL
3767 };
3768
3769 /*
3770 * To avoid cluttering sysfs (and memory) with useless state, only
3771 * create attributes that can be meaningfully displayed.
3772 */
3773 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3774 struct attribute *attr, int idx)
3775 {
3776 struct device *dev = kobj_to_dev(kobj);
3777 struct regulator_dev *rdev = dev_to_rdev(dev);
3778 const struct regulator_ops *ops = rdev->desc->ops;
3779 umode_t mode = attr->mode;
3780
3781 /* these three are always present */
3782 if (attr == &dev_attr_name.attr ||
3783 attr == &dev_attr_num_users.attr ||
3784 attr == &dev_attr_type.attr)
3785 return mode;
3786
3787 /* some attributes need specific methods to be displayed */
3788 if (attr == &dev_attr_microvolts.attr) {
3789 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3790 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3791 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3792 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3793 return mode;
3794 return 0;
3795 }
3796
3797 if (attr == &dev_attr_microamps.attr)
3798 return ops->get_current_limit ? mode : 0;
3799
3800 if (attr == &dev_attr_opmode.attr)
3801 return ops->get_mode ? mode : 0;
3802
3803 if (attr == &dev_attr_state.attr)
3804 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3805
3806 if (attr == &dev_attr_status.attr)
3807 return ops->get_status ? mode : 0;
3808
3809 if (attr == &dev_attr_bypass.attr)
3810 return ops->get_bypass ? mode : 0;
3811
3812 /* some attributes are type-specific */
3813 if (attr == &dev_attr_requested_microamps.attr)
3814 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3815
3816 /* constraints need specific supporting methods */
3817 if (attr == &dev_attr_min_microvolts.attr ||
3818 attr == &dev_attr_max_microvolts.attr)
3819 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3820
3821 if (attr == &dev_attr_min_microamps.attr ||
3822 attr == &dev_attr_max_microamps.attr)
3823 return ops->set_current_limit ? mode : 0;
3824
3825 if (attr == &dev_attr_suspend_standby_state.attr ||
3826 attr == &dev_attr_suspend_mem_state.attr ||
3827 attr == &dev_attr_suspend_disk_state.attr)
3828 return mode;
3829
3830 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3831 attr == &dev_attr_suspend_mem_microvolts.attr ||
3832 attr == &dev_attr_suspend_disk_microvolts.attr)
3833 return ops->set_suspend_voltage ? mode : 0;
3834
3835 if (attr == &dev_attr_suspend_standby_mode.attr ||
3836 attr == &dev_attr_suspend_mem_mode.attr ||
3837 attr == &dev_attr_suspend_disk_mode.attr)
3838 return ops->set_suspend_mode ? mode : 0;
3839
3840 return mode;
3841 }
3842
3843 static const struct attribute_group regulator_dev_group = {
3844 .attrs = regulator_dev_attrs,
3845 .is_visible = regulator_attr_is_visible,
3846 };
3847
3848 static const struct attribute_group *regulator_dev_groups[] = {
3849 &regulator_dev_group,
3850 NULL
3851 };
3852
3853 static void regulator_dev_release(struct device *dev)
3854 {
3855 struct regulator_dev *rdev = dev_get_drvdata(dev);
3856
3857 kfree(rdev->constraints);
3858 of_node_put(rdev->dev.of_node);
3859 kfree(rdev);
3860 }
3861
3862 static struct class regulator_class = {
3863 .name = "regulator",
3864 .dev_release = regulator_dev_release,
3865 .dev_groups = regulator_dev_groups,
3866 };
3867
3868 static void rdev_init_debugfs(struct regulator_dev *rdev)
3869 {
3870 struct device *parent = rdev->dev.parent;
3871 const char *rname = rdev_get_name(rdev);
3872 char name[NAME_MAX];
3873
3874 /* Avoid duplicate debugfs directory names */
3875 if (parent && rname == rdev->desc->name) {
3876 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3877 rname);
3878 rname = name;
3879 }
3880
3881 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3882 if (!rdev->debugfs) {
3883 rdev_warn(rdev, "Failed to create debugfs directory\n");
3884 return;
3885 }
3886
3887 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3888 &rdev->use_count);
3889 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3890 &rdev->open_count);
3891 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3892 &rdev->bypass_count);
3893 }
3894
3895 /**
3896 * regulator_register - register regulator
3897 * @regulator_desc: regulator to register
3898 * @cfg: runtime configuration for regulator
3899 *
3900 * Called by regulator drivers to register a regulator.
3901 * Returns a valid pointer to struct regulator_dev on success
3902 * or an ERR_PTR() on error.
3903 */
3904 struct regulator_dev *
3905 regulator_register(const struct regulator_desc *regulator_desc,
3906 const struct regulator_config *cfg)
3907 {
3908 const struct regulation_constraints *constraints = NULL;
3909 const struct regulator_init_data *init_data;
3910 struct regulator_config *config = NULL;
3911 static atomic_t regulator_no = ATOMIC_INIT(-1);
3912 struct regulator_dev *rdev;
3913 struct device *dev;
3914 int ret, i;
3915
3916 if (regulator_desc == NULL || cfg == NULL)
3917 return ERR_PTR(-EINVAL);
3918
3919 dev = cfg->dev;
3920 WARN_ON(!dev);
3921
3922 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3923 return ERR_PTR(-EINVAL);
3924
3925 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3926 regulator_desc->type != REGULATOR_CURRENT)
3927 return ERR_PTR(-EINVAL);
3928
3929 /* Only one of each should be implemented */
3930 WARN_ON(regulator_desc->ops->get_voltage &&
3931 regulator_desc->ops->get_voltage_sel);
3932 WARN_ON(regulator_desc->ops->set_voltage &&
3933 regulator_desc->ops->set_voltage_sel);
3934
3935 /* If we're using selectors we must implement list_voltage. */
3936 if (regulator_desc->ops->get_voltage_sel &&
3937 !regulator_desc->ops->list_voltage) {
3938 return ERR_PTR(-EINVAL);
3939 }
3940 if (regulator_desc->ops->set_voltage_sel &&
3941 !regulator_desc->ops->list_voltage) {
3942 return ERR_PTR(-EINVAL);
3943 }
3944
3945 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3946 if (rdev == NULL)
3947 return ERR_PTR(-ENOMEM);
3948
3949 /*
3950 * Duplicate the config so the driver could override it after
3951 * parsing init data.
3952 */
3953 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3954 if (config == NULL) {
3955 kfree(rdev);
3956 return ERR_PTR(-ENOMEM);
3957 }
3958
3959 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3960 &rdev->dev.of_node);
3961 if (!init_data) {
3962 init_data = config->init_data;
3963 rdev->dev.of_node = of_node_get(config->of_node);
3964 }
3965
3966 mutex_lock(&regulator_list_mutex);
3967
3968 mutex_init(&rdev->mutex);
3969 rdev->reg_data = config->driver_data;
3970 rdev->owner = regulator_desc->owner;
3971 rdev->desc = regulator_desc;
3972 if (config->regmap)
3973 rdev->regmap = config->regmap;
3974 else if (dev_get_regmap(dev, NULL))
3975 rdev->regmap = dev_get_regmap(dev, NULL);
3976 else if (dev->parent)
3977 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3978 INIT_LIST_HEAD(&rdev->consumer_list);
3979 INIT_LIST_HEAD(&rdev->list);
3980 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3981 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3982
3983 /* preform any regulator specific init */
3984 if (init_data && init_data->regulator_init) {
3985 ret = init_data->regulator_init(rdev->reg_data);
3986 if (ret < 0)
3987 goto clean;
3988 }
3989
3990 if ((config->ena_gpio || config->ena_gpio_initialized) &&
3991 gpio_is_valid(config->ena_gpio)) {
3992 ret = regulator_ena_gpio_request(rdev, config);
3993 if (ret != 0) {
3994 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3995 config->ena_gpio, ret);
3996 goto clean;
3997 }
3998 }
3999
4000 /* register with sysfs */
4001 rdev->dev.class = &regulator_class;
4002 rdev->dev.parent = dev;
4003 dev_set_name(&rdev->dev, "regulator.%lu",
4004 (unsigned long) atomic_inc_return(&regulator_no));
4005 ret = device_register(&rdev->dev);
4006 if (ret != 0) {
4007 put_device(&rdev->dev);
4008 goto wash;
4009 }
4010
4011 dev_set_drvdata(&rdev->dev, rdev);
4012
4013 /* set regulator constraints */
4014 if (init_data)
4015 constraints = &init_data->constraints;
4016
4017 ret = set_machine_constraints(rdev, constraints);
4018 if (ret < 0)
4019 goto scrub;
4020
4021 if (init_data && init_data->supply_regulator)
4022 rdev->supply_name = init_data->supply_regulator;
4023 else if (regulator_desc->supply_name)
4024 rdev->supply_name = regulator_desc->supply_name;
4025
4026 /* add consumers devices */
4027 if (init_data) {
4028 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4029 ret = set_consumer_device_supply(rdev,
4030 init_data->consumer_supplies[i].dev_name,
4031 init_data->consumer_supplies[i].supply);
4032 if (ret < 0) {
4033 dev_err(dev, "Failed to set supply %s\n",
4034 init_data->consumer_supplies[i].supply);
4035 goto unset_supplies;
4036 }
4037 }
4038 }
4039
4040 rdev_init_debugfs(rdev);
4041 out:
4042 mutex_unlock(&regulator_list_mutex);
4043 kfree(config);
4044 return rdev;
4045
4046 unset_supplies:
4047 unset_regulator_supplies(rdev);
4048
4049 scrub:
4050 regulator_ena_gpio_free(rdev);
4051 device_unregister(&rdev->dev);
4052 /* device core frees rdev */
4053 rdev = ERR_PTR(ret);
4054 goto out;
4055
4056 wash:
4057 regulator_ena_gpio_free(rdev);
4058 clean:
4059 kfree(rdev);
4060 rdev = ERR_PTR(ret);
4061 goto out;
4062 }
4063 EXPORT_SYMBOL_GPL(regulator_register);
4064
4065 /**
4066 * regulator_unregister - unregister regulator
4067 * @rdev: regulator to unregister
4068 *
4069 * Called by regulator drivers to unregister a regulator.
4070 */
4071 void regulator_unregister(struct regulator_dev *rdev)
4072 {
4073 if (rdev == NULL)
4074 return;
4075
4076 if (rdev->supply) {
4077 while (rdev->use_count--)
4078 regulator_disable(rdev->supply);
4079 regulator_put(rdev->supply);
4080 }
4081 mutex_lock(&regulator_list_mutex);
4082 debugfs_remove_recursive(rdev->debugfs);
4083 flush_work(&rdev->disable_work.work);
4084 WARN_ON(rdev->open_count);
4085 unset_regulator_supplies(rdev);
4086 list_del(&rdev->list);
4087 mutex_unlock(&regulator_list_mutex);
4088 regulator_ena_gpio_free(rdev);
4089 device_unregister(&rdev->dev);
4090 }
4091 EXPORT_SYMBOL_GPL(regulator_unregister);
4092
4093 static int _regulator_suspend_prepare(struct device *dev, void *data)
4094 {
4095 struct regulator_dev *rdev = dev_to_rdev(dev);
4096 const suspend_state_t *state = data;
4097 int ret;
4098
4099 mutex_lock(&rdev->mutex);
4100 ret = suspend_prepare(rdev, *state);
4101 mutex_unlock(&rdev->mutex);
4102
4103 return ret;
4104 }
4105
4106 /**
4107 * regulator_suspend_prepare - prepare regulators for system wide suspend
4108 * @state: system suspend state
4109 *
4110 * Configure each regulator with it's suspend operating parameters for state.
4111 * This will usually be called by machine suspend code prior to supending.
4112 */
4113 int regulator_suspend_prepare(suspend_state_t state)
4114 {
4115 /* ON is handled by regulator active state */
4116 if (state == PM_SUSPEND_ON)
4117 return -EINVAL;
4118
4119 return class_for_each_device(&regulator_class, NULL, &state,
4120 _regulator_suspend_prepare);
4121 }
4122 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4123
4124 static int _regulator_suspend_finish(struct device *dev, void *data)
4125 {
4126 struct regulator_dev *rdev = dev_to_rdev(dev);
4127 int ret;
4128
4129 mutex_lock(&rdev->mutex);
4130 if (rdev->use_count > 0 || rdev->constraints->always_on) {
4131 if (!_regulator_is_enabled(rdev)) {
4132 ret = _regulator_do_enable(rdev);
4133 if (ret)
4134 dev_err(dev,
4135 "Failed to resume regulator %d\n",
4136 ret);
4137 }
4138 } else {
4139 if (!have_full_constraints())
4140 goto unlock;
4141 if (!_regulator_is_enabled(rdev))
4142 goto unlock;
4143
4144 ret = _regulator_do_disable(rdev);
4145 if (ret)
4146 dev_err(dev, "Failed to suspend regulator %d\n", ret);
4147 }
4148 unlock:
4149 mutex_unlock(&rdev->mutex);
4150
4151 /* Keep processing regulators in spite of any errors */
4152 return 0;
4153 }
4154
4155 /**
4156 * regulator_suspend_finish - resume regulators from system wide suspend
4157 *
4158 * Turn on regulators that might be turned off by regulator_suspend_prepare
4159 * and that should be turned on according to the regulators properties.
4160 */
4161 int regulator_suspend_finish(void)
4162 {
4163 return class_for_each_device(&regulator_class, NULL, NULL,
4164 _regulator_suspend_finish);
4165 }
4166 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4167
4168 /**
4169 * regulator_has_full_constraints - the system has fully specified constraints
4170 *
4171 * Calling this function will cause the regulator API to disable all
4172 * regulators which have a zero use count and don't have an always_on
4173 * constraint in a late_initcall.
4174 *
4175 * The intention is that this will become the default behaviour in a
4176 * future kernel release so users are encouraged to use this facility
4177 * now.
4178 */
4179 void regulator_has_full_constraints(void)
4180 {
4181 has_full_constraints = 1;
4182 }
4183 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4184
4185 /**
4186 * rdev_get_drvdata - get rdev regulator driver data
4187 * @rdev: regulator
4188 *
4189 * Get rdev regulator driver private data. This call can be used in the
4190 * regulator driver context.
4191 */
4192 void *rdev_get_drvdata(struct regulator_dev *rdev)
4193 {
4194 return rdev->reg_data;
4195 }
4196 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4197
4198 /**
4199 * regulator_get_drvdata - get regulator driver data
4200 * @regulator: regulator
4201 *
4202 * Get regulator driver private data. This call can be used in the consumer
4203 * driver context when non API regulator specific functions need to be called.
4204 */
4205 void *regulator_get_drvdata(struct regulator *regulator)
4206 {
4207 return regulator->rdev->reg_data;
4208 }
4209 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4210
4211 /**
4212 * regulator_set_drvdata - set regulator driver data
4213 * @regulator: regulator
4214 * @data: data
4215 */
4216 void regulator_set_drvdata(struct regulator *regulator, void *data)
4217 {
4218 regulator->rdev->reg_data = data;
4219 }
4220 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4221
4222 /**
4223 * regulator_get_id - get regulator ID
4224 * @rdev: regulator
4225 */
4226 int rdev_get_id(struct regulator_dev *rdev)
4227 {
4228 return rdev->desc->id;
4229 }
4230 EXPORT_SYMBOL_GPL(rdev_get_id);
4231
4232 struct device *rdev_get_dev(struct regulator_dev *rdev)
4233 {
4234 return &rdev->dev;
4235 }
4236 EXPORT_SYMBOL_GPL(rdev_get_dev);
4237
4238 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4239 {
4240 return reg_init_data->driver_data;
4241 }
4242 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4243
4244 #ifdef CONFIG_DEBUG_FS
4245 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4246 size_t count, loff_t *ppos)
4247 {
4248 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4249 ssize_t len, ret = 0;
4250 struct regulator_map *map;
4251
4252 if (!buf)
4253 return -ENOMEM;
4254
4255 list_for_each_entry(map, &regulator_map_list, list) {
4256 len = snprintf(buf + ret, PAGE_SIZE - ret,
4257 "%s -> %s.%s\n",
4258 rdev_get_name(map->regulator), map->dev_name,
4259 map->supply);
4260 if (len >= 0)
4261 ret += len;
4262 if (ret > PAGE_SIZE) {
4263 ret = PAGE_SIZE;
4264 break;
4265 }
4266 }
4267
4268 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4269
4270 kfree(buf);
4271
4272 return ret;
4273 }
4274 #endif
4275
4276 static const struct file_operations supply_map_fops = {
4277 #ifdef CONFIG_DEBUG_FS
4278 .read = supply_map_read_file,
4279 .llseek = default_llseek,
4280 #endif
4281 };
4282
4283 #ifdef CONFIG_DEBUG_FS
4284 struct summary_data {
4285 struct seq_file *s;
4286 struct regulator_dev *parent;
4287 int level;
4288 };
4289
4290 static void regulator_summary_show_subtree(struct seq_file *s,
4291 struct regulator_dev *rdev,
4292 int level);
4293
4294 static int regulator_summary_show_children(struct device *dev, void *data)
4295 {
4296 struct regulator_dev *rdev = dev_to_rdev(dev);
4297 struct summary_data *summary_data = data;
4298
4299 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4300 regulator_summary_show_subtree(summary_data->s, rdev,
4301 summary_data->level + 1);
4302
4303 return 0;
4304 }
4305
4306 static void regulator_summary_show_subtree(struct seq_file *s,
4307 struct regulator_dev *rdev,
4308 int level)
4309 {
4310 struct regulation_constraints *c;
4311 struct regulator *consumer;
4312 struct summary_data summary_data;
4313
4314 if (!rdev)
4315 return;
4316
4317 seq_printf(s, "%*s%-*s %3d %4d %6d ",
4318 level * 3 + 1, "",
4319 30 - level * 3, rdev_get_name(rdev),
4320 rdev->use_count, rdev->open_count, rdev->bypass_count);
4321
4322 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4323 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4324
4325 c = rdev->constraints;
4326 if (c) {
4327 switch (rdev->desc->type) {
4328 case REGULATOR_VOLTAGE:
4329 seq_printf(s, "%5dmV %5dmV ",
4330 c->min_uV / 1000, c->max_uV / 1000);
4331 break;
4332 case REGULATOR_CURRENT:
4333 seq_printf(s, "%5dmA %5dmA ",
4334 c->min_uA / 1000, c->max_uA / 1000);
4335 break;
4336 }
4337 }
4338
4339 seq_puts(s, "\n");
4340
4341 list_for_each_entry(consumer, &rdev->consumer_list, list) {
4342 if (consumer->dev->class == &regulator_class)
4343 continue;
4344
4345 seq_printf(s, "%*s%-*s ",
4346 (level + 1) * 3 + 1, "",
4347 30 - (level + 1) * 3, dev_name(consumer->dev));
4348
4349 switch (rdev->desc->type) {
4350 case REGULATOR_VOLTAGE:
4351 seq_printf(s, "%37dmV %5dmV",
4352 consumer->min_uV / 1000,
4353 consumer->max_uV / 1000);
4354 break;
4355 case REGULATOR_CURRENT:
4356 break;
4357 }
4358
4359 seq_puts(s, "\n");
4360 }
4361
4362 summary_data.s = s;
4363 summary_data.level = level;
4364 summary_data.parent = rdev;
4365
4366 class_for_each_device(&regulator_class, NULL, &summary_data,
4367 regulator_summary_show_children);
4368 }
4369
4370 static int regulator_summary_show_roots(struct device *dev, void *data)
4371 {
4372 struct regulator_dev *rdev = dev_to_rdev(dev);
4373 struct seq_file *s = data;
4374
4375 if (!rdev->supply)
4376 regulator_summary_show_subtree(s, rdev, 0);
4377
4378 return 0;
4379 }
4380
4381 static int regulator_summary_show(struct seq_file *s, void *data)
4382 {
4383 seq_puts(s, " regulator use open bypass voltage current min max\n");
4384 seq_puts(s, "-------------------------------------------------------------------------------\n");
4385
4386 class_for_each_device(&regulator_class, NULL, s,
4387 regulator_summary_show_roots);
4388
4389 return 0;
4390 }
4391
4392 static int regulator_summary_open(struct inode *inode, struct file *file)
4393 {
4394 return single_open(file, regulator_summary_show, inode->i_private);
4395 }
4396 #endif
4397
4398 static const struct file_operations regulator_summary_fops = {
4399 #ifdef CONFIG_DEBUG_FS
4400 .open = regulator_summary_open,
4401 .read = seq_read,
4402 .llseek = seq_lseek,
4403 .release = single_release,
4404 #endif
4405 };
4406
4407 static int __init regulator_init(void)
4408 {
4409 int ret;
4410
4411 ret = class_register(&regulator_class);
4412
4413 debugfs_root = debugfs_create_dir("regulator", NULL);
4414 if (!debugfs_root)
4415 pr_warn("regulator: Failed to create debugfs directory\n");
4416
4417 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4418 &supply_map_fops);
4419
4420 debugfs_create_file("regulator_summary", 0444, debugfs_root,
4421 NULL, &regulator_summary_fops);
4422
4423 regulator_dummy_init();
4424
4425 return ret;
4426 }
4427
4428 /* init early to allow our consumers to complete system booting */
4429 core_initcall(regulator_init);
4430
4431 static int __init regulator_late_cleanup(struct device *dev, void *data)
4432 {
4433 struct regulator_dev *rdev = dev_to_rdev(dev);
4434 const struct regulator_ops *ops = rdev->desc->ops;
4435 struct regulation_constraints *c = rdev->constraints;
4436 int enabled, ret;
4437
4438 if (c && c->always_on)
4439 return 0;
4440
4441 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4442 return 0;
4443
4444 mutex_lock(&rdev->mutex);
4445
4446 if (rdev->use_count)
4447 goto unlock;
4448
4449 /* If we can't read the status assume it's on. */
4450 if (ops->is_enabled)
4451 enabled = ops->is_enabled(rdev);
4452 else
4453 enabled = 1;
4454
4455 if (!enabled)
4456 goto unlock;
4457
4458 if (have_full_constraints()) {
4459 /* We log since this may kill the system if it goes
4460 * wrong. */
4461 rdev_info(rdev, "disabling\n");
4462 ret = _regulator_do_disable(rdev);
4463 if (ret != 0)
4464 rdev_err(rdev, "couldn't disable: %d\n", ret);
4465 } else {
4466 /* The intention is that in future we will
4467 * assume that full constraints are provided
4468 * so warn even if we aren't going to do
4469 * anything here.
4470 */
4471 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4472 }
4473
4474 unlock:
4475 mutex_unlock(&rdev->mutex);
4476
4477 return 0;
4478 }
4479
4480 static int __init regulator_init_complete(void)
4481 {
4482 /*
4483 * Since DT doesn't provide an idiomatic mechanism for
4484 * enabling full constraints and since it's much more natural
4485 * with DT to provide them just assume that a DT enabled
4486 * system has full constraints.
4487 */
4488 if (of_have_populated_dt())
4489 has_full_constraints = true;
4490
4491 /* If we have a full configuration then disable any regulators
4492 * we have permission to change the status for and which are
4493 * not in use or always_on. This is effectively the default
4494 * for DT and ACPI as they have full constraints.
4495 */
4496 class_for_each_device(&regulator_class, NULL, NULL,
4497 regulator_late_cleanup);
4498
4499 return 0;
4500 }
4501 late_initcall_sync(regulator_init_complete);