]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/regulator/core.c
Merge tag 'platform-drivers-x86-v5.10-1' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / drivers / regulator / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c -- Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 #define rdev_crit(rdev, fmt, ...) \
37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...) \
39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...) \
41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...) \
43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...) \
45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55
56 static struct dentry *debugfs_root;
57
58 /*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63 struct regulator_map {
64 struct list_head list;
65 const char *dev_name; /* The dev_name() for the consumer */
66 const char *supply;
67 struct regulator_dev *regulator;
68 };
69
70 /*
71 * struct regulator_enable_gpio
72 *
73 * Management for shared enable GPIO pin
74 */
75 struct regulator_enable_gpio {
76 struct list_head list;
77 struct gpio_desc *gpiod;
78 u32 enable_count; /* a number of enabled shared GPIO */
79 u32 request_count; /* a number of requested shared GPIO */
80 };
81
82 /*
83 * struct regulator_supply_alias
84 *
85 * Used to map lookups for a supply onto an alternative device.
86 */
87 struct regulator_supply_alias {
88 struct list_head list;
89 struct device *src_dev;
90 const char *src_supply;
91 struct device *alias_dev;
92 const char *alias_supply;
93 };
94
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100 unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104 suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106 struct device *dev,
107 const char *supply_name);
108 static void destroy_regulator(struct regulator *regulator);
109 static void _regulator_put(struct regulator *regulator);
110
111 const char *rdev_get_name(struct regulator_dev *rdev)
112 {
113 if (rdev->constraints && rdev->constraints->name)
114 return rdev->constraints->name;
115 else if (rdev->desc->name)
116 return rdev->desc->name;
117 else
118 return "";
119 }
120
121 static bool have_full_constraints(void)
122 {
123 return has_full_constraints || of_have_populated_dt();
124 }
125
126 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127 {
128 if (!rdev->constraints) {
129 rdev_err(rdev, "no constraints\n");
130 return false;
131 }
132
133 if (rdev->constraints->valid_ops_mask & ops)
134 return true;
135
136 return false;
137 }
138
139 /**
140 * regulator_lock_nested - lock a single regulator
141 * @rdev: regulator source
142 * @ww_ctx: w/w mutex acquire context
143 *
144 * This function can be called many times by one task on
145 * a single regulator and its mutex will be locked only
146 * once. If a task, which is calling this function is other
147 * than the one, which initially locked the mutex, it will
148 * wait on mutex.
149 */
150 static inline int regulator_lock_nested(struct regulator_dev *rdev,
151 struct ww_acquire_ctx *ww_ctx)
152 {
153 bool lock = false;
154 int ret = 0;
155
156 mutex_lock(&regulator_nesting_mutex);
157
158 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159 if (rdev->mutex_owner == current)
160 rdev->ref_cnt++;
161 else
162 lock = true;
163
164 if (lock) {
165 mutex_unlock(&regulator_nesting_mutex);
166 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167 mutex_lock(&regulator_nesting_mutex);
168 }
169 } else {
170 lock = true;
171 }
172
173 if (lock && ret != -EDEADLK) {
174 rdev->ref_cnt++;
175 rdev->mutex_owner = current;
176 }
177
178 mutex_unlock(&regulator_nesting_mutex);
179
180 return ret;
181 }
182
183 /**
184 * regulator_lock - lock a single regulator
185 * @rdev: regulator source
186 *
187 * This function can be called many times by one task on
188 * a single regulator and its mutex will be locked only
189 * once. If a task, which is calling this function is other
190 * than the one, which initially locked the mutex, it will
191 * wait on mutex.
192 */
193 static void regulator_lock(struct regulator_dev *rdev)
194 {
195 regulator_lock_nested(rdev, NULL);
196 }
197
198 /**
199 * regulator_unlock - unlock a single regulator
200 * @rdev: regulator_source
201 *
202 * This function unlocks the mutex when the
203 * reference counter reaches 0.
204 */
205 static void regulator_unlock(struct regulator_dev *rdev)
206 {
207 mutex_lock(&regulator_nesting_mutex);
208
209 if (--rdev->ref_cnt == 0) {
210 rdev->mutex_owner = NULL;
211 ww_mutex_unlock(&rdev->mutex);
212 }
213
214 WARN_ON_ONCE(rdev->ref_cnt < 0);
215
216 mutex_unlock(&regulator_nesting_mutex);
217 }
218
219 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
220 {
221 struct regulator_dev *c_rdev;
222 int i;
223
224 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
225 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
226
227 if (rdev->supply->rdev == c_rdev)
228 return true;
229 }
230
231 return false;
232 }
233
234 static void regulator_unlock_recursive(struct regulator_dev *rdev,
235 unsigned int n_coupled)
236 {
237 struct regulator_dev *c_rdev, *supply_rdev;
238 int i, supply_n_coupled;
239
240 for (i = n_coupled; i > 0; i--) {
241 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
242
243 if (!c_rdev)
244 continue;
245
246 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
247 supply_rdev = c_rdev->supply->rdev;
248 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
249
250 regulator_unlock_recursive(supply_rdev,
251 supply_n_coupled);
252 }
253
254 regulator_unlock(c_rdev);
255 }
256 }
257
258 static int regulator_lock_recursive(struct regulator_dev *rdev,
259 struct regulator_dev **new_contended_rdev,
260 struct regulator_dev **old_contended_rdev,
261 struct ww_acquire_ctx *ww_ctx)
262 {
263 struct regulator_dev *c_rdev;
264 int i, err;
265
266 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
267 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
268
269 if (!c_rdev)
270 continue;
271
272 if (c_rdev != *old_contended_rdev) {
273 err = regulator_lock_nested(c_rdev, ww_ctx);
274 if (err) {
275 if (err == -EDEADLK) {
276 *new_contended_rdev = c_rdev;
277 goto err_unlock;
278 }
279
280 /* shouldn't happen */
281 WARN_ON_ONCE(err != -EALREADY);
282 }
283 } else {
284 *old_contended_rdev = NULL;
285 }
286
287 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
288 err = regulator_lock_recursive(c_rdev->supply->rdev,
289 new_contended_rdev,
290 old_contended_rdev,
291 ww_ctx);
292 if (err) {
293 regulator_unlock(c_rdev);
294 goto err_unlock;
295 }
296 }
297 }
298
299 return 0;
300
301 err_unlock:
302 regulator_unlock_recursive(rdev, i);
303
304 return err;
305 }
306
307 /**
308 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
309 * regulators
310 * @rdev: regulator source
311 * @ww_ctx: w/w mutex acquire context
312 *
313 * Unlock all regulators related with rdev by coupling or supplying.
314 */
315 static void regulator_unlock_dependent(struct regulator_dev *rdev,
316 struct ww_acquire_ctx *ww_ctx)
317 {
318 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
319 ww_acquire_fini(ww_ctx);
320 }
321
322 /**
323 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
324 * @rdev: regulator source
325 * @ww_ctx: w/w mutex acquire context
326 *
327 * This function as a wrapper on regulator_lock_recursive(), which locks
328 * all regulators related with rdev by coupling or supplying.
329 */
330 static void regulator_lock_dependent(struct regulator_dev *rdev,
331 struct ww_acquire_ctx *ww_ctx)
332 {
333 struct regulator_dev *new_contended_rdev = NULL;
334 struct regulator_dev *old_contended_rdev = NULL;
335 int err;
336
337 mutex_lock(&regulator_list_mutex);
338
339 ww_acquire_init(ww_ctx, &regulator_ww_class);
340
341 do {
342 if (new_contended_rdev) {
343 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
344 old_contended_rdev = new_contended_rdev;
345 old_contended_rdev->ref_cnt++;
346 }
347
348 err = regulator_lock_recursive(rdev,
349 &new_contended_rdev,
350 &old_contended_rdev,
351 ww_ctx);
352
353 if (old_contended_rdev)
354 regulator_unlock(old_contended_rdev);
355
356 } while (err == -EDEADLK);
357
358 ww_acquire_done(ww_ctx);
359
360 mutex_unlock(&regulator_list_mutex);
361 }
362
363 /**
364 * of_get_child_regulator - get a child regulator device node
365 * based on supply name
366 * @parent: Parent device node
367 * @prop_name: Combination regulator supply name and "-supply"
368 *
369 * Traverse all child nodes.
370 * Extract the child regulator device node corresponding to the supply name.
371 * returns the device node corresponding to the regulator if found, else
372 * returns NULL.
373 */
374 static struct device_node *of_get_child_regulator(struct device_node *parent,
375 const char *prop_name)
376 {
377 struct device_node *regnode = NULL;
378 struct device_node *child = NULL;
379
380 for_each_child_of_node(parent, child) {
381 regnode = of_parse_phandle(child, prop_name, 0);
382
383 if (!regnode) {
384 regnode = of_get_child_regulator(child, prop_name);
385 if (regnode)
386 goto err_node_put;
387 } else {
388 goto err_node_put;
389 }
390 }
391 return NULL;
392
393 err_node_put:
394 of_node_put(child);
395 return regnode;
396 }
397
398 /**
399 * of_get_regulator - get a regulator device node based on supply name
400 * @dev: Device pointer for the consumer (of regulator) device
401 * @supply: regulator supply name
402 *
403 * Extract the regulator device node corresponding to the supply name.
404 * returns the device node corresponding to the regulator if found, else
405 * returns NULL.
406 */
407 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
408 {
409 struct device_node *regnode = NULL;
410 char prop_name[64]; /* 64 is max size of property name */
411
412 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
413
414 snprintf(prop_name, 64, "%s-supply", supply);
415 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
416
417 if (!regnode) {
418 regnode = of_get_child_regulator(dev->of_node, prop_name);
419 if (regnode)
420 return regnode;
421
422 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
423 prop_name, dev->of_node);
424 return NULL;
425 }
426 return regnode;
427 }
428
429 /* Platform voltage constraint check */
430 int regulator_check_voltage(struct regulator_dev *rdev,
431 int *min_uV, int *max_uV)
432 {
433 BUG_ON(*min_uV > *max_uV);
434
435 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
436 rdev_err(rdev, "voltage operation not allowed\n");
437 return -EPERM;
438 }
439
440 if (*max_uV > rdev->constraints->max_uV)
441 *max_uV = rdev->constraints->max_uV;
442 if (*min_uV < rdev->constraints->min_uV)
443 *min_uV = rdev->constraints->min_uV;
444
445 if (*min_uV > *max_uV) {
446 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
447 *min_uV, *max_uV);
448 return -EINVAL;
449 }
450
451 return 0;
452 }
453
454 /* return 0 if the state is valid */
455 static int regulator_check_states(suspend_state_t state)
456 {
457 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
458 }
459
460 /* Make sure we select a voltage that suits the needs of all
461 * regulator consumers
462 */
463 int regulator_check_consumers(struct regulator_dev *rdev,
464 int *min_uV, int *max_uV,
465 suspend_state_t state)
466 {
467 struct regulator *regulator;
468 struct regulator_voltage *voltage;
469
470 list_for_each_entry(regulator, &rdev->consumer_list, list) {
471 voltage = &regulator->voltage[state];
472 /*
473 * Assume consumers that didn't say anything are OK
474 * with anything in the constraint range.
475 */
476 if (!voltage->min_uV && !voltage->max_uV)
477 continue;
478
479 if (*max_uV > voltage->max_uV)
480 *max_uV = voltage->max_uV;
481 if (*min_uV < voltage->min_uV)
482 *min_uV = voltage->min_uV;
483 }
484
485 if (*min_uV > *max_uV) {
486 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
487 *min_uV, *max_uV);
488 return -EINVAL;
489 }
490
491 return 0;
492 }
493
494 /* current constraint check */
495 static int regulator_check_current_limit(struct regulator_dev *rdev,
496 int *min_uA, int *max_uA)
497 {
498 BUG_ON(*min_uA > *max_uA);
499
500 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
501 rdev_err(rdev, "current operation not allowed\n");
502 return -EPERM;
503 }
504
505 if (*max_uA > rdev->constraints->max_uA)
506 *max_uA = rdev->constraints->max_uA;
507 if (*min_uA < rdev->constraints->min_uA)
508 *min_uA = rdev->constraints->min_uA;
509
510 if (*min_uA > *max_uA) {
511 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
512 *min_uA, *max_uA);
513 return -EINVAL;
514 }
515
516 return 0;
517 }
518
519 /* operating mode constraint check */
520 static int regulator_mode_constrain(struct regulator_dev *rdev,
521 unsigned int *mode)
522 {
523 switch (*mode) {
524 case REGULATOR_MODE_FAST:
525 case REGULATOR_MODE_NORMAL:
526 case REGULATOR_MODE_IDLE:
527 case REGULATOR_MODE_STANDBY:
528 break;
529 default:
530 rdev_err(rdev, "invalid mode %x specified\n", *mode);
531 return -EINVAL;
532 }
533
534 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
535 rdev_err(rdev, "mode operation not allowed\n");
536 return -EPERM;
537 }
538
539 /* The modes are bitmasks, the most power hungry modes having
540 * the lowest values. If the requested mode isn't supported
541 * try higher modes. */
542 while (*mode) {
543 if (rdev->constraints->valid_modes_mask & *mode)
544 return 0;
545 *mode /= 2;
546 }
547
548 return -EINVAL;
549 }
550
551 static inline struct regulator_state *
552 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
553 {
554 if (rdev->constraints == NULL)
555 return NULL;
556
557 switch (state) {
558 case PM_SUSPEND_STANDBY:
559 return &rdev->constraints->state_standby;
560 case PM_SUSPEND_MEM:
561 return &rdev->constraints->state_mem;
562 case PM_SUSPEND_MAX:
563 return &rdev->constraints->state_disk;
564 default:
565 return NULL;
566 }
567 }
568
569 static const struct regulator_state *
570 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
571 {
572 const struct regulator_state *rstate;
573
574 rstate = regulator_get_suspend_state(rdev, state);
575 if (rstate == NULL)
576 return NULL;
577
578 /* If we have no suspend mode configuration don't set anything;
579 * only warn if the driver implements set_suspend_voltage or
580 * set_suspend_mode callback.
581 */
582 if (rstate->enabled != ENABLE_IN_SUSPEND &&
583 rstate->enabled != DISABLE_IN_SUSPEND) {
584 if (rdev->desc->ops->set_suspend_voltage ||
585 rdev->desc->ops->set_suspend_mode)
586 rdev_warn(rdev, "No configuration\n");
587 return NULL;
588 }
589
590 return rstate;
591 }
592
593 static ssize_t regulator_uV_show(struct device *dev,
594 struct device_attribute *attr, char *buf)
595 {
596 struct regulator_dev *rdev = dev_get_drvdata(dev);
597 int uV;
598
599 regulator_lock(rdev);
600 uV = regulator_get_voltage_rdev(rdev);
601 regulator_unlock(rdev);
602
603 if (uV < 0)
604 return uV;
605 return sprintf(buf, "%d\n", uV);
606 }
607 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
608
609 static ssize_t regulator_uA_show(struct device *dev,
610 struct device_attribute *attr, char *buf)
611 {
612 struct regulator_dev *rdev = dev_get_drvdata(dev);
613
614 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
615 }
616 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
617
618 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
619 char *buf)
620 {
621 struct regulator_dev *rdev = dev_get_drvdata(dev);
622
623 return sprintf(buf, "%s\n", rdev_get_name(rdev));
624 }
625 static DEVICE_ATTR_RO(name);
626
627 static const char *regulator_opmode_to_str(int mode)
628 {
629 switch (mode) {
630 case REGULATOR_MODE_FAST:
631 return "fast";
632 case REGULATOR_MODE_NORMAL:
633 return "normal";
634 case REGULATOR_MODE_IDLE:
635 return "idle";
636 case REGULATOR_MODE_STANDBY:
637 return "standby";
638 }
639 return "unknown";
640 }
641
642 static ssize_t regulator_print_opmode(char *buf, int mode)
643 {
644 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
645 }
646
647 static ssize_t regulator_opmode_show(struct device *dev,
648 struct device_attribute *attr, char *buf)
649 {
650 struct regulator_dev *rdev = dev_get_drvdata(dev);
651
652 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
653 }
654 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
655
656 static ssize_t regulator_print_state(char *buf, int state)
657 {
658 if (state > 0)
659 return sprintf(buf, "enabled\n");
660 else if (state == 0)
661 return sprintf(buf, "disabled\n");
662 else
663 return sprintf(buf, "unknown\n");
664 }
665
666 static ssize_t regulator_state_show(struct device *dev,
667 struct device_attribute *attr, char *buf)
668 {
669 struct regulator_dev *rdev = dev_get_drvdata(dev);
670 ssize_t ret;
671
672 regulator_lock(rdev);
673 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
674 regulator_unlock(rdev);
675
676 return ret;
677 }
678 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
679
680 static ssize_t regulator_status_show(struct device *dev,
681 struct device_attribute *attr, char *buf)
682 {
683 struct regulator_dev *rdev = dev_get_drvdata(dev);
684 int status;
685 char *label;
686
687 status = rdev->desc->ops->get_status(rdev);
688 if (status < 0)
689 return status;
690
691 switch (status) {
692 case REGULATOR_STATUS_OFF:
693 label = "off";
694 break;
695 case REGULATOR_STATUS_ON:
696 label = "on";
697 break;
698 case REGULATOR_STATUS_ERROR:
699 label = "error";
700 break;
701 case REGULATOR_STATUS_FAST:
702 label = "fast";
703 break;
704 case REGULATOR_STATUS_NORMAL:
705 label = "normal";
706 break;
707 case REGULATOR_STATUS_IDLE:
708 label = "idle";
709 break;
710 case REGULATOR_STATUS_STANDBY:
711 label = "standby";
712 break;
713 case REGULATOR_STATUS_BYPASS:
714 label = "bypass";
715 break;
716 case REGULATOR_STATUS_UNDEFINED:
717 label = "undefined";
718 break;
719 default:
720 return -ERANGE;
721 }
722
723 return sprintf(buf, "%s\n", label);
724 }
725 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
726
727 static ssize_t regulator_min_uA_show(struct device *dev,
728 struct device_attribute *attr, char *buf)
729 {
730 struct regulator_dev *rdev = dev_get_drvdata(dev);
731
732 if (!rdev->constraints)
733 return sprintf(buf, "constraint not defined\n");
734
735 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
736 }
737 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
738
739 static ssize_t regulator_max_uA_show(struct device *dev,
740 struct device_attribute *attr, char *buf)
741 {
742 struct regulator_dev *rdev = dev_get_drvdata(dev);
743
744 if (!rdev->constraints)
745 return sprintf(buf, "constraint not defined\n");
746
747 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
748 }
749 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
750
751 static ssize_t regulator_min_uV_show(struct device *dev,
752 struct device_attribute *attr, char *buf)
753 {
754 struct regulator_dev *rdev = dev_get_drvdata(dev);
755
756 if (!rdev->constraints)
757 return sprintf(buf, "constraint not defined\n");
758
759 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
760 }
761 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
762
763 static ssize_t regulator_max_uV_show(struct device *dev,
764 struct device_attribute *attr, char *buf)
765 {
766 struct regulator_dev *rdev = dev_get_drvdata(dev);
767
768 if (!rdev->constraints)
769 return sprintf(buf, "constraint not defined\n");
770
771 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
772 }
773 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
774
775 static ssize_t regulator_total_uA_show(struct device *dev,
776 struct device_attribute *attr, char *buf)
777 {
778 struct regulator_dev *rdev = dev_get_drvdata(dev);
779 struct regulator *regulator;
780 int uA = 0;
781
782 regulator_lock(rdev);
783 list_for_each_entry(regulator, &rdev->consumer_list, list) {
784 if (regulator->enable_count)
785 uA += regulator->uA_load;
786 }
787 regulator_unlock(rdev);
788 return sprintf(buf, "%d\n", uA);
789 }
790 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
791
792 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
793 char *buf)
794 {
795 struct regulator_dev *rdev = dev_get_drvdata(dev);
796 return sprintf(buf, "%d\n", rdev->use_count);
797 }
798 static DEVICE_ATTR_RO(num_users);
799
800 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
801 char *buf)
802 {
803 struct regulator_dev *rdev = dev_get_drvdata(dev);
804
805 switch (rdev->desc->type) {
806 case REGULATOR_VOLTAGE:
807 return sprintf(buf, "voltage\n");
808 case REGULATOR_CURRENT:
809 return sprintf(buf, "current\n");
810 }
811 return sprintf(buf, "unknown\n");
812 }
813 static DEVICE_ATTR_RO(type);
814
815 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
816 struct device_attribute *attr, char *buf)
817 {
818 struct regulator_dev *rdev = dev_get_drvdata(dev);
819
820 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
821 }
822 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
823 regulator_suspend_mem_uV_show, NULL);
824
825 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
826 struct device_attribute *attr, char *buf)
827 {
828 struct regulator_dev *rdev = dev_get_drvdata(dev);
829
830 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
831 }
832 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
833 regulator_suspend_disk_uV_show, NULL);
834
835 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
836 struct device_attribute *attr, char *buf)
837 {
838 struct regulator_dev *rdev = dev_get_drvdata(dev);
839
840 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
841 }
842 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
843 regulator_suspend_standby_uV_show, NULL);
844
845 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
846 struct device_attribute *attr, char *buf)
847 {
848 struct regulator_dev *rdev = dev_get_drvdata(dev);
849
850 return regulator_print_opmode(buf,
851 rdev->constraints->state_mem.mode);
852 }
853 static DEVICE_ATTR(suspend_mem_mode, 0444,
854 regulator_suspend_mem_mode_show, NULL);
855
856 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
857 struct device_attribute *attr, char *buf)
858 {
859 struct regulator_dev *rdev = dev_get_drvdata(dev);
860
861 return regulator_print_opmode(buf,
862 rdev->constraints->state_disk.mode);
863 }
864 static DEVICE_ATTR(suspend_disk_mode, 0444,
865 regulator_suspend_disk_mode_show, NULL);
866
867 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
868 struct device_attribute *attr, char *buf)
869 {
870 struct regulator_dev *rdev = dev_get_drvdata(dev);
871
872 return regulator_print_opmode(buf,
873 rdev->constraints->state_standby.mode);
874 }
875 static DEVICE_ATTR(suspend_standby_mode, 0444,
876 regulator_suspend_standby_mode_show, NULL);
877
878 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
879 struct device_attribute *attr, char *buf)
880 {
881 struct regulator_dev *rdev = dev_get_drvdata(dev);
882
883 return regulator_print_state(buf,
884 rdev->constraints->state_mem.enabled);
885 }
886 static DEVICE_ATTR(suspend_mem_state, 0444,
887 regulator_suspend_mem_state_show, NULL);
888
889 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
890 struct device_attribute *attr, char *buf)
891 {
892 struct regulator_dev *rdev = dev_get_drvdata(dev);
893
894 return regulator_print_state(buf,
895 rdev->constraints->state_disk.enabled);
896 }
897 static DEVICE_ATTR(suspend_disk_state, 0444,
898 regulator_suspend_disk_state_show, NULL);
899
900 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
901 struct device_attribute *attr, char *buf)
902 {
903 struct regulator_dev *rdev = dev_get_drvdata(dev);
904
905 return regulator_print_state(buf,
906 rdev->constraints->state_standby.enabled);
907 }
908 static DEVICE_ATTR(suspend_standby_state, 0444,
909 regulator_suspend_standby_state_show, NULL);
910
911 static ssize_t regulator_bypass_show(struct device *dev,
912 struct device_attribute *attr, char *buf)
913 {
914 struct regulator_dev *rdev = dev_get_drvdata(dev);
915 const char *report;
916 bool bypass;
917 int ret;
918
919 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
920
921 if (ret != 0)
922 report = "unknown";
923 else if (bypass)
924 report = "enabled";
925 else
926 report = "disabled";
927
928 return sprintf(buf, "%s\n", report);
929 }
930 static DEVICE_ATTR(bypass, 0444,
931 regulator_bypass_show, NULL);
932
933 /* Calculate the new optimum regulator operating mode based on the new total
934 * consumer load. All locks held by caller */
935 static int drms_uA_update(struct regulator_dev *rdev)
936 {
937 struct regulator *sibling;
938 int current_uA = 0, output_uV, input_uV, err;
939 unsigned int mode;
940
941 /*
942 * first check to see if we can set modes at all, otherwise just
943 * tell the consumer everything is OK.
944 */
945 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
946 rdev_dbg(rdev, "DRMS operation not allowed\n");
947 return 0;
948 }
949
950 if (!rdev->desc->ops->get_optimum_mode &&
951 !rdev->desc->ops->set_load)
952 return 0;
953
954 if (!rdev->desc->ops->set_mode &&
955 !rdev->desc->ops->set_load)
956 return -EINVAL;
957
958 /* calc total requested load */
959 list_for_each_entry(sibling, &rdev->consumer_list, list) {
960 if (sibling->enable_count)
961 current_uA += sibling->uA_load;
962 }
963
964 current_uA += rdev->constraints->system_load;
965
966 if (rdev->desc->ops->set_load) {
967 /* set the optimum mode for our new total regulator load */
968 err = rdev->desc->ops->set_load(rdev, current_uA);
969 if (err < 0)
970 rdev_err(rdev, "failed to set load %d: %pe\n",
971 current_uA, ERR_PTR(err));
972 } else {
973 /* get output voltage */
974 output_uV = regulator_get_voltage_rdev(rdev);
975 if (output_uV <= 0) {
976 rdev_err(rdev, "invalid output voltage found\n");
977 return -EINVAL;
978 }
979
980 /* get input voltage */
981 input_uV = 0;
982 if (rdev->supply)
983 input_uV = regulator_get_voltage(rdev->supply);
984 if (input_uV <= 0)
985 input_uV = rdev->constraints->input_uV;
986 if (input_uV <= 0) {
987 rdev_err(rdev, "invalid input voltage found\n");
988 return -EINVAL;
989 }
990
991 /* now get the optimum mode for our new total regulator load */
992 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
993 output_uV, current_uA);
994
995 /* check the new mode is allowed */
996 err = regulator_mode_constrain(rdev, &mode);
997 if (err < 0) {
998 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
999 current_uA, input_uV, output_uV, ERR_PTR(err));
1000 return err;
1001 }
1002
1003 err = rdev->desc->ops->set_mode(rdev, mode);
1004 if (err < 0)
1005 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1006 mode, ERR_PTR(err));
1007 }
1008
1009 return err;
1010 }
1011
1012 static int __suspend_set_state(struct regulator_dev *rdev,
1013 const struct regulator_state *rstate)
1014 {
1015 int ret = 0;
1016
1017 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1018 rdev->desc->ops->set_suspend_enable)
1019 ret = rdev->desc->ops->set_suspend_enable(rdev);
1020 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1021 rdev->desc->ops->set_suspend_disable)
1022 ret = rdev->desc->ops->set_suspend_disable(rdev);
1023 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1024 ret = 0;
1025
1026 if (ret < 0) {
1027 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1028 return ret;
1029 }
1030
1031 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1032 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1033 if (ret < 0) {
1034 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1035 return ret;
1036 }
1037 }
1038
1039 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1040 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1041 if (ret < 0) {
1042 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1043 return ret;
1044 }
1045 }
1046
1047 return ret;
1048 }
1049
1050 static int suspend_set_initial_state(struct regulator_dev *rdev)
1051 {
1052 const struct regulator_state *rstate;
1053
1054 rstate = regulator_get_suspend_state_check(rdev,
1055 rdev->constraints->initial_state);
1056 if (!rstate)
1057 return 0;
1058
1059 return __suspend_set_state(rdev, rstate);
1060 }
1061
1062 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1063 static void print_constraints_debug(struct regulator_dev *rdev)
1064 {
1065 struct regulation_constraints *constraints = rdev->constraints;
1066 char buf[160] = "";
1067 size_t len = sizeof(buf) - 1;
1068 int count = 0;
1069 int ret;
1070
1071 if (constraints->min_uV && constraints->max_uV) {
1072 if (constraints->min_uV == constraints->max_uV)
1073 count += scnprintf(buf + count, len - count, "%d mV ",
1074 constraints->min_uV / 1000);
1075 else
1076 count += scnprintf(buf + count, len - count,
1077 "%d <--> %d mV ",
1078 constraints->min_uV / 1000,
1079 constraints->max_uV / 1000);
1080 }
1081
1082 if (!constraints->min_uV ||
1083 constraints->min_uV != constraints->max_uV) {
1084 ret = regulator_get_voltage_rdev(rdev);
1085 if (ret > 0)
1086 count += scnprintf(buf + count, len - count,
1087 "at %d mV ", ret / 1000);
1088 }
1089
1090 if (constraints->uV_offset)
1091 count += scnprintf(buf + count, len - count, "%dmV offset ",
1092 constraints->uV_offset / 1000);
1093
1094 if (constraints->min_uA && constraints->max_uA) {
1095 if (constraints->min_uA == constraints->max_uA)
1096 count += scnprintf(buf + count, len - count, "%d mA ",
1097 constraints->min_uA / 1000);
1098 else
1099 count += scnprintf(buf + count, len - count,
1100 "%d <--> %d mA ",
1101 constraints->min_uA / 1000,
1102 constraints->max_uA / 1000);
1103 }
1104
1105 if (!constraints->min_uA ||
1106 constraints->min_uA != constraints->max_uA) {
1107 ret = _regulator_get_current_limit(rdev);
1108 if (ret > 0)
1109 count += scnprintf(buf + count, len - count,
1110 "at %d mA ", ret / 1000);
1111 }
1112
1113 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1114 count += scnprintf(buf + count, len - count, "fast ");
1115 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1116 count += scnprintf(buf + count, len - count, "normal ");
1117 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1118 count += scnprintf(buf + count, len - count, "idle ");
1119 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1120 count += scnprintf(buf + count, len - count, "standby ");
1121
1122 if (!count)
1123 count = scnprintf(buf, len, "no parameters");
1124 else
1125 --count;
1126
1127 count += scnprintf(buf + count, len - count, ", %s",
1128 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1129
1130 rdev_dbg(rdev, "%s\n", buf);
1131 }
1132 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1133 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1134 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1135
1136 static void print_constraints(struct regulator_dev *rdev)
1137 {
1138 struct regulation_constraints *constraints = rdev->constraints;
1139
1140 print_constraints_debug(rdev);
1141
1142 if ((constraints->min_uV != constraints->max_uV) &&
1143 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1144 rdev_warn(rdev,
1145 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1146 }
1147
1148 static int machine_constraints_voltage(struct regulator_dev *rdev,
1149 struct regulation_constraints *constraints)
1150 {
1151 const struct regulator_ops *ops = rdev->desc->ops;
1152 int ret;
1153
1154 /* do we need to apply the constraint voltage */
1155 if (rdev->constraints->apply_uV &&
1156 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1157 int target_min, target_max;
1158 int current_uV = regulator_get_voltage_rdev(rdev);
1159
1160 if (current_uV == -ENOTRECOVERABLE) {
1161 /* This regulator can't be read and must be initialized */
1162 rdev_info(rdev, "Setting %d-%duV\n",
1163 rdev->constraints->min_uV,
1164 rdev->constraints->max_uV);
1165 _regulator_do_set_voltage(rdev,
1166 rdev->constraints->min_uV,
1167 rdev->constraints->max_uV);
1168 current_uV = regulator_get_voltage_rdev(rdev);
1169 }
1170
1171 if (current_uV < 0) {
1172 rdev_err(rdev,
1173 "failed to get the current voltage: %pe\n",
1174 ERR_PTR(current_uV));
1175 return current_uV;
1176 }
1177
1178 /*
1179 * If we're below the minimum voltage move up to the
1180 * minimum voltage, if we're above the maximum voltage
1181 * then move down to the maximum.
1182 */
1183 target_min = current_uV;
1184 target_max = current_uV;
1185
1186 if (current_uV < rdev->constraints->min_uV) {
1187 target_min = rdev->constraints->min_uV;
1188 target_max = rdev->constraints->min_uV;
1189 }
1190
1191 if (current_uV > rdev->constraints->max_uV) {
1192 target_min = rdev->constraints->max_uV;
1193 target_max = rdev->constraints->max_uV;
1194 }
1195
1196 if (target_min != current_uV || target_max != current_uV) {
1197 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1198 current_uV, target_min, target_max);
1199 ret = _regulator_do_set_voltage(
1200 rdev, target_min, target_max);
1201 if (ret < 0) {
1202 rdev_err(rdev,
1203 "failed to apply %d-%duV constraint: %pe\n",
1204 target_min, target_max, ERR_PTR(ret));
1205 return ret;
1206 }
1207 }
1208 }
1209
1210 /* constrain machine-level voltage specs to fit
1211 * the actual range supported by this regulator.
1212 */
1213 if (ops->list_voltage && rdev->desc->n_voltages) {
1214 int count = rdev->desc->n_voltages;
1215 int i;
1216 int min_uV = INT_MAX;
1217 int max_uV = INT_MIN;
1218 int cmin = constraints->min_uV;
1219 int cmax = constraints->max_uV;
1220
1221 /* it's safe to autoconfigure fixed-voltage supplies
1222 and the constraints are used by list_voltage. */
1223 if (count == 1 && !cmin) {
1224 cmin = 1;
1225 cmax = INT_MAX;
1226 constraints->min_uV = cmin;
1227 constraints->max_uV = cmax;
1228 }
1229
1230 /* voltage constraints are optional */
1231 if ((cmin == 0) && (cmax == 0))
1232 return 0;
1233
1234 /* else require explicit machine-level constraints */
1235 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1236 rdev_err(rdev, "invalid voltage constraints\n");
1237 return -EINVAL;
1238 }
1239
1240 /* no need to loop voltages if range is continuous */
1241 if (rdev->desc->continuous_voltage_range)
1242 return 0;
1243
1244 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1245 for (i = 0; i < count; i++) {
1246 int value;
1247
1248 value = ops->list_voltage(rdev, i);
1249 if (value <= 0)
1250 continue;
1251
1252 /* maybe adjust [min_uV..max_uV] */
1253 if (value >= cmin && value < min_uV)
1254 min_uV = value;
1255 if (value <= cmax && value > max_uV)
1256 max_uV = value;
1257 }
1258
1259 /* final: [min_uV..max_uV] valid iff constraints valid */
1260 if (max_uV < min_uV) {
1261 rdev_err(rdev,
1262 "unsupportable voltage constraints %u-%uuV\n",
1263 min_uV, max_uV);
1264 return -EINVAL;
1265 }
1266
1267 /* use regulator's subset of machine constraints */
1268 if (constraints->min_uV < min_uV) {
1269 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1270 constraints->min_uV, min_uV);
1271 constraints->min_uV = min_uV;
1272 }
1273 if (constraints->max_uV > max_uV) {
1274 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1275 constraints->max_uV, max_uV);
1276 constraints->max_uV = max_uV;
1277 }
1278 }
1279
1280 return 0;
1281 }
1282
1283 static int machine_constraints_current(struct regulator_dev *rdev,
1284 struct regulation_constraints *constraints)
1285 {
1286 const struct regulator_ops *ops = rdev->desc->ops;
1287 int ret;
1288
1289 if (!constraints->min_uA && !constraints->max_uA)
1290 return 0;
1291
1292 if (constraints->min_uA > constraints->max_uA) {
1293 rdev_err(rdev, "Invalid current constraints\n");
1294 return -EINVAL;
1295 }
1296
1297 if (!ops->set_current_limit || !ops->get_current_limit) {
1298 rdev_warn(rdev, "Operation of current configuration missing\n");
1299 return 0;
1300 }
1301
1302 /* Set regulator current in constraints range */
1303 ret = ops->set_current_limit(rdev, constraints->min_uA,
1304 constraints->max_uA);
1305 if (ret < 0) {
1306 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1307 return ret;
1308 }
1309
1310 return 0;
1311 }
1312
1313 static int _regulator_do_enable(struct regulator_dev *rdev);
1314
1315 /**
1316 * set_machine_constraints - sets regulator constraints
1317 * @rdev: regulator source
1318 * @constraints: constraints to apply
1319 *
1320 * Allows platform initialisation code to define and constrain
1321 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1322 * Constraints *must* be set by platform code in order for some
1323 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1324 * set_mode.
1325 */
1326 static int set_machine_constraints(struct regulator_dev *rdev,
1327 const struct regulation_constraints *constraints)
1328 {
1329 int ret = 0;
1330 const struct regulator_ops *ops = rdev->desc->ops;
1331
1332 if (constraints)
1333 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1334 GFP_KERNEL);
1335 else
1336 rdev->constraints = kzalloc(sizeof(*constraints),
1337 GFP_KERNEL);
1338 if (!rdev->constraints)
1339 return -ENOMEM;
1340
1341 ret = machine_constraints_voltage(rdev, rdev->constraints);
1342 if (ret != 0)
1343 return ret;
1344
1345 ret = machine_constraints_current(rdev, rdev->constraints);
1346 if (ret != 0)
1347 return ret;
1348
1349 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1350 ret = ops->set_input_current_limit(rdev,
1351 rdev->constraints->ilim_uA);
1352 if (ret < 0) {
1353 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1354 return ret;
1355 }
1356 }
1357
1358 /* do we need to setup our suspend state */
1359 if (rdev->constraints->initial_state) {
1360 ret = suspend_set_initial_state(rdev);
1361 if (ret < 0) {
1362 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1363 return ret;
1364 }
1365 }
1366
1367 if (rdev->constraints->initial_mode) {
1368 if (!ops->set_mode) {
1369 rdev_err(rdev, "no set_mode operation\n");
1370 return -EINVAL;
1371 }
1372
1373 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1374 if (ret < 0) {
1375 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1376 return ret;
1377 }
1378 } else if (rdev->constraints->system_load) {
1379 /*
1380 * We'll only apply the initial system load if an
1381 * initial mode wasn't specified.
1382 */
1383 drms_uA_update(rdev);
1384 }
1385
1386 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1387 && ops->set_ramp_delay) {
1388 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1389 if (ret < 0) {
1390 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1391 return ret;
1392 }
1393 }
1394
1395 if (rdev->constraints->pull_down && ops->set_pull_down) {
1396 ret = ops->set_pull_down(rdev);
1397 if (ret < 0) {
1398 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1399 return ret;
1400 }
1401 }
1402
1403 if (rdev->constraints->soft_start && ops->set_soft_start) {
1404 ret = ops->set_soft_start(rdev);
1405 if (ret < 0) {
1406 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1407 return ret;
1408 }
1409 }
1410
1411 if (rdev->constraints->over_current_protection
1412 && ops->set_over_current_protection) {
1413 ret = ops->set_over_current_protection(rdev);
1414 if (ret < 0) {
1415 rdev_err(rdev, "failed to set over current protection: %pe\n",
1416 ERR_PTR(ret));
1417 return ret;
1418 }
1419 }
1420
1421 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1422 bool ad_state = (rdev->constraints->active_discharge ==
1423 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1424
1425 ret = ops->set_active_discharge(rdev, ad_state);
1426 if (ret < 0) {
1427 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1428 return ret;
1429 }
1430 }
1431
1432 /* If the constraints say the regulator should be on at this point
1433 * and we have control then make sure it is enabled.
1434 */
1435 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1436 if (rdev->supply) {
1437 ret = regulator_enable(rdev->supply);
1438 if (ret < 0) {
1439 _regulator_put(rdev->supply);
1440 rdev->supply = NULL;
1441 return ret;
1442 }
1443 }
1444
1445 ret = _regulator_do_enable(rdev);
1446 if (ret < 0 && ret != -EINVAL) {
1447 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1448 return ret;
1449 }
1450
1451 if (rdev->constraints->always_on)
1452 rdev->use_count++;
1453 }
1454
1455 print_constraints(rdev);
1456 return 0;
1457 }
1458
1459 /**
1460 * set_supply - set regulator supply regulator
1461 * @rdev: regulator name
1462 * @supply_rdev: supply regulator name
1463 *
1464 * Called by platform initialisation code to set the supply regulator for this
1465 * regulator. This ensures that a regulators supply will also be enabled by the
1466 * core if it's child is enabled.
1467 */
1468 static int set_supply(struct regulator_dev *rdev,
1469 struct regulator_dev *supply_rdev)
1470 {
1471 int err;
1472
1473 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1474
1475 if (!try_module_get(supply_rdev->owner))
1476 return -ENODEV;
1477
1478 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1479 if (rdev->supply == NULL) {
1480 err = -ENOMEM;
1481 return err;
1482 }
1483 supply_rdev->open_count++;
1484
1485 return 0;
1486 }
1487
1488 /**
1489 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1490 * @rdev: regulator source
1491 * @consumer_dev_name: dev_name() string for device supply applies to
1492 * @supply: symbolic name for supply
1493 *
1494 * Allows platform initialisation code to map physical regulator
1495 * sources to symbolic names for supplies for use by devices. Devices
1496 * should use these symbolic names to request regulators, avoiding the
1497 * need to provide board-specific regulator names as platform data.
1498 */
1499 static int set_consumer_device_supply(struct regulator_dev *rdev,
1500 const char *consumer_dev_name,
1501 const char *supply)
1502 {
1503 struct regulator_map *node, *new_node;
1504 int has_dev;
1505
1506 if (supply == NULL)
1507 return -EINVAL;
1508
1509 if (consumer_dev_name != NULL)
1510 has_dev = 1;
1511 else
1512 has_dev = 0;
1513
1514 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1515 if (new_node == NULL)
1516 return -ENOMEM;
1517
1518 new_node->regulator = rdev;
1519 new_node->supply = supply;
1520
1521 if (has_dev) {
1522 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1523 if (new_node->dev_name == NULL) {
1524 kfree(new_node);
1525 return -ENOMEM;
1526 }
1527 }
1528
1529 mutex_lock(&regulator_list_mutex);
1530 list_for_each_entry(node, &regulator_map_list, list) {
1531 if (node->dev_name && consumer_dev_name) {
1532 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1533 continue;
1534 } else if (node->dev_name || consumer_dev_name) {
1535 continue;
1536 }
1537
1538 if (strcmp(node->supply, supply) != 0)
1539 continue;
1540
1541 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1542 consumer_dev_name,
1543 dev_name(&node->regulator->dev),
1544 node->regulator->desc->name,
1545 supply,
1546 dev_name(&rdev->dev), rdev_get_name(rdev));
1547 goto fail;
1548 }
1549
1550 list_add(&new_node->list, &regulator_map_list);
1551 mutex_unlock(&regulator_list_mutex);
1552
1553 return 0;
1554
1555 fail:
1556 mutex_unlock(&regulator_list_mutex);
1557 kfree(new_node->dev_name);
1558 kfree(new_node);
1559 return -EBUSY;
1560 }
1561
1562 static void unset_regulator_supplies(struct regulator_dev *rdev)
1563 {
1564 struct regulator_map *node, *n;
1565
1566 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1567 if (rdev == node->regulator) {
1568 list_del(&node->list);
1569 kfree(node->dev_name);
1570 kfree(node);
1571 }
1572 }
1573 }
1574
1575 #ifdef CONFIG_DEBUG_FS
1576 static ssize_t constraint_flags_read_file(struct file *file,
1577 char __user *user_buf,
1578 size_t count, loff_t *ppos)
1579 {
1580 const struct regulator *regulator = file->private_data;
1581 const struct regulation_constraints *c = regulator->rdev->constraints;
1582 char *buf;
1583 ssize_t ret;
1584
1585 if (!c)
1586 return 0;
1587
1588 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1589 if (!buf)
1590 return -ENOMEM;
1591
1592 ret = snprintf(buf, PAGE_SIZE,
1593 "always_on: %u\n"
1594 "boot_on: %u\n"
1595 "apply_uV: %u\n"
1596 "ramp_disable: %u\n"
1597 "soft_start: %u\n"
1598 "pull_down: %u\n"
1599 "over_current_protection: %u\n",
1600 c->always_on,
1601 c->boot_on,
1602 c->apply_uV,
1603 c->ramp_disable,
1604 c->soft_start,
1605 c->pull_down,
1606 c->over_current_protection);
1607
1608 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1609 kfree(buf);
1610
1611 return ret;
1612 }
1613
1614 #endif
1615
1616 static const struct file_operations constraint_flags_fops = {
1617 #ifdef CONFIG_DEBUG_FS
1618 .open = simple_open,
1619 .read = constraint_flags_read_file,
1620 .llseek = default_llseek,
1621 #endif
1622 };
1623
1624 #define REG_STR_SIZE 64
1625
1626 static struct regulator *create_regulator(struct regulator_dev *rdev,
1627 struct device *dev,
1628 const char *supply_name)
1629 {
1630 struct regulator *regulator;
1631 int err;
1632
1633 if (dev) {
1634 char buf[REG_STR_SIZE];
1635 int size;
1636
1637 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1638 dev->kobj.name, supply_name);
1639 if (size >= REG_STR_SIZE)
1640 return NULL;
1641
1642 supply_name = kstrdup(buf, GFP_KERNEL);
1643 if (supply_name == NULL)
1644 return NULL;
1645 } else {
1646 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1647 if (supply_name == NULL)
1648 return NULL;
1649 }
1650
1651 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1652 if (regulator == NULL) {
1653 kfree(supply_name);
1654 return NULL;
1655 }
1656
1657 regulator->rdev = rdev;
1658 regulator->supply_name = supply_name;
1659
1660 regulator_lock(rdev);
1661 list_add(&regulator->list, &rdev->consumer_list);
1662 regulator_unlock(rdev);
1663
1664 if (dev) {
1665 regulator->dev = dev;
1666
1667 /* Add a link to the device sysfs entry */
1668 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1669 supply_name);
1670 if (err) {
1671 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1672 dev->kobj.name, ERR_PTR(err));
1673 /* non-fatal */
1674 }
1675 }
1676
1677 regulator->debugfs = debugfs_create_dir(supply_name,
1678 rdev->debugfs);
1679 if (!regulator->debugfs) {
1680 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1681 } else {
1682 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1683 &regulator->uA_load);
1684 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1685 &regulator->voltage[PM_SUSPEND_ON].min_uV);
1686 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1687 &regulator->voltage[PM_SUSPEND_ON].max_uV);
1688 debugfs_create_file("constraint_flags", 0444,
1689 regulator->debugfs, regulator,
1690 &constraint_flags_fops);
1691 }
1692
1693 /*
1694 * Check now if the regulator is an always on regulator - if
1695 * it is then we don't need to do nearly so much work for
1696 * enable/disable calls.
1697 */
1698 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1699 _regulator_is_enabled(rdev))
1700 regulator->always_on = true;
1701
1702 return regulator;
1703 }
1704
1705 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1706 {
1707 if (rdev->constraints && rdev->constraints->enable_time)
1708 return rdev->constraints->enable_time;
1709 if (rdev->desc->ops->enable_time)
1710 return rdev->desc->ops->enable_time(rdev);
1711 return rdev->desc->enable_time;
1712 }
1713
1714 static struct regulator_supply_alias *regulator_find_supply_alias(
1715 struct device *dev, const char *supply)
1716 {
1717 struct regulator_supply_alias *map;
1718
1719 list_for_each_entry(map, &regulator_supply_alias_list, list)
1720 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1721 return map;
1722
1723 return NULL;
1724 }
1725
1726 static void regulator_supply_alias(struct device **dev, const char **supply)
1727 {
1728 struct regulator_supply_alias *map;
1729
1730 map = regulator_find_supply_alias(*dev, *supply);
1731 if (map) {
1732 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1733 *supply, map->alias_supply,
1734 dev_name(map->alias_dev));
1735 *dev = map->alias_dev;
1736 *supply = map->alias_supply;
1737 }
1738 }
1739
1740 static int regulator_match(struct device *dev, const void *data)
1741 {
1742 struct regulator_dev *r = dev_to_rdev(dev);
1743
1744 return strcmp(rdev_get_name(r), data) == 0;
1745 }
1746
1747 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1748 {
1749 struct device *dev;
1750
1751 dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1752
1753 return dev ? dev_to_rdev(dev) : NULL;
1754 }
1755
1756 /**
1757 * regulator_dev_lookup - lookup a regulator device.
1758 * @dev: device for regulator "consumer".
1759 * @supply: Supply name or regulator ID.
1760 *
1761 * If successful, returns a struct regulator_dev that corresponds to the name
1762 * @supply and with the embedded struct device refcount incremented by one.
1763 * The refcount must be dropped by calling put_device().
1764 * On failure one of the following ERR-PTR-encoded values is returned:
1765 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1766 * in the future.
1767 */
1768 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1769 const char *supply)
1770 {
1771 struct regulator_dev *r = NULL;
1772 struct device_node *node;
1773 struct regulator_map *map;
1774 const char *devname = NULL;
1775
1776 regulator_supply_alias(&dev, &supply);
1777
1778 /* first do a dt based lookup */
1779 if (dev && dev->of_node) {
1780 node = of_get_regulator(dev, supply);
1781 if (node) {
1782 r = of_find_regulator_by_node(node);
1783 if (r)
1784 return r;
1785
1786 /*
1787 * We have a node, but there is no device.
1788 * assume it has not registered yet.
1789 */
1790 return ERR_PTR(-EPROBE_DEFER);
1791 }
1792 }
1793
1794 /* if not found, try doing it non-dt way */
1795 if (dev)
1796 devname = dev_name(dev);
1797
1798 mutex_lock(&regulator_list_mutex);
1799 list_for_each_entry(map, &regulator_map_list, list) {
1800 /* If the mapping has a device set up it must match */
1801 if (map->dev_name &&
1802 (!devname || strcmp(map->dev_name, devname)))
1803 continue;
1804
1805 if (strcmp(map->supply, supply) == 0 &&
1806 get_device(&map->regulator->dev)) {
1807 r = map->regulator;
1808 break;
1809 }
1810 }
1811 mutex_unlock(&regulator_list_mutex);
1812
1813 if (r)
1814 return r;
1815
1816 r = regulator_lookup_by_name(supply);
1817 if (r)
1818 return r;
1819
1820 return ERR_PTR(-ENODEV);
1821 }
1822
1823 static int regulator_resolve_supply(struct regulator_dev *rdev)
1824 {
1825 struct regulator_dev *r;
1826 struct device *dev = rdev->dev.parent;
1827 int ret;
1828
1829 /* No supply to resolve? */
1830 if (!rdev->supply_name)
1831 return 0;
1832
1833 /* Supply already resolved? */
1834 if (rdev->supply)
1835 return 0;
1836
1837 r = regulator_dev_lookup(dev, rdev->supply_name);
1838 if (IS_ERR(r)) {
1839 ret = PTR_ERR(r);
1840
1841 /* Did the lookup explicitly defer for us? */
1842 if (ret == -EPROBE_DEFER)
1843 return ret;
1844
1845 if (have_full_constraints()) {
1846 r = dummy_regulator_rdev;
1847 get_device(&r->dev);
1848 } else {
1849 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1850 rdev->supply_name, rdev->desc->name);
1851 return -EPROBE_DEFER;
1852 }
1853 }
1854
1855 /*
1856 * If the supply's parent device is not the same as the
1857 * regulator's parent device, then ensure the parent device
1858 * is bound before we resolve the supply, in case the parent
1859 * device get probe deferred and unregisters the supply.
1860 */
1861 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1862 if (!device_is_bound(r->dev.parent)) {
1863 put_device(&r->dev);
1864 return -EPROBE_DEFER;
1865 }
1866 }
1867
1868 /* Recursively resolve the supply of the supply */
1869 ret = regulator_resolve_supply(r);
1870 if (ret < 0) {
1871 put_device(&r->dev);
1872 return ret;
1873 }
1874
1875 ret = set_supply(rdev, r);
1876 if (ret < 0) {
1877 put_device(&r->dev);
1878 return ret;
1879 }
1880
1881 /*
1882 * In set_machine_constraints() we may have turned this regulator on
1883 * but we couldn't propagate to the supply if it hadn't been resolved
1884 * yet. Do it now.
1885 */
1886 if (rdev->use_count) {
1887 ret = regulator_enable(rdev->supply);
1888 if (ret < 0) {
1889 _regulator_put(rdev->supply);
1890 rdev->supply = NULL;
1891 return ret;
1892 }
1893 }
1894
1895 return 0;
1896 }
1897
1898 /* Internal regulator request function */
1899 struct regulator *_regulator_get(struct device *dev, const char *id,
1900 enum regulator_get_type get_type)
1901 {
1902 struct regulator_dev *rdev;
1903 struct regulator *regulator;
1904 struct device_link *link;
1905 int ret;
1906
1907 if (get_type >= MAX_GET_TYPE) {
1908 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1909 return ERR_PTR(-EINVAL);
1910 }
1911
1912 if (id == NULL) {
1913 pr_err("get() with no identifier\n");
1914 return ERR_PTR(-EINVAL);
1915 }
1916
1917 rdev = regulator_dev_lookup(dev, id);
1918 if (IS_ERR(rdev)) {
1919 ret = PTR_ERR(rdev);
1920
1921 /*
1922 * If regulator_dev_lookup() fails with error other
1923 * than -ENODEV our job here is done, we simply return it.
1924 */
1925 if (ret != -ENODEV)
1926 return ERR_PTR(ret);
1927
1928 if (!have_full_constraints()) {
1929 dev_warn(dev,
1930 "incomplete constraints, dummy supplies not allowed\n");
1931 return ERR_PTR(-ENODEV);
1932 }
1933
1934 switch (get_type) {
1935 case NORMAL_GET:
1936 /*
1937 * Assume that a regulator is physically present and
1938 * enabled, even if it isn't hooked up, and just
1939 * provide a dummy.
1940 */
1941 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1942 rdev = dummy_regulator_rdev;
1943 get_device(&rdev->dev);
1944 break;
1945
1946 case EXCLUSIVE_GET:
1947 dev_warn(dev,
1948 "dummy supplies not allowed for exclusive requests\n");
1949 fallthrough;
1950
1951 default:
1952 return ERR_PTR(-ENODEV);
1953 }
1954 }
1955
1956 if (rdev->exclusive) {
1957 regulator = ERR_PTR(-EPERM);
1958 put_device(&rdev->dev);
1959 return regulator;
1960 }
1961
1962 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1963 regulator = ERR_PTR(-EBUSY);
1964 put_device(&rdev->dev);
1965 return regulator;
1966 }
1967
1968 mutex_lock(&regulator_list_mutex);
1969 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1970 mutex_unlock(&regulator_list_mutex);
1971
1972 if (ret != 0) {
1973 regulator = ERR_PTR(-EPROBE_DEFER);
1974 put_device(&rdev->dev);
1975 return regulator;
1976 }
1977
1978 ret = regulator_resolve_supply(rdev);
1979 if (ret < 0) {
1980 regulator = ERR_PTR(ret);
1981 put_device(&rdev->dev);
1982 return regulator;
1983 }
1984
1985 if (!try_module_get(rdev->owner)) {
1986 regulator = ERR_PTR(-EPROBE_DEFER);
1987 put_device(&rdev->dev);
1988 return regulator;
1989 }
1990
1991 regulator = create_regulator(rdev, dev, id);
1992 if (regulator == NULL) {
1993 regulator = ERR_PTR(-ENOMEM);
1994 module_put(rdev->owner);
1995 put_device(&rdev->dev);
1996 return regulator;
1997 }
1998
1999 rdev->open_count++;
2000 if (get_type == EXCLUSIVE_GET) {
2001 rdev->exclusive = 1;
2002
2003 ret = _regulator_is_enabled(rdev);
2004 if (ret > 0)
2005 rdev->use_count = 1;
2006 else
2007 rdev->use_count = 0;
2008 }
2009
2010 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2011 if (!IS_ERR_OR_NULL(link))
2012 regulator->device_link = true;
2013
2014 return regulator;
2015 }
2016
2017 /**
2018 * regulator_get - lookup and obtain a reference to a regulator.
2019 * @dev: device for regulator "consumer"
2020 * @id: Supply name or regulator ID.
2021 *
2022 * Returns a struct regulator corresponding to the regulator producer,
2023 * or IS_ERR() condition containing errno.
2024 *
2025 * Use of supply names configured via regulator_set_device_supply() is
2026 * strongly encouraged. It is recommended that the supply name used
2027 * should match the name used for the supply and/or the relevant
2028 * device pins in the datasheet.
2029 */
2030 struct regulator *regulator_get(struct device *dev, const char *id)
2031 {
2032 return _regulator_get(dev, id, NORMAL_GET);
2033 }
2034 EXPORT_SYMBOL_GPL(regulator_get);
2035
2036 /**
2037 * regulator_get_exclusive - obtain exclusive access to a regulator.
2038 * @dev: device for regulator "consumer"
2039 * @id: Supply name or regulator ID.
2040 *
2041 * Returns a struct regulator corresponding to the regulator producer,
2042 * or IS_ERR() condition containing errno. Other consumers will be
2043 * unable to obtain this regulator while this reference is held and the
2044 * use count for the regulator will be initialised to reflect the current
2045 * state of the regulator.
2046 *
2047 * This is intended for use by consumers which cannot tolerate shared
2048 * use of the regulator such as those which need to force the
2049 * regulator off for correct operation of the hardware they are
2050 * controlling.
2051 *
2052 * Use of supply names configured via regulator_set_device_supply() is
2053 * strongly encouraged. It is recommended that the supply name used
2054 * should match the name used for the supply and/or the relevant
2055 * device pins in the datasheet.
2056 */
2057 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2058 {
2059 return _regulator_get(dev, id, EXCLUSIVE_GET);
2060 }
2061 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2062
2063 /**
2064 * regulator_get_optional - obtain optional access to a regulator.
2065 * @dev: device for regulator "consumer"
2066 * @id: Supply name or regulator ID.
2067 *
2068 * Returns a struct regulator corresponding to the regulator producer,
2069 * or IS_ERR() condition containing errno.
2070 *
2071 * This is intended for use by consumers for devices which can have
2072 * some supplies unconnected in normal use, such as some MMC devices.
2073 * It can allow the regulator core to provide stub supplies for other
2074 * supplies requested using normal regulator_get() calls without
2075 * disrupting the operation of drivers that can handle absent
2076 * supplies.
2077 *
2078 * Use of supply names configured via regulator_set_device_supply() is
2079 * strongly encouraged. It is recommended that the supply name used
2080 * should match the name used for the supply and/or the relevant
2081 * device pins in the datasheet.
2082 */
2083 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2084 {
2085 return _regulator_get(dev, id, OPTIONAL_GET);
2086 }
2087 EXPORT_SYMBOL_GPL(regulator_get_optional);
2088
2089 static void destroy_regulator(struct regulator *regulator)
2090 {
2091 struct regulator_dev *rdev = regulator->rdev;
2092
2093 debugfs_remove_recursive(regulator->debugfs);
2094
2095 if (regulator->dev) {
2096 if (regulator->device_link)
2097 device_link_remove(regulator->dev, &rdev->dev);
2098
2099 /* remove any sysfs entries */
2100 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2101 }
2102
2103 regulator_lock(rdev);
2104 list_del(&regulator->list);
2105
2106 rdev->open_count--;
2107 rdev->exclusive = 0;
2108 regulator_unlock(rdev);
2109
2110 kfree_const(regulator->supply_name);
2111 kfree(regulator);
2112 }
2113
2114 /* regulator_list_mutex lock held by regulator_put() */
2115 static void _regulator_put(struct regulator *regulator)
2116 {
2117 struct regulator_dev *rdev;
2118
2119 if (IS_ERR_OR_NULL(regulator))
2120 return;
2121
2122 lockdep_assert_held_once(&regulator_list_mutex);
2123
2124 /* Docs say you must disable before calling regulator_put() */
2125 WARN_ON(regulator->enable_count);
2126
2127 rdev = regulator->rdev;
2128
2129 destroy_regulator(regulator);
2130
2131 module_put(rdev->owner);
2132 put_device(&rdev->dev);
2133 }
2134
2135 /**
2136 * regulator_put - "free" the regulator source
2137 * @regulator: regulator source
2138 *
2139 * Note: drivers must ensure that all regulator_enable calls made on this
2140 * regulator source are balanced by regulator_disable calls prior to calling
2141 * this function.
2142 */
2143 void regulator_put(struct regulator *regulator)
2144 {
2145 mutex_lock(&regulator_list_mutex);
2146 _regulator_put(regulator);
2147 mutex_unlock(&regulator_list_mutex);
2148 }
2149 EXPORT_SYMBOL_GPL(regulator_put);
2150
2151 /**
2152 * regulator_register_supply_alias - Provide device alias for supply lookup
2153 *
2154 * @dev: device that will be given as the regulator "consumer"
2155 * @id: Supply name or regulator ID
2156 * @alias_dev: device that should be used to lookup the supply
2157 * @alias_id: Supply name or regulator ID that should be used to lookup the
2158 * supply
2159 *
2160 * All lookups for id on dev will instead be conducted for alias_id on
2161 * alias_dev.
2162 */
2163 int regulator_register_supply_alias(struct device *dev, const char *id,
2164 struct device *alias_dev,
2165 const char *alias_id)
2166 {
2167 struct regulator_supply_alias *map;
2168
2169 map = regulator_find_supply_alias(dev, id);
2170 if (map)
2171 return -EEXIST;
2172
2173 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2174 if (!map)
2175 return -ENOMEM;
2176
2177 map->src_dev = dev;
2178 map->src_supply = id;
2179 map->alias_dev = alias_dev;
2180 map->alias_supply = alias_id;
2181
2182 list_add(&map->list, &regulator_supply_alias_list);
2183
2184 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2185 id, dev_name(dev), alias_id, dev_name(alias_dev));
2186
2187 return 0;
2188 }
2189 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2190
2191 /**
2192 * regulator_unregister_supply_alias - Remove device alias
2193 *
2194 * @dev: device that will be given as the regulator "consumer"
2195 * @id: Supply name or regulator ID
2196 *
2197 * Remove a lookup alias if one exists for id on dev.
2198 */
2199 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2200 {
2201 struct regulator_supply_alias *map;
2202
2203 map = regulator_find_supply_alias(dev, id);
2204 if (map) {
2205 list_del(&map->list);
2206 kfree(map);
2207 }
2208 }
2209 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2210
2211 /**
2212 * regulator_bulk_register_supply_alias - register multiple aliases
2213 *
2214 * @dev: device that will be given as the regulator "consumer"
2215 * @id: List of supply names or regulator IDs
2216 * @alias_dev: device that should be used to lookup the supply
2217 * @alias_id: List of supply names or regulator IDs that should be used to
2218 * lookup the supply
2219 * @num_id: Number of aliases to register
2220 *
2221 * @return 0 on success, an errno on failure.
2222 *
2223 * This helper function allows drivers to register several supply
2224 * aliases in one operation. If any of the aliases cannot be
2225 * registered any aliases that were registered will be removed
2226 * before returning to the caller.
2227 */
2228 int regulator_bulk_register_supply_alias(struct device *dev,
2229 const char *const *id,
2230 struct device *alias_dev,
2231 const char *const *alias_id,
2232 int num_id)
2233 {
2234 int i;
2235 int ret;
2236
2237 for (i = 0; i < num_id; ++i) {
2238 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2239 alias_id[i]);
2240 if (ret < 0)
2241 goto err;
2242 }
2243
2244 return 0;
2245
2246 err:
2247 dev_err(dev,
2248 "Failed to create supply alias %s,%s -> %s,%s\n",
2249 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2250
2251 while (--i >= 0)
2252 regulator_unregister_supply_alias(dev, id[i]);
2253
2254 return ret;
2255 }
2256 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2257
2258 /**
2259 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2260 *
2261 * @dev: device that will be given as the regulator "consumer"
2262 * @id: List of supply names or regulator IDs
2263 * @num_id: Number of aliases to unregister
2264 *
2265 * This helper function allows drivers to unregister several supply
2266 * aliases in one operation.
2267 */
2268 void regulator_bulk_unregister_supply_alias(struct device *dev,
2269 const char *const *id,
2270 int num_id)
2271 {
2272 int i;
2273
2274 for (i = 0; i < num_id; ++i)
2275 regulator_unregister_supply_alias(dev, id[i]);
2276 }
2277 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2278
2279
2280 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2281 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2282 const struct regulator_config *config)
2283 {
2284 struct regulator_enable_gpio *pin, *new_pin;
2285 struct gpio_desc *gpiod;
2286
2287 gpiod = config->ena_gpiod;
2288 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2289
2290 mutex_lock(&regulator_list_mutex);
2291
2292 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2293 if (pin->gpiod == gpiod) {
2294 rdev_dbg(rdev, "GPIO is already used\n");
2295 goto update_ena_gpio_to_rdev;
2296 }
2297 }
2298
2299 if (new_pin == NULL) {
2300 mutex_unlock(&regulator_list_mutex);
2301 return -ENOMEM;
2302 }
2303
2304 pin = new_pin;
2305 new_pin = NULL;
2306
2307 pin->gpiod = gpiod;
2308 list_add(&pin->list, &regulator_ena_gpio_list);
2309
2310 update_ena_gpio_to_rdev:
2311 pin->request_count++;
2312 rdev->ena_pin = pin;
2313
2314 mutex_unlock(&regulator_list_mutex);
2315 kfree(new_pin);
2316
2317 return 0;
2318 }
2319
2320 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2321 {
2322 struct regulator_enable_gpio *pin, *n;
2323
2324 if (!rdev->ena_pin)
2325 return;
2326
2327 /* Free the GPIO only in case of no use */
2328 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2329 if (pin != rdev->ena_pin)
2330 continue;
2331
2332 if (--pin->request_count)
2333 break;
2334
2335 gpiod_put(pin->gpiod);
2336 list_del(&pin->list);
2337 kfree(pin);
2338 break;
2339 }
2340
2341 rdev->ena_pin = NULL;
2342 }
2343
2344 /**
2345 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2346 * @rdev: regulator_dev structure
2347 * @enable: enable GPIO at initial use?
2348 *
2349 * GPIO is enabled in case of initial use. (enable_count is 0)
2350 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2351 */
2352 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2353 {
2354 struct regulator_enable_gpio *pin = rdev->ena_pin;
2355
2356 if (!pin)
2357 return -EINVAL;
2358
2359 if (enable) {
2360 /* Enable GPIO at initial use */
2361 if (pin->enable_count == 0)
2362 gpiod_set_value_cansleep(pin->gpiod, 1);
2363
2364 pin->enable_count++;
2365 } else {
2366 if (pin->enable_count > 1) {
2367 pin->enable_count--;
2368 return 0;
2369 }
2370
2371 /* Disable GPIO if not used */
2372 if (pin->enable_count <= 1) {
2373 gpiod_set_value_cansleep(pin->gpiod, 0);
2374 pin->enable_count = 0;
2375 }
2376 }
2377
2378 return 0;
2379 }
2380
2381 /**
2382 * _regulator_enable_delay - a delay helper function
2383 * @delay: time to delay in microseconds
2384 *
2385 * Delay for the requested amount of time as per the guidelines in:
2386 *
2387 * Documentation/timers/timers-howto.rst
2388 *
2389 * The assumption here is that regulators will never be enabled in
2390 * atomic context and therefore sleeping functions can be used.
2391 */
2392 static void _regulator_enable_delay(unsigned int delay)
2393 {
2394 unsigned int ms = delay / 1000;
2395 unsigned int us = delay % 1000;
2396
2397 if (ms > 0) {
2398 /*
2399 * For small enough values, handle super-millisecond
2400 * delays in the usleep_range() call below.
2401 */
2402 if (ms < 20)
2403 us += ms * 1000;
2404 else
2405 msleep(ms);
2406 }
2407
2408 /*
2409 * Give the scheduler some room to coalesce with any other
2410 * wakeup sources. For delays shorter than 10 us, don't even
2411 * bother setting up high-resolution timers and just busy-
2412 * loop.
2413 */
2414 if (us >= 10)
2415 usleep_range(us, us + 100);
2416 else
2417 udelay(us);
2418 }
2419
2420 /**
2421 * _regulator_check_status_enabled
2422 *
2423 * A helper function to check if the regulator status can be interpreted
2424 * as 'regulator is enabled'.
2425 * @rdev: the regulator device to check
2426 *
2427 * Return:
2428 * * 1 - if status shows regulator is in enabled state
2429 * * 0 - if not enabled state
2430 * * Error Value - as received from ops->get_status()
2431 */
2432 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2433 {
2434 int ret = rdev->desc->ops->get_status(rdev);
2435
2436 if (ret < 0) {
2437 rdev_info(rdev, "get_status returned error: %d\n", ret);
2438 return ret;
2439 }
2440
2441 switch (ret) {
2442 case REGULATOR_STATUS_OFF:
2443 case REGULATOR_STATUS_ERROR:
2444 case REGULATOR_STATUS_UNDEFINED:
2445 return 0;
2446 default:
2447 return 1;
2448 }
2449 }
2450
2451 static int _regulator_do_enable(struct regulator_dev *rdev)
2452 {
2453 int ret, delay;
2454
2455 /* Query before enabling in case configuration dependent. */
2456 ret = _regulator_get_enable_time(rdev);
2457 if (ret >= 0) {
2458 delay = ret;
2459 } else {
2460 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2461 delay = 0;
2462 }
2463
2464 trace_regulator_enable(rdev_get_name(rdev));
2465
2466 if (rdev->desc->off_on_delay) {
2467 /* if needed, keep a distance of off_on_delay from last time
2468 * this regulator was disabled.
2469 */
2470 unsigned long start_jiffy = jiffies;
2471 unsigned long intended, max_delay, remaining;
2472
2473 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2474 intended = rdev->last_off_jiffy + max_delay;
2475
2476 if (time_before(start_jiffy, intended)) {
2477 /* calc remaining jiffies to deal with one-time
2478 * timer wrapping.
2479 * in case of multiple timer wrapping, either it can be
2480 * detected by out-of-range remaining, or it cannot be
2481 * detected and we get a penalty of
2482 * _regulator_enable_delay().
2483 */
2484 remaining = intended - start_jiffy;
2485 if (remaining <= max_delay)
2486 _regulator_enable_delay(
2487 jiffies_to_usecs(remaining));
2488 }
2489 }
2490
2491 if (rdev->ena_pin) {
2492 if (!rdev->ena_gpio_state) {
2493 ret = regulator_ena_gpio_ctrl(rdev, true);
2494 if (ret < 0)
2495 return ret;
2496 rdev->ena_gpio_state = 1;
2497 }
2498 } else if (rdev->desc->ops->enable) {
2499 ret = rdev->desc->ops->enable(rdev);
2500 if (ret < 0)
2501 return ret;
2502 } else {
2503 return -EINVAL;
2504 }
2505
2506 /* Allow the regulator to ramp; it would be useful to extend
2507 * this for bulk operations so that the regulators can ramp
2508 * together. */
2509 trace_regulator_enable_delay(rdev_get_name(rdev));
2510
2511 /* If poll_enabled_time is set, poll upto the delay calculated
2512 * above, delaying poll_enabled_time uS to check if the regulator
2513 * actually got enabled.
2514 * If the regulator isn't enabled after enable_delay has
2515 * expired, return -ETIMEDOUT.
2516 */
2517 if (rdev->desc->poll_enabled_time) {
2518 unsigned int time_remaining = delay;
2519
2520 while (time_remaining > 0) {
2521 _regulator_enable_delay(rdev->desc->poll_enabled_time);
2522
2523 if (rdev->desc->ops->get_status) {
2524 ret = _regulator_check_status_enabled(rdev);
2525 if (ret < 0)
2526 return ret;
2527 else if (ret)
2528 break;
2529 } else if (rdev->desc->ops->is_enabled(rdev))
2530 break;
2531
2532 time_remaining -= rdev->desc->poll_enabled_time;
2533 }
2534
2535 if (time_remaining <= 0) {
2536 rdev_err(rdev, "Enabled check timed out\n");
2537 return -ETIMEDOUT;
2538 }
2539 } else {
2540 _regulator_enable_delay(delay);
2541 }
2542
2543 trace_regulator_enable_complete(rdev_get_name(rdev));
2544
2545 return 0;
2546 }
2547
2548 /**
2549 * _regulator_handle_consumer_enable - handle that a consumer enabled
2550 * @regulator: regulator source
2551 *
2552 * Some things on a regulator consumer (like the contribution towards total
2553 * load on the regulator) only have an effect when the consumer wants the
2554 * regulator enabled. Explained in example with two consumers of the same
2555 * regulator:
2556 * consumer A: set_load(100); => total load = 0
2557 * consumer A: regulator_enable(); => total load = 100
2558 * consumer B: set_load(1000); => total load = 100
2559 * consumer B: regulator_enable(); => total load = 1100
2560 * consumer A: regulator_disable(); => total_load = 1000
2561 *
2562 * This function (together with _regulator_handle_consumer_disable) is
2563 * responsible for keeping track of the refcount for a given regulator consumer
2564 * and applying / unapplying these things.
2565 *
2566 * Returns 0 upon no error; -error upon error.
2567 */
2568 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2569 {
2570 struct regulator_dev *rdev = regulator->rdev;
2571
2572 lockdep_assert_held_once(&rdev->mutex.base);
2573
2574 regulator->enable_count++;
2575 if (regulator->uA_load && regulator->enable_count == 1)
2576 return drms_uA_update(rdev);
2577
2578 return 0;
2579 }
2580
2581 /**
2582 * _regulator_handle_consumer_disable - handle that a consumer disabled
2583 * @regulator: regulator source
2584 *
2585 * The opposite of _regulator_handle_consumer_enable().
2586 *
2587 * Returns 0 upon no error; -error upon error.
2588 */
2589 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2590 {
2591 struct regulator_dev *rdev = regulator->rdev;
2592
2593 lockdep_assert_held_once(&rdev->mutex.base);
2594
2595 if (!regulator->enable_count) {
2596 rdev_err(rdev, "Underflow of regulator enable count\n");
2597 return -EINVAL;
2598 }
2599
2600 regulator->enable_count--;
2601 if (regulator->uA_load && regulator->enable_count == 0)
2602 return drms_uA_update(rdev);
2603
2604 return 0;
2605 }
2606
2607 /* locks held by regulator_enable() */
2608 static int _regulator_enable(struct regulator *regulator)
2609 {
2610 struct regulator_dev *rdev = regulator->rdev;
2611 int ret;
2612
2613 lockdep_assert_held_once(&rdev->mutex.base);
2614
2615 if (rdev->use_count == 0 && rdev->supply) {
2616 ret = _regulator_enable(rdev->supply);
2617 if (ret < 0)
2618 return ret;
2619 }
2620
2621 /* balance only if there are regulators coupled */
2622 if (rdev->coupling_desc.n_coupled > 1) {
2623 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2624 if (ret < 0)
2625 goto err_disable_supply;
2626 }
2627
2628 ret = _regulator_handle_consumer_enable(regulator);
2629 if (ret < 0)
2630 goto err_disable_supply;
2631
2632 if (rdev->use_count == 0) {
2633 /* The regulator may on if it's not switchable or left on */
2634 ret = _regulator_is_enabled(rdev);
2635 if (ret == -EINVAL || ret == 0) {
2636 if (!regulator_ops_is_valid(rdev,
2637 REGULATOR_CHANGE_STATUS)) {
2638 ret = -EPERM;
2639 goto err_consumer_disable;
2640 }
2641
2642 ret = _regulator_do_enable(rdev);
2643 if (ret < 0)
2644 goto err_consumer_disable;
2645
2646 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2647 NULL);
2648 } else if (ret < 0) {
2649 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2650 goto err_consumer_disable;
2651 }
2652 /* Fallthrough on positive return values - already enabled */
2653 }
2654
2655 rdev->use_count++;
2656
2657 return 0;
2658
2659 err_consumer_disable:
2660 _regulator_handle_consumer_disable(regulator);
2661
2662 err_disable_supply:
2663 if (rdev->use_count == 0 && rdev->supply)
2664 _regulator_disable(rdev->supply);
2665
2666 return ret;
2667 }
2668
2669 /**
2670 * regulator_enable - enable regulator output
2671 * @regulator: regulator source
2672 *
2673 * Request that the regulator be enabled with the regulator output at
2674 * the predefined voltage or current value. Calls to regulator_enable()
2675 * must be balanced with calls to regulator_disable().
2676 *
2677 * NOTE: the output value can be set by other drivers, boot loader or may be
2678 * hardwired in the regulator.
2679 */
2680 int regulator_enable(struct regulator *regulator)
2681 {
2682 struct regulator_dev *rdev = regulator->rdev;
2683 struct ww_acquire_ctx ww_ctx;
2684 int ret;
2685
2686 regulator_lock_dependent(rdev, &ww_ctx);
2687 ret = _regulator_enable(regulator);
2688 regulator_unlock_dependent(rdev, &ww_ctx);
2689
2690 return ret;
2691 }
2692 EXPORT_SYMBOL_GPL(regulator_enable);
2693
2694 static int _regulator_do_disable(struct regulator_dev *rdev)
2695 {
2696 int ret;
2697
2698 trace_regulator_disable(rdev_get_name(rdev));
2699
2700 if (rdev->ena_pin) {
2701 if (rdev->ena_gpio_state) {
2702 ret = regulator_ena_gpio_ctrl(rdev, false);
2703 if (ret < 0)
2704 return ret;
2705 rdev->ena_gpio_state = 0;
2706 }
2707
2708 } else if (rdev->desc->ops->disable) {
2709 ret = rdev->desc->ops->disable(rdev);
2710 if (ret != 0)
2711 return ret;
2712 }
2713
2714 /* cares about last_off_jiffy only if off_on_delay is required by
2715 * device.
2716 */
2717 if (rdev->desc->off_on_delay)
2718 rdev->last_off_jiffy = jiffies;
2719
2720 trace_regulator_disable_complete(rdev_get_name(rdev));
2721
2722 return 0;
2723 }
2724
2725 /* locks held by regulator_disable() */
2726 static int _regulator_disable(struct regulator *regulator)
2727 {
2728 struct regulator_dev *rdev = regulator->rdev;
2729 int ret = 0;
2730
2731 lockdep_assert_held_once(&rdev->mutex.base);
2732
2733 if (WARN(rdev->use_count <= 0,
2734 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2735 return -EIO;
2736
2737 /* are we the last user and permitted to disable ? */
2738 if (rdev->use_count == 1 &&
2739 (rdev->constraints && !rdev->constraints->always_on)) {
2740
2741 /* we are last user */
2742 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2743 ret = _notifier_call_chain(rdev,
2744 REGULATOR_EVENT_PRE_DISABLE,
2745 NULL);
2746 if (ret & NOTIFY_STOP_MASK)
2747 return -EINVAL;
2748
2749 ret = _regulator_do_disable(rdev);
2750 if (ret < 0) {
2751 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2752 _notifier_call_chain(rdev,
2753 REGULATOR_EVENT_ABORT_DISABLE,
2754 NULL);
2755 return ret;
2756 }
2757 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2758 NULL);
2759 }
2760
2761 rdev->use_count = 0;
2762 } else if (rdev->use_count > 1) {
2763 rdev->use_count--;
2764 }
2765
2766 if (ret == 0)
2767 ret = _regulator_handle_consumer_disable(regulator);
2768
2769 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2770 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2771
2772 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2773 ret = _regulator_disable(rdev->supply);
2774
2775 return ret;
2776 }
2777
2778 /**
2779 * regulator_disable - disable regulator output
2780 * @regulator: regulator source
2781 *
2782 * Disable the regulator output voltage or current. Calls to
2783 * regulator_enable() must be balanced with calls to
2784 * regulator_disable().
2785 *
2786 * NOTE: this will only disable the regulator output if no other consumer
2787 * devices have it enabled, the regulator device supports disabling and
2788 * machine constraints permit this operation.
2789 */
2790 int regulator_disable(struct regulator *regulator)
2791 {
2792 struct regulator_dev *rdev = regulator->rdev;
2793 struct ww_acquire_ctx ww_ctx;
2794 int ret;
2795
2796 regulator_lock_dependent(rdev, &ww_ctx);
2797 ret = _regulator_disable(regulator);
2798 regulator_unlock_dependent(rdev, &ww_ctx);
2799
2800 return ret;
2801 }
2802 EXPORT_SYMBOL_GPL(regulator_disable);
2803
2804 /* locks held by regulator_force_disable() */
2805 static int _regulator_force_disable(struct regulator_dev *rdev)
2806 {
2807 int ret = 0;
2808
2809 lockdep_assert_held_once(&rdev->mutex.base);
2810
2811 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2812 REGULATOR_EVENT_PRE_DISABLE, NULL);
2813 if (ret & NOTIFY_STOP_MASK)
2814 return -EINVAL;
2815
2816 ret = _regulator_do_disable(rdev);
2817 if (ret < 0) {
2818 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2819 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2820 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2821 return ret;
2822 }
2823
2824 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2825 REGULATOR_EVENT_DISABLE, NULL);
2826
2827 return 0;
2828 }
2829
2830 /**
2831 * regulator_force_disable - force disable regulator output
2832 * @regulator: regulator source
2833 *
2834 * Forcibly disable the regulator output voltage or current.
2835 * NOTE: this *will* disable the regulator output even if other consumer
2836 * devices have it enabled. This should be used for situations when device
2837 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2838 */
2839 int regulator_force_disable(struct regulator *regulator)
2840 {
2841 struct regulator_dev *rdev = regulator->rdev;
2842 struct ww_acquire_ctx ww_ctx;
2843 int ret;
2844
2845 regulator_lock_dependent(rdev, &ww_ctx);
2846
2847 ret = _regulator_force_disable(regulator->rdev);
2848
2849 if (rdev->coupling_desc.n_coupled > 1)
2850 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2851
2852 if (regulator->uA_load) {
2853 regulator->uA_load = 0;
2854 ret = drms_uA_update(rdev);
2855 }
2856
2857 if (rdev->use_count != 0 && rdev->supply)
2858 _regulator_disable(rdev->supply);
2859
2860 regulator_unlock_dependent(rdev, &ww_ctx);
2861
2862 return ret;
2863 }
2864 EXPORT_SYMBOL_GPL(regulator_force_disable);
2865
2866 static void regulator_disable_work(struct work_struct *work)
2867 {
2868 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2869 disable_work.work);
2870 struct ww_acquire_ctx ww_ctx;
2871 int count, i, ret;
2872 struct regulator *regulator;
2873 int total_count = 0;
2874
2875 regulator_lock_dependent(rdev, &ww_ctx);
2876
2877 /*
2878 * Workqueue functions queue the new work instance while the previous
2879 * work instance is being processed. Cancel the queued work instance
2880 * as the work instance under processing does the job of the queued
2881 * work instance.
2882 */
2883 cancel_delayed_work(&rdev->disable_work);
2884
2885 list_for_each_entry(regulator, &rdev->consumer_list, list) {
2886 count = regulator->deferred_disables;
2887
2888 if (!count)
2889 continue;
2890
2891 total_count += count;
2892 regulator->deferred_disables = 0;
2893
2894 for (i = 0; i < count; i++) {
2895 ret = _regulator_disable(regulator);
2896 if (ret != 0)
2897 rdev_err(rdev, "Deferred disable failed: %pe\n",
2898 ERR_PTR(ret));
2899 }
2900 }
2901 WARN_ON(!total_count);
2902
2903 if (rdev->coupling_desc.n_coupled > 1)
2904 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2905
2906 regulator_unlock_dependent(rdev, &ww_ctx);
2907 }
2908
2909 /**
2910 * regulator_disable_deferred - disable regulator output with delay
2911 * @regulator: regulator source
2912 * @ms: milliseconds until the regulator is disabled
2913 *
2914 * Execute regulator_disable() on the regulator after a delay. This
2915 * is intended for use with devices that require some time to quiesce.
2916 *
2917 * NOTE: this will only disable the regulator output if no other consumer
2918 * devices have it enabled, the regulator device supports disabling and
2919 * machine constraints permit this operation.
2920 */
2921 int regulator_disable_deferred(struct regulator *regulator, int ms)
2922 {
2923 struct regulator_dev *rdev = regulator->rdev;
2924
2925 if (!ms)
2926 return regulator_disable(regulator);
2927
2928 regulator_lock(rdev);
2929 regulator->deferred_disables++;
2930 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2931 msecs_to_jiffies(ms));
2932 regulator_unlock(rdev);
2933
2934 return 0;
2935 }
2936 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2937
2938 static int _regulator_is_enabled(struct regulator_dev *rdev)
2939 {
2940 /* A GPIO control always takes precedence */
2941 if (rdev->ena_pin)
2942 return rdev->ena_gpio_state;
2943
2944 /* If we don't know then assume that the regulator is always on */
2945 if (!rdev->desc->ops->is_enabled)
2946 return 1;
2947
2948 return rdev->desc->ops->is_enabled(rdev);
2949 }
2950
2951 static int _regulator_list_voltage(struct regulator_dev *rdev,
2952 unsigned selector, int lock)
2953 {
2954 const struct regulator_ops *ops = rdev->desc->ops;
2955 int ret;
2956
2957 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2958 return rdev->desc->fixed_uV;
2959
2960 if (ops->list_voltage) {
2961 if (selector >= rdev->desc->n_voltages)
2962 return -EINVAL;
2963 if (lock)
2964 regulator_lock(rdev);
2965 ret = ops->list_voltage(rdev, selector);
2966 if (lock)
2967 regulator_unlock(rdev);
2968 } else if (rdev->is_switch && rdev->supply) {
2969 ret = _regulator_list_voltage(rdev->supply->rdev,
2970 selector, lock);
2971 } else {
2972 return -EINVAL;
2973 }
2974
2975 if (ret > 0) {
2976 if (ret < rdev->constraints->min_uV)
2977 ret = 0;
2978 else if (ret > rdev->constraints->max_uV)
2979 ret = 0;
2980 }
2981
2982 return ret;
2983 }
2984
2985 /**
2986 * regulator_is_enabled - is the regulator output enabled
2987 * @regulator: regulator source
2988 *
2989 * Returns positive if the regulator driver backing the source/client
2990 * has requested that the device be enabled, zero if it hasn't, else a
2991 * negative errno code.
2992 *
2993 * Note that the device backing this regulator handle can have multiple
2994 * users, so it might be enabled even if regulator_enable() was never
2995 * called for this particular source.
2996 */
2997 int regulator_is_enabled(struct regulator *regulator)
2998 {
2999 int ret;
3000
3001 if (regulator->always_on)
3002 return 1;
3003
3004 regulator_lock(regulator->rdev);
3005 ret = _regulator_is_enabled(regulator->rdev);
3006 regulator_unlock(regulator->rdev);
3007
3008 return ret;
3009 }
3010 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3011
3012 /**
3013 * regulator_count_voltages - count regulator_list_voltage() selectors
3014 * @regulator: regulator source
3015 *
3016 * Returns number of selectors, or negative errno. Selectors are
3017 * numbered starting at zero, and typically correspond to bitfields
3018 * in hardware registers.
3019 */
3020 int regulator_count_voltages(struct regulator *regulator)
3021 {
3022 struct regulator_dev *rdev = regulator->rdev;
3023
3024 if (rdev->desc->n_voltages)
3025 return rdev->desc->n_voltages;
3026
3027 if (!rdev->is_switch || !rdev->supply)
3028 return -EINVAL;
3029
3030 return regulator_count_voltages(rdev->supply);
3031 }
3032 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3033
3034 /**
3035 * regulator_list_voltage - enumerate supported voltages
3036 * @regulator: regulator source
3037 * @selector: identify voltage to list
3038 * Context: can sleep
3039 *
3040 * Returns a voltage that can be passed to @regulator_set_voltage(),
3041 * zero if this selector code can't be used on this system, or a
3042 * negative errno.
3043 */
3044 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3045 {
3046 return _regulator_list_voltage(regulator->rdev, selector, 1);
3047 }
3048 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3049
3050 /**
3051 * regulator_get_regmap - get the regulator's register map
3052 * @regulator: regulator source
3053 *
3054 * Returns the register map for the given regulator, or an ERR_PTR value
3055 * if the regulator doesn't use regmap.
3056 */
3057 struct regmap *regulator_get_regmap(struct regulator *regulator)
3058 {
3059 struct regmap *map = regulator->rdev->regmap;
3060
3061 return map ? map : ERR_PTR(-EOPNOTSUPP);
3062 }
3063
3064 /**
3065 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3066 * @regulator: regulator source
3067 * @vsel_reg: voltage selector register, output parameter
3068 * @vsel_mask: mask for voltage selector bitfield, output parameter
3069 *
3070 * Returns the hardware register offset and bitmask used for setting the
3071 * regulator voltage. This might be useful when configuring voltage-scaling
3072 * hardware or firmware that can make I2C requests behind the kernel's back,
3073 * for example.
3074 *
3075 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3076 * and 0 is returned, otherwise a negative errno is returned.
3077 */
3078 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3079 unsigned *vsel_reg,
3080 unsigned *vsel_mask)
3081 {
3082 struct regulator_dev *rdev = regulator->rdev;
3083 const struct regulator_ops *ops = rdev->desc->ops;
3084
3085 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3086 return -EOPNOTSUPP;
3087
3088 *vsel_reg = rdev->desc->vsel_reg;
3089 *vsel_mask = rdev->desc->vsel_mask;
3090
3091 return 0;
3092 }
3093 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3094
3095 /**
3096 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3097 * @regulator: regulator source
3098 * @selector: identify voltage to list
3099 *
3100 * Converts the selector to a hardware-specific voltage selector that can be
3101 * directly written to the regulator registers. The address of the voltage
3102 * register can be determined by calling @regulator_get_hardware_vsel_register.
3103 *
3104 * On error a negative errno is returned.
3105 */
3106 int regulator_list_hardware_vsel(struct regulator *regulator,
3107 unsigned selector)
3108 {
3109 struct regulator_dev *rdev = regulator->rdev;
3110 const struct regulator_ops *ops = rdev->desc->ops;
3111
3112 if (selector >= rdev->desc->n_voltages)
3113 return -EINVAL;
3114 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3115 return -EOPNOTSUPP;
3116
3117 return selector;
3118 }
3119 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3120
3121 /**
3122 * regulator_get_linear_step - return the voltage step size between VSEL values
3123 * @regulator: regulator source
3124 *
3125 * Returns the voltage step size between VSEL values for linear
3126 * regulators, or return 0 if the regulator isn't a linear regulator.
3127 */
3128 unsigned int regulator_get_linear_step(struct regulator *regulator)
3129 {
3130 struct regulator_dev *rdev = regulator->rdev;
3131
3132 return rdev->desc->uV_step;
3133 }
3134 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3135
3136 /**
3137 * regulator_is_supported_voltage - check if a voltage range can be supported
3138 *
3139 * @regulator: Regulator to check.
3140 * @min_uV: Minimum required voltage in uV.
3141 * @max_uV: Maximum required voltage in uV.
3142 *
3143 * Returns a boolean.
3144 */
3145 int regulator_is_supported_voltage(struct regulator *regulator,
3146 int min_uV, int max_uV)
3147 {
3148 struct regulator_dev *rdev = regulator->rdev;
3149 int i, voltages, ret;
3150
3151 /* If we can't change voltage check the current voltage */
3152 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3153 ret = regulator_get_voltage(regulator);
3154 if (ret >= 0)
3155 return min_uV <= ret && ret <= max_uV;
3156 else
3157 return ret;
3158 }
3159
3160 /* Any voltage within constrains range is fine? */
3161 if (rdev->desc->continuous_voltage_range)
3162 return min_uV >= rdev->constraints->min_uV &&
3163 max_uV <= rdev->constraints->max_uV;
3164
3165 ret = regulator_count_voltages(regulator);
3166 if (ret < 0)
3167 return 0;
3168 voltages = ret;
3169
3170 for (i = 0; i < voltages; i++) {
3171 ret = regulator_list_voltage(regulator, i);
3172
3173 if (ret >= min_uV && ret <= max_uV)
3174 return 1;
3175 }
3176
3177 return 0;
3178 }
3179 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3180
3181 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3182 int max_uV)
3183 {
3184 const struct regulator_desc *desc = rdev->desc;
3185
3186 if (desc->ops->map_voltage)
3187 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3188
3189 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3190 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3191
3192 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3193 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3194
3195 if (desc->ops->list_voltage ==
3196 regulator_list_voltage_pickable_linear_range)
3197 return regulator_map_voltage_pickable_linear_range(rdev,
3198 min_uV, max_uV);
3199
3200 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3201 }
3202
3203 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3204 int min_uV, int max_uV,
3205 unsigned *selector)
3206 {
3207 struct pre_voltage_change_data data;
3208 int ret;
3209
3210 data.old_uV = regulator_get_voltage_rdev(rdev);
3211 data.min_uV = min_uV;
3212 data.max_uV = max_uV;
3213 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3214 &data);
3215 if (ret & NOTIFY_STOP_MASK)
3216 return -EINVAL;
3217
3218 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3219 if (ret >= 0)
3220 return ret;
3221
3222 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3223 (void *)data.old_uV);
3224
3225 return ret;
3226 }
3227
3228 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3229 int uV, unsigned selector)
3230 {
3231 struct pre_voltage_change_data data;
3232 int ret;
3233
3234 data.old_uV = regulator_get_voltage_rdev(rdev);
3235 data.min_uV = uV;
3236 data.max_uV = uV;
3237 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3238 &data);
3239 if (ret & NOTIFY_STOP_MASK)
3240 return -EINVAL;
3241
3242 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3243 if (ret >= 0)
3244 return ret;
3245
3246 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3247 (void *)data.old_uV);
3248
3249 return ret;
3250 }
3251
3252 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3253 int uV, int new_selector)
3254 {
3255 const struct regulator_ops *ops = rdev->desc->ops;
3256 int diff, old_sel, curr_sel, ret;
3257
3258 /* Stepping is only needed if the regulator is enabled. */
3259 if (!_regulator_is_enabled(rdev))
3260 goto final_set;
3261
3262 if (!ops->get_voltage_sel)
3263 return -EINVAL;
3264
3265 old_sel = ops->get_voltage_sel(rdev);
3266 if (old_sel < 0)
3267 return old_sel;
3268
3269 diff = new_selector - old_sel;
3270 if (diff == 0)
3271 return 0; /* No change needed. */
3272
3273 if (diff > 0) {
3274 /* Stepping up. */
3275 for (curr_sel = old_sel + rdev->desc->vsel_step;
3276 curr_sel < new_selector;
3277 curr_sel += rdev->desc->vsel_step) {
3278 /*
3279 * Call the callback directly instead of using
3280 * _regulator_call_set_voltage_sel() as we don't
3281 * want to notify anyone yet. Same in the branch
3282 * below.
3283 */
3284 ret = ops->set_voltage_sel(rdev, curr_sel);
3285 if (ret)
3286 goto try_revert;
3287 }
3288 } else {
3289 /* Stepping down. */
3290 for (curr_sel = old_sel - rdev->desc->vsel_step;
3291 curr_sel > new_selector;
3292 curr_sel -= rdev->desc->vsel_step) {
3293 ret = ops->set_voltage_sel(rdev, curr_sel);
3294 if (ret)
3295 goto try_revert;
3296 }
3297 }
3298
3299 final_set:
3300 /* The final selector will trigger the notifiers. */
3301 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3302
3303 try_revert:
3304 /*
3305 * At least try to return to the previous voltage if setting a new
3306 * one failed.
3307 */
3308 (void)ops->set_voltage_sel(rdev, old_sel);
3309 return ret;
3310 }
3311
3312 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3313 int old_uV, int new_uV)
3314 {
3315 unsigned int ramp_delay = 0;
3316
3317 if (rdev->constraints->ramp_delay)
3318 ramp_delay = rdev->constraints->ramp_delay;
3319 else if (rdev->desc->ramp_delay)
3320 ramp_delay = rdev->desc->ramp_delay;
3321 else if (rdev->constraints->settling_time)
3322 return rdev->constraints->settling_time;
3323 else if (rdev->constraints->settling_time_up &&
3324 (new_uV > old_uV))
3325 return rdev->constraints->settling_time_up;
3326 else if (rdev->constraints->settling_time_down &&
3327 (new_uV < old_uV))
3328 return rdev->constraints->settling_time_down;
3329
3330 if (ramp_delay == 0) {
3331 rdev_dbg(rdev, "ramp_delay not set\n");
3332 return 0;
3333 }
3334
3335 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3336 }
3337
3338 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3339 int min_uV, int max_uV)
3340 {
3341 int ret;
3342 int delay = 0;
3343 int best_val = 0;
3344 unsigned int selector;
3345 int old_selector = -1;
3346 const struct regulator_ops *ops = rdev->desc->ops;
3347 int old_uV = regulator_get_voltage_rdev(rdev);
3348
3349 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3350
3351 min_uV += rdev->constraints->uV_offset;
3352 max_uV += rdev->constraints->uV_offset;
3353
3354 /*
3355 * If we can't obtain the old selector there is not enough
3356 * info to call set_voltage_time_sel().
3357 */
3358 if (_regulator_is_enabled(rdev) &&
3359 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3360 old_selector = ops->get_voltage_sel(rdev);
3361 if (old_selector < 0)
3362 return old_selector;
3363 }
3364
3365 if (ops->set_voltage) {
3366 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3367 &selector);
3368
3369 if (ret >= 0) {
3370 if (ops->list_voltage)
3371 best_val = ops->list_voltage(rdev,
3372 selector);
3373 else
3374 best_val = regulator_get_voltage_rdev(rdev);
3375 }
3376
3377 } else if (ops->set_voltage_sel) {
3378 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3379 if (ret >= 0) {
3380 best_val = ops->list_voltage(rdev, ret);
3381 if (min_uV <= best_val && max_uV >= best_val) {
3382 selector = ret;
3383 if (old_selector == selector)
3384 ret = 0;
3385 else if (rdev->desc->vsel_step)
3386 ret = _regulator_set_voltage_sel_step(
3387 rdev, best_val, selector);
3388 else
3389 ret = _regulator_call_set_voltage_sel(
3390 rdev, best_val, selector);
3391 } else {
3392 ret = -EINVAL;
3393 }
3394 }
3395 } else {
3396 ret = -EINVAL;
3397 }
3398
3399 if (ret)
3400 goto out;
3401
3402 if (ops->set_voltage_time_sel) {
3403 /*
3404 * Call set_voltage_time_sel if successfully obtained
3405 * old_selector
3406 */
3407 if (old_selector >= 0 && old_selector != selector)
3408 delay = ops->set_voltage_time_sel(rdev, old_selector,
3409 selector);
3410 } else {
3411 if (old_uV != best_val) {
3412 if (ops->set_voltage_time)
3413 delay = ops->set_voltage_time(rdev, old_uV,
3414 best_val);
3415 else
3416 delay = _regulator_set_voltage_time(rdev,
3417 old_uV,
3418 best_val);
3419 }
3420 }
3421
3422 if (delay < 0) {
3423 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3424 delay = 0;
3425 }
3426
3427 /* Insert any necessary delays */
3428 if (delay >= 1000) {
3429 mdelay(delay / 1000);
3430 udelay(delay % 1000);
3431 } else if (delay) {
3432 udelay(delay);
3433 }
3434
3435 if (best_val >= 0) {
3436 unsigned long data = best_val;
3437
3438 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3439 (void *)data);
3440 }
3441
3442 out:
3443 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3444
3445 return ret;
3446 }
3447
3448 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3449 int min_uV, int max_uV, suspend_state_t state)
3450 {
3451 struct regulator_state *rstate;
3452 int uV, sel;
3453
3454 rstate = regulator_get_suspend_state(rdev, state);
3455 if (rstate == NULL)
3456 return -EINVAL;
3457
3458 if (min_uV < rstate->min_uV)
3459 min_uV = rstate->min_uV;
3460 if (max_uV > rstate->max_uV)
3461 max_uV = rstate->max_uV;
3462
3463 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3464 if (sel < 0)
3465 return sel;
3466
3467 uV = rdev->desc->ops->list_voltage(rdev, sel);
3468 if (uV >= min_uV && uV <= max_uV)
3469 rstate->uV = uV;
3470
3471 return 0;
3472 }
3473
3474 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3475 int min_uV, int max_uV,
3476 suspend_state_t state)
3477 {
3478 struct regulator_dev *rdev = regulator->rdev;
3479 struct regulator_voltage *voltage = &regulator->voltage[state];
3480 int ret = 0;
3481 int old_min_uV, old_max_uV;
3482 int current_uV;
3483
3484 /* If we're setting the same range as last time the change
3485 * should be a noop (some cpufreq implementations use the same
3486 * voltage for multiple frequencies, for example).
3487 */
3488 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3489 goto out;
3490
3491 /* If we're trying to set a range that overlaps the current voltage,
3492 * return successfully even though the regulator does not support
3493 * changing the voltage.
3494 */
3495 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3496 current_uV = regulator_get_voltage_rdev(rdev);
3497 if (min_uV <= current_uV && current_uV <= max_uV) {
3498 voltage->min_uV = min_uV;
3499 voltage->max_uV = max_uV;
3500 goto out;
3501 }
3502 }
3503
3504 /* sanity check */
3505 if (!rdev->desc->ops->set_voltage &&
3506 !rdev->desc->ops->set_voltage_sel) {
3507 ret = -EINVAL;
3508 goto out;
3509 }
3510
3511 /* constraints check */
3512 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3513 if (ret < 0)
3514 goto out;
3515
3516 /* restore original values in case of error */
3517 old_min_uV = voltage->min_uV;
3518 old_max_uV = voltage->max_uV;
3519 voltage->min_uV = min_uV;
3520 voltage->max_uV = max_uV;
3521
3522 /* for not coupled regulators this will just set the voltage */
3523 ret = regulator_balance_voltage(rdev, state);
3524 if (ret < 0) {
3525 voltage->min_uV = old_min_uV;
3526 voltage->max_uV = old_max_uV;
3527 }
3528
3529 out:
3530 return ret;
3531 }
3532
3533 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3534 int max_uV, suspend_state_t state)
3535 {
3536 int best_supply_uV = 0;
3537 int supply_change_uV = 0;
3538 int ret;
3539
3540 if (rdev->supply &&
3541 regulator_ops_is_valid(rdev->supply->rdev,
3542 REGULATOR_CHANGE_VOLTAGE) &&
3543 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3544 rdev->desc->ops->get_voltage_sel))) {
3545 int current_supply_uV;
3546 int selector;
3547
3548 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3549 if (selector < 0) {
3550 ret = selector;
3551 goto out;
3552 }
3553
3554 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3555 if (best_supply_uV < 0) {
3556 ret = best_supply_uV;
3557 goto out;
3558 }
3559
3560 best_supply_uV += rdev->desc->min_dropout_uV;
3561
3562 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3563 if (current_supply_uV < 0) {
3564 ret = current_supply_uV;
3565 goto out;
3566 }
3567
3568 supply_change_uV = best_supply_uV - current_supply_uV;
3569 }
3570
3571 if (supply_change_uV > 0) {
3572 ret = regulator_set_voltage_unlocked(rdev->supply,
3573 best_supply_uV, INT_MAX, state);
3574 if (ret) {
3575 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3576 ERR_PTR(ret));
3577 goto out;
3578 }
3579 }
3580
3581 if (state == PM_SUSPEND_ON)
3582 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3583 else
3584 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3585 max_uV, state);
3586 if (ret < 0)
3587 goto out;
3588
3589 if (supply_change_uV < 0) {
3590 ret = regulator_set_voltage_unlocked(rdev->supply,
3591 best_supply_uV, INT_MAX, state);
3592 if (ret)
3593 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3594 ERR_PTR(ret));
3595 /* No need to fail here */
3596 ret = 0;
3597 }
3598
3599 out:
3600 return ret;
3601 }
3602 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3603
3604 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3605 int *current_uV, int *min_uV)
3606 {
3607 struct regulation_constraints *constraints = rdev->constraints;
3608
3609 /* Limit voltage change only if necessary */
3610 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3611 return 1;
3612
3613 if (*current_uV < 0) {
3614 *current_uV = regulator_get_voltage_rdev(rdev);
3615
3616 if (*current_uV < 0)
3617 return *current_uV;
3618 }
3619
3620 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3621 return 1;
3622
3623 /* Clamp target voltage within the given step */
3624 if (*current_uV < *min_uV)
3625 *min_uV = min(*current_uV + constraints->max_uV_step,
3626 *min_uV);
3627 else
3628 *min_uV = max(*current_uV - constraints->max_uV_step,
3629 *min_uV);
3630
3631 return 0;
3632 }
3633
3634 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3635 int *current_uV,
3636 int *min_uV, int *max_uV,
3637 suspend_state_t state,
3638 int n_coupled)
3639 {
3640 struct coupling_desc *c_desc = &rdev->coupling_desc;
3641 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3642 struct regulation_constraints *constraints = rdev->constraints;
3643 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3644 int max_current_uV = 0, min_current_uV = INT_MAX;
3645 int highest_min_uV = 0, target_uV, possible_uV;
3646 int i, ret, max_spread;
3647 bool done;
3648
3649 *current_uV = -1;
3650
3651 /*
3652 * If there are no coupled regulators, simply set the voltage
3653 * demanded by consumers.
3654 */
3655 if (n_coupled == 1) {
3656 /*
3657 * If consumers don't provide any demands, set voltage
3658 * to min_uV
3659 */
3660 desired_min_uV = constraints->min_uV;
3661 desired_max_uV = constraints->max_uV;
3662
3663 ret = regulator_check_consumers(rdev,
3664 &desired_min_uV,
3665 &desired_max_uV, state);
3666 if (ret < 0)
3667 return ret;
3668
3669 possible_uV = desired_min_uV;
3670 done = true;
3671
3672 goto finish;
3673 }
3674
3675 /* Find highest min desired voltage */
3676 for (i = 0; i < n_coupled; i++) {
3677 int tmp_min = 0;
3678 int tmp_max = INT_MAX;
3679
3680 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3681
3682 ret = regulator_check_consumers(c_rdevs[i],
3683 &tmp_min,
3684 &tmp_max, state);
3685 if (ret < 0)
3686 return ret;
3687
3688 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3689 if (ret < 0)
3690 return ret;
3691
3692 highest_min_uV = max(highest_min_uV, tmp_min);
3693
3694 if (i == 0) {
3695 desired_min_uV = tmp_min;
3696 desired_max_uV = tmp_max;
3697 }
3698 }
3699
3700 max_spread = constraints->max_spread[0];
3701
3702 /*
3703 * Let target_uV be equal to the desired one if possible.
3704 * If not, set it to minimum voltage, allowed by other coupled
3705 * regulators.
3706 */
3707 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3708
3709 /*
3710 * Find min and max voltages, which currently aren't violating
3711 * max_spread.
3712 */
3713 for (i = 1; i < n_coupled; i++) {
3714 int tmp_act;
3715
3716 if (!_regulator_is_enabled(c_rdevs[i]))
3717 continue;
3718
3719 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3720 if (tmp_act < 0)
3721 return tmp_act;
3722
3723 min_current_uV = min(tmp_act, min_current_uV);
3724 max_current_uV = max(tmp_act, max_current_uV);
3725 }
3726
3727 /* There aren't any other regulators enabled */
3728 if (max_current_uV == 0) {
3729 possible_uV = target_uV;
3730 } else {
3731 /*
3732 * Correct target voltage, so as it currently isn't
3733 * violating max_spread
3734 */
3735 possible_uV = max(target_uV, max_current_uV - max_spread);
3736 possible_uV = min(possible_uV, min_current_uV + max_spread);
3737 }
3738
3739 if (possible_uV > desired_max_uV)
3740 return -EINVAL;
3741
3742 done = (possible_uV == target_uV);
3743 desired_min_uV = possible_uV;
3744
3745 finish:
3746 /* Apply max_uV_step constraint if necessary */
3747 if (state == PM_SUSPEND_ON) {
3748 ret = regulator_limit_voltage_step(rdev, current_uV,
3749 &desired_min_uV);
3750 if (ret < 0)
3751 return ret;
3752
3753 if (ret == 0)
3754 done = false;
3755 }
3756
3757 /* Set current_uV if wasn't done earlier in the code and if necessary */
3758 if (n_coupled > 1 && *current_uV == -1) {
3759
3760 if (_regulator_is_enabled(rdev)) {
3761 ret = regulator_get_voltage_rdev(rdev);
3762 if (ret < 0)
3763 return ret;
3764
3765 *current_uV = ret;
3766 } else {
3767 *current_uV = desired_min_uV;
3768 }
3769 }
3770
3771 *min_uV = desired_min_uV;
3772 *max_uV = desired_max_uV;
3773
3774 return done;
3775 }
3776
3777 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3778 suspend_state_t state, bool skip_coupled)
3779 {
3780 struct regulator_dev **c_rdevs;
3781 struct regulator_dev *best_rdev;
3782 struct coupling_desc *c_desc = &rdev->coupling_desc;
3783 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3784 unsigned int delta, best_delta;
3785 unsigned long c_rdev_done = 0;
3786 bool best_c_rdev_done;
3787
3788 c_rdevs = c_desc->coupled_rdevs;
3789 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3790
3791 /*
3792 * Find the best possible voltage change on each loop. Leave the loop
3793 * if there isn't any possible change.
3794 */
3795 do {
3796 best_c_rdev_done = false;
3797 best_delta = 0;
3798 best_min_uV = 0;
3799 best_max_uV = 0;
3800 best_c_rdev = 0;
3801 best_rdev = NULL;
3802
3803 /*
3804 * Find highest difference between optimal voltage
3805 * and current voltage.
3806 */
3807 for (i = 0; i < n_coupled; i++) {
3808 /*
3809 * optimal_uV is the best voltage that can be set for
3810 * i-th regulator at the moment without violating
3811 * max_spread constraint in order to balance
3812 * the coupled voltages.
3813 */
3814 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3815
3816 if (test_bit(i, &c_rdev_done))
3817 continue;
3818
3819 ret = regulator_get_optimal_voltage(c_rdevs[i],
3820 &current_uV,
3821 &optimal_uV,
3822 &optimal_max_uV,
3823 state, n_coupled);
3824 if (ret < 0)
3825 goto out;
3826
3827 delta = abs(optimal_uV - current_uV);
3828
3829 if (delta && best_delta <= delta) {
3830 best_c_rdev_done = ret;
3831 best_delta = delta;
3832 best_rdev = c_rdevs[i];
3833 best_min_uV = optimal_uV;
3834 best_max_uV = optimal_max_uV;
3835 best_c_rdev = i;
3836 }
3837 }
3838
3839 /* Nothing to change, return successfully */
3840 if (!best_rdev) {
3841 ret = 0;
3842 goto out;
3843 }
3844
3845 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3846 best_max_uV, state);
3847
3848 if (ret < 0)
3849 goto out;
3850
3851 if (best_c_rdev_done)
3852 set_bit(best_c_rdev, &c_rdev_done);
3853
3854 } while (n_coupled > 1);
3855
3856 out:
3857 return ret;
3858 }
3859
3860 static int regulator_balance_voltage(struct regulator_dev *rdev,
3861 suspend_state_t state)
3862 {
3863 struct coupling_desc *c_desc = &rdev->coupling_desc;
3864 struct regulator_coupler *coupler = c_desc->coupler;
3865 bool skip_coupled = false;
3866
3867 /*
3868 * If system is in a state other than PM_SUSPEND_ON, don't check
3869 * other coupled regulators.
3870 */
3871 if (state != PM_SUSPEND_ON)
3872 skip_coupled = true;
3873
3874 if (c_desc->n_resolved < c_desc->n_coupled) {
3875 rdev_err(rdev, "Not all coupled regulators registered\n");
3876 return -EPERM;
3877 }
3878
3879 /* Invoke custom balancer for customized couplers */
3880 if (coupler && coupler->balance_voltage)
3881 return coupler->balance_voltage(coupler, rdev, state);
3882
3883 return regulator_do_balance_voltage(rdev, state, skip_coupled);
3884 }
3885
3886 /**
3887 * regulator_set_voltage - set regulator output voltage
3888 * @regulator: regulator source
3889 * @min_uV: Minimum required voltage in uV
3890 * @max_uV: Maximum acceptable voltage in uV
3891 *
3892 * Sets a voltage regulator to the desired output voltage. This can be set
3893 * during any regulator state. IOW, regulator can be disabled or enabled.
3894 *
3895 * If the regulator is enabled then the voltage will change to the new value
3896 * immediately otherwise if the regulator is disabled the regulator will
3897 * output at the new voltage when enabled.
3898 *
3899 * NOTE: If the regulator is shared between several devices then the lowest
3900 * request voltage that meets the system constraints will be used.
3901 * Regulator system constraints must be set for this regulator before
3902 * calling this function otherwise this call will fail.
3903 */
3904 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3905 {
3906 struct ww_acquire_ctx ww_ctx;
3907 int ret;
3908
3909 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3910
3911 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3912 PM_SUSPEND_ON);
3913
3914 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3915
3916 return ret;
3917 }
3918 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3919
3920 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3921 suspend_state_t state, bool en)
3922 {
3923 struct regulator_state *rstate;
3924
3925 rstate = regulator_get_suspend_state(rdev, state);
3926 if (rstate == NULL)
3927 return -EINVAL;
3928
3929 if (!rstate->changeable)
3930 return -EPERM;
3931
3932 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3933
3934 return 0;
3935 }
3936
3937 int regulator_suspend_enable(struct regulator_dev *rdev,
3938 suspend_state_t state)
3939 {
3940 return regulator_suspend_toggle(rdev, state, true);
3941 }
3942 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3943
3944 int regulator_suspend_disable(struct regulator_dev *rdev,
3945 suspend_state_t state)
3946 {
3947 struct regulator *regulator;
3948 struct regulator_voltage *voltage;
3949
3950 /*
3951 * if any consumer wants this regulator device keeping on in
3952 * suspend states, don't set it as disabled.
3953 */
3954 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3955 voltage = &regulator->voltage[state];
3956 if (voltage->min_uV || voltage->max_uV)
3957 return 0;
3958 }
3959
3960 return regulator_suspend_toggle(rdev, state, false);
3961 }
3962 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3963
3964 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3965 int min_uV, int max_uV,
3966 suspend_state_t state)
3967 {
3968 struct regulator_dev *rdev = regulator->rdev;
3969 struct regulator_state *rstate;
3970
3971 rstate = regulator_get_suspend_state(rdev, state);
3972 if (rstate == NULL)
3973 return -EINVAL;
3974
3975 if (rstate->min_uV == rstate->max_uV) {
3976 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3977 return -EPERM;
3978 }
3979
3980 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3981 }
3982
3983 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3984 int max_uV, suspend_state_t state)
3985 {
3986 struct ww_acquire_ctx ww_ctx;
3987 int ret;
3988
3989 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3990 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3991 return -EINVAL;
3992
3993 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3994
3995 ret = _regulator_set_suspend_voltage(regulator, min_uV,
3996 max_uV, state);
3997
3998 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3999
4000 return ret;
4001 }
4002 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4003
4004 /**
4005 * regulator_set_voltage_time - get raise/fall time
4006 * @regulator: regulator source
4007 * @old_uV: starting voltage in microvolts
4008 * @new_uV: target voltage in microvolts
4009 *
4010 * Provided with the starting and ending voltage, this function attempts to
4011 * calculate the time in microseconds required to rise or fall to this new
4012 * voltage.
4013 */
4014 int regulator_set_voltage_time(struct regulator *regulator,
4015 int old_uV, int new_uV)
4016 {
4017 struct regulator_dev *rdev = regulator->rdev;
4018 const struct regulator_ops *ops = rdev->desc->ops;
4019 int old_sel = -1;
4020 int new_sel = -1;
4021 int voltage;
4022 int i;
4023
4024 if (ops->set_voltage_time)
4025 return ops->set_voltage_time(rdev, old_uV, new_uV);
4026 else if (!ops->set_voltage_time_sel)
4027 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4028
4029 /* Currently requires operations to do this */
4030 if (!ops->list_voltage || !rdev->desc->n_voltages)
4031 return -EINVAL;
4032
4033 for (i = 0; i < rdev->desc->n_voltages; i++) {
4034 /* We only look for exact voltage matches here */
4035 voltage = regulator_list_voltage(regulator, i);
4036 if (voltage < 0)
4037 return -EINVAL;
4038 if (voltage == 0)
4039 continue;
4040 if (voltage == old_uV)
4041 old_sel = i;
4042 if (voltage == new_uV)
4043 new_sel = i;
4044 }
4045
4046 if (old_sel < 0 || new_sel < 0)
4047 return -EINVAL;
4048
4049 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4050 }
4051 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4052
4053 /**
4054 * regulator_set_voltage_time_sel - get raise/fall time
4055 * @rdev: regulator source device
4056 * @old_selector: selector for starting voltage
4057 * @new_selector: selector for target voltage
4058 *
4059 * Provided with the starting and target voltage selectors, this function
4060 * returns time in microseconds required to rise or fall to this new voltage
4061 *
4062 * Drivers providing ramp_delay in regulation_constraints can use this as their
4063 * set_voltage_time_sel() operation.
4064 */
4065 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4066 unsigned int old_selector,
4067 unsigned int new_selector)
4068 {
4069 int old_volt, new_volt;
4070
4071 /* sanity check */
4072 if (!rdev->desc->ops->list_voltage)
4073 return -EINVAL;
4074
4075 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4076 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4077
4078 if (rdev->desc->ops->set_voltage_time)
4079 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4080 new_volt);
4081 else
4082 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4083 }
4084 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4085
4086 /**
4087 * regulator_sync_voltage - re-apply last regulator output voltage
4088 * @regulator: regulator source
4089 *
4090 * Re-apply the last configured voltage. This is intended to be used
4091 * where some external control source the consumer is cooperating with
4092 * has caused the configured voltage to change.
4093 */
4094 int regulator_sync_voltage(struct regulator *regulator)
4095 {
4096 struct regulator_dev *rdev = regulator->rdev;
4097 struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4098 int ret, min_uV, max_uV;
4099
4100 regulator_lock(rdev);
4101
4102 if (!rdev->desc->ops->set_voltage &&
4103 !rdev->desc->ops->set_voltage_sel) {
4104 ret = -EINVAL;
4105 goto out;
4106 }
4107
4108 /* This is only going to work if we've had a voltage configured. */
4109 if (!voltage->min_uV && !voltage->max_uV) {
4110 ret = -EINVAL;
4111 goto out;
4112 }
4113
4114 min_uV = voltage->min_uV;
4115 max_uV = voltage->max_uV;
4116
4117 /* This should be a paranoia check... */
4118 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4119 if (ret < 0)
4120 goto out;
4121
4122 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4123 if (ret < 0)
4124 goto out;
4125
4126 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4127
4128 out:
4129 regulator_unlock(rdev);
4130 return ret;
4131 }
4132 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4133
4134 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4135 {
4136 int sel, ret;
4137 bool bypassed;
4138
4139 if (rdev->desc->ops->get_bypass) {
4140 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4141 if (ret < 0)
4142 return ret;
4143 if (bypassed) {
4144 /* if bypassed the regulator must have a supply */
4145 if (!rdev->supply) {
4146 rdev_err(rdev,
4147 "bypassed regulator has no supply!\n");
4148 return -EPROBE_DEFER;
4149 }
4150
4151 return regulator_get_voltage_rdev(rdev->supply->rdev);
4152 }
4153 }
4154
4155 if (rdev->desc->ops->get_voltage_sel) {
4156 sel = rdev->desc->ops->get_voltage_sel(rdev);
4157 if (sel < 0)
4158 return sel;
4159 ret = rdev->desc->ops->list_voltage(rdev, sel);
4160 } else if (rdev->desc->ops->get_voltage) {
4161 ret = rdev->desc->ops->get_voltage(rdev);
4162 } else if (rdev->desc->ops->list_voltage) {
4163 ret = rdev->desc->ops->list_voltage(rdev, 0);
4164 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4165 ret = rdev->desc->fixed_uV;
4166 } else if (rdev->supply) {
4167 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4168 } else {
4169 return -EINVAL;
4170 }
4171
4172 if (ret < 0)
4173 return ret;
4174 return ret - rdev->constraints->uV_offset;
4175 }
4176 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4177
4178 /**
4179 * regulator_get_voltage - get regulator output voltage
4180 * @regulator: regulator source
4181 *
4182 * This returns the current regulator voltage in uV.
4183 *
4184 * NOTE: If the regulator is disabled it will return the voltage value. This
4185 * function should not be used to determine regulator state.
4186 */
4187 int regulator_get_voltage(struct regulator *regulator)
4188 {
4189 struct ww_acquire_ctx ww_ctx;
4190 int ret;
4191
4192 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4193 ret = regulator_get_voltage_rdev(regulator->rdev);
4194 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4195
4196 return ret;
4197 }
4198 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4199
4200 /**
4201 * regulator_set_current_limit - set regulator output current limit
4202 * @regulator: regulator source
4203 * @min_uA: Minimum supported current in uA
4204 * @max_uA: Maximum supported current in uA
4205 *
4206 * Sets current sink to the desired output current. This can be set during
4207 * any regulator state. IOW, regulator can be disabled or enabled.
4208 *
4209 * If the regulator is enabled then the current will change to the new value
4210 * immediately otherwise if the regulator is disabled the regulator will
4211 * output at the new current when enabled.
4212 *
4213 * NOTE: Regulator system constraints must be set for this regulator before
4214 * calling this function otherwise this call will fail.
4215 */
4216 int regulator_set_current_limit(struct regulator *regulator,
4217 int min_uA, int max_uA)
4218 {
4219 struct regulator_dev *rdev = regulator->rdev;
4220 int ret;
4221
4222 regulator_lock(rdev);
4223
4224 /* sanity check */
4225 if (!rdev->desc->ops->set_current_limit) {
4226 ret = -EINVAL;
4227 goto out;
4228 }
4229
4230 /* constraints check */
4231 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4232 if (ret < 0)
4233 goto out;
4234
4235 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4236 out:
4237 regulator_unlock(rdev);
4238 return ret;
4239 }
4240 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4241
4242 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4243 {
4244 /* sanity check */
4245 if (!rdev->desc->ops->get_current_limit)
4246 return -EINVAL;
4247
4248 return rdev->desc->ops->get_current_limit(rdev);
4249 }
4250
4251 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4252 {
4253 int ret;
4254
4255 regulator_lock(rdev);
4256 ret = _regulator_get_current_limit_unlocked(rdev);
4257 regulator_unlock(rdev);
4258
4259 return ret;
4260 }
4261
4262 /**
4263 * regulator_get_current_limit - get regulator output current
4264 * @regulator: regulator source
4265 *
4266 * This returns the current supplied by the specified current sink in uA.
4267 *
4268 * NOTE: If the regulator is disabled it will return the current value. This
4269 * function should not be used to determine regulator state.
4270 */
4271 int regulator_get_current_limit(struct regulator *regulator)
4272 {
4273 return _regulator_get_current_limit(regulator->rdev);
4274 }
4275 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4276
4277 /**
4278 * regulator_set_mode - set regulator operating mode
4279 * @regulator: regulator source
4280 * @mode: operating mode - one of the REGULATOR_MODE constants
4281 *
4282 * Set regulator operating mode to increase regulator efficiency or improve
4283 * regulation performance.
4284 *
4285 * NOTE: Regulator system constraints must be set for this regulator before
4286 * calling this function otherwise this call will fail.
4287 */
4288 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4289 {
4290 struct regulator_dev *rdev = regulator->rdev;
4291 int ret;
4292 int regulator_curr_mode;
4293
4294 regulator_lock(rdev);
4295
4296 /* sanity check */
4297 if (!rdev->desc->ops->set_mode) {
4298 ret = -EINVAL;
4299 goto out;
4300 }
4301
4302 /* return if the same mode is requested */
4303 if (rdev->desc->ops->get_mode) {
4304 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4305 if (regulator_curr_mode == mode) {
4306 ret = 0;
4307 goto out;
4308 }
4309 }
4310
4311 /* constraints check */
4312 ret = regulator_mode_constrain(rdev, &mode);
4313 if (ret < 0)
4314 goto out;
4315
4316 ret = rdev->desc->ops->set_mode(rdev, mode);
4317 out:
4318 regulator_unlock(rdev);
4319 return ret;
4320 }
4321 EXPORT_SYMBOL_GPL(regulator_set_mode);
4322
4323 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4324 {
4325 /* sanity check */
4326 if (!rdev->desc->ops->get_mode)
4327 return -EINVAL;
4328
4329 return rdev->desc->ops->get_mode(rdev);
4330 }
4331
4332 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4333 {
4334 int ret;
4335
4336 regulator_lock(rdev);
4337 ret = _regulator_get_mode_unlocked(rdev);
4338 regulator_unlock(rdev);
4339
4340 return ret;
4341 }
4342
4343 /**
4344 * regulator_get_mode - get regulator operating mode
4345 * @regulator: regulator source
4346 *
4347 * Get the current regulator operating mode.
4348 */
4349 unsigned int regulator_get_mode(struct regulator *regulator)
4350 {
4351 return _regulator_get_mode(regulator->rdev);
4352 }
4353 EXPORT_SYMBOL_GPL(regulator_get_mode);
4354
4355 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4356 unsigned int *flags)
4357 {
4358 int ret;
4359
4360 regulator_lock(rdev);
4361
4362 /* sanity check */
4363 if (!rdev->desc->ops->get_error_flags) {
4364 ret = -EINVAL;
4365 goto out;
4366 }
4367
4368 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4369 out:
4370 regulator_unlock(rdev);
4371 return ret;
4372 }
4373
4374 /**
4375 * regulator_get_error_flags - get regulator error information
4376 * @regulator: regulator source
4377 * @flags: pointer to store error flags
4378 *
4379 * Get the current regulator error information.
4380 */
4381 int regulator_get_error_flags(struct regulator *regulator,
4382 unsigned int *flags)
4383 {
4384 return _regulator_get_error_flags(regulator->rdev, flags);
4385 }
4386 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4387
4388 /**
4389 * regulator_set_load - set regulator load
4390 * @regulator: regulator source
4391 * @uA_load: load current
4392 *
4393 * Notifies the regulator core of a new device load. This is then used by
4394 * DRMS (if enabled by constraints) to set the most efficient regulator
4395 * operating mode for the new regulator loading.
4396 *
4397 * Consumer devices notify their supply regulator of the maximum power
4398 * they will require (can be taken from device datasheet in the power
4399 * consumption tables) when they change operational status and hence power
4400 * state. Examples of operational state changes that can affect power
4401 * consumption are :-
4402 *
4403 * o Device is opened / closed.
4404 * o Device I/O is about to begin or has just finished.
4405 * o Device is idling in between work.
4406 *
4407 * This information is also exported via sysfs to userspace.
4408 *
4409 * DRMS will sum the total requested load on the regulator and change
4410 * to the most efficient operating mode if platform constraints allow.
4411 *
4412 * NOTE: when a regulator consumer requests to have a regulator
4413 * disabled then any load that consumer requested no longer counts
4414 * toward the total requested load. If the regulator is re-enabled
4415 * then the previously requested load will start counting again.
4416 *
4417 * If a regulator is an always-on regulator then an individual consumer's
4418 * load will still be removed if that consumer is fully disabled.
4419 *
4420 * On error a negative errno is returned.
4421 */
4422 int regulator_set_load(struct regulator *regulator, int uA_load)
4423 {
4424 struct regulator_dev *rdev = regulator->rdev;
4425 int old_uA_load;
4426 int ret = 0;
4427
4428 regulator_lock(rdev);
4429 old_uA_load = regulator->uA_load;
4430 regulator->uA_load = uA_load;
4431 if (regulator->enable_count && old_uA_load != uA_load) {
4432 ret = drms_uA_update(rdev);
4433 if (ret < 0)
4434 regulator->uA_load = old_uA_load;
4435 }
4436 regulator_unlock(rdev);
4437
4438 return ret;
4439 }
4440 EXPORT_SYMBOL_GPL(regulator_set_load);
4441
4442 /**
4443 * regulator_allow_bypass - allow the regulator to go into bypass mode
4444 *
4445 * @regulator: Regulator to configure
4446 * @enable: enable or disable bypass mode
4447 *
4448 * Allow the regulator to go into bypass mode if all other consumers
4449 * for the regulator also enable bypass mode and the machine
4450 * constraints allow this. Bypass mode means that the regulator is
4451 * simply passing the input directly to the output with no regulation.
4452 */
4453 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4454 {
4455 struct regulator_dev *rdev = regulator->rdev;
4456 const char *name = rdev_get_name(rdev);
4457 int ret = 0;
4458
4459 if (!rdev->desc->ops->set_bypass)
4460 return 0;
4461
4462 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4463 return 0;
4464
4465 regulator_lock(rdev);
4466
4467 if (enable && !regulator->bypass) {
4468 rdev->bypass_count++;
4469
4470 if (rdev->bypass_count == rdev->open_count) {
4471 trace_regulator_bypass_enable(name);
4472
4473 ret = rdev->desc->ops->set_bypass(rdev, enable);
4474 if (ret != 0)
4475 rdev->bypass_count--;
4476 else
4477 trace_regulator_bypass_enable_complete(name);
4478 }
4479
4480 } else if (!enable && regulator->bypass) {
4481 rdev->bypass_count--;
4482
4483 if (rdev->bypass_count != rdev->open_count) {
4484 trace_regulator_bypass_disable(name);
4485
4486 ret = rdev->desc->ops->set_bypass(rdev, enable);
4487 if (ret != 0)
4488 rdev->bypass_count++;
4489 else
4490 trace_regulator_bypass_disable_complete(name);
4491 }
4492 }
4493
4494 if (ret == 0)
4495 regulator->bypass = enable;
4496
4497 regulator_unlock(rdev);
4498
4499 return ret;
4500 }
4501 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4502
4503 /**
4504 * regulator_register_notifier - register regulator event notifier
4505 * @regulator: regulator source
4506 * @nb: notifier block
4507 *
4508 * Register notifier block to receive regulator events.
4509 */
4510 int regulator_register_notifier(struct regulator *regulator,
4511 struct notifier_block *nb)
4512 {
4513 return blocking_notifier_chain_register(&regulator->rdev->notifier,
4514 nb);
4515 }
4516 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4517
4518 /**
4519 * regulator_unregister_notifier - unregister regulator event notifier
4520 * @regulator: regulator source
4521 * @nb: notifier block
4522 *
4523 * Unregister regulator event notifier block.
4524 */
4525 int regulator_unregister_notifier(struct regulator *regulator,
4526 struct notifier_block *nb)
4527 {
4528 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4529 nb);
4530 }
4531 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4532
4533 /* notify regulator consumers and downstream regulator consumers.
4534 * Note mutex must be held by caller.
4535 */
4536 static int _notifier_call_chain(struct regulator_dev *rdev,
4537 unsigned long event, void *data)
4538 {
4539 /* call rdev chain first */
4540 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4541 }
4542
4543 /**
4544 * regulator_bulk_get - get multiple regulator consumers
4545 *
4546 * @dev: Device to supply
4547 * @num_consumers: Number of consumers to register
4548 * @consumers: Configuration of consumers; clients are stored here.
4549 *
4550 * @return 0 on success, an errno on failure.
4551 *
4552 * This helper function allows drivers to get several regulator
4553 * consumers in one operation. If any of the regulators cannot be
4554 * acquired then any regulators that were allocated will be freed
4555 * before returning to the caller.
4556 */
4557 int regulator_bulk_get(struct device *dev, int num_consumers,
4558 struct regulator_bulk_data *consumers)
4559 {
4560 int i;
4561 int ret;
4562
4563 for (i = 0; i < num_consumers; i++)
4564 consumers[i].consumer = NULL;
4565
4566 for (i = 0; i < num_consumers; i++) {
4567 consumers[i].consumer = regulator_get(dev,
4568 consumers[i].supply);
4569 if (IS_ERR(consumers[i].consumer)) {
4570 ret = PTR_ERR(consumers[i].consumer);
4571 consumers[i].consumer = NULL;
4572 goto err;
4573 }
4574 }
4575
4576 return 0;
4577
4578 err:
4579 if (ret != -EPROBE_DEFER)
4580 dev_err(dev, "Failed to get supply '%s': %pe\n",
4581 consumers[i].supply, ERR_PTR(ret));
4582 else
4583 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4584 consumers[i].supply);
4585
4586 while (--i >= 0)
4587 regulator_put(consumers[i].consumer);
4588
4589 return ret;
4590 }
4591 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4592
4593 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4594 {
4595 struct regulator_bulk_data *bulk = data;
4596
4597 bulk->ret = regulator_enable(bulk->consumer);
4598 }
4599
4600 /**
4601 * regulator_bulk_enable - enable multiple regulator consumers
4602 *
4603 * @num_consumers: Number of consumers
4604 * @consumers: Consumer data; clients are stored here.
4605 * @return 0 on success, an errno on failure
4606 *
4607 * This convenience API allows consumers to enable multiple regulator
4608 * clients in a single API call. If any consumers cannot be enabled
4609 * then any others that were enabled will be disabled again prior to
4610 * return.
4611 */
4612 int regulator_bulk_enable(int num_consumers,
4613 struct regulator_bulk_data *consumers)
4614 {
4615 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4616 int i;
4617 int ret = 0;
4618
4619 for (i = 0; i < num_consumers; i++) {
4620 async_schedule_domain(regulator_bulk_enable_async,
4621 &consumers[i], &async_domain);
4622 }
4623
4624 async_synchronize_full_domain(&async_domain);
4625
4626 /* If any consumer failed we need to unwind any that succeeded */
4627 for (i = 0; i < num_consumers; i++) {
4628 if (consumers[i].ret != 0) {
4629 ret = consumers[i].ret;
4630 goto err;
4631 }
4632 }
4633
4634 return 0;
4635
4636 err:
4637 for (i = 0; i < num_consumers; i++) {
4638 if (consumers[i].ret < 0)
4639 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4640 ERR_PTR(consumers[i].ret));
4641 else
4642 regulator_disable(consumers[i].consumer);
4643 }
4644
4645 return ret;
4646 }
4647 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4648
4649 /**
4650 * regulator_bulk_disable - disable multiple regulator consumers
4651 *
4652 * @num_consumers: Number of consumers
4653 * @consumers: Consumer data; clients are stored here.
4654 * @return 0 on success, an errno on failure
4655 *
4656 * This convenience API allows consumers to disable multiple regulator
4657 * clients in a single API call. If any consumers cannot be disabled
4658 * then any others that were disabled will be enabled again prior to
4659 * return.
4660 */
4661 int regulator_bulk_disable(int num_consumers,
4662 struct regulator_bulk_data *consumers)
4663 {
4664 int i;
4665 int ret, r;
4666
4667 for (i = num_consumers - 1; i >= 0; --i) {
4668 ret = regulator_disable(consumers[i].consumer);
4669 if (ret != 0)
4670 goto err;
4671 }
4672
4673 return 0;
4674
4675 err:
4676 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4677 for (++i; i < num_consumers; ++i) {
4678 r = regulator_enable(consumers[i].consumer);
4679 if (r != 0)
4680 pr_err("Failed to re-enable %s: %pe\n",
4681 consumers[i].supply, ERR_PTR(r));
4682 }
4683
4684 return ret;
4685 }
4686 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4687
4688 /**
4689 * regulator_bulk_force_disable - force disable multiple regulator consumers
4690 *
4691 * @num_consumers: Number of consumers
4692 * @consumers: Consumer data; clients are stored here.
4693 * @return 0 on success, an errno on failure
4694 *
4695 * This convenience API allows consumers to forcibly disable multiple regulator
4696 * clients in a single API call.
4697 * NOTE: This should be used for situations when device damage will
4698 * likely occur if the regulators are not disabled (e.g. over temp).
4699 * Although regulator_force_disable function call for some consumers can
4700 * return error numbers, the function is called for all consumers.
4701 */
4702 int regulator_bulk_force_disable(int num_consumers,
4703 struct regulator_bulk_data *consumers)
4704 {
4705 int i;
4706 int ret = 0;
4707
4708 for (i = 0; i < num_consumers; i++) {
4709 consumers[i].ret =
4710 regulator_force_disable(consumers[i].consumer);
4711
4712 /* Store first error for reporting */
4713 if (consumers[i].ret && !ret)
4714 ret = consumers[i].ret;
4715 }
4716
4717 return ret;
4718 }
4719 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4720
4721 /**
4722 * regulator_bulk_free - free multiple regulator consumers
4723 *
4724 * @num_consumers: Number of consumers
4725 * @consumers: Consumer data; clients are stored here.
4726 *
4727 * This convenience API allows consumers to free multiple regulator
4728 * clients in a single API call.
4729 */
4730 void regulator_bulk_free(int num_consumers,
4731 struct regulator_bulk_data *consumers)
4732 {
4733 int i;
4734
4735 for (i = 0; i < num_consumers; i++) {
4736 regulator_put(consumers[i].consumer);
4737 consumers[i].consumer = NULL;
4738 }
4739 }
4740 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4741
4742 /**
4743 * regulator_notifier_call_chain - call regulator event notifier
4744 * @rdev: regulator source
4745 * @event: notifier block
4746 * @data: callback-specific data.
4747 *
4748 * Called by regulator drivers to notify clients a regulator event has
4749 * occurred.
4750 */
4751 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4752 unsigned long event, void *data)
4753 {
4754 _notifier_call_chain(rdev, event, data);
4755 return NOTIFY_DONE;
4756
4757 }
4758 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4759
4760 /**
4761 * regulator_mode_to_status - convert a regulator mode into a status
4762 *
4763 * @mode: Mode to convert
4764 *
4765 * Convert a regulator mode into a status.
4766 */
4767 int regulator_mode_to_status(unsigned int mode)
4768 {
4769 switch (mode) {
4770 case REGULATOR_MODE_FAST:
4771 return REGULATOR_STATUS_FAST;
4772 case REGULATOR_MODE_NORMAL:
4773 return REGULATOR_STATUS_NORMAL;
4774 case REGULATOR_MODE_IDLE:
4775 return REGULATOR_STATUS_IDLE;
4776 case REGULATOR_MODE_STANDBY:
4777 return REGULATOR_STATUS_STANDBY;
4778 default:
4779 return REGULATOR_STATUS_UNDEFINED;
4780 }
4781 }
4782 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4783
4784 static struct attribute *regulator_dev_attrs[] = {
4785 &dev_attr_name.attr,
4786 &dev_attr_num_users.attr,
4787 &dev_attr_type.attr,
4788 &dev_attr_microvolts.attr,
4789 &dev_attr_microamps.attr,
4790 &dev_attr_opmode.attr,
4791 &dev_attr_state.attr,
4792 &dev_attr_status.attr,
4793 &dev_attr_bypass.attr,
4794 &dev_attr_requested_microamps.attr,
4795 &dev_attr_min_microvolts.attr,
4796 &dev_attr_max_microvolts.attr,
4797 &dev_attr_min_microamps.attr,
4798 &dev_attr_max_microamps.attr,
4799 &dev_attr_suspend_standby_state.attr,
4800 &dev_attr_suspend_mem_state.attr,
4801 &dev_attr_suspend_disk_state.attr,
4802 &dev_attr_suspend_standby_microvolts.attr,
4803 &dev_attr_suspend_mem_microvolts.attr,
4804 &dev_attr_suspend_disk_microvolts.attr,
4805 &dev_attr_suspend_standby_mode.attr,
4806 &dev_attr_suspend_mem_mode.attr,
4807 &dev_attr_suspend_disk_mode.attr,
4808 NULL
4809 };
4810
4811 /*
4812 * To avoid cluttering sysfs (and memory) with useless state, only
4813 * create attributes that can be meaningfully displayed.
4814 */
4815 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4816 struct attribute *attr, int idx)
4817 {
4818 struct device *dev = kobj_to_dev(kobj);
4819 struct regulator_dev *rdev = dev_to_rdev(dev);
4820 const struct regulator_ops *ops = rdev->desc->ops;
4821 umode_t mode = attr->mode;
4822
4823 /* these three are always present */
4824 if (attr == &dev_attr_name.attr ||
4825 attr == &dev_attr_num_users.attr ||
4826 attr == &dev_attr_type.attr)
4827 return mode;
4828
4829 /* some attributes need specific methods to be displayed */
4830 if (attr == &dev_attr_microvolts.attr) {
4831 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4832 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4833 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4834 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4835 return mode;
4836 return 0;
4837 }
4838
4839 if (attr == &dev_attr_microamps.attr)
4840 return ops->get_current_limit ? mode : 0;
4841
4842 if (attr == &dev_attr_opmode.attr)
4843 return ops->get_mode ? mode : 0;
4844
4845 if (attr == &dev_attr_state.attr)
4846 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4847
4848 if (attr == &dev_attr_status.attr)
4849 return ops->get_status ? mode : 0;
4850
4851 if (attr == &dev_attr_bypass.attr)
4852 return ops->get_bypass ? mode : 0;
4853
4854 /* constraints need specific supporting methods */
4855 if (attr == &dev_attr_min_microvolts.attr ||
4856 attr == &dev_attr_max_microvolts.attr)
4857 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4858
4859 if (attr == &dev_attr_min_microamps.attr ||
4860 attr == &dev_attr_max_microamps.attr)
4861 return ops->set_current_limit ? mode : 0;
4862
4863 if (attr == &dev_attr_suspend_standby_state.attr ||
4864 attr == &dev_attr_suspend_mem_state.attr ||
4865 attr == &dev_attr_suspend_disk_state.attr)
4866 return mode;
4867
4868 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4869 attr == &dev_attr_suspend_mem_microvolts.attr ||
4870 attr == &dev_attr_suspend_disk_microvolts.attr)
4871 return ops->set_suspend_voltage ? mode : 0;
4872
4873 if (attr == &dev_attr_suspend_standby_mode.attr ||
4874 attr == &dev_attr_suspend_mem_mode.attr ||
4875 attr == &dev_attr_suspend_disk_mode.attr)
4876 return ops->set_suspend_mode ? mode : 0;
4877
4878 return mode;
4879 }
4880
4881 static const struct attribute_group regulator_dev_group = {
4882 .attrs = regulator_dev_attrs,
4883 .is_visible = regulator_attr_is_visible,
4884 };
4885
4886 static const struct attribute_group *regulator_dev_groups[] = {
4887 &regulator_dev_group,
4888 NULL
4889 };
4890
4891 static void regulator_dev_release(struct device *dev)
4892 {
4893 struct regulator_dev *rdev = dev_get_drvdata(dev);
4894
4895 kfree(rdev->constraints);
4896 of_node_put(rdev->dev.of_node);
4897 kfree(rdev);
4898 }
4899
4900 static void rdev_init_debugfs(struct regulator_dev *rdev)
4901 {
4902 struct device *parent = rdev->dev.parent;
4903 const char *rname = rdev_get_name(rdev);
4904 char name[NAME_MAX];
4905
4906 /* Avoid duplicate debugfs directory names */
4907 if (parent && rname == rdev->desc->name) {
4908 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4909 rname);
4910 rname = name;
4911 }
4912
4913 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4914 if (!rdev->debugfs) {
4915 rdev_warn(rdev, "Failed to create debugfs directory\n");
4916 return;
4917 }
4918
4919 debugfs_create_u32("use_count", 0444, rdev->debugfs,
4920 &rdev->use_count);
4921 debugfs_create_u32("open_count", 0444, rdev->debugfs,
4922 &rdev->open_count);
4923 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4924 &rdev->bypass_count);
4925 }
4926
4927 static int regulator_register_resolve_supply(struct device *dev, void *data)
4928 {
4929 struct regulator_dev *rdev = dev_to_rdev(dev);
4930
4931 if (regulator_resolve_supply(rdev))
4932 rdev_dbg(rdev, "unable to resolve supply\n");
4933
4934 return 0;
4935 }
4936
4937 int regulator_coupler_register(struct regulator_coupler *coupler)
4938 {
4939 mutex_lock(&regulator_list_mutex);
4940 list_add_tail(&coupler->list, &regulator_coupler_list);
4941 mutex_unlock(&regulator_list_mutex);
4942
4943 return 0;
4944 }
4945
4946 static struct regulator_coupler *
4947 regulator_find_coupler(struct regulator_dev *rdev)
4948 {
4949 struct regulator_coupler *coupler;
4950 int err;
4951
4952 /*
4953 * Note that regulators are appended to the list and the generic
4954 * coupler is registered first, hence it will be attached at last
4955 * if nobody cared.
4956 */
4957 list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4958 err = coupler->attach_regulator(coupler, rdev);
4959 if (!err) {
4960 if (!coupler->balance_voltage &&
4961 rdev->coupling_desc.n_coupled > 2)
4962 goto err_unsupported;
4963
4964 return coupler;
4965 }
4966
4967 if (err < 0)
4968 return ERR_PTR(err);
4969
4970 if (err == 1)
4971 continue;
4972
4973 break;
4974 }
4975
4976 return ERR_PTR(-EINVAL);
4977
4978 err_unsupported:
4979 if (coupler->detach_regulator)
4980 coupler->detach_regulator(coupler, rdev);
4981
4982 rdev_err(rdev,
4983 "Voltage balancing for multiple regulator couples is unimplemented\n");
4984
4985 return ERR_PTR(-EPERM);
4986 }
4987
4988 static void regulator_resolve_coupling(struct regulator_dev *rdev)
4989 {
4990 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4991 struct coupling_desc *c_desc = &rdev->coupling_desc;
4992 int n_coupled = c_desc->n_coupled;
4993 struct regulator_dev *c_rdev;
4994 int i;
4995
4996 for (i = 1; i < n_coupled; i++) {
4997 /* already resolved */
4998 if (c_desc->coupled_rdevs[i])
4999 continue;
5000
5001 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5002
5003 if (!c_rdev)
5004 continue;
5005
5006 if (c_rdev->coupling_desc.coupler != coupler) {
5007 rdev_err(rdev, "coupler mismatch with %s\n",
5008 rdev_get_name(c_rdev));
5009 return;
5010 }
5011
5012 c_desc->coupled_rdevs[i] = c_rdev;
5013 c_desc->n_resolved++;
5014
5015 regulator_resolve_coupling(c_rdev);
5016 }
5017 }
5018
5019 static void regulator_remove_coupling(struct regulator_dev *rdev)
5020 {
5021 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5022 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5023 struct regulator_dev *__c_rdev, *c_rdev;
5024 unsigned int __n_coupled, n_coupled;
5025 int i, k;
5026 int err;
5027
5028 n_coupled = c_desc->n_coupled;
5029
5030 for (i = 1; i < n_coupled; i++) {
5031 c_rdev = c_desc->coupled_rdevs[i];
5032
5033 if (!c_rdev)
5034 continue;
5035
5036 regulator_lock(c_rdev);
5037
5038 __c_desc = &c_rdev->coupling_desc;
5039 __n_coupled = __c_desc->n_coupled;
5040
5041 for (k = 1; k < __n_coupled; k++) {
5042 __c_rdev = __c_desc->coupled_rdevs[k];
5043
5044 if (__c_rdev == rdev) {
5045 __c_desc->coupled_rdevs[k] = NULL;
5046 __c_desc->n_resolved--;
5047 break;
5048 }
5049 }
5050
5051 regulator_unlock(c_rdev);
5052
5053 c_desc->coupled_rdevs[i] = NULL;
5054 c_desc->n_resolved--;
5055 }
5056
5057 if (coupler && coupler->detach_regulator) {
5058 err = coupler->detach_regulator(coupler, rdev);
5059 if (err)
5060 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5061 ERR_PTR(err));
5062 }
5063
5064 kfree(rdev->coupling_desc.coupled_rdevs);
5065 rdev->coupling_desc.coupled_rdevs = NULL;
5066 }
5067
5068 static int regulator_init_coupling(struct regulator_dev *rdev)
5069 {
5070 struct regulator_dev **coupled;
5071 int err, n_phandles;
5072
5073 if (!IS_ENABLED(CONFIG_OF))
5074 n_phandles = 0;
5075 else
5076 n_phandles = of_get_n_coupled(rdev);
5077
5078 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5079 if (!coupled)
5080 return -ENOMEM;
5081
5082 rdev->coupling_desc.coupled_rdevs = coupled;
5083
5084 /*
5085 * Every regulator should always have coupling descriptor filled with
5086 * at least pointer to itself.
5087 */
5088 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5089 rdev->coupling_desc.n_coupled = n_phandles + 1;
5090 rdev->coupling_desc.n_resolved++;
5091
5092 /* regulator isn't coupled */
5093 if (n_phandles == 0)
5094 return 0;
5095
5096 if (!of_check_coupling_data(rdev))
5097 return -EPERM;
5098
5099 mutex_lock(&regulator_list_mutex);
5100 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5101 mutex_unlock(&regulator_list_mutex);
5102
5103 if (IS_ERR(rdev->coupling_desc.coupler)) {
5104 err = PTR_ERR(rdev->coupling_desc.coupler);
5105 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5106 return err;
5107 }
5108
5109 return 0;
5110 }
5111
5112 static int generic_coupler_attach(struct regulator_coupler *coupler,
5113 struct regulator_dev *rdev)
5114 {
5115 if (rdev->coupling_desc.n_coupled > 2) {
5116 rdev_err(rdev,
5117 "Voltage balancing for multiple regulator couples is unimplemented\n");
5118 return -EPERM;
5119 }
5120
5121 if (!rdev->constraints->always_on) {
5122 rdev_err(rdev,
5123 "Coupling of a non always-on regulator is unimplemented\n");
5124 return -ENOTSUPP;
5125 }
5126
5127 return 0;
5128 }
5129
5130 static struct regulator_coupler generic_regulator_coupler = {
5131 .attach_regulator = generic_coupler_attach,
5132 };
5133
5134 /**
5135 * regulator_register - register regulator
5136 * @regulator_desc: regulator to register
5137 * @cfg: runtime configuration for regulator
5138 *
5139 * Called by regulator drivers to register a regulator.
5140 * Returns a valid pointer to struct regulator_dev on success
5141 * or an ERR_PTR() on error.
5142 */
5143 struct regulator_dev *
5144 regulator_register(const struct regulator_desc *regulator_desc,
5145 const struct regulator_config *cfg)
5146 {
5147 const struct regulation_constraints *constraints = NULL;
5148 const struct regulator_init_data *init_data;
5149 struct regulator_config *config = NULL;
5150 static atomic_t regulator_no = ATOMIC_INIT(-1);
5151 struct regulator_dev *rdev;
5152 bool dangling_cfg_gpiod = false;
5153 bool dangling_of_gpiod = false;
5154 struct device *dev;
5155 int ret, i;
5156
5157 if (cfg == NULL)
5158 return ERR_PTR(-EINVAL);
5159 if (cfg->ena_gpiod)
5160 dangling_cfg_gpiod = true;
5161 if (regulator_desc == NULL) {
5162 ret = -EINVAL;
5163 goto rinse;
5164 }
5165
5166 dev = cfg->dev;
5167 WARN_ON(!dev);
5168
5169 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5170 ret = -EINVAL;
5171 goto rinse;
5172 }
5173
5174 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5175 regulator_desc->type != REGULATOR_CURRENT) {
5176 ret = -EINVAL;
5177 goto rinse;
5178 }
5179
5180 /* Only one of each should be implemented */
5181 WARN_ON(regulator_desc->ops->get_voltage &&
5182 regulator_desc->ops->get_voltage_sel);
5183 WARN_ON(regulator_desc->ops->set_voltage &&
5184 regulator_desc->ops->set_voltage_sel);
5185
5186 /* If we're using selectors we must implement list_voltage. */
5187 if (regulator_desc->ops->get_voltage_sel &&
5188 !regulator_desc->ops->list_voltage) {
5189 ret = -EINVAL;
5190 goto rinse;
5191 }
5192 if (regulator_desc->ops->set_voltage_sel &&
5193 !regulator_desc->ops->list_voltage) {
5194 ret = -EINVAL;
5195 goto rinse;
5196 }
5197
5198 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5199 if (rdev == NULL) {
5200 ret = -ENOMEM;
5201 goto rinse;
5202 }
5203 device_initialize(&rdev->dev);
5204
5205 /*
5206 * Duplicate the config so the driver could override it after
5207 * parsing init data.
5208 */
5209 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5210 if (config == NULL) {
5211 ret = -ENOMEM;
5212 goto clean;
5213 }
5214
5215 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5216 &rdev->dev.of_node);
5217
5218 /*
5219 * Sometimes not all resources are probed already so we need to take
5220 * that into account. This happens most the time if the ena_gpiod comes
5221 * from a gpio extender or something else.
5222 */
5223 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5224 ret = -EPROBE_DEFER;
5225 goto clean;
5226 }
5227
5228 /*
5229 * We need to keep track of any GPIO descriptor coming from the
5230 * device tree until we have handled it over to the core. If the
5231 * config that was passed in to this function DOES NOT contain
5232 * a descriptor, and the config after this call DOES contain
5233 * a descriptor, we definitely got one from parsing the device
5234 * tree.
5235 */
5236 if (!cfg->ena_gpiod && config->ena_gpiod)
5237 dangling_of_gpiod = true;
5238 if (!init_data) {
5239 init_data = config->init_data;
5240 rdev->dev.of_node = of_node_get(config->of_node);
5241 }
5242
5243 ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5244 rdev->reg_data = config->driver_data;
5245 rdev->owner = regulator_desc->owner;
5246 rdev->desc = regulator_desc;
5247 if (config->regmap)
5248 rdev->regmap = config->regmap;
5249 else if (dev_get_regmap(dev, NULL))
5250 rdev->regmap = dev_get_regmap(dev, NULL);
5251 else if (dev->parent)
5252 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5253 INIT_LIST_HEAD(&rdev->consumer_list);
5254 INIT_LIST_HEAD(&rdev->list);
5255 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5256 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5257
5258 /* preform any regulator specific init */
5259 if (init_data && init_data->regulator_init) {
5260 ret = init_data->regulator_init(rdev->reg_data);
5261 if (ret < 0)
5262 goto clean;
5263 }
5264
5265 if (config->ena_gpiod) {
5266 ret = regulator_ena_gpio_request(rdev, config);
5267 if (ret != 0) {
5268 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5269 ERR_PTR(ret));
5270 goto clean;
5271 }
5272 /* The regulator core took over the GPIO descriptor */
5273 dangling_cfg_gpiod = false;
5274 dangling_of_gpiod = false;
5275 }
5276
5277 /* register with sysfs */
5278 rdev->dev.class = &regulator_class;
5279 rdev->dev.parent = dev;
5280 dev_set_name(&rdev->dev, "regulator.%lu",
5281 (unsigned long) atomic_inc_return(&regulator_no));
5282 dev_set_drvdata(&rdev->dev, rdev);
5283
5284 /* set regulator constraints */
5285 if (init_data)
5286 constraints = &init_data->constraints;
5287
5288 if (init_data && init_data->supply_regulator)
5289 rdev->supply_name = init_data->supply_regulator;
5290 else if (regulator_desc->supply_name)
5291 rdev->supply_name = regulator_desc->supply_name;
5292
5293 ret = set_machine_constraints(rdev, constraints);
5294 if (ret == -EPROBE_DEFER) {
5295 /* Regulator might be in bypass mode and so needs its supply
5296 * to set the constraints */
5297 /* FIXME: this currently triggers a chicken-and-egg problem
5298 * when creating -SUPPLY symlink in sysfs to a regulator
5299 * that is just being created */
5300 ret = regulator_resolve_supply(rdev);
5301 if (!ret)
5302 ret = set_machine_constraints(rdev, constraints);
5303 else
5304 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5305 ERR_PTR(ret));
5306 }
5307 if (ret < 0)
5308 goto wash;
5309
5310 ret = regulator_init_coupling(rdev);
5311 if (ret < 0)
5312 goto wash;
5313
5314 /* add consumers devices */
5315 if (init_data) {
5316 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5317 ret = set_consumer_device_supply(rdev,
5318 init_data->consumer_supplies[i].dev_name,
5319 init_data->consumer_supplies[i].supply);
5320 if (ret < 0) {
5321 dev_err(dev, "Failed to set supply %s\n",
5322 init_data->consumer_supplies[i].supply);
5323 goto unset_supplies;
5324 }
5325 }
5326 }
5327
5328 if (!rdev->desc->ops->get_voltage &&
5329 !rdev->desc->ops->list_voltage &&
5330 !rdev->desc->fixed_uV)
5331 rdev->is_switch = true;
5332
5333 ret = device_add(&rdev->dev);
5334 if (ret != 0)
5335 goto unset_supplies;
5336
5337 rdev_init_debugfs(rdev);
5338
5339 /* try to resolve regulators coupling since a new one was registered */
5340 mutex_lock(&regulator_list_mutex);
5341 regulator_resolve_coupling(rdev);
5342 mutex_unlock(&regulator_list_mutex);
5343
5344 /* try to resolve regulators supply since a new one was registered */
5345 class_for_each_device(&regulator_class, NULL, NULL,
5346 regulator_register_resolve_supply);
5347 kfree(config);
5348 return rdev;
5349
5350 unset_supplies:
5351 mutex_lock(&regulator_list_mutex);
5352 unset_regulator_supplies(rdev);
5353 regulator_remove_coupling(rdev);
5354 mutex_unlock(&regulator_list_mutex);
5355 wash:
5356 kfree(rdev->coupling_desc.coupled_rdevs);
5357 mutex_lock(&regulator_list_mutex);
5358 regulator_ena_gpio_free(rdev);
5359 mutex_unlock(&regulator_list_mutex);
5360 clean:
5361 if (dangling_of_gpiod)
5362 gpiod_put(config->ena_gpiod);
5363 kfree(config);
5364 put_device(&rdev->dev);
5365 rinse:
5366 if (dangling_cfg_gpiod)
5367 gpiod_put(cfg->ena_gpiod);
5368 return ERR_PTR(ret);
5369 }
5370 EXPORT_SYMBOL_GPL(regulator_register);
5371
5372 /**
5373 * regulator_unregister - unregister regulator
5374 * @rdev: regulator to unregister
5375 *
5376 * Called by regulator drivers to unregister a regulator.
5377 */
5378 void regulator_unregister(struct regulator_dev *rdev)
5379 {
5380 if (rdev == NULL)
5381 return;
5382
5383 if (rdev->supply) {
5384 while (rdev->use_count--)
5385 regulator_disable(rdev->supply);
5386 regulator_put(rdev->supply);
5387 }
5388
5389 flush_work(&rdev->disable_work.work);
5390
5391 mutex_lock(&regulator_list_mutex);
5392
5393 debugfs_remove_recursive(rdev->debugfs);
5394 WARN_ON(rdev->open_count);
5395 regulator_remove_coupling(rdev);
5396 unset_regulator_supplies(rdev);
5397 list_del(&rdev->list);
5398 regulator_ena_gpio_free(rdev);
5399 device_unregister(&rdev->dev);
5400
5401 mutex_unlock(&regulator_list_mutex);
5402 }
5403 EXPORT_SYMBOL_GPL(regulator_unregister);
5404
5405 #ifdef CONFIG_SUSPEND
5406 /**
5407 * regulator_suspend - prepare regulators for system wide suspend
5408 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5409 *
5410 * Configure each regulator with it's suspend operating parameters for state.
5411 */
5412 static int regulator_suspend(struct device *dev)
5413 {
5414 struct regulator_dev *rdev = dev_to_rdev(dev);
5415 suspend_state_t state = pm_suspend_target_state;
5416 int ret;
5417 const struct regulator_state *rstate;
5418
5419 rstate = regulator_get_suspend_state_check(rdev, state);
5420 if (!rstate)
5421 return 0;
5422
5423 regulator_lock(rdev);
5424 ret = __suspend_set_state(rdev, rstate);
5425 regulator_unlock(rdev);
5426
5427 return ret;
5428 }
5429
5430 static int regulator_resume(struct device *dev)
5431 {
5432 suspend_state_t state = pm_suspend_target_state;
5433 struct regulator_dev *rdev = dev_to_rdev(dev);
5434 struct regulator_state *rstate;
5435 int ret = 0;
5436
5437 rstate = regulator_get_suspend_state(rdev, state);
5438 if (rstate == NULL)
5439 return 0;
5440
5441 /* Avoid grabbing the lock if we don't need to */
5442 if (!rdev->desc->ops->resume)
5443 return 0;
5444
5445 regulator_lock(rdev);
5446
5447 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5448 rstate->enabled == DISABLE_IN_SUSPEND)
5449 ret = rdev->desc->ops->resume(rdev);
5450
5451 regulator_unlock(rdev);
5452
5453 return ret;
5454 }
5455 #else /* !CONFIG_SUSPEND */
5456
5457 #define regulator_suspend NULL
5458 #define regulator_resume NULL
5459
5460 #endif /* !CONFIG_SUSPEND */
5461
5462 #ifdef CONFIG_PM
5463 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5464 .suspend = regulator_suspend,
5465 .resume = regulator_resume,
5466 };
5467 #endif
5468
5469 struct class regulator_class = {
5470 .name = "regulator",
5471 .dev_release = regulator_dev_release,
5472 .dev_groups = regulator_dev_groups,
5473 #ifdef CONFIG_PM
5474 .pm = &regulator_pm_ops,
5475 #endif
5476 };
5477 /**
5478 * regulator_has_full_constraints - the system has fully specified constraints
5479 *
5480 * Calling this function will cause the regulator API to disable all
5481 * regulators which have a zero use count and don't have an always_on
5482 * constraint in a late_initcall.
5483 *
5484 * The intention is that this will become the default behaviour in a
5485 * future kernel release so users are encouraged to use this facility
5486 * now.
5487 */
5488 void regulator_has_full_constraints(void)
5489 {
5490 has_full_constraints = 1;
5491 }
5492 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5493
5494 /**
5495 * rdev_get_drvdata - get rdev regulator driver data
5496 * @rdev: regulator
5497 *
5498 * Get rdev regulator driver private data. This call can be used in the
5499 * regulator driver context.
5500 */
5501 void *rdev_get_drvdata(struct regulator_dev *rdev)
5502 {
5503 return rdev->reg_data;
5504 }
5505 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5506
5507 /**
5508 * regulator_get_drvdata - get regulator driver data
5509 * @regulator: regulator
5510 *
5511 * Get regulator driver private data. This call can be used in the consumer
5512 * driver context when non API regulator specific functions need to be called.
5513 */
5514 void *regulator_get_drvdata(struct regulator *regulator)
5515 {
5516 return regulator->rdev->reg_data;
5517 }
5518 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5519
5520 /**
5521 * regulator_set_drvdata - set regulator driver data
5522 * @regulator: regulator
5523 * @data: data
5524 */
5525 void regulator_set_drvdata(struct regulator *regulator, void *data)
5526 {
5527 regulator->rdev->reg_data = data;
5528 }
5529 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5530
5531 /**
5532 * regulator_get_id - get regulator ID
5533 * @rdev: regulator
5534 */
5535 int rdev_get_id(struct regulator_dev *rdev)
5536 {
5537 return rdev->desc->id;
5538 }
5539 EXPORT_SYMBOL_GPL(rdev_get_id);
5540
5541 struct device *rdev_get_dev(struct regulator_dev *rdev)
5542 {
5543 return &rdev->dev;
5544 }
5545 EXPORT_SYMBOL_GPL(rdev_get_dev);
5546
5547 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5548 {
5549 return rdev->regmap;
5550 }
5551 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5552
5553 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5554 {
5555 return reg_init_data->driver_data;
5556 }
5557 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5558
5559 #ifdef CONFIG_DEBUG_FS
5560 static int supply_map_show(struct seq_file *sf, void *data)
5561 {
5562 struct regulator_map *map;
5563
5564 list_for_each_entry(map, &regulator_map_list, list) {
5565 seq_printf(sf, "%s -> %s.%s\n",
5566 rdev_get_name(map->regulator), map->dev_name,
5567 map->supply);
5568 }
5569
5570 return 0;
5571 }
5572 DEFINE_SHOW_ATTRIBUTE(supply_map);
5573
5574 struct summary_data {
5575 struct seq_file *s;
5576 struct regulator_dev *parent;
5577 int level;
5578 };
5579
5580 static void regulator_summary_show_subtree(struct seq_file *s,
5581 struct regulator_dev *rdev,
5582 int level);
5583
5584 static int regulator_summary_show_children(struct device *dev, void *data)
5585 {
5586 struct regulator_dev *rdev = dev_to_rdev(dev);
5587 struct summary_data *summary_data = data;
5588
5589 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5590 regulator_summary_show_subtree(summary_data->s, rdev,
5591 summary_data->level + 1);
5592
5593 return 0;
5594 }
5595
5596 static void regulator_summary_show_subtree(struct seq_file *s,
5597 struct regulator_dev *rdev,
5598 int level)
5599 {
5600 struct regulation_constraints *c;
5601 struct regulator *consumer;
5602 struct summary_data summary_data;
5603 unsigned int opmode;
5604
5605 if (!rdev)
5606 return;
5607
5608 opmode = _regulator_get_mode_unlocked(rdev);
5609 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5610 level * 3 + 1, "",
5611 30 - level * 3, rdev_get_name(rdev),
5612 rdev->use_count, rdev->open_count, rdev->bypass_count,
5613 regulator_opmode_to_str(opmode));
5614
5615 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5616 seq_printf(s, "%5dmA ",
5617 _regulator_get_current_limit_unlocked(rdev) / 1000);
5618
5619 c = rdev->constraints;
5620 if (c) {
5621 switch (rdev->desc->type) {
5622 case REGULATOR_VOLTAGE:
5623 seq_printf(s, "%5dmV %5dmV ",
5624 c->min_uV / 1000, c->max_uV / 1000);
5625 break;
5626 case REGULATOR_CURRENT:
5627 seq_printf(s, "%5dmA %5dmA ",
5628 c->min_uA / 1000, c->max_uA / 1000);
5629 break;
5630 }
5631 }
5632
5633 seq_puts(s, "\n");
5634
5635 list_for_each_entry(consumer, &rdev->consumer_list, list) {
5636 if (consumer->dev && consumer->dev->class == &regulator_class)
5637 continue;
5638
5639 seq_printf(s, "%*s%-*s ",
5640 (level + 1) * 3 + 1, "",
5641 30 - (level + 1) * 3,
5642 consumer->supply_name ? consumer->supply_name :
5643 consumer->dev ? dev_name(consumer->dev) : "deviceless");
5644
5645 switch (rdev->desc->type) {
5646 case REGULATOR_VOLTAGE:
5647 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5648 consumer->enable_count,
5649 consumer->uA_load / 1000,
5650 consumer->uA_load && !consumer->enable_count ?
5651 '*' : ' ',
5652 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5653 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5654 break;
5655 case REGULATOR_CURRENT:
5656 break;
5657 }
5658
5659 seq_puts(s, "\n");
5660 }
5661
5662 summary_data.s = s;
5663 summary_data.level = level;
5664 summary_data.parent = rdev;
5665
5666 class_for_each_device(&regulator_class, NULL, &summary_data,
5667 regulator_summary_show_children);
5668 }
5669
5670 struct summary_lock_data {
5671 struct ww_acquire_ctx *ww_ctx;
5672 struct regulator_dev **new_contended_rdev;
5673 struct regulator_dev **old_contended_rdev;
5674 };
5675
5676 static int regulator_summary_lock_one(struct device *dev, void *data)
5677 {
5678 struct regulator_dev *rdev = dev_to_rdev(dev);
5679 struct summary_lock_data *lock_data = data;
5680 int ret = 0;
5681
5682 if (rdev != *lock_data->old_contended_rdev) {
5683 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5684
5685 if (ret == -EDEADLK)
5686 *lock_data->new_contended_rdev = rdev;
5687 else
5688 WARN_ON_ONCE(ret);
5689 } else {
5690 *lock_data->old_contended_rdev = NULL;
5691 }
5692
5693 return ret;
5694 }
5695
5696 static int regulator_summary_unlock_one(struct device *dev, void *data)
5697 {
5698 struct regulator_dev *rdev = dev_to_rdev(dev);
5699 struct summary_lock_data *lock_data = data;
5700
5701 if (lock_data) {
5702 if (rdev == *lock_data->new_contended_rdev)
5703 return -EDEADLK;
5704 }
5705
5706 regulator_unlock(rdev);
5707
5708 return 0;
5709 }
5710
5711 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5712 struct regulator_dev **new_contended_rdev,
5713 struct regulator_dev **old_contended_rdev)
5714 {
5715 struct summary_lock_data lock_data;
5716 int ret;
5717
5718 lock_data.ww_ctx = ww_ctx;
5719 lock_data.new_contended_rdev = new_contended_rdev;
5720 lock_data.old_contended_rdev = old_contended_rdev;
5721
5722 ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5723 regulator_summary_lock_one);
5724 if (ret)
5725 class_for_each_device(&regulator_class, NULL, &lock_data,
5726 regulator_summary_unlock_one);
5727
5728 return ret;
5729 }
5730
5731 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5732 {
5733 struct regulator_dev *new_contended_rdev = NULL;
5734 struct regulator_dev *old_contended_rdev = NULL;
5735 int err;
5736
5737 mutex_lock(&regulator_list_mutex);
5738
5739 ww_acquire_init(ww_ctx, &regulator_ww_class);
5740
5741 do {
5742 if (new_contended_rdev) {
5743 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5744 old_contended_rdev = new_contended_rdev;
5745 old_contended_rdev->ref_cnt++;
5746 }
5747
5748 err = regulator_summary_lock_all(ww_ctx,
5749 &new_contended_rdev,
5750 &old_contended_rdev);
5751
5752 if (old_contended_rdev)
5753 regulator_unlock(old_contended_rdev);
5754
5755 } while (err == -EDEADLK);
5756
5757 ww_acquire_done(ww_ctx);
5758 }
5759
5760 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5761 {
5762 class_for_each_device(&regulator_class, NULL, NULL,
5763 regulator_summary_unlock_one);
5764 ww_acquire_fini(ww_ctx);
5765
5766 mutex_unlock(&regulator_list_mutex);
5767 }
5768
5769 static int regulator_summary_show_roots(struct device *dev, void *data)
5770 {
5771 struct regulator_dev *rdev = dev_to_rdev(dev);
5772 struct seq_file *s = data;
5773
5774 if (!rdev->supply)
5775 regulator_summary_show_subtree(s, rdev, 0);
5776
5777 return 0;
5778 }
5779
5780 static int regulator_summary_show(struct seq_file *s, void *data)
5781 {
5782 struct ww_acquire_ctx ww_ctx;
5783
5784 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
5785 seq_puts(s, "---------------------------------------------------------------------------------------\n");
5786
5787 regulator_summary_lock(&ww_ctx);
5788
5789 class_for_each_device(&regulator_class, NULL, s,
5790 regulator_summary_show_roots);
5791
5792 regulator_summary_unlock(&ww_ctx);
5793
5794 return 0;
5795 }
5796 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5797 #endif /* CONFIG_DEBUG_FS */
5798
5799 static int __init regulator_init(void)
5800 {
5801 int ret;
5802
5803 ret = class_register(&regulator_class);
5804
5805 debugfs_root = debugfs_create_dir("regulator", NULL);
5806 if (!debugfs_root)
5807 pr_warn("regulator: Failed to create debugfs directory\n");
5808
5809 #ifdef CONFIG_DEBUG_FS
5810 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5811 &supply_map_fops);
5812
5813 debugfs_create_file("regulator_summary", 0444, debugfs_root,
5814 NULL, &regulator_summary_fops);
5815 #endif
5816 regulator_dummy_init();
5817
5818 regulator_coupler_register(&generic_regulator_coupler);
5819
5820 return ret;
5821 }
5822
5823 /* init early to allow our consumers to complete system booting */
5824 core_initcall(regulator_init);
5825
5826 static int regulator_late_cleanup(struct device *dev, void *data)
5827 {
5828 struct regulator_dev *rdev = dev_to_rdev(dev);
5829 const struct regulator_ops *ops = rdev->desc->ops;
5830 struct regulation_constraints *c = rdev->constraints;
5831 int enabled, ret;
5832
5833 if (c && c->always_on)
5834 return 0;
5835
5836 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5837 return 0;
5838
5839 regulator_lock(rdev);
5840
5841 if (rdev->use_count)
5842 goto unlock;
5843
5844 /* If we can't read the status assume it's on. */
5845 if (ops->is_enabled)
5846 enabled = ops->is_enabled(rdev);
5847 else
5848 enabled = 1;
5849
5850 if (!enabled)
5851 goto unlock;
5852
5853 if (have_full_constraints()) {
5854 /* We log since this may kill the system if it goes
5855 * wrong. */
5856 rdev_info(rdev, "disabling\n");
5857 ret = _regulator_do_disable(rdev);
5858 if (ret != 0)
5859 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
5860 } else {
5861 /* The intention is that in future we will
5862 * assume that full constraints are provided
5863 * so warn even if we aren't going to do
5864 * anything here.
5865 */
5866 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5867 }
5868
5869 unlock:
5870 regulator_unlock(rdev);
5871
5872 return 0;
5873 }
5874
5875 static void regulator_init_complete_work_function(struct work_struct *work)
5876 {
5877 /*
5878 * Regulators may had failed to resolve their input supplies
5879 * when were registered, either because the input supply was
5880 * not registered yet or because its parent device was not
5881 * bound yet. So attempt to resolve the input supplies for
5882 * pending regulators before trying to disable unused ones.
5883 */
5884 class_for_each_device(&regulator_class, NULL, NULL,
5885 regulator_register_resolve_supply);
5886
5887 /* If we have a full configuration then disable any regulators
5888 * we have permission to change the status for and which are
5889 * not in use or always_on. This is effectively the default
5890 * for DT and ACPI as they have full constraints.
5891 */
5892 class_for_each_device(&regulator_class, NULL, NULL,
5893 regulator_late_cleanup);
5894 }
5895
5896 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5897 regulator_init_complete_work_function);
5898
5899 static int __init regulator_init_complete(void)
5900 {
5901 /*
5902 * Since DT doesn't provide an idiomatic mechanism for
5903 * enabling full constraints and since it's much more natural
5904 * with DT to provide them just assume that a DT enabled
5905 * system has full constraints.
5906 */
5907 if (of_have_populated_dt())
5908 has_full_constraints = true;
5909
5910 /*
5911 * We punt completion for an arbitrary amount of time since
5912 * systems like distros will load many drivers from userspace
5913 * so consumers might not always be ready yet, this is
5914 * particularly an issue with laptops where this might bounce
5915 * the display off then on. Ideally we'd get a notification
5916 * from userspace when this happens but we don't so just wait
5917 * a bit and hope we waited long enough. It'd be better if
5918 * we'd only do this on systems that need it, and a kernel
5919 * command line option might be useful.
5920 */
5921 schedule_delayed_work(&regulator_init_complete_work,
5922 msecs_to_jiffies(30000));
5923
5924 return 0;
5925 }
5926 late_initcall_sync(regulator_init_complete);