]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/regulator/core.c
Merge remote-tracking branches 'regulator/topic/anatop', 'regulator/topic/disable...
[mirror_ubuntu-jammy-kernel.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59
60 static struct dentry *debugfs_root;
61
62 /*
63 * struct regulator_map
64 *
65 * Used to provide symbolic supply names to devices.
66 */
67 struct regulator_map {
68 struct list_head list;
69 const char *dev_name; /* The dev_name() for the consumer */
70 const char *supply;
71 struct regulator_dev *regulator;
72 };
73
74 /*
75 * struct regulator_enable_gpio
76 *
77 * Management for shared enable GPIO pin
78 */
79 struct regulator_enable_gpio {
80 struct list_head list;
81 struct gpio_desc *gpiod;
82 u32 enable_count; /* a number of enabled shared GPIO */
83 u32 request_count; /* a number of requested shared GPIO */
84 unsigned int ena_gpio_invert:1;
85 };
86
87 /*
88 * struct regulator_supply_alias
89 *
90 * Used to map lookups for a supply onto an alternative device.
91 */
92 struct regulator_supply_alias {
93 struct list_head list;
94 struct device *src_dev;
95 const char *src_supply;
96 struct device *alias_dev;
97 const char *alias_supply;
98 };
99
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static int _notifier_call_chain(struct regulator_dev *rdev,
106 unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108 int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110 struct device *dev,
111 const char *supply_name);
112
113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115 if (rdev->constraints && rdev->constraints->name)
116 return rdev->constraints->name;
117 else if (rdev->desc->name)
118 return rdev->desc->name;
119 else
120 return "";
121 }
122
123 static bool have_full_constraints(void)
124 {
125 return has_full_constraints || of_have_populated_dt();
126 }
127
128 /**
129 * of_get_regulator - get a regulator device node based on supply name
130 * @dev: Device pointer for the consumer (of regulator) device
131 * @supply: regulator supply name
132 *
133 * Extract the regulator device node corresponding to the supply name.
134 * returns the device node corresponding to the regulator if found, else
135 * returns NULL.
136 */
137 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138 {
139 struct device_node *regnode = NULL;
140 char prop_name[32]; /* 32 is max size of property name */
141
142 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143
144 snprintf(prop_name, 32, "%s-supply", supply);
145 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
146
147 if (!regnode) {
148 dev_dbg(dev, "Looking up %s property in node %s failed",
149 prop_name, dev->of_node->full_name);
150 return NULL;
151 }
152 return regnode;
153 }
154
155 static int _regulator_can_change_status(struct regulator_dev *rdev)
156 {
157 if (!rdev->constraints)
158 return 0;
159
160 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
161 return 1;
162 else
163 return 0;
164 }
165
166 /* Platform voltage constraint check */
167 static int regulator_check_voltage(struct regulator_dev *rdev,
168 int *min_uV, int *max_uV)
169 {
170 BUG_ON(*min_uV > *max_uV);
171
172 if (!rdev->constraints) {
173 rdev_err(rdev, "no constraints\n");
174 return -ENODEV;
175 }
176 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177 rdev_err(rdev, "operation not allowed\n");
178 return -EPERM;
179 }
180
181 if (*max_uV > rdev->constraints->max_uV)
182 *max_uV = rdev->constraints->max_uV;
183 if (*min_uV < rdev->constraints->min_uV)
184 *min_uV = rdev->constraints->min_uV;
185
186 if (*min_uV > *max_uV) {
187 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188 *min_uV, *max_uV);
189 return -EINVAL;
190 }
191
192 return 0;
193 }
194
195 /* Make sure we select a voltage that suits the needs of all
196 * regulator consumers
197 */
198 static int regulator_check_consumers(struct regulator_dev *rdev,
199 int *min_uV, int *max_uV)
200 {
201 struct regulator *regulator;
202
203 list_for_each_entry(regulator, &rdev->consumer_list, list) {
204 /*
205 * Assume consumers that didn't say anything are OK
206 * with anything in the constraint range.
207 */
208 if (!regulator->min_uV && !regulator->max_uV)
209 continue;
210
211 if (*max_uV > regulator->max_uV)
212 *max_uV = regulator->max_uV;
213 if (*min_uV < regulator->min_uV)
214 *min_uV = regulator->min_uV;
215 }
216
217 if (*min_uV > *max_uV) {
218 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
219 *min_uV, *max_uV);
220 return -EINVAL;
221 }
222
223 return 0;
224 }
225
226 /* current constraint check */
227 static int regulator_check_current_limit(struct regulator_dev *rdev,
228 int *min_uA, int *max_uA)
229 {
230 BUG_ON(*min_uA > *max_uA);
231
232 if (!rdev->constraints) {
233 rdev_err(rdev, "no constraints\n");
234 return -ENODEV;
235 }
236 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237 rdev_err(rdev, "operation not allowed\n");
238 return -EPERM;
239 }
240
241 if (*max_uA > rdev->constraints->max_uA)
242 *max_uA = rdev->constraints->max_uA;
243 if (*min_uA < rdev->constraints->min_uA)
244 *min_uA = rdev->constraints->min_uA;
245
246 if (*min_uA > *max_uA) {
247 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248 *min_uA, *max_uA);
249 return -EINVAL;
250 }
251
252 return 0;
253 }
254
255 /* operating mode constraint check */
256 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257 {
258 switch (*mode) {
259 case REGULATOR_MODE_FAST:
260 case REGULATOR_MODE_NORMAL:
261 case REGULATOR_MODE_IDLE:
262 case REGULATOR_MODE_STANDBY:
263 break;
264 default:
265 rdev_err(rdev, "invalid mode %x specified\n", *mode);
266 return -EINVAL;
267 }
268
269 if (!rdev->constraints) {
270 rdev_err(rdev, "no constraints\n");
271 return -ENODEV;
272 }
273 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274 rdev_err(rdev, "operation not allowed\n");
275 return -EPERM;
276 }
277
278 /* The modes are bitmasks, the most power hungry modes having
279 * the lowest values. If the requested mode isn't supported
280 * try higher modes. */
281 while (*mode) {
282 if (rdev->constraints->valid_modes_mask & *mode)
283 return 0;
284 *mode /= 2;
285 }
286
287 return -EINVAL;
288 }
289
290 /* dynamic regulator mode switching constraint check */
291 static int regulator_check_drms(struct regulator_dev *rdev)
292 {
293 if (!rdev->constraints) {
294 rdev_err(rdev, "no constraints\n");
295 return -ENODEV;
296 }
297 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298 rdev_err(rdev, "operation not allowed\n");
299 return -EPERM;
300 }
301 return 0;
302 }
303
304 static ssize_t regulator_uV_show(struct device *dev,
305 struct device_attribute *attr, char *buf)
306 {
307 struct regulator_dev *rdev = dev_get_drvdata(dev);
308 ssize_t ret;
309
310 mutex_lock(&rdev->mutex);
311 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
312 mutex_unlock(&rdev->mutex);
313
314 return ret;
315 }
316 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317
318 static ssize_t regulator_uA_show(struct device *dev,
319 struct device_attribute *attr, char *buf)
320 {
321 struct regulator_dev *rdev = dev_get_drvdata(dev);
322
323 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324 }
325 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326
327 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
328 char *buf)
329 {
330 struct regulator_dev *rdev = dev_get_drvdata(dev);
331
332 return sprintf(buf, "%s\n", rdev_get_name(rdev));
333 }
334 static DEVICE_ATTR_RO(name);
335
336 static ssize_t regulator_print_opmode(char *buf, int mode)
337 {
338 switch (mode) {
339 case REGULATOR_MODE_FAST:
340 return sprintf(buf, "fast\n");
341 case REGULATOR_MODE_NORMAL:
342 return sprintf(buf, "normal\n");
343 case REGULATOR_MODE_IDLE:
344 return sprintf(buf, "idle\n");
345 case REGULATOR_MODE_STANDBY:
346 return sprintf(buf, "standby\n");
347 }
348 return sprintf(buf, "unknown\n");
349 }
350
351 static ssize_t regulator_opmode_show(struct device *dev,
352 struct device_attribute *attr, char *buf)
353 {
354 struct regulator_dev *rdev = dev_get_drvdata(dev);
355
356 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 }
358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359
360 static ssize_t regulator_print_state(char *buf, int state)
361 {
362 if (state > 0)
363 return sprintf(buf, "enabled\n");
364 else if (state == 0)
365 return sprintf(buf, "disabled\n");
366 else
367 return sprintf(buf, "unknown\n");
368 }
369
370 static ssize_t regulator_state_show(struct device *dev,
371 struct device_attribute *attr, char *buf)
372 {
373 struct regulator_dev *rdev = dev_get_drvdata(dev);
374 ssize_t ret;
375
376 mutex_lock(&rdev->mutex);
377 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378 mutex_unlock(&rdev->mutex);
379
380 return ret;
381 }
382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383
384 static ssize_t regulator_status_show(struct device *dev,
385 struct device_attribute *attr, char *buf)
386 {
387 struct regulator_dev *rdev = dev_get_drvdata(dev);
388 int status;
389 char *label;
390
391 status = rdev->desc->ops->get_status(rdev);
392 if (status < 0)
393 return status;
394
395 switch (status) {
396 case REGULATOR_STATUS_OFF:
397 label = "off";
398 break;
399 case REGULATOR_STATUS_ON:
400 label = "on";
401 break;
402 case REGULATOR_STATUS_ERROR:
403 label = "error";
404 break;
405 case REGULATOR_STATUS_FAST:
406 label = "fast";
407 break;
408 case REGULATOR_STATUS_NORMAL:
409 label = "normal";
410 break;
411 case REGULATOR_STATUS_IDLE:
412 label = "idle";
413 break;
414 case REGULATOR_STATUS_STANDBY:
415 label = "standby";
416 break;
417 case REGULATOR_STATUS_BYPASS:
418 label = "bypass";
419 break;
420 case REGULATOR_STATUS_UNDEFINED:
421 label = "undefined";
422 break;
423 default:
424 return -ERANGE;
425 }
426
427 return sprintf(buf, "%s\n", label);
428 }
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431 static ssize_t regulator_min_uA_show(struct device *dev,
432 struct device_attribute *attr, char *buf)
433 {
434 struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436 if (!rdev->constraints)
437 return sprintf(buf, "constraint not defined\n");
438
439 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 }
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443 static ssize_t regulator_max_uA_show(struct device *dev,
444 struct device_attribute *attr, char *buf)
445 {
446 struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448 if (!rdev->constraints)
449 return sprintf(buf, "constraint not defined\n");
450
451 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 }
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455 static ssize_t regulator_min_uV_show(struct device *dev,
456 struct device_attribute *attr, char *buf)
457 {
458 struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460 if (!rdev->constraints)
461 return sprintf(buf, "constraint not defined\n");
462
463 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 }
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467 static ssize_t regulator_max_uV_show(struct device *dev,
468 struct device_attribute *attr, char *buf)
469 {
470 struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472 if (!rdev->constraints)
473 return sprintf(buf, "constraint not defined\n");
474
475 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 }
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479 static ssize_t regulator_total_uA_show(struct device *dev,
480 struct device_attribute *attr, char *buf)
481 {
482 struct regulator_dev *rdev = dev_get_drvdata(dev);
483 struct regulator *regulator;
484 int uA = 0;
485
486 mutex_lock(&rdev->mutex);
487 list_for_each_entry(regulator, &rdev->consumer_list, list)
488 uA += regulator->uA_load;
489 mutex_unlock(&rdev->mutex);
490 return sprintf(buf, "%d\n", uA);
491 }
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
495 char *buf)
496 {
497 struct regulator_dev *rdev = dev_get_drvdata(dev);
498 return sprintf(buf, "%d\n", rdev->use_count);
499 }
500 static DEVICE_ATTR_RO(num_users);
501
502 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
503 char *buf)
504 {
505 struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507 switch (rdev->desc->type) {
508 case REGULATOR_VOLTAGE:
509 return sprintf(buf, "voltage\n");
510 case REGULATOR_CURRENT:
511 return sprintf(buf, "current\n");
512 }
513 return sprintf(buf, "unknown\n");
514 }
515 static DEVICE_ATTR_RO(type);
516
517 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
518 struct device_attribute *attr, char *buf)
519 {
520 struct regulator_dev *rdev = dev_get_drvdata(dev);
521
522 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
523 }
524 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
525 regulator_suspend_mem_uV_show, NULL);
526
527 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
528 struct device_attribute *attr, char *buf)
529 {
530 struct regulator_dev *rdev = dev_get_drvdata(dev);
531
532 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
533 }
534 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
535 regulator_suspend_disk_uV_show, NULL);
536
537 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
538 struct device_attribute *attr, char *buf)
539 {
540 struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
543 }
544 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
545 regulator_suspend_standby_uV_show, NULL);
546
547 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
548 struct device_attribute *attr, char *buf)
549 {
550 struct regulator_dev *rdev = dev_get_drvdata(dev);
551
552 return regulator_print_opmode(buf,
553 rdev->constraints->state_mem.mode);
554 }
555 static DEVICE_ATTR(suspend_mem_mode, 0444,
556 regulator_suspend_mem_mode_show, NULL);
557
558 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
559 struct device_attribute *attr, char *buf)
560 {
561 struct regulator_dev *rdev = dev_get_drvdata(dev);
562
563 return regulator_print_opmode(buf,
564 rdev->constraints->state_disk.mode);
565 }
566 static DEVICE_ATTR(suspend_disk_mode, 0444,
567 regulator_suspend_disk_mode_show, NULL);
568
569 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
570 struct device_attribute *attr, char *buf)
571 {
572 struct regulator_dev *rdev = dev_get_drvdata(dev);
573
574 return regulator_print_opmode(buf,
575 rdev->constraints->state_standby.mode);
576 }
577 static DEVICE_ATTR(suspend_standby_mode, 0444,
578 regulator_suspend_standby_mode_show, NULL);
579
580 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
581 struct device_attribute *attr, char *buf)
582 {
583 struct regulator_dev *rdev = dev_get_drvdata(dev);
584
585 return regulator_print_state(buf,
586 rdev->constraints->state_mem.enabled);
587 }
588 static DEVICE_ATTR(suspend_mem_state, 0444,
589 regulator_suspend_mem_state_show, NULL);
590
591 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
592 struct device_attribute *attr, char *buf)
593 {
594 struct regulator_dev *rdev = dev_get_drvdata(dev);
595
596 return regulator_print_state(buf,
597 rdev->constraints->state_disk.enabled);
598 }
599 static DEVICE_ATTR(suspend_disk_state, 0444,
600 regulator_suspend_disk_state_show, NULL);
601
602 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
603 struct device_attribute *attr, char *buf)
604 {
605 struct regulator_dev *rdev = dev_get_drvdata(dev);
606
607 return regulator_print_state(buf,
608 rdev->constraints->state_standby.enabled);
609 }
610 static DEVICE_ATTR(suspend_standby_state, 0444,
611 regulator_suspend_standby_state_show, NULL);
612
613 static ssize_t regulator_bypass_show(struct device *dev,
614 struct device_attribute *attr, char *buf)
615 {
616 struct regulator_dev *rdev = dev_get_drvdata(dev);
617 const char *report;
618 bool bypass;
619 int ret;
620
621 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
622
623 if (ret != 0)
624 report = "unknown";
625 else if (bypass)
626 report = "enabled";
627 else
628 report = "disabled";
629
630 return sprintf(buf, "%s\n", report);
631 }
632 static DEVICE_ATTR(bypass, 0444,
633 regulator_bypass_show, NULL);
634
635 /*
636 * These are the only attributes are present for all regulators.
637 * Other attributes are a function of regulator functionality.
638 */
639 static struct attribute *regulator_dev_attrs[] = {
640 &dev_attr_name.attr,
641 &dev_attr_num_users.attr,
642 &dev_attr_type.attr,
643 NULL,
644 };
645 ATTRIBUTE_GROUPS(regulator_dev);
646
647 static void regulator_dev_release(struct device *dev)
648 {
649 struct regulator_dev *rdev = dev_get_drvdata(dev);
650 kfree(rdev);
651 }
652
653 static struct class regulator_class = {
654 .name = "regulator",
655 .dev_release = regulator_dev_release,
656 .dev_groups = regulator_dev_groups,
657 };
658
659 /* Calculate the new optimum regulator operating mode based on the new total
660 * consumer load. All locks held by caller */
661 static void drms_uA_update(struct regulator_dev *rdev)
662 {
663 struct regulator *sibling;
664 int current_uA = 0, output_uV, input_uV, err;
665 unsigned int mode;
666
667 err = regulator_check_drms(rdev);
668 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
669 (!rdev->desc->ops->get_voltage &&
670 !rdev->desc->ops->get_voltage_sel) ||
671 !rdev->desc->ops->set_mode)
672 return;
673
674 /* get output voltage */
675 output_uV = _regulator_get_voltage(rdev);
676 if (output_uV <= 0)
677 return;
678
679 /* get input voltage */
680 input_uV = 0;
681 if (rdev->supply)
682 input_uV = regulator_get_voltage(rdev->supply);
683 if (input_uV <= 0)
684 input_uV = rdev->constraints->input_uV;
685 if (input_uV <= 0)
686 return;
687
688 /* calc total requested load */
689 list_for_each_entry(sibling, &rdev->consumer_list, list)
690 current_uA += sibling->uA_load;
691
692 /* now get the optimum mode for our new total regulator load */
693 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
694 output_uV, current_uA);
695
696 /* check the new mode is allowed */
697 err = regulator_mode_constrain(rdev, &mode);
698 if (err == 0)
699 rdev->desc->ops->set_mode(rdev, mode);
700 }
701
702 static int suspend_set_state(struct regulator_dev *rdev,
703 struct regulator_state *rstate)
704 {
705 int ret = 0;
706
707 /* If we have no suspend mode configration don't set anything;
708 * only warn if the driver implements set_suspend_voltage or
709 * set_suspend_mode callback.
710 */
711 if (!rstate->enabled && !rstate->disabled) {
712 if (rdev->desc->ops->set_suspend_voltage ||
713 rdev->desc->ops->set_suspend_mode)
714 rdev_warn(rdev, "No configuration\n");
715 return 0;
716 }
717
718 if (rstate->enabled && rstate->disabled) {
719 rdev_err(rdev, "invalid configuration\n");
720 return -EINVAL;
721 }
722
723 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
724 ret = rdev->desc->ops->set_suspend_enable(rdev);
725 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
726 ret = rdev->desc->ops->set_suspend_disable(rdev);
727 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
728 ret = 0;
729
730 if (ret < 0) {
731 rdev_err(rdev, "failed to enabled/disable\n");
732 return ret;
733 }
734
735 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
736 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
737 if (ret < 0) {
738 rdev_err(rdev, "failed to set voltage\n");
739 return ret;
740 }
741 }
742
743 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
744 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
745 if (ret < 0) {
746 rdev_err(rdev, "failed to set mode\n");
747 return ret;
748 }
749 }
750 return ret;
751 }
752
753 /* locks held by caller */
754 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
755 {
756 if (!rdev->constraints)
757 return -EINVAL;
758
759 switch (state) {
760 case PM_SUSPEND_STANDBY:
761 return suspend_set_state(rdev,
762 &rdev->constraints->state_standby);
763 case PM_SUSPEND_MEM:
764 return suspend_set_state(rdev,
765 &rdev->constraints->state_mem);
766 case PM_SUSPEND_MAX:
767 return suspend_set_state(rdev,
768 &rdev->constraints->state_disk);
769 default:
770 return -EINVAL;
771 }
772 }
773
774 static void print_constraints(struct regulator_dev *rdev)
775 {
776 struct regulation_constraints *constraints = rdev->constraints;
777 char buf[80] = "";
778 int count = 0;
779 int ret;
780
781 if (constraints->min_uV && constraints->max_uV) {
782 if (constraints->min_uV == constraints->max_uV)
783 count += sprintf(buf + count, "%d mV ",
784 constraints->min_uV / 1000);
785 else
786 count += sprintf(buf + count, "%d <--> %d mV ",
787 constraints->min_uV / 1000,
788 constraints->max_uV / 1000);
789 }
790
791 if (!constraints->min_uV ||
792 constraints->min_uV != constraints->max_uV) {
793 ret = _regulator_get_voltage(rdev);
794 if (ret > 0)
795 count += sprintf(buf + count, "at %d mV ", ret / 1000);
796 }
797
798 if (constraints->uV_offset)
799 count += sprintf(buf, "%dmV offset ",
800 constraints->uV_offset / 1000);
801
802 if (constraints->min_uA && constraints->max_uA) {
803 if (constraints->min_uA == constraints->max_uA)
804 count += sprintf(buf + count, "%d mA ",
805 constraints->min_uA / 1000);
806 else
807 count += sprintf(buf + count, "%d <--> %d mA ",
808 constraints->min_uA / 1000,
809 constraints->max_uA / 1000);
810 }
811
812 if (!constraints->min_uA ||
813 constraints->min_uA != constraints->max_uA) {
814 ret = _regulator_get_current_limit(rdev);
815 if (ret > 0)
816 count += sprintf(buf + count, "at %d mA ", ret / 1000);
817 }
818
819 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
820 count += sprintf(buf + count, "fast ");
821 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
822 count += sprintf(buf + count, "normal ");
823 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
824 count += sprintf(buf + count, "idle ");
825 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
826 count += sprintf(buf + count, "standby");
827
828 if (!count)
829 sprintf(buf, "no parameters");
830
831 rdev_dbg(rdev, "%s\n", buf);
832
833 if ((constraints->min_uV != constraints->max_uV) &&
834 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
835 rdev_warn(rdev,
836 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
837 }
838
839 static int machine_constraints_voltage(struct regulator_dev *rdev,
840 struct regulation_constraints *constraints)
841 {
842 const struct regulator_ops *ops = rdev->desc->ops;
843 int ret;
844
845 /* do we need to apply the constraint voltage */
846 if (rdev->constraints->apply_uV &&
847 rdev->constraints->min_uV == rdev->constraints->max_uV) {
848 int current_uV = _regulator_get_voltage(rdev);
849 if (current_uV < 0) {
850 rdev_err(rdev,
851 "failed to get the current voltage(%d)\n",
852 current_uV);
853 return current_uV;
854 }
855 if (current_uV < rdev->constraints->min_uV ||
856 current_uV > rdev->constraints->max_uV) {
857 ret = _regulator_do_set_voltage(
858 rdev, rdev->constraints->min_uV,
859 rdev->constraints->max_uV);
860 if (ret < 0) {
861 rdev_err(rdev,
862 "failed to apply %duV constraint(%d)\n",
863 rdev->constraints->min_uV, ret);
864 return ret;
865 }
866 }
867 }
868
869 /* constrain machine-level voltage specs to fit
870 * the actual range supported by this regulator.
871 */
872 if (ops->list_voltage && rdev->desc->n_voltages) {
873 int count = rdev->desc->n_voltages;
874 int i;
875 int min_uV = INT_MAX;
876 int max_uV = INT_MIN;
877 int cmin = constraints->min_uV;
878 int cmax = constraints->max_uV;
879
880 /* it's safe to autoconfigure fixed-voltage supplies
881 and the constraints are used by list_voltage. */
882 if (count == 1 && !cmin) {
883 cmin = 1;
884 cmax = INT_MAX;
885 constraints->min_uV = cmin;
886 constraints->max_uV = cmax;
887 }
888
889 /* voltage constraints are optional */
890 if ((cmin == 0) && (cmax == 0))
891 return 0;
892
893 /* else require explicit machine-level constraints */
894 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
895 rdev_err(rdev, "invalid voltage constraints\n");
896 return -EINVAL;
897 }
898
899 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
900 for (i = 0; i < count; i++) {
901 int value;
902
903 value = ops->list_voltage(rdev, i);
904 if (value <= 0)
905 continue;
906
907 /* maybe adjust [min_uV..max_uV] */
908 if (value >= cmin && value < min_uV)
909 min_uV = value;
910 if (value <= cmax && value > max_uV)
911 max_uV = value;
912 }
913
914 /* final: [min_uV..max_uV] valid iff constraints valid */
915 if (max_uV < min_uV) {
916 rdev_err(rdev,
917 "unsupportable voltage constraints %u-%uuV\n",
918 min_uV, max_uV);
919 return -EINVAL;
920 }
921
922 /* use regulator's subset of machine constraints */
923 if (constraints->min_uV < min_uV) {
924 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
925 constraints->min_uV, min_uV);
926 constraints->min_uV = min_uV;
927 }
928 if (constraints->max_uV > max_uV) {
929 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
930 constraints->max_uV, max_uV);
931 constraints->max_uV = max_uV;
932 }
933 }
934
935 return 0;
936 }
937
938 static int machine_constraints_current(struct regulator_dev *rdev,
939 struct regulation_constraints *constraints)
940 {
941 const struct regulator_ops *ops = rdev->desc->ops;
942 int ret;
943
944 if (!constraints->min_uA && !constraints->max_uA)
945 return 0;
946
947 if (constraints->min_uA > constraints->max_uA) {
948 rdev_err(rdev, "Invalid current constraints\n");
949 return -EINVAL;
950 }
951
952 if (!ops->set_current_limit || !ops->get_current_limit) {
953 rdev_warn(rdev, "Operation of current configuration missing\n");
954 return 0;
955 }
956
957 /* Set regulator current in constraints range */
958 ret = ops->set_current_limit(rdev, constraints->min_uA,
959 constraints->max_uA);
960 if (ret < 0) {
961 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
962 return ret;
963 }
964
965 return 0;
966 }
967
968 static int _regulator_do_enable(struct regulator_dev *rdev);
969
970 /**
971 * set_machine_constraints - sets regulator constraints
972 * @rdev: regulator source
973 * @constraints: constraints to apply
974 *
975 * Allows platform initialisation code to define and constrain
976 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
977 * Constraints *must* be set by platform code in order for some
978 * regulator operations to proceed i.e. set_voltage, set_current_limit,
979 * set_mode.
980 */
981 static int set_machine_constraints(struct regulator_dev *rdev,
982 const struct regulation_constraints *constraints)
983 {
984 int ret = 0;
985 const struct regulator_ops *ops = rdev->desc->ops;
986
987 if (constraints)
988 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
989 GFP_KERNEL);
990 else
991 rdev->constraints = kzalloc(sizeof(*constraints),
992 GFP_KERNEL);
993 if (!rdev->constraints)
994 return -ENOMEM;
995
996 ret = machine_constraints_voltage(rdev, rdev->constraints);
997 if (ret != 0)
998 goto out;
999
1000 ret = machine_constraints_current(rdev, rdev->constraints);
1001 if (ret != 0)
1002 goto out;
1003
1004 /* do we need to setup our suspend state */
1005 if (rdev->constraints->initial_state) {
1006 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1007 if (ret < 0) {
1008 rdev_err(rdev, "failed to set suspend state\n");
1009 goto out;
1010 }
1011 }
1012
1013 if (rdev->constraints->initial_mode) {
1014 if (!ops->set_mode) {
1015 rdev_err(rdev, "no set_mode operation\n");
1016 ret = -EINVAL;
1017 goto out;
1018 }
1019
1020 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1021 if (ret < 0) {
1022 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1023 goto out;
1024 }
1025 }
1026
1027 /* If the constraints say the regulator should be on at this point
1028 * and we have control then make sure it is enabled.
1029 */
1030 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1031 ret = _regulator_do_enable(rdev);
1032 if (ret < 0 && ret != -EINVAL) {
1033 rdev_err(rdev, "failed to enable\n");
1034 goto out;
1035 }
1036 }
1037
1038 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1039 && ops->set_ramp_delay) {
1040 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1041 if (ret < 0) {
1042 rdev_err(rdev, "failed to set ramp_delay\n");
1043 goto out;
1044 }
1045 }
1046
1047 print_constraints(rdev);
1048 return 0;
1049 out:
1050 kfree(rdev->constraints);
1051 rdev->constraints = NULL;
1052 return ret;
1053 }
1054
1055 /**
1056 * set_supply - set regulator supply regulator
1057 * @rdev: regulator name
1058 * @supply_rdev: supply regulator name
1059 *
1060 * Called by platform initialisation code to set the supply regulator for this
1061 * regulator. This ensures that a regulators supply will also be enabled by the
1062 * core if it's child is enabled.
1063 */
1064 static int set_supply(struct regulator_dev *rdev,
1065 struct regulator_dev *supply_rdev)
1066 {
1067 int err;
1068
1069 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1070
1071 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1072 if (rdev->supply == NULL) {
1073 err = -ENOMEM;
1074 return err;
1075 }
1076 supply_rdev->open_count++;
1077
1078 return 0;
1079 }
1080
1081 /**
1082 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1083 * @rdev: regulator source
1084 * @consumer_dev_name: dev_name() string for device supply applies to
1085 * @supply: symbolic name for supply
1086 *
1087 * Allows platform initialisation code to map physical regulator
1088 * sources to symbolic names for supplies for use by devices. Devices
1089 * should use these symbolic names to request regulators, avoiding the
1090 * need to provide board-specific regulator names as platform data.
1091 */
1092 static int set_consumer_device_supply(struct regulator_dev *rdev,
1093 const char *consumer_dev_name,
1094 const char *supply)
1095 {
1096 struct regulator_map *node;
1097 int has_dev;
1098
1099 if (supply == NULL)
1100 return -EINVAL;
1101
1102 if (consumer_dev_name != NULL)
1103 has_dev = 1;
1104 else
1105 has_dev = 0;
1106
1107 list_for_each_entry(node, &regulator_map_list, list) {
1108 if (node->dev_name && consumer_dev_name) {
1109 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1110 continue;
1111 } else if (node->dev_name || consumer_dev_name) {
1112 continue;
1113 }
1114
1115 if (strcmp(node->supply, supply) != 0)
1116 continue;
1117
1118 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1119 consumer_dev_name,
1120 dev_name(&node->regulator->dev),
1121 node->regulator->desc->name,
1122 supply,
1123 dev_name(&rdev->dev), rdev_get_name(rdev));
1124 return -EBUSY;
1125 }
1126
1127 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1128 if (node == NULL)
1129 return -ENOMEM;
1130
1131 node->regulator = rdev;
1132 node->supply = supply;
1133
1134 if (has_dev) {
1135 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1136 if (node->dev_name == NULL) {
1137 kfree(node);
1138 return -ENOMEM;
1139 }
1140 }
1141
1142 list_add(&node->list, &regulator_map_list);
1143 return 0;
1144 }
1145
1146 static void unset_regulator_supplies(struct regulator_dev *rdev)
1147 {
1148 struct regulator_map *node, *n;
1149
1150 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1151 if (rdev == node->regulator) {
1152 list_del(&node->list);
1153 kfree(node->dev_name);
1154 kfree(node);
1155 }
1156 }
1157 }
1158
1159 #define REG_STR_SIZE 64
1160
1161 static struct regulator *create_regulator(struct regulator_dev *rdev,
1162 struct device *dev,
1163 const char *supply_name)
1164 {
1165 struct regulator *regulator;
1166 char buf[REG_STR_SIZE];
1167 int err, size;
1168
1169 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1170 if (regulator == NULL)
1171 return NULL;
1172
1173 mutex_lock(&rdev->mutex);
1174 regulator->rdev = rdev;
1175 list_add(&regulator->list, &rdev->consumer_list);
1176
1177 if (dev) {
1178 regulator->dev = dev;
1179
1180 /* Add a link to the device sysfs entry */
1181 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1182 dev->kobj.name, supply_name);
1183 if (size >= REG_STR_SIZE)
1184 goto overflow_err;
1185
1186 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1187 if (regulator->supply_name == NULL)
1188 goto overflow_err;
1189
1190 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1191 buf);
1192 if (err) {
1193 rdev_warn(rdev, "could not add device link %s err %d\n",
1194 dev->kobj.name, err);
1195 /* non-fatal */
1196 }
1197 } else {
1198 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1199 if (regulator->supply_name == NULL)
1200 goto overflow_err;
1201 }
1202
1203 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1204 rdev->debugfs);
1205 if (!regulator->debugfs) {
1206 rdev_warn(rdev, "Failed to create debugfs directory\n");
1207 } else {
1208 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1209 &regulator->uA_load);
1210 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1211 &regulator->min_uV);
1212 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1213 &regulator->max_uV);
1214 }
1215
1216 /*
1217 * Check now if the regulator is an always on regulator - if
1218 * it is then we don't need to do nearly so much work for
1219 * enable/disable calls.
1220 */
1221 if (!_regulator_can_change_status(rdev) &&
1222 _regulator_is_enabled(rdev))
1223 regulator->always_on = true;
1224
1225 mutex_unlock(&rdev->mutex);
1226 return regulator;
1227 overflow_err:
1228 list_del(&regulator->list);
1229 kfree(regulator);
1230 mutex_unlock(&rdev->mutex);
1231 return NULL;
1232 }
1233
1234 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1235 {
1236 if (rdev->constraints && rdev->constraints->enable_time)
1237 return rdev->constraints->enable_time;
1238 if (!rdev->desc->ops->enable_time)
1239 return rdev->desc->enable_time;
1240 return rdev->desc->ops->enable_time(rdev);
1241 }
1242
1243 static struct regulator_supply_alias *regulator_find_supply_alias(
1244 struct device *dev, const char *supply)
1245 {
1246 struct regulator_supply_alias *map;
1247
1248 list_for_each_entry(map, &regulator_supply_alias_list, list)
1249 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1250 return map;
1251
1252 return NULL;
1253 }
1254
1255 static void regulator_supply_alias(struct device **dev, const char **supply)
1256 {
1257 struct regulator_supply_alias *map;
1258
1259 map = regulator_find_supply_alias(*dev, *supply);
1260 if (map) {
1261 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1262 *supply, map->alias_supply,
1263 dev_name(map->alias_dev));
1264 *dev = map->alias_dev;
1265 *supply = map->alias_supply;
1266 }
1267 }
1268
1269 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1270 const char *supply,
1271 int *ret)
1272 {
1273 struct regulator_dev *r;
1274 struct device_node *node;
1275 struct regulator_map *map;
1276 const char *devname = NULL;
1277
1278 regulator_supply_alias(&dev, &supply);
1279
1280 /* first do a dt based lookup */
1281 if (dev && dev->of_node) {
1282 node = of_get_regulator(dev, supply);
1283 if (node) {
1284 list_for_each_entry(r, &regulator_list, list)
1285 if (r->dev.parent &&
1286 node == r->dev.of_node)
1287 return r;
1288 *ret = -EPROBE_DEFER;
1289 return NULL;
1290 } else {
1291 /*
1292 * If we couldn't even get the node then it's
1293 * not just that the device didn't register
1294 * yet, there's no node and we'll never
1295 * succeed.
1296 */
1297 *ret = -ENODEV;
1298 }
1299 }
1300
1301 /* if not found, try doing it non-dt way */
1302 if (dev)
1303 devname = dev_name(dev);
1304
1305 list_for_each_entry(r, &regulator_list, list)
1306 if (strcmp(rdev_get_name(r), supply) == 0)
1307 return r;
1308
1309 list_for_each_entry(map, &regulator_map_list, list) {
1310 /* If the mapping has a device set up it must match */
1311 if (map->dev_name &&
1312 (!devname || strcmp(map->dev_name, devname)))
1313 continue;
1314
1315 if (strcmp(map->supply, supply) == 0)
1316 return map->regulator;
1317 }
1318
1319
1320 return NULL;
1321 }
1322
1323 /* Internal regulator request function */
1324 static struct regulator *_regulator_get(struct device *dev, const char *id,
1325 bool exclusive, bool allow_dummy)
1326 {
1327 struct regulator_dev *rdev;
1328 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1329 const char *devname = NULL;
1330 int ret;
1331
1332 if (id == NULL) {
1333 pr_err("get() with no identifier\n");
1334 return ERR_PTR(-EINVAL);
1335 }
1336
1337 if (dev)
1338 devname = dev_name(dev);
1339
1340 if (have_full_constraints())
1341 ret = -ENODEV;
1342 else
1343 ret = -EPROBE_DEFER;
1344
1345 mutex_lock(&regulator_list_mutex);
1346
1347 rdev = regulator_dev_lookup(dev, id, &ret);
1348 if (rdev)
1349 goto found;
1350
1351 regulator = ERR_PTR(ret);
1352
1353 /*
1354 * If we have return value from dev_lookup fail, we do not expect to
1355 * succeed, so, quit with appropriate error value
1356 */
1357 if (ret && ret != -ENODEV)
1358 goto out;
1359
1360 if (!devname)
1361 devname = "deviceless";
1362
1363 /*
1364 * Assume that a regulator is physically present and enabled
1365 * even if it isn't hooked up and just provide a dummy.
1366 */
1367 if (have_full_constraints() && allow_dummy) {
1368 pr_warn("%s supply %s not found, using dummy regulator\n",
1369 devname, id);
1370
1371 rdev = dummy_regulator_rdev;
1372 goto found;
1373 /* Don't log an error when called from regulator_get_optional() */
1374 } else if (!have_full_constraints() || exclusive) {
1375 dev_warn(dev, "dummy supplies not allowed\n");
1376 }
1377
1378 mutex_unlock(&regulator_list_mutex);
1379 return regulator;
1380
1381 found:
1382 if (rdev->exclusive) {
1383 regulator = ERR_PTR(-EPERM);
1384 goto out;
1385 }
1386
1387 if (exclusive && rdev->open_count) {
1388 regulator = ERR_PTR(-EBUSY);
1389 goto out;
1390 }
1391
1392 if (!try_module_get(rdev->owner))
1393 goto out;
1394
1395 regulator = create_regulator(rdev, dev, id);
1396 if (regulator == NULL) {
1397 regulator = ERR_PTR(-ENOMEM);
1398 module_put(rdev->owner);
1399 goto out;
1400 }
1401
1402 rdev->open_count++;
1403 if (exclusive) {
1404 rdev->exclusive = 1;
1405
1406 ret = _regulator_is_enabled(rdev);
1407 if (ret > 0)
1408 rdev->use_count = 1;
1409 else
1410 rdev->use_count = 0;
1411 }
1412
1413 out:
1414 mutex_unlock(&regulator_list_mutex);
1415
1416 return regulator;
1417 }
1418
1419 /**
1420 * regulator_get - lookup and obtain a reference to a regulator.
1421 * @dev: device for regulator "consumer"
1422 * @id: Supply name or regulator ID.
1423 *
1424 * Returns a struct regulator corresponding to the regulator producer,
1425 * or IS_ERR() condition containing errno.
1426 *
1427 * Use of supply names configured via regulator_set_device_supply() is
1428 * strongly encouraged. It is recommended that the supply name used
1429 * should match the name used for the supply and/or the relevant
1430 * device pins in the datasheet.
1431 */
1432 struct regulator *regulator_get(struct device *dev, const char *id)
1433 {
1434 return _regulator_get(dev, id, false, true);
1435 }
1436 EXPORT_SYMBOL_GPL(regulator_get);
1437
1438 /**
1439 * regulator_get_exclusive - obtain exclusive access to a regulator.
1440 * @dev: device for regulator "consumer"
1441 * @id: Supply name or regulator ID.
1442 *
1443 * Returns a struct regulator corresponding to the regulator producer,
1444 * or IS_ERR() condition containing errno. Other consumers will be
1445 * unable to obtain this regulator while this reference is held and the
1446 * use count for the regulator will be initialised to reflect the current
1447 * state of the regulator.
1448 *
1449 * This is intended for use by consumers which cannot tolerate shared
1450 * use of the regulator such as those which need to force the
1451 * regulator off for correct operation of the hardware they are
1452 * controlling.
1453 *
1454 * Use of supply names configured via regulator_set_device_supply() is
1455 * strongly encouraged. It is recommended that the supply name used
1456 * should match the name used for the supply and/or the relevant
1457 * device pins in the datasheet.
1458 */
1459 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1460 {
1461 return _regulator_get(dev, id, true, false);
1462 }
1463 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1464
1465 /**
1466 * regulator_get_optional - obtain optional access to a regulator.
1467 * @dev: device for regulator "consumer"
1468 * @id: Supply name or regulator ID.
1469 *
1470 * Returns a struct regulator corresponding to the regulator producer,
1471 * or IS_ERR() condition containing errno.
1472 *
1473 * This is intended for use by consumers for devices which can have
1474 * some supplies unconnected in normal use, such as some MMC devices.
1475 * It can allow the regulator core to provide stub supplies for other
1476 * supplies requested using normal regulator_get() calls without
1477 * disrupting the operation of drivers that can handle absent
1478 * supplies.
1479 *
1480 * Use of supply names configured via regulator_set_device_supply() is
1481 * strongly encouraged. It is recommended that the supply name used
1482 * should match the name used for the supply and/or the relevant
1483 * device pins in the datasheet.
1484 */
1485 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1486 {
1487 return _regulator_get(dev, id, false, false);
1488 }
1489 EXPORT_SYMBOL_GPL(regulator_get_optional);
1490
1491 /* Locks held by regulator_put() */
1492 static void _regulator_put(struct regulator *regulator)
1493 {
1494 struct regulator_dev *rdev;
1495
1496 if (regulator == NULL || IS_ERR(regulator))
1497 return;
1498
1499 rdev = regulator->rdev;
1500
1501 debugfs_remove_recursive(regulator->debugfs);
1502
1503 /* remove any sysfs entries */
1504 if (regulator->dev)
1505 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1506 kfree(regulator->supply_name);
1507 list_del(&regulator->list);
1508 kfree(regulator);
1509
1510 rdev->open_count--;
1511 rdev->exclusive = 0;
1512
1513 module_put(rdev->owner);
1514 }
1515
1516 /**
1517 * regulator_put - "free" the regulator source
1518 * @regulator: regulator source
1519 *
1520 * Note: drivers must ensure that all regulator_enable calls made on this
1521 * regulator source are balanced by regulator_disable calls prior to calling
1522 * this function.
1523 */
1524 void regulator_put(struct regulator *regulator)
1525 {
1526 mutex_lock(&regulator_list_mutex);
1527 _regulator_put(regulator);
1528 mutex_unlock(&regulator_list_mutex);
1529 }
1530 EXPORT_SYMBOL_GPL(regulator_put);
1531
1532 /**
1533 * regulator_register_supply_alias - Provide device alias for supply lookup
1534 *
1535 * @dev: device that will be given as the regulator "consumer"
1536 * @id: Supply name or regulator ID
1537 * @alias_dev: device that should be used to lookup the supply
1538 * @alias_id: Supply name or regulator ID that should be used to lookup the
1539 * supply
1540 *
1541 * All lookups for id on dev will instead be conducted for alias_id on
1542 * alias_dev.
1543 */
1544 int regulator_register_supply_alias(struct device *dev, const char *id,
1545 struct device *alias_dev,
1546 const char *alias_id)
1547 {
1548 struct regulator_supply_alias *map;
1549
1550 map = regulator_find_supply_alias(dev, id);
1551 if (map)
1552 return -EEXIST;
1553
1554 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1555 if (!map)
1556 return -ENOMEM;
1557
1558 map->src_dev = dev;
1559 map->src_supply = id;
1560 map->alias_dev = alias_dev;
1561 map->alias_supply = alias_id;
1562
1563 list_add(&map->list, &regulator_supply_alias_list);
1564
1565 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1566 id, dev_name(dev), alias_id, dev_name(alias_dev));
1567
1568 return 0;
1569 }
1570 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1571
1572 /**
1573 * regulator_unregister_supply_alias - Remove device alias
1574 *
1575 * @dev: device that will be given as the regulator "consumer"
1576 * @id: Supply name or regulator ID
1577 *
1578 * Remove a lookup alias if one exists for id on dev.
1579 */
1580 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1581 {
1582 struct regulator_supply_alias *map;
1583
1584 map = regulator_find_supply_alias(dev, id);
1585 if (map) {
1586 list_del(&map->list);
1587 kfree(map);
1588 }
1589 }
1590 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1591
1592 /**
1593 * regulator_bulk_register_supply_alias - register multiple aliases
1594 *
1595 * @dev: device that will be given as the regulator "consumer"
1596 * @id: List of supply names or regulator IDs
1597 * @alias_dev: device that should be used to lookup the supply
1598 * @alias_id: List of supply names or regulator IDs that should be used to
1599 * lookup the supply
1600 * @num_id: Number of aliases to register
1601 *
1602 * @return 0 on success, an errno on failure.
1603 *
1604 * This helper function allows drivers to register several supply
1605 * aliases in one operation. If any of the aliases cannot be
1606 * registered any aliases that were registered will be removed
1607 * before returning to the caller.
1608 */
1609 int regulator_bulk_register_supply_alias(struct device *dev,
1610 const char *const *id,
1611 struct device *alias_dev,
1612 const char *const *alias_id,
1613 int num_id)
1614 {
1615 int i;
1616 int ret;
1617
1618 for (i = 0; i < num_id; ++i) {
1619 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1620 alias_id[i]);
1621 if (ret < 0)
1622 goto err;
1623 }
1624
1625 return 0;
1626
1627 err:
1628 dev_err(dev,
1629 "Failed to create supply alias %s,%s -> %s,%s\n",
1630 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1631
1632 while (--i >= 0)
1633 regulator_unregister_supply_alias(dev, id[i]);
1634
1635 return ret;
1636 }
1637 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1638
1639 /**
1640 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1641 *
1642 * @dev: device that will be given as the regulator "consumer"
1643 * @id: List of supply names or regulator IDs
1644 * @num_id: Number of aliases to unregister
1645 *
1646 * This helper function allows drivers to unregister several supply
1647 * aliases in one operation.
1648 */
1649 void regulator_bulk_unregister_supply_alias(struct device *dev,
1650 const char *const *id,
1651 int num_id)
1652 {
1653 int i;
1654
1655 for (i = 0; i < num_id; ++i)
1656 regulator_unregister_supply_alias(dev, id[i]);
1657 }
1658 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1659
1660
1661 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1662 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1663 const struct regulator_config *config)
1664 {
1665 struct regulator_enable_gpio *pin;
1666 struct gpio_desc *gpiod;
1667 int ret;
1668
1669 gpiod = gpio_to_desc(config->ena_gpio);
1670
1671 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1672 if (pin->gpiod == gpiod) {
1673 rdev_dbg(rdev, "GPIO %d is already used\n",
1674 config->ena_gpio);
1675 goto update_ena_gpio_to_rdev;
1676 }
1677 }
1678
1679 ret = gpio_request_one(config->ena_gpio,
1680 GPIOF_DIR_OUT | config->ena_gpio_flags,
1681 rdev_get_name(rdev));
1682 if (ret)
1683 return ret;
1684
1685 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1686 if (pin == NULL) {
1687 gpio_free(config->ena_gpio);
1688 return -ENOMEM;
1689 }
1690
1691 pin->gpiod = gpiod;
1692 pin->ena_gpio_invert = config->ena_gpio_invert;
1693 list_add(&pin->list, &regulator_ena_gpio_list);
1694
1695 update_ena_gpio_to_rdev:
1696 pin->request_count++;
1697 rdev->ena_pin = pin;
1698 return 0;
1699 }
1700
1701 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1702 {
1703 struct regulator_enable_gpio *pin, *n;
1704
1705 if (!rdev->ena_pin)
1706 return;
1707
1708 /* Free the GPIO only in case of no use */
1709 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1710 if (pin->gpiod == rdev->ena_pin->gpiod) {
1711 if (pin->request_count <= 1) {
1712 pin->request_count = 0;
1713 gpiod_put(pin->gpiod);
1714 list_del(&pin->list);
1715 kfree(pin);
1716 rdev->ena_pin = NULL;
1717 return;
1718 } else {
1719 pin->request_count--;
1720 }
1721 }
1722 }
1723 }
1724
1725 /**
1726 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1727 * @rdev: regulator_dev structure
1728 * @enable: enable GPIO at initial use?
1729 *
1730 * GPIO is enabled in case of initial use. (enable_count is 0)
1731 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1732 */
1733 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1734 {
1735 struct regulator_enable_gpio *pin = rdev->ena_pin;
1736
1737 if (!pin)
1738 return -EINVAL;
1739
1740 if (enable) {
1741 /* Enable GPIO at initial use */
1742 if (pin->enable_count == 0)
1743 gpiod_set_value_cansleep(pin->gpiod,
1744 !pin->ena_gpio_invert);
1745
1746 pin->enable_count++;
1747 } else {
1748 if (pin->enable_count > 1) {
1749 pin->enable_count--;
1750 return 0;
1751 }
1752
1753 /* Disable GPIO if not used */
1754 if (pin->enable_count <= 1) {
1755 gpiod_set_value_cansleep(pin->gpiod,
1756 pin->ena_gpio_invert);
1757 pin->enable_count = 0;
1758 }
1759 }
1760
1761 return 0;
1762 }
1763
1764 /**
1765 * _regulator_enable_delay - a delay helper function
1766 * @delay: time to delay in microseconds
1767 *
1768 * Delay for the requested amount of time as per the guidelines in:
1769 *
1770 * Documentation/timers/timers-howto.txt
1771 *
1772 * The assumption here is that regulators will never be enabled in
1773 * atomic context and therefore sleeping functions can be used.
1774 */
1775 static void _regulator_enable_delay(unsigned int delay)
1776 {
1777 unsigned int ms = delay / 1000;
1778 unsigned int us = delay % 1000;
1779
1780 if (ms > 0) {
1781 /*
1782 * For small enough values, handle super-millisecond
1783 * delays in the usleep_range() call below.
1784 */
1785 if (ms < 20)
1786 us += ms * 1000;
1787 else
1788 msleep(ms);
1789 }
1790
1791 /*
1792 * Give the scheduler some room to coalesce with any other
1793 * wakeup sources. For delays shorter than 10 us, don't even
1794 * bother setting up high-resolution timers and just busy-
1795 * loop.
1796 */
1797 if (us >= 10)
1798 usleep_range(us, us + 100);
1799 else
1800 udelay(us);
1801 }
1802
1803 static int _regulator_do_enable(struct regulator_dev *rdev)
1804 {
1805 int ret, delay;
1806
1807 /* Query before enabling in case configuration dependent. */
1808 ret = _regulator_get_enable_time(rdev);
1809 if (ret >= 0) {
1810 delay = ret;
1811 } else {
1812 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1813 delay = 0;
1814 }
1815
1816 trace_regulator_enable(rdev_get_name(rdev));
1817
1818 if (rdev->desc->off_on_delay) {
1819 /* if needed, keep a distance of off_on_delay from last time
1820 * this regulator was disabled.
1821 */
1822 unsigned long start_jiffy = jiffies;
1823 unsigned long intended, max_delay, remaining;
1824
1825 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1826 intended = rdev->last_off_jiffy + max_delay;
1827
1828 if (time_before(start_jiffy, intended)) {
1829 /* calc remaining jiffies to deal with one-time
1830 * timer wrapping.
1831 * in case of multiple timer wrapping, either it can be
1832 * detected by out-of-range remaining, or it cannot be
1833 * detected and we gets a panelty of
1834 * _regulator_enable_delay().
1835 */
1836 remaining = intended - start_jiffy;
1837 if (remaining <= max_delay)
1838 _regulator_enable_delay(
1839 jiffies_to_usecs(remaining));
1840 }
1841 }
1842
1843 if (rdev->ena_pin) {
1844 ret = regulator_ena_gpio_ctrl(rdev, true);
1845 if (ret < 0)
1846 return ret;
1847 rdev->ena_gpio_state = 1;
1848 } else if (rdev->desc->ops->enable) {
1849 ret = rdev->desc->ops->enable(rdev);
1850 if (ret < 0)
1851 return ret;
1852 } else {
1853 return -EINVAL;
1854 }
1855
1856 /* Allow the regulator to ramp; it would be useful to extend
1857 * this for bulk operations so that the regulators can ramp
1858 * together. */
1859 trace_regulator_enable_delay(rdev_get_name(rdev));
1860
1861 _regulator_enable_delay(delay);
1862
1863 trace_regulator_enable_complete(rdev_get_name(rdev));
1864
1865 return 0;
1866 }
1867
1868 /* locks held by regulator_enable() */
1869 static int _regulator_enable(struct regulator_dev *rdev)
1870 {
1871 int ret;
1872
1873 /* check voltage and requested load before enabling */
1874 if (rdev->constraints &&
1875 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1876 drms_uA_update(rdev);
1877
1878 if (rdev->use_count == 0) {
1879 /* The regulator may on if it's not switchable or left on */
1880 ret = _regulator_is_enabled(rdev);
1881 if (ret == -EINVAL || ret == 0) {
1882 if (!_regulator_can_change_status(rdev))
1883 return -EPERM;
1884
1885 ret = _regulator_do_enable(rdev);
1886 if (ret < 0)
1887 return ret;
1888
1889 } else if (ret < 0) {
1890 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1891 return ret;
1892 }
1893 /* Fallthrough on positive return values - already enabled */
1894 }
1895
1896 rdev->use_count++;
1897
1898 return 0;
1899 }
1900
1901 /**
1902 * regulator_enable - enable regulator output
1903 * @regulator: regulator source
1904 *
1905 * Request that the regulator be enabled with the regulator output at
1906 * the predefined voltage or current value. Calls to regulator_enable()
1907 * must be balanced with calls to regulator_disable().
1908 *
1909 * NOTE: the output value can be set by other drivers, boot loader or may be
1910 * hardwired in the regulator.
1911 */
1912 int regulator_enable(struct regulator *regulator)
1913 {
1914 struct regulator_dev *rdev = regulator->rdev;
1915 int ret = 0;
1916
1917 if (regulator->always_on)
1918 return 0;
1919
1920 if (rdev->supply) {
1921 ret = regulator_enable(rdev->supply);
1922 if (ret != 0)
1923 return ret;
1924 }
1925
1926 mutex_lock(&rdev->mutex);
1927 ret = _regulator_enable(rdev);
1928 mutex_unlock(&rdev->mutex);
1929
1930 if (ret != 0 && rdev->supply)
1931 regulator_disable(rdev->supply);
1932
1933 return ret;
1934 }
1935 EXPORT_SYMBOL_GPL(regulator_enable);
1936
1937 static int _regulator_do_disable(struct regulator_dev *rdev)
1938 {
1939 int ret;
1940
1941 trace_regulator_disable(rdev_get_name(rdev));
1942
1943 if (rdev->ena_pin) {
1944 ret = regulator_ena_gpio_ctrl(rdev, false);
1945 if (ret < 0)
1946 return ret;
1947 rdev->ena_gpio_state = 0;
1948
1949 } else if (rdev->desc->ops->disable) {
1950 ret = rdev->desc->ops->disable(rdev);
1951 if (ret != 0)
1952 return ret;
1953 }
1954
1955 /* cares about last_off_jiffy only if off_on_delay is required by
1956 * device.
1957 */
1958 if (rdev->desc->off_on_delay)
1959 rdev->last_off_jiffy = jiffies;
1960
1961 trace_regulator_disable_complete(rdev_get_name(rdev));
1962
1963 return 0;
1964 }
1965
1966 /* locks held by regulator_disable() */
1967 static int _regulator_disable(struct regulator_dev *rdev)
1968 {
1969 int ret = 0;
1970
1971 if (WARN(rdev->use_count <= 0,
1972 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1973 return -EIO;
1974
1975 /* are we the last user and permitted to disable ? */
1976 if (rdev->use_count == 1 &&
1977 (rdev->constraints && !rdev->constraints->always_on)) {
1978
1979 /* we are last user */
1980 if (_regulator_can_change_status(rdev)) {
1981 ret = _notifier_call_chain(rdev,
1982 REGULATOR_EVENT_PRE_DISABLE,
1983 NULL);
1984 if (ret & NOTIFY_STOP_MASK)
1985 return -EINVAL;
1986
1987 ret = _regulator_do_disable(rdev);
1988 if (ret < 0) {
1989 rdev_err(rdev, "failed to disable\n");
1990 _notifier_call_chain(rdev,
1991 REGULATOR_EVENT_ABORT_DISABLE,
1992 NULL);
1993 return ret;
1994 }
1995 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1996 NULL);
1997 }
1998
1999 rdev->use_count = 0;
2000 } else if (rdev->use_count > 1) {
2001
2002 if (rdev->constraints &&
2003 (rdev->constraints->valid_ops_mask &
2004 REGULATOR_CHANGE_DRMS))
2005 drms_uA_update(rdev);
2006
2007 rdev->use_count--;
2008 }
2009
2010 return ret;
2011 }
2012
2013 /**
2014 * regulator_disable - disable regulator output
2015 * @regulator: regulator source
2016 *
2017 * Disable the regulator output voltage or current. Calls to
2018 * regulator_enable() must be balanced with calls to
2019 * regulator_disable().
2020 *
2021 * NOTE: this will only disable the regulator output if no other consumer
2022 * devices have it enabled, the regulator device supports disabling and
2023 * machine constraints permit this operation.
2024 */
2025 int regulator_disable(struct regulator *regulator)
2026 {
2027 struct regulator_dev *rdev = regulator->rdev;
2028 int ret = 0;
2029
2030 if (regulator->always_on)
2031 return 0;
2032
2033 mutex_lock(&rdev->mutex);
2034 ret = _regulator_disable(rdev);
2035 mutex_unlock(&rdev->mutex);
2036
2037 if (ret == 0 && rdev->supply)
2038 regulator_disable(rdev->supply);
2039
2040 return ret;
2041 }
2042 EXPORT_SYMBOL_GPL(regulator_disable);
2043
2044 /* locks held by regulator_force_disable() */
2045 static int _regulator_force_disable(struct regulator_dev *rdev)
2046 {
2047 int ret = 0;
2048
2049 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2050 REGULATOR_EVENT_PRE_DISABLE, NULL);
2051 if (ret & NOTIFY_STOP_MASK)
2052 return -EINVAL;
2053
2054 ret = _regulator_do_disable(rdev);
2055 if (ret < 0) {
2056 rdev_err(rdev, "failed to force disable\n");
2057 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2058 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2059 return ret;
2060 }
2061
2062 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2063 REGULATOR_EVENT_DISABLE, NULL);
2064
2065 return 0;
2066 }
2067
2068 /**
2069 * regulator_force_disable - force disable regulator output
2070 * @regulator: regulator source
2071 *
2072 * Forcibly disable the regulator output voltage or current.
2073 * NOTE: this *will* disable the regulator output even if other consumer
2074 * devices have it enabled. This should be used for situations when device
2075 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2076 */
2077 int regulator_force_disable(struct regulator *regulator)
2078 {
2079 struct regulator_dev *rdev = regulator->rdev;
2080 int ret;
2081
2082 mutex_lock(&rdev->mutex);
2083 regulator->uA_load = 0;
2084 ret = _regulator_force_disable(regulator->rdev);
2085 mutex_unlock(&rdev->mutex);
2086
2087 if (rdev->supply)
2088 while (rdev->open_count--)
2089 regulator_disable(rdev->supply);
2090
2091 return ret;
2092 }
2093 EXPORT_SYMBOL_GPL(regulator_force_disable);
2094
2095 static void regulator_disable_work(struct work_struct *work)
2096 {
2097 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2098 disable_work.work);
2099 int count, i, ret;
2100
2101 mutex_lock(&rdev->mutex);
2102
2103 BUG_ON(!rdev->deferred_disables);
2104
2105 count = rdev->deferred_disables;
2106 rdev->deferred_disables = 0;
2107
2108 for (i = 0; i < count; i++) {
2109 ret = _regulator_disable(rdev);
2110 if (ret != 0)
2111 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2112 }
2113
2114 mutex_unlock(&rdev->mutex);
2115
2116 if (rdev->supply) {
2117 for (i = 0; i < count; i++) {
2118 ret = regulator_disable(rdev->supply);
2119 if (ret != 0) {
2120 rdev_err(rdev,
2121 "Supply disable failed: %d\n", ret);
2122 }
2123 }
2124 }
2125 }
2126
2127 /**
2128 * regulator_disable_deferred - disable regulator output with delay
2129 * @regulator: regulator source
2130 * @ms: miliseconds until the regulator is disabled
2131 *
2132 * Execute regulator_disable() on the regulator after a delay. This
2133 * is intended for use with devices that require some time to quiesce.
2134 *
2135 * NOTE: this will only disable the regulator output if no other consumer
2136 * devices have it enabled, the regulator device supports disabling and
2137 * machine constraints permit this operation.
2138 */
2139 int regulator_disable_deferred(struct regulator *regulator, int ms)
2140 {
2141 struct regulator_dev *rdev = regulator->rdev;
2142 int ret;
2143
2144 if (regulator->always_on)
2145 return 0;
2146
2147 if (!ms)
2148 return regulator_disable(regulator);
2149
2150 mutex_lock(&rdev->mutex);
2151 rdev->deferred_disables++;
2152 mutex_unlock(&rdev->mutex);
2153
2154 ret = queue_delayed_work(system_power_efficient_wq,
2155 &rdev->disable_work,
2156 msecs_to_jiffies(ms));
2157 if (ret < 0)
2158 return ret;
2159 else
2160 return 0;
2161 }
2162 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2163
2164 static int _regulator_is_enabled(struct regulator_dev *rdev)
2165 {
2166 /* A GPIO control always takes precedence */
2167 if (rdev->ena_pin)
2168 return rdev->ena_gpio_state;
2169
2170 /* If we don't know then assume that the regulator is always on */
2171 if (!rdev->desc->ops->is_enabled)
2172 return 1;
2173
2174 return rdev->desc->ops->is_enabled(rdev);
2175 }
2176
2177 /**
2178 * regulator_is_enabled - is the regulator output enabled
2179 * @regulator: regulator source
2180 *
2181 * Returns positive if the regulator driver backing the source/client
2182 * has requested that the device be enabled, zero if it hasn't, else a
2183 * negative errno code.
2184 *
2185 * Note that the device backing this regulator handle can have multiple
2186 * users, so it might be enabled even if regulator_enable() was never
2187 * called for this particular source.
2188 */
2189 int regulator_is_enabled(struct regulator *regulator)
2190 {
2191 int ret;
2192
2193 if (regulator->always_on)
2194 return 1;
2195
2196 mutex_lock(&regulator->rdev->mutex);
2197 ret = _regulator_is_enabled(regulator->rdev);
2198 mutex_unlock(&regulator->rdev->mutex);
2199
2200 return ret;
2201 }
2202 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2203
2204 /**
2205 * regulator_can_change_voltage - check if regulator can change voltage
2206 * @regulator: regulator source
2207 *
2208 * Returns positive if the regulator driver backing the source/client
2209 * can change its voltage, false otherwise. Useful for detecting fixed
2210 * or dummy regulators and disabling voltage change logic in the client
2211 * driver.
2212 */
2213 int regulator_can_change_voltage(struct regulator *regulator)
2214 {
2215 struct regulator_dev *rdev = regulator->rdev;
2216
2217 if (rdev->constraints &&
2218 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2219 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2220 return 1;
2221
2222 if (rdev->desc->continuous_voltage_range &&
2223 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2224 rdev->constraints->min_uV != rdev->constraints->max_uV)
2225 return 1;
2226 }
2227
2228 return 0;
2229 }
2230 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2231
2232 /**
2233 * regulator_count_voltages - count regulator_list_voltage() selectors
2234 * @regulator: regulator source
2235 *
2236 * Returns number of selectors, or negative errno. Selectors are
2237 * numbered starting at zero, and typically correspond to bitfields
2238 * in hardware registers.
2239 */
2240 int regulator_count_voltages(struct regulator *regulator)
2241 {
2242 struct regulator_dev *rdev = regulator->rdev;
2243
2244 if (rdev->desc->n_voltages)
2245 return rdev->desc->n_voltages;
2246
2247 if (!rdev->supply)
2248 return -EINVAL;
2249
2250 return regulator_count_voltages(rdev->supply);
2251 }
2252 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2253
2254 /**
2255 * regulator_list_voltage - enumerate supported voltages
2256 * @regulator: regulator source
2257 * @selector: identify voltage to list
2258 * Context: can sleep
2259 *
2260 * Returns a voltage that can be passed to @regulator_set_voltage(),
2261 * zero if this selector code can't be used on this system, or a
2262 * negative errno.
2263 */
2264 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2265 {
2266 struct regulator_dev *rdev = regulator->rdev;
2267 const struct regulator_ops *ops = rdev->desc->ops;
2268 int ret;
2269
2270 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2271 return rdev->desc->fixed_uV;
2272
2273 if (ops->list_voltage) {
2274 if (selector >= rdev->desc->n_voltages)
2275 return -EINVAL;
2276 mutex_lock(&rdev->mutex);
2277 ret = ops->list_voltage(rdev, selector);
2278 mutex_unlock(&rdev->mutex);
2279 } else if (rdev->supply) {
2280 ret = regulator_list_voltage(rdev->supply, selector);
2281 } else {
2282 return -EINVAL;
2283 }
2284
2285 if (ret > 0) {
2286 if (ret < rdev->constraints->min_uV)
2287 ret = 0;
2288 else if (ret > rdev->constraints->max_uV)
2289 ret = 0;
2290 }
2291
2292 return ret;
2293 }
2294 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2295
2296 /**
2297 * regulator_get_regmap - get the regulator's register map
2298 * @regulator: regulator source
2299 *
2300 * Returns the register map for the given regulator, or an ERR_PTR value
2301 * if the regulator doesn't use regmap.
2302 */
2303 struct regmap *regulator_get_regmap(struct regulator *regulator)
2304 {
2305 struct regmap *map = regulator->rdev->regmap;
2306
2307 return map ? map : ERR_PTR(-EOPNOTSUPP);
2308 }
2309
2310 /**
2311 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2312 * @regulator: regulator source
2313 * @vsel_reg: voltage selector register, output parameter
2314 * @vsel_mask: mask for voltage selector bitfield, output parameter
2315 *
2316 * Returns the hardware register offset and bitmask used for setting the
2317 * regulator voltage. This might be useful when configuring voltage-scaling
2318 * hardware or firmware that can make I2C requests behind the kernel's back,
2319 * for example.
2320 *
2321 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2322 * and 0 is returned, otherwise a negative errno is returned.
2323 */
2324 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2325 unsigned *vsel_reg,
2326 unsigned *vsel_mask)
2327 {
2328 struct regulator_dev *rdev = regulator->rdev;
2329 const struct regulator_ops *ops = rdev->desc->ops;
2330
2331 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2332 return -EOPNOTSUPP;
2333
2334 *vsel_reg = rdev->desc->vsel_reg;
2335 *vsel_mask = rdev->desc->vsel_mask;
2336
2337 return 0;
2338 }
2339 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2340
2341 /**
2342 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2343 * @regulator: regulator source
2344 * @selector: identify voltage to list
2345 *
2346 * Converts the selector to a hardware-specific voltage selector that can be
2347 * directly written to the regulator registers. The address of the voltage
2348 * register can be determined by calling @regulator_get_hardware_vsel_register.
2349 *
2350 * On error a negative errno is returned.
2351 */
2352 int regulator_list_hardware_vsel(struct regulator *regulator,
2353 unsigned selector)
2354 {
2355 struct regulator_dev *rdev = regulator->rdev;
2356 const struct regulator_ops *ops = rdev->desc->ops;
2357
2358 if (selector >= rdev->desc->n_voltages)
2359 return -EINVAL;
2360 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2361 return -EOPNOTSUPP;
2362
2363 return selector;
2364 }
2365 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2366
2367 /**
2368 * regulator_get_linear_step - return the voltage step size between VSEL values
2369 * @regulator: regulator source
2370 *
2371 * Returns the voltage step size between VSEL values for linear
2372 * regulators, or return 0 if the regulator isn't a linear regulator.
2373 */
2374 unsigned int regulator_get_linear_step(struct regulator *regulator)
2375 {
2376 struct regulator_dev *rdev = regulator->rdev;
2377
2378 return rdev->desc->uV_step;
2379 }
2380 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2381
2382 /**
2383 * regulator_is_supported_voltage - check if a voltage range can be supported
2384 *
2385 * @regulator: Regulator to check.
2386 * @min_uV: Minimum required voltage in uV.
2387 * @max_uV: Maximum required voltage in uV.
2388 *
2389 * Returns a boolean or a negative error code.
2390 */
2391 int regulator_is_supported_voltage(struct regulator *regulator,
2392 int min_uV, int max_uV)
2393 {
2394 struct regulator_dev *rdev = regulator->rdev;
2395 int i, voltages, ret;
2396
2397 /* If we can't change voltage check the current voltage */
2398 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2399 ret = regulator_get_voltage(regulator);
2400 if (ret >= 0)
2401 return min_uV <= ret && ret <= max_uV;
2402 else
2403 return ret;
2404 }
2405
2406 /* Any voltage within constrains range is fine? */
2407 if (rdev->desc->continuous_voltage_range)
2408 return min_uV >= rdev->constraints->min_uV &&
2409 max_uV <= rdev->constraints->max_uV;
2410
2411 ret = regulator_count_voltages(regulator);
2412 if (ret < 0)
2413 return ret;
2414 voltages = ret;
2415
2416 for (i = 0; i < voltages; i++) {
2417 ret = regulator_list_voltage(regulator, i);
2418
2419 if (ret >= min_uV && ret <= max_uV)
2420 return 1;
2421 }
2422
2423 return 0;
2424 }
2425 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2426
2427 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2428 int min_uV, int max_uV,
2429 unsigned *selector)
2430 {
2431 struct pre_voltage_change_data data;
2432 int ret;
2433
2434 data.old_uV = _regulator_get_voltage(rdev);
2435 data.min_uV = min_uV;
2436 data.max_uV = max_uV;
2437 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2438 &data);
2439 if (ret & NOTIFY_STOP_MASK)
2440 return -EINVAL;
2441
2442 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2443 if (ret >= 0)
2444 return ret;
2445
2446 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2447 (void *)data.old_uV);
2448
2449 return ret;
2450 }
2451
2452 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2453 int uV, unsigned selector)
2454 {
2455 struct pre_voltage_change_data data;
2456 int ret;
2457
2458 data.old_uV = _regulator_get_voltage(rdev);
2459 data.min_uV = uV;
2460 data.max_uV = uV;
2461 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2462 &data);
2463 if (ret & NOTIFY_STOP_MASK)
2464 return -EINVAL;
2465
2466 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2467 if (ret >= 0)
2468 return ret;
2469
2470 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2471 (void *)data.old_uV);
2472
2473 return ret;
2474 }
2475
2476 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2477 int min_uV, int max_uV)
2478 {
2479 int ret;
2480 int delay = 0;
2481 int best_val = 0;
2482 unsigned int selector;
2483 int old_selector = -1;
2484
2485 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2486
2487 min_uV += rdev->constraints->uV_offset;
2488 max_uV += rdev->constraints->uV_offset;
2489
2490 /*
2491 * If we can't obtain the old selector there is not enough
2492 * info to call set_voltage_time_sel().
2493 */
2494 if (_regulator_is_enabled(rdev) &&
2495 rdev->desc->ops->set_voltage_time_sel &&
2496 rdev->desc->ops->get_voltage_sel) {
2497 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2498 if (old_selector < 0)
2499 return old_selector;
2500 }
2501
2502 if (rdev->desc->ops->set_voltage) {
2503 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2504 &selector);
2505
2506 if (ret >= 0) {
2507 if (rdev->desc->ops->list_voltage)
2508 best_val = rdev->desc->ops->list_voltage(rdev,
2509 selector);
2510 else
2511 best_val = _regulator_get_voltage(rdev);
2512 }
2513
2514 } else if (rdev->desc->ops->set_voltage_sel) {
2515 if (rdev->desc->ops->map_voltage) {
2516 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2517 max_uV);
2518 } else {
2519 if (rdev->desc->ops->list_voltage ==
2520 regulator_list_voltage_linear)
2521 ret = regulator_map_voltage_linear(rdev,
2522 min_uV, max_uV);
2523 else if (rdev->desc->ops->list_voltage ==
2524 regulator_list_voltage_linear_range)
2525 ret = regulator_map_voltage_linear_range(rdev,
2526 min_uV, max_uV);
2527 else
2528 ret = regulator_map_voltage_iterate(rdev,
2529 min_uV, max_uV);
2530 }
2531
2532 if (ret >= 0) {
2533 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2534 if (min_uV <= best_val && max_uV >= best_val) {
2535 selector = ret;
2536 if (old_selector == selector)
2537 ret = 0;
2538 else
2539 ret = _regulator_call_set_voltage_sel(
2540 rdev, best_val, selector);
2541 } else {
2542 ret = -EINVAL;
2543 }
2544 }
2545 } else {
2546 ret = -EINVAL;
2547 }
2548
2549 /* Call set_voltage_time_sel if successfully obtained old_selector */
2550 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2551 && old_selector != selector) {
2552
2553 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2554 old_selector, selector);
2555 if (delay < 0) {
2556 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2557 delay);
2558 delay = 0;
2559 }
2560
2561 /* Insert any necessary delays */
2562 if (delay >= 1000) {
2563 mdelay(delay / 1000);
2564 udelay(delay % 1000);
2565 } else if (delay) {
2566 udelay(delay);
2567 }
2568 }
2569
2570 if (ret == 0 && best_val >= 0) {
2571 unsigned long data = best_val;
2572
2573 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2574 (void *)data);
2575 }
2576
2577 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2578
2579 return ret;
2580 }
2581
2582 /**
2583 * regulator_set_voltage - set regulator output voltage
2584 * @regulator: regulator source
2585 * @min_uV: Minimum required voltage in uV
2586 * @max_uV: Maximum acceptable voltage in uV
2587 *
2588 * Sets a voltage regulator to the desired output voltage. This can be set
2589 * during any regulator state. IOW, regulator can be disabled or enabled.
2590 *
2591 * If the regulator is enabled then the voltage will change to the new value
2592 * immediately otherwise if the regulator is disabled the regulator will
2593 * output at the new voltage when enabled.
2594 *
2595 * NOTE: If the regulator is shared between several devices then the lowest
2596 * request voltage that meets the system constraints will be used.
2597 * Regulator system constraints must be set for this regulator before
2598 * calling this function otherwise this call will fail.
2599 */
2600 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2601 {
2602 struct regulator_dev *rdev = regulator->rdev;
2603 int ret = 0;
2604 int old_min_uV, old_max_uV;
2605 int current_uV;
2606
2607 mutex_lock(&rdev->mutex);
2608
2609 /* If we're setting the same range as last time the change
2610 * should be a noop (some cpufreq implementations use the same
2611 * voltage for multiple frequencies, for example).
2612 */
2613 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2614 goto out;
2615
2616 /* If we're trying to set a range that overlaps the current voltage,
2617 * return succesfully even though the regulator does not support
2618 * changing the voltage.
2619 */
2620 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2621 current_uV = _regulator_get_voltage(rdev);
2622 if (min_uV <= current_uV && current_uV <= max_uV) {
2623 regulator->min_uV = min_uV;
2624 regulator->max_uV = max_uV;
2625 goto out;
2626 }
2627 }
2628
2629 /* sanity check */
2630 if (!rdev->desc->ops->set_voltage &&
2631 !rdev->desc->ops->set_voltage_sel) {
2632 ret = -EINVAL;
2633 goto out;
2634 }
2635
2636 /* constraints check */
2637 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2638 if (ret < 0)
2639 goto out;
2640
2641 /* restore original values in case of error */
2642 old_min_uV = regulator->min_uV;
2643 old_max_uV = regulator->max_uV;
2644 regulator->min_uV = min_uV;
2645 regulator->max_uV = max_uV;
2646
2647 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2648 if (ret < 0)
2649 goto out2;
2650
2651 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2652 if (ret < 0)
2653 goto out2;
2654
2655 out:
2656 mutex_unlock(&rdev->mutex);
2657 return ret;
2658 out2:
2659 regulator->min_uV = old_min_uV;
2660 regulator->max_uV = old_max_uV;
2661 mutex_unlock(&rdev->mutex);
2662 return ret;
2663 }
2664 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2665
2666 /**
2667 * regulator_set_voltage_time - get raise/fall time
2668 * @regulator: regulator source
2669 * @old_uV: starting voltage in microvolts
2670 * @new_uV: target voltage in microvolts
2671 *
2672 * Provided with the starting and ending voltage, this function attempts to
2673 * calculate the time in microseconds required to rise or fall to this new
2674 * voltage.
2675 */
2676 int regulator_set_voltage_time(struct regulator *regulator,
2677 int old_uV, int new_uV)
2678 {
2679 struct regulator_dev *rdev = regulator->rdev;
2680 const struct regulator_ops *ops = rdev->desc->ops;
2681 int old_sel = -1;
2682 int new_sel = -1;
2683 int voltage;
2684 int i;
2685
2686 /* Currently requires operations to do this */
2687 if (!ops->list_voltage || !ops->set_voltage_time_sel
2688 || !rdev->desc->n_voltages)
2689 return -EINVAL;
2690
2691 for (i = 0; i < rdev->desc->n_voltages; i++) {
2692 /* We only look for exact voltage matches here */
2693 voltage = regulator_list_voltage(regulator, i);
2694 if (voltage < 0)
2695 return -EINVAL;
2696 if (voltage == 0)
2697 continue;
2698 if (voltage == old_uV)
2699 old_sel = i;
2700 if (voltage == new_uV)
2701 new_sel = i;
2702 }
2703
2704 if (old_sel < 0 || new_sel < 0)
2705 return -EINVAL;
2706
2707 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2708 }
2709 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2710
2711 /**
2712 * regulator_set_voltage_time_sel - get raise/fall time
2713 * @rdev: regulator source device
2714 * @old_selector: selector for starting voltage
2715 * @new_selector: selector for target voltage
2716 *
2717 * Provided with the starting and target voltage selectors, this function
2718 * returns time in microseconds required to rise or fall to this new voltage
2719 *
2720 * Drivers providing ramp_delay in regulation_constraints can use this as their
2721 * set_voltage_time_sel() operation.
2722 */
2723 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2724 unsigned int old_selector,
2725 unsigned int new_selector)
2726 {
2727 unsigned int ramp_delay = 0;
2728 int old_volt, new_volt;
2729
2730 if (rdev->constraints->ramp_delay)
2731 ramp_delay = rdev->constraints->ramp_delay;
2732 else if (rdev->desc->ramp_delay)
2733 ramp_delay = rdev->desc->ramp_delay;
2734
2735 if (ramp_delay == 0) {
2736 rdev_warn(rdev, "ramp_delay not set\n");
2737 return 0;
2738 }
2739
2740 /* sanity check */
2741 if (!rdev->desc->ops->list_voltage)
2742 return -EINVAL;
2743
2744 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2745 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2746
2747 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2748 }
2749 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2750
2751 /**
2752 * regulator_sync_voltage - re-apply last regulator output voltage
2753 * @regulator: regulator source
2754 *
2755 * Re-apply the last configured voltage. This is intended to be used
2756 * where some external control source the consumer is cooperating with
2757 * has caused the configured voltage to change.
2758 */
2759 int regulator_sync_voltage(struct regulator *regulator)
2760 {
2761 struct regulator_dev *rdev = regulator->rdev;
2762 int ret, min_uV, max_uV;
2763
2764 mutex_lock(&rdev->mutex);
2765
2766 if (!rdev->desc->ops->set_voltage &&
2767 !rdev->desc->ops->set_voltage_sel) {
2768 ret = -EINVAL;
2769 goto out;
2770 }
2771
2772 /* This is only going to work if we've had a voltage configured. */
2773 if (!regulator->min_uV && !regulator->max_uV) {
2774 ret = -EINVAL;
2775 goto out;
2776 }
2777
2778 min_uV = regulator->min_uV;
2779 max_uV = regulator->max_uV;
2780
2781 /* This should be a paranoia check... */
2782 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2783 if (ret < 0)
2784 goto out;
2785
2786 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2787 if (ret < 0)
2788 goto out;
2789
2790 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2791
2792 out:
2793 mutex_unlock(&rdev->mutex);
2794 return ret;
2795 }
2796 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2797
2798 static int _regulator_get_voltage(struct regulator_dev *rdev)
2799 {
2800 int sel, ret;
2801
2802 if (rdev->desc->ops->get_voltage_sel) {
2803 sel = rdev->desc->ops->get_voltage_sel(rdev);
2804 if (sel < 0)
2805 return sel;
2806 ret = rdev->desc->ops->list_voltage(rdev, sel);
2807 } else if (rdev->desc->ops->get_voltage) {
2808 ret = rdev->desc->ops->get_voltage(rdev);
2809 } else if (rdev->desc->ops->list_voltage) {
2810 ret = rdev->desc->ops->list_voltage(rdev, 0);
2811 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2812 ret = rdev->desc->fixed_uV;
2813 } else if (rdev->supply) {
2814 ret = regulator_get_voltage(rdev->supply);
2815 } else {
2816 return -EINVAL;
2817 }
2818
2819 if (ret < 0)
2820 return ret;
2821 return ret - rdev->constraints->uV_offset;
2822 }
2823
2824 /**
2825 * regulator_get_voltage - get regulator output voltage
2826 * @regulator: regulator source
2827 *
2828 * This returns the current regulator voltage in uV.
2829 *
2830 * NOTE: If the regulator is disabled it will return the voltage value. This
2831 * function should not be used to determine regulator state.
2832 */
2833 int regulator_get_voltage(struct regulator *regulator)
2834 {
2835 int ret;
2836
2837 mutex_lock(&regulator->rdev->mutex);
2838
2839 ret = _regulator_get_voltage(regulator->rdev);
2840
2841 mutex_unlock(&regulator->rdev->mutex);
2842
2843 return ret;
2844 }
2845 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2846
2847 /**
2848 * regulator_set_current_limit - set regulator output current limit
2849 * @regulator: regulator source
2850 * @min_uA: Minimum supported current in uA
2851 * @max_uA: Maximum supported current in uA
2852 *
2853 * Sets current sink to the desired output current. This can be set during
2854 * any regulator state. IOW, regulator can be disabled or enabled.
2855 *
2856 * If the regulator is enabled then the current will change to the new value
2857 * immediately otherwise if the regulator is disabled the regulator will
2858 * output at the new current when enabled.
2859 *
2860 * NOTE: Regulator system constraints must be set for this regulator before
2861 * calling this function otherwise this call will fail.
2862 */
2863 int regulator_set_current_limit(struct regulator *regulator,
2864 int min_uA, int max_uA)
2865 {
2866 struct regulator_dev *rdev = regulator->rdev;
2867 int ret;
2868
2869 mutex_lock(&rdev->mutex);
2870
2871 /* sanity check */
2872 if (!rdev->desc->ops->set_current_limit) {
2873 ret = -EINVAL;
2874 goto out;
2875 }
2876
2877 /* constraints check */
2878 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2879 if (ret < 0)
2880 goto out;
2881
2882 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2883 out:
2884 mutex_unlock(&rdev->mutex);
2885 return ret;
2886 }
2887 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2888
2889 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2890 {
2891 int ret;
2892
2893 mutex_lock(&rdev->mutex);
2894
2895 /* sanity check */
2896 if (!rdev->desc->ops->get_current_limit) {
2897 ret = -EINVAL;
2898 goto out;
2899 }
2900
2901 ret = rdev->desc->ops->get_current_limit(rdev);
2902 out:
2903 mutex_unlock(&rdev->mutex);
2904 return ret;
2905 }
2906
2907 /**
2908 * regulator_get_current_limit - get regulator output current
2909 * @regulator: regulator source
2910 *
2911 * This returns the current supplied by the specified current sink in uA.
2912 *
2913 * NOTE: If the regulator is disabled it will return the current value. This
2914 * function should not be used to determine regulator state.
2915 */
2916 int regulator_get_current_limit(struct regulator *regulator)
2917 {
2918 return _regulator_get_current_limit(regulator->rdev);
2919 }
2920 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2921
2922 /**
2923 * regulator_set_mode - set regulator operating mode
2924 * @regulator: regulator source
2925 * @mode: operating mode - one of the REGULATOR_MODE constants
2926 *
2927 * Set regulator operating mode to increase regulator efficiency or improve
2928 * regulation performance.
2929 *
2930 * NOTE: Regulator system constraints must be set for this regulator before
2931 * calling this function otherwise this call will fail.
2932 */
2933 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2934 {
2935 struct regulator_dev *rdev = regulator->rdev;
2936 int ret;
2937 int regulator_curr_mode;
2938
2939 mutex_lock(&rdev->mutex);
2940
2941 /* sanity check */
2942 if (!rdev->desc->ops->set_mode) {
2943 ret = -EINVAL;
2944 goto out;
2945 }
2946
2947 /* return if the same mode is requested */
2948 if (rdev->desc->ops->get_mode) {
2949 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2950 if (regulator_curr_mode == mode) {
2951 ret = 0;
2952 goto out;
2953 }
2954 }
2955
2956 /* constraints check */
2957 ret = regulator_mode_constrain(rdev, &mode);
2958 if (ret < 0)
2959 goto out;
2960
2961 ret = rdev->desc->ops->set_mode(rdev, mode);
2962 out:
2963 mutex_unlock(&rdev->mutex);
2964 return ret;
2965 }
2966 EXPORT_SYMBOL_GPL(regulator_set_mode);
2967
2968 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2969 {
2970 int ret;
2971
2972 mutex_lock(&rdev->mutex);
2973
2974 /* sanity check */
2975 if (!rdev->desc->ops->get_mode) {
2976 ret = -EINVAL;
2977 goto out;
2978 }
2979
2980 ret = rdev->desc->ops->get_mode(rdev);
2981 out:
2982 mutex_unlock(&rdev->mutex);
2983 return ret;
2984 }
2985
2986 /**
2987 * regulator_get_mode - get regulator operating mode
2988 * @regulator: regulator source
2989 *
2990 * Get the current regulator operating mode.
2991 */
2992 unsigned int regulator_get_mode(struct regulator *regulator)
2993 {
2994 return _regulator_get_mode(regulator->rdev);
2995 }
2996 EXPORT_SYMBOL_GPL(regulator_get_mode);
2997
2998 /**
2999 * regulator_set_optimum_mode - set regulator optimum operating mode
3000 * @regulator: regulator source
3001 * @uA_load: load current
3002 *
3003 * Notifies the regulator core of a new device load. This is then used by
3004 * DRMS (if enabled by constraints) to set the most efficient regulator
3005 * operating mode for the new regulator loading.
3006 *
3007 * Consumer devices notify their supply regulator of the maximum power
3008 * they will require (can be taken from device datasheet in the power
3009 * consumption tables) when they change operational status and hence power
3010 * state. Examples of operational state changes that can affect power
3011 * consumption are :-
3012 *
3013 * o Device is opened / closed.
3014 * o Device I/O is about to begin or has just finished.
3015 * o Device is idling in between work.
3016 *
3017 * This information is also exported via sysfs to userspace.
3018 *
3019 * DRMS will sum the total requested load on the regulator and change
3020 * to the most efficient operating mode if platform constraints allow.
3021 *
3022 * Returns the new regulator mode or error.
3023 */
3024 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
3025 {
3026 struct regulator_dev *rdev = regulator->rdev;
3027 struct regulator *consumer;
3028 int ret, output_uV, input_uV = 0, total_uA_load = 0;
3029 unsigned int mode;
3030
3031 if (rdev->supply)
3032 input_uV = regulator_get_voltage(rdev->supply);
3033
3034 mutex_lock(&rdev->mutex);
3035
3036 /*
3037 * first check to see if we can set modes at all, otherwise just
3038 * tell the consumer everything is OK.
3039 */
3040 regulator->uA_load = uA_load;
3041 ret = regulator_check_drms(rdev);
3042 if (ret < 0) {
3043 ret = 0;
3044 goto out;
3045 }
3046
3047 if (!rdev->desc->ops->get_optimum_mode)
3048 goto out;
3049
3050 /*
3051 * we can actually do this so any errors are indicators of
3052 * potential real failure.
3053 */
3054 ret = -EINVAL;
3055
3056 if (!rdev->desc->ops->set_mode)
3057 goto out;
3058
3059 /* get output voltage */
3060 output_uV = _regulator_get_voltage(rdev);
3061 if (output_uV <= 0) {
3062 rdev_err(rdev, "invalid output voltage found\n");
3063 goto out;
3064 }
3065
3066 /* No supply? Use constraint voltage */
3067 if (input_uV <= 0)
3068 input_uV = rdev->constraints->input_uV;
3069 if (input_uV <= 0) {
3070 rdev_err(rdev, "invalid input voltage found\n");
3071 goto out;
3072 }
3073
3074 /* calc total requested load for this regulator */
3075 list_for_each_entry(consumer, &rdev->consumer_list, list)
3076 total_uA_load += consumer->uA_load;
3077
3078 mode = rdev->desc->ops->get_optimum_mode(rdev,
3079 input_uV, output_uV,
3080 total_uA_load);
3081 ret = regulator_mode_constrain(rdev, &mode);
3082 if (ret < 0) {
3083 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
3084 total_uA_load, input_uV, output_uV);
3085 goto out;
3086 }
3087
3088 ret = rdev->desc->ops->set_mode(rdev, mode);
3089 if (ret < 0) {
3090 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
3091 goto out;
3092 }
3093 ret = mode;
3094 out:
3095 mutex_unlock(&rdev->mutex);
3096 return ret;
3097 }
3098 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
3099
3100 /**
3101 * regulator_allow_bypass - allow the regulator to go into bypass mode
3102 *
3103 * @regulator: Regulator to configure
3104 * @enable: enable or disable bypass mode
3105 *
3106 * Allow the regulator to go into bypass mode if all other consumers
3107 * for the regulator also enable bypass mode and the machine
3108 * constraints allow this. Bypass mode means that the regulator is
3109 * simply passing the input directly to the output with no regulation.
3110 */
3111 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3112 {
3113 struct regulator_dev *rdev = regulator->rdev;
3114 int ret = 0;
3115
3116 if (!rdev->desc->ops->set_bypass)
3117 return 0;
3118
3119 if (rdev->constraints &&
3120 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3121 return 0;
3122
3123 mutex_lock(&rdev->mutex);
3124
3125 if (enable && !regulator->bypass) {
3126 rdev->bypass_count++;
3127
3128 if (rdev->bypass_count == rdev->open_count) {
3129 ret = rdev->desc->ops->set_bypass(rdev, enable);
3130 if (ret != 0)
3131 rdev->bypass_count--;
3132 }
3133
3134 } else if (!enable && regulator->bypass) {
3135 rdev->bypass_count--;
3136
3137 if (rdev->bypass_count != rdev->open_count) {
3138 ret = rdev->desc->ops->set_bypass(rdev, enable);
3139 if (ret != 0)
3140 rdev->bypass_count++;
3141 }
3142 }
3143
3144 if (ret == 0)
3145 regulator->bypass = enable;
3146
3147 mutex_unlock(&rdev->mutex);
3148
3149 return ret;
3150 }
3151 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3152
3153 /**
3154 * regulator_register_notifier - register regulator event notifier
3155 * @regulator: regulator source
3156 * @nb: notifier block
3157 *
3158 * Register notifier block to receive regulator events.
3159 */
3160 int regulator_register_notifier(struct regulator *regulator,
3161 struct notifier_block *nb)
3162 {
3163 return blocking_notifier_chain_register(&regulator->rdev->notifier,
3164 nb);
3165 }
3166 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3167
3168 /**
3169 * regulator_unregister_notifier - unregister regulator event notifier
3170 * @regulator: regulator source
3171 * @nb: notifier block
3172 *
3173 * Unregister regulator event notifier block.
3174 */
3175 int regulator_unregister_notifier(struct regulator *regulator,
3176 struct notifier_block *nb)
3177 {
3178 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3179 nb);
3180 }
3181 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3182
3183 /* notify regulator consumers and downstream regulator consumers.
3184 * Note mutex must be held by caller.
3185 */
3186 static int _notifier_call_chain(struct regulator_dev *rdev,
3187 unsigned long event, void *data)
3188 {
3189 /* call rdev chain first */
3190 return blocking_notifier_call_chain(&rdev->notifier, event, data);
3191 }
3192
3193 /**
3194 * regulator_bulk_get - get multiple regulator consumers
3195 *
3196 * @dev: Device to supply
3197 * @num_consumers: Number of consumers to register
3198 * @consumers: Configuration of consumers; clients are stored here.
3199 *
3200 * @return 0 on success, an errno on failure.
3201 *
3202 * This helper function allows drivers to get several regulator
3203 * consumers in one operation. If any of the regulators cannot be
3204 * acquired then any regulators that were allocated will be freed
3205 * before returning to the caller.
3206 */
3207 int regulator_bulk_get(struct device *dev, int num_consumers,
3208 struct regulator_bulk_data *consumers)
3209 {
3210 int i;
3211 int ret;
3212
3213 for (i = 0; i < num_consumers; i++)
3214 consumers[i].consumer = NULL;
3215
3216 for (i = 0; i < num_consumers; i++) {
3217 consumers[i].consumer = regulator_get(dev,
3218 consumers[i].supply);
3219 if (IS_ERR(consumers[i].consumer)) {
3220 ret = PTR_ERR(consumers[i].consumer);
3221 dev_err(dev, "Failed to get supply '%s': %d\n",
3222 consumers[i].supply, ret);
3223 consumers[i].consumer = NULL;
3224 goto err;
3225 }
3226 }
3227
3228 return 0;
3229
3230 err:
3231 while (--i >= 0)
3232 regulator_put(consumers[i].consumer);
3233
3234 return ret;
3235 }
3236 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3237
3238 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3239 {
3240 struct regulator_bulk_data *bulk = data;
3241
3242 bulk->ret = regulator_enable(bulk->consumer);
3243 }
3244
3245 /**
3246 * regulator_bulk_enable - enable multiple regulator consumers
3247 *
3248 * @num_consumers: Number of consumers
3249 * @consumers: Consumer data; clients are stored here.
3250 * @return 0 on success, an errno on failure
3251 *
3252 * This convenience API allows consumers to enable multiple regulator
3253 * clients in a single API call. If any consumers cannot be enabled
3254 * then any others that were enabled will be disabled again prior to
3255 * return.
3256 */
3257 int regulator_bulk_enable(int num_consumers,
3258 struct regulator_bulk_data *consumers)
3259 {
3260 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3261 int i;
3262 int ret = 0;
3263
3264 for (i = 0; i < num_consumers; i++) {
3265 if (consumers[i].consumer->always_on)
3266 consumers[i].ret = 0;
3267 else
3268 async_schedule_domain(regulator_bulk_enable_async,
3269 &consumers[i], &async_domain);
3270 }
3271
3272 async_synchronize_full_domain(&async_domain);
3273
3274 /* If any consumer failed we need to unwind any that succeeded */
3275 for (i = 0; i < num_consumers; i++) {
3276 if (consumers[i].ret != 0) {
3277 ret = consumers[i].ret;
3278 goto err;
3279 }
3280 }
3281
3282 return 0;
3283
3284 err:
3285 for (i = 0; i < num_consumers; i++) {
3286 if (consumers[i].ret < 0)
3287 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3288 consumers[i].ret);
3289 else
3290 regulator_disable(consumers[i].consumer);
3291 }
3292
3293 return ret;
3294 }
3295 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3296
3297 /**
3298 * regulator_bulk_disable - disable multiple regulator consumers
3299 *
3300 * @num_consumers: Number of consumers
3301 * @consumers: Consumer data; clients are stored here.
3302 * @return 0 on success, an errno on failure
3303 *
3304 * This convenience API allows consumers to disable multiple regulator
3305 * clients in a single API call. If any consumers cannot be disabled
3306 * then any others that were disabled will be enabled again prior to
3307 * return.
3308 */
3309 int regulator_bulk_disable(int num_consumers,
3310 struct regulator_bulk_data *consumers)
3311 {
3312 int i;
3313 int ret, r;
3314
3315 for (i = num_consumers - 1; i >= 0; --i) {
3316 ret = regulator_disable(consumers[i].consumer);
3317 if (ret != 0)
3318 goto err;
3319 }
3320
3321 return 0;
3322
3323 err:
3324 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3325 for (++i; i < num_consumers; ++i) {
3326 r = regulator_enable(consumers[i].consumer);
3327 if (r != 0)
3328 pr_err("Failed to reename %s: %d\n",
3329 consumers[i].supply, r);
3330 }
3331
3332 return ret;
3333 }
3334 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3335
3336 /**
3337 * regulator_bulk_force_disable - force disable multiple regulator consumers
3338 *
3339 * @num_consumers: Number of consumers
3340 * @consumers: Consumer data; clients are stored here.
3341 * @return 0 on success, an errno on failure
3342 *
3343 * This convenience API allows consumers to forcibly disable multiple regulator
3344 * clients in a single API call.
3345 * NOTE: This should be used for situations when device damage will
3346 * likely occur if the regulators are not disabled (e.g. over temp).
3347 * Although regulator_force_disable function call for some consumers can
3348 * return error numbers, the function is called for all consumers.
3349 */
3350 int regulator_bulk_force_disable(int num_consumers,
3351 struct regulator_bulk_data *consumers)
3352 {
3353 int i;
3354 int ret;
3355
3356 for (i = 0; i < num_consumers; i++)
3357 consumers[i].ret =
3358 regulator_force_disable(consumers[i].consumer);
3359
3360 for (i = 0; i < num_consumers; i++) {
3361 if (consumers[i].ret != 0) {
3362 ret = consumers[i].ret;
3363 goto out;
3364 }
3365 }
3366
3367 return 0;
3368 out:
3369 return ret;
3370 }
3371 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3372
3373 /**
3374 * regulator_bulk_free - free multiple regulator consumers
3375 *
3376 * @num_consumers: Number of consumers
3377 * @consumers: Consumer data; clients are stored here.
3378 *
3379 * This convenience API allows consumers to free multiple regulator
3380 * clients in a single API call.
3381 */
3382 void regulator_bulk_free(int num_consumers,
3383 struct regulator_bulk_data *consumers)
3384 {
3385 int i;
3386
3387 for (i = 0; i < num_consumers; i++) {
3388 regulator_put(consumers[i].consumer);
3389 consumers[i].consumer = NULL;
3390 }
3391 }
3392 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3393
3394 /**
3395 * regulator_notifier_call_chain - call regulator event notifier
3396 * @rdev: regulator source
3397 * @event: notifier block
3398 * @data: callback-specific data.
3399 *
3400 * Called by regulator drivers to notify clients a regulator event has
3401 * occurred. We also notify regulator clients downstream.
3402 * Note lock must be held by caller.
3403 */
3404 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3405 unsigned long event, void *data)
3406 {
3407 _notifier_call_chain(rdev, event, data);
3408 return NOTIFY_DONE;
3409
3410 }
3411 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3412
3413 /**
3414 * regulator_mode_to_status - convert a regulator mode into a status
3415 *
3416 * @mode: Mode to convert
3417 *
3418 * Convert a regulator mode into a status.
3419 */
3420 int regulator_mode_to_status(unsigned int mode)
3421 {
3422 switch (mode) {
3423 case REGULATOR_MODE_FAST:
3424 return REGULATOR_STATUS_FAST;
3425 case REGULATOR_MODE_NORMAL:
3426 return REGULATOR_STATUS_NORMAL;
3427 case REGULATOR_MODE_IDLE:
3428 return REGULATOR_STATUS_IDLE;
3429 case REGULATOR_MODE_STANDBY:
3430 return REGULATOR_STATUS_STANDBY;
3431 default:
3432 return REGULATOR_STATUS_UNDEFINED;
3433 }
3434 }
3435 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3436
3437 /*
3438 * To avoid cluttering sysfs (and memory) with useless state, only
3439 * create attributes that can be meaningfully displayed.
3440 */
3441 static int add_regulator_attributes(struct regulator_dev *rdev)
3442 {
3443 struct device *dev = &rdev->dev;
3444 const struct regulator_ops *ops = rdev->desc->ops;
3445 int status = 0;
3446
3447 /* some attributes need specific methods to be displayed */
3448 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3449 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3450 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3451 (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3452 status = device_create_file(dev, &dev_attr_microvolts);
3453 if (status < 0)
3454 return status;
3455 }
3456 if (ops->get_current_limit) {
3457 status = device_create_file(dev, &dev_attr_microamps);
3458 if (status < 0)
3459 return status;
3460 }
3461 if (ops->get_mode) {
3462 status = device_create_file(dev, &dev_attr_opmode);
3463 if (status < 0)
3464 return status;
3465 }
3466 if (rdev->ena_pin || ops->is_enabled) {
3467 status = device_create_file(dev, &dev_attr_state);
3468 if (status < 0)
3469 return status;
3470 }
3471 if (ops->get_status) {
3472 status = device_create_file(dev, &dev_attr_status);
3473 if (status < 0)
3474 return status;
3475 }
3476 if (ops->get_bypass) {
3477 status = device_create_file(dev, &dev_attr_bypass);
3478 if (status < 0)
3479 return status;
3480 }
3481
3482 /* some attributes are type-specific */
3483 if (rdev->desc->type == REGULATOR_CURRENT) {
3484 status = device_create_file(dev, &dev_attr_requested_microamps);
3485 if (status < 0)
3486 return status;
3487 }
3488
3489 /* all the other attributes exist to support constraints;
3490 * don't show them if there are no constraints, or if the
3491 * relevant supporting methods are missing.
3492 */
3493 if (!rdev->constraints)
3494 return status;
3495
3496 /* constraints need specific supporting methods */
3497 if (ops->set_voltage || ops->set_voltage_sel) {
3498 status = device_create_file(dev, &dev_attr_min_microvolts);
3499 if (status < 0)
3500 return status;
3501 status = device_create_file(dev, &dev_attr_max_microvolts);
3502 if (status < 0)
3503 return status;
3504 }
3505 if (ops->set_current_limit) {
3506 status = device_create_file(dev, &dev_attr_min_microamps);
3507 if (status < 0)
3508 return status;
3509 status = device_create_file(dev, &dev_attr_max_microamps);
3510 if (status < 0)
3511 return status;
3512 }
3513
3514 status = device_create_file(dev, &dev_attr_suspend_standby_state);
3515 if (status < 0)
3516 return status;
3517 status = device_create_file(dev, &dev_attr_suspend_mem_state);
3518 if (status < 0)
3519 return status;
3520 status = device_create_file(dev, &dev_attr_suspend_disk_state);
3521 if (status < 0)
3522 return status;
3523
3524 if (ops->set_suspend_voltage) {
3525 status = device_create_file(dev,
3526 &dev_attr_suspend_standby_microvolts);
3527 if (status < 0)
3528 return status;
3529 status = device_create_file(dev,
3530 &dev_attr_suspend_mem_microvolts);
3531 if (status < 0)
3532 return status;
3533 status = device_create_file(dev,
3534 &dev_attr_suspend_disk_microvolts);
3535 if (status < 0)
3536 return status;
3537 }
3538
3539 if (ops->set_suspend_mode) {
3540 status = device_create_file(dev,
3541 &dev_attr_suspend_standby_mode);
3542 if (status < 0)
3543 return status;
3544 status = device_create_file(dev,
3545 &dev_attr_suspend_mem_mode);
3546 if (status < 0)
3547 return status;
3548 status = device_create_file(dev,
3549 &dev_attr_suspend_disk_mode);
3550 if (status < 0)
3551 return status;
3552 }
3553
3554 return status;
3555 }
3556
3557 static void rdev_init_debugfs(struct regulator_dev *rdev)
3558 {
3559 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3560 if (!rdev->debugfs) {
3561 rdev_warn(rdev, "Failed to create debugfs directory\n");
3562 return;
3563 }
3564
3565 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3566 &rdev->use_count);
3567 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3568 &rdev->open_count);
3569 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3570 &rdev->bypass_count);
3571 }
3572
3573 /**
3574 * regulator_register - register regulator
3575 * @regulator_desc: regulator to register
3576 * @config: runtime configuration for regulator
3577 *
3578 * Called by regulator drivers to register a regulator.
3579 * Returns a valid pointer to struct regulator_dev on success
3580 * or an ERR_PTR() on error.
3581 */
3582 struct regulator_dev *
3583 regulator_register(const struct regulator_desc *regulator_desc,
3584 const struct regulator_config *config)
3585 {
3586 const struct regulation_constraints *constraints = NULL;
3587 const struct regulator_init_data *init_data;
3588 static atomic_t regulator_no = ATOMIC_INIT(0);
3589 struct regulator_dev *rdev;
3590 struct device *dev;
3591 int ret, i;
3592 const char *supply = NULL;
3593
3594 if (regulator_desc == NULL || config == NULL)
3595 return ERR_PTR(-EINVAL);
3596
3597 dev = config->dev;
3598 WARN_ON(!dev);
3599
3600 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3601 return ERR_PTR(-EINVAL);
3602
3603 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3604 regulator_desc->type != REGULATOR_CURRENT)
3605 return ERR_PTR(-EINVAL);
3606
3607 /* Only one of each should be implemented */
3608 WARN_ON(regulator_desc->ops->get_voltage &&
3609 regulator_desc->ops->get_voltage_sel);
3610 WARN_ON(regulator_desc->ops->set_voltage &&
3611 regulator_desc->ops->set_voltage_sel);
3612
3613 /* If we're using selectors we must implement list_voltage. */
3614 if (regulator_desc->ops->get_voltage_sel &&
3615 !regulator_desc->ops->list_voltage) {
3616 return ERR_PTR(-EINVAL);
3617 }
3618 if (regulator_desc->ops->set_voltage_sel &&
3619 !regulator_desc->ops->list_voltage) {
3620 return ERR_PTR(-EINVAL);
3621 }
3622
3623 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3624 if (rdev == NULL)
3625 return ERR_PTR(-ENOMEM);
3626
3627 init_data = regulator_of_get_init_data(dev, regulator_desc,
3628 &rdev->dev.of_node);
3629 if (!init_data) {
3630 init_data = config->init_data;
3631 rdev->dev.of_node = of_node_get(config->of_node);
3632 }
3633
3634 mutex_lock(&regulator_list_mutex);
3635
3636 mutex_init(&rdev->mutex);
3637 rdev->reg_data = config->driver_data;
3638 rdev->owner = regulator_desc->owner;
3639 rdev->desc = regulator_desc;
3640 if (config->regmap)
3641 rdev->regmap = config->regmap;
3642 else if (dev_get_regmap(dev, NULL))
3643 rdev->regmap = dev_get_regmap(dev, NULL);
3644 else if (dev->parent)
3645 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3646 INIT_LIST_HEAD(&rdev->consumer_list);
3647 INIT_LIST_HEAD(&rdev->list);
3648 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3649 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3650
3651 /* preform any regulator specific init */
3652 if (init_data && init_data->regulator_init) {
3653 ret = init_data->regulator_init(rdev->reg_data);
3654 if (ret < 0)
3655 goto clean;
3656 }
3657
3658 /* register with sysfs */
3659 rdev->dev.class = &regulator_class;
3660 rdev->dev.parent = dev;
3661 dev_set_name(&rdev->dev, "regulator.%d",
3662 atomic_inc_return(&regulator_no) - 1);
3663 ret = device_register(&rdev->dev);
3664 if (ret != 0) {
3665 put_device(&rdev->dev);
3666 goto clean;
3667 }
3668
3669 dev_set_drvdata(&rdev->dev, rdev);
3670
3671 if ((config->ena_gpio || config->ena_gpio_initialized) &&
3672 gpio_is_valid(config->ena_gpio)) {
3673 ret = regulator_ena_gpio_request(rdev, config);
3674 if (ret != 0) {
3675 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3676 config->ena_gpio, ret);
3677 goto wash;
3678 }
3679
3680 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3681 rdev->ena_gpio_state = 1;
3682
3683 if (config->ena_gpio_invert)
3684 rdev->ena_gpio_state = !rdev->ena_gpio_state;
3685 }
3686
3687 /* set regulator constraints */
3688 if (init_data)
3689 constraints = &init_data->constraints;
3690
3691 ret = set_machine_constraints(rdev, constraints);
3692 if (ret < 0)
3693 goto scrub;
3694
3695 /* add attributes supported by this regulator */
3696 ret = add_regulator_attributes(rdev);
3697 if (ret < 0)
3698 goto scrub;
3699
3700 if (init_data && init_data->supply_regulator)
3701 supply = init_data->supply_regulator;
3702 else if (regulator_desc->supply_name)
3703 supply = regulator_desc->supply_name;
3704
3705 if (supply) {
3706 struct regulator_dev *r;
3707
3708 r = regulator_dev_lookup(dev, supply, &ret);
3709
3710 if (ret == -ENODEV) {
3711 /*
3712 * No supply was specified for this regulator and
3713 * there will never be one.
3714 */
3715 ret = 0;
3716 goto add_dev;
3717 } else if (!r) {
3718 dev_err(dev, "Failed to find supply %s\n", supply);
3719 ret = -EPROBE_DEFER;
3720 goto scrub;
3721 }
3722
3723 ret = set_supply(rdev, r);
3724 if (ret < 0)
3725 goto scrub;
3726
3727 /* Enable supply if rail is enabled */
3728 if (_regulator_is_enabled(rdev)) {
3729 ret = regulator_enable(rdev->supply);
3730 if (ret < 0)
3731 goto scrub;
3732 }
3733 }
3734
3735 add_dev:
3736 /* add consumers devices */
3737 if (init_data) {
3738 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3739 ret = set_consumer_device_supply(rdev,
3740 init_data->consumer_supplies[i].dev_name,
3741 init_data->consumer_supplies[i].supply);
3742 if (ret < 0) {
3743 dev_err(dev, "Failed to set supply %s\n",
3744 init_data->consumer_supplies[i].supply);
3745 goto unset_supplies;
3746 }
3747 }
3748 }
3749
3750 list_add(&rdev->list, &regulator_list);
3751
3752 rdev_init_debugfs(rdev);
3753 out:
3754 mutex_unlock(&regulator_list_mutex);
3755 return rdev;
3756
3757 unset_supplies:
3758 unset_regulator_supplies(rdev);
3759
3760 scrub:
3761 if (rdev->supply)
3762 _regulator_put(rdev->supply);
3763 regulator_ena_gpio_free(rdev);
3764 kfree(rdev->constraints);
3765 wash:
3766 device_unregister(&rdev->dev);
3767 /* device core frees rdev */
3768 rdev = ERR_PTR(ret);
3769 goto out;
3770
3771 clean:
3772 kfree(rdev);
3773 rdev = ERR_PTR(ret);
3774 goto out;
3775 }
3776 EXPORT_SYMBOL_GPL(regulator_register);
3777
3778 /**
3779 * regulator_unregister - unregister regulator
3780 * @rdev: regulator to unregister
3781 *
3782 * Called by regulator drivers to unregister a regulator.
3783 */
3784 void regulator_unregister(struct regulator_dev *rdev)
3785 {
3786 if (rdev == NULL)
3787 return;
3788
3789 if (rdev->supply) {
3790 while (rdev->use_count--)
3791 regulator_disable(rdev->supply);
3792 regulator_put(rdev->supply);
3793 }
3794 mutex_lock(&regulator_list_mutex);
3795 debugfs_remove_recursive(rdev->debugfs);
3796 flush_work(&rdev->disable_work.work);
3797 WARN_ON(rdev->open_count);
3798 unset_regulator_supplies(rdev);
3799 list_del(&rdev->list);
3800 kfree(rdev->constraints);
3801 regulator_ena_gpio_free(rdev);
3802 of_node_put(rdev->dev.of_node);
3803 device_unregister(&rdev->dev);
3804 mutex_unlock(&regulator_list_mutex);
3805 }
3806 EXPORT_SYMBOL_GPL(regulator_unregister);
3807
3808 /**
3809 * regulator_suspend_prepare - prepare regulators for system wide suspend
3810 * @state: system suspend state
3811 *
3812 * Configure each regulator with it's suspend operating parameters for state.
3813 * This will usually be called by machine suspend code prior to supending.
3814 */
3815 int regulator_suspend_prepare(suspend_state_t state)
3816 {
3817 struct regulator_dev *rdev;
3818 int ret = 0;
3819
3820 /* ON is handled by regulator active state */
3821 if (state == PM_SUSPEND_ON)
3822 return -EINVAL;
3823
3824 mutex_lock(&regulator_list_mutex);
3825 list_for_each_entry(rdev, &regulator_list, list) {
3826
3827 mutex_lock(&rdev->mutex);
3828 ret = suspend_prepare(rdev, state);
3829 mutex_unlock(&rdev->mutex);
3830
3831 if (ret < 0) {
3832 rdev_err(rdev, "failed to prepare\n");
3833 goto out;
3834 }
3835 }
3836 out:
3837 mutex_unlock(&regulator_list_mutex);
3838 return ret;
3839 }
3840 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3841
3842 /**
3843 * regulator_suspend_finish - resume regulators from system wide suspend
3844 *
3845 * Turn on regulators that might be turned off by regulator_suspend_prepare
3846 * and that should be turned on according to the regulators properties.
3847 */
3848 int regulator_suspend_finish(void)
3849 {
3850 struct regulator_dev *rdev;
3851 int ret = 0, error;
3852
3853 mutex_lock(&regulator_list_mutex);
3854 list_for_each_entry(rdev, &regulator_list, list) {
3855 mutex_lock(&rdev->mutex);
3856 if (rdev->use_count > 0 || rdev->constraints->always_on) {
3857 error = _regulator_do_enable(rdev);
3858 if (error)
3859 ret = error;
3860 } else {
3861 if (!have_full_constraints())
3862 goto unlock;
3863 if (!_regulator_is_enabled(rdev))
3864 goto unlock;
3865
3866 error = _regulator_do_disable(rdev);
3867 if (error)
3868 ret = error;
3869 }
3870 unlock:
3871 mutex_unlock(&rdev->mutex);
3872 }
3873 mutex_unlock(&regulator_list_mutex);
3874 return ret;
3875 }
3876 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3877
3878 /**
3879 * regulator_has_full_constraints - the system has fully specified constraints
3880 *
3881 * Calling this function will cause the regulator API to disable all
3882 * regulators which have a zero use count and don't have an always_on
3883 * constraint in a late_initcall.
3884 *
3885 * The intention is that this will become the default behaviour in a
3886 * future kernel release so users are encouraged to use this facility
3887 * now.
3888 */
3889 void regulator_has_full_constraints(void)
3890 {
3891 has_full_constraints = 1;
3892 }
3893 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3894
3895 /**
3896 * rdev_get_drvdata - get rdev regulator driver data
3897 * @rdev: regulator
3898 *
3899 * Get rdev regulator driver private data. This call can be used in the
3900 * regulator driver context.
3901 */
3902 void *rdev_get_drvdata(struct regulator_dev *rdev)
3903 {
3904 return rdev->reg_data;
3905 }
3906 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3907
3908 /**
3909 * regulator_get_drvdata - get regulator driver data
3910 * @regulator: regulator
3911 *
3912 * Get regulator driver private data. This call can be used in the consumer
3913 * driver context when non API regulator specific functions need to be called.
3914 */
3915 void *regulator_get_drvdata(struct regulator *regulator)
3916 {
3917 return regulator->rdev->reg_data;
3918 }
3919 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3920
3921 /**
3922 * regulator_set_drvdata - set regulator driver data
3923 * @regulator: regulator
3924 * @data: data
3925 */
3926 void regulator_set_drvdata(struct regulator *regulator, void *data)
3927 {
3928 regulator->rdev->reg_data = data;
3929 }
3930 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3931
3932 /**
3933 * regulator_get_id - get regulator ID
3934 * @rdev: regulator
3935 */
3936 int rdev_get_id(struct regulator_dev *rdev)
3937 {
3938 return rdev->desc->id;
3939 }
3940 EXPORT_SYMBOL_GPL(rdev_get_id);
3941
3942 struct device *rdev_get_dev(struct regulator_dev *rdev)
3943 {
3944 return &rdev->dev;
3945 }
3946 EXPORT_SYMBOL_GPL(rdev_get_dev);
3947
3948 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3949 {
3950 return reg_init_data->driver_data;
3951 }
3952 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3953
3954 #ifdef CONFIG_DEBUG_FS
3955 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3956 size_t count, loff_t *ppos)
3957 {
3958 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3959 ssize_t len, ret = 0;
3960 struct regulator_map *map;
3961
3962 if (!buf)
3963 return -ENOMEM;
3964
3965 list_for_each_entry(map, &regulator_map_list, list) {
3966 len = snprintf(buf + ret, PAGE_SIZE - ret,
3967 "%s -> %s.%s\n",
3968 rdev_get_name(map->regulator), map->dev_name,
3969 map->supply);
3970 if (len >= 0)
3971 ret += len;
3972 if (ret > PAGE_SIZE) {
3973 ret = PAGE_SIZE;
3974 break;
3975 }
3976 }
3977
3978 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3979
3980 kfree(buf);
3981
3982 return ret;
3983 }
3984 #endif
3985
3986 static const struct file_operations supply_map_fops = {
3987 #ifdef CONFIG_DEBUG_FS
3988 .read = supply_map_read_file,
3989 .llseek = default_llseek,
3990 #endif
3991 };
3992
3993 static int __init regulator_init(void)
3994 {
3995 int ret;
3996
3997 ret = class_register(&regulator_class);
3998
3999 debugfs_root = debugfs_create_dir("regulator", NULL);
4000 if (!debugfs_root)
4001 pr_warn("regulator: Failed to create debugfs directory\n");
4002
4003 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4004 &supply_map_fops);
4005
4006 regulator_dummy_init();
4007
4008 return ret;
4009 }
4010
4011 /* init early to allow our consumers to complete system booting */
4012 core_initcall(regulator_init);
4013
4014 static int __init regulator_init_complete(void)
4015 {
4016 struct regulator_dev *rdev;
4017 const struct regulator_ops *ops;
4018 struct regulation_constraints *c;
4019 int enabled, ret;
4020
4021 /*
4022 * Since DT doesn't provide an idiomatic mechanism for
4023 * enabling full constraints and since it's much more natural
4024 * with DT to provide them just assume that a DT enabled
4025 * system has full constraints.
4026 */
4027 if (of_have_populated_dt())
4028 has_full_constraints = true;
4029
4030 mutex_lock(&regulator_list_mutex);
4031
4032 /* If we have a full configuration then disable any regulators
4033 * we have permission to change the status for and which are
4034 * not in use or always_on. This is effectively the default
4035 * for DT and ACPI as they have full constraints.
4036 */
4037 list_for_each_entry(rdev, &regulator_list, list) {
4038 ops = rdev->desc->ops;
4039 c = rdev->constraints;
4040
4041 if (c && c->always_on)
4042 continue;
4043
4044 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4045 continue;
4046
4047 mutex_lock(&rdev->mutex);
4048
4049 if (rdev->use_count)
4050 goto unlock;
4051
4052 /* If we can't read the status assume it's on. */
4053 if (ops->is_enabled)
4054 enabled = ops->is_enabled(rdev);
4055 else
4056 enabled = 1;
4057
4058 if (!enabled)
4059 goto unlock;
4060
4061 if (have_full_constraints()) {
4062 /* We log since this may kill the system if it
4063 * goes wrong. */
4064 rdev_info(rdev, "disabling\n");
4065 ret = _regulator_do_disable(rdev);
4066 if (ret != 0)
4067 rdev_err(rdev, "couldn't disable: %d\n", ret);
4068 } else {
4069 /* The intention is that in future we will
4070 * assume that full constraints are provided
4071 * so warn even if we aren't going to do
4072 * anything here.
4073 */
4074 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4075 }
4076
4077 unlock:
4078 mutex_unlock(&rdev->mutex);
4079 }
4080
4081 mutex_unlock(&regulator_list_mutex);
4082
4083 return 0;
4084 }
4085 late_initcall_sync(regulator_init_complete);