]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/regulator/core.c
Merge remote-tracking branch 'regulator/topic/dt-cb' into regulator-next
[mirror_ubuntu-artful-kernel.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59
60 static struct dentry *debugfs_root;
61
62 /*
63 * struct regulator_map
64 *
65 * Used to provide symbolic supply names to devices.
66 */
67 struct regulator_map {
68 struct list_head list;
69 const char *dev_name; /* The dev_name() for the consumer */
70 const char *supply;
71 struct regulator_dev *regulator;
72 };
73
74 /*
75 * struct regulator_enable_gpio
76 *
77 * Management for shared enable GPIO pin
78 */
79 struct regulator_enable_gpio {
80 struct list_head list;
81 struct gpio_desc *gpiod;
82 u32 enable_count; /* a number of enabled shared GPIO */
83 u32 request_count; /* a number of requested shared GPIO */
84 unsigned int ena_gpio_invert:1;
85 };
86
87 /*
88 * struct regulator_supply_alias
89 *
90 * Used to map lookups for a supply onto an alternative device.
91 */
92 struct regulator_supply_alias {
93 struct list_head list;
94 struct device *src_dev;
95 const char *src_supply;
96 struct device *alias_dev;
97 const char *alias_supply;
98 };
99
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static int _notifier_call_chain(struct regulator_dev *rdev,
106 unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108 int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110 struct device *dev,
111 const char *supply_name);
112
113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115 if (rdev->constraints && rdev->constraints->name)
116 return rdev->constraints->name;
117 else if (rdev->desc->name)
118 return rdev->desc->name;
119 else
120 return "";
121 }
122
123 static bool have_full_constraints(void)
124 {
125 return has_full_constraints || of_have_populated_dt();
126 }
127
128 /**
129 * of_get_regulator - get a regulator device node based on supply name
130 * @dev: Device pointer for the consumer (of regulator) device
131 * @supply: regulator supply name
132 *
133 * Extract the regulator device node corresponding to the supply name.
134 * returns the device node corresponding to the regulator if found, else
135 * returns NULL.
136 */
137 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138 {
139 struct device_node *regnode = NULL;
140 char prop_name[32]; /* 32 is max size of property name */
141
142 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143
144 snprintf(prop_name, 32, "%s-supply", supply);
145 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
146
147 if (!regnode) {
148 dev_dbg(dev, "Looking up %s property in node %s failed",
149 prop_name, dev->of_node->full_name);
150 return NULL;
151 }
152 return regnode;
153 }
154
155 static int _regulator_can_change_status(struct regulator_dev *rdev)
156 {
157 if (!rdev->constraints)
158 return 0;
159
160 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
161 return 1;
162 else
163 return 0;
164 }
165
166 /* Platform voltage constraint check */
167 static int regulator_check_voltage(struct regulator_dev *rdev,
168 int *min_uV, int *max_uV)
169 {
170 BUG_ON(*min_uV > *max_uV);
171
172 if (!rdev->constraints) {
173 rdev_err(rdev, "no constraints\n");
174 return -ENODEV;
175 }
176 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177 rdev_err(rdev, "operation not allowed\n");
178 return -EPERM;
179 }
180
181 if (*max_uV > rdev->constraints->max_uV)
182 *max_uV = rdev->constraints->max_uV;
183 if (*min_uV < rdev->constraints->min_uV)
184 *min_uV = rdev->constraints->min_uV;
185
186 if (*min_uV > *max_uV) {
187 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188 *min_uV, *max_uV);
189 return -EINVAL;
190 }
191
192 return 0;
193 }
194
195 /* Make sure we select a voltage that suits the needs of all
196 * regulator consumers
197 */
198 static int regulator_check_consumers(struct regulator_dev *rdev,
199 int *min_uV, int *max_uV)
200 {
201 struct regulator *regulator;
202
203 list_for_each_entry(regulator, &rdev->consumer_list, list) {
204 /*
205 * Assume consumers that didn't say anything are OK
206 * with anything in the constraint range.
207 */
208 if (!regulator->min_uV && !regulator->max_uV)
209 continue;
210
211 if (*max_uV > regulator->max_uV)
212 *max_uV = regulator->max_uV;
213 if (*min_uV < regulator->min_uV)
214 *min_uV = regulator->min_uV;
215 }
216
217 if (*min_uV > *max_uV) {
218 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
219 *min_uV, *max_uV);
220 return -EINVAL;
221 }
222
223 return 0;
224 }
225
226 /* current constraint check */
227 static int regulator_check_current_limit(struct regulator_dev *rdev,
228 int *min_uA, int *max_uA)
229 {
230 BUG_ON(*min_uA > *max_uA);
231
232 if (!rdev->constraints) {
233 rdev_err(rdev, "no constraints\n");
234 return -ENODEV;
235 }
236 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237 rdev_err(rdev, "operation not allowed\n");
238 return -EPERM;
239 }
240
241 if (*max_uA > rdev->constraints->max_uA)
242 *max_uA = rdev->constraints->max_uA;
243 if (*min_uA < rdev->constraints->min_uA)
244 *min_uA = rdev->constraints->min_uA;
245
246 if (*min_uA > *max_uA) {
247 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248 *min_uA, *max_uA);
249 return -EINVAL;
250 }
251
252 return 0;
253 }
254
255 /* operating mode constraint check */
256 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257 {
258 switch (*mode) {
259 case REGULATOR_MODE_FAST:
260 case REGULATOR_MODE_NORMAL:
261 case REGULATOR_MODE_IDLE:
262 case REGULATOR_MODE_STANDBY:
263 break;
264 default:
265 rdev_err(rdev, "invalid mode %x specified\n", *mode);
266 return -EINVAL;
267 }
268
269 if (!rdev->constraints) {
270 rdev_err(rdev, "no constraints\n");
271 return -ENODEV;
272 }
273 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274 rdev_err(rdev, "operation not allowed\n");
275 return -EPERM;
276 }
277
278 /* The modes are bitmasks, the most power hungry modes having
279 * the lowest values. If the requested mode isn't supported
280 * try higher modes. */
281 while (*mode) {
282 if (rdev->constraints->valid_modes_mask & *mode)
283 return 0;
284 *mode /= 2;
285 }
286
287 return -EINVAL;
288 }
289
290 /* dynamic regulator mode switching constraint check */
291 static int regulator_check_drms(struct regulator_dev *rdev)
292 {
293 if (!rdev->constraints) {
294 rdev_err(rdev, "no constraints\n");
295 return -ENODEV;
296 }
297 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298 rdev_err(rdev, "operation not allowed\n");
299 return -EPERM;
300 }
301 return 0;
302 }
303
304 static ssize_t regulator_uV_show(struct device *dev,
305 struct device_attribute *attr, char *buf)
306 {
307 struct regulator_dev *rdev = dev_get_drvdata(dev);
308 ssize_t ret;
309
310 mutex_lock(&rdev->mutex);
311 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
312 mutex_unlock(&rdev->mutex);
313
314 return ret;
315 }
316 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317
318 static ssize_t regulator_uA_show(struct device *dev,
319 struct device_attribute *attr, char *buf)
320 {
321 struct regulator_dev *rdev = dev_get_drvdata(dev);
322
323 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324 }
325 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326
327 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
328 char *buf)
329 {
330 struct regulator_dev *rdev = dev_get_drvdata(dev);
331
332 return sprintf(buf, "%s\n", rdev_get_name(rdev));
333 }
334 static DEVICE_ATTR_RO(name);
335
336 static ssize_t regulator_print_opmode(char *buf, int mode)
337 {
338 switch (mode) {
339 case REGULATOR_MODE_FAST:
340 return sprintf(buf, "fast\n");
341 case REGULATOR_MODE_NORMAL:
342 return sprintf(buf, "normal\n");
343 case REGULATOR_MODE_IDLE:
344 return sprintf(buf, "idle\n");
345 case REGULATOR_MODE_STANDBY:
346 return sprintf(buf, "standby\n");
347 }
348 return sprintf(buf, "unknown\n");
349 }
350
351 static ssize_t regulator_opmode_show(struct device *dev,
352 struct device_attribute *attr, char *buf)
353 {
354 struct regulator_dev *rdev = dev_get_drvdata(dev);
355
356 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 }
358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359
360 static ssize_t regulator_print_state(char *buf, int state)
361 {
362 if (state > 0)
363 return sprintf(buf, "enabled\n");
364 else if (state == 0)
365 return sprintf(buf, "disabled\n");
366 else
367 return sprintf(buf, "unknown\n");
368 }
369
370 static ssize_t regulator_state_show(struct device *dev,
371 struct device_attribute *attr, char *buf)
372 {
373 struct regulator_dev *rdev = dev_get_drvdata(dev);
374 ssize_t ret;
375
376 mutex_lock(&rdev->mutex);
377 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378 mutex_unlock(&rdev->mutex);
379
380 return ret;
381 }
382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383
384 static ssize_t regulator_status_show(struct device *dev,
385 struct device_attribute *attr, char *buf)
386 {
387 struct regulator_dev *rdev = dev_get_drvdata(dev);
388 int status;
389 char *label;
390
391 status = rdev->desc->ops->get_status(rdev);
392 if (status < 0)
393 return status;
394
395 switch (status) {
396 case REGULATOR_STATUS_OFF:
397 label = "off";
398 break;
399 case REGULATOR_STATUS_ON:
400 label = "on";
401 break;
402 case REGULATOR_STATUS_ERROR:
403 label = "error";
404 break;
405 case REGULATOR_STATUS_FAST:
406 label = "fast";
407 break;
408 case REGULATOR_STATUS_NORMAL:
409 label = "normal";
410 break;
411 case REGULATOR_STATUS_IDLE:
412 label = "idle";
413 break;
414 case REGULATOR_STATUS_STANDBY:
415 label = "standby";
416 break;
417 case REGULATOR_STATUS_BYPASS:
418 label = "bypass";
419 break;
420 case REGULATOR_STATUS_UNDEFINED:
421 label = "undefined";
422 break;
423 default:
424 return -ERANGE;
425 }
426
427 return sprintf(buf, "%s\n", label);
428 }
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431 static ssize_t regulator_min_uA_show(struct device *dev,
432 struct device_attribute *attr, char *buf)
433 {
434 struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436 if (!rdev->constraints)
437 return sprintf(buf, "constraint not defined\n");
438
439 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 }
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443 static ssize_t regulator_max_uA_show(struct device *dev,
444 struct device_attribute *attr, char *buf)
445 {
446 struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448 if (!rdev->constraints)
449 return sprintf(buf, "constraint not defined\n");
450
451 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 }
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455 static ssize_t regulator_min_uV_show(struct device *dev,
456 struct device_attribute *attr, char *buf)
457 {
458 struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460 if (!rdev->constraints)
461 return sprintf(buf, "constraint not defined\n");
462
463 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 }
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467 static ssize_t regulator_max_uV_show(struct device *dev,
468 struct device_attribute *attr, char *buf)
469 {
470 struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472 if (!rdev->constraints)
473 return sprintf(buf, "constraint not defined\n");
474
475 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 }
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479 static ssize_t regulator_total_uA_show(struct device *dev,
480 struct device_attribute *attr, char *buf)
481 {
482 struct regulator_dev *rdev = dev_get_drvdata(dev);
483 struct regulator *regulator;
484 int uA = 0;
485
486 mutex_lock(&rdev->mutex);
487 list_for_each_entry(regulator, &rdev->consumer_list, list)
488 uA += regulator->uA_load;
489 mutex_unlock(&rdev->mutex);
490 return sprintf(buf, "%d\n", uA);
491 }
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
495 char *buf)
496 {
497 struct regulator_dev *rdev = dev_get_drvdata(dev);
498 return sprintf(buf, "%d\n", rdev->use_count);
499 }
500 static DEVICE_ATTR_RO(num_users);
501
502 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
503 char *buf)
504 {
505 struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507 switch (rdev->desc->type) {
508 case REGULATOR_VOLTAGE:
509 return sprintf(buf, "voltage\n");
510 case REGULATOR_CURRENT:
511 return sprintf(buf, "current\n");
512 }
513 return sprintf(buf, "unknown\n");
514 }
515 static DEVICE_ATTR_RO(type);
516
517 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
518 struct device_attribute *attr, char *buf)
519 {
520 struct regulator_dev *rdev = dev_get_drvdata(dev);
521
522 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
523 }
524 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
525 regulator_suspend_mem_uV_show, NULL);
526
527 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
528 struct device_attribute *attr, char *buf)
529 {
530 struct regulator_dev *rdev = dev_get_drvdata(dev);
531
532 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
533 }
534 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
535 regulator_suspend_disk_uV_show, NULL);
536
537 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
538 struct device_attribute *attr, char *buf)
539 {
540 struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
543 }
544 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
545 regulator_suspend_standby_uV_show, NULL);
546
547 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
548 struct device_attribute *attr, char *buf)
549 {
550 struct regulator_dev *rdev = dev_get_drvdata(dev);
551
552 return regulator_print_opmode(buf,
553 rdev->constraints->state_mem.mode);
554 }
555 static DEVICE_ATTR(suspend_mem_mode, 0444,
556 regulator_suspend_mem_mode_show, NULL);
557
558 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
559 struct device_attribute *attr, char *buf)
560 {
561 struct regulator_dev *rdev = dev_get_drvdata(dev);
562
563 return regulator_print_opmode(buf,
564 rdev->constraints->state_disk.mode);
565 }
566 static DEVICE_ATTR(suspend_disk_mode, 0444,
567 regulator_suspend_disk_mode_show, NULL);
568
569 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
570 struct device_attribute *attr, char *buf)
571 {
572 struct regulator_dev *rdev = dev_get_drvdata(dev);
573
574 return regulator_print_opmode(buf,
575 rdev->constraints->state_standby.mode);
576 }
577 static DEVICE_ATTR(suspend_standby_mode, 0444,
578 regulator_suspend_standby_mode_show, NULL);
579
580 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
581 struct device_attribute *attr, char *buf)
582 {
583 struct regulator_dev *rdev = dev_get_drvdata(dev);
584
585 return regulator_print_state(buf,
586 rdev->constraints->state_mem.enabled);
587 }
588 static DEVICE_ATTR(suspend_mem_state, 0444,
589 regulator_suspend_mem_state_show, NULL);
590
591 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
592 struct device_attribute *attr, char *buf)
593 {
594 struct regulator_dev *rdev = dev_get_drvdata(dev);
595
596 return regulator_print_state(buf,
597 rdev->constraints->state_disk.enabled);
598 }
599 static DEVICE_ATTR(suspend_disk_state, 0444,
600 regulator_suspend_disk_state_show, NULL);
601
602 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
603 struct device_attribute *attr, char *buf)
604 {
605 struct regulator_dev *rdev = dev_get_drvdata(dev);
606
607 return regulator_print_state(buf,
608 rdev->constraints->state_standby.enabled);
609 }
610 static DEVICE_ATTR(suspend_standby_state, 0444,
611 regulator_suspend_standby_state_show, NULL);
612
613 static ssize_t regulator_bypass_show(struct device *dev,
614 struct device_attribute *attr, char *buf)
615 {
616 struct regulator_dev *rdev = dev_get_drvdata(dev);
617 const char *report;
618 bool bypass;
619 int ret;
620
621 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
622
623 if (ret != 0)
624 report = "unknown";
625 else if (bypass)
626 report = "enabled";
627 else
628 report = "disabled";
629
630 return sprintf(buf, "%s\n", report);
631 }
632 static DEVICE_ATTR(bypass, 0444,
633 regulator_bypass_show, NULL);
634
635 /* Calculate the new optimum regulator operating mode based on the new total
636 * consumer load. All locks held by caller */
637 static void drms_uA_update(struct regulator_dev *rdev)
638 {
639 struct regulator *sibling;
640 int current_uA = 0, output_uV, input_uV, err;
641 unsigned int mode;
642
643 err = regulator_check_drms(rdev);
644 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
645 (!rdev->desc->ops->get_voltage &&
646 !rdev->desc->ops->get_voltage_sel) ||
647 !rdev->desc->ops->set_mode)
648 return;
649
650 /* get output voltage */
651 output_uV = _regulator_get_voltage(rdev);
652 if (output_uV <= 0)
653 return;
654
655 /* get input voltage */
656 input_uV = 0;
657 if (rdev->supply)
658 input_uV = regulator_get_voltage(rdev->supply);
659 if (input_uV <= 0)
660 input_uV = rdev->constraints->input_uV;
661 if (input_uV <= 0)
662 return;
663
664 /* calc total requested load */
665 list_for_each_entry(sibling, &rdev->consumer_list, list)
666 current_uA += sibling->uA_load;
667
668 /* now get the optimum mode for our new total regulator load */
669 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
670 output_uV, current_uA);
671
672 /* check the new mode is allowed */
673 err = regulator_mode_constrain(rdev, &mode);
674 if (err == 0)
675 rdev->desc->ops->set_mode(rdev, mode);
676 }
677
678 static int suspend_set_state(struct regulator_dev *rdev,
679 struct regulator_state *rstate)
680 {
681 int ret = 0;
682
683 /* If we have no suspend mode configration don't set anything;
684 * only warn if the driver implements set_suspend_voltage or
685 * set_suspend_mode callback.
686 */
687 if (!rstate->enabled && !rstate->disabled) {
688 if (rdev->desc->ops->set_suspend_voltage ||
689 rdev->desc->ops->set_suspend_mode)
690 rdev_warn(rdev, "No configuration\n");
691 return 0;
692 }
693
694 if (rstate->enabled && rstate->disabled) {
695 rdev_err(rdev, "invalid configuration\n");
696 return -EINVAL;
697 }
698
699 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
700 ret = rdev->desc->ops->set_suspend_enable(rdev);
701 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
702 ret = rdev->desc->ops->set_suspend_disable(rdev);
703 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
704 ret = 0;
705
706 if (ret < 0) {
707 rdev_err(rdev, "failed to enabled/disable\n");
708 return ret;
709 }
710
711 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
712 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
713 if (ret < 0) {
714 rdev_err(rdev, "failed to set voltage\n");
715 return ret;
716 }
717 }
718
719 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
720 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
721 if (ret < 0) {
722 rdev_err(rdev, "failed to set mode\n");
723 return ret;
724 }
725 }
726 return ret;
727 }
728
729 /* locks held by caller */
730 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
731 {
732 if (!rdev->constraints)
733 return -EINVAL;
734
735 switch (state) {
736 case PM_SUSPEND_STANDBY:
737 return suspend_set_state(rdev,
738 &rdev->constraints->state_standby);
739 case PM_SUSPEND_MEM:
740 return suspend_set_state(rdev,
741 &rdev->constraints->state_mem);
742 case PM_SUSPEND_MAX:
743 return suspend_set_state(rdev,
744 &rdev->constraints->state_disk);
745 default:
746 return -EINVAL;
747 }
748 }
749
750 static void print_constraints(struct regulator_dev *rdev)
751 {
752 struct regulation_constraints *constraints = rdev->constraints;
753 char buf[80] = "";
754 int count = 0;
755 int ret;
756
757 if (constraints->min_uV && constraints->max_uV) {
758 if (constraints->min_uV == constraints->max_uV)
759 count += sprintf(buf + count, "%d mV ",
760 constraints->min_uV / 1000);
761 else
762 count += sprintf(buf + count, "%d <--> %d mV ",
763 constraints->min_uV / 1000,
764 constraints->max_uV / 1000);
765 }
766
767 if (!constraints->min_uV ||
768 constraints->min_uV != constraints->max_uV) {
769 ret = _regulator_get_voltage(rdev);
770 if (ret > 0)
771 count += sprintf(buf + count, "at %d mV ", ret / 1000);
772 }
773
774 if (constraints->uV_offset)
775 count += sprintf(buf, "%dmV offset ",
776 constraints->uV_offset / 1000);
777
778 if (constraints->min_uA && constraints->max_uA) {
779 if (constraints->min_uA == constraints->max_uA)
780 count += sprintf(buf + count, "%d mA ",
781 constraints->min_uA / 1000);
782 else
783 count += sprintf(buf + count, "%d <--> %d mA ",
784 constraints->min_uA / 1000,
785 constraints->max_uA / 1000);
786 }
787
788 if (!constraints->min_uA ||
789 constraints->min_uA != constraints->max_uA) {
790 ret = _regulator_get_current_limit(rdev);
791 if (ret > 0)
792 count += sprintf(buf + count, "at %d mA ", ret / 1000);
793 }
794
795 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
796 count += sprintf(buf + count, "fast ");
797 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
798 count += sprintf(buf + count, "normal ");
799 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
800 count += sprintf(buf + count, "idle ");
801 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
802 count += sprintf(buf + count, "standby");
803
804 if (!count)
805 sprintf(buf, "no parameters");
806
807 rdev_dbg(rdev, "%s\n", buf);
808
809 if ((constraints->min_uV != constraints->max_uV) &&
810 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
811 rdev_warn(rdev,
812 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
813 }
814
815 static int machine_constraints_voltage(struct regulator_dev *rdev,
816 struct regulation_constraints *constraints)
817 {
818 const struct regulator_ops *ops = rdev->desc->ops;
819 int ret;
820
821 /* do we need to apply the constraint voltage */
822 if (rdev->constraints->apply_uV &&
823 rdev->constraints->min_uV == rdev->constraints->max_uV) {
824 int current_uV = _regulator_get_voltage(rdev);
825 if (current_uV < 0) {
826 rdev_err(rdev,
827 "failed to get the current voltage(%d)\n",
828 current_uV);
829 return current_uV;
830 }
831 if (current_uV < rdev->constraints->min_uV ||
832 current_uV > rdev->constraints->max_uV) {
833 ret = _regulator_do_set_voltage(
834 rdev, rdev->constraints->min_uV,
835 rdev->constraints->max_uV);
836 if (ret < 0) {
837 rdev_err(rdev,
838 "failed to apply %duV constraint(%d)\n",
839 rdev->constraints->min_uV, ret);
840 return ret;
841 }
842 }
843 }
844
845 /* constrain machine-level voltage specs to fit
846 * the actual range supported by this regulator.
847 */
848 if (ops->list_voltage && rdev->desc->n_voltages) {
849 int count = rdev->desc->n_voltages;
850 int i;
851 int min_uV = INT_MAX;
852 int max_uV = INT_MIN;
853 int cmin = constraints->min_uV;
854 int cmax = constraints->max_uV;
855
856 /* it's safe to autoconfigure fixed-voltage supplies
857 and the constraints are used by list_voltage. */
858 if (count == 1 && !cmin) {
859 cmin = 1;
860 cmax = INT_MAX;
861 constraints->min_uV = cmin;
862 constraints->max_uV = cmax;
863 }
864
865 /* voltage constraints are optional */
866 if ((cmin == 0) && (cmax == 0))
867 return 0;
868
869 /* else require explicit machine-level constraints */
870 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
871 rdev_err(rdev, "invalid voltage constraints\n");
872 return -EINVAL;
873 }
874
875 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
876 for (i = 0; i < count; i++) {
877 int value;
878
879 value = ops->list_voltage(rdev, i);
880 if (value <= 0)
881 continue;
882
883 /* maybe adjust [min_uV..max_uV] */
884 if (value >= cmin && value < min_uV)
885 min_uV = value;
886 if (value <= cmax && value > max_uV)
887 max_uV = value;
888 }
889
890 /* final: [min_uV..max_uV] valid iff constraints valid */
891 if (max_uV < min_uV) {
892 rdev_err(rdev,
893 "unsupportable voltage constraints %u-%uuV\n",
894 min_uV, max_uV);
895 return -EINVAL;
896 }
897
898 /* use regulator's subset of machine constraints */
899 if (constraints->min_uV < min_uV) {
900 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
901 constraints->min_uV, min_uV);
902 constraints->min_uV = min_uV;
903 }
904 if (constraints->max_uV > max_uV) {
905 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
906 constraints->max_uV, max_uV);
907 constraints->max_uV = max_uV;
908 }
909 }
910
911 return 0;
912 }
913
914 static int machine_constraints_current(struct regulator_dev *rdev,
915 struct regulation_constraints *constraints)
916 {
917 const struct regulator_ops *ops = rdev->desc->ops;
918 int ret;
919
920 if (!constraints->min_uA && !constraints->max_uA)
921 return 0;
922
923 if (constraints->min_uA > constraints->max_uA) {
924 rdev_err(rdev, "Invalid current constraints\n");
925 return -EINVAL;
926 }
927
928 if (!ops->set_current_limit || !ops->get_current_limit) {
929 rdev_warn(rdev, "Operation of current configuration missing\n");
930 return 0;
931 }
932
933 /* Set regulator current in constraints range */
934 ret = ops->set_current_limit(rdev, constraints->min_uA,
935 constraints->max_uA);
936 if (ret < 0) {
937 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
938 return ret;
939 }
940
941 return 0;
942 }
943
944 static int _regulator_do_enable(struct regulator_dev *rdev);
945
946 /**
947 * set_machine_constraints - sets regulator constraints
948 * @rdev: regulator source
949 * @constraints: constraints to apply
950 *
951 * Allows platform initialisation code to define and constrain
952 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
953 * Constraints *must* be set by platform code in order for some
954 * regulator operations to proceed i.e. set_voltage, set_current_limit,
955 * set_mode.
956 */
957 static int set_machine_constraints(struct regulator_dev *rdev,
958 const struct regulation_constraints *constraints)
959 {
960 int ret = 0;
961 const struct regulator_ops *ops = rdev->desc->ops;
962
963 if (constraints)
964 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
965 GFP_KERNEL);
966 else
967 rdev->constraints = kzalloc(sizeof(*constraints),
968 GFP_KERNEL);
969 if (!rdev->constraints)
970 return -ENOMEM;
971
972 ret = machine_constraints_voltage(rdev, rdev->constraints);
973 if (ret != 0)
974 goto out;
975
976 ret = machine_constraints_current(rdev, rdev->constraints);
977 if (ret != 0)
978 goto out;
979
980 /* do we need to setup our suspend state */
981 if (rdev->constraints->initial_state) {
982 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
983 if (ret < 0) {
984 rdev_err(rdev, "failed to set suspend state\n");
985 goto out;
986 }
987 }
988
989 if (rdev->constraints->initial_mode) {
990 if (!ops->set_mode) {
991 rdev_err(rdev, "no set_mode operation\n");
992 ret = -EINVAL;
993 goto out;
994 }
995
996 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
997 if (ret < 0) {
998 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
999 goto out;
1000 }
1001 }
1002
1003 /* If the constraints say the regulator should be on at this point
1004 * and we have control then make sure it is enabled.
1005 */
1006 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1007 ret = _regulator_do_enable(rdev);
1008 if (ret < 0 && ret != -EINVAL) {
1009 rdev_err(rdev, "failed to enable\n");
1010 goto out;
1011 }
1012 }
1013
1014 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1015 && ops->set_ramp_delay) {
1016 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1017 if (ret < 0) {
1018 rdev_err(rdev, "failed to set ramp_delay\n");
1019 goto out;
1020 }
1021 }
1022
1023 print_constraints(rdev);
1024 return 0;
1025 out:
1026 kfree(rdev->constraints);
1027 rdev->constraints = NULL;
1028 return ret;
1029 }
1030
1031 /**
1032 * set_supply - set regulator supply regulator
1033 * @rdev: regulator name
1034 * @supply_rdev: supply regulator name
1035 *
1036 * Called by platform initialisation code to set the supply regulator for this
1037 * regulator. This ensures that a regulators supply will also be enabled by the
1038 * core if it's child is enabled.
1039 */
1040 static int set_supply(struct regulator_dev *rdev,
1041 struct regulator_dev *supply_rdev)
1042 {
1043 int err;
1044
1045 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1046
1047 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1048 if (rdev->supply == NULL) {
1049 err = -ENOMEM;
1050 return err;
1051 }
1052 supply_rdev->open_count++;
1053
1054 return 0;
1055 }
1056
1057 /**
1058 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1059 * @rdev: regulator source
1060 * @consumer_dev_name: dev_name() string for device supply applies to
1061 * @supply: symbolic name for supply
1062 *
1063 * Allows platform initialisation code to map physical regulator
1064 * sources to symbolic names for supplies for use by devices. Devices
1065 * should use these symbolic names to request regulators, avoiding the
1066 * need to provide board-specific regulator names as platform data.
1067 */
1068 static int set_consumer_device_supply(struct regulator_dev *rdev,
1069 const char *consumer_dev_name,
1070 const char *supply)
1071 {
1072 struct regulator_map *node;
1073 int has_dev;
1074
1075 if (supply == NULL)
1076 return -EINVAL;
1077
1078 if (consumer_dev_name != NULL)
1079 has_dev = 1;
1080 else
1081 has_dev = 0;
1082
1083 list_for_each_entry(node, &regulator_map_list, list) {
1084 if (node->dev_name && consumer_dev_name) {
1085 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1086 continue;
1087 } else if (node->dev_name || consumer_dev_name) {
1088 continue;
1089 }
1090
1091 if (strcmp(node->supply, supply) != 0)
1092 continue;
1093
1094 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1095 consumer_dev_name,
1096 dev_name(&node->regulator->dev),
1097 node->regulator->desc->name,
1098 supply,
1099 dev_name(&rdev->dev), rdev_get_name(rdev));
1100 return -EBUSY;
1101 }
1102
1103 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1104 if (node == NULL)
1105 return -ENOMEM;
1106
1107 node->regulator = rdev;
1108 node->supply = supply;
1109
1110 if (has_dev) {
1111 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1112 if (node->dev_name == NULL) {
1113 kfree(node);
1114 return -ENOMEM;
1115 }
1116 }
1117
1118 list_add(&node->list, &regulator_map_list);
1119 return 0;
1120 }
1121
1122 static void unset_regulator_supplies(struct regulator_dev *rdev)
1123 {
1124 struct regulator_map *node, *n;
1125
1126 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1127 if (rdev == node->regulator) {
1128 list_del(&node->list);
1129 kfree(node->dev_name);
1130 kfree(node);
1131 }
1132 }
1133 }
1134
1135 #define REG_STR_SIZE 64
1136
1137 static struct regulator *create_regulator(struct regulator_dev *rdev,
1138 struct device *dev,
1139 const char *supply_name)
1140 {
1141 struct regulator *regulator;
1142 char buf[REG_STR_SIZE];
1143 int err, size;
1144
1145 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1146 if (regulator == NULL)
1147 return NULL;
1148
1149 mutex_lock(&rdev->mutex);
1150 regulator->rdev = rdev;
1151 list_add(&regulator->list, &rdev->consumer_list);
1152
1153 if (dev) {
1154 regulator->dev = dev;
1155
1156 /* Add a link to the device sysfs entry */
1157 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1158 dev->kobj.name, supply_name);
1159 if (size >= REG_STR_SIZE)
1160 goto overflow_err;
1161
1162 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1163 if (regulator->supply_name == NULL)
1164 goto overflow_err;
1165
1166 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1167 buf);
1168 if (err) {
1169 rdev_warn(rdev, "could not add device link %s err %d\n",
1170 dev->kobj.name, err);
1171 /* non-fatal */
1172 }
1173 } else {
1174 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1175 if (regulator->supply_name == NULL)
1176 goto overflow_err;
1177 }
1178
1179 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1180 rdev->debugfs);
1181 if (!regulator->debugfs) {
1182 rdev_warn(rdev, "Failed to create debugfs directory\n");
1183 } else {
1184 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1185 &regulator->uA_load);
1186 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1187 &regulator->min_uV);
1188 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1189 &regulator->max_uV);
1190 }
1191
1192 /*
1193 * Check now if the regulator is an always on regulator - if
1194 * it is then we don't need to do nearly so much work for
1195 * enable/disable calls.
1196 */
1197 if (!_regulator_can_change_status(rdev) &&
1198 _regulator_is_enabled(rdev))
1199 regulator->always_on = true;
1200
1201 mutex_unlock(&rdev->mutex);
1202 return regulator;
1203 overflow_err:
1204 list_del(&regulator->list);
1205 kfree(regulator);
1206 mutex_unlock(&rdev->mutex);
1207 return NULL;
1208 }
1209
1210 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1211 {
1212 if (rdev->constraints && rdev->constraints->enable_time)
1213 return rdev->constraints->enable_time;
1214 if (!rdev->desc->ops->enable_time)
1215 return rdev->desc->enable_time;
1216 return rdev->desc->ops->enable_time(rdev);
1217 }
1218
1219 static struct regulator_supply_alias *regulator_find_supply_alias(
1220 struct device *dev, const char *supply)
1221 {
1222 struct regulator_supply_alias *map;
1223
1224 list_for_each_entry(map, &regulator_supply_alias_list, list)
1225 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1226 return map;
1227
1228 return NULL;
1229 }
1230
1231 static void regulator_supply_alias(struct device **dev, const char **supply)
1232 {
1233 struct regulator_supply_alias *map;
1234
1235 map = regulator_find_supply_alias(*dev, *supply);
1236 if (map) {
1237 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1238 *supply, map->alias_supply,
1239 dev_name(map->alias_dev));
1240 *dev = map->alias_dev;
1241 *supply = map->alias_supply;
1242 }
1243 }
1244
1245 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1246 const char *supply,
1247 int *ret)
1248 {
1249 struct regulator_dev *r;
1250 struct device_node *node;
1251 struct regulator_map *map;
1252 const char *devname = NULL;
1253
1254 regulator_supply_alias(&dev, &supply);
1255
1256 /* first do a dt based lookup */
1257 if (dev && dev->of_node) {
1258 node = of_get_regulator(dev, supply);
1259 if (node) {
1260 list_for_each_entry(r, &regulator_list, list)
1261 if (r->dev.parent &&
1262 node == r->dev.of_node)
1263 return r;
1264 *ret = -EPROBE_DEFER;
1265 return NULL;
1266 } else {
1267 /*
1268 * If we couldn't even get the node then it's
1269 * not just that the device didn't register
1270 * yet, there's no node and we'll never
1271 * succeed.
1272 */
1273 *ret = -ENODEV;
1274 }
1275 }
1276
1277 /* if not found, try doing it non-dt way */
1278 if (dev)
1279 devname = dev_name(dev);
1280
1281 list_for_each_entry(r, &regulator_list, list)
1282 if (strcmp(rdev_get_name(r), supply) == 0)
1283 return r;
1284
1285 list_for_each_entry(map, &regulator_map_list, list) {
1286 /* If the mapping has a device set up it must match */
1287 if (map->dev_name &&
1288 (!devname || strcmp(map->dev_name, devname)))
1289 continue;
1290
1291 if (strcmp(map->supply, supply) == 0)
1292 return map->regulator;
1293 }
1294
1295
1296 return NULL;
1297 }
1298
1299 /* Internal regulator request function */
1300 static struct regulator *_regulator_get(struct device *dev, const char *id,
1301 bool exclusive, bool allow_dummy)
1302 {
1303 struct regulator_dev *rdev;
1304 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1305 const char *devname = NULL;
1306 int ret;
1307
1308 if (id == NULL) {
1309 pr_err("get() with no identifier\n");
1310 return ERR_PTR(-EINVAL);
1311 }
1312
1313 if (dev)
1314 devname = dev_name(dev);
1315
1316 if (have_full_constraints())
1317 ret = -ENODEV;
1318 else
1319 ret = -EPROBE_DEFER;
1320
1321 mutex_lock(&regulator_list_mutex);
1322
1323 rdev = regulator_dev_lookup(dev, id, &ret);
1324 if (rdev)
1325 goto found;
1326
1327 regulator = ERR_PTR(ret);
1328
1329 /*
1330 * If we have return value from dev_lookup fail, we do not expect to
1331 * succeed, so, quit with appropriate error value
1332 */
1333 if (ret && ret != -ENODEV)
1334 goto out;
1335
1336 if (!devname)
1337 devname = "deviceless";
1338
1339 /*
1340 * Assume that a regulator is physically present and enabled
1341 * even if it isn't hooked up and just provide a dummy.
1342 */
1343 if (have_full_constraints() && allow_dummy) {
1344 pr_warn("%s supply %s not found, using dummy regulator\n",
1345 devname, id);
1346
1347 rdev = dummy_regulator_rdev;
1348 goto found;
1349 /* Don't log an error when called from regulator_get_optional() */
1350 } else if (!have_full_constraints() || exclusive) {
1351 dev_warn(dev, "dummy supplies not allowed\n");
1352 }
1353
1354 mutex_unlock(&regulator_list_mutex);
1355 return regulator;
1356
1357 found:
1358 if (rdev->exclusive) {
1359 regulator = ERR_PTR(-EPERM);
1360 goto out;
1361 }
1362
1363 if (exclusive && rdev->open_count) {
1364 regulator = ERR_PTR(-EBUSY);
1365 goto out;
1366 }
1367
1368 if (!try_module_get(rdev->owner))
1369 goto out;
1370
1371 regulator = create_regulator(rdev, dev, id);
1372 if (regulator == NULL) {
1373 regulator = ERR_PTR(-ENOMEM);
1374 module_put(rdev->owner);
1375 goto out;
1376 }
1377
1378 rdev->open_count++;
1379 if (exclusive) {
1380 rdev->exclusive = 1;
1381
1382 ret = _regulator_is_enabled(rdev);
1383 if (ret > 0)
1384 rdev->use_count = 1;
1385 else
1386 rdev->use_count = 0;
1387 }
1388
1389 out:
1390 mutex_unlock(&regulator_list_mutex);
1391
1392 return regulator;
1393 }
1394
1395 /**
1396 * regulator_get - lookup and obtain a reference to a regulator.
1397 * @dev: device for regulator "consumer"
1398 * @id: Supply name or regulator ID.
1399 *
1400 * Returns a struct regulator corresponding to the regulator producer,
1401 * or IS_ERR() condition containing errno.
1402 *
1403 * Use of supply names configured via regulator_set_device_supply() is
1404 * strongly encouraged. It is recommended that the supply name used
1405 * should match the name used for the supply and/or the relevant
1406 * device pins in the datasheet.
1407 */
1408 struct regulator *regulator_get(struct device *dev, const char *id)
1409 {
1410 return _regulator_get(dev, id, false, true);
1411 }
1412 EXPORT_SYMBOL_GPL(regulator_get);
1413
1414 /**
1415 * regulator_get_exclusive - obtain exclusive access to a regulator.
1416 * @dev: device for regulator "consumer"
1417 * @id: Supply name or regulator ID.
1418 *
1419 * Returns a struct regulator corresponding to the regulator producer,
1420 * or IS_ERR() condition containing errno. Other consumers will be
1421 * unable to obtain this regulator while this reference is held and the
1422 * use count for the regulator will be initialised to reflect the current
1423 * state of the regulator.
1424 *
1425 * This is intended for use by consumers which cannot tolerate shared
1426 * use of the regulator such as those which need to force the
1427 * regulator off for correct operation of the hardware they are
1428 * controlling.
1429 *
1430 * Use of supply names configured via regulator_set_device_supply() is
1431 * strongly encouraged. It is recommended that the supply name used
1432 * should match the name used for the supply and/or the relevant
1433 * device pins in the datasheet.
1434 */
1435 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1436 {
1437 return _regulator_get(dev, id, true, false);
1438 }
1439 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1440
1441 /**
1442 * regulator_get_optional - obtain optional access to a regulator.
1443 * @dev: device for regulator "consumer"
1444 * @id: Supply name or regulator ID.
1445 *
1446 * Returns a struct regulator corresponding to the regulator producer,
1447 * or IS_ERR() condition containing errno.
1448 *
1449 * This is intended for use by consumers for devices which can have
1450 * some supplies unconnected in normal use, such as some MMC devices.
1451 * It can allow the regulator core to provide stub supplies for other
1452 * supplies requested using normal regulator_get() calls without
1453 * disrupting the operation of drivers that can handle absent
1454 * supplies.
1455 *
1456 * Use of supply names configured via regulator_set_device_supply() is
1457 * strongly encouraged. It is recommended that the supply name used
1458 * should match the name used for the supply and/or the relevant
1459 * device pins in the datasheet.
1460 */
1461 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1462 {
1463 return _regulator_get(dev, id, false, false);
1464 }
1465 EXPORT_SYMBOL_GPL(regulator_get_optional);
1466
1467 /* regulator_list_mutex lock held by regulator_put() */
1468 static void _regulator_put(struct regulator *regulator)
1469 {
1470 struct regulator_dev *rdev;
1471
1472 if (regulator == NULL || IS_ERR(regulator))
1473 return;
1474
1475 rdev = regulator->rdev;
1476
1477 debugfs_remove_recursive(regulator->debugfs);
1478
1479 /* remove any sysfs entries */
1480 if (regulator->dev)
1481 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1482 mutex_lock(&rdev->mutex);
1483 kfree(regulator->supply_name);
1484 list_del(&regulator->list);
1485 kfree(regulator);
1486
1487 rdev->open_count--;
1488 rdev->exclusive = 0;
1489 mutex_unlock(&rdev->mutex);
1490
1491 module_put(rdev->owner);
1492 }
1493
1494 /**
1495 * regulator_put - "free" the regulator source
1496 * @regulator: regulator source
1497 *
1498 * Note: drivers must ensure that all regulator_enable calls made on this
1499 * regulator source are balanced by regulator_disable calls prior to calling
1500 * this function.
1501 */
1502 void regulator_put(struct regulator *regulator)
1503 {
1504 mutex_lock(&regulator_list_mutex);
1505 _regulator_put(regulator);
1506 mutex_unlock(&regulator_list_mutex);
1507 }
1508 EXPORT_SYMBOL_GPL(regulator_put);
1509
1510 /**
1511 * regulator_register_supply_alias - Provide device alias for supply lookup
1512 *
1513 * @dev: device that will be given as the regulator "consumer"
1514 * @id: Supply name or regulator ID
1515 * @alias_dev: device that should be used to lookup the supply
1516 * @alias_id: Supply name or regulator ID that should be used to lookup the
1517 * supply
1518 *
1519 * All lookups for id on dev will instead be conducted for alias_id on
1520 * alias_dev.
1521 */
1522 int regulator_register_supply_alias(struct device *dev, const char *id,
1523 struct device *alias_dev,
1524 const char *alias_id)
1525 {
1526 struct regulator_supply_alias *map;
1527
1528 map = regulator_find_supply_alias(dev, id);
1529 if (map)
1530 return -EEXIST;
1531
1532 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1533 if (!map)
1534 return -ENOMEM;
1535
1536 map->src_dev = dev;
1537 map->src_supply = id;
1538 map->alias_dev = alias_dev;
1539 map->alias_supply = alias_id;
1540
1541 list_add(&map->list, &regulator_supply_alias_list);
1542
1543 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1544 id, dev_name(dev), alias_id, dev_name(alias_dev));
1545
1546 return 0;
1547 }
1548 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1549
1550 /**
1551 * regulator_unregister_supply_alias - Remove device alias
1552 *
1553 * @dev: device that will be given as the regulator "consumer"
1554 * @id: Supply name or regulator ID
1555 *
1556 * Remove a lookup alias if one exists for id on dev.
1557 */
1558 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1559 {
1560 struct regulator_supply_alias *map;
1561
1562 map = regulator_find_supply_alias(dev, id);
1563 if (map) {
1564 list_del(&map->list);
1565 kfree(map);
1566 }
1567 }
1568 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1569
1570 /**
1571 * regulator_bulk_register_supply_alias - register multiple aliases
1572 *
1573 * @dev: device that will be given as the regulator "consumer"
1574 * @id: List of supply names or regulator IDs
1575 * @alias_dev: device that should be used to lookup the supply
1576 * @alias_id: List of supply names or regulator IDs that should be used to
1577 * lookup the supply
1578 * @num_id: Number of aliases to register
1579 *
1580 * @return 0 on success, an errno on failure.
1581 *
1582 * This helper function allows drivers to register several supply
1583 * aliases in one operation. If any of the aliases cannot be
1584 * registered any aliases that were registered will be removed
1585 * before returning to the caller.
1586 */
1587 int regulator_bulk_register_supply_alias(struct device *dev,
1588 const char *const *id,
1589 struct device *alias_dev,
1590 const char *const *alias_id,
1591 int num_id)
1592 {
1593 int i;
1594 int ret;
1595
1596 for (i = 0; i < num_id; ++i) {
1597 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1598 alias_id[i]);
1599 if (ret < 0)
1600 goto err;
1601 }
1602
1603 return 0;
1604
1605 err:
1606 dev_err(dev,
1607 "Failed to create supply alias %s,%s -> %s,%s\n",
1608 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1609
1610 while (--i >= 0)
1611 regulator_unregister_supply_alias(dev, id[i]);
1612
1613 return ret;
1614 }
1615 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1616
1617 /**
1618 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1619 *
1620 * @dev: device that will be given as the regulator "consumer"
1621 * @id: List of supply names or regulator IDs
1622 * @num_id: Number of aliases to unregister
1623 *
1624 * This helper function allows drivers to unregister several supply
1625 * aliases in one operation.
1626 */
1627 void regulator_bulk_unregister_supply_alias(struct device *dev,
1628 const char *const *id,
1629 int num_id)
1630 {
1631 int i;
1632
1633 for (i = 0; i < num_id; ++i)
1634 regulator_unregister_supply_alias(dev, id[i]);
1635 }
1636 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1637
1638
1639 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1640 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1641 const struct regulator_config *config)
1642 {
1643 struct regulator_enable_gpio *pin;
1644 struct gpio_desc *gpiod;
1645 int ret;
1646
1647 gpiod = gpio_to_desc(config->ena_gpio);
1648
1649 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1650 if (pin->gpiod == gpiod) {
1651 rdev_dbg(rdev, "GPIO %d is already used\n",
1652 config->ena_gpio);
1653 goto update_ena_gpio_to_rdev;
1654 }
1655 }
1656
1657 ret = gpio_request_one(config->ena_gpio,
1658 GPIOF_DIR_OUT | config->ena_gpio_flags,
1659 rdev_get_name(rdev));
1660 if (ret)
1661 return ret;
1662
1663 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1664 if (pin == NULL) {
1665 gpio_free(config->ena_gpio);
1666 return -ENOMEM;
1667 }
1668
1669 pin->gpiod = gpiod;
1670 pin->ena_gpio_invert = config->ena_gpio_invert;
1671 list_add(&pin->list, &regulator_ena_gpio_list);
1672
1673 update_ena_gpio_to_rdev:
1674 pin->request_count++;
1675 rdev->ena_pin = pin;
1676 return 0;
1677 }
1678
1679 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1680 {
1681 struct regulator_enable_gpio *pin, *n;
1682
1683 if (!rdev->ena_pin)
1684 return;
1685
1686 /* Free the GPIO only in case of no use */
1687 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1688 if (pin->gpiod == rdev->ena_pin->gpiod) {
1689 if (pin->request_count <= 1) {
1690 pin->request_count = 0;
1691 gpiod_put(pin->gpiod);
1692 list_del(&pin->list);
1693 kfree(pin);
1694 rdev->ena_pin = NULL;
1695 return;
1696 } else {
1697 pin->request_count--;
1698 }
1699 }
1700 }
1701 }
1702
1703 /**
1704 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1705 * @rdev: regulator_dev structure
1706 * @enable: enable GPIO at initial use?
1707 *
1708 * GPIO is enabled in case of initial use. (enable_count is 0)
1709 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1710 */
1711 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1712 {
1713 struct regulator_enable_gpio *pin = rdev->ena_pin;
1714
1715 if (!pin)
1716 return -EINVAL;
1717
1718 if (enable) {
1719 /* Enable GPIO at initial use */
1720 if (pin->enable_count == 0)
1721 gpiod_set_value_cansleep(pin->gpiod,
1722 !pin->ena_gpio_invert);
1723
1724 pin->enable_count++;
1725 } else {
1726 if (pin->enable_count > 1) {
1727 pin->enable_count--;
1728 return 0;
1729 }
1730
1731 /* Disable GPIO if not used */
1732 if (pin->enable_count <= 1) {
1733 gpiod_set_value_cansleep(pin->gpiod,
1734 pin->ena_gpio_invert);
1735 pin->enable_count = 0;
1736 }
1737 }
1738
1739 return 0;
1740 }
1741
1742 /**
1743 * _regulator_enable_delay - a delay helper function
1744 * @delay: time to delay in microseconds
1745 *
1746 * Delay for the requested amount of time as per the guidelines in:
1747 *
1748 * Documentation/timers/timers-howto.txt
1749 *
1750 * The assumption here is that regulators will never be enabled in
1751 * atomic context and therefore sleeping functions can be used.
1752 */
1753 static void _regulator_enable_delay(unsigned int delay)
1754 {
1755 unsigned int ms = delay / 1000;
1756 unsigned int us = delay % 1000;
1757
1758 if (ms > 0) {
1759 /*
1760 * For small enough values, handle super-millisecond
1761 * delays in the usleep_range() call below.
1762 */
1763 if (ms < 20)
1764 us += ms * 1000;
1765 else
1766 msleep(ms);
1767 }
1768
1769 /*
1770 * Give the scheduler some room to coalesce with any other
1771 * wakeup sources. For delays shorter than 10 us, don't even
1772 * bother setting up high-resolution timers and just busy-
1773 * loop.
1774 */
1775 if (us >= 10)
1776 usleep_range(us, us + 100);
1777 else
1778 udelay(us);
1779 }
1780
1781 static int _regulator_do_enable(struct regulator_dev *rdev)
1782 {
1783 int ret, delay;
1784
1785 /* Query before enabling in case configuration dependent. */
1786 ret = _regulator_get_enable_time(rdev);
1787 if (ret >= 0) {
1788 delay = ret;
1789 } else {
1790 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1791 delay = 0;
1792 }
1793
1794 trace_regulator_enable(rdev_get_name(rdev));
1795
1796 if (rdev->desc->off_on_delay) {
1797 /* if needed, keep a distance of off_on_delay from last time
1798 * this regulator was disabled.
1799 */
1800 unsigned long start_jiffy = jiffies;
1801 unsigned long intended, max_delay, remaining;
1802
1803 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1804 intended = rdev->last_off_jiffy + max_delay;
1805
1806 if (time_before(start_jiffy, intended)) {
1807 /* calc remaining jiffies to deal with one-time
1808 * timer wrapping.
1809 * in case of multiple timer wrapping, either it can be
1810 * detected by out-of-range remaining, or it cannot be
1811 * detected and we gets a panelty of
1812 * _regulator_enable_delay().
1813 */
1814 remaining = intended - start_jiffy;
1815 if (remaining <= max_delay)
1816 _regulator_enable_delay(
1817 jiffies_to_usecs(remaining));
1818 }
1819 }
1820
1821 if (rdev->ena_pin) {
1822 ret = regulator_ena_gpio_ctrl(rdev, true);
1823 if (ret < 0)
1824 return ret;
1825 rdev->ena_gpio_state = 1;
1826 } else if (rdev->desc->ops->enable) {
1827 ret = rdev->desc->ops->enable(rdev);
1828 if (ret < 0)
1829 return ret;
1830 } else {
1831 return -EINVAL;
1832 }
1833
1834 /* Allow the regulator to ramp; it would be useful to extend
1835 * this for bulk operations so that the regulators can ramp
1836 * together. */
1837 trace_regulator_enable_delay(rdev_get_name(rdev));
1838
1839 _regulator_enable_delay(delay);
1840
1841 trace_regulator_enable_complete(rdev_get_name(rdev));
1842
1843 return 0;
1844 }
1845
1846 /* locks held by regulator_enable() */
1847 static int _regulator_enable(struct regulator_dev *rdev)
1848 {
1849 int ret;
1850
1851 /* check voltage and requested load before enabling */
1852 if (rdev->constraints &&
1853 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1854 drms_uA_update(rdev);
1855
1856 if (rdev->use_count == 0) {
1857 /* The regulator may on if it's not switchable or left on */
1858 ret = _regulator_is_enabled(rdev);
1859 if (ret == -EINVAL || ret == 0) {
1860 if (!_regulator_can_change_status(rdev))
1861 return -EPERM;
1862
1863 ret = _regulator_do_enable(rdev);
1864 if (ret < 0)
1865 return ret;
1866
1867 } else if (ret < 0) {
1868 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1869 return ret;
1870 }
1871 /* Fallthrough on positive return values - already enabled */
1872 }
1873
1874 rdev->use_count++;
1875
1876 return 0;
1877 }
1878
1879 /**
1880 * regulator_enable - enable regulator output
1881 * @regulator: regulator source
1882 *
1883 * Request that the regulator be enabled with the regulator output at
1884 * the predefined voltage or current value. Calls to regulator_enable()
1885 * must be balanced with calls to regulator_disable().
1886 *
1887 * NOTE: the output value can be set by other drivers, boot loader or may be
1888 * hardwired in the regulator.
1889 */
1890 int regulator_enable(struct regulator *regulator)
1891 {
1892 struct regulator_dev *rdev = regulator->rdev;
1893 int ret = 0;
1894
1895 if (regulator->always_on)
1896 return 0;
1897
1898 if (rdev->supply) {
1899 ret = regulator_enable(rdev->supply);
1900 if (ret != 0)
1901 return ret;
1902 }
1903
1904 mutex_lock(&rdev->mutex);
1905 ret = _regulator_enable(rdev);
1906 mutex_unlock(&rdev->mutex);
1907
1908 if (ret != 0 && rdev->supply)
1909 regulator_disable(rdev->supply);
1910
1911 return ret;
1912 }
1913 EXPORT_SYMBOL_GPL(regulator_enable);
1914
1915 static int _regulator_do_disable(struct regulator_dev *rdev)
1916 {
1917 int ret;
1918
1919 trace_regulator_disable(rdev_get_name(rdev));
1920
1921 if (rdev->ena_pin) {
1922 ret = regulator_ena_gpio_ctrl(rdev, false);
1923 if (ret < 0)
1924 return ret;
1925 rdev->ena_gpio_state = 0;
1926
1927 } else if (rdev->desc->ops->disable) {
1928 ret = rdev->desc->ops->disable(rdev);
1929 if (ret != 0)
1930 return ret;
1931 }
1932
1933 /* cares about last_off_jiffy only if off_on_delay is required by
1934 * device.
1935 */
1936 if (rdev->desc->off_on_delay)
1937 rdev->last_off_jiffy = jiffies;
1938
1939 trace_regulator_disable_complete(rdev_get_name(rdev));
1940
1941 return 0;
1942 }
1943
1944 /* locks held by regulator_disable() */
1945 static int _regulator_disable(struct regulator_dev *rdev)
1946 {
1947 int ret = 0;
1948
1949 if (WARN(rdev->use_count <= 0,
1950 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1951 return -EIO;
1952
1953 /* are we the last user and permitted to disable ? */
1954 if (rdev->use_count == 1 &&
1955 (rdev->constraints && !rdev->constraints->always_on)) {
1956
1957 /* we are last user */
1958 if (_regulator_can_change_status(rdev)) {
1959 ret = _notifier_call_chain(rdev,
1960 REGULATOR_EVENT_PRE_DISABLE,
1961 NULL);
1962 if (ret & NOTIFY_STOP_MASK)
1963 return -EINVAL;
1964
1965 ret = _regulator_do_disable(rdev);
1966 if (ret < 0) {
1967 rdev_err(rdev, "failed to disable\n");
1968 _notifier_call_chain(rdev,
1969 REGULATOR_EVENT_ABORT_DISABLE,
1970 NULL);
1971 return ret;
1972 }
1973 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1974 NULL);
1975 }
1976
1977 rdev->use_count = 0;
1978 } else if (rdev->use_count > 1) {
1979
1980 if (rdev->constraints &&
1981 (rdev->constraints->valid_ops_mask &
1982 REGULATOR_CHANGE_DRMS))
1983 drms_uA_update(rdev);
1984
1985 rdev->use_count--;
1986 }
1987
1988 return ret;
1989 }
1990
1991 /**
1992 * regulator_disable - disable regulator output
1993 * @regulator: regulator source
1994 *
1995 * Disable the regulator output voltage or current. Calls to
1996 * regulator_enable() must be balanced with calls to
1997 * regulator_disable().
1998 *
1999 * NOTE: this will only disable the regulator output if no other consumer
2000 * devices have it enabled, the regulator device supports disabling and
2001 * machine constraints permit this operation.
2002 */
2003 int regulator_disable(struct regulator *regulator)
2004 {
2005 struct regulator_dev *rdev = regulator->rdev;
2006 int ret = 0;
2007
2008 if (regulator->always_on)
2009 return 0;
2010
2011 mutex_lock(&rdev->mutex);
2012 ret = _regulator_disable(rdev);
2013 mutex_unlock(&rdev->mutex);
2014
2015 if (ret == 0 && rdev->supply)
2016 regulator_disable(rdev->supply);
2017
2018 return ret;
2019 }
2020 EXPORT_SYMBOL_GPL(regulator_disable);
2021
2022 /* locks held by regulator_force_disable() */
2023 static int _regulator_force_disable(struct regulator_dev *rdev)
2024 {
2025 int ret = 0;
2026
2027 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2028 REGULATOR_EVENT_PRE_DISABLE, NULL);
2029 if (ret & NOTIFY_STOP_MASK)
2030 return -EINVAL;
2031
2032 ret = _regulator_do_disable(rdev);
2033 if (ret < 0) {
2034 rdev_err(rdev, "failed to force disable\n");
2035 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2036 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2037 return ret;
2038 }
2039
2040 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2041 REGULATOR_EVENT_DISABLE, NULL);
2042
2043 return 0;
2044 }
2045
2046 /**
2047 * regulator_force_disable - force disable regulator output
2048 * @regulator: regulator source
2049 *
2050 * Forcibly disable the regulator output voltage or current.
2051 * NOTE: this *will* disable the regulator output even if other consumer
2052 * devices have it enabled. This should be used for situations when device
2053 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2054 */
2055 int regulator_force_disable(struct regulator *regulator)
2056 {
2057 struct regulator_dev *rdev = regulator->rdev;
2058 int ret;
2059
2060 mutex_lock(&rdev->mutex);
2061 regulator->uA_load = 0;
2062 ret = _regulator_force_disable(regulator->rdev);
2063 mutex_unlock(&rdev->mutex);
2064
2065 if (rdev->supply)
2066 while (rdev->open_count--)
2067 regulator_disable(rdev->supply);
2068
2069 return ret;
2070 }
2071 EXPORT_SYMBOL_GPL(regulator_force_disable);
2072
2073 static void regulator_disable_work(struct work_struct *work)
2074 {
2075 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2076 disable_work.work);
2077 int count, i, ret;
2078
2079 mutex_lock(&rdev->mutex);
2080
2081 BUG_ON(!rdev->deferred_disables);
2082
2083 count = rdev->deferred_disables;
2084 rdev->deferred_disables = 0;
2085
2086 for (i = 0; i < count; i++) {
2087 ret = _regulator_disable(rdev);
2088 if (ret != 0)
2089 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2090 }
2091
2092 mutex_unlock(&rdev->mutex);
2093
2094 if (rdev->supply) {
2095 for (i = 0; i < count; i++) {
2096 ret = regulator_disable(rdev->supply);
2097 if (ret != 0) {
2098 rdev_err(rdev,
2099 "Supply disable failed: %d\n", ret);
2100 }
2101 }
2102 }
2103 }
2104
2105 /**
2106 * regulator_disable_deferred - disable regulator output with delay
2107 * @regulator: regulator source
2108 * @ms: miliseconds until the regulator is disabled
2109 *
2110 * Execute regulator_disable() on the regulator after a delay. This
2111 * is intended for use with devices that require some time to quiesce.
2112 *
2113 * NOTE: this will only disable the regulator output if no other consumer
2114 * devices have it enabled, the regulator device supports disabling and
2115 * machine constraints permit this operation.
2116 */
2117 int regulator_disable_deferred(struct regulator *regulator, int ms)
2118 {
2119 struct regulator_dev *rdev = regulator->rdev;
2120 int ret;
2121
2122 if (regulator->always_on)
2123 return 0;
2124
2125 if (!ms)
2126 return regulator_disable(regulator);
2127
2128 mutex_lock(&rdev->mutex);
2129 rdev->deferred_disables++;
2130 mutex_unlock(&rdev->mutex);
2131
2132 ret = queue_delayed_work(system_power_efficient_wq,
2133 &rdev->disable_work,
2134 msecs_to_jiffies(ms));
2135 if (ret < 0)
2136 return ret;
2137 else
2138 return 0;
2139 }
2140 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2141
2142 static int _regulator_is_enabled(struct regulator_dev *rdev)
2143 {
2144 /* A GPIO control always takes precedence */
2145 if (rdev->ena_pin)
2146 return rdev->ena_gpio_state;
2147
2148 /* If we don't know then assume that the regulator is always on */
2149 if (!rdev->desc->ops->is_enabled)
2150 return 1;
2151
2152 return rdev->desc->ops->is_enabled(rdev);
2153 }
2154
2155 /**
2156 * regulator_is_enabled - is the regulator output enabled
2157 * @regulator: regulator source
2158 *
2159 * Returns positive if the regulator driver backing the source/client
2160 * has requested that the device be enabled, zero if it hasn't, else a
2161 * negative errno code.
2162 *
2163 * Note that the device backing this regulator handle can have multiple
2164 * users, so it might be enabled even if regulator_enable() was never
2165 * called for this particular source.
2166 */
2167 int regulator_is_enabled(struct regulator *regulator)
2168 {
2169 int ret;
2170
2171 if (regulator->always_on)
2172 return 1;
2173
2174 mutex_lock(&regulator->rdev->mutex);
2175 ret = _regulator_is_enabled(regulator->rdev);
2176 mutex_unlock(&regulator->rdev->mutex);
2177
2178 return ret;
2179 }
2180 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2181
2182 /**
2183 * regulator_can_change_voltage - check if regulator can change voltage
2184 * @regulator: regulator source
2185 *
2186 * Returns positive if the regulator driver backing the source/client
2187 * can change its voltage, false otherwise. Useful for detecting fixed
2188 * or dummy regulators and disabling voltage change logic in the client
2189 * driver.
2190 */
2191 int regulator_can_change_voltage(struct regulator *regulator)
2192 {
2193 struct regulator_dev *rdev = regulator->rdev;
2194
2195 if (rdev->constraints &&
2196 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2197 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2198 return 1;
2199
2200 if (rdev->desc->continuous_voltage_range &&
2201 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2202 rdev->constraints->min_uV != rdev->constraints->max_uV)
2203 return 1;
2204 }
2205
2206 return 0;
2207 }
2208 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2209
2210 /**
2211 * regulator_count_voltages - count regulator_list_voltage() selectors
2212 * @regulator: regulator source
2213 *
2214 * Returns number of selectors, or negative errno. Selectors are
2215 * numbered starting at zero, and typically correspond to bitfields
2216 * in hardware registers.
2217 */
2218 int regulator_count_voltages(struct regulator *regulator)
2219 {
2220 struct regulator_dev *rdev = regulator->rdev;
2221
2222 if (rdev->desc->n_voltages)
2223 return rdev->desc->n_voltages;
2224
2225 if (!rdev->supply)
2226 return -EINVAL;
2227
2228 return regulator_count_voltages(rdev->supply);
2229 }
2230 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2231
2232 /**
2233 * regulator_list_voltage - enumerate supported voltages
2234 * @regulator: regulator source
2235 * @selector: identify voltage to list
2236 * Context: can sleep
2237 *
2238 * Returns a voltage that can be passed to @regulator_set_voltage(),
2239 * zero if this selector code can't be used on this system, or a
2240 * negative errno.
2241 */
2242 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2243 {
2244 struct regulator_dev *rdev = regulator->rdev;
2245 const struct regulator_ops *ops = rdev->desc->ops;
2246 int ret;
2247
2248 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2249 return rdev->desc->fixed_uV;
2250
2251 if (ops->list_voltage) {
2252 if (selector >= rdev->desc->n_voltages)
2253 return -EINVAL;
2254 mutex_lock(&rdev->mutex);
2255 ret = ops->list_voltage(rdev, selector);
2256 mutex_unlock(&rdev->mutex);
2257 } else if (rdev->supply) {
2258 ret = regulator_list_voltage(rdev->supply, selector);
2259 } else {
2260 return -EINVAL;
2261 }
2262
2263 if (ret > 0) {
2264 if (ret < rdev->constraints->min_uV)
2265 ret = 0;
2266 else if (ret > rdev->constraints->max_uV)
2267 ret = 0;
2268 }
2269
2270 return ret;
2271 }
2272 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2273
2274 /**
2275 * regulator_get_regmap - get the regulator's register map
2276 * @regulator: regulator source
2277 *
2278 * Returns the register map for the given regulator, or an ERR_PTR value
2279 * if the regulator doesn't use regmap.
2280 */
2281 struct regmap *regulator_get_regmap(struct regulator *regulator)
2282 {
2283 struct regmap *map = regulator->rdev->regmap;
2284
2285 return map ? map : ERR_PTR(-EOPNOTSUPP);
2286 }
2287
2288 /**
2289 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2290 * @regulator: regulator source
2291 * @vsel_reg: voltage selector register, output parameter
2292 * @vsel_mask: mask for voltage selector bitfield, output parameter
2293 *
2294 * Returns the hardware register offset and bitmask used for setting the
2295 * regulator voltage. This might be useful when configuring voltage-scaling
2296 * hardware or firmware that can make I2C requests behind the kernel's back,
2297 * for example.
2298 *
2299 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2300 * and 0 is returned, otherwise a negative errno is returned.
2301 */
2302 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2303 unsigned *vsel_reg,
2304 unsigned *vsel_mask)
2305 {
2306 struct regulator_dev *rdev = regulator->rdev;
2307 const struct regulator_ops *ops = rdev->desc->ops;
2308
2309 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2310 return -EOPNOTSUPP;
2311
2312 *vsel_reg = rdev->desc->vsel_reg;
2313 *vsel_mask = rdev->desc->vsel_mask;
2314
2315 return 0;
2316 }
2317 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2318
2319 /**
2320 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2321 * @regulator: regulator source
2322 * @selector: identify voltage to list
2323 *
2324 * Converts the selector to a hardware-specific voltage selector that can be
2325 * directly written to the regulator registers. The address of the voltage
2326 * register can be determined by calling @regulator_get_hardware_vsel_register.
2327 *
2328 * On error a negative errno is returned.
2329 */
2330 int regulator_list_hardware_vsel(struct regulator *regulator,
2331 unsigned selector)
2332 {
2333 struct regulator_dev *rdev = regulator->rdev;
2334 const struct regulator_ops *ops = rdev->desc->ops;
2335
2336 if (selector >= rdev->desc->n_voltages)
2337 return -EINVAL;
2338 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2339 return -EOPNOTSUPP;
2340
2341 return selector;
2342 }
2343 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2344
2345 /**
2346 * regulator_get_linear_step - return the voltage step size between VSEL values
2347 * @regulator: regulator source
2348 *
2349 * Returns the voltage step size between VSEL values for linear
2350 * regulators, or return 0 if the regulator isn't a linear regulator.
2351 */
2352 unsigned int regulator_get_linear_step(struct regulator *regulator)
2353 {
2354 struct regulator_dev *rdev = regulator->rdev;
2355
2356 return rdev->desc->uV_step;
2357 }
2358 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2359
2360 /**
2361 * regulator_is_supported_voltage - check if a voltage range can be supported
2362 *
2363 * @regulator: Regulator to check.
2364 * @min_uV: Minimum required voltage in uV.
2365 * @max_uV: Maximum required voltage in uV.
2366 *
2367 * Returns a boolean or a negative error code.
2368 */
2369 int regulator_is_supported_voltage(struct regulator *regulator,
2370 int min_uV, int max_uV)
2371 {
2372 struct regulator_dev *rdev = regulator->rdev;
2373 int i, voltages, ret;
2374
2375 /* If we can't change voltage check the current voltage */
2376 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2377 ret = regulator_get_voltage(regulator);
2378 if (ret >= 0)
2379 return min_uV <= ret && ret <= max_uV;
2380 else
2381 return ret;
2382 }
2383
2384 /* Any voltage within constrains range is fine? */
2385 if (rdev->desc->continuous_voltage_range)
2386 return min_uV >= rdev->constraints->min_uV &&
2387 max_uV <= rdev->constraints->max_uV;
2388
2389 ret = regulator_count_voltages(regulator);
2390 if (ret < 0)
2391 return ret;
2392 voltages = ret;
2393
2394 for (i = 0; i < voltages; i++) {
2395 ret = regulator_list_voltage(regulator, i);
2396
2397 if (ret >= min_uV && ret <= max_uV)
2398 return 1;
2399 }
2400
2401 return 0;
2402 }
2403 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2404
2405 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2406 int min_uV, int max_uV,
2407 unsigned *selector)
2408 {
2409 struct pre_voltage_change_data data;
2410 int ret;
2411
2412 data.old_uV = _regulator_get_voltage(rdev);
2413 data.min_uV = min_uV;
2414 data.max_uV = max_uV;
2415 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2416 &data);
2417 if (ret & NOTIFY_STOP_MASK)
2418 return -EINVAL;
2419
2420 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2421 if (ret >= 0)
2422 return ret;
2423
2424 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2425 (void *)data.old_uV);
2426
2427 return ret;
2428 }
2429
2430 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2431 int uV, unsigned selector)
2432 {
2433 struct pre_voltage_change_data data;
2434 int ret;
2435
2436 data.old_uV = _regulator_get_voltage(rdev);
2437 data.min_uV = uV;
2438 data.max_uV = uV;
2439 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2440 &data);
2441 if (ret & NOTIFY_STOP_MASK)
2442 return -EINVAL;
2443
2444 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2445 if (ret >= 0)
2446 return ret;
2447
2448 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2449 (void *)data.old_uV);
2450
2451 return ret;
2452 }
2453
2454 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2455 int min_uV, int max_uV)
2456 {
2457 int ret;
2458 int delay = 0;
2459 int best_val = 0;
2460 unsigned int selector;
2461 int old_selector = -1;
2462
2463 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2464
2465 min_uV += rdev->constraints->uV_offset;
2466 max_uV += rdev->constraints->uV_offset;
2467
2468 /*
2469 * If we can't obtain the old selector there is not enough
2470 * info to call set_voltage_time_sel().
2471 */
2472 if (_regulator_is_enabled(rdev) &&
2473 rdev->desc->ops->set_voltage_time_sel &&
2474 rdev->desc->ops->get_voltage_sel) {
2475 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2476 if (old_selector < 0)
2477 return old_selector;
2478 }
2479
2480 if (rdev->desc->ops->set_voltage) {
2481 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2482 &selector);
2483
2484 if (ret >= 0) {
2485 if (rdev->desc->ops->list_voltage)
2486 best_val = rdev->desc->ops->list_voltage(rdev,
2487 selector);
2488 else
2489 best_val = _regulator_get_voltage(rdev);
2490 }
2491
2492 } else if (rdev->desc->ops->set_voltage_sel) {
2493 if (rdev->desc->ops->map_voltage) {
2494 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2495 max_uV);
2496 } else {
2497 if (rdev->desc->ops->list_voltage ==
2498 regulator_list_voltage_linear)
2499 ret = regulator_map_voltage_linear(rdev,
2500 min_uV, max_uV);
2501 else if (rdev->desc->ops->list_voltage ==
2502 regulator_list_voltage_linear_range)
2503 ret = regulator_map_voltage_linear_range(rdev,
2504 min_uV, max_uV);
2505 else
2506 ret = regulator_map_voltage_iterate(rdev,
2507 min_uV, max_uV);
2508 }
2509
2510 if (ret >= 0) {
2511 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2512 if (min_uV <= best_val && max_uV >= best_val) {
2513 selector = ret;
2514 if (old_selector == selector)
2515 ret = 0;
2516 else
2517 ret = _regulator_call_set_voltage_sel(
2518 rdev, best_val, selector);
2519 } else {
2520 ret = -EINVAL;
2521 }
2522 }
2523 } else {
2524 ret = -EINVAL;
2525 }
2526
2527 /* Call set_voltage_time_sel if successfully obtained old_selector */
2528 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2529 && old_selector != selector) {
2530
2531 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2532 old_selector, selector);
2533 if (delay < 0) {
2534 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2535 delay);
2536 delay = 0;
2537 }
2538
2539 /* Insert any necessary delays */
2540 if (delay >= 1000) {
2541 mdelay(delay / 1000);
2542 udelay(delay % 1000);
2543 } else if (delay) {
2544 udelay(delay);
2545 }
2546 }
2547
2548 if (ret == 0 && best_val >= 0) {
2549 unsigned long data = best_val;
2550
2551 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2552 (void *)data);
2553 }
2554
2555 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2556
2557 return ret;
2558 }
2559
2560 /**
2561 * regulator_set_voltage - set regulator output voltage
2562 * @regulator: regulator source
2563 * @min_uV: Minimum required voltage in uV
2564 * @max_uV: Maximum acceptable voltage in uV
2565 *
2566 * Sets a voltage regulator to the desired output voltage. This can be set
2567 * during any regulator state. IOW, regulator can be disabled or enabled.
2568 *
2569 * If the regulator is enabled then the voltage will change to the new value
2570 * immediately otherwise if the regulator is disabled the regulator will
2571 * output at the new voltage when enabled.
2572 *
2573 * NOTE: If the regulator is shared between several devices then the lowest
2574 * request voltage that meets the system constraints will be used.
2575 * Regulator system constraints must be set for this regulator before
2576 * calling this function otherwise this call will fail.
2577 */
2578 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2579 {
2580 struct regulator_dev *rdev = regulator->rdev;
2581 int ret = 0;
2582 int old_min_uV, old_max_uV;
2583 int current_uV;
2584
2585 mutex_lock(&rdev->mutex);
2586
2587 /* If we're setting the same range as last time the change
2588 * should be a noop (some cpufreq implementations use the same
2589 * voltage for multiple frequencies, for example).
2590 */
2591 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2592 goto out;
2593
2594 /* If we're trying to set a range that overlaps the current voltage,
2595 * return succesfully even though the regulator does not support
2596 * changing the voltage.
2597 */
2598 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2599 current_uV = _regulator_get_voltage(rdev);
2600 if (min_uV <= current_uV && current_uV <= max_uV) {
2601 regulator->min_uV = min_uV;
2602 regulator->max_uV = max_uV;
2603 goto out;
2604 }
2605 }
2606
2607 /* sanity check */
2608 if (!rdev->desc->ops->set_voltage &&
2609 !rdev->desc->ops->set_voltage_sel) {
2610 ret = -EINVAL;
2611 goto out;
2612 }
2613
2614 /* constraints check */
2615 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2616 if (ret < 0)
2617 goto out;
2618
2619 /* restore original values in case of error */
2620 old_min_uV = regulator->min_uV;
2621 old_max_uV = regulator->max_uV;
2622 regulator->min_uV = min_uV;
2623 regulator->max_uV = max_uV;
2624
2625 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2626 if (ret < 0)
2627 goto out2;
2628
2629 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2630 if (ret < 0)
2631 goto out2;
2632
2633 out:
2634 mutex_unlock(&rdev->mutex);
2635 return ret;
2636 out2:
2637 regulator->min_uV = old_min_uV;
2638 regulator->max_uV = old_max_uV;
2639 mutex_unlock(&rdev->mutex);
2640 return ret;
2641 }
2642 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2643
2644 /**
2645 * regulator_set_voltage_time - get raise/fall time
2646 * @regulator: regulator source
2647 * @old_uV: starting voltage in microvolts
2648 * @new_uV: target voltage in microvolts
2649 *
2650 * Provided with the starting and ending voltage, this function attempts to
2651 * calculate the time in microseconds required to rise or fall to this new
2652 * voltage.
2653 */
2654 int regulator_set_voltage_time(struct regulator *regulator,
2655 int old_uV, int new_uV)
2656 {
2657 struct regulator_dev *rdev = regulator->rdev;
2658 const struct regulator_ops *ops = rdev->desc->ops;
2659 int old_sel = -1;
2660 int new_sel = -1;
2661 int voltage;
2662 int i;
2663
2664 /* Currently requires operations to do this */
2665 if (!ops->list_voltage || !ops->set_voltage_time_sel
2666 || !rdev->desc->n_voltages)
2667 return -EINVAL;
2668
2669 for (i = 0; i < rdev->desc->n_voltages; i++) {
2670 /* We only look for exact voltage matches here */
2671 voltage = regulator_list_voltage(regulator, i);
2672 if (voltage < 0)
2673 return -EINVAL;
2674 if (voltage == 0)
2675 continue;
2676 if (voltage == old_uV)
2677 old_sel = i;
2678 if (voltage == new_uV)
2679 new_sel = i;
2680 }
2681
2682 if (old_sel < 0 || new_sel < 0)
2683 return -EINVAL;
2684
2685 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2686 }
2687 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2688
2689 /**
2690 * regulator_set_voltage_time_sel - get raise/fall time
2691 * @rdev: regulator source device
2692 * @old_selector: selector for starting voltage
2693 * @new_selector: selector for target voltage
2694 *
2695 * Provided with the starting and target voltage selectors, this function
2696 * returns time in microseconds required to rise or fall to this new voltage
2697 *
2698 * Drivers providing ramp_delay in regulation_constraints can use this as their
2699 * set_voltage_time_sel() operation.
2700 */
2701 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2702 unsigned int old_selector,
2703 unsigned int new_selector)
2704 {
2705 unsigned int ramp_delay = 0;
2706 int old_volt, new_volt;
2707
2708 if (rdev->constraints->ramp_delay)
2709 ramp_delay = rdev->constraints->ramp_delay;
2710 else if (rdev->desc->ramp_delay)
2711 ramp_delay = rdev->desc->ramp_delay;
2712
2713 if (ramp_delay == 0) {
2714 rdev_warn(rdev, "ramp_delay not set\n");
2715 return 0;
2716 }
2717
2718 /* sanity check */
2719 if (!rdev->desc->ops->list_voltage)
2720 return -EINVAL;
2721
2722 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2723 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2724
2725 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2726 }
2727 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2728
2729 /**
2730 * regulator_sync_voltage - re-apply last regulator output voltage
2731 * @regulator: regulator source
2732 *
2733 * Re-apply the last configured voltage. This is intended to be used
2734 * where some external control source the consumer is cooperating with
2735 * has caused the configured voltage to change.
2736 */
2737 int regulator_sync_voltage(struct regulator *regulator)
2738 {
2739 struct regulator_dev *rdev = regulator->rdev;
2740 int ret, min_uV, max_uV;
2741
2742 mutex_lock(&rdev->mutex);
2743
2744 if (!rdev->desc->ops->set_voltage &&
2745 !rdev->desc->ops->set_voltage_sel) {
2746 ret = -EINVAL;
2747 goto out;
2748 }
2749
2750 /* This is only going to work if we've had a voltage configured. */
2751 if (!regulator->min_uV && !regulator->max_uV) {
2752 ret = -EINVAL;
2753 goto out;
2754 }
2755
2756 min_uV = regulator->min_uV;
2757 max_uV = regulator->max_uV;
2758
2759 /* This should be a paranoia check... */
2760 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2761 if (ret < 0)
2762 goto out;
2763
2764 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2765 if (ret < 0)
2766 goto out;
2767
2768 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2769
2770 out:
2771 mutex_unlock(&rdev->mutex);
2772 return ret;
2773 }
2774 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2775
2776 static int _regulator_get_voltage(struct regulator_dev *rdev)
2777 {
2778 int sel, ret;
2779
2780 if (rdev->desc->ops->get_voltage_sel) {
2781 sel = rdev->desc->ops->get_voltage_sel(rdev);
2782 if (sel < 0)
2783 return sel;
2784 ret = rdev->desc->ops->list_voltage(rdev, sel);
2785 } else if (rdev->desc->ops->get_voltage) {
2786 ret = rdev->desc->ops->get_voltage(rdev);
2787 } else if (rdev->desc->ops->list_voltage) {
2788 ret = rdev->desc->ops->list_voltage(rdev, 0);
2789 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2790 ret = rdev->desc->fixed_uV;
2791 } else if (rdev->supply) {
2792 ret = regulator_get_voltage(rdev->supply);
2793 } else {
2794 return -EINVAL;
2795 }
2796
2797 if (ret < 0)
2798 return ret;
2799 return ret - rdev->constraints->uV_offset;
2800 }
2801
2802 /**
2803 * regulator_get_voltage - get regulator output voltage
2804 * @regulator: regulator source
2805 *
2806 * This returns the current regulator voltage in uV.
2807 *
2808 * NOTE: If the regulator is disabled it will return the voltage value. This
2809 * function should not be used to determine regulator state.
2810 */
2811 int regulator_get_voltage(struct regulator *regulator)
2812 {
2813 int ret;
2814
2815 mutex_lock(&regulator->rdev->mutex);
2816
2817 ret = _regulator_get_voltage(regulator->rdev);
2818
2819 mutex_unlock(&regulator->rdev->mutex);
2820
2821 return ret;
2822 }
2823 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2824
2825 /**
2826 * regulator_set_current_limit - set regulator output current limit
2827 * @regulator: regulator source
2828 * @min_uA: Minimum supported current in uA
2829 * @max_uA: Maximum supported current in uA
2830 *
2831 * Sets current sink to the desired output current. This can be set during
2832 * any regulator state. IOW, regulator can be disabled or enabled.
2833 *
2834 * If the regulator is enabled then the current will change to the new value
2835 * immediately otherwise if the regulator is disabled the regulator will
2836 * output at the new current when enabled.
2837 *
2838 * NOTE: Regulator system constraints must be set for this regulator before
2839 * calling this function otherwise this call will fail.
2840 */
2841 int regulator_set_current_limit(struct regulator *regulator,
2842 int min_uA, int max_uA)
2843 {
2844 struct regulator_dev *rdev = regulator->rdev;
2845 int ret;
2846
2847 mutex_lock(&rdev->mutex);
2848
2849 /* sanity check */
2850 if (!rdev->desc->ops->set_current_limit) {
2851 ret = -EINVAL;
2852 goto out;
2853 }
2854
2855 /* constraints check */
2856 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2857 if (ret < 0)
2858 goto out;
2859
2860 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2861 out:
2862 mutex_unlock(&rdev->mutex);
2863 return ret;
2864 }
2865 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2866
2867 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2868 {
2869 int ret;
2870
2871 mutex_lock(&rdev->mutex);
2872
2873 /* sanity check */
2874 if (!rdev->desc->ops->get_current_limit) {
2875 ret = -EINVAL;
2876 goto out;
2877 }
2878
2879 ret = rdev->desc->ops->get_current_limit(rdev);
2880 out:
2881 mutex_unlock(&rdev->mutex);
2882 return ret;
2883 }
2884
2885 /**
2886 * regulator_get_current_limit - get regulator output current
2887 * @regulator: regulator source
2888 *
2889 * This returns the current supplied by the specified current sink in uA.
2890 *
2891 * NOTE: If the regulator is disabled it will return the current value. This
2892 * function should not be used to determine regulator state.
2893 */
2894 int regulator_get_current_limit(struct regulator *regulator)
2895 {
2896 return _regulator_get_current_limit(regulator->rdev);
2897 }
2898 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2899
2900 /**
2901 * regulator_set_mode - set regulator operating mode
2902 * @regulator: regulator source
2903 * @mode: operating mode - one of the REGULATOR_MODE constants
2904 *
2905 * Set regulator operating mode to increase regulator efficiency or improve
2906 * regulation performance.
2907 *
2908 * NOTE: Regulator system constraints must be set for this regulator before
2909 * calling this function otherwise this call will fail.
2910 */
2911 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2912 {
2913 struct regulator_dev *rdev = regulator->rdev;
2914 int ret;
2915 int regulator_curr_mode;
2916
2917 mutex_lock(&rdev->mutex);
2918
2919 /* sanity check */
2920 if (!rdev->desc->ops->set_mode) {
2921 ret = -EINVAL;
2922 goto out;
2923 }
2924
2925 /* return if the same mode is requested */
2926 if (rdev->desc->ops->get_mode) {
2927 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2928 if (regulator_curr_mode == mode) {
2929 ret = 0;
2930 goto out;
2931 }
2932 }
2933
2934 /* constraints check */
2935 ret = regulator_mode_constrain(rdev, &mode);
2936 if (ret < 0)
2937 goto out;
2938
2939 ret = rdev->desc->ops->set_mode(rdev, mode);
2940 out:
2941 mutex_unlock(&rdev->mutex);
2942 return ret;
2943 }
2944 EXPORT_SYMBOL_GPL(regulator_set_mode);
2945
2946 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2947 {
2948 int ret;
2949
2950 mutex_lock(&rdev->mutex);
2951
2952 /* sanity check */
2953 if (!rdev->desc->ops->get_mode) {
2954 ret = -EINVAL;
2955 goto out;
2956 }
2957
2958 ret = rdev->desc->ops->get_mode(rdev);
2959 out:
2960 mutex_unlock(&rdev->mutex);
2961 return ret;
2962 }
2963
2964 /**
2965 * regulator_get_mode - get regulator operating mode
2966 * @regulator: regulator source
2967 *
2968 * Get the current regulator operating mode.
2969 */
2970 unsigned int regulator_get_mode(struct regulator *regulator)
2971 {
2972 return _regulator_get_mode(regulator->rdev);
2973 }
2974 EXPORT_SYMBOL_GPL(regulator_get_mode);
2975
2976 /**
2977 * regulator_set_optimum_mode - set regulator optimum operating mode
2978 * @regulator: regulator source
2979 * @uA_load: load current
2980 *
2981 * Notifies the regulator core of a new device load. This is then used by
2982 * DRMS (if enabled by constraints) to set the most efficient regulator
2983 * operating mode for the new regulator loading.
2984 *
2985 * Consumer devices notify their supply regulator of the maximum power
2986 * they will require (can be taken from device datasheet in the power
2987 * consumption tables) when they change operational status and hence power
2988 * state. Examples of operational state changes that can affect power
2989 * consumption are :-
2990 *
2991 * o Device is opened / closed.
2992 * o Device I/O is about to begin or has just finished.
2993 * o Device is idling in between work.
2994 *
2995 * This information is also exported via sysfs to userspace.
2996 *
2997 * DRMS will sum the total requested load on the regulator and change
2998 * to the most efficient operating mode if platform constraints allow.
2999 *
3000 * Returns the new regulator mode or error.
3001 */
3002 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
3003 {
3004 struct regulator_dev *rdev = regulator->rdev;
3005 struct regulator *consumer;
3006 int ret, output_uV, input_uV = 0, total_uA_load = 0;
3007 unsigned int mode;
3008
3009 if (rdev->supply)
3010 input_uV = regulator_get_voltage(rdev->supply);
3011
3012 mutex_lock(&rdev->mutex);
3013
3014 /*
3015 * first check to see if we can set modes at all, otherwise just
3016 * tell the consumer everything is OK.
3017 */
3018 regulator->uA_load = uA_load;
3019 ret = regulator_check_drms(rdev);
3020 if (ret < 0) {
3021 ret = 0;
3022 goto out;
3023 }
3024
3025 if (!rdev->desc->ops->get_optimum_mode)
3026 goto out;
3027
3028 /*
3029 * we can actually do this so any errors are indicators of
3030 * potential real failure.
3031 */
3032 ret = -EINVAL;
3033
3034 if (!rdev->desc->ops->set_mode)
3035 goto out;
3036
3037 /* get output voltage */
3038 output_uV = _regulator_get_voltage(rdev);
3039 if (output_uV <= 0) {
3040 rdev_err(rdev, "invalid output voltage found\n");
3041 goto out;
3042 }
3043
3044 /* No supply? Use constraint voltage */
3045 if (input_uV <= 0)
3046 input_uV = rdev->constraints->input_uV;
3047 if (input_uV <= 0) {
3048 rdev_err(rdev, "invalid input voltage found\n");
3049 goto out;
3050 }
3051
3052 /* calc total requested load for this regulator */
3053 list_for_each_entry(consumer, &rdev->consumer_list, list)
3054 total_uA_load += consumer->uA_load;
3055
3056 mode = rdev->desc->ops->get_optimum_mode(rdev,
3057 input_uV, output_uV,
3058 total_uA_load);
3059 ret = regulator_mode_constrain(rdev, &mode);
3060 if (ret < 0) {
3061 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
3062 total_uA_load, input_uV, output_uV);
3063 goto out;
3064 }
3065
3066 ret = rdev->desc->ops->set_mode(rdev, mode);
3067 if (ret < 0) {
3068 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
3069 goto out;
3070 }
3071 ret = mode;
3072 out:
3073 mutex_unlock(&rdev->mutex);
3074 return ret;
3075 }
3076 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
3077
3078 /**
3079 * regulator_allow_bypass - allow the regulator to go into bypass mode
3080 *
3081 * @regulator: Regulator to configure
3082 * @enable: enable or disable bypass mode
3083 *
3084 * Allow the regulator to go into bypass mode if all other consumers
3085 * for the regulator also enable bypass mode and the machine
3086 * constraints allow this. Bypass mode means that the regulator is
3087 * simply passing the input directly to the output with no regulation.
3088 */
3089 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3090 {
3091 struct regulator_dev *rdev = regulator->rdev;
3092 int ret = 0;
3093
3094 if (!rdev->desc->ops->set_bypass)
3095 return 0;
3096
3097 if (rdev->constraints &&
3098 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3099 return 0;
3100
3101 mutex_lock(&rdev->mutex);
3102
3103 if (enable && !regulator->bypass) {
3104 rdev->bypass_count++;
3105
3106 if (rdev->bypass_count == rdev->open_count) {
3107 ret = rdev->desc->ops->set_bypass(rdev, enable);
3108 if (ret != 0)
3109 rdev->bypass_count--;
3110 }
3111
3112 } else if (!enable && regulator->bypass) {
3113 rdev->bypass_count--;
3114
3115 if (rdev->bypass_count != rdev->open_count) {
3116 ret = rdev->desc->ops->set_bypass(rdev, enable);
3117 if (ret != 0)
3118 rdev->bypass_count++;
3119 }
3120 }
3121
3122 if (ret == 0)
3123 regulator->bypass = enable;
3124
3125 mutex_unlock(&rdev->mutex);
3126
3127 return ret;
3128 }
3129 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3130
3131 /**
3132 * regulator_register_notifier - register regulator event notifier
3133 * @regulator: regulator source
3134 * @nb: notifier block
3135 *
3136 * Register notifier block to receive regulator events.
3137 */
3138 int regulator_register_notifier(struct regulator *regulator,
3139 struct notifier_block *nb)
3140 {
3141 return blocking_notifier_chain_register(&regulator->rdev->notifier,
3142 nb);
3143 }
3144 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3145
3146 /**
3147 * regulator_unregister_notifier - unregister regulator event notifier
3148 * @regulator: regulator source
3149 * @nb: notifier block
3150 *
3151 * Unregister regulator event notifier block.
3152 */
3153 int regulator_unregister_notifier(struct regulator *regulator,
3154 struct notifier_block *nb)
3155 {
3156 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3157 nb);
3158 }
3159 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3160
3161 /* notify regulator consumers and downstream regulator consumers.
3162 * Note mutex must be held by caller.
3163 */
3164 static int _notifier_call_chain(struct regulator_dev *rdev,
3165 unsigned long event, void *data)
3166 {
3167 /* call rdev chain first */
3168 return blocking_notifier_call_chain(&rdev->notifier, event, data);
3169 }
3170
3171 /**
3172 * regulator_bulk_get - get multiple regulator consumers
3173 *
3174 * @dev: Device to supply
3175 * @num_consumers: Number of consumers to register
3176 * @consumers: Configuration of consumers; clients are stored here.
3177 *
3178 * @return 0 on success, an errno on failure.
3179 *
3180 * This helper function allows drivers to get several regulator
3181 * consumers in one operation. If any of the regulators cannot be
3182 * acquired then any regulators that were allocated will be freed
3183 * before returning to the caller.
3184 */
3185 int regulator_bulk_get(struct device *dev, int num_consumers,
3186 struct regulator_bulk_data *consumers)
3187 {
3188 int i;
3189 int ret;
3190
3191 for (i = 0; i < num_consumers; i++)
3192 consumers[i].consumer = NULL;
3193
3194 for (i = 0; i < num_consumers; i++) {
3195 consumers[i].consumer = regulator_get(dev,
3196 consumers[i].supply);
3197 if (IS_ERR(consumers[i].consumer)) {
3198 ret = PTR_ERR(consumers[i].consumer);
3199 dev_err(dev, "Failed to get supply '%s': %d\n",
3200 consumers[i].supply, ret);
3201 consumers[i].consumer = NULL;
3202 goto err;
3203 }
3204 }
3205
3206 return 0;
3207
3208 err:
3209 while (--i >= 0)
3210 regulator_put(consumers[i].consumer);
3211
3212 return ret;
3213 }
3214 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3215
3216 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3217 {
3218 struct regulator_bulk_data *bulk = data;
3219
3220 bulk->ret = regulator_enable(bulk->consumer);
3221 }
3222
3223 /**
3224 * regulator_bulk_enable - enable multiple regulator consumers
3225 *
3226 * @num_consumers: Number of consumers
3227 * @consumers: Consumer data; clients are stored here.
3228 * @return 0 on success, an errno on failure
3229 *
3230 * This convenience API allows consumers to enable multiple regulator
3231 * clients in a single API call. If any consumers cannot be enabled
3232 * then any others that were enabled will be disabled again prior to
3233 * return.
3234 */
3235 int regulator_bulk_enable(int num_consumers,
3236 struct regulator_bulk_data *consumers)
3237 {
3238 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3239 int i;
3240 int ret = 0;
3241
3242 for (i = 0; i < num_consumers; i++) {
3243 if (consumers[i].consumer->always_on)
3244 consumers[i].ret = 0;
3245 else
3246 async_schedule_domain(regulator_bulk_enable_async,
3247 &consumers[i], &async_domain);
3248 }
3249
3250 async_synchronize_full_domain(&async_domain);
3251
3252 /* If any consumer failed we need to unwind any that succeeded */
3253 for (i = 0; i < num_consumers; i++) {
3254 if (consumers[i].ret != 0) {
3255 ret = consumers[i].ret;
3256 goto err;
3257 }
3258 }
3259
3260 return 0;
3261
3262 err:
3263 for (i = 0; i < num_consumers; i++) {
3264 if (consumers[i].ret < 0)
3265 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3266 consumers[i].ret);
3267 else
3268 regulator_disable(consumers[i].consumer);
3269 }
3270
3271 return ret;
3272 }
3273 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3274
3275 /**
3276 * regulator_bulk_disable - disable multiple regulator consumers
3277 *
3278 * @num_consumers: Number of consumers
3279 * @consumers: Consumer data; clients are stored here.
3280 * @return 0 on success, an errno on failure
3281 *
3282 * This convenience API allows consumers to disable multiple regulator
3283 * clients in a single API call. If any consumers cannot be disabled
3284 * then any others that were disabled will be enabled again prior to
3285 * return.
3286 */
3287 int regulator_bulk_disable(int num_consumers,
3288 struct regulator_bulk_data *consumers)
3289 {
3290 int i;
3291 int ret, r;
3292
3293 for (i = num_consumers - 1; i >= 0; --i) {
3294 ret = regulator_disable(consumers[i].consumer);
3295 if (ret != 0)
3296 goto err;
3297 }
3298
3299 return 0;
3300
3301 err:
3302 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3303 for (++i; i < num_consumers; ++i) {
3304 r = regulator_enable(consumers[i].consumer);
3305 if (r != 0)
3306 pr_err("Failed to reename %s: %d\n",
3307 consumers[i].supply, r);
3308 }
3309
3310 return ret;
3311 }
3312 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3313
3314 /**
3315 * regulator_bulk_force_disable - force disable multiple regulator consumers
3316 *
3317 * @num_consumers: Number of consumers
3318 * @consumers: Consumer data; clients are stored here.
3319 * @return 0 on success, an errno on failure
3320 *
3321 * This convenience API allows consumers to forcibly disable multiple regulator
3322 * clients in a single API call.
3323 * NOTE: This should be used for situations when device damage will
3324 * likely occur if the regulators are not disabled (e.g. over temp).
3325 * Although regulator_force_disable function call for some consumers can
3326 * return error numbers, the function is called for all consumers.
3327 */
3328 int regulator_bulk_force_disable(int num_consumers,
3329 struct regulator_bulk_data *consumers)
3330 {
3331 int i;
3332 int ret;
3333
3334 for (i = 0; i < num_consumers; i++)
3335 consumers[i].ret =
3336 regulator_force_disable(consumers[i].consumer);
3337
3338 for (i = 0; i < num_consumers; i++) {
3339 if (consumers[i].ret != 0) {
3340 ret = consumers[i].ret;
3341 goto out;
3342 }
3343 }
3344
3345 return 0;
3346 out:
3347 return ret;
3348 }
3349 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3350
3351 /**
3352 * regulator_bulk_free - free multiple regulator consumers
3353 *
3354 * @num_consumers: Number of consumers
3355 * @consumers: Consumer data; clients are stored here.
3356 *
3357 * This convenience API allows consumers to free multiple regulator
3358 * clients in a single API call.
3359 */
3360 void regulator_bulk_free(int num_consumers,
3361 struct regulator_bulk_data *consumers)
3362 {
3363 int i;
3364
3365 for (i = 0; i < num_consumers; i++) {
3366 regulator_put(consumers[i].consumer);
3367 consumers[i].consumer = NULL;
3368 }
3369 }
3370 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3371
3372 /**
3373 * regulator_notifier_call_chain - call regulator event notifier
3374 * @rdev: regulator source
3375 * @event: notifier block
3376 * @data: callback-specific data.
3377 *
3378 * Called by regulator drivers to notify clients a regulator event has
3379 * occurred. We also notify regulator clients downstream.
3380 * Note lock must be held by caller.
3381 */
3382 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3383 unsigned long event, void *data)
3384 {
3385 _notifier_call_chain(rdev, event, data);
3386 return NOTIFY_DONE;
3387
3388 }
3389 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3390
3391 /**
3392 * regulator_mode_to_status - convert a regulator mode into a status
3393 *
3394 * @mode: Mode to convert
3395 *
3396 * Convert a regulator mode into a status.
3397 */
3398 int regulator_mode_to_status(unsigned int mode)
3399 {
3400 switch (mode) {
3401 case REGULATOR_MODE_FAST:
3402 return REGULATOR_STATUS_FAST;
3403 case REGULATOR_MODE_NORMAL:
3404 return REGULATOR_STATUS_NORMAL;
3405 case REGULATOR_MODE_IDLE:
3406 return REGULATOR_STATUS_IDLE;
3407 case REGULATOR_MODE_STANDBY:
3408 return REGULATOR_STATUS_STANDBY;
3409 default:
3410 return REGULATOR_STATUS_UNDEFINED;
3411 }
3412 }
3413 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3414
3415 static struct attribute *regulator_dev_attrs[] = {
3416 &dev_attr_name.attr,
3417 &dev_attr_num_users.attr,
3418 &dev_attr_type.attr,
3419 &dev_attr_microvolts.attr,
3420 &dev_attr_microamps.attr,
3421 &dev_attr_opmode.attr,
3422 &dev_attr_state.attr,
3423 &dev_attr_status.attr,
3424 &dev_attr_bypass.attr,
3425 &dev_attr_requested_microamps.attr,
3426 &dev_attr_min_microvolts.attr,
3427 &dev_attr_max_microvolts.attr,
3428 &dev_attr_min_microamps.attr,
3429 &dev_attr_max_microamps.attr,
3430 &dev_attr_suspend_standby_state.attr,
3431 &dev_attr_suspend_mem_state.attr,
3432 &dev_attr_suspend_disk_state.attr,
3433 &dev_attr_suspend_standby_microvolts.attr,
3434 &dev_attr_suspend_mem_microvolts.attr,
3435 &dev_attr_suspend_disk_microvolts.attr,
3436 &dev_attr_suspend_standby_mode.attr,
3437 &dev_attr_suspend_mem_mode.attr,
3438 &dev_attr_suspend_disk_mode.attr,
3439 NULL
3440 };
3441
3442 /*
3443 * To avoid cluttering sysfs (and memory) with useless state, only
3444 * create attributes that can be meaningfully displayed.
3445 */
3446 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3447 struct attribute *attr, int idx)
3448 {
3449 struct device *dev = kobj_to_dev(kobj);
3450 struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3451 const struct regulator_ops *ops = rdev->desc->ops;
3452 umode_t mode = attr->mode;
3453
3454 /* these three are always present */
3455 if (attr == &dev_attr_name.attr ||
3456 attr == &dev_attr_num_users.attr ||
3457 attr == &dev_attr_type.attr)
3458 return mode;
3459
3460 /* some attributes need specific methods to be displayed */
3461 if (attr == &dev_attr_microvolts.attr) {
3462 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3463 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3464 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3465 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3466 return mode;
3467 return 0;
3468 }
3469
3470 if (attr == &dev_attr_microamps.attr)
3471 return ops->get_current_limit ? mode : 0;
3472
3473 if (attr == &dev_attr_opmode.attr)
3474 return ops->get_mode ? mode : 0;
3475
3476 if (attr == &dev_attr_state.attr)
3477 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3478
3479 if (attr == &dev_attr_status.attr)
3480 return ops->get_status ? mode : 0;
3481
3482 if (attr == &dev_attr_bypass.attr)
3483 return ops->get_bypass ? mode : 0;
3484
3485 /* some attributes are type-specific */
3486 if (attr == &dev_attr_requested_microamps.attr)
3487 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3488
3489 /* all the other attributes exist to support constraints;
3490 * don't show them if there are no constraints, or if the
3491 * relevant supporting methods are missing.
3492 */
3493 if (!rdev->constraints)
3494 return 0;
3495
3496 /* constraints need specific supporting methods */
3497 if (attr == &dev_attr_min_microvolts.attr ||
3498 attr == &dev_attr_max_microvolts.attr)
3499 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3500
3501 if (attr == &dev_attr_min_microamps.attr ||
3502 attr == &dev_attr_max_microamps.attr)
3503 return ops->set_current_limit ? mode : 0;
3504
3505 if (attr == &dev_attr_suspend_standby_state.attr ||
3506 attr == &dev_attr_suspend_mem_state.attr ||
3507 attr == &dev_attr_suspend_disk_state.attr)
3508 return mode;
3509
3510 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3511 attr == &dev_attr_suspend_mem_microvolts.attr ||
3512 attr == &dev_attr_suspend_disk_microvolts.attr)
3513 return ops->set_suspend_voltage ? mode : 0;
3514
3515 if (attr == &dev_attr_suspend_standby_mode.attr ||
3516 attr == &dev_attr_suspend_mem_mode.attr ||
3517 attr == &dev_attr_suspend_disk_mode.attr)
3518 return ops->set_suspend_mode ? mode : 0;
3519
3520 return mode;
3521 }
3522
3523 static const struct attribute_group regulator_dev_group = {
3524 .attrs = regulator_dev_attrs,
3525 .is_visible = regulator_attr_is_visible,
3526 };
3527
3528 static const struct attribute_group *regulator_dev_groups[] = {
3529 &regulator_dev_group,
3530 NULL
3531 };
3532
3533 static void regulator_dev_release(struct device *dev)
3534 {
3535 struct regulator_dev *rdev = dev_get_drvdata(dev);
3536 kfree(rdev);
3537 }
3538
3539 static struct class regulator_class = {
3540 .name = "regulator",
3541 .dev_release = regulator_dev_release,
3542 .dev_groups = regulator_dev_groups,
3543 };
3544
3545 static void rdev_init_debugfs(struct regulator_dev *rdev)
3546 {
3547 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3548 if (!rdev->debugfs) {
3549 rdev_warn(rdev, "Failed to create debugfs directory\n");
3550 return;
3551 }
3552
3553 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3554 &rdev->use_count);
3555 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3556 &rdev->open_count);
3557 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3558 &rdev->bypass_count);
3559 }
3560
3561 /**
3562 * regulator_register - register regulator
3563 * @regulator_desc: regulator to register
3564 * @cfg: runtime configuration for regulator
3565 *
3566 * Called by regulator drivers to register a regulator.
3567 * Returns a valid pointer to struct regulator_dev on success
3568 * or an ERR_PTR() on error.
3569 */
3570 struct regulator_dev *
3571 regulator_register(const struct regulator_desc *regulator_desc,
3572 const struct regulator_config *cfg)
3573 {
3574 const struct regulation_constraints *constraints = NULL;
3575 const struct regulator_init_data *init_data;
3576 struct regulator_config *config = NULL;
3577 static atomic_t regulator_no = ATOMIC_INIT(-1);
3578 struct regulator_dev *rdev;
3579 struct device *dev;
3580 int ret, i;
3581 const char *supply = NULL;
3582
3583 if (regulator_desc == NULL || cfg == NULL)
3584 return ERR_PTR(-EINVAL);
3585
3586 dev = cfg->dev;
3587 WARN_ON(!dev);
3588
3589 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3590 return ERR_PTR(-EINVAL);
3591
3592 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3593 regulator_desc->type != REGULATOR_CURRENT)
3594 return ERR_PTR(-EINVAL);
3595
3596 /* Only one of each should be implemented */
3597 WARN_ON(regulator_desc->ops->get_voltage &&
3598 regulator_desc->ops->get_voltage_sel);
3599 WARN_ON(regulator_desc->ops->set_voltage &&
3600 regulator_desc->ops->set_voltage_sel);
3601
3602 /* If we're using selectors we must implement list_voltage. */
3603 if (regulator_desc->ops->get_voltage_sel &&
3604 !regulator_desc->ops->list_voltage) {
3605 return ERR_PTR(-EINVAL);
3606 }
3607 if (regulator_desc->ops->set_voltage_sel &&
3608 !regulator_desc->ops->list_voltage) {
3609 return ERR_PTR(-EINVAL);
3610 }
3611
3612 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3613 if (rdev == NULL)
3614 return ERR_PTR(-ENOMEM);
3615
3616 /*
3617 * Duplicate the config so the driver could override it after
3618 * parsing init data.
3619 */
3620 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3621 if (config == NULL) {
3622 kfree(rdev);
3623 return ERR_PTR(-ENOMEM);
3624 }
3625
3626 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3627 &rdev->dev.of_node);
3628 if (!init_data) {
3629 init_data = config->init_data;
3630 rdev->dev.of_node = of_node_get(config->of_node);
3631 }
3632
3633 mutex_lock(&regulator_list_mutex);
3634
3635 mutex_init(&rdev->mutex);
3636 rdev->reg_data = config->driver_data;
3637 rdev->owner = regulator_desc->owner;
3638 rdev->desc = regulator_desc;
3639 if (config->regmap)
3640 rdev->regmap = config->regmap;
3641 else if (dev_get_regmap(dev, NULL))
3642 rdev->regmap = dev_get_regmap(dev, NULL);
3643 else if (dev->parent)
3644 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3645 INIT_LIST_HEAD(&rdev->consumer_list);
3646 INIT_LIST_HEAD(&rdev->list);
3647 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3648 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3649
3650 /* preform any regulator specific init */
3651 if (init_data && init_data->regulator_init) {
3652 ret = init_data->regulator_init(rdev->reg_data);
3653 if (ret < 0)
3654 goto clean;
3655 }
3656
3657 /* register with sysfs */
3658 rdev->dev.class = &regulator_class;
3659 rdev->dev.parent = dev;
3660 dev_set_name(&rdev->dev, "regulator.%lu",
3661 (unsigned long) atomic_inc_return(&regulator_no));
3662 ret = device_register(&rdev->dev);
3663 if (ret != 0) {
3664 put_device(&rdev->dev);
3665 goto clean;
3666 }
3667
3668 dev_set_drvdata(&rdev->dev, rdev);
3669
3670 if ((config->ena_gpio || config->ena_gpio_initialized) &&
3671 gpio_is_valid(config->ena_gpio)) {
3672 ret = regulator_ena_gpio_request(rdev, config);
3673 if (ret != 0) {
3674 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3675 config->ena_gpio, ret);
3676 goto wash;
3677 }
3678
3679 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3680 rdev->ena_gpio_state = 1;
3681
3682 if (config->ena_gpio_invert)
3683 rdev->ena_gpio_state = !rdev->ena_gpio_state;
3684 }
3685
3686 /* set regulator constraints */
3687 if (init_data)
3688 constraints = &init_data->constraints;
3689
3690 ret = set_machine_constraints(rdev, constraints);
3691 if (ret < 0)
3692 goto scrub;
3693
3694 if (init_data && init_data->supply_regulator)
3695 supply = init_data->supply_regulator;
3696 else if (regulator_desc->supply_name)
3697 supply = regulator_desc->supply_name;
3698
3699 if (supply) {
3700 struct regulator_dev *r;
3701
3702 r = regulator_dev_lookup(dev, supply, &ret);
3703
3704 if (ret == -ENODEV) {
3705 /*
3706 * No supply was specified for this regulator and
3707 * there will never be one.
3708 */
3709 ret = 0;
3710 goto add_dev;
3711 } else if (!r) {
3712 dev_err(dev, "Failed to find supply %s\n", supply);
3713 ret = -EPROBE_DEFER;
3714 goto scrub;
3715 }
3716
3717 ret = set_supply(rdev, r);
3718 if (ret < 0)
3719 goto scrub;
3720
3721 /* Enable supply if rail is enabled */
3722 if (_regulator_is_enabled(rdev)) {
3723 ret = regulator_enable(rdev->supply);
3724 if (ret < 0)
3725 goto scrub;
3726 }
3727 }
3728
3729 add_dev:
3730 /* add consumers devices */
3731 if (init_data) {
3732 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3733 ret = set_consumer_device_supply(rdev,
3734 init_data->consumer_supplies[i].dev_name,
3735 init_data->consumer_supplies[i].supply);
3736 if (ret < 0) {
3737 dev_err(dev, "Failed to set supply %s\n",
3738 init_data->consumer_supplies[i].supply);
3739 goto unset_supplies;
3740 }
3741 }
3742 }
3743
3744 list_add(&rdev->list, &regulator_list);
3745
3746 rdev_init_debugfs(rdev);
3747 out:
3748 mutex_unlock(&regulator_list_mutex);
3749 kfree(config);
3750 return rdev;
3751
3752 unset_supplies:
3753 unset_regulator_supplies(rdev);
3754
3755 scrub:
3756 if (rdev->supply)
3757 _regulator_put(rdev->supply);
3758 regulator_ena_gpio_free(rdev);
3759 kfree(rdev->constraints);
3760 wash:
3761 device_unregister(&rdev->dev);
3762 /* device core frees rdev */
3763 rdev = ERR_PTR(ret);
3764 goto out;
3765
3766 clean:
3767 kfree(rdev);
3768 rdev = ERR_PTR(ret);
3769 goto out;
3770 }
3771 EXPORT_SYMBOL_GPL(regulator_register);
3772
3773 /**
3774 * regulator_unregister - unregister regulator
3775 * @rdev: regulator to unregister
3776 *
3777 * Called by regulator drivers to unregister a regulator.
3778 */
3779 void regulator_unregister(struct regulator_dev *rdev)
3780 {
3781 if (rdev == NULL)
3782 return;
3783
3784 if (rdev->supply) {
3785 while (rdev->use_count--)
3786 regulator_disable(rdev->supply);
3787 regulator_put(rdev->supply);
3788 }
3789 mutex_lock(&regulator_list_mutex);
3790 debugfs_remove_recursive(rdev->debugfs);
3791 flush_work(&rdev->disable_work.work);
3792 WARN_ON(rdev->open_count);
3793 unset_regulator_supplies(rdev);
3794 list_del(&rdev->list);
3795 kfree(rdev->constraints);
3796 regulator_ena_gpio_free(rdev);
3797 of_node_put(rdev->dev.of_node);
3798 device_unregister(&rdev->dev);
3799 mutex_unlock(&regulator_list_mutex);
3800 }
3801 EXPORT_SYMBOL_GPL(regulator_unregister);
3802
3803 /**
3804 * regulator_suspend_prepare - prepare regulators for system wide suspend
3805 * @state: system suspend state
3806 *
3807 * Configure each regulator with it's suspend operating parameters for state.
3808 * This will usually be called by machine suspend code prior to supending.
3809 */
3810 int regulator_suspend_prepare(suspend_state_t state)
3811 {
3812 struct regulator_dev *rdev;
3813 int ret = 0;
3814
3815 /* ON is handled by regulator active state */
3816 if (state == PM_SUSPEND_ON)
3817 return -EINVAL;
3818
3819 mutex_lock(&regulator_list_mutex);
3820 list_for_each_entry(rdev, &regulator_list, list) {
3821
3822 mutex_lock(&rdev->mutex);
3823 ret = suspend_prepare(rdev, state);
3824 mutex_unlock(&rdev->mutex);
3825
3826 if (ret < 0) {
3827 rdev_err(rdev, "failed to prepare\n");
3828 goto out;
3829 }
3830 }
3831 out:
3832 mutex_unlock(&regulator_list_mutex);
3833 return ret;
3834 }
3835 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3836
3837 /**
3838 * regulator_suspend_finish - resume regulators from system wide suspend
3839 *
3840 * Turn on regulators that might be turned off by regulator_suspend_prepare
3841 * and that should be turned on according to the regulators properties.
3842 */
3843 int regulator_suspend_finish(void)
3844 {
3845 struct regulator_dev *rdev;
3846 int ret = 0, error;
3847
3848 mutex_lock(&regulator_list_mutex);
3849 list_for_each_entry(rdev, &regulator_list, list) {
3850 mutex_lock(&rdev->mutex);
3851 if (rdev->use_count > 0 || rdev->constraints->always_on) {
3852 error = _regulator_do_enable(rdev);
3853 if (error)
3854 ret = error;
3855 } else {
3856 if (!have_full_constraints())
3857 goto unlock;
3858 if (!_regulator_is_enabled(rdev))
3859 goto unlock;
3860
3861 error = _regulator_do_disable(rdev);
3862 if (error)
3863 ret = error;
3864 }
3865 unlock:
3866 mutex_unlock(&rdev->mutex);
3867 }
3868 mutex_unlock(&regulator_list_mutex);
3869 return ret;
3870 }
3871 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3872
3873 /**
3874 * regulator_has_full_constraints - the system has fully specified constraints
3875 *
3876 * Calling this function will cause the regulator API to disable all
3877 * regulators which have a zero use count and don't have an always_on
3878 * constraint in a late_initcall.
3879 *
3880 * The intention is that this will become the default behaviour in a
3881 * future kernel release so users are encouraged to use this facility
3882 * now.
3883 */
3884 void regulator_has_full_constraints(void)
3885 {
3886 has_full_constraints = 1;
3887 }
3888 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3889
3890 /**
3891 * rdev_get_drvdata - get rdev regulator driver data
3892 * @rdev: regulator
3893 *
3894 * Get rdev regulator driver private data. This call can be used in the
3895 * regulator driver context.
3896 */
3897 void *rdev_get_drvdata(struct regulator_dev *rdev)
3898 {
3899 return rdev->reg_data;
3900 }
3901 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3902
3903 /**
3904 * regulator_get_drvdata - get regulator driver data
3905 * @regulator: regulator
3906 *
3907 * Get regulator driver private data. This call can be used in the consumer
3908 * driver context when non API regulator specific functions need to be called.
3909 */
3910 void *regulator_get_drvdata(struct regulator *regulator)
3911 {
3912 return regulator->rdev->reg_data;
3913 }
3914 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3915
3916 /**
3917 * regulator_set_drvdata - set regulator driver data
3918 * @regulator: regulator
3919 * @data: data
3920 */
3921 void regulator_set_drvdata(struct regulator *regulator, void *data)
3922 {
3923 regulator->rdev->reg_data = data;
3924 }
3925 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3926
3927 /**
3928 * regulator_get_id - get regulator ID
3929 * @rdev: regulator
3930 */
3931 int rdev_get_id(struct regulator_dev *rdev)
3932 {
3933 return rdev->desc->id;
3934 }
3935 EXPORT_SYMBOL_GPL(rdev_get_id);
3936
3937 struct device *rdev_get_dev(struct regulator_dev *rdev)
3938 {
3939 return &rdev->dev;
3940 }
3941 EXPORT_SYMBOL_GPL(rdev_get_dev);
3942
3943 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3944 {
3945 return reg_init_data->driver_data;
3946 }
3947 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3948
3949 #ifdef CONFIG_DEBUG_FS
3950 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3951 size_t count, loff_t *ppos)
3952 {
3953 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3954 ssize_t len, ret = 0;
3955 struct regulator_map *map;
3956
3957 if (!buf)
3958 return -ENOMEM;
3959
3960 list_for_each_entry(map, &regulator_map_list, list) {
3961 len = snprintf(buf + ret, PAGE_SIZE - ret,
3962 "%s -> %s.%s\n",
3963 rdev_get_name(map->regulator), map->dev_name,
3964 map->supply);
3965 if (len >= 0)
3966 ret += len;
3967 if (ret > PAGE_SIZE) {
3968 ret = PAGE_SIZE;
3969 break;
3970 }
3971 }
3972
3973 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3974
3975 kfree(buf);
3976
3977 return ret;
3978 }
3979 #endif
3980
3981 static const struct file_operations supply_map_fops = {
3982 #ifdef CONFIG_DEBUG_FS
3983 .read = supply_map_read_file,
3984 .llseek = default_llseek,
3985 #endif
3986 };
3987
3988 static int __init regulator_init(void)
3989 {
3990 int ret;
3991
3992 ret = class_register(&regulator_class);
3993
3994 debugfs_root = debugfs_create_dir("regulator", NULL);
3995 if (!debugfs_root)
3996 pr_warn("regulator: Failed to create debugfs directory\n");
3997
3998 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3999 &supply_map_fops);
4000
4001 regulator_dummy_init();
4002
4003 return ret;
4004 }
4005
4006 /* init early to allow our consumers to complete system booting */
4007 core_initcall(regulator_init);
4008
4009 static int __init regulator_init_complete(void)
4010 {
4011 struct regulator_dev *rdev;
4012 const struct regulator_ops *ops;
4013 struct regulation_constraints *c;
4014 int enabled, ret;
4015
4016 /*
4017 * Since DT doesn't provide an idiomatic mechanism for
4018 * enabling full constraints and since it's much more natural
4019 * with DT to provide them just assume that a DT enabled
4020 * system has full constraints.
4021 */
4022 if (of_have_populated_dt())
4023 has_full_constraints = true;
4024
4025 mutex_lock(&regulator_list_mutex);
4026
4027 /* If we have a full configuration then disable any regulators
4028 * we have permission to change the status for and which are
4029 * not in use or always_on. This is effectively the default
4030 * for DT and ACPI as they have full constraints.
4031 */
4032 list_for_each_entry(rdev, &regulator_list, list) {
4033 ops = rdev->desc->ops;
4034 c = rdev->constraints;
4035
4036 if (c && c->always_on)
4037 continue;
4038
4039 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4040 continue;
4041
4042 mutex_lock(&rdev->mutex);
4043
4044 if (rdev->use_count)
4045 goto unlock;
4046
4047 /* If we can't read the status assume it's on. */
4048 if (ops->is_enabled)
4049 enabled = ops->is_enabled(rdev);
4050 else
4051 enabled = 1;
4052
4053 if (!enabled)
4054 goto unlock;
4055
4056 if (have_full_constraints()) {
4057 /* We log since this may kill the system if it
4058 * goes wrong. */
4059 rdev_info(rdev, "disabling\n");
4060 ret = _regulator_do_disable(rdev);
4061 if (ret != 0)
4062 rdev_err(rdev, "couldn't disable: %d\n", ret);
4063 } else {
4064 /* The intention is that in future we will
4065 * assume that full constraints are provided
4066 * so warn even if we aren't going to do
4067 * anything here.
4068 */
4069 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4070 }
4071
4072 unlock:
4073 mutex_unlock(&rdev->mutex);
4074 }
4075
4076 mutex_unlock(&regulator_list_mutex);
4077
4078 return 0;
4079 }
4080 late_initcall_sync(regulator_init_complete);